mmc: SDHI should depend on SUPERH || ARCH_SHMOBILE
[cris-mirror.git] / net / sched / cls_flow.c
blob8ec01391d98866dff1b0287ba392379d11b84d54
1 /*
2 * net/sched/cls_flow.c Generic flow classifier
4 * Copyright (c) 2007, 2008 Patrick McHardy <kaber@trash.net>
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public License
8 * as published by the Free Software Foundation; either version 2
9 * of the License, or (at your option) any later version.
12 #include <linux/kernel.h>
13 #include <linux/init.h>
14 #include <linux/list.h>
15 #include <linux/jhash.h>
16 #include <linux/random.h>
17 #include <linux/pkt_cls.h>
18 #include <linux/skbuff.h>
19 #include <linux/in.h>
20 #include <linux/ip.h>
21 #include <linux/ipv6.h>
22 #include <linux/if_vlan.h>
23 #include <linux/slab.h>
25 #include <net/pkt_cls.h>
26 #include <net/ip.h>
27 #include <net/route.h>
28 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
29 #include <net/netfilter/nf_conntrack.h>
30 #endif
32 struct flow_head {
33 struct list_head filters;
36 struct flow_filter {
37 struct list_head list;
38 struct tcf_exts exts;
39 struct tcf_ematch_tree ematches;
40 struct timer_list perturb_timer;
41 u32 perturb_period;
42 u32 handle;
44 u32 nkeys;
45 u32 keymask;
46 u32 mode;
47 u32 mask;
48 u32 xor;
49 u32 rshift;
50 u32 addend;
51 u32 divisor;
52 u32 baseclass;
53 u32 hashrnd;
56 static const struct tcf_ext_map flow_ext_map = {
57 .action = TCA_FLOW_ACT,
58 .police = TCA_FLOW_POLICE,
61 static inline u32 addr_fold(void *addr)
63 unsigned long a = (unsigned long)addr;
65 return (a & 0xFFFFFFFF) ^ (BITS_PER_LONG > 32 ? a >> 32 : 0);
68 static u32 flow_get_src(struct sk_buff *skb)
70 switch (skb->protocol) {
71 case htons(ETH_P_IP):
72 if (pskb_network_may_pull(skb, sizeof(struct iphdr)))
73 return ntohl(ip_hdr(skb)->saddr);
74 break;
75 case htons(ETH_P_IPV6):
76 if (pskb_network_may_pull(skb, sizeof(struct ipv6hdr)))
77 return ntohl(ipv6_hdr(skb)->saddr.s6_addr32[3]);
78 break;
81 return addr_fold(skb->sk);
84 static u32 flow_get_dst(struct sk_buff *skb)
86 switch (skb->protocol) {
87 case htons(ETH_P_IP):
88 if (pskb_network_may_pull(skb, sizeof(struct iphdr)))
89 return ntohl(ip_hdr(skb)->daddr);
90 break;
91 case htons(ETH_P_IPV6):
92 if (pskb_network_may_pull(skb, sizeof(struct ipv6hdr)))
93 return ntohl(ipv6_hdr(skb)->daddr.s6_addr32[3]);
94 break;
97 return addr_fold(skb_dst(skb)) ^ (__force u16)skb->protocol;
100 static u32 flow_get_proto(struct sk_buff *skb)
102 switch (skb->protocol) {
103 case htons(ETH_P_IP):
104 return pskb_network_may_pull(skb, sizeof(struct iphdr)) ?
105 ip_hdr(skb)->protocol : 0;
106 case htons(ETH_P_IPV6):
107 return pskb_network_may_pull(skb, sizeof(struct ipv6hdr)) ?
108 ipv6_hdr(skb)->nexthdr : 0;
109 default:
110 return 0;
114 static u32 flow_get_proto_src(struct sk_buff *skb)
116 switch (skb->protocol) {
117 case htons(ETH_P_IP): {
118 struct iphdr *iph;
119 int poff;
121 if (!pskb_network_may_pull(skb, sizeof(*iph)))
122 break;
123 iph = ip_hdr(skb);
124 if (iph->frag_off & htons(IP_MF | IP_OFFSET))
125 break;
126 poff = proto_ports_offset(iph->protocol);
127 if (poff >= 0 &&
128 pskb_network_may_pull(skb, iph->ihl * 4 + 2 + poff)) {
129 iph = ip_hdr(skb);
130 return ntohs(*(__be16 *)((void *)iph + iph->ihl * 4 +
131 poff));
133 break;
135 case htons(ETH_P_IPV6): {
136 struct ipv6hdr *iph;
137 int poff;
139 if (!pskb_network_may_pull(skb, sizeof(*iph)))
140 break;
141 iph = ipv6_hdr(skb);
142 poff = proto_ports_offset(iph->nexthdr);
143 if (poff >= 0 &&
144 pskb_network_may_pull(skb, sizeof(*iph) + poff + 2)) {
145 iph = ipv6_hdr(skb);
146 return ntohs(*(__be16 *)((void *)iph + sizeof(*iph) +
147 poff));
149 break;
153 return addr_fold(skb->sk);
156 static u32 flow_get_proto_dst(struct sk_buff *skb)
158 switch (skb->protocol) {
159 case htons(ETH_P_IP): {
160 struct iphdr *iph;
161 int poff;
163 if (!pskb_network_may_pull(skb, sizeof(*iph)))
164 break;
165 iph = ip_hdr(skb);
166 if (iph->frag_off & htons(IP_MF | IP_OFFSET))
167 break;
168 poff = proto_ports_offset(iph->protocol);
169 if (poff >= 0 &&
170 pskb_network_may_pull(skb, iph->ihl * 4 + 4 + poff)) {
171 iph = ip_hdr(skb);
172 return ntohs(*(__be16 *)((void *)iph + iph->ihl * 4 +
173 2 + poff));
175 break;
177 case htons(ETH_P_IPV6): {
178 struct ipv6hdr *iph;
179 int poff;
181 if (!pskb_network_may_pull(skb, sizeof(*iph)))
182 break;
183 iph = ipv6_hdr(skb);
184 poff = proto_ports_offset(iph->nexthdr);
185 if (poff >= 0 &&
186 pskb_network_may_pull(skb, sizeof(*iph) + poff + 4)) {
187 iph = ipv6_hdr(skb);
188 return ntohs(*(__be16 *)((void *)iph + sizeof(*iph) +
189 poff + 2));
191 break;
195 return addr_fold(skb_dst(skb)) ^ (__force u16)skb->protocol;
198 static u32 flow_get_iif(const struct sk_buff *skb)
200 return skb->skb_iif;
203 static u32 flow_get_priority(const struct sk_buff *skb)
205 return skb->priority;
208 static u32 flow_get_mark(const struct sk_buff *skb)
210 return skb->mark;
213 static u32 flow_get_nfct(const struct sk_buff *skb)
215 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
216 return addr_fold(skb->nfct);
217 #else
218 return 0;
219 #endif
222 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
223 #define CTTUPLE(skb, member) \
224 ({ \
225 enum ip_conntrack_info ctinfo; \
226 struct nf_conn *ct = nf_ct_get(skb, &ctinfo); \
227 if (ct == NULL) \
228 goto fallback; \
229 ct->tuplehash[CTINFO2DIR(ctinfo)].tuple.member; \
231 #else
232 #define CTTUPLE(skb, member) \
233 ({ \
234 goto fallback; \
235 0; \
237 #endif
239 static u32 flow_get_nfct_src(struct sk_buff *skb)
241 switch (skb->protocol) {
242 case htons(ETH_P_IP):
243 return ntohl(CTTUPLE(skb, src.u3.ip));
244 case htons(ETH_P_IPV6):
245 return ntohl(CTTUPLE(skb, src.u3.ip6[3]));
247 fallback:
248 return flow_get_src(skb);
251 static u32 flow_get_nfct_dst(struct sk_buff *skb)
253 switch (skb->protocol) {
254 case htons(ETH_P_IP):
255 return ntohl(CTTUPLE(skb, dst.u3.ip));
256 case htons(ETH_P_IPV6):
257 return ntohl(CTTUPLE(skb, dst.u3.ip6[3]));
259 fallback:
260 return flow_get_dst(skb);
263 static u32 flow_get_nfct_proto_src(struct sk_buff *skb)
265 return ntohs(CTTUPLE(skb, src.u.all));
266 fallback:
267 return flow_get_proto_src(skb);
270 static u32 flow_get_nfct_proto_dst(struct sk_buff *skb)
272 return ntohs(CTTUPLE(skb, dst.u.all));
273 fallback:
274 return flow_get_proto_dst(skb);
277 static u32 flow_get_rtclassid(const struct sk_buff *skb)
279 #ifdef CONFIG_IP_ROUTE_CLASSID
280 if (skb_dst(skb))
281 return skb_dst(skb)->tclassid;
282 #endif
283 return 0;
286 static u32 flow_get_skuid(const struct sk_buff *skb)
288 if (skb->sk && skb->sk->sk_socket && skb->sk->sk_socket->file)
289 return skb->sk->sk_socket->file->f_cred->fsuid;
290 return 0;
293 static u32 flow_get_skgid(const struct sk_buff *skb)
295 if (skb->sk && skb->sk->sk_socket && skb->sk->sk_socket->file)
296 return skb->sk->sk_socket->file->f_cred->fsgid;
297 return 0;
300 static u32 flow_get_vlan_tag(const struct sk_buff *skb)
302 u16 uninitialized_var(tag);
304 if (vlan_get_tag(skb, &tag) < 0)
305 return 0;
306 return tag & VLAN_VID_MASK;
309 static u32 flow_get_rxhash(struct sk_buff *skb)
311 return skb_get_rxhash(skb);
314 static u32 flow_key_get(struct sk_buff *skb, int key)
316 switch (key) {
317 case FLOW_KEY_SRC:
318 return flow_get_src(skb);
319 case FLOW_KEY_DST:
320 return flow_get_dst(skb);
321 case FLOW_KEY_PROTO:
322 return flow_get_proto(skb);
323 case FLOW_KEY_PROTO_SRC:
324 return flow_get_proto_src(skb);
325 case FLOW_KEY_PROTO_DST:
326 return flow_get_proto_dst(skb);
327 case FLOW_KEY_IIF:
328 return flow_get_iif(skb);
329 case FLOW_KEY_PRIORITY:
330 return flow_get_priority(skb);
331 case FLOW_KEY_MARK:
332 return flow_get_mark(skb);
333 case FLOW_KEY_NFCT:
334 return flow_get_nfct(skb);
335 case FLOW_KEY_NFCT_SRC:
336 return flow_get_nfct_src(skb);
337 case FLOW_KEY_NFCT_DST:
338 return flow_get_nfct_dst(skb);
339 case FLOW_KEY_NFCT_PROTO_SRC:
340 return flow_get_nfct_proto_src(skb);
341 case FLOW_KEY_NFCT_PROTO_DST:
342 return flow_get_nfct_proto_dst(skb);
343 case FLOW_KEY_RTCLASSID:
344 return flow_get_rtclassid(skb);
345 case FLOW_KEY_SKUID:
346 return flow_get_skuid(skb);
347 case FLOW_KEY_SKGID:
348 return flow_get_skgid(skb);
349 case FLOW_KEY_VLAN_TAG:
350 return flow_get_vlan_tag(skb);
351 case FLOW_KEY_RXHASH:
352 return flow_get_rxhash(skb);
353 default:
354 WARN_ON(1);
355 return 0;
359 static int flow_classify(struct sk_buff *skb, struct tcf_proto *tp,
360 struct tcf_result *res)
362 struct flow_head *head = tp->root;
363 struct flow_filter *f;
364 u32 keymask;
365 u32 classid;
366 unsigned int n, key;
367 int r;
369 list_for_each_entry(f, &head->filters, list) {
370 u32 keys[f->nkeys];
372 if (!tcf_em_tree_match(skb, &f->ematches, NULL))
373 continue;
375 keymask = f->keymask;
377 for (n = 0; n < f->nkeys; n++) {
378 key = ffs(keymask) - 1;
379 keymask &= ~(1 << key);
380 keys[n] = flow_key_get(skb, key);
383 if (f->mode == FLOW_MODE_HASH)
384 classid = jhash2(keys, f->nkeys, f->hashrnd);
385 else {
386 classid = keys[0];
387 classid = (classid & f->mask) ^ f->xor;
388 classid = (classid >> f->rshift) + f->addend;
391 if (f->divisor)
392 classid %= f->divisor;
394 res->class = 0;
395 res->classid = TC_H_MAKE(f->baseclass, f->baseclass + classid);
397 r = tcf_exts_exec(skb, &f->exts, res);
398 if (r < 0)
399 continue;
400 return r;
402 return -1;
405 static void flow_perturbation(unsigned long arg)
407 struct flow_filter *f = (struct flow_filter *)arg;
409 get_random_bytes(&f->hashrnd, 4);
410 if (f->perturb_period)
411 mod_timer(&f->perturb_timer, jiffies + f->perturb_period);
414 static const struct nla_policy flow_policy[TCA_FLOW_MAX + 1] = {
415 [TCA_FLOW_KEYS] = { .type = NLA_U32 },
416 [TCA_FLOW_MODE] = { .type = NLA_U32 },
417 [TCA_FLOW_BASECLASS] = { .type = NLA_U32 },
418 [TCA_FLOW_RSHIFT] = { .type = NLA_U32 },
419 [TCA_FLOW_ADDEND] = { .type = NLA_U32 },
420 [TCA_FLOW_MASK] = { .type = NLA_U32 },
421 [TCA_FLOW_XOR] = { .type = NLA_U32 },
422 [TCA_FLOW_DIVISOR] = { .type = NLA_U32 },
423 [TCA_FLOW_ACT] = { .type = NLA_NESTED },
424 [TCA_FLOW_POLICE] = { .type = NLA_NESTED },
425 [TCA_FLOW_EMATCHES] = { .type = NLA_NESTED },
426 [TCA_FLOW_PERTURB] = { .type = NLA_U32 },
429 static int flow_change(struct tcf_proto *tp, unsigned long base,
430 u32 handle, struct nlattr **tca,
431 unsigned long *arg)
433 struct flow_head *head = tp->root;
434 struct flow_filter *f;
435 struct nlattr *opt = tca[TCA_OPTIONS];
436 struct nlattr *tb[TCA_FLOW_MAX + 1];
437 struct tcf_exts e;
438 struct tcf_ematch_tree t;
439 unsigned int nkeys = 0;
440 unsigned int perturb_period = 0;
441 u32 baseclass = 0;
442 u32 keymask = 0;
443 u32 mode;
444 int err;
446 if (opt == NULL)
447 return -EINVAL;
449 err = nla_parse_nested(tb, TCA_FLOW_MAX, opt, flow_policy);
450 if (err < 0)
451 return err;
453 if (tb[TCA_FLOW_BASECLASS]) {
454 baseclass = nla_get_u32(tb[TCA_FLOW_BASECLASS]);
455 if (TC_H_MIN(baseclass) == 0)
456 return -EINVAL;
459 if (tb[TCA_FLOW_KEYS]) {
460 keymask = nla_get_u32(tb[TCA_FLOW_KEYS]);
462 nkeys = hweight32(keymask);
463 if (nkeys == 0)
464 return -EINVAL;
466 if (fls(keymask) - 1 > FLOW_KEY_MAX)
467 return -EOPNOTSUPP;
470 err = tcf_exts_validate(tp, tb, tca[TCA_RATE], &e, &flow_ext_map);
471 if (err < 0)
472 return err;
474 err = tcf_em_tree_validate(tp, tb[TCA_FLOW_EMATCHES], &t);
475 if (err < 0)
476 goto err1;
478 f = (struct flow_filter *)*arg;
479 if (f != NULL) {
480 err = -EINVAL;
481 if (f->handle != handle && handle)
482 goto err2;
484 mode = f->mode;
485 if (tb[TCA_FLOW_MODE])
486 mode = nla_get_u32(tb[TCA_FLOW_MODE]);
487 if (mode != FLOW_MODE_HASH && nkeys > 1)
488 goto err2;
490 if (mode == FLOW_MODE_HASH)
491 perturb_period = f->perturb_period;
492 if (tb[TCA_FLOW_PERTURB]) {
493 if (mode != FLOW_MODE_HASH)
494 goto err2;
495 perturb_period = nla_get_u32(tb[TCA_FLOW_PERTURB]) * HZ;
497 } else {
498 err = -EINVAL;
499 if (!handle)
500 goto err2;
501 if (!tb[TCA_FLOW_KEYS])
502 goto err2;
504 mode = FLOW_MODE_MAP;
505 if (tb[TCA_FLOW_MODE])
506 mode = nla_get_u32(tb[TCA_FLOW_MODE]);
507 if (mode != FLOW_MODE_HASH && nkeys > 1)
508 goto err2;
510 if (tb[TCA_FLOW_PERTURB]) {
511 if (mode != FLOW_MODE_HASH)
512 goto err2;
513 perturb_period = nla_get_u32(tb[TCA_FLOW_PERTURB]) * HZ;
516 if (TC_H_MAJ(baseclass) == 0)
517 baseclass = TC_H_MAKE(tp->q->handle, baseclass);
518 if (TC_H_MIN(baseclass) == 0)
519 baseclass = TC_H_MAKE(baseclass, 1);
521 err = -ENOBUFS;
522 f = kzalloc(sizeof(*f), GFP_KERNEL);
523 if (f == NULL)
524 goto err2;
526 f->handle = handle;
527 f->mask = ~0U;
529 get_random_bytes(&f->hashrnd, 4);
530 f->perturb_timer.function = flow_perturbation;
531 f->perturb_timer.data = (unsigned long)f;
532 init_timer_deferrable(&f->perturb_timer);
535 tcf_exts_change(tp, &f->exts, &e);
536 tcf_em_tree_change(tp, &f->ematches, &t);
538 tcf_tree_lock(tp);
540 if (tb[TCA_FLOW_KEYS]) {
541 f->keymask = keymask;
542 f->nkeys = nkeys;
545 f->mode = mode;
547 if (tb[TCA_FLOW_MASK])
548 f->mask = nla_get_u32(tb[TCA_FLOW_MASK]);
549 if (tb[TCA_FLOW_XOR])
550 f->xor = nla_get_u32(tb[TCA_FLOW_XOR]);
551 if (tb[TCA_FLOW_RSHIFT])
552 f->rshift = nla_get_u32(tb[TCA_FLOW_RSHIFT]);
553 if (tb[TCA_FLOW_ADDEND])
554 f->addend = nla_get_u32(tb[TCA_FLOW_ADDEND]);
556 if (tb[TCA_FLOW_DIVISOR])
557 f->divisor = nla_get_u32(tb[TCA_FLOW_DIVISOR]);
558 if (baseclass)
559 f->baseclass = baseclass;
561 f->perturb_period = perturb_period;
562 del_timer(&f->perturb_timer);
563 if (perturb_period)
564 mod_timer(&f->perturb_timer, jiffies + perturb_period);
566 if (*arg == 0)
567 list_add_tail(&f->list, &head->filters);
569 tcf_tree_unlock(tp);
571 *arg = (unsigned long)f;
572 return 0;
574 err2:
575 tcf_em_tree_destroy(tp, &t);
576 err1:
577 tcf_exts_destroy(tp, &e);
578 return err;
581 static void flow_destroy_filter(struct tcf_proto *tp, struct flow_filter *f)
583 del_timer_sync(&f->perturb_timer);
584 tcf_exts_destroy(tp, &f->exts);
585 tcf_em_tree_destroy(tp, &f->ematches);
586 kfree(f);
589 static int flow_delete(struct tcf_proto *tp, unsigned long arg)
591 struct flow_filter *f = (struct flow_filter *)arg;
593 tcf_tree_lock(tp);
594 list_del(&f->list);
595 tcf_tree_unlock(tp);
596 flow_destroy_filter(tp, f);
597 return 0;
600 static int flow_init(struct tcf_proto *tp)
602 struct flow_head *head;
604 head = kzalloc(sizeof(*head), GFP_KERNEL);
605 if (head == NULL)
606 return -ENOBUFS;
607 INIT_LIST_HEAD(&head->filters);
608 tp->root = head;
609 return 0;
612 static void flow_destroy(struct tcf_proto *tp)
614 struct flow_head *head = tp->root;
615 struct flow_filter *f, *next;
617 list_for_each_entry_safe(f, next, &head->filters, list) {
618 list_del(&f->list);
619 flow_destroy_filter(tp, f);
621 kfree(head);
624 static unsigned long flow_get(struct tcf_proto *tp, u32 handle)
626 struct flow_head *head = tp->root;
627 struct flow_filter *f;
629 list_for_each_entry(f, &head->filters, list)
630 if (f->handle == handle)
631 return (unsigned long)f;
632 return 0;
635 static void flow_put(struct tcf_proto *tp, unsigned long f)
639 static int flow_dump(struct tcf_proto *tp, unsigned long fh,
640 struct sk_buff *skb, struct tcmsg *t)
642 struct flow_filter *f = (struct flow_filter *)fh;
643 struct nlattr *nest;
645 if (f == NULL)
646 return skb->len;
648 t->tcm_handle = f->handle;
650 nest = nla_nest_start(skb, TCA_OPTIONS);
651 if (nest == NULL)
652 goto nla_put_failure;
654 NLA_PUT_U32(skb, TCA_FLOW_KEYS, f->keymask);
655 NLA_PUT_U32(skb, TCA_FLOW_MODE, f->mode);
657 if (f->mask != ~0 || f->xor != 0) {
658 NLA_PUT_U32(skb, TCA_FLOW_MASK, f->mask);
659 NLA_PUT_U32(skb, TCA_FLOW_XOR, f->xor);
661 if (f->rshift)
662 NLA_PUT_U32(skb, TCA_FLOW_RSHIFT, f->rshift);
663 if (f->addend)
664 NLA_PUT_U32(skb, TCA_FLOW_ADDEND, f->addend);
666 if (f->divisor)
667 NLA_PUT_U32(skb, TCA_FLOW_DIVISOR, f->divisor);
668 if (f->baseclass)
669 NLA_PUT_U32(skb, TCA_FLOW_BASECLASS, f->baseclass);
671 if (f->perturb_period)
672 NLA_PUT_U32(skb, TCA_FLOW_PERTURB, f->perturb_period / HZ);
674 if (tcf_exts_dump(skb, &f->exts, &flow_ext_map) < 0)
675 goto nla_put_failure;
676 #ifdef CONFIG_NET_EMATCH
677 if (f->ematches.hdr.nmatches &&
678 tcf_em_tree_dump(skb, &f->ematches, TCA_FLOW_EMATCHES) < 0)
679 goto nla_put_failure;
680 #endif
681 nla_nest_end(skb, nest);
683 if (tcf_exts_dump_stats(skb, &f->exts, &flow_ext_map) < 0)
684 goto nla_put_failure;
686 return skb->len;
688 nla_put_failure:
689 nlmsg_trim(skb, nest);
690 return -1;
693 static void flow_walk(struct tcf_proto *tp, struct tcf_walker *arg)
695 struct flow_head *head = tp->root;
696 struct flow_filter *f;
698 list_for_each_entry(f, &head->filters, list) {
699 if (arg->count < arg->skip)
700 goto skip;
701 if (arg->fn(tp, (unsigned long)f, arg) < 0) {
702 arg->stop = 1;
703 break;
705 skip:
706 arg->count++;
710 static struct tcf_proto_ops cls_flow_ops __read_mostly = {
711 .kind = "flow",
712 .classify = flow_classify,
713 .init = flow_init,
714 .destroy = flow_destroy,
715 .change = flow_change,
716 .delete = flow_delete,
717 .get = flow_get,
718 .put = flow_put,
719 .dump = flow_dump,
720 .walk = flow_walk,
721 .owner = THIS_MODULE,
724 static int __init cls_flow_init(void)
726 return register_tcf_proto_ops(&cls_flow_ops);
729 static void __exit cls_flow_exit(void)
731 unregister_tcf_proto_ops(&cls_flow_ops);
734 module_init(cls_flow_init);
735 module_exit(cls_flow_exit);
737 MODULE_LICENSE("GPL");
738 MODULE_AUTHOR("Patrick McHardy <kaber@trash.net>");
739 MODULE_DESCRIPTION("TC flow classifier");