2 * Copyright (C) 2011 STRATO. All rights reserved.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
19 #include <linux/sched.h>
20 #include <linux/pagemap.h>
21 #include <linux/writeback.h>
22 #include <linux/blkdev.h>
23 #include <linux/rbtree.h>
24 #include <linux/slab.h>
25 #include <linux/workqueue.h>
29 #include "transaction.h"
30 #include "dev-replace.h"
35 * This is the implementation for the generic read ahead framework.
37 * To trigger a readahead, btrfs_reada_add must be called. It will start
38 * a read ahead for the given range [start, end) on tree root. The returned
39 * handle can either be used to wait on the readahead to finish
40 * (btrfs_reada_wait), or to send it to the background (btrfs_reada_detach).
42 * The read ahead works as follows:
43 * On btrfs_reada_add, the root of the tree is inserted into a radix_tree.
44 * reada_start_machine will then search for extents to prefetch and trigger
45 * some reads. When a read finishes for a node, all contained node/leaf
46 * pointers that lie in the given range will also be enqueued. The reads will
47 * be triggered in sequential order, thus giving a big win over a naive
48 * enumeration. It will also make use of multi-device layouts. Each disk
49 * will have its on read pointer and all disks will by utilized in parallel.
50 * Also will no two disks read both sides of a mirror simultaneously, as this
51 * would waste seeking capacity. Instead both disks will read different parts
53 * Any number of readaheads can be started in parallel. The read order will be
54 * determined globally, i.e. 2 parallel readaheads will normally finish faster
55 * than the 2 started one after another.
58 #define MAX_IN_FLIGHT 6
61 struct list_head list
;
62 struct reada_control
*rc
;
70 struct list_head extctl
;
73 struct reada_zone
*zones
[BTRFS_MAX_MIRRORS
];
82 struct list_head list
;
85 struct btrfs_device
*device
;
86 struct btrfs_device
*devs
[BTRFS_MAX_MIRRORS
]; /* full list, incl
92 struct reada_machine_work
{
93 struct btrfs_work work
;
94 struct btrfs_fs_info
*fs_info
;
97 static void reada_extent_put(struct btrfs_fs_info
*, struct reada_extent
*);
98 static void reada_control_release(struct kref
*kref
);
99 static void reada_zone_release(struct kref
*kref
);
100 static void reada_start_machine(struct btrfs_fs_info
*fs_info
);
101 static void __reada_start_machine(struct btrfs_fs_info
*fs_info
);
103 static int reada_add_block(struct reada_control
*rc
, u64 logical
,
104 struct btrfs_key
*top
, u64 generation
);
107 /* in case of err, eb might be NULL */
108 static void __readahead_hook(struct btrfs_fs_info
*fs_info
,
109 struct reada_extent
*re
, struct extent_buffer
*eb
,
117 struct list_head list
;
120 level
= btrfs_header_level(eb
);
122 spin_lock(&re
->lock
);
124 * just take the full list from the extent. afterwards we
125 * don't need the lock anymore
127 list_replace_init(&re
->extctl
, &list
);
129 spin_unlock(&re
->lock
);
132 * this is the error case, the extent buffer has not been
133 * read correctly. We won't access anything from it and
134 * just cleanup our data structures. Effectively this will
135 * cut the branch below this node from read ahead.
141 * FIXME: currently we just set nritems to 0 if this is a leaf,
142 * effectively ignoring the content. In a next step we could
143 * trigger more readahead depending from the content, e.g.
144 * fetch the checksums for the extents in the leaf.
149 nritems
= btrfs_header_nritems(eb
);
150 generation
= btrfs_header_generation(eb
);
151 for (i
= 0; i
< nritems
; i
++) {
152 struct reada_extctl
*rec
;
154 struct btrfs_key key
;
155 struct btrfs_key next_key
;
157 btrfs_node_key_to_cpu(eb
, &key
, i
);
159 btrfs_node_key_to_cpu(eb
, &next_key
, i
+ 1);
162 bytenr
= btrfs_node_blockptr(eb
, i
);
163 n_gen
= btrfs_node_ptr_generation(eb
, i
);
165 list_for_each_entry(rec
, &list
, list
) {
166 struct reada_control
*rc
= rec
->rc
;
169 * if the generation doesn't match, just ignore this
170 * extctl. This will probably cut off a branch from
171 * prefetch. Alternatively one could start a new (sub-)
172 * prefetch for this branch, starting again from root.
173 * FIXME: move the generation check out of this loop
176 if (rec
->generation
!= generation
) {
178 "generation mismatch for (%llu,%d,%llu) %llu != %llu",
179 key
.objectid
, key
.type
, key
.offset
,
180 rec
->generation
, generation
);
183 if (rec
->generation
== generation
&&
184 btrfs_comp_cpu_keys(&key
, &rc
->key_end
) < 0 &&
185 btrfs_comp_cpu_keys(&next_key
, &rc
->key_start
) > 0)
186 reada_add_block(rc
, bytenr
, &next_key
, n_gen
);
192 * free extctl records
194 while (!list_empty(&list
)) {
195 struct reada_control
*rc
;
196 struct reada_extctl
*rec
;
198 rec
= list_first_entry(&list
, struct reada_extctl
, list
);
199 list_del(&rec
->list
);
203 kref_get(&rc
->refcnt
);
204 if (atomic_dec_and_test(&rc
->elems
)) {
205 kref_put(&rc
->refcnt
, reada_control_release
);
208 kref_put(&rc
->refcnt
, reada_control_release
);
210 reada_extent_put(fs_info
, re
); /* one ref for each entry */
217 * start is passed separately in case eb in NULL, which may be the case with
220 int btree_readahead_hook(struct btrfs_fs_info
*fs_info
,
221 struct extent_buffer
*eb
, u64 start
, int err
)
224 struct reada_extent
*re
;
227 spin_lock(&fs_info
->reada_lock
);
228 re
= radix_tree_lookup(&fs_info
->reada_tree
,
229 start
>> PAGE_SHIFT
);
232 spin_unlock(&fs_info
->reada_lock
);
238 __readahead_hook(fs_info
, re
, eb
, start
, err
);
239 reada_extent_put(fs_info
, re
); /* our ref */
242 reada_start_machine(fs_info
);
246 static struct reada_zone
*reada_find_zone(struct btrfs_fs_info
*fs_info
,
247 struct btrfs_device
*dev
, u64 logical
,
248 struct btrfs_bio
*bbio
)
251 struct reada_zone
*zone
;
252 struct btrfs_block_group_cache
*cache
= NULL
;
258 spin_lock(&fs_info
->reada_lock
);
259 ret
= radix_tree_gang_lookup(&dev
->reada_zones
, (void **)&zone
,
260 logical
>> PAGE_SHIFT
, 1);
261 if (ret
== 1 && logical
>= zone
->start
&& logical
<= zone
->end
) {
262 kref_get(&zone
->refcnt
);
263 spin_unlock(&fs_info
->reada_lock
);
267 spin_unlock(&fs_info
->reada_lock
);
269 cache
= btrfs_lookup_block_group(fs_info
, logical
);
273 start
= cache
->key
.objectid
;
274 end
= start
+ cache
->key
.offset
- 1;
275 btrfs_put_block_group(cache
);
277 zone
= kzalloc(sizeof(*zone
), GFP_KERNEL
);
283 INIT_LIST_HEAD(&zone
->list
);
284 spin_lock_init(&zone
->lock
);
286 kref_init(&zone
->refcnt
);
288 zone
->device
= dev
; /* our device always sits at index 0 */
289 for (i
= 0; i
< bbio
->num_stripes
; ++i
) {
290 /* bounds have already been checked */
291 zone
->devs
[i
] = bbio
->stripes
[i
].dev
;
293 zone
->ndevs
= bbio
->num_stripes
;
295 spin_lock(&fs_info
->reada_lock
);
296 ret
= radix_tree_insert(&dev
->reada_zones
,
297 (unsigned long)(zone
->end
>> PAGE_SHIFT
),
300 if (ret
== -EEXIST
) {
302 ret
= radix_tree_gang_lookup(&dev
->reada_zones
, (void **)&zone
,
303 logical
>> PAGE_SHIFT
, 1);
304 if (ret
== 1 && logical
>= zone
->start
&& logical
<= zone
->end
)
305 kref_get(&zone
->refcnt
);
309 spin_unlock(&fs_info
->reada_lock
);
314 static struct reada_extent
*reada_find_extent(struct btrfs_root
*root
,
316 struct btrfs_key
*top
)
319 struct reada_extent
*re
= NULL
;
320 struct reada_extent
*re_exist
= NULL
;
321 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
322 struct btrfs_bio
*bbio
= NULL
;
323 struct btrfs_device
*dev
;
324 struct btrfs_device
*prev_dev
;
329 unsigned long index
= logical
>> PAGE_SHIFT
;
330 int dev_replace_is_ongoing
;
333 spin_lock(&fs_info
->reada_lock
);
334 re
= radix_tree_lookup(&fs_info
->reada_tree
, index
);
337 spin_unlock(&fs_info
->reada_lock
);
342 re
= kzalloc(sizeof(*re
), GFP_KERNEL
);
346 blocksize
= root
->nodesize
;
347 re
->logical
= logical
;
349 INIT_LIST_HEAD(&re
->extctl
);
350 spin_lock_init(&re
->lock
);
357 ret
= btrfs_map_block(fs_info
, REQ_GET_READ_MIRRORS
, logical
, &length
,
359 if (ret
|| !bbio
|| length
< blocksize
)
362 if (bbio
->num_stripes
> BTRFS_MAX_MIRRORS
) {
363 btrfs_err(root
->fs_info
,
364 "readahead: more than %d copies not supported",
369 real_stripes
= bbio
->num_stripes
- bbio
->num_tgtdevs
;
370 for (nzones
= 0; nzones
< real_stripes
; ++nzones
) {
371 struct reada_zone
*zone
;
373 dev
= bbio
->stripes
[nzones
].dev
;
375 /* cannot read ahead on missing device. */
379 zone
= reada_find_zone(fs_info
, dev
, logical
, bbio
);
383 re
->zones
[re
->nzones
++] = zone
;
384 spin_lock(&zone
->lock
);
386 kref_get(&zone
->refcnt
);
388 spin_unlock(&zone
->lock
);
389 spin_lock(&fs_info
->reada_lock
);
390 kref_put(&zone
->refcnt
, reada_zone_release
);
391 spin_unlock(&fs_info
->reada_lock
);
393 if (re
->nzones
== 0) {
394 /* not a single zone found, error and out */
398 /* insert extent in reada_tree + all per-device trees, all or nothing */
399 btrfs_dev_replace_lock(&fs_info
->dev_replace
, 0);
400 spin_lock(&fs_info
->reada_lock
);
401 ret
= radix_tree_insert(&fs_info
->reada_tree
, index
, re
);
402 if (ret
== -EEXIST
) {
403 re_exist
= radix_tree_lookup(&fs_info
->reada_tree
, index
);
406 spin_unlock(&fs_info
->reada_lock
);
407 btrfs_dev_replace_unlock(&fs_info
->dev_replace
, 0);
411 spin_unlock(&fs_info
->reada_lock
);
412 btrfs_dev_replace_unlock(&fs_info
->dev_replace
, 0);
416 dev_replace_is_ongoing
= btrfs_dev_replace_is_ongoing(
417 &fs_info
->dev_replace
);
418 for (nzones
= 0; nzones
< re
->nzones
; ++nzones
) {
419 dev
= re
->zones
[nzones
]->device
;
421 if (dev
== prev_dev
) {
423 * in case of DUP, just add the first zone. As both
424 * are on the same device, there's nothing to gain
426 * Also, it wouldn't work, as the tree is per device
427 * and adding would fail with EEXIST
434 if (dev_replace_is_ongoing
&&
435 dev
== fs_info
->dev_replace
.tgtdev
) {
437 * as this device is selected for reading only as
438 * a last resort, skip it for read ahead.
443 ret
= radix_tree_insert(&dev
->reada_extents
, index
, re
);
445 while (--nzones
>= 0) {
446 dev
= re
->zones
[nzones
]->device
;
448 /* ignore whether the entry was inserted */
449 radix_tree_delete(&dev
->reada_extents
, index
);
451 BUG_ON(fs_info
== NULL
);
452 radix_tree_delete(&fs_info
->reada_tree
, index
);
453 spin_unlock(&fs_info
->reada_lock
);
454 btrfs_dev_replace_unlock(&fs_info
->dev_replace
, 0);
459 spin_unlock(&fs_info
->reada_lock
);
460 btrfs_dev_replace_unlock(&fs_info
->dev_replace
, 0);
465 btrfs_put_bbio(bbio
);
469 for (nzones
= 0; nzones
< re
->nzones
; ++nzones
) {
470 struct reada_zone
*zone
;
472 zone
= re
->zones
[nzones
];
473 kref_get(&zone
->refcnt
);
474 spin_lock(&zone
->lock
);
476 if (zone
->elems
== 0) {
478 * no fs_info->reada_lock needed, as this can't be
481 kref_put(&zone
->refcnt
, reada_zone_release
);
483 spin_unlock(&zone
->lock
);
485 spin_lock(&fs_info
->reada_lock
);
486 kref_put(&zone
->refcnt
, reada_zone_release
);
487 spin_unlock(&fs_info
->reada_lock
);
489 btrfs_put_bbio(bbio
);
494 static void reada_extent_put(struct btrfs_fs_info
*fs_info
,
495 struct reada_extent
*re
)
498 unsigned long index
= re
->logical
>> PAGE_SHIFT
;
500 spin_lock(&fs_info
->reada_lock
);
502 spin_unlock(&fs_info
->reada_lock
);
506 radix_tree_delete(&fs_info
->reada_tree
, index
);
507 for (i
= 0; i
< re
->nzones
; ++i
) {
508 struct reada_zone
*zone
= re
->zones
[i
];
510 radix_tree_delete(&zone
->device
->reada_extents
, index
);
513 spin_unlock(&fs_info
->reada_lock
);
515 for (i
= 0; i
< re
->nzones
; ++i
) {
516 struct reada_zone
*zone
= re
->zones
[i
];
518 kref_get(&zone
->refcnt
);
519 spin_lock(&zone
->lock
);
521 if (zone
->elems
== 0) {
522 /* no fs_info->reada_lock needed, as this can't be
524 kref_put(&zone
->refcnt
, reada_zone_release
);
526 spin_unlock(&zone
->lock
);
528 spin_lock(&fs_info
->reada_lock
);
529 kref_put(&zone
->refcnt
, reada_zone_release
);
530 spin_unlock(&fs_info
->reada_lock
);
536 static void reada_zone_release(struct kref
*kref
)
538 struct reada_zone
*zone
= container_of(kref
, struct reada_zone
, refcnt
);
540 radix_tree_delete(&zone
->device
->reada_zones
,
541 zone
->end
>> PAGE_SHIFT
);
546 static void reada_control_release(struct kref
*kref
)
548 struct reada_control
*rc
= container_of(kref
, struct reada_control
,
554 static int reada_add_block(struct reada_control
*rc
, u64 logical
,
555 struct btrfs_key
*top
, u64 generation
)
557 struct btrfs_root
*root
= rc
->root
;
558 struct reada_extent
*re
;
559 struct reada_extctl
*rec
;
561 re
= reada_find_extent(root
, logical
, top
); /* takes one ref */
565 rec
= kzalloc(sizeof(*rec
), GFP_KERNEL
);
567 reada_extent_put(root
->fs_info
, re
);
572 rec
->generation
= generation
;
573 atomic_inc(&rc
->elems
);
575 spin_lock(&re
->lock
);
576 list_add_tail(&rec
->list
, &re
->extctl
);
577 spin_unlock(&re
->lock
);
579 /* leave the ref on the extent */
585 * called with fs_info->reada_lock held
587 static void reada_peer_zones_set_lock(struct reada_zone
*zone
, int lock
)
590 unsigned long index
= zone
->end
>> PAGE_SHIFT
;
592 for (i
= 0; i
< zone
->ndevs
; ++i
) {
593 struct reada_zone
*peer
;
594 peer
= radix_tree_lookup(&zone
->devs
[i
]->reada_zones
, index
);
595 if (peer
&& peer
->device
!= zone
->device
)
601 * called with fs_info->reada_lock held
603 static int reada_pick_zone(struct btrfs_device
*dev
)
605 struct reada_zone
*top_zone
= NULL
;
606 struct reada_zone
*top_locked_zone
= NULL
;
608 u64 top_locked_elems
= 0;
609 unsigned long index
= 0;
612 if (dev
->reada_curr_zone
) {
613 reada_peer_zones_set_lock(dev
->reada_curr_zone
, 0);
614 kref_put(&dev
->reada_curr_zone
->refcnt
, reada_zone_release
);
615 dev
->reada_curr_zone
= NULL
;
617 /* pick the zone with the most elements */
619 struct reada_zone
*zone
;
621 ret
= radix_tree_gang_lookup(&dev
->reada_zones
,
622 (void **)&zone
, index
, 1);
625 index
= (zone
->end
>> PAGE_SHIFT
) + 1;
627 if (zone
->elems
> top_locked_elems
) {
628 top_locked_elems
= zone
->elems
;
629 top_locked_zone
= zone
;
632 if (zone
->elems
> top_elems
) {
633 top_elems
= zone
->elems
;
639 dev
->reada_curr_zone
= top_zone
;
640 else if (top_locked_zone
)
641 dev
->reada_curr_zone
= top_locked_zone
;
645 dev
->reada_next
= dev
->reada_curr_zone
->start
;
646 kref_get(&dev
->reada_curr_zone
->refcnt
);
647 reada_peer_zones_set_lock(dev
->reada_curr_zone
, 1);
652 static int reada_start_machine_dev(struct btrfs_fs_info
*fs_info
,
653 struct btrfs_device
*dev
)
655 struct reada_extent
*re
= NULL
;
657 struct extent_buffer
*eb
= NULL
;
662 spin_lock(&fs_info
->reada_lock
);
663 if (dev
->reada_curr_zone
== NULL
) {
664 ret
= reada_pick_zone(dev
);
666 spin_unlock(&fs_info
->reada_lock
);
671 * FIXME currently we issue the reads one extent at a time. If we have
672 * a contiguous block of extents, we could also coagulate them or use
673 * plugging to speed things up
675 ret
= radix_tree_gang_lookup(&dev
->reada_extents
, (void **)&re
,
676 dev
->reada_next
>> PAGE_SHIFT
, 1);
677 if (ret
== 0 || re
->logical
> dev
->reada_curr_zone
->end
) {
678 ret
= reada_pick_zone(dev
);
680 spin_unlock(&fs_info
->reada_lock
);
684 ret
= radix_tree_gang_lookup(&dev
->reada_extents
, (void **)&re
,
685 dev
->reada_next
>> PAGE_SHIFT
, 1);
688 spin_unlock(&fs_info
->reada_lock
);
691 dev
->reada_next
= re
->logical
+ fs_info
->tree_root
->nodesize
;
694 spin_unlock(&fs_info
->reada_lock
);
696 spin_lock(&re
->lock
);
697 if (re
->scheduled
|| list_empty(&re
->extctl
)) {
698 spin_unlock(&re
->lock
);
699 reada_extent_put(fs_info
, re
);
703 spin_unlock(&re
->lock
);
708 for (i
= 0; i
< re
->nzones
; ++i
) {
709 if (re
->zones
[i
]->device
== dev
) {
714 logical
= re
->logical
;
716 atomic_inc(&dev
->reada_in_flight
);
717 ret
= reada_tree_block_flagged(fs_info
->extent_root
, logical
,
720 __readahead_hook(fs_info
, re
, NULL
, logical
, ret
);
722 __readahead_hook(fs_info
, re
, eb
, eb
->start
, ret
);
725 free_extent_buffer(eb
);
727 atomic_dec(&dev
->reada_in_flight
);
728 reada_extent_put(fs_info
, re
);
734 static void reada_start_machine_worker(struct btrfs_work
*work
)
736 struct reada_machine_work
*rmw
;
737 struct btrfs_fs_info
*fs_info
;
740 rmw
= container_of(work
, struct reada_machine_work
, work
);
741 fs_info
= rmw
->fs_info
;
745 old_ioprio
= IOPRIO_PRIO_VALUE(task_nice_ioclass(current
),
746 task_nice_ioprio(current
));
747 set_task_ioprio(current
, BTRFS_IOPRIO_READA
);
748 __reada_start_machine(fs_info
);
749 set_task_ioprio(current
, old_ioprio
);
751 atomic_dec(&fs_info
->reada_works_cnt
);
754 static void __reada_start_machine(struct btrfs_fs_info
*fs_info
)
756 struct btrfs_device
*device
;
757 struct btrfs_fs_devices
*fs_devices
= fs_info
->fs_devices
;
764 list_for_each_entry(device
, &fs_devices
->devices
, dev_list
) {
765 if (atomic_read(&device
->reada_in_flight
) <
767 enqueued
+= reada_start_machine_dev(fs_info
,
771 } while (enqueued
&& total
< 10000);
777 * If everything is already in the cache, this is effectively single
778 * threaded. To a) not hold the caller for too long and b) to utilize
779 * more cores, we broke the loop above after 10000 iterations and now
780 * enqueue to workers to finish it. This will distribute the load to
783 for (i
= 0; i
< 2; ++i
) {
784 reada_start_machine(fs_info
);
785 if (atomic_read(&fs_info
->reada_works_cnt
) >
786 BTRFS_MAX_MIRRORS
* 2)
791 static void reada_start_machine(struct btrfs_fs_info
*fs_info
)
793 struct reada_machine_work
*rmw
;
795 rmw
= kzalloc(sizeof(*rmw
), GFP_KERNEL
);
797 /* FIXME we cannot handle this properly right now */
800 btrfs_init_work(&rmw
->work
, btrfs_readahead_helper
,
801 reada_start_machine_worker
, NULL
, NULL
);
802 rmw
->fs_info
= fs_info
;
804 btrfs_queue_work(fs_info
->readahead_workers
, &rmw
->work
);
805 atomic_inc(&fs_info
->reada_works_cnt
);
809 static void dump_devs(struct btrfs_fs_info
*fs_info
, int all
)
811 struct btrfs_device
*device
;
812 struct btrfs_fs_devices
*fs_devices
= fs_info
->fs_devices
;
819 spin_lock(&fs_info
->reada_lock
);
820 list_for_each_entry(device
, &fs_devices
->devices
, dev_list
) {
821 printk(KERN_DEBUG
"dev %lld has %d in flight\n", device
->devid
,
822 atomic_read(&device
->reada_in_flight
));
825 struct reada_zone
*zone
;
826 ret
= radix_tree_gang_lookup(&device
->reada_zones
,
827 (void **)&zone
, index
, 1);
830 printk(KERN_DEBUG
" zone %llu-%llu elems %llu locked "
831 "%d devs", zone
->start
, zone
->end
, zone
->elems
,
833 for (j
= 0; j
< zone
->ndevs
; ++j
) {
834 printk(KERN_CONT
" %lld",
835 zone
->devs
[j
]->devid
);
837 if (device
->reada_curr_zone
== zone
)
838 printk(KERN_CONT
" curr off %llu",
839 device
->reada_next
- zone
->start
);
840 printk(KERN_CONT
"\n");
841 index
= (zone
->end
>> PAGE_SHIFT
) + 1;
846 struct reada_extent
*re
= NULL
;
848 ret
= radix_tree_gang_lookup(&device
->reada_extents
,
849 (void **)&re
, index
, 1);
853 " re: logical %llu size %u empty %d scheduled %d",
854 re
->logical
, fs_info
->tree_root
->nodesize
,
855 list_empty(&re
->extctl
), re
->scheduled
);
857 for (i
= 0; i
< re
->nzones
; ++i
) {
858 printk(KERN_CONT
" zone %llu-%llu devs",
861 for (j
= 0; j
< re
->zones
[i
]->ndevs
; ++j
) {
862 printk(KERN_CONT
" %lld",
863 re
->zones
[i
]->devs
[j
]->devid
);
866 printk(KERN_CONT
"\n");
867 index
= (re
->logical
>> PAGE_SHIFT
) + 1;
876 struct reada_extent
*re
= NULL
;
878 ret
= radix_tree_gang_lookup(&fs_info
->reada_tree
, (void **)&re
,
882 if (!re
->scheduled
) {
883 index
= (re
->logical
>> PAGE_SHIFT
) + 1;
887 "re: logical %llu size %u list empty %d scheduled %d",
888 re
->logical
, fs_info
->tree_root
->nodesize
,
889 list_empty(&re
->extctl
), re
->scheduled
);
890 for (i
= 0; i
< re
->nzones
; ++i
) {
891 printk(KERN_CONT
" zone %llu-%llu devs",
894 for (j
= 0; j
< re
->zones
[i
]->ndevs
; ++j
) {
895 printk(KERN_CONT
" %lld",
896 re
->zones
[i
]->devs
[j
]->devid
);
899 printk(KERN_CONT
"\n");
900 index
= (re
->logical
>> PAGE_SHIFT
) + 1;
902 spin_unlock(&fs_info
->reada_lock
);
909 struct reada_control
*btrfs_reada_add(struct btrfs_root
*root
,
910 struct btrfs_key
*key_start
, struct btrfs_key
*key_end
)
912 struct reada_control
*rc
;
916 struct extent_buffer
*node
;
917 static struct btrfs_key max_key
= {
923 rc
= kzalloc(sizeof(*rc
), GFP_KERNEL
);
925 return ERR_PTR(-ENOMEM
);
928 rc
->key_start
= *key_start
;
929 rc
->key_end
= *key_end
;
930 atomic_set(&rc
->elems
, 0);
931 init_waitqueue_head(&rc
->wait
);
932 kref_init(&rc
->refcnt
);
933 kref_get(&rc
->refcnt
); /* one ref for having elements */
935 node
= btrfs_root_node(root
);
937 generation
= btrfs_header_generation(node
);
938 free_extent_buffer(node
);
940 ret
= reada_add_block(rc
, start
, &max_key
, generation
);
946 reada_start_machine(root
->fs_info
);
952 int btrfs_reada_wait(void *handle
)
954 struct reada_control
*rc
= handle
;
955 struct btrfs_fs_info
*fs_info
= rc
->root
->fs_info
;
957 while (atomic_read(&rc
->elems
)) {
958 if (!atomic_read(&fs_info
->reada_works_cnt
))
959 reada_start_machine(fs_info
);
960 wait_event_timeout(rc
->wait
, atomic_read(&rc
->elems
) == 0,
962 dump_devs(rc
->root
->fs_info
,
963 atomic_read(&rc
->elems
) < 10 ? 1 : 0);
966 dump_devs(rc
->root
->fs_info
, atomic_read(&rc
->elems
) < 10 ? 1 : 0);
968 kref_put(&rc
->refcnt
, reada_control_release
);
973 int btrfs_reada_wait(void *handle
)
975 struct reada_control
*rc
= handle
;
976 struct btrfs_fs_info
*fs_info
= rc
->root
->fs_info
;
978 while (atomic_read(&rc
->elems
)) {
979 if (!atomic_read(&fs_info
->reada_works_cnt
))
980 reada_start_machine(fs_info
);
981 wait_event_timeout(rc
->wait
, atomic_read(&rc
->elems
) == 0,
985 kref_put(&rc
->refcnt
, reada_control_release
);
991 void btrfs_reada_detach(void *handle
)
993 struct reada_control
*rc
= handle
;
995 kref_put(&rc
->refcnt
, reada_control_release
);