2 * Copyright (C) 2011 STRATO. All rights reserved.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
19 #include <linux/vmalloc.h>
24 #include "transaction.h"
25 #include "delayed-ref.h"
28 /* Just an arbitrary number so we can be sure this happened */
29 #define BACKREF_FOUND_SHARED 6
31 struct extent_inode_elem
{
34 struct extent_inode_elem
*next
;
37 static int check_extent_in_eb(struct btrfs_key
*key
, struct extent_buffer
*eb
,
38 struct btrfs_file_extent_item
*fi
,
40 struct extent_inode_elem
**eie
)
43 struct extent_inode_elem
*e
;
45 if (!btrfs_file_extent_compression(eb
, fi
) &&
46 !btrfs_file_extent_encryption(eb
, fi
) &&
47 !btrfs_file_extent_other_encoding(eb
, fi
)) {
51 data_offset
= btrfs_file_extent_offset(eb
, fi
);
52 data_len
= btrfs_file_extent_num_bytes(eb
, fi
);
54 if (extent_item_pos
< data_offset
||
55 extent_item_pos
>= data_offset
+ data_len
)
57 offset
= extent_item_pos
- data_offset
;
60 e
= kmalloc(sizeof(*e
), GFP_NOFS
);
65 e
->inum
= key
->objectid
;
66 e
->offset
= key
->offset
+ offset
;
72 static void free_inode_elem_list(struct extent_inode_elem
*eie
)
74 struct extent_inode_elem
*eie_next
;
76 for (; eie
; eie
= eie_next
) {
82 static int find_extent_in_eb(struct extent_buffer
*eb
, u64 wanted_disk_byte
,
84 struct extent_inode_elem
**eie
)
88 struct btrfs_file_extent_item
*fi
;
95 * from the shared data ref, we only have the leaf but we need
96 * the key. thus, we must look into all items and see that we
97 * find one (some) with a reference to our extent item.
99 nritems
= btrfs_header_nritems(eb
);
100 for (slot
= 0; slot
< nritems
; ++slot
) {
101 btrfs_item_key_to_cpu(eb
, &key
, slot
);
102 if (key
.type
!= BTRFS_EXTENT_DATA_KEY
)
104 fi
= btrfs_item_ptr(eb
, slot
, struct btrfs_file_extent_item
);
105 extent_type
= btrfs_file_extent_type(eb
, fi
);
106 if (extent_type
== BTRFS_FILE_EXTENT_INLINE
)
108 /* don't skip BTRFS_FILE_EXTENT_PREALLOC, we can handle that */
109 disk_byte
= btrfs_file_extent_disk_bytenr(eb
, fi
);
110 if (disk_byte
!= wanted_disk_byte
)
113 ret
= check_extent_in_eb(&key
, eb
, fi
, extent_item_pos
, eie
);
122 * this structure records all encountered refs on the way up to the root
124 struct __prelim_ref
{
125 struct list_head list
;
127 struct btrfs_key key_for_search
;
130 struct extent_inode_elem
*inode_list
;
132 u64 wanted_disk_byte
;
135 static struct kmem_cache
*btrfs_prelim_ref_cache
;
137 int __init
btrfs_prelim_ref_init(void)
139 btrfs_prelim_ref_cache
= kmem_cache_create("btrfs_prelim_ref",
140 sizeof(struct __prelim_ref
),
142 SLAB_RECLAIM_ACCOUNT
| SLAB_MEM_SPREAD
,
144 if (!btrfs_prelim_ref_cache
)
149 void btrfs_prelim_ref_exit(void)
151 kmem_cache_destroy(btrfs_prelim_ref_cache
);
155 * the rules for all callers of this function are:
156 * - obtaining the parent is the goal
157 * - if you add a key, you must know that it is a correct key
158 * - if you cannot add the parent or a correct key, then we will look into the
159 * block later to set a correct key
163 * backref type | shared | indirect | shared | indirect
164 * information | tree | tree | data | data
165 * --------------------+--------+----------+--------+----------
166 * parent logical | y | - | - | -
167 * key to resolve | - | y | y | y
168 * tree block logical | - | - | - | -
169 * root for resolving | y | y | y | y
171 * - column 1: we've the parent -> done
172 * - column 2, 3, 4: we use the key to find the parent
174 * on disk refs (inline or keyed)
175 * ==============================
176 * backref type | shared | indirect | shared | indirect
177 * information | tree | tree | data | data
178 * --------------------+--------+----------+--------+----------
179 * parent logical | y | - | y | -
180 * key to resolve | - | - | - | y
181 * tree block logical | y | y | y | y
182 * root for resolving | - | y | y | y
184 * - column 1, 3: we've the parent -> done
185 * - column 2: we take the first key from the block to find the parent
186 * (see __add_missing_keys)
187 * - column 4: we use the key to find the parent
189 * additional information that's available but not required to find the parent
190 * block might help in merging entries to gain some speed.
193 static int __add_prelim_ref(struct list_head
*head
, u64 root_id
,
194 struct btrfs_key
*key
, int level
,
195 u64 parent
, u64 wanted_disk_byte
, int count
,
198 struct __prelim_ref
*ref
;
200 if (root_id
== BTRFS_DATA_RELOC_TREE_OBJECTID
)
203 ref
= kmem_cache_alloc(btrfs_prelim_ref_cache
, gfp_mask
);
207 ref
->root_id
= root_id
;
209 ref
->key_for_search
= *key
;
211 * We can often find data backrefs with an offset that is too
212 * large (>= LLONG_MAX, maximum allowed file offset) due to
213 * underflows when subtracting a file's offset with the data
214 * offset of its corresponding extent data item. This can
215 * happen for example in the clone ioctl.
216 * So if we detect such case we set the search key's offset to
217 * zero to make sure we will find the matching file extent item
218 * at add_all_parents(), otherwise we will miss it because the
219 * offset taken form the backref is much larger then the offset
220 * of the file extent item. This can make us scan a very large
221 * number of file extent items, but at least it will not make
223 * This is an ugly workaround for a behaviour that should have
224 * never existed, but it does and a fix for the clone ioctl
225 * would touch a lot of places, cause backwards incompatibility
226 * and would not fix the problem for extents cloned with older
229 if (ref
->key_for_search
.type
== BTRFS_EXTENT_DATA_KEY
&&
230 ref
->key_for_search
.offset
>= LLONG_MAX
)
231 ref
->key_for_search
.offset
= 0;
233 memset(&ref
->key_for_search
, 0, sizeof(ref
->key_for_search
));
236 ref
->inode_list
= NULL
;
239 ref
->parent
= parent
;
240 ref
->wanted_disk_byte
= wanted_disk_byte
;
241 list_add_tail(&ref
->list
, head
);
246 static int add_all_parents(struct btrfs_root
*root
, struct btrfs_path
*path
,
247 struct ulist
*parents
, struct __prelim_ref
*ref
,
248 int level
, u64 time_seq
, const u64
*extent_item_pos
,
253 struct extent_buffer
*eb
;
254 struct btrfs_key key
;
255 struct btrfs_key
*key_for_search
= &ref
->key_for_search
;
256 struct btrfs_file_extent_item
*fi
;
257 struct extent_inode_elem
*eie
= NULL
, *old
= NULL
;
259 u64 wanted_disk_byte
= ref
->wanted_disk_byte
;
263 eb
= path
->nodes
[level
];
264 ret
= ulist_add(parents
, eb
->start
, 0, GFP_NOFS
);
271 * We normally enter this function with the path already pointing to
272 * the first item to check. But sometimes, we may enter it with
273 * slot==nritems. In that case, go to the next leaf before we continue.
275 if (path
->slots
[0] >= btrfs_header_nritems(path
->nodes
[0])) {
276 if (time_seq
== (u64
)-1)
277 ret
= btrfs_next_leaf(root
, path
);
279 ret
= btrfs_next_old_leaf(root
, path
, time_seq
);
282 while (!ret
&& count
< total_refs
) {
284 slot
= path
->slots
[0];
286 btrfs_item_key_to_cpu(eb
, &key
, slot
);
288 if (key
.objectid
!= key_for_search
->objectid
||
289 key
.type
!= BTRFS_EXTENT_DATA_KEY
)
292 fi
= btrfs_item_ptr(eb
, slot
, struct btrfs_file_extent_item
);
293 disk_byte
= btrfs_file_extent_disk_bytenr(eb
, fi
);
295 if (disk_byte
== wanted_disk_byte
) {
299 if (extent_item_pos
) {
300 ret
= check_extent_in_eb(&key
, eb
, fi
,
308 ret
= ulist_add_merge_ptr(parents
, eb
->start
,
309 eie
, (void **)&old
, GFP_NOFS
);
312 if (!ret
&& extent_item_pos
) {
320 if (time_seq
== (u64
)-1)
321 ret
= btrfs_next_item(root
, path
);
323 ret
= btrfs_next_old_item(root
, path
, time_seq
);
329 free_inode_elem_list(eie
);
334 * resolve an indirect backref in the form (root_id, key, level)
335 * to a logical address
337 static int __resolve_indirect_ref(struct btrfs_fs_info
*fs_info
,
338 struct btrfs_path
*path
, u64 time_seq
,
339 struct __prelim_ref
*ref
,
340 struct ulist
*parents
,
341 const u64
*extent_item_pos
, u64 total_refs
)
343 struct btrfs_root
*root
;
344 struct btrfs_key root_key
;
345 struct extent_buffer
*eb
;
348 int level
= ref
->level
;
351 root_key
.objectid
= ref
->root_id
;
352 root_key
.type
= BTRFS_ROOT_ITEM_KEY
;
353 root_key
.offset
= (u64
)-1;
355 index
= srcu_read_lock(&fs_info
->subvol_srcu
);
357 root
= btrfs_get_fs_root(fs_info
, &root_key
, false);
359 srcu_read_unlock(&fs_info
->subvol_srcu
, index
);
364 if (btrfs_test_is_dummy_root(root
)) {
365 srcu_read_unlock(&fs_info
->subvol_srcu
, index
);
370 if (path
->search_commit_root
)
371 root_level
= btrfs_header_level(root
->commit_root
);
372 else if (time_seq
== (u64
)-1)
373 root_level
= btrfs_header_level(root
->node
);
375 root_level
= btrfs_old_root_level(root
, time_seq
);
377 if (root_level
+ 1 == level
) {
378 srcu_read_unlock(&fs_info
->subvol_srcu
, index
);
382 path
->lowest_level
= level
;
383 if (time_seq
== (u64
)-1)
384 ret
= btrfs_search_slot(NULL
, root
, &ref
->key_for_search
, path
,
387 ret
= btrfs_search_old_slot(root
, &ref
->key_for_search
, path
,
390 /* root node has been locked, we can release @subvol_srcu safely here */
391 srcu_read_unlock(&fs_info
->subvol_srcu
, index
);
393 pr_debug("search slot in root %llu (level %d, ref count %d) returned "
394 "%d for key (%llu %u %llu)\n",
395 ref
->root_id
, level
, ref
->count
, ret
,
396 ref
->key_for_search
.objectid
, ref
->key_for_search
.type
,
397 ref
->key_for_search
.offset
);
401 eb
= path
->nodes
[level
];
403 if (WARN_ON(!level
)) {
408 eb
= path
->nodes
[level
];
411 ret
= add_all_parents(root
, path
, parents
, ref
, level
, time_seq
,
412 extent_item_pos
, total_refs
);
414 path
->lowest_level
= 0;
415 btrfs_release_path(path
);
420 * resolve all indirect backrefs from the list
422 static int __resolve_indirect_refs(struct btrfs_fs_info
*fs_info
,
423 struct btrfs_path
*path
, u64 time_seq
,
424 struct list_head
*head
,
425 const u64
*extent_item_pos
, u64 total_refs
,
430 struct __prelim_ref
*ref
;
431 struct __prelim_ref
*ref_safe
;
432 struct __prelim_ref
*new_ref
;
433 struct ulist
*parents
;
434 struct ulist_node
*node
;
435 struct ulist_iterator uiter
;
437 parents
= ulist_alloc(GFP_NOFS
);
442 * _safe allows us to insert directly after the current item without
443 * iterating over the newly inserted items.
444 * we're also allowed to re-assign ref during iteration.
446 list_for_each_entry_safe(ref
, ref_safe
, head
, list
) {
447 if (ref
->parent
) /* already direct */
451 if (root_objectid
&& ref
->root_id
!= root_objectid
) {
452 ret
= BACKREF_FOUND_SHARED
;
455 err
= __resolve_indirect_ref(fs_info
, path
, time_seq
, ref
,
456 parents
, extent_item_pos
,
459 * we can only tolerate ENOENT,otherwise,we should catch error
460 * and return directly.
462 if (err
== -ENOENT
) {
469 /* we put the first parent into the ref at hand */
470 ULIST_ITER_INIT(&uiter
);
471 node
= ulist_next(parents
, &uiter
);
472 ref
->parent
= node
? node
->val
: 0;
473 ref
->inode_list
= node
?
474 (struct extent_inode_elem
*)(uintptr_t)node
->aux
: NULL
;
476 /* additional parents require new refs being added here */
477 while ((node
= ulist_next(parents
, &uiter
))) {
478 new_ref
= kmem_cache_alloc(btrfs_prelim_ref_cache
,
484 memcpy(new_ref
, ref
, sizeof(*ref
));
485 new_ref
->parent
= node
->val
;
486 new_ref
->inode_list
= (struct extent_inode_elem
*)
487 (uintptr_t)node
->aux
;
488 list_add(&new_ref
->list
, &ref
->list
);
490 ulist_reinit(parents
);
497 static inline int ref_for_same_block(struct __prelim_ref
*ref1
,
498 struct __prelim_ref
*ref2
)
500 if (ref1
->level
!= ref2
->level
)
502 if (ref1
->root_id
!= ref2
->root_id
)
504 if (ref1
->key_for_search
.type
!= ref2
->key_for_search
.type
)
506 if (ref1
->key_for_search
.objectid
!= ref2
->key_for_search
.objectid
)
508 if (ref1
->key_for_search
.offset
!= ref2
->key_for_search
.offset
)
510 if (ref1
->parent
!= ref2
->parent
)
517 * read tree blocks and add keys where required.
519 static int __add_missing_keys(struct btrfs_fs_info
*fs_info
,
520 struct list_head
*head
)
522 struct __prelim_ref
*ref
;
523 struct extent_buffer
*eb
;
525 list_for_each_entry(ref
, head
, list
) {
528 if (ref
->key_for_search
.type
)
530 BUG_ON(!ref
->wanted_disk_byte
);
531 eb
= read_tree_block(fs_info
->tree_root
, ref
->wanted_disk_byte
,
535 } else if (!extent_buffer_uptodate(eb
)) {
536 free_extent_buffer(eb
);
539 btrfs_tree_read_lock(eb
);
540 if (btrfs_header_level(eb
) == 0)
541 btrfs_item_key_to_cpu(eb
, &ref
->key_for_search
, 0);
543 btrfs_node_key_to_cpu(eb
, &ref
->key_for_search
, 0);
544 btrfs_tree_read_unlock(eb
);
545 free_extent_buffer(eb
);
551 * merge backrefs and adjust counts accordingly
553 * mode = 1: merge identical keys, if key is set
554 * FIXME: if we add more keys in __add_prelim_ref, we can merge more here.
555 * additionally, we could even add a key range for the blocks we
556 * looked into to merge even more (-> replace unresolved refs by those
558 * mode = 2: merge identical parents
560 static void __merge_refs(struct list_head
*head
, int mode
)
562 struct __prelim_ref
*pos1
;
564 list_for_each_entry(pos1
, head
, list
) {
565 struct __prelim_ref
*pos2
= pos1
, *tmp
;
567 list_for_each_entry_safe_continue(pos2
, tmp
, head
, list
) {
568 struct __prelim_ref
*ref1
= pos1
, *ref2
= pos2
;
569 struct extent_inode_elem
*eie
;
571 if (!ref_for_same_block(ref1
, ref2
))
574 if (!ref1
->parent
&& ref2
->parent
)
577 if (ref1
->parent
!= ref2
->parent
)
581 eie
= ref1
->inode_list
;
582 while (eie
&& eie
->next
)
585 eie
->next
= ref2
->inode_list
;
587 ref1
->inode_list
= ref2
->inode_list
;
588 ref1
->count
+= ref2
->count
;
590 list_del(&ref2
->list
);
591 kmem_cache_free(btrfs_prelim_ref_cache
, ref2
);
598 * add all currently queued delayed refs from this head whose seq nr is
599 * smaller or equal that seq to the list
601 static int __add_delayed_refs(struct btrfs_delayed_ref_head
*head
, u64 seq
,
602 struct list_head
*prefs
, u64
*total_refs
,
605 struct btrfs_delayed_ref_node
*node
;
606 struct btrfs_delayed_extent_op
*extent_op
= head
->extent_op
;
607 struct btrfs_key key
;
608 struct btrfs_key op_key
= {0};
612 if (extent_op
&& extent_op
->update_key
)
613 btrfs_disk_key_to_cpu(&op_key
, &extent_op
->key
);
615 spin_lock(&head
->lock
);
616 list_for_each_entry(node
, &head
->ref_list
, list
) {
620 switch (node
->action
) {
621 case BTRFS_ADD_DELAYED_EXTENT
:
622 case BTRFS_UPDATE_DELAYED_HEAD
:
625 case BTRFS_ADD_DELAYED_REF
:
628 case BTRFS_DROP_DELAYED_REF
:
634 *total_refs
+= (node
->ref_mod
* sgn
);
635 switch (node
->type
) {
636 case BTRFS_TREE_BLOCK_REF_KEY
: {
637 struct btrfs_delayed_tree_ref
*ref
;
639 ref
= btrfs_delayed_node_to_tree_ref(node
);
640 ret
= __add_prelim_ref(prefs
, ref
->root
, &op_key
,
641 ref
->level
+ 1, 0, node
->bytenr
,
642 node
->ref_mod
* sgn
, GFP_ATOMIC
);
645 case BTRFS_SHARED_BLOCK_REF_KEY
: {
646 struct btrfs_delayed_tree_ref
*ref
;
648 ref
= btrfs_delayed_node_to_tree_ref(node
);
649 ret
= __add_prelim_ref(prefs
, 0, NULL
,
650 ref
->level
+ 1, ref
->parent
,
652 node
->ref_mod
* sgn
, GFP_ATOMIC
);
655 case BTRFS_EXTENT_DATA_REF_KEY
: {
656 struct btrfs_delayed_data_ref
*ref
;
657 ref
= btrfs_delayed_node_to_data_ref(node
);
659 key
.objectid
= ref
->objectid
;
660 key
.type
= BTRFS_EXTENT_DATA_KEY
;
661 key
.offset
= ref
->offset
;
664 * Found a inum that doesn't match our known inum, we
667 if (inum
&& ref
->objectid
!= inum
) {
668 ret
= BACKREF_FOUND_SHARED
;
672 ret
= __add_prelim_ref(prefs
, ref
->root
, &key
, 0, 0,
674 node
->ref_mod
* sgn
, GFP_ATOMIC
);
677 case BTRFS_SHARED_DATA_REF_KEY
: {
678 struct btrfs_delayed_data_ref
*ref
;
680 ref
= btrfs_delayed_node_to_data_ref(node
);
681 ret
= __add_prelim_ref(prefs
, 0, NULL
, 0,
682 ref
->parent
, node
->bytenr
,
683 node
->ref_mod
* sgn
, GFP_ATOMIC
);
692 spin_unlock(&head
->lock
);
697 * add all inline backrefs for bytenr to the list
699 static int __add_inline_refs(struct btrfs_fs_info
*fs_info
,
700 struct btrfs_path
*path
, u64 bytenr
,
701 int *info_level
, struct list_head
*prefs
,
702 u64
*total_refs
, u64 inum
)
706 struct extent_buffer
*leaf
;
707 struct btrfs_key key
;
708 struct btrfs_key found_key
;
711 struct btrfs_extent_item
*ei
;
716 * enumerate all inline refs
718 leaf
= path
->nodes
[0];
719 slot
= path
->slots
[0];
721 item_size
= btrfs_item_size_nr(leaf
, slot
);
722 BUG_ON(item_size
< sizeof(*ei
));
724 ei
= btrfs_item_ptr(leaf
, slot
, struct btrfs_extent_item
);
725 flags
= btrfs_extent_flags(leaf
, ei
);
726 *total_refs
+= btrfs_extent_refs(leaf
, ei
);
727 btrfs_item_key_to_cpu(leaf
, &found_key
, slot
);
729 ptr
= (unsigned long)(ei
+ 1);
730 end
= (unsigned long)ei
+ item_size
;
732 if (found_key
.type
== BTRFS_EXTENT_ITEM_KEY
&&
733 flags
& BTRFS_EXTENT_FLAG_TREE_BLOCK
) {
734 struct btrfs_tree_block_info
*info
;
736 info
= (struct btrfs_tree_block_info
*)ptr
;
737 *info_level
= btrfs_tree_block_level(leaf
, info
);
738 ptr
+= sizeof(struct btrfs_tree_block_info
);
740 } else if (found_key
.type
== BTRFS_METADATA_ITEM_KEY
) {
741 *info_level
= found_key
.offset
;
743 BUG_ON(!(flags
& BTRFS_EXTENT_FLAG_DATA
));
747 struct btrfs_extent_inline_ref
*iref
;
751 iref
= (struct btrfs_extent_inline_ref
*)ptr
;
752 type
= btrfs_extent_inline_ref_type(leaf
, iref
);
753 offset
= btrfs_extent_inline_ref_offset(leaf
, iref
);
756 case BTRFS_SHARED_BLOCK_REF_KEY
:
757 ret
= __add_prelim_ref(prefs
, 0, NULL
,
758 *info_level
+ 1, offset
,
759 bytenr
, 1, GFP_NOFS
);
761 case BTRFS_SHARED_DATA_REF_KEY
: {
762 struct btrfs_shared_data_ref
*sdref
;
765 sdref
= (struct btrfs_shared_data_ref
*)(iref
+ 1);
766 count
= btrfs_shared_data_ref_count(leaf
, sdref
);
767 ret
= __add_prelim_ref(prefs
, 0, NULL
, 0, offset
,
768 bytenr
, count
, GFP_NOFS
);
771 case BTRFS_TREE_BLOCK_REF_KEY
:
772 ret
= __add_prelim_ref(prefs
, offset
, NULL
,
774 bytenr
, 1, GFP_NOFS
);
776 case BTRFS_EXTENT_DATA_REF_KEY
: {
777 struct btrfs_extent_data_ref
*dref
;
781 dref
= (struct btrfs_extent_data_ref
*)(&iref
->offset
);
782 count
= btrfs_extent_data_ref_count(leaf
, dref
);
783 key
.objectid
= btrfs_extent_data_ref_objectid(leaf
,
785 key
.type
= BTRFS_EXTENT_DATA_KEY
;
786 key
.offset
= btrfs_extent_data_ref_offset(leaf
, dref
);
788 if (inum
&& key
.objectid
!= inum
) {
789 ret
= BACKREF_FOUND_SHARED
;
793 root
= btrfs_extent_data_ref_root(leaf
, dref
);
794 ret
= __add_prelim_ref(prefs
, root
, &key
, 0, 0,
795 bytenr
, count
, GFP_NOFS
);
803 ptr
+= btrfs_extent_inline_ref_size(type
);
810 * add all non-inline backrefs for bytenr to the list
812 static int __add_keyed_refs(struct btrfs_fs_info
*fs_info
,
813 struct btrfs_path
*path
, u64 bytenr
,
814 int info_level
, struct list_head
*prefs
, u64 inum
)
816 struct btrfs_root
*extent_root
= fs_info
->extent_root
;
819 struct extent_buffer
*leaf
;
820 struct btrfs_key key
;
823 ret
= btrfs_next_item(extent_root
, path
);
831 slot
= path
->slots
[0];
832 leaf
= path
->nodes
[0];
833 btrfs_item_key_to_cpu(leaf
, &key
, slot
);
835 if (key
.objectid
!= bytenr
)
837 if (key
.type
< BTRFS_TREE_BLOCK_REF_KEY
)
839 if (key
.type
> BTRFS_SHARED_DATA_REF_KEY
)
843 case BTRFS_SHARED_BLOCK_REF_KEY
:
844 ret
= __add_prelim_ref(prefs
, 0, NULL
,
845 info_level
+ 1, key
.offset
,
846 bytenr
, 1, GFP_NOFS
);
848 case BTRFS_SHARED_DATA_REF_KEY
: {
849 struct btrfs_shared_data_ref
*sdref
;
852 sdref
= btrfs_item_ptr(leaf
, slot
,
853 struct btrfs_shared_data_ref
);
854 count
= btrfs_shared_data_ref_count(leaf
, sdref
);
855 ret
= __add_prelim_ref(prefs
, 0, NULL
, 0, key
.offset
,
856 bytenr
, count
, GFP_NOFS
);
859 case BTRFS_TREE_BLOCK_REF_KEY
:
860 ret
= __add_prelim_ref(prefs
, key
.offset
, NULL
,
862 bytenr
, 1, GFP_NOFS
);
864 case BTRFS_EXTENT_DATA_REF_KEY
: {
865 struct btrfs_extent_data_ref
*dref
;
869 dref
= btrfs_item_ptr(leaf
, slot
,
870 struct btrfs_extent_data_ref
);
871 count
= btrfs_extent_data_ref_count(leaf
, dref
);
872 key
.objectid
= btrfs_extent_data_ref_objectid(leaf
,
874 key
.type
= BTRFS_EXTENT_DATA_KEY
;
875 key
.offset
= btrfs_extent_data_ref_offset(leaf
, dref
);
877 if (inum
&& key
.objectid
!= inum
) {
878 ret
= BACKREF_FOUND_SHARED
;
882 root
= btrfs_extent_data_ref_root(leaf
, dref
);
883 ret
= __add_prelim_ref(prefs
, root
, &key
, 0, 0,
884 bytenr
, count
, GFP_NOFS
);
899 * this adds all existing backrefs (inline backrefs, backrefs and delayed
900 * refs) for the given bytenr to the refs list, merges duplicates and resolves
901 * indirect refs to their parent bytenr.
902 * When roots are found, they're added to the roots list
904 * NOTE: This can return values > 0
906 * If time_seq is set to (u64)-1, it will not search delayed_refs, and behave
907 * much like trans == NULL case, the difference only lies in it will not
909 * The special case is for qgroup to search roots in commit_transaction().
911 * FIXME some caching might speed things up
913 static int find_parent_nodes(struct btrfs_trans_handle
*trans
,
914 struct btrfs_fs_info
*fs_info
, u64 bytenr
,
915 u64 time_seq
, struct ulist
*refs
,
916 struct ulist
*roots
, const u64
*extent_item_pos
,
917 u64 root_objectid
, u64 inum
)
919 struct btrfs_key key
;
920 struct btrfs_path
*path
;
921 struct btrfs_delayed_ref_root
*delayed_refs
= NULL
;
922 struct btrfs_delayed_ref_head
*head
;
925 struct list_head prefs_delayed
;
926 struct list_head prefs
;
927 struct __prelim_ref
*ref
;
928 struct extent_inode_elem
*eie
= NULL
;
931 INIT_LIST_HEAD(&prefs
);
932 INIT_LIST_HEAD(&prefs_delayed
);
934 key
.objectid
= bytenr
;
935 key
.offset
= (u64
)-1;
936 if (btrfs_fs_incompat(fs_info
, SKINNY_METADATA
))
937 key
.type
= BTRFS_METADATA_ITEM_KEY
;
939 key
.type
= BTRFS_EXTENT_ITEM_KEY
;
941 path
= btrfs_alloc_path();
945 path
->search_commit_root
= 1;
946 path
->skip_locking
= 1;
949 if (time_seq
== (u64
)-1)
950 path
->skip_locking
= 1;
953 * grab both a lock on the path and a lock on the delayed ref head.
954 * We need both to get a consistent picture of how the refs look
955 * at a specified point in time
960 ret
= btrfs_search_slot(trans
, fs_info
->extent_root
, &key
, path
, 0, 0);
965 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
966 if (trans
&& likely(trans
->type
!= __TRANS_DUMMY
) &&
967 time_seq
!= (u64
)-1) {
969 if (trans
&& time_seq
!= (u64
)-1) {
972 * look if there are updates for this ref queued and lock the
975 delayed_refs
= &trans
->transaction
->delayed_refs
;
976 spin_lock(&delayed_refs
->lock
);
977 head
= btrfs_find_delayed_ref_head(trans
, bytenr
);
979 if (!mutex_trylock(&head
->mutex
)) {
980 atomic_inc(&head
->node
.refs
);
981 spin_unlock(&delayed_refs
->lock
);
983 btrfs_release_path(path
);
986 * Mutex was contended, block until it's
987 * released and try again
989 mutex_lock(&head
->mutex
);
990 mutex_unlock(&head
->mutex
);
991 btrfs_put_delayed_ref(&head
->node
);
994 spin_unlock(&delayed_refs
->lock
);
995 ret
= __add_delayed_refs(head
, time_seq
,
996 &prefs_delayed
, &total_refs
,
998 mutex_unlock(&head
->mutex
);
1002 spin_unlock(&delayed_refs
->lock
);
1006 if (path
->slots
[0]) {
1007 struct extent_buffer
*leaf
;
1011 leaf
= path
->nodes
[0];
1012 slot
= path
->slots
[0];
1013 btrfs_item_key_to_cpu(leaf
, &key
, slot
);
1014 if (key
.objectid
== bytenr
&&
1015 (key
.type
== BTRFS_EXTENT_ITEM_KEY
||
1016 key
.type
== BTRFS_METADATA_ITEM_KEY
)) {
1017 ret
= __add_inline_refs(fs_info
, path
, bytenr
,
1018 &info_level
, &prefs
,
1022 ret
= __add_keyed_refs(fs_info
, path
, bytenr
,
1023 info_level
, &prefs
, inum
);
1028 btrfs_release_path(path
);
1030 list_splice_init(&prefs_delayed
, &prefs
);
1032 ret
= __add_missing_keys(fs_info
, &prefs
);
1036 __merge_refs(&prefs
, 1);
1038 ret
= __resolve_indirect_refs(fs_info
, path
, time_seq
, &prefs
,
1039 extent_item_pos
, total_refs
,
1044 __merge_refs(&prefs
, 2);
1046 while (!list_empty(&prefs
)) {
1047 ref
= list_first_entry(&prefs
, struct __prelim_ref
, list
);
1048 WARN_ON(ref
->count
< 0);
1049 if (roots
&& ref
->count
&& ref
->root_id
&& ref
->parent
== 0) {
1050 if (root_objectid
&& ref
->root_id
!= root_objectid
) {
1051 ret
= BACKREF_FOUND_SHARED
;
1055 /* no parent == root of tree */
1056 ret
= ulist_add(roots
, ref
->root_id
, 0, GFP_NOFS
);
1060 if (ref
->count
&& ref
->parent
) {
1061 if (extent_item_pos
&& !ref
->inode_list
&&
1063 struct extent_buffer
*eb
;
1065 eb
= read_tree_block(fs_info
->extent_root
,
1070 } else if (!extent_buffer_uptodate(eb
)) {
1071 free_extent_buffer(eb
);
1075 btrfs_tree_read_lock(eb
);
1076 btrfs_set_lock_blocking_rw(eb
, BTRFS_READ_LOCK
);
1077 ret
= find_extent_in_eb(eb
, bytenr
,
1078 *extent_item_pos
, &eie
);
1079 btrfs_tree_read_unlock_blocking(eb
);
1080 free_extent_buffer(eb
);
1083 ref
->inode_list
= eie
;
1085 ret
= ulist_add_merge_ptr(refs
, ref
->parent
,
1087 (void **)&eie
, GFP_NOFS
);
1090 if (!ret
&& extent_item_pos
) {
1092 * we've recorded that parent, so we must extend
1093 * its inode list here
1098 eie
->next
= ref
->inode_list
;
1102 list_del(&ref
->list
);
1103 kmem_cache_free(btrfs_prelim_ref_cache
, ref
);
1107 btrfs_free_path(path
);
1108 while (!list_empty(&prefs
)) {
1109 ref
= list_first_entry(&prefs
, struct __prelim_ref
, list
);
1110 list_del(&ref
->list
);
1111 kmem_cache_free(btrfs_prelim_ref_cache
, ref
);
1113 while (!list_empty(&prefs_delayed
)) {
1114 ref
= list_first_entry(&prefs_delayed
, struct __prelim_ref
,
1116 list_del(&ref
->list
);
1117 kmem_cache_free(btrfs_prelim_ref_cache
, ref
);
1120 free_inode_elem_list(eie
);
1124 static void free_leaf_list(struct ulist
*blocks
)
1126 struct ulist_node
*node
= NULL
;
1127 struct extent_inode_elem
*eie
;
1128 struct ulist_iterator uiter
;
1130 ULIST_ITER_INIT(&uiter
);
1131 while ((node
= ulist_next(blocks
, &uiter
))) {
1134 eie
= (struct extent_inode_elem
*)(uintptr_t)node
->aux
;
1135 free_inode_elem_list(eie
);
1143 * Finds all leafs with a reference to the specified combination of bytenr and
1144 * offset. key_list_head will point to a list of corresponding keys (caller must
1145 * free each list element). The leafs will be stored in the leafs ulist, which
1146 * must be freed with ulist_free.
1148 * returns 0 on success, <0 on error
1150 static int btrfs_find_all_leafs(struct btrfs_trans_handle
*trans
,
1151 struct btrfs_fs_info
*fs_info
, u64 bytenr
,
1152 u64 time_seq
, struct ulist
**leafs
,
1153 const u64
*extent_item_pos
)
1157 *leafs
= ulist_alloc(GFP_NOFS
);
1161 ret
= find_parent_nodes(trans
, fs_info
, bytenr
,
1162 time_seq
, *leafs
, NULL
, extent_item_pos
, 0, 0);
1163 if (ret
< 0 && ret
!= -ENOENT
) {
1164 free_leaf_list(*leafs
);
1172 * walk all backrefs for a given extent to find all roots that reference this
1173 * extent. Walking a backref means finding all extents that reference this
1174 * extent and in turn walk the backrefs of those, too. Naturally this is a
1175 * recursive process, but here it is implemented in an iterative fashion: We
1176 * find all referencing extents for the extent in question and put them on a
1177 * list. In turn, we find all referencing extents for those, further appending
1178 * to the list. The way we iterate the list allows adding more elements after
1179 * the current while iterating. The process stops when we reach the end of the
1180 * list. Found roots are added to the roots list.
1182 * returns 0 on success, < 0 on error.
1184 static int __btrfs_find_all_roots(struct btrfs_trans_handle
*trans
,
1185 struct btrfs_fs_info
*fs_info
, u64 bytenr
,
1186 u64 time_seq
, struct ulist
**roots
)
1189 struct ulist_node
*node
= NULL
;
1190 struct ulist_iterator uiter
;
1193 tmp
= ulist_alloc(GFP_NOFS
);
1196 *roots
= ulist_alloc(GFP_NOFS
);
1202 ULIST_ITER_INIT(&uiter
);
1204 ret
= find_parent_nodes(trans
, fs_info
, bytenr
,
1205 time_seq
, tmp
, *roots
, NULL
, 0, 0);
1206 if (ret
< 0 && ret
!= -ENOENT
) {
1211 node
= ulist_next(tmp
, &uiter
);
1222 int btrfs_find_all_roots(struct btrfs_trans_handle
*trans
,
1223 struct btrfs_fs_info
*fs_info
, u64 bytenr
,
1224 u64 time_seq
, struct ulist
**roots
)
1229 down_read(&fs_info
->commit_root_sem
);
1230 ret
= __btrfs_find_all_roots(trans
, fs_info
, bytenr
, time_seq
, roots
);
1232 up_read(&fs_info
->commit_root_sem
);
1237 * btrfs_check_shared - tell us whether an extent is shared
1239 * @trans: optional trans handle
1241 * btrfs_check_shared uses the backref walking code but will short
1242 * circuit as soon as it finds a root or inode that doesn't match the
1243 * one passed in. This provides a significant performance benefit for
1244 * callers (such as fiemap) which want to know whether the extent is
1245 * shared but do not need a ref count.
1247 * Return: 0 if extent is not shared, 1 if it is shared, < 0 on error.
1249 int btrfs_check_shared(struct btrfs_trans_handle
*trans
,
1250 struct btrfs_fs_info
*fs_info
, u64 root_objectid
,
1251 u64 inum
, u64 bytenr
)
1253 struct ulist
*tmp
= NULL
;
1254 struct ulist
*roots
= NULL
;
1255 struct ulist_iterator uiter
;
1256 struct ulist_node
*node
;
1257 struct seq_list elem
= SEQ_LIST_INIT(elem
);
1260 tmp
= ulist_alloc(GFP_NOFS
);
1261 roots
= ulist_alloc(GFP_NOFS
);
1262 if (!tmp
|| !roots
) {
1269 btrfs_get_tree_mod_seq(fs_info
, &elem
);
1271 down_read(&fs_info
->commit_root_sem
);
1272 ULIST_ITER_INIT(&uiter
);
1274 ret
= find_parent_nodes(trans
, fs_info
, bytenr
, elem
.seq
, tmp
,
1275 roots
, NULL
, root_objectid
, inum
);
1276 if (ret
== BACKREF_FOUND_SHARED
) {
1277 /* this is the only condition under which we return 1 */
1281 if (ret
< 0 && ret
!= -ENOENT
)
1284 node
= ulist_next(tmp
, &uiter
);
1291 btrfs_put_tree_mod_seq(fs_info
, &elem
);
1293 up_read(&fs_info
->commit_root_sem
);
1299 int btrfs_find_one_extref(struct btrfs_root
*root
, u64 inode_objectid
,
1300 u64 start_off
, struct btrfs_path
*path
,
1301 struct btrfs_inode_extref
**ret_extref
,
1305 struct btrfs_key key
;
1306 struct btrfs_key found_key
;
1307 struct btrfs_inode_extref
*extref
;
1308 struct extent_buffer
*leaf
;
1311 key
.objectid
= inode_objectid
;
1312 key
.type
= BTRFS_INODE_EXTREF_KEY
;
1313 key
.offset
= start_off
;
1315 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
1320 leaf
= path
->nodes
[0];
1321 slot
= path
->slots
[0];
1322 if (slot
>= btrfs_header_nritems(leaf
)) {
1324 * If the item at offset is not found,
1325 * btrfs_search_slot will point us to the slot
1326 * where it should be inserted. In our case
1327 * that will be the slot directly before the
1328 * next INODE_REF_KEY_V2 item. In the case
1329 * that we're pointing to the last slot in a
1330 * leaf, we must move one leaf over.
1332 ret
= btrfs_next_leaf(root
, path
);
1341 btrfs_item_key_to_cpu(leaf
, &found_key
, slot
);
1344 * Check that we're still looking at an extended ref key for
1345 * this particular objectid. If we have different
1346 * objectid or type then there are no more to be found
1347 * in the tree and we can exit.
1350 if (found_key
.objectid
!= inode_objectid
)
1352 if (found_key
.type
!= BTRFS_INODE_EXTREF_KEY
)
1356 ptr
= btrfs_item_ptr_offset(leaf
, path
->slots
[0]);
1357 extref
= (struct btrfs_inode_extref
*)ptr
;
1358 *ret_extref
= extref
;
1360 *found_off
= found_key
.offset
;
1368 * this iterates to turn a name (from iref/extref) into a full filesystem path.
1369 * Elements of the path are separated by '/' and the path is guaranteed to be
1370 * 0-terminated. the path is only given within the current file system.
1371 * Therefore, it never starts with a '/'. the caller is responsible to provide
1372 * "size" bytes in "dest". the dest buffer will be filled backwards. finally,
1373 * the start point of the resulting string is returned. this pointer is within
1375 * in case the path buffer would overflow, the pointer is decremented further
1376 * as if output was written to the buffer, though no more output is actually
1377 * generated. that way, the caller can determine how much space would be
1378 * required for the path to fit into the buffer. in that case, the returned
1379 * value will be smaller than dest. callers must check this!
1381 char *btrfs_ref_to_path(struct btrfs_root
*fs_root
, struct btrfs_path
*path
,
1382 u32 name_len
, unsigned long name_off
,
1383 struct extent_buffer
*eb_in
, u64 parent
,
1384 char *dest
, u32 size
)
1389 s64 bytes_left
= ((s64
)size
) - 1;
1390 struct extent_buffer
*eb
= eb_in
;
1391 struct btrfs_key found_key
;
1392 int leave_spinning
= path
->leave_spinning
;
1393 struct btrfs_inode_ref
*iref
;
1395 if (bytes_left
>= 0)
1396 dest
[bytes_left
] = '\0';
1398 path
->leave_spinning
= 1;
1400 bytes_left
-= name_len
;
1401 if (bytes_left
>= 0)
1402 read_extent_buffer(eb
, dest
+ bytes_left
,
1403 name_off
, name_len
);
1405 if (!path
->skip_locking
)
1406 btrfs_tree_read_unlock_blocking(eb
);
1407 free_extent_buffer(eb
);
1409 ret
= btrfs_find_item(fs_root
, path
, parent
, 0,
1410 BTRFS_INODE_REF_KEY
, &found_key
);
1416 next_inum
= found_key
.offset
;
1418 /* regular exit ahead */
1419 if (parent
== next_inum
)
1422 slot
= path
->slots
[0];
1423 eb
= path
->nodes
[0];
1424 /* make sure we can use eb after releasing the path */
1426 if (!path
->skip_locking
)
1427 btrfs_set_lock_blocking_rw(eb
, BTRFS_READ_LOCK
);
1428 path
->nodes
[0] = NULL
;
1431 btrfs_release_path(path
);
1432 iref
= btrfs_item_ptr(eb
, slot
, struct btrfs_inode_ref
);
1434 name_len
= btrfs_inode_ref_name_len(eb
, iref
);
1435 name_off
= (unsigned long)(iref
+ 1);
1439 if (bytes_left
>= 0)
1440 dest
[bytes_left
] = '/';
1443 btrfs_release_path(path
);
1444 path
->leave_spinning
= leave_spinning
;
1447 return ERR_PTR(ret
);
1449 return dest
+ bytes_left
;
1453 * this makes the path point to (logical EXTENT_ITEM *)
1454 * returns BTRFS_EXTENT_FLAG_DATA for data, BTRFS_EXTENT_FLAG_TREE_BLOCK for
1455 * tree blocks and <0 on error.
1457 int extent_from_logical(struct btrfs_fs_info
*fs_info
, u64 logical
,
1458 struct btrfs_path
*path
, struct btrfs_key
*found_key
,
1465 struct extent_buffer
*eb
;
1466 struct btrfs_extent_item
*ei
;
1467 struct btrfs_key key
;
1469 if (btrfs_fs_incompat(fs_info
, SKINNY_METADATA
))
1470 key
.type
= BTRFS_METADATA_ITEM_KEY
;
1472 key
.type
= BTRFS_EXTENT_ITEM_KEY
;
1473 key
.objectid
= logical
;
1474 key
.offset
= (u64
)-1;
1476 ret
= btrfs_search_slot(NULL
, fs_info
->extent_root
, &key
, path
, 0, 0);
1480 ret
= btrfs_previous_extent_item(fs_info
->extent_root
, path
, 0);
1486 btrfs_item_key_to_cpu(path
->nodes
[0], found_key
, path
->slots
[0]);
1487 if (found_key
->type
== BTRFS_METADATA_ITEM_KEY
)
1488 size
= fs_info
->extent_root
->nodesize
;
1489 else if (found_key
->type
== BTRFS_EXTENT_ITEM_KEY
)
1490 size
= found_key
->offset
;
1492 if (found_key
->objectid
> logical
||
1493 found_key
->objectid
+ size
<= logical
) {
1494 pr_debug("logical %llu is not within any extent\n", logical
);
1498 eb
= path
->nodes
[0];
1499 item_size
= btrfs_item_size_nr(eb
, path
->slots
[0]);
1500 BUG_ON(item_size
< sizeof(*ei
));
1502 ei
= btrfs_item_ptr(eb
, path
->slots
[0], struct btrfs_extent_item
);
1503 flags
= btrfs_extent_flags(eb
, ei
);
1505 pr_debug("logical %llu is at position %llu within the extent (%llu "
1506 "EXTENT_ITEM %llu) flags %#llx size %u\n",
1507 logical
, logical
- found_key
->objectid
, found_key
->objectid
,
1508 found_key
->offset
, flags
, item_size
);
1510 WARN_ON(!flags_ret
);
1512 if (flags
& BTRFS_EXTENT_FLAG_TREE_BLOCK
)
1513 *flags_ret
= BTRFS_EXTENT_FLAG_TREE_BLOCK
;
1514 else if (flags
& BTRFS_EXTENT_FLAG_DATA
)
1515 *flags_ret
= BTRFS_EXTENT_FLAG_DATA
;
1525 * helper function to iterate extent inline refs. ptr must point to a 0 value
1526 * for the first call and may be modified. it is used to track state.
1527 * if more refs exist, 0 is returned and the next call to
1528 * __get_extent_inline_ref must pass the modified ptr parameter to get the
1529 * next ref. after the last ref was processed, 1 is returned.
1530 * returns <0 on error
1532 static int __get_extent_inline_ref(unsigned long *ptr
, struct extent_buffer
*eb
,
1533 struct btrfs_key
*key
,
1534 struct btrfs_extent_item
*ei
, u32 item_size
,
1535 struct btrfs_extent_inline_ref
**out_eiref
,
1540 struct btrfs_tree_block_info
*info
;
1544 flags
= btrfs_extent_flags(eb
, ei
);
1545 if (flags
& BTRFS_EXTENT_FLAG_TREE_BLOCK
) {
1546 if (key
->type
== BTRFS_METADATA_ITEM_KEY
) {
1547 /* a skinny metadata extent */
1549 (struct btrfs_extent_inline_ref
*)(ei
+ 1);
1551 WARN_ON(key
->type
!= BTRFS_EXTENT_ITEM_KEY
);
1552 info
= (struct btrfs_tree_block_info
*)(ei
+ 1);
1554 (struct btrfs_extent_inline_ref
*)(info
+ 1);
1557 *out_eiref
= (struct btrfs_extent_inline_ref
*)(ei
+ 1);
1559 *ptr
= (unsigned long)*out_eiref
;
1560 if ((unsigned long)(*ptr
) >= (unsigned long)ei
+ item_size
)
1564 end
= (unsigned long)ei
+ item_size
;
1565 *out_eiref
= (struct btrfs_extent_inline_ref
*)(*ptr
);
1566 *out_type
= btrfs_extent_inline_ref_type(eb
, *out_eiref
);
1568 *ptr
+= btrfs_extent_inline_ref_size(*out_type
);
1569 WARN_ON(*ptr
> end
);
1571 return 1; /* last */
1577 * reads the tree block backref for an extent. tree level and root are returned
1578 * through out_level and out_root. ptr must point to a 0 value for the first
1579 * call and may be modified (see __get_extent_inline_ref comment).
1580 * returns 0 if data was provided, 1 if there was no more data to provide or
1583 int tree_backref_for_extent(unsigned long *ptr
, struct extent_buffer
*eb
,
1584 struct btrfs_key
*key
, struct btrfs_extent_item
*ei
,
1585 u32 item_size
, u64
*out_root
, u8
*out_level
)
1589 struct btrfs_extent_inline_ref
*eiref
;
1591 if (*ptr
== (unsigned long)-1)
1595 ret
= __get_extent_inline_ref(ptr
, eb
, key
, ei
, item_size
,
1600 if (type
== BTRFS_TREE_BLOCK_REF_KEY
||
1601 type
== BTRFS_SHARED_BLOCK_REF_KEY
)
1608 /* we can treat both ref types equally here */
1609 *out_root
= btrfs_extent_inline_ref_offset(eb
, eiref
);
1611 if (key
->type
== BTRFS_EXTENT_ITEM_KEY
) {
1612 struct btrfs_tree_block_info
*info
;
1614 info
= (struct btrfs_tree_block_info
*)(ei
+ 1);
1615 *out_level
= btrfs_tree_block_level(eb
, info
);
1617 ASSERT(key
->type
== BTRFS_METADATA_ITEM_KEY
);
1618 *out_level
= (u8
)key
->offset
;
1622 *ptr
= (unsigned long)-1;
1627 static int iterate_leaf_refs(struct extent_inode_elem
*inode_list
,
1628 u64 root
, u64 extent_item_objectid
,
1629 iterate_extent_inodes_t
*iterate
, void *ctx
)
1631 struct extent_inode_elem
*eie
;
1634 for (eie
= inode_list
; eie
; eie
= eie
->next
) {
1635 pr_debug("ref for %llu resolved, key (%llu EXTEND_DATA %llu), "
1636 "root %llu\n", extent_item_objectid
,
1637 eie
->inum
, eie
->offset
, root
);
1638 ret
= iterate(eie
->inum
, eie
->offset
, root
, ctx
);
1640 pr_debug("stopping iteration for %llu due to ret=%d\n",
1641 extent_item_objectid
, ret
);
1650 * calls iterate() for every inode that references the extent identified by
1651 * the given parameters.
1652 * when the iterator function returns a non-zero value, iteration stops.
1654 int iterate_extent_inodes(struct btrfs_fs_info
*fs_info
,
1655 u64 extent_item_objectid
, u64 extent_item_pos
,
1656 int search_commit_root
,
1657 iterate_extent_inodes_t
*iterate
, void *ctx
)
1660 struct btrfs_trans_handle
*trans
= NULL
;
1661 struct ulist
*refs
= NULL
;
1662 struct ulist
*roots
= NULL
;
1663 struct ulist_node
*ref_node
= NULL
;
1664 struct ulist_node
*root_node
= NULL
;
1665 struct seq_list tree_mod_seq_elem
= SEQ_LIST_INIT(tree_mod_seq_elem
);
1666 struct ulist_iterator ref_uiter
;
1667 struct ulist_iterator root_uiter
;
1669 pr_debug("resolving all inodes for extent %llu\n",
1670 extent_item_objectid
);
1672 if (!search_commit_root
) {
1673 trans
= btrfs_join_transaction(fs_info
->extent_root
);
1675 return PTR_ERR(trans
);
1676 btrfs_get_tree_mod_seq(fs_info
, &tree_mod_seq_elem
);
1678 down_read(&fs_info
->commit_root_sem
);
1681 ret
= btrfs_find_all_leafs(trans
, fs_info
, extent_item_objectid
,
1682 tree_mod_seq_elem
.seq
, &refs
,
1687 ULIST_ITER_INIT(&ref_uiter
);
1688 while (!ret
&& (ref_node
= ulist_next(refs
, &ref_uiter
))) {
1689 ret
= __btrfs_find_all_roots(trans
, fs_info
, ref_node
->val
,
1690 tree_mod_seq_elem
.seq
, &roots
);
1693 ULIST_ITER_INIT(&root_uiter
);
1694 while (!ret
&& (root_node
= ulist_next(roots
, &root_uiter
))) {
1695 pr_debug("root %llu references leaf %llu, data list "
1696 "%#llx\n", root_node
->val
, ref_node
->val
,
1698 ret
= iterate_leaf_refs((struct extent_inode_elem
*)
1699 (uintptr_t)ref_node
->aux
,
1701 extent_item_objectid
,
1707 free_leaf_list(refs
);
1709 if (!search_commit_root
) {
1710 btrfs_put_tree_mod_seq(fs_info
, &tree_mod_seq_elem
);
1711 btrfs_end_transaction(trans
, fs_info
->extent_root
);
1713 up_read(&fs_info
->commit_root_sem
);
1719 int iterate_inodes_from_logical(u64 logical
, struct btrfs_fs_info
*fs_info
,
1720 struct btrfs_path
*path
,
1721 iterate_extent_inodes_t
*iterate
, void *ctx
)
1724 u64 extent_item_pos
;
1726 struct btrfs_key found_key
;
1727 int search_commit_root
= path
->search_commit_root
;
1729 ret
= extent_from_logical(fs_info
, logical
, path
, &found_key
, &flags
);
1730 btrfs_release_path(path
);
1733 if (flags
& BTRFS_EXTENT_FLAG_TREE_BLOCK
)
1736 extent_item_pos
= logical
- found_key
.objectid
;
1737 ret
= iterate_extent_inodes(fs_info
, found_key
.objectid
,
1738 extent_item_pos
, search_commit_root
,
1744 typedef int (iterate_irefs_t
)(u64 parent
, u32 name_len
, unsigned long name_off
,
1745 struct extent_buffer
*eb
, void *ctx
);
1747 static int iterate_inode_refs(u64 inum
, struct btrfs_root
*fs_root
,
1748 struct btrfs_path
*path
,
1749 iterate_irefs_t
*iterate
, void *ctx
)
1758 struct extent_buffer
*eb
;
1759 struct btrfs_item
*item
;
1760 struct btrfs_inode_ref
*iref
;
1761 struct btrfs_key found_key
;
1764 ret
= btrfs_find_item(fs_root
, path
, inum
,
1765 parent
? parent
+ 1 : 0, BTRFS_INODE_REF_KEY
,
1771 ret
= found
? 0 : -ENOENT
;
1776 parent
= found_key
.offset
;
1777 slot
= path
->slots
[0];
1778 eb
= btrfs_clone_extent_buffer(path
->nodes
[0]);
1783 extent_buffer_get(eb
);
1784 btrfs_tree_read_lock(eb
);
1785 btrfs_set_lock_blocking_rw(eb
, BTRFS_READ_LOCK
);
1786 btrfs_release_path(path
);
1788 item
= btrfs_item_nr(slot
);
1789 iref
= btrfs_item_ptr(eb
, slot
, struct btrfs_inode_ref
);
1791 for (cur
= 0; cur
< btrfs_item_size(eb
, item
); cur
+= len
) {
1792 name_len
= btrfs_inode_ref_name_len(eb
, iref
);
1793 /* path must be released before calling iterate()! */
1794 pr_debug("following ref at offset %u for inode %llu in "
1795 "tree %llu\n", cur
, found_key
.objectid
,
1797 ret
= iterate(parent
, name_len
,
1798 (unsigned long)(iref
+ 1), eb
, ctx
);
1801 len
= sizeof(*iref
) + name_len
;
1802 iref
= (struct btrfs_inode_ref
*)((char *)iref
+ len
);
1804 btrfs_tree_read_unlock_blocking(eb
);
1805 free_extent_buffer(eb
);
1808 btrfs_release_path(path
);
1813 static int iterate_inode_extrefs(u64 inum
, struct btrfs_root
*fs_root
,
1814 struct btrfs_path
*path
,
1815 iterate_irefs_t
*iterate
, void *ctx
)
1822 struct extent_buffer
*eb
;
1823 struct btrfs_inode_extref
*extref
;
1829 ret
= btrfs_find_one_extref(fs_root
, inum
, offset
, path
, &extref
,
1834 ret
= found
? 0 : -ENOENT
;
1839 slot
= path
->slots
[0];
1840 eb
= btrfs_clone_extent_buffer(path
->nodes
[0]);
1845 extent_buffer_get(eb
);
1847 btrfs_tree_read_lock(eb
);
1848 btrfs_set_lock_blocking_rw(eb
, BTRFS_READ_LOCK
);
1849 btrfs_release_path(path
);
1851 item_size
= btrfs_item_size_nr(eb
, slot
);
1852 ptr
= btrfs_item_ptr_offset(eb
, slot
);
1855 while (cur_offset
< item_size
) {
1858 extref
= (struct btrfs_inode_extref
*)(ptr
+ cur_offset
);
1859 parent
= btrfs_inode_extref_parent(eb
, extref
);
1860 name_len
= btrfs_inode_extref_name_len(eb
, extref
);
1861 ret
= iterate(parent
, name_len
,
1862 (unsigned long)&extref
->name
, eb
, ctx
);
1866 cur_offset
+= btrfs_inode_extref_name_len(eb
, extref
);
1867 cur_offset
+= sizeof(*extref
);
1869 btrfs_tree_read_unlock_blocking(eb
);
1870 free_extent_buffer(eb
);
1875 btrfs_release_path(path
);
1880 static int iterate_irefs(u64 inum
, struct btrfs_root
*fs_root
,
1881 struct btrfs_path
*path
, iterate_irefs_t
*iterate
,
1887 ret
= iterate_inode_refs(inum
, fs_root
, path
, iterate
, ctx
);
1890 else if (ret
!= -ENOENT
)
1893 ret
= iterate_inode_extrefs(inum
, fs_root
, path
, iterate
, ctx
);
1894 if (ret
== -ENOENT
&& found_refs
)
1901 * returns 0 if the path could be dumped (probably truncated)
1902 * returns <0 in case of an error
1904 static int inode_to_path(u64 inum
, u32 name_len
, unsigned long name_off
,
1905 struct extent_buffer
*eb
, void *ctx
)
1907 struct inode_fs_paths
*ipath
= ctx
;
1910 int i
= ipath
->fspath
->elem_cnt
;
1911 const int s_ptr
= sizeof(char *);
1914 bytes_left
= ipath
->fspath
->bytes_left
> s_ptr
?
1915 ipath
->fspath
->bytes_left
- s_ptr
: 0;
1917 fspath_min
= (char *)ipath
->fspath
->val
+ (i
+ 1) * s_ptr
;
1918 fspath
= btrfs_ref_to_path(ipath
->fs_root
, ipath
->btrfs_path
, name_len
,
1919 name_off
, eb
, inum
, fspath_min
, bytes_left
);
1921 return PTR_ERR(fspath
);
1923 if (fspath
> fspath_min
) {
1924 ipath
->fspath
->val
[i
] = (u64
)(unsigned long)fspath
;
1925 ++ipath
->fspath
->elem_cnt
;
1926 ipath
->fspath
->bytes_left
= fspath
- fspath_min
;
1928 ++ipath
->fspath
->elem_missed
;
1929 ipath
->fspath
->bytes_missing
+= fspath_min
- fspath
;
1930 ipath
->fspath
->bytes_left
= 0;
1937 * this dumps all file system paths to the inode into the ipath struct, provided
1938 * is has been created large enough. each path is zero-terminated and accessed
1939 * from ipath->fspath->val[i].
1940 * when it returns, there are ipath->fspath->elem_cnt number of paths available
1941 * in ipath->fspath->val[]. when the allocated space wasn't sufficient, the
1942 * number of missed paths in recored in ipath->fspath->elem_missed, otherwise,
1943 * it's zero. ipath->fspath->bytes_missing holds the number of bytes that would
1944 * have been needed to return all paths.
1946 int paths_from_inode(u64 inum
, struct inode_fs_paths
*ipath
)
1948 return iterate_irefs(inum
, ipath
->fs_root
, ipath
->btrfs_path
,
1949 inode_to_path
, ipath
);
1952 struct btrfs_data_container
*init_data_container(u32 total_bytes
)
1954 struct btrfs_data_container
*data
;
1957 alloc_bytes
= max_t(size_t, total_bytes
, sizeof(*data
));
1958 data
= vmalloc(alloc_bytes
);
1960 return ERR_PTR(-ENOMEM
);
1962 if (total_bytes
>= sizeof(*data
)) {
1963 data
->bytes_left
= total_bytes
- sizeof(*data
);
1964 data
->bytes_missing
= 0;
1966 data
->bytes_missing
= sizeof(*data
) - total_bytes
;
1967 data
->bytes_left
= 0;
1971 data
->elem_missed
= 0;
1977 * allocates space to return multiple file system paths for an inode.
1978 * total_bytes to allocate are passed, note that space usable for actual path
1979 * information will be total_bytes - sizeof(struct inode_fs_paths).
1980 * the returned pointer must be freed with free_ipath() in the end.
1982 struct inode_fs_paths
*init_ipath(s32 total_bytes
, struct btrfs_root
*fs_root
,
1983 struct btrfs_path
*path
)
1985 struct inode_fs_paths
*ifp
;
1986 struct btrfs_data_container
*fspath
;
1988 fspath
= init_data_container(total_bytes
);
1990 return (void *)fspath
;
1992 ifp
= kmalloc(sizeof(*ifp
), GFP_NOFS
);
1995 return ERR_PTR(-ENOMEM
);
1998 ifp
->btrfs_path
= path
;
1999 ifp
->fspath
= fspath
;
2000 ifp
->fs_root
= fs_root
;
2005 void free_ipath(struct inode_fs_paths
*ipath
)
2009 vfree(ipath
->fspath
);