tests: avoid false failure in tail inotify test
[coreutils.git] / tests / misc / seq.pl
blob6564415d4906c4c7ed1c947b06959a63687c5a79
1 #!/usr/bin/perl
2 # Test "seq".
4 # Copyright (C) 1999-2016 Free Software Foundation, Inc.
6 # This program is free software: you can redistribute it and/or modify
7 # it under the terms of the GNU General Public License as published by
8 # the Free Software Foundation, either version 3 of the License, or
9 # (at your option) any later version.
11 # This program is distributed in the hope that it will be useful,
12 # but WITHOUT ANY WARRANTY; without even the implied warranty of
13 # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 # GNU General Public License for more details.
16 # You should have received a copy of the GNU General Public License
17 # along with this program. If not, see <http://www.gnu.org/licenses/>.
19 use strict;
21 (my $program_name = $0) =~ s|.*/||;
23 # Turn off localization of executable's output.
24 @ENV{qw(LANGUAGE LANG LC_ALL)} = ('C') x 3;
26 my $prog = 'seq';
27 my $try_help = "Try '$prog --help' for more information.\n";
29 my $locale = $ENV{LOCALE_FR_UTF8};
30 ! defined $locale || $locale eq 'none'
31 and $locale = 'C';
33 my $p = '9' x 81;
34 (my $q = $p) =~ s/9/0/g;
35 $q = "1$q";
36 (my $r = $q) =~ s/0$/1/;
38 my @Tests =
40 ['onearg-1', qw(10), {OUT => [(1..10)]}],
41 ['onearg-2', qw(-1)],
42 ['empty-rev', qw(1 -1 3)],
43 ['neg-1', qw(-10 10 10), {OUT => [qw(-10 0 10)]}],
44 # ['neg-2', qw(-.1 .1 .11), {OUT => [qw(-0.1 0.0 0.1)]}],
45 ['neg-3', qw(1 -1 0), {OUT => [qw(1 0)]}],
46 ['neg-4', qw(1 -1 -1), {OUT => [qw(1 0 -1)]}],
48 ['float-1', qw(0.8 0.1 0.9), {OUT => [qw(0.8 0.9)]}],
49 ['float-2', qw(0.1 0.99 1.99), {OUT => [qw(0.10 1.09)]}],
50 ['float-3', qw(10.8 0.1 10.95), {OUT => [qw(10.8 10.9)]}],
51 ['float-4', qw(0.1 -0.1 -0.2), {OUT => [qw(0.1 0.0 -0.1 -0.2)]},
52 {OUT_SUBST => 's,^-0\.0$,0.0,'},
54 ['float-5', qw(0.8 1e-1 0.9), {OUT => [qw(0.8 0.9)]}],
55 # Don't append lots of zeros to that 0.9000...; for example, changing the
56 # number to 0.90000000000000000000 tickles a bug in Solaris 8 strtold
57 # that would cause the test to fail.
58 ['float-6', qw(0.8 0.1 0.9000000000000), {OUT => [qw(0.8 0.9)]}],
60 ['wid-1', qw(.8 1e-2 .81), {OUT => [qw(0.80 0.81)]}],
61 ['wid-2', qw(.89999 1e-7 .8999901), {OUT => [qw(0.8999900 0.8999901)]}],
63 ['eq-wid-1', qw(-w 1 -1 -1), {OUT => [qw(01 00 -1)]}],
64 # Prior to 2.0g, this test would fail on e.g., HPUX systems
65 # because it'd end up using %3.1f as the format instead of %4.1f.
66 ['eq-wid-2', qw(-w -.1 .1 .11),{OUT => [qw(-0.1 00.0 00.1)]}],
67 ['eq-wid-3', qw(-w 1 3.0), {OUT => [qw(1 2 3)]}],
68 ['eq-wid-4', qw(-w .8 1e-2 .81), {OUT => [qw(0.80 0.81)]}],
69 ['eq-wid-5', qw(-w 1 .5 2), {OUT => [qw(1.0 1.5 2.0)]}],
70 ['eq-wid-6', qw(-w +1 2), {OUT => [qw(1 2)]}],
71 ['eq-wid-7', qw(-w " .1" " .1"), {OUT => [qw(0.1)]}],
72 ['eq-wid-8', qw(-w 9 0.5 10), {OUT => [qw(09.0 09.5 10.0)]}],
73 # Prior to 8.21, these tests involving numbers in scentific notation
74 # would fail with misalignment or wrong widths.
75 ['eq-wid-9', qw(-w -1e-3 1), {OUT => [qw(-0.001 00.999)]}],
76 ['eq-wid-10',qw(-w -1e-003 1), {OUT => [qw(-0.001 00.999)]}],
77 ['eq-wid-11',qw(-w -1.e-3 1), {OUT => [qw(-0.001 00.999)]}],
78 ['eq-wid-12',qw(-w -1.0e-4 1), {OUT => [qw(-0.00010 00.99990)]}],
79 ['eq-wid-13',qw(-w 999 1e3), {OUT => [qw(0999 1000)]}],
80 # Prior to 8.21, if the start value hadn't a precision, while step did,
81 # then misalignment would occur if the sequence narrowed.
82 ['eq-wid-14',qw(-w -1 1.0 0), {OUT => [qw(-1.0 00.0)]}],
83 ['eq-wid-15',qw(-w 10 -.1 9.9), {OUT => [qw(10.0 09.9)]}],
85 # Prior to coreutils-4.5.11, some of these were not accepted.
86 ['fmt-1', qw(-f %2.1f 1.5 .5 2),{OUT => [qw(1.5 2.0)]}],
87 ['fmt-2', qw(-f %0.1f 1.5 .5 2),{OUT => [qw(1.5 2.0)]}],
88 ['fmt-3', qw(-f %.1f 1.5 .5 2),{OUT => [qw(1.5 2.0)]}],
90 ['fmt-4', qw(-f %3.0f 1 2), {OUT => [' 1', ' 2']}],
91 ['fmt-5', qw(-f %-3.0f 1 2), {OUT => ['1 ', '2 ']}],
92 ['fmt-6', qw(-f %+3.0f 1 2), {OUT => [' +1', ' +2']}],
93 ['fmt-7', qw(-f %0+3.0f 1 2), {OUT => [qw(+01 +02)]}],
94 ['fmt-8', qw(-f %0+.0f 1 2), {OUT => [qw(+1 +2)]}],
95 ['fmt-9', '-f "% -3.0f"', qw(-1 0), {OUT => ['-1 ', ' 0 ']}],
96 ['fmt-a', '-f "% -.0f"',qw(-1 0), {OUT => ['-1', ' 0']}],
97 ['fmt-b', qw(-f %%%g%% 1), {OUT => ['%1%']}],
99 # In coreutils-[6.0..6.9], this would mistakenly succeed and print "%Lg".
100 ['fmt-c', qw(-f %%g 1), {EXIT => 1},
101 {ERR => "seq: format '%%g' has no % directive\n"}],
103 # In coreutils-6.9..6.10, this would fail with an erroneous diagnostic:
104 # "seq: memory exhausted". In coreutils-6.0..6.8, it would mistakenly
105 # succeed and print a blank line.
106 ['fmt-eos1', qw(-f % 1), {EXIT => 1},
107 {ERR => "seq: format '%' ends in %\n"}],
108 ['fmt-eos2', qw(-f %g% 1), {EXIT => 1},
109 {ERR => "seq: format '%g%' has too many % directives\n"}],
111 ['fmt-d', qw(-f "" 1), {EXIT => 1},
112 {ERR => "seq: format '' has no % directive\n"}],
113 ['fmt-e', qw(-f %g%g 1), {EXIT => 1},
114 {ERR => "seq: format '%g%g' has too many % directives\n"}],
116 # With coreutils-6.12 and earlier, with a UTF8 numeric locale that uses
117 # something other than "." as the decimal point, this use of seq would
118 # fail to print the "2,0" endpoint.
119 ['locale-dec-pt', qw(-0.1 0.1 2),
120 {OUT => [qw(-0.1 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
121 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0)]},
123 {ENV => "LC_ALL=$locale"},
124 {OUT_SUBST => 's/,/./g'},
127 # With coreutils-8.19 and prior, this would infloop.
128 ['long-1', "$p $r", {OUT => [$p, $q, $r]}],
130 # Exercise the code that trims leading zeros.
131 ['long-leading-zeros1', qw(000 2), {OUT => [qw(0 1 2)]}],
132 ['long-leading-zeros2', qw(000 02), {OUT => [qw(0 1 2)]}],
133 ['long-leading-zeros3', qw(00 02), {OUT => [qw(0 1 2)]}],
134 ['long-leading-zeros4', qw(0 02), {OUT => [qw(0 1 2)]}],
136 # Exercise the -s option, which was broken in 8.20
137 ['sep-1', qw(-s, 1 3), {OUT => [qw(1,2,3)]}],
138 ['sep-2', qw(-s, 1 1), {OUT => [qw(1)]}],
139 ['sep-3', qw(-s,, 1 3), {OUT => [qw(1,,2,,3)]}],
141 # Exercise fast path avoidance logic.
142 # In 8.20 a step value != 1, with positive integer start and end was broken
143 ['not-fast-1', qw(1 3 1), {OUT => [qw(1)]}],
144 ['not-fast-2', qw(1 1 4.2), {OUT => [qw(1 2 3 4)]}],
145 ['not-fast-3', qw(1 1 0)],
146 # In 8.20..8.22 a start or end of -0 was broken
147 ['not-fast-4', qw(-0 10), {OUT => [qw(-0 1 2 3 4 5 6 7 8 9 10)]}],
148 ['not-fast-5', qw(1 -0)],
150 # Ensure the correct parameters are passed to the fast path
151 ['fast-1', qw(4), {OUT => [qw(1 2 3 4)]}],
152 ['fast-2', qw(1 4), {OUT => [qw(1 2 3 4)]}],
153 ['fast-3', qw(1 1 4), {OUT => [qw(1 2 3 4)]}],
156 # Append a newline to each entry in the OUT array.
157 my $t;
158 foreach $t (@Tests)
160 my $e;
161 foreach $e (@$t)
163 $e->{OUT} = join ("\n", @{$e->{OUT}}) . "\n"
164 if ref $e eq 'HASH' and exists $e->{OUT};
168 my $save_temps = $ENV{SAVE_TEMPS};
169 my $verbose = $ENV{VERBOSE};
171 my $fail = run_tests ($program_name, $prog, \@Tests, $save_temps, $verbose);
172 exit $fail;