2 * Copyright (C) 2007 Oracle. All rights reserved.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
20 #include <linux/slab.h>
21 #include <linux/sched.h>
22 #include <linux/writeback.h>
23 #include <linux/pagemap.h>
24 #include <linux/blkdev.h>
25 #include <linux/uuid.h>
28 #include "transaction.h"
31 #include "inode-map.h"
33 #include "dev-replace.h"
36 #define BTRFS_ROOT_TRANS_TAG 0
38 static const unsigned int btrfs_blocked_trans_types
[TRANS_STATE_MAX
] = {
39 [TRANS_STATE_RUNNING
] = 0U,
40 [TRANS_STATE_BLOCKED
] = (__TRANS_USERSPACE
|
42 [TRANS_STATE_COMMIT_START
] = (__TRANS_USERSPACE
|
45 [TRANS_STATE_COMMIT_DOING
] = (__TRANS_USERSPACE
|
49 [TRANS_STATE_UNBLOCKED
] = (__TRANS_USERSPACE
|
54 [TRANS_STATE_COMPLETED
] = (__TRANS_USERSPACE
|
61 void btrfs_put_transaction(struct btrfs_transaction
*transaction
)
63 WARN_ON(atomic_read(&transaction
->use_count
) == 0);
64 if (atomic_dec_and_test(&transaction
->use_count
)) {
65 BUG_ON(!list_empty(&transaction
->list
));
66 WARN_ON(!RB_EMPTY_ROOT(&transaction
->delayed_refs
.href_root
));
67 if (transaction
->delayed_refs
.pending_csums
)
68 printk(KERN_ERR
"pending csums is %llu\n",
69 transaction
->delayed_refs
.pending_csums
);
70 while (!list_empty(&transaction
->pending_chunks
)) {
71 struct extent_map
*em
;
73 em
= list_first_entry(&transaction
->pending_chunks
,
74 struct extent_map
, list
);
75 list_del_init(&em
->list
);
79 * If any block groups are found in ->deleted_bgs then it's
80 * because the transaction was aborted and a commit did not
81 * happen (things failed before writing the new superblock
82 * and calling btrfs_finish_extent_commit()), so we can not
83 * discard the physical locations of the block groups.
85 while (!list_empty(&transaction
->deleted_bgs
)) {
86 struct btrfs_block_group_cache
*cache
;
88 cache
= list_first_entry(&transaction
->deleted_bgs
,
89 struct btrfs_block_group_cache
,
91 list_del_init(&cache
->bg_list
);
92 btrfs_put_block_group_trimming(cache
);
93 btrfs_put_block_group(cache
);
95 kmem_cache_free(btrfs_transaction_cachep
, transaction
);
99 static void clear_btree_io_tree(struct extent_io_tree
*tree
)
101 spin_lock(&tree
->lock
);
103 * Do a single barrier for the waitqueue_active check here, the state
104 * of the waitqueue should not change once clear_btree_io_tree is
108 while (!RB_EMPTY_ROOT(&tree
->state
)) {
109 struct rb_node
*node
;
110 struct extent_state
*state
;
112 node
= rb_first(&tree
->state
);
113 state
= rb_entry(node
, struct extent_state
, rb_node
);
114 rb_erase(&state
->rb_node
, &tree
->state
);
115 RB_CLEAR_NODE(&state
->rb_node
);
117 * btree io trees aren't supposed to have tasks waiting for
118 * changes in the flags of extent states ever.
120 ASSERT(!waitqueue_active(&state
->wq
));
121 free_extent_state(state
);
123 cond_resched_lock(&tree
->lock
);
125 spin_unlock(&tree
->lock
);
128 static noinline
void switch_commit_roots(struct btrfs_transaction
*trans
,
129 struct btrfs_fs_info
*fs_info
)
131 struct btrfs_root
*root
, *tmp
;
133 down_write(&fs_info
->commit_root_sem
);
134 list_for_each_entry_safe(root
, tmp
, &trans
->switch_commits
,
136 list_del_init(&root
->dirty_list
);
137 free_extent_buffer(root
->commit_root
);
138 root
->commit_root
= btrfs_root_node(root
);
139 if (is_fstree(root
->objectid
))
140 btrfs_unpin_free_ino(root
);
141 clear_btree_io_tree(&root
->dirty_log_pages
);
144 /* We can free old roots now. */
145 spin_lock(&trans
->dropped_roots_lock
);
146 while (!list_empty(&trans
->dropped_roots
)) {
147 root
= list_first_entry(&trans
->dropped_roots
,
148 struct btrfs_root
, root_list
);
149 list_del_init(&root
->root_list
);
150 spin_unlock(&trans
->dropped_roots_lock
);
151 btrfs_drop_and_free_fs_root(fs_info
, root
);
152 spin_lock(&trans
->dropped_roots_lock
);
154 spin_unlock(&trans
->dropped_roots_lock
);
155 up_write(&fs_info
->commit_root_sem
);
158 static inline void extwriter_counter_inc(struct btrfs_transaction
*trans
,
161 if (type
& TRANS_EXTWRITERS
)
162 atomic_inc(&trans
->num_extwriters
);
165 static inline void extwriter_counter_dec(struct btrfs_transaction
*trans
,
168 if (type
& TRANS_EXTWRITERS
)
169 atomic_dec(&trans
->num_extwriters
);
172 static inline void extwriter_counter_init(struct btrfs_transaction
*trans
,
175 atomic_set(&trans
->num_extwriters
, ((type
& TRANS_EXTWRITERS
) ? 1 : 0));
178 static inline int extwriter_counter_read(struct btrfs_transaction
*trans
)
180 return atomic_read(&trans
->num_extwriters
);
184 * either allocate a new transaction or hop into the existing one
186 static noinline
int join_transaction(struct btrfs_root
*root
, unsigned int type
)
188 struct btrfs_transaction
*cur_trans
;
189 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
191 spin_lock(&fs_info
->trans_lock
);
193 /* The file system has been taken offline. No new transactions. */
194 if (test_bit(BTRFS_FS_STATE_ERROR
, &fs_info
->fs_state
)) {
195 spin_unlock(&fs_info
->trans_lock
);
199 cur_trans
= fs_info
->running_transaction
;
201 if (cur_trans
->aborted
) {
202 spin_unlock(&fs_info
->trans_lock
);
203 return cur_trans
->aborted
;
205 if (btrfs_blocked_trans_types
[cur_trans
->state
] & type
) {
206 spin_unlock(&fs_info
->trans_lock
);
209 atomic_inc(&cur_trans
->use_count
);
210 atomic_inc(&cur_trans
->num_writers
);
211 extwriter_counter_inc(cur_trans
, type
);
212 spin_unlock(&fs_info
->trans_lock
);
215 spin_unlock(&fs_info
->trans_lock
);
218 * If we are ATTACH, we just want to catch the current transaction,
219 * and commit it. If there is no transaction, just return ENOENT.
221 if (type
== TRANS_ATTACH
)
225 * JOIN_NOLOCK only happens during the transaction commit, so
226 * it is impossible that ->running_transaction is NULL
228 BUG_ON(type
== TRANS_JOIN_NOLOCK
);
230 cur_trans
= kmem_cache_alloc(btrfs_transaction_cachep
, GFP_NOFS
);
234 spin_lock(&fs_info
->trans_lock
);
235 if (fs_info
->running_transaction
) {
237 * someone started a transaction after we unlocked. Make sure
238 * to redo the checks above
240 kmem_cache_free(btrfs_transaction_cachep
, cur_trans
);
242 } else if (test_bit(BTRFS_FS_STATE_ERROR
, &fs_info
->fs_state
)) {
243 spin_unlock(&fs_info
->trans_lock
);
244 kmem_cache_free(btrfs_transaction_cachep
, cur_trans
);
248 atomic_set(&cur_trans
->num_writers
, 1);
249 extwriter_counter_init(cur_trans
, type
);
250 init_waitqueue_head(&cur_trans
->writer_wait
);
251 init_waitqueue_head(&cur_trans
->commit_wait
);
252 init_waitqueue_head(&cur_trans
->pending_wait
);
253 cur_trans
->state
= TRANS_STATE_RUNNING
;
255 * One for this trans handle, one so it will live on until we
256 * commit the transaction.
258 atomic_set(&cur_trans
->use_count
, 2);
259 atomic_set(&cur_trans
->pending_ordered
, 0);
260 cur_trans
->flags
= 0;
261 cur_trans
->start_time
= get_seconds();
263 memset(&cur_trans
->delayed_refs
, 0, sizeof(cur_trans
->delayed_refs
));
265 cur_trans
->delayed_refs
.href_root
= RB_ROOT
;
266 cur_trans
->delayed_refs
.dirty_extent_root
= RB_ROOT
;
267 atomic_set(&cur_trans
->delayed_refs
.num_entries
, 0);
270 * although the tree mod log is per file system and not per transaction,
271 * the log must never go across transaction boundaries.
274 if (!list_empty(&fs_info
->tree_mod_seq_list
))
275 WARN(1, KERN_ERR
"BTRFS: tree_mod_seq_list not empty when "
276 "creating a fresh transaction\n");
277 if (!RB_EMPTY_ROOT(&fs_info
->tree_mod_log
))
278 WARN(1, KERN_ERR
"BTRFS: tree_mod_log rb tree not empty when "
279 "creating a fresh transaction\n");
280 atomic64_set(&fs_info
->tree_mod_seq
, 0);
282 spin_lock_init(&cur_trans
->delayed_refs
.lock
);
284 INIT_LIST_HEAD(&cur_trans
->pending_snapshots
);
285 INIT_LIST_HEAD(&cur_trans
->pending_chunks
);
286 INIT_LIST_HEAD(&cur_trans
->switch_commits
);
287 INIT_LIST_HEAD(&cur_trans
->dirty_bgs
);
288 INIT_LIST_HEAD(&cur_trans
->io_bgs
);
289 INIT_LIST_HEAD(&cur_trans
->dropped_roots
);
290 mutex_init(&cur_trans
->cache_write_mutex
);
291 cur_trans
->num_dirty_bgs
= 0;
292 spin_lock_init(&cur_trans
->dirty_bgs_lock
);
293 INIT_LIST_HEAD(&cur_trans
->deleted_bgs
);
294 spin_lock_init(&cur_trans
->dropped_roots_lock
);
295 list_add_tail(&cur_trans
->list
, &fs_info
->trans_list
);
296 extent_io_tree_init(&cur_trans
->dirty_pages
,
297 fs_info
->btree_inode
->i_mapping
);
298 fs_info
->generation
++;
299 cur_trans
->transid
= fs_info
->generation
;
300 fs_info
->running_transaction
= cur_trans
;
301 cur_trans
->aborted
= 0;
302 spin_unlock(&fs_info
->trans_lock
);
308 * this does all the record keeping required to make sure that a reference
309 * counted root is properly recorded in a given transaction. This is required
310 * to make sure the old root from before we joined the transaction is deleted
311 * when the transaction commits
313 static int record_root_in_trans(struct btrfs_trans_handle
*trans
,
314 struct btrfs_root
*root
)
316 if (test_bit(BTRFS_ROOT_REF_COWS
, &root
->state
) &&
317 root
->last_trans
< trans
->transid
) {
318 WARN_ON(root
== root
->fs_info
->extent_root
);
319 WARN_ON(root
->commit_root
!= root
->node
);
322 * see below for IN_TRANS_SETUP usage rules
323 * we have the reloc mutex held now, so there
324 * is only one writer in this function
326 set_bit(BTRFS_ROOT_IN_TRANS_SETUP
, &root
->state
);
328 /* make sure readers find IN_TRANS_SETUP before
329 * they find our root->last_trans update
333 spin_lock(&root
->fs_info
->fs_roots_radix_lock
);
334 if (root
->last_trans
== trans
->transid
) {
335 spin_unlock(&root
->fs_info
->fs_roots_radix_lock
);
338 radix_tree_tag_set(&root
->fs_info
->fs_roots_radix
,
339 (unsigned long)root
->root_key
.objectid
,
340 BTRFS_ROOT_TRANS_TAG
);
341 spin_unlock(&root
->fs_info
->fs_roots_radix_lock
);
342 root
->last_trans
= trans
->transid
;
344 /* this is pretty tricky. We don't want to
345 * take the relocation lock in btrfs_record_root_in_trans
346 * unless we're really doing the first setup for this root in
349 * Normally we'd use root->last_trans as a flag to decide
350 * if we want to take the expensive mutex.
352 * But, we have to set root->last_trans before we
353 * init the relocation root, otherwise, we trip over warnings
354 * in ctree.c. The solution used here is to flag ourselves
355 * with root IN_TRANS_SETUP. When this is 1, we're still
356 * fixing up the reloc trees and everyone must wait.
358 * When this is zero, they can trust root->last_trans and fly
359 * through btrfs_record_root_in_trans without having to take the
360 * lock. smp_wmb() makes sure that all the writes above are
361 * done before we pop in the zero below
363 btrfs_init_reloc_root(trans
, root
);
364 smp_mb__before_atomic();
365 clear_bit(BTRFS_ROOT_IN_TRANS_SETUP
, &root
->state
);
371 void btrfs_add_dropped_root(struct btrfs_trans_handle
*trans
,
372 struct btrfs_root
*root
)
374 struct btrfs_transaction
*cur_trans
= trans
->transaction
;
376 /* Add ourselves to the transaction dropped list */
377 spin_lock(&cur_trans
->dropped_roots_lock
);
378 list_add_tail(&root
->root_list
, &cur_trans
->dropped_roots
);
379 spin_unlock(&cur_trans
->dropped_roots_lock
);
381 /* Make sure we don't try to update the root at commit time */
382 spin_lock(&root
->fs_info
->fs_roots_radix_lock
);
383 radix_tree_tag_clear(&root
->fs_info
->fs_roots_radix
,
384 (unsigned long)root
->root_key
.objectid
,
385 BTRFS_ROOT_TRANS_TAG
);
386 spin_unlock(&root
->fs_info
->fs_roots_radix_lock
);
389 int btrfs_record_root_in_trans(struct btrfs_trans_handle
*trans
,
390 struct btrfs_root
*root
)
392 if (!test_bit(BTRFS_ROOT_REF_COWS
, &root
->state
))
396 * see record_root_in_trans for comments about IN_TRANS_SETUP usage
400 if (root
->last_trans
== trans
->transid
&&
401 !test_bit(BTRFS_ROOT_IN_TRANS_SETUP
, &root
->state
))
404 mutex_lock(&root
->fs_info
->reloc_mutex
);
405 record_root_in_trans(trans
, root
);
406 mutex_unlock(&root
->fs_info
->reloc_mutex
);
411 static inline int is_transaction_blocked(struct btrfs_transaction
*trans
)
413 return (trans
->state
>= TRANS_STATE_BLOCKED
&&
414 trans
->state
< TRANS_STATE_UNBLOCKED
&&
418 /* wait for commit against the current transaction to become unblocked
419 * when this is done, it is safe to start a new transaction, but the current
420 * transaction might not be fully on disk.
422 static void wait_current_trans(struct btrfs_root
*root
)
424 struct btrfs_transaction
*cur_trans
;
426 spin_lock(&root
->fs_info
->trans_lock
);
427 cur_trans
= root
->fs_info
->running_transaction
;
428 if (cur_trans
&& is_transaction_blocked(cur_trans
)) {
429 atomic_inc(&cur_trans
->use_count
);
430 spin_unlock(&root
->fs_info
->trans_lock
);
432 wait_event(root
->fs_info
->transaction_wait
,
433 cur_trans
->state
>= TRANS_STATE_UNBLOCKED
||
435 btrfs_put_transaction(cur_trans
);
437 spin_unlock(&root
->fs_info
->trans_lock
);
441 static int may_wait_transaction(struct btrfs_root
*root
, int type
)
443 if (root
->fs_info
->log_root_recovering
)
446 if (type
== TRANS_USERSPACE
)
449 if (type
== TRANS_START
&&
450 !atomic_read(&root
->fs_info
->open_ioctl_trans
))
456 static inline bool need_reserve_reloc_root(struct btrfs_root
*root
)
458 if (!root
->fs_info
->reloc_ctl
||
459 !test_bit(BTRFS_ROOT_REF_COWS
, &root
->state
) ||
460 root
->root_key
.objectid
== BTRFS_TREE_RELOC_OBJECTID
||
467 static struct btrfs_trans_handle
*
468 start_transaction(struct btrfs_root
*root
, unsigned int num_items
,
469 unsigned int type
, enum btrfs_reserve_flush_enum flush
)
471 struct btrfs_trans_handle
*h
;
472 struct btrfs_transaction
*cur_trans
;
474 u64 qgroup_reserved
= 0;
475 bool reloc_reserved
= false;
478 /* Send isn't supposed to start transactions. */
479 ASSERT(current
->journal_info
!= BTRFS_SEND_TRANS_STUB
);
481 if (test_bit(BTRFS_FS_STATE_ERROR
, &root
->fs_info
->fs_state
))
482 return ERR_PTR(-EROFS
);
484 if (current
->journal_info
) {
485 WARN_ON(type
& TRANS_EXTWRITERS
);
486 h
= current
->journal_info
;
488 WARN_ON(h
->use_count
> 2);
489 h
->orig_rsv
= h
->block_rsv
;
495 * Do the reservation before we join the transaction so we can do all
496 * the appropriate flushing if need be.
498 if (num_items
> 0 && root
!= root
->fs_info
->chunk_root
) {
499 qgroup_reserved
= num_items
* root
->nodesize
;
500 ret
= btrfs_qgroup_reserve_meta(root
, qgroup_reserved
);
504 num_bytes
= btrfs_calc_trans_metadata_size(root
, num_items
);
506 * Do the reservation for the relocation root creation
508 if (need_reserve_reloc_root(root
)) {
509 num_bytes
+= root
->nodesize
;
510 reloc_reserved
= true;
513 ret
= btrfs_block_rsv_add(root
,
514 &root
->fs_info
->trans_block_rsv
,
520 h
= kmem_cache_zalloc(btrfs_trans_handle_cachep
, GFP_NOFS
);
527 * If we are JOIN_NOLOCK we're already committing a transaction and
528 * waiting on this guy, so we don't need to do the sb_start_intwrite
529 * because we're already holding a ref. We need this because we could
530 * have raced in and did an fsync() on a file which can kick a commit
531 * and then we deadlock with somebody doing a freeze.
533 * If we are ATTACH, it means we just want to catch the current
534 * transaction and commit it, so we needn't do sb_start_intwrite().
536 if (type
& __TRANS_FREEZABLE
)
537 sb_start_intwrite(root
->fs_info
->sb
);
539 if (may_wait_transaction(root
, type
))
540 wait_current_trans(root
);
543 ret
= join_transaction(root
, type
);
545 wait_current_trans(root
);
546 if (unlikely(type
== TRANS_ATTACH
))
549 } while (ret
== -EBUSY
);
552 /* We must get the transaction if we are JOIN_NOLOCK. */
553 BUG_ON(type
== TRANS_JOIN_NOLOCK
);
557 cur_trans
= root
->fs_info
->running_transaction
;
559 h
->transid
= cur_trans
->transid
;
560 h
->transaction
= cur_trans
;
565 h
->can_flush_pending_bgs
= true;
566 INIT_LIST_HEAD(&h
->qgroup_ref_list
);
567 INIT_LIST_HEAD(&h
->new_bgs
);
570 if (cur_trans
->state
>= TRANS_STATE_BLOCKED
&&
571 may_wait_transaction(root
, type
)) {
572 current
->journal_info
= h
;
573 btrfs_commit_transaction(h
, root
);
578 trace_btrfs_space_reservation(root
->fs_info
, "transaction",
579 h
->transid
, num_bytes
, 1);
580 h
->block_rsv
= &root
->fs_info
->trans_block_rsv
;
581 h
->bytes_reserved
= num_bytes
;
582 h
->reloc_reserved
= reloc_reserved
;
586 btrfs_record_root_in_trans(h
, root
);
588 if (!current
->journal_info
&& type
!= TRANS_USERSPACE
)
589 current
->journal_info
= h
;
593 if (type
& __TRANS_FREEZABLE
)
594 sb_end_intwrite(root
->fs_info
->sb
);
595 kmem_cache_free(btrfs_trans_handle_cachep
, h
);
598 btrfs_block_rsv_release(root
, &root
->fs_info
->trans_block_rsv
,
601 btrfs_qgroup_free_meta(root
, qgroup_reserved
);
605 struct btrfs_trans_handle
*btrfs_start_transaction(struct btrfs_root
*root
,
606 unsigned int num_items
)
608 return start_transaction(root
, num_items
, TRANS_START
,
609 BTRFS_RESERVE_FLUSH_ALL
);
611 struct btrfs_trans_handle
*btrfs_start_transaction_fallback_global_rsv(
612 struct btrfs_root
*root
,
613 unsigned int num_items
,
616 struct btrfs_trans_handle
*trans
;
620 trans
= btrfs_start_transaction(root
, num_items
);
621 if (!IS_ERR(trans
) || PTR_ERR(trans
) != -ENOSPC
)
624 trans
= btrfs_start_transaction(root
, 0);
628 num_bytes
= btrfs_calc_trans_metadata_size(root
, num_items
);
629 ret
= btrfs_cond_migrate_bytes(root
->fs_info
,
630 &root
->fs_info
->trans_block_rsv
,
634 btrfs_end_transaction(trans
, root
);
638 trans
->block_rsv
= &root
->fs_info
->trans_block_rsv
;
639 trans
->bytes_reserved
= num_bytes
;
640 trace_btrfs_space_reservation(root
->fs_info
, "transaction",
641 trans
->transid
, num_bytes
, 1);
646 struct btrfs_trans_handle
*btrfs_start_transaction_lflush(
647 struct btrfs_root
*root
,
648 unsigned int num_items
)
650 return start_transaction(root
, num_items
, TRANS_START
,
651 BTRFS_RESERVE_FLUSH_LIMIT
);
654 struct btrfs_trans_handle
*btrfs_join_transaction(struct btrfs_root
*root
)
656 return start_transaction(root
, 0, TRANS_JOIN
,
657 BTRFS_RESERVE_NO_FLUSH
);
660 struct btrfs_trans_handle
*btrfs_join_transaction_nolock(struct btrfs_root
*root
)
662 return start_transaction(root
, 0, TRANS_JOIN_NOLOCK
,
663 BTRFS_RESERVE_NO_FLUSH
);
666 struct btrfs_trans_handle
*btrfs_start_ioctl_transaction(struct btrfs_root
*root
)
668 return start_transaction(root
, 0, TRANS_USERSPACE
,
669 BTRFS_RESERVE_NO_FLUSH
);
673 * btrfs_attach_transaction() - catch the running transaction
675 * It is used when we want to commit the current the transaction, but
676 * don't want to start a new one.
678 * Note: If this function return -ENOENT, it just means there is no
679 * running transaction. But it is possible that the inactive transaction
680 * is still in the memory, not fully on disk. If you hope there is no
681 * inactive transaction in the fs when -ENOENT is returned, you should
683 * btrfs_attach_transaction_barrier()
685 struct btrfs_trans_handle
*btrfs_attach_transaction(struct btrfs_root
*root
)
687 return start_transaction(root
, 0, TRANS_ATTACH
,
688 BTRFS_RESERVE_NO_FLUSH
);
692 * btrfs_attach_transaction_barrier() - catch the running transaction
694 * It is similar to the above function, the differentia is this one
695 * will wait for all the inactive transactions until they fully
698 struct btrfs_trans_handle
*
699 btrfs_attach_transaction_barrier(struct btrfs_root
*root
)
701 struct btrfs_trans_handle
*trans
;
703 trans
= start_transaction(root
, 0, TRANS_ATTACH
,
704 BTRFS_RESERVE_NO_FLUSH
);
705 if (IS_ERR(trans
) && PTR_ERR(trans
) == -ENOENT
)
706 btrfs_wait_for_commit(root
, 0);
711 /* wait for a transaction commit to be fully complete */
712 static noinline
void wait_for_commit(struct btrfs_root
*root
,
713 struct btrfs_transaction
*commit
)
715 wait_event(commit
->commit_wait
, commit
->state
== TRANS_STATE_COMPLETED
);
718 int btrfs_wait_for_commit(struct btrfs_root
*root
, u64 transid
)
720 struct btrfs_transaction
*cur_trans
= NULL
, *t
;
724 if (transid
<= root
->fs_info
->last_trans_committed
)
727 /* find specified transaction */
728 spin_lock(&root
->fs_info
->trans_lock
);
729 list_for_each_entry(t
, &root
->fs_info
->trans_list
, list
) {
730 if (t
->transid
== transid
) {
732 atomic_inc(&cur_trans
->use_count
);
736 if (t
->transid
> transid
) {
741 spin_unlock(&root
->fs_info
->trans_lock
);
744 * The specified transaction doesn't exist, or we
745 * raced with btrfs_commit_transaction
748 if (transid
> root
->fs_info
->last_trans_committed
)
753 /* find newest transaction that is committing | committed */
754 spin_lock(&root
->fs_info
->trans_lock
);
755 list_for_each_entry_reverse(t
, &root
->fs_info
->trans_list
,
757 if (t
->state
>= TRANS_STATE_COMMIT_START
) {
758 if (t
->state
== TRANS_STATE_COMPLETED
)
761 atomic_inc(&cur_trans
->use_count
);
765 spin_unlock(&root
->fs_info
->trans_lock
);
767 goto out
; /* nothing committing|committed */
770 wait_for_commit(root
, cur_trans
);
771 btrfs_put_transaction(cur_trans
);
776 void btrfs_throttle(struct btrfs_root
*root
)
778 if (!atomic_read(&root
->fs_info
->open_ioctl_trans
))
779 wait_current_trans(root
);
782 static int should_end_transaction(struct btrfs_trans_handle
*trans
,
783 struct btrfs_root
*root
)
785 if (root
->fs_info
->global_block_rsv
.space_info
->full
&&
786 btrfs_check_space_for_delayed_refs(trans
, root
))
789 return !!btrfs_block_rsv_check(root
, &root
->fs_info
->global_block_rsv
, 5);
792 int btrfs_should_end_transaction(struct btrfs_trans_handle
*trans
,
793 struct btrfs_root
*root
)
795 struct btrfs_transaction
*cur_trans
= trans
->transaction
;
800 if (cur_trans
->state
>= TRANS_STATE_BLOCKED
||
801 cur_trans
->delayed_refs
.flushing
)
804 updates
= trans
->delayed_ref_updates
;
805 trans
->delayed_ref_updates
= 0;
807 err
= btrfs_run_delayed_refs(trans
, root
, updates
* 2);
808 if (err
) /* Error code will also eval true */
812 return should_end_transaction(trans
, root
);
815 static int __btrfs_end_transaction(struct btrfs_trans_handle
*trans
,
816 struct btrfs_root
*root
, int throttle
)
818 struct btrfs_transaction
*cur_trans
= trans
->transaction
;
819 struct btrfs_fs_info
*info
= root
->fs_info
;
820 unsigned long cur
= trans
->delayed_ref_updates
;
821 int lock
= (trans
->type
!= TRANS_JOIN_NOLOCK
);
823 int must_run_delayed_refs
= 0;
825 if (trans
->use_count
> 1) {
827 trans
->block_rsv
= trans
->orig_rsv
;
831 btrfs_trans_release_metadata(trans
, root
);
832 trans
->block_rsv
= NULL
;
834 if (!list_empty(&trans
->new_bgs
))
835 btrfs_create_pending_block_groups(trans
, root
);
837 trans
->delayed_ref_updates
= 0;
839 must_run_delayed_refs
=
840 btrfs_should_throttle_delayed_refs(trans
, root
);
841 cur
= max_t(unsigned long, cur
, 32);
844 * don't make the caller wait if they are from a NOLOCK
845 * or ATTACH transaction, it will deadlock with commit
847 if (must_run_delayed_refs
== 1 &&
848 (trans
->type
& (__TRANS_JOIN_NOLOCK
| __TRANS_ATTACH
)))
849 must_run_delayed_refs
= 2;
852 btrfs_trans_release_metadata(trans
, root
);
853 trans
->block_rsv
= NULL
;
855 if (!list_empty(&trans
->new_bgs
))
856 btrfs_create_pending_block_groups(trans
, root
);
858 btrfs_trans_release_chunk_metadata(trans
);
860 if (lock
&& !atomic_read(&root
->fs_info
->open_ioctl_trans
) &&
861 should_end_transaction(trans
, root
) &&
862 ACCESS_ONCE(cur_trans
->state
) == TRANS_STATE_RUNNING
) {
863 spin_lock(&info
->trans_lock
);
864 if (cur_trans
->state
== TRANS_STATE_RUNNING
)
865 cur_trans
->state
= TRANS_STATE_BLOCKED
;
866 spin_unlock(&info
->trans_lock
);
869 if (lock
&& ACCESS_ONCE(cur_trans
->state
) == TRANS_STATE_BLOCKED
) {
871 return btrfs_commit_transaction(trans
, root
);
873 wake_up_process(info
->transaction_kthread
);
876 if (trans
->type
& __TRANS_FREEZABLE
)
877 sb_end_intwrite(root
->fs_info
->sb
);
879 WARN_ON(cur_trans
!= info
->running_transaction
);
880 WARN_ON(atomic_read(&cur_trans
->num_writers
) < 1);
881 atomic_dec(&cur_trans
->num_writers
);
882 extwriter_counter_dec(cur_trans
, trans
->type
);
885 * Make sure counter is updated before we wake up waiters.
888 if (waitqueue_active(&cur_trans
->writer_wait
))
889 wake_up(&cur_trans
->writer_wait
);
890 btrfs_put_transaction(cur_trans
);
892 if (current
->journal_info
== trans
)
893 current
->journal_info
= NULL
;
896 btrfs_run_delayed_iputs(root
);
898 if (trans
->aborted
||
899 test_bit(BTRFS_FS_STATE_ERROR
, &root
->fs_info
->fs_state
)) {
900 wake_up_process(info
->transaction_kthread
);
903 assert_qgroups_uptodate(trans
);
905 kmem_cache_free(btrfs_trans_handle_cachep
, trans
);
906 if (must_run_delayed_refs
) {
907 btrfs_async_run_delayed_refs(root
, cur
,
908 must_run_delayed_refs
== 1);
913 int btrfs_end_transaction(struct btrfs_trans_handle
*trans
,
914 struct btrfs_root
*root
)
916 return __btrfs_end_transaction(trans
, root
, 0);
919 int btrfs_end_transaction_throttle(struct btrfs_trans_handle
*trans
,
920 struct btrfs_root
*root
)
922 return __btrfs_end_transaction(trans
, root
, 1);
926 * when btree blocks are allocated, they have some corresponding bits set for
927 * them in one of two extent_io trees. This is used to make sure all of
928 * those extents are sent to disk but does not wait on them
930 int btrfs_write_marked_extents(struct btrfs_root
*root
,
931 struct extent_io_tree
*dirty_pages
, int mark
)
935 struct address_space
*mapping
= root
->fs_info
->btree_inode
->i_mapping
;
936 struct extent_state
*cached_state
= NULL
;
940 while (!find_first_extent_bit(dirty_pages
, start
, &start
, &end
,
941 mark
, &cached_state
)) {
942 bool wait_writeback
= false;
944 err
= convert_extent_bit(dirty_pages
, start
, end
,
946 mark
, &cached_state
, GFP_NOFS
);
948 * convert_extent_bit can return -ENOMEM, which is most of the
949 * time a temporary error. So when it happens, ignore the error
950 * and wait for writeback of this range to finish - because we
951 * failed to set the bit EXTENT_NEED_WAIT for the range, a call
952 * to btrfs_wait_marked_extents() would not know that writeback
953 * for this range started and therefore wouldn't wait for it to
954 * finish - we don't want to commit a superblock that points to
955 * btree nodes/leafs for which writeback hasn't finished yet
956 * (and without errors).
957 * We cleanup any entries left in the io tree when committing
958 * the transaction (through clear_btree_io_tree()).
960 if (err
== -ENOMEM
) {
962 wait_writeback
= true;
965 err
= filemap_fdatawrite_range(mapping
, start
, end
);
968 else if (wait_writeback
)
969 werr
= filemap_fdatawait_range(mapping
, start
, end
);
970 free_extent_state(cached_state
);
979 * when btree blocks are allocated, they have some corresponding bits set for
980 * them in one of two extent_io trees. This is used to make sure all of
981 * those extents are on disk for transaction or log commit. We wait
982 * on all the pages and clear them from the dirty pages state tree
984 int btrfs_wait_marked_extents(struct btrfs_root
*root
,
985 struct extent_io_tree
*dirty_pages
, int mark
)
989 struct address_space
*mapping
= root
->fs_info
->btree_inode
->i_mapping
;
990 struct extent_state
*cached_state
= NULL
;
993 struct btrfs_inode
*btree_ino
= BTRFS_I(root
->fs_info
->btree_inode
);
996 while (!find_first_extent_bit(dirty_pages
, start
, &start
, &end
,
997 EXTENT_NEED_WAIT
, &cached_state
)) {
999 * Ignore -ENOMEM errors returned by clear_extent_bit().
1000 * When committing the transaction, we'll remove any entries
1001 * left in the io tree. For a log commit, we don't remove them
1002 * after committing the log because the tree can be accessed
1003 * concurrently - we do it only at transaction commit time when
1004 * it's safe to do it (through clear_btree_io_tree()).
1006 err
= clear_extent_bit(dirty_pages
, start
, end
,
1008 0, 0, &cached_state
, GFP_NOFS
);
1012 err
= filemap_fdatawait_range(mapping
, start
, end
);
1015 free_extent_state(cached_state
);
1016 cached_state
= NULL
;
1023 if (root
->root_key
.objectid
== BTRFS_TREE_LOG_OBJECTID
) {
1024 if ((mark
& EXTENT_DIRTY
) &&
1025 test_and_clear_bit(BTRFS_INODE_BTREE_LOG1_ERR
,
1026 &btree_ino
->runtime_flags
))
1029 if ((mark
& EXTENT_NEW
) &&
1030 test_and_clear_bit(BTRFS_INODE_BTREE_LOG2_ERR
,
1031 &btree_ino
->runtime_flags
))
1034 if (test_and_clear_bit(BTRFS_INODE_BTREE_ERR
,
1035 &btree_ino
->runtime_flags
))
1039 if (errors
&& !werr
)
1046 * when btree blocks are allocated, they have some corresponding bits set for
1047 * them in one of two extent_io trees. This is used to make sure all of
1048 * those extents are on disk for transaction or log commit
1050 static int btrfs_write_and_wait_marked_extents(struct btrfs_root
*root
,
1051 struct extent_io_tree
*dirty_pages
, int mark
)
1055 struct blk_plug plug
;
1057 blk_start_plug(&plug
);
1058 ret
= btrfs_write_marked_extents(root
, dirty_pages
, mark
);
1059 blk_finish_plug(&plug
);
1060 ret2
= btrfs_wait_marked_extents(root
, dirty_pages
, mark
);
1069 static int btrfs_write_and_wait_transaction(struct btrfs_trans_handle
*trans
,
1070 struct btrfs_root
*root
)
1074 ret
= btrfs_write_and_wait_marked_extents(root
,
1075 &trans
->transaction
->dirty_pages
,
1077 clear_btree_io_tree(&trans
->transaction
->dirty_pages
);
1083 * this is used to update the root pointer in the tree of tree roots.
1085 * But, in the case of the extent allocation tree, updating the root
1086 * pointer may allocate blocks which may change the root of the extent
1089 * So, this loops and repeats and makes sure the cowonly root didn't
1090 * change while the root pointer was being updated in the metadata.
1092 static int update_cowonly_root(struct btrfs_trans_handle
*trans
,
1093 struct btrfs_root
*root
)
1096 u64 old_root_bytenr
;
1098 struct btrfs_root
*tree_root
= root
->fs_info
->tree_root
;
1100 old_root_used
= btrfs_root_used(&root
->root_item
);
1103 old_root_bytenr
= btrfs_root_bytenr(&root
->root_item
);
1104 if (old_root_bytenr
== root
->node
->start
&&
1105 old_root_used
== btrfs_root_used(&root
->root_item
))
1108 btrfs_set_root_node(&root
->root_item
, root
->node
);
1109 ret
= btrfs_update_root(trans
, tree_root
,
1115 old_root_used
= btrfs_root_used(&root
->root_item
);
1122 * update all the cowonly tree roots on disk
1124 * The error handling in this function may not be obvious. Any of the
1125 * failures will cause the file system to go offline. We still need
1126 * to clean up the delayed refs.
1128 static noinline
int commit_cowonly_roots(struct btrfs_trans_handle
*trans
,
1129 struct btrfs_root
*root
)
1131 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
1132 struct list_head
*dirty_bgs
= &trans
->transaction
->dirty_bgs
;
1133 struct list_head
*io_bgs
= &trans
->transaction
->io_bgs
;
1134 struct list_head
*next
;
1135 struct extent_buffer
*eb
;
1138 eb
= btrfs_lock_root_node(fs_info
->tree_root
);
1139 ret
= btrfs_cow_block(trans
, fs_info
->tree_root
, eb
, NULL
,
1141 btrfs_tree_unlock(eb
);
1142 free_extent_buffer(eb
);
1147 ret
= btrfs_run_delayed_refs(trans
, root
, (unsigned long)-1);
1151 ret
= btrfs_run_dev_stats(trans
, root
->fs_info
);
1154 ret
= btrfs_run_dev_replace(trans
, root
->fs_info
);
1157 ret
= btrfs_run_qgroups(trans
, root
->fs_info
);
1161 ret
= btrfs_setup_space_cache(trans
, root
);
1165 /* run_qgroups might have added some more refs */
1166 ret
= btrfs_run_delayed_refs(trans
, root
, (unsigned long)-1);
1170 while (!list_empty(&fs_info
->dirty_cowonly_roots
)) {
1171 next
= fs_info
->dirty_cowonly_roots
.next
;
1172 list_del_init(next
);
1173 root
= list_entry(next
, struct btrfs_root
, dirty_list
);
1174 clear_bit(BTRFS_ROOT_DIRTY
, &root
->state
);
1176 if (root
!= fs_info
->extent_root
)
1177 list_add_tail(&root
->dirty_list
,
1178 &trans
->transaction
->switch_commits
);
1179 ret
= update_cowonly_root(trans
, root
);
1182 ret
= btrfs_run_delayed_refs(trans
, root
, (unsigned long)-1);
1187 while (!list_empty(dirty_bgs
) || !list_empty(io_bgs
)) {
1188 ret
= btrfs_write_dirty_block_groups(trans
, root
);
1191 ret
= btrfs_run_delayed_refs(trans
, root
, (unsigned long)-1);
1196 if (!list_empty(&fs_info
->dirty_cowonly_roots
))
1199 list_add_tail(&fs_info
->extent_root
->dirty_list
,
1200 &trans
->transaction
->switch_commits
);
1201 btrfs_after_dev_replace_commit(fs_info
);
1207 * dead roots are old snapshots that need to be deleted. This allocates
1208 * a dirty root struct and adds it into the list of dead roots that need to
1211 void btrfs_add_dead_root(struct btrfs_root
*root
)
1213 spin_lock(&root
->fs_info
->trans_lock
);
1214 if (list_empty(&root
->root_list
))
1215 list_add_tail(&root
->root_list
, &root
->fs_info
->dead_roots
);
1216 spin_unlock(&root
->fs_info
->trans_lock
);
1220 * update all the cowonly tree roots on disk
1222 static noinline
int commit_fs_roots(struct btrfs_trans_handle
*trans
,
1223 struct btrfs_root
*root
)
1225 struct btrfs_root
*gang
[8];
1226 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
1231 spin_lock(&fs_info
->fs_roots_radix_lock
);
1233 ret
= radix_tree_gang_lookup_tag(&fs_info
->fs_roots_radix
,
1236 BTRFS_ROOT_TRANS_TAG
);
1239 for (i
= 0; i
< ret
; i
++) {
1241 radix_tree_tag_clear(&fs_info
->fs_roots_radix
,
1242 (unsigned long)root
->root_key
.objectid
,
1243 BTRFS_ROOT_TRANS_TAG
);
1244 spin_unlock(&fs_info
->fs_roots_radix_lock
);
1246 btrfs_free_log(trans
, root
);
1247 btrfs_update_reloc_root(trans
, root
);
1248 btrfs_orphan_commit_root(trans
, root
);
1250 btrfs_save_ino_cache(root
, trans
);
1252 /* see comments in should_cow_block() */
1253 clear_bit(BTRFS_ROOT_FORCE_COW
, &root
->state
);
1254 smp_mb__after_atomic();
1256 if (root
->commit_root
!= root
->node
) {
1257 list_add_tail(&root
->dirty_list
,
1258 &trans
->transaction
->switch_commits
);
1259 btrfs_set_root_node(&root
->root_item
,
1263 err
= btrfs_update_root(trans
, fs_info
->tree_root
,
1266 spin_lock(&fs_info
->fs_roots_radix_lock
);
1269 btrfs_qgroup_free_meta_all(root
);
1272 spin_unlock(&fs_info
->fs_roots_radix_lock
);
1277 * defrag a given btree.
1278 * Every leaf in the btree is read and defragged.
1280 int btrfs_defrag_root(struct btrfs_root
*root
)
1282 struct btrfs_fs_info
*info
= root
->fs_info
;
1283 struct btrfs_trans_handle
*trans
;
1286 if (test_and_set_bit(BTRFS_ROOT_DEFRAG_RUNNING
, &root
->state
))
1290 trans
= btrfs_start_transaction(root
, 0);
1292 return PTR_ERR(trans
);
1294 ret
= btrfs_defrag_leaves(trans
, root
);
1296 btrfs_end_transaction(trans
, root
);
1297 btrfs_btree_balance_dirty(info
->tree_root
);
1300 if (btrfs_fs_closing(root
->fs_info
) || ret
!= -EAGAIN
)
1303 if (btrfs_defrag_cancelled(root
->fs_info
)) {
1304 pr_debug("BTRFS: defrag_root cancelled\n");
1309 clear_bit(BTRFS_ROOT_DEFRAG_RUNNING
, &root
->state
);
1314 * new snapshots need to be created at a very specific time in the
1315 * transaction commit. This does the actual creation.
1318 * If the error which may affect the commitment of the current transaction
1319 * happens, we should return the error number. If the error which just affect
1320 * the creation of the pending snapshots, just return 0.
1322 static noinline
int create_pending_snapshot(struct btrfs_trans_handle
*trans
,
1323 struct btrfs_fs_info
*fs_info
,
1324 struct btrfs_pending_snapshot
*pending
)
1326 struct btrfs_key key
;
1327 struct btrfs_root_item
*new_root_item
;
1328 struct btrfs_root
*tree_root
= fs_info
->tree_root
;
1329 struct btrfs_root
*root
= pending
->root
;
1330 struct btrfs_root
*parent_root
;
1331 struct btrfs_block_rsv
*rsv
;
1332 struct inode
*parent_inode
;
1333 struct btrfs_path
*path
;
1334 struct btrfs_dir_item
*dir_item
;
1335 struct dentry
*dentry
;
1336 struct extent_buffer
*tmp
;
1337 struct extent_buffer
*old
;
1338 struct timespec cur_time
;
1346 ASSERT(pending
->path
);
1347 path
= pending
->path
;
1349 ASSERT(pending
->root_item
);
1350 new_root_item
= pending
->root_item
;
1352 pending
->error
= btrfs_find_free_objectid(tree_root
, &objectid
);
1354 goto no_free_objectid
;
1357 * Make qgroup to skip current new snapshot's qgroupid, as it is
1358 * accounted by later btrfs_qgroup_inherit().
1360 btrfs_set_skip_qgroup(trans
, objectid
);
1362 btrfs_reloc_pre_snapshot(pending
, &to_reserve
);
1364 if (to_reserve
> 0) {
1365 pending
->error
= btrfs_block_rsv_add(root
,
1366 &pending
->block_rsv
,
1368 BTRFS_RESERVE_NO_FLUSH
);
1370 goto clear_skip_qgroup
;
1373 key
.objectid
= objectid
;
1374 key
.offset
= (u64
)-1;
1375 key
.type
= BTRFS_ROOT_ITEM_KEY
;
1377 rsv
= trans
->block_rsv
;
1378 trans
->block_rsv
= &pending
->block_rsv
;
1379 trans
->bytes_reserved
= trans
->block_rsv
->reserved
;
1380 trace_btrfs_space_reservation(root
->fs_info
, "transaction",
1382 trans
->bytes_reserved
, 1);
1383 dentry
= pending
->dentry
;
1384 parent_inode
= pending
->dir
;
1385 parent_root
= BTRFS_I(parent_inode
)->root
;
1386 record_root_in_trans(trans
, parent_root
);
1388 cur_time
= current_fs_time(parent_inode
->i_sb
);
1391 * insert the directory item
1393 ret
= btrfs_set_inode_index(parent_inode
, &index
);
1394 BUG_ON(ret
); /* -ENOMEM */
1396 /* check if there is a file/dir which has the same name. */
1397 dir_item
= btrfs_lookup_dir_item(NULL
, parent_root
, path
,
1398 btrfs_ino(parent_inode
),
1399 dentry
->d_name
.name
,
1400 dentry
->d_name
.len
, 0);
1401 if (dir_item
!= NULL
&& !IS_ERR(dir_item
)) {
1402 pending
->error
= -EEXIST
;
1403 goto dir_item_existed
;
1404 } else if (IS_ERR(dir_item
)) {
1405 ret
= PTR_ERR(dir_item
);
1406 btrfs_abort_transaction(trans
, root
, ret
);
1409 btrfs_release_path(path
);
1412 * pull in the delayed directory update
1413 * and the delayed inode item
1414 * otherwise we corrupt the FS during
1417 ret
= btrfs_run_delayed_items(trans
, root
);
1418 if (ret
) { /* Transaction aborted */
1419 btrfs_abort_transaction(trans
, root
, ret
);
1423 record_root_in_trans(trans
, root
);
1424 btrfs_set_root_last_snapshot(&root
->root_item
, trans
->transid
);
1425 memcpy(new_root_item
, &root
->root_item
, sizeof(*new_root_item
));
1426 btrfs_check_and_init_root_item(new_root_item
);
1428 root_flags
= btrfs_root_flags(new_root_item
);
1429 if (pending
->readonly
)
1430 root_flags
|= BTRFS_ROOT_SUBVOL_RDONLY
;
1432 root_flags
&= ~BTRFS_ROOT_SUBVOL_RDONLY
;
1433 btrfs_set_root_flags(new_root_item
, root_flags
);
1435 btrfs_set_root_generation_v2(new_root_item
,
1437 uuid_le_gen(&new_uuid
);
1438 memcpy(new_root_item
->uuid
, new_uuid
.b
, BTRFS_UUID_SIZE
);
1439 memcpy(new_root_item
->parent_uuid
, root
->root_item
.uuid
,
1441 if (!(root_flags
& BTRFS_ROOT_SUBVOL_RDONLY
)) {
1442 memset(new_root_item
->received_uuid
, 0,
1443 sizeof(new_root_item
->received_uuid
));
1444 memset(&new_root_item
->stime
, 0, sizeof(new_root_item
->stime
));
1445 memset(&new_root_item
->rtime
, 0, sizeof(new_root_item
->rtime
));
1446 btrfs_set_root_stransid(new_root_item
, 0);
1447 btrfs_set_root_rtransid(new_root_item
, 0);
1449 btrfs_set_stack_timespec_sec(&new_root_item
->otime
, cur_time
.tv_sec
);
1450 btrfs_set_stack_timespec_nsec(&new_root_item
->otime
, cur_time
.tv_nsec
);
1451 btrfs_set_root_otransid(new_root_item
, trans
->transid
);
1453 old
= btrfs_lock_root_node(root
);
1454 ret
= btrfs_cow_block(trans
, root
, old
, NULL
, 0, &old
);
1456 btrfs_tree_unlock(old
);
1457 free_extent_buffer(old
);
1458 btrfs_abort_transaction(trans
, root
, ret
);
1462 btrfs_set_lock_blocking(old
);
1464 ret
= btrfs_copy_root(trans
, root
, old
, &tmp
, objectid
);
1465 /* clean up in any case */
1466 btrfs_tree_unlock(old
);
1467 free_extent_buffer(old
);
1469 btrfs_abort_transaction(trans
, root
, ret
);
1472 /* see comments in should_cow_block() */
1473 set_bit(BTRFS_ROOT_FORCE_COW
, &root
->state
);
1476 btrfs_set_root_node(new_root_item
, tmp
);
1477 /* record when the snapshot was created in key.offset */
1478 key
.offset
= trans
->transid
;
1479 ret
= btrfs_insert_root(trans
, tree_root
, &key
, new_root_item
);
1480 btrfs_tree_unlock(tmp
);
1481 free_extent_buffer(tmp
);
1483 btrfs_abort_transaction(trans
, root
, ret
);
1488 * insert root back/forward references
1490 ret
= btrfs_add_root_ref(trans
, tree_root
, objectid
,
1491 parent_root
->root_key
.objectid
,
1492 btrfs_ino(parent_inode
), index
,
1493 dentry
->d_name
.name
, dentry
->d_name
.len
);
1495 btrfs_abort_transaction(trans
, root
, ret
);
1499 key
.offset
= (u64
)-1;
1500 pending
->snap
= btrfs_read_fs_root_no_name(root
->fs_info
, &key
);
1501 if (IS_ERR(pending
->snap
)) {
1502 ret
= PTR_ERR(pending
->snap
);
1503 btrfs_abort_transaction(trans
, root
, ret
);
1507 ret
= btrfs_reloc_post_snapshot(trans
, pending
);
1509 btrfs_abort_transaction(trans
, root
, ret
);
1513 ret
= btrfs_run_delayed_refs(trans
, root
, (unsigned long)-1);
1515 btrfs_abort_transaction(trans
, root
, ret
);
1519 ret
= btrfs_insert_dir_item(trans
, parent_root
,
1520 dentry
->d_name
.name
, dentry
->d_name
.len
,
1522 BTRFS_FT_DIR
, index
);
1523 /* We have check then name at the beginning, so it is impossible. */
1524 BUG_ON(ret
== -EEXIST
|| ret
== -EOVERFLOW
);
1526 btrfs_abort_transaction(trans
, root
, ret
);
1530 btrfs_i_size_write(parent_inode
, parent_inode
->i_size
+
1531 dentry
->d_name
.len
* 2);
1532 parent_inode
->i_mtime
= parent_inode
->i_ctime
=
1533 current_fs_time(parent_inode
->i_sb
);
1534 ret
= btrfs_update_inode_fallback(trans
, parent_root
, parent_inode
);
1536 btrfs_abort_transaction(trans
, root
, ret
);
1539 ret
= btrfs_uuid_tree_add(trans
, fs_info
->uuid_root
, new_uuid
.b
,
1540 BTRFS_UUID_KEY_SUBVOL
, objectid
);
1542 btrfs_abort_transaction(trans
, root
, ret
);
1545 if (!btrfs_is_empty_uuid(new_root_item
->received_uuid
)) {
1546 ret
= btrfs_uuid_tree_add(trans
, fs_info
->uuid_root
,
1547 new_root_item
->received_uuid
,
1548 BTRFS_UUID_KEY_RECEIVED_SUBVOL
,
1550 if (ret
&& ret
!= -EEXIST
) {
1551 btrfs_abort_transaction(trans
, root
, ret
);
1556 ret
= btrfs_run_delayed_refs(trans
, root
, (unsigned long)-1);
1558 btrfs_abort_transaction(trans
, root
, ret
);
1563 * account qgroup counters before qgroup_inherit()
1565 ret
= btrfs_qgroup_prepare_account_extents(trans
, fs_info
);
1568 ret
= btrfs_qgroup_account_extents(trans
, fs_info
);
1571 ret
= btrfs_qgroup_inherit(trans
, fs_info
,
1572 root
->root_key
.objectid
,
1573 objectid
, pending
->inherit
);
1575 btrfs_abort_transaction(trans
, root
, ret
);
1580 pending
->error
= ret
;
1582 trans
->block_rsv
= rsv
;
1583 trans
->bytes_reserved
= 0;
1585 btrfs_clear_skip_qgroup(trans
);
1587 kfree(new_root_item
);
1588 pending
->root_item
= NULL
;
1589 btrfs_free_path(path
);
1590 pending
->path
= NULL
;
1596 * create all the snapshots we've scheduled for creation
1598 static noinline
int create_pending_snapshots(struct btrfs_trans_handle
*trans
,
1599 struct btrfs_fs_info
*fs_info
)
1601 struct btrfs_pending_snapshot
*pending
, *next
;
1602 struct list_head
*head
= &trans
->transaction
->pending_snapshots
;
1605 list_for_each_entry_safe(pending
, next
, head
, list
) {
1606 list_del(&pending
->list
);
1607 ret
= create_pending_snapshot(trans
, fs_info
, pending
);
1614 static void update_super_roots(struct btrfs_root
*root
)
1616 struct btrfs_root_item
*root_item
;
1617 struct btrfs_super_block
*super
;
1619 super
= root
->fs_info
->super_copy
;
1621 root_item
= &root
->fs_info
->chunk_root
->root_item
;
1622 super
->chunk_root
= root_item
->bytenr
;
1623 super
->chunk_root_generation
= root_item
->generation
;
1624 super
->chunk_root_level
= root_item
->level
;
1626 root_item
= &root
->fs_info
->tree_root
->root_item
;
1627 super
->root
= root_item
->bytenr
;
1628 super
->generation
= root_item
->generation
;
1629 super
->root_level
= root_item
->level
;
1630 if (btrfs_test_opt(root
, SPACE_CACHE
))
1631 super
->cache_generation
= root_item
->generation
;
1632 if (root
->fs_info
->update_uuid_tree_gen
)
1633 super
->uuid_tree_generation
= root_item
->generation
;
1636 int btrfs_transaction_in_commit(struct btrfs_fs_info
*info
)
1638 struct btrfs_transaction
*trans
;
1641 spin_lock(&info
->trans_lock
);
1642 trans
= info
->running_transaction
;
1644 ret
= (trans
->state
>= TRANS_STATE_COMMIT_START
);
1645 spin_unlock(&info
->trans_lock
);
1649 int btrfs_transaction_blocked(struct btrfs_fs_info
*info
)
1651 struct btrfs_transaction
*trans
;
1654 spin_lock(&info
->trans_lock
);
1655 trans
= info
->running_transaction
;
1657 ret
= is_transaction_blocked(trans
);
1658 spin_unlock(&info
->trans_lock
);
1663 * wait for the current transaction commit to start and block subsequent
1666 static void wait_current_trans_commit_start(struct btrfs_root
*root
,
1667 struct btrfs_transaction
*trans
)
1669 wait_event(root
->fs_info
->transaction_blocked_wait
,
1670 trans
->state
>= TRANS_STATE_COMMIT_START
||
1675 * wait for the current transaction to start and then become unblocked.
1678 static void wait_current_trans_commit_start_and_unblock(struct btrfs_root
*root
,
1679 struct btrfs_transaction
*trans
)
1681 wait_event(root
->fs_info
->transaction_wait
,
1682 trans
->state
>= TRANS_STATE_UNBLOCKED
||
1687 * commit transactions asynchronously. once btrfs_commit_transaction_async
1688 * returns, any subsequent transaction will not be allowed to join.
1690 struct btrfs_async_commit
{
1691 struct btrfs_trans_handle
*newtrans
;
1692 struct btrfs_root
*root
;
1693 struct work_struct work
;
1696 static void do_async_commit(struct work_struct
*work
)
1698 struct btrfs_async_commit
*ac
=
1699 container_of(work
, struct btrfs_async_commit
, work
);
1702 * We've got freeze protection passed with the transaction.
1703 * Tell lockdep about it.
1705 if (ac
->newtrans
->type
& __TRANS_FREEZABLE
)
1706 __sb_writers_acquired(ac
->root
->fs_info
->sb
, SB_FREEZE_FS
);
1708 current
->journal_info
= ac
->newtrans
;
1710 btrfs_commit_transaction(ac
->newtrans
, ac
->root
);
1714 int btrfs_commit_transaction_async(struct btrfs_trans_handle
*trans
,
1715 struct btrfs_root
*root
,
1716 int wait_for_unblock
)
1718 struct btrfs_async_commit
*ac
;
1719 struct btrfs_transaction
*cur_trans
;
1721 ac
= kmalloc(sizeof(*ac
), GFP_NOFS
);
1725 INIT_WORK(&ac
->work
, do_async_commit
);
1727 ac
->newtrans
= btrfs_join_transaction(root
);
1728 if (IS_ERR(ac
->newtrans
)) {
1729 int err
= PTR_ERR(ac
->newtrans
);
1734 /* take transaction reference */
1735 cur_trans
= trans
->transaction
;
1736 atomic_inc(&cur_trans
->use_count
);
1738 btrfs_end_transaction(trans
, root
);
1741 * Tell lockdep we've released the freeze rwsem, since the
1742 * async commit thread will be the one to unlock it.
1744 if (ac
->newtrans
->type
& __TRANS_FREEZABLE
)
1745 __sb_writers_release(root
->fs_info
->sb
, SB_FREEZE_FS
);
1747 schedule_work(&ac
->work
);
1749 /* wait for transaction to start and unblock */
1750 if (wait_for_unblock
)
1751 wait_current_trans_commit_start_and_unblock(root
, cur_trans
);
1753 wait_current_trans_commit_start(root
, cur_trans
);
1755 if (current
->journal_info
== trans
)
1756 current
->journal_info
= NULL
;
1758 btrfs_put_transaction(cur_trans
);
1763 static void cleanup_transaction(struct btrfs_trans_handle
*trans
,
1764 struct btrfs_root
*root
, int err
)
1766 struct btrfs_transaction
*cur_trans
= trans
->transaction
;
1769 WARN_ON(trans
->use_count
> 1);
1771 btrfs_abort_transaction(trans
, root
, err
);
1773 spin_lock(&root
->fs_info
->trans_lock
);
1776 * If the transaction is removed from the list, it means this
1777 * transaction has been committed successfully, so it is impossible
1778 * to call the cleanup function.
1780 BUG_ON(list_empty(&cur_trans
->list
));
1782 list_del_init(&cur_trans
->list
);
1783 if (cur_trans
== root
->fs_info
->running_transaction
) {
1784 cur_trans
->state
= TRANS_STATE_COMMIT_DOING
;
1785 spin_unlock(&root
->fs_info
->trans_lock
);
1786 wait_event(cur_trans
->writer_wait
,
1787 atomic_read(&cur_trans
->num_writers
) == 1);
1789 spin_lock(&root
->fs_info
->trans_lock
);
1791 spin_unlock(&root
->fs_info
->trans_lock
);
1793 btrfs_cleanup_one_transaction(trans
->transaction
, root
);
1795 spin_lock(&root
->fs_info
->trans_lock
);
1796 if (cur_trans
== root
->fs_info
->running_transaction
)
1797 root
->fs_info
->running_transaction
= NULL
;
1798 spin_unlock(&root
->fs_info
->trans_lock
);
1800 if (trans
->type
& __TRANS_FREEZABLE
)
1801 sb_end_intwrite(root
->fs_info
->sb
);
1802 btrfs_put_transaction(cur_trans
);
1803 btrfs_put_transaction(cur_trans
);
1805 trace_btrfs_transaction_commit(root
);
1807 if (current
->journal_info
== trans
)
1808 current
->journal_info
= NULL
;
1809 btrfs_scrub_cancel(root
->fs_info
);
1811 kmem_cache_free(btrfs_trans_handle_cachep
, trans
);
1814 static inline int btrfs_start_delalloc_flush(struct btrfs_fs_info
*fs_info
)
1816 if (btrfs_test_opt(fs_info
->tree_root
, FLUSHONCOMMIT
))
1817 return btrfs_start_delalloc_roots(fs_info
, 1, -1);
1821 static inline void btrfs_wait_delalloc_flush(struct btrfs_fs_info
*fs_info
)
1823 if (btrfs_test_opt(fs_info
->tree_root
, FLUSHONCOMMIT
))
1824 btrfs_wait_ordered_roots(fs_info
, -1);
1828 btrfs_wait_pending_ordered(struct btrfs_transaction
*cur_trans
)
1830 wait_event(cur_trans
->pending_wait
,
1831 atomic_read(&cur_trans
->pending_ordered
) == 0);
1834 int btrfs_commit_transaction(struct btrfs_trans_handle
*trans
,
1835 struct btrfs_root
*root
)
1837 struct btrfs_transaction
*cur_trans
= trans
->transaction
;
1838 struct btrfs_transaction
*prev_trans
= NULL
;
1839 struct btrfs_inode
*btree_ino
= BTRFS_I(root
->fs_info
->btree_inode
);
1842 /* Stop the commit early if ->aborted is set */
1843 if (unlikely(ACCESS_ONCE(cur_trans
->aborted
))) {
1844 ret
= cur_trans
->aborted
;
1845 btrfs_end_transaction(trans
, root
);
1849 /* make a pass through all the delayed refs we have so far
1850 * any runnings procs may add more while we are here
1852 ret
= btrfs_run_delayed_refs(trans
, root
, 0);
1854 btrfs_end_transaction(trans
, root
);
1858 btrfs_trans_release_metadata(trans
, root
);
1859 trans
->block_rsv
= NULL
;
1861 cur_trans
= trans
->transaction
;
1864 * set the flushing flag so procs in this transaction have to
1865 * start sending their work down.
1867 cur_trans
->delayed_refs
.flushing
= 1;
1870 if (!list_empty(&trans
->new_bgs
))
1871 btrfs_create_pending_block_groups(trans
, root
);
1873 ret
= btrfs_run_delayed_refs(trans
, root
, 0);
1875 btrfs_end_transaction(trans
, root
);
1879 if (!test_bit(BTRFS_TRANS_DIRTY_BG_RUN
, &cur_trans
->flags
)) {
1882 /* this mutex is also taken before trying to set
1883 * block groups readonly. We need to make sure
1884 * that nobody has set a block group readonly
1885 * after a extents from that block group have been
1886 * allocated for cache files. btrfs_set_block_group_ro
1887 * will wait for the transaction to commit if it
1888 * finds BTRFS_TRANS_DIRTY_BG_RUN set.
1890 * The BTRFS_TRANS_DIRTY_BG_RUN flag is also used to make sure
1891 * only one process starts all the block group IO. It wouldn't
1892 * hurt to have more than one go through, but there's no
1893 * real advantage to it either.
1895 mutex_lock(&root
->fs_info
->ro_block_group_mutex
);
1896 if (!test_and_set_bit(BTRFS_TRANS_DIRTY_BG_RUN
,
1899 mutex_unlock(&root
->fs_info
->ro_block_group_mutex
);
1902 ret
= btrfs_start_dirty_block_groups(trans
, root
);
1905 btrfs_end_transaction(trans
, root
);
1909 spin_lock(&root
->fs_info
->trans_lock
);
1910 if (cur_trans
->state
>= TRANS_STATE_COMMIT_START
) {
1911 spin_unlock(&root
->fs_info
->trans_lock
);
1912 atomic_inc(&cur_trans
->use_count
);
1913 ret
= btrfs_end_transaction(trans
, root
);
1915 wait_for_commit(root
, cur_trans
);
1917 if (unlikely(cur_trans
->aborted
))
1918 ret
= cur_trans
->aborted
;
1920 btrfs_put_transaction(cur_trans
);
1925 cur_trans
->state
= TRANS_STATE_COMMIT_START
;
1926 wake_up(&root
->fs_info
->transaction_blocked_wait
);
1928 if (cur_trans
->list
.prev
!= &root
->fs_info
->trans_list
) {
1929 prev_trans
= list_entry(cur_trans
->list
.prev
,
1930 struct btrfs_transaction
, list
);
1931 if (prev_trans
->state
!= TRANS_STATE_COMPLETED
) {
1932 atomic_inc(&prev_trans
->use_count
);
1933 spin_unlock(&root
->fs_info
->trans_lock
);
1935 wait_for_commit(root
, prev_trans
);
1936 ret
= prev_trans
->aborted
;
1938 btrfs_put_transaction(prev_trans
);
1940 goto cleanup_transaction
;
1942 spin_unlock(&root
->fs_info
->trans_lock
);
1945 spin_unlock(&root
->fs_info
->trans_lock
);
1948 extwriter_counter_dec(cur_trans
, trans
->type
);
1950 ret
= btrfs_start_delalloc_flush(root
->fs_info
);
1952 goto cleanup_transaction
;
1954 ret
= btrfs_run_delayed_items(trans
, root
);
1956 goto cleanup_transaction
;
1958 wait_event(cur_trans
->writer_wait
,
1959 extwriter_counter_read(cur_trans
) == 0);
1961 /* some pending stuffs might be added after the previous flush. */
1962 ret
= btrfs_run_delayed_items(trans
, root
);
1964 goto cleanup_transaction
;
1966 btrfs_wait_delalloc_flush(root
->fs_info
);
1968 btrfs_wait_pending_ordered(cur_trans
);
1970 btrfs_scrub_pause(root
);
1972 * Ok now we need to make sure to block out any other joins while we
1973 * commit the transaction. We could have started a join before setting
1974 * COMMIT_DOING so make sure to wait for num_writers to == 1 again.
1976 spin_lock(&root
->fs_info
->trans_lock
);
1977 cur_trans
->state
= TRANS_STATE_COMMIT_DOING
;
1978 spin_unlock(&root
->fs_info
->trans_lock
);
1979 wait_event(cur_trans
->writer_wait
,
1980 atomic_read(&cur_trans
->num_writers
) == 1);
1982 /* ->aborted might be set after the previous check, so check it */
1983 if (unlikely(ACCESS_ONCE(cur_trans
->aborted
))) {
1984 ret
= cur_trans
->aborted
;
1985 goto scrub_continue
;
1988 * the reloc mutex makes sure that we stop
1989 * the balancing code from coming in and moving
1990 * extents around in the middle of the commit
1992 mutex_lock(&root
->fs_info
->reloc_mutex
);
1995 * We needn't worry about the delayed items because we will
1996 * deal with them in create_pending_snapshot(), which is the
1997 * core function of the snapshot creation.
1999 ret
= create_pending_snapshots(trans
, root
->fs_info
);
2001 mutex_unlock(&root
->fs_info
->reloc_mutex
);
2002 goto scrub_continue
;
2006 * We insert the dir indexes of the snapshots and update the inode
2007 * of the snapshots' parents after the snapshot creation, so there
2008 * are some delayed items which are not dealt with. Now deal with
2011 * We needn't worry that this operation will corrupt the snapshots,
2012 * because all the tree which are snapshoted will be forced to COW
2013 * the nodes and leaves.
2015 ret
= btrfs_run_delayed_items(trans
, root
);
2017 mutex_unlock(&root
->fs_info
->reloc_mutex
);
2018 goto scrub_continue
;
2021 ret
= btrfs_run_delayed_refs(trans
, root
, (unsigned long)-1);
2023 mutex_unlock(&root
->fs_info
->reloc_mutex
);
2024 goto scrub_continue
;
2027 /* Reocrd old roots for later qgroup accounting */
2028 ret
= btrfs_qgroup_prepare_account_extents(trans
, root
->fs_info
);
2030 mutex_unlock(&root
->fs_info
->reloc_mutex
);
2031 goto scrub_continue
;
2035 * make sure none of the code above managed to slip in a
2038 btrfs_assert_delayed_root_empty(root
);
2040 WARN_ON(cur_trans
!= trans
->transaction
);
2042 /* btrfs_commit_tree_roots is responsible for getting the
2043 * various roots consistent with each other. Every pointer
2044 * in the tree of tree roots has to point to the most up to date
2045 * root for every subvolume and other tree. So, we have to keep
2046 * the tree logging code from jumping in and changing any
2049 * At this point in the commit, there can't be any tree-log
2050 * writers, but a little lower down we drop the trans mutex
2051 * and let new people in. By holding the tree_log_mutex
2052 * from now until after the super is written, we avoid races
2053 * with the tree-log code.
2055 mutex_lock(&root
->fs_info
->tree_log_mutex
);
2057 ret
= commit_fs_roots(trans
, root
);
2059 mutex_unlock(&root
->fs_info
->tree_log_mutex
);
2060 mutex_unlock(&root
->fs_info
->reloc_mutex
);
2061 goto scrub_continue
;
2065 * Since the transaction is done, we can apply the pending changes
2066 * before the next transaction.
2068 btrfs_apply_pending_changes(root
->fs_info
);
2070 /* commit_fs_roots gets rid of all the tree log roots, it is now
2071 * safe to free the root of tree log roots
2073 btrfs_free_log_root_tree(trans
, root
->fs_info
);
2076 * Since fs roots are all committed, we can get a quite accurate
2077 * new_roots. So let's do quota accounting.
2079 ret
= btrfs_qgroup_account_extents(trans
, root
->fs_info
);
2081 mutex_unlock(&root
->fs_info
->tree_log_mutex
);
2082 mutex_unlock(&root
->fs_info
->reloc_mutex
);
2083 goto scrub_continue
;
2086 ret
= commit_cowonly_roots(trans
, root
);
2088 mutex_unlock(&root
->fs_info
->tree_log_mutex
);
2089 mutex_unlock(&root
->fs_info
->reloc_mutex
);
2090 goto scrub_continue
;
2094 * The tasks which save the space cache and inode cache may also
2095 * update ->aborted, check it.
2097 if (unlikely(ACCESS_ONCE(cur_trans
->aborted
))) {
2098 ret
= cur_trans
->aborted
;
2099 mutex_unlock(&root
->fs_info
->tree_log_mutex
);
2100 mutex_unlock(&root
->fs_info
->reloc_mutex
);
2101 goto scrub_continue
;
2104 btrfs_prepare_extent_commit(trans
, root
);
2106 cur_trans
= root
->fs_info
->running_transaction
;
2108 btrfs_set_root_node(&root
->fs_info
->tree_root
->root_item
,
2109 root
->fs_info
->tree_root
->node
);
2110 list_add_tail(&root
->fs_info
->tree_root
->dirty_list
,
2111 &cur_trans
->switch_commits
);
2113 btrfs_set_root_node(&root
->fs_info
->chunk_root
->root_item
,
2114 root
->fs_info
->chunk_root
->node
);
2115 list_add_tail(&root
->fs_info
->chunk_root
->dirty_list
,
2116 &cur_trans
->switch_commits
);
2118 switch_commit_roots(cur_trans
, root
->fs_info
);
2120 assert_qgroups_uptodate(trans
);
2121 ASSERT(list_empty(&cur_trans
->dirty_bgs
));
2122 ASSERT(list_empty(&cur_trans
->io_bgs
));
2123 update_super_roots(root
);
2125 btrfs_set_super_log_root(root
->fs_info
->super_copy
, 0);
2126 btrfs_set_super_log_root_level(root
->fs_info
->super_copy
, 0);
2127 memcpy(root
->fs_info
->super_for_commit
, root
->fs_info
->super_copy
,
2128 sizeof(*root
->fs_info
->super_copy
));
2130 btrfs_update_commit_device_size(root
->fs_info
);
2131 btrfs_update_commit_device_bytes_used(root
, cur_trans
);
2133 clear_bit(BTRFS_INODE_BTREE_LOG1_ERR
, &btree_ino
->runtime_flags
);
2134 clear_bit(BTRFS_INODE_BTREE_LOG2_ERR
, &btree_ino
->runtime_flags
);
2136 btrfs_trans_release_chunk_metadata(trans
);
2138 spin_lock(&root
->fs_info
->trans_lock
);
2139 cur_trans
->state
= TRANS_STATE_UNBLOCKED
;
2140 root
->fs_info
->running_transaction
= NULL
;
2141 spin_unlock(&root
->fs_info
->trans_lock
);
2142 mutex_unlock(&root
->fs_info
->reloc_mutex
);
2144 wake_up(&root
->fs_info
->transaction_wait
);
2146 ret
= btrfs_write_and_wait_transaction(trans
, root
);
2148 btrfs_std_error(root
->fs_info
, ret
,
2149 "Error while writing out transaction");
2150 mutex_unlock(&root
->fs_info
->tree_log_mutex
);
2151 goto scrub_continue
;
2154 ret
= write_ctree_super(trans
, root
, 0);
2156 mutex_unlock(&root
->fs_info
->tree_log_mutex
);
2157 goto scrub_continue
;
2161 * the super is written, we can safely allow the tree-loggers
2162 * to go about their business
2164 mutex_unlock(&root
->fs_info
->tree_log_mutex
);
2166 btrfs_finish_extent_commit(trans
, root
);
2168 if (test_bit(BTRFS_TRANS_HAVE_FREE_BGS
, &cur_trans
->flags
))
2169 btrfs_clear_space_info_full(root
->fs_info
);
2171 root
->fs_info
->last_trans_committed
= cur_trans
->transid
;
2173 * We needn't acquire the lock here because there is no other task
2174 * which can change it.
2176 cur_trans
->state
= TRANS_STATE_COMPLETED
;
2177 wake_up(&cur_trans
->commit_wait
);
2179 spin_lock(&root
->fs_info
->trans_lock
);
2180 list_del_init(&cur_trans
->list
);
2181 spin_unlock(&root
->fs_info
->trans_lock
);
2183 btrfs_put_transaction(cur_trans
);
2184 btrfs_put_transaction(cur_trans
);
2186 if (trans
->type
& __TRANS_FREEZABLE
)
2187 sb_end_intwrite(root
->fs_info
->sb
);
2189 trace_btrfs_transaction_commit(root
);
2191 btrfs_scrub_continue(root
);
2193 if (current
->journal_info
== trans
)
2194 current
->journal_info
= NULL
;
2196 kmem_cache_free(btrfs_trans_handle_cachep
, trans
);
2198 if (current
!= root
->fs_info
->transaction_kthread
&&
2199 current
!= root
->fs_info
->cleaner_kthread
)
2200 btrfs_run_delayed_iputs(root
);
2205 btrfs_scrub_continue(root
);
2206 cleanup_transaction
:
2207 btrfs_trans_release_metadata(trans
, root
);
2208 btrfs_trans_release_chunk_metadata(trans
);
2209 trans
->block_rsv
= NULL
;
2210 btrfs_warn(root
->fs_info
, "Skipping commit of aborted transaction.");
2211 if (current
->journal_info
== trans
)
2212 current
->journal_info
= NULL
;
2213 cleanup_transaction(trans
, root
, ret
);
2219 * return < 0 if error
2220 * 0 if there are no more dead_roots at the time of call
2221 * 1 there are more to be processed, call me again
2223 * The return value indicates there are certainly more snapshots to delete, but
2224 * if there comes a new one during processing, it may return 0. We don't mind,
2225 * because btrfs_commit_super will poke cleaner thread and it will process it a
2226 * few seconds later.
2228 int btrfs_clean_one_deleted_snapshot(struct btrfs_root
*root
)
2231 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
2233 spin_lock(&fs_info
->trans_lock
);
2234 if (list_empty(&fs_info
->dead_roots
)) {
2235 spin_unlock(&fs_info
->trans_lock
);
2238 root
= list_first_entry(&fs_info
->dead_roots
,
2239 struct btrfs_root
, root_list
);
2240 list_del_init(&root
->root_list
);
2241 spin_unlock(&fs_info
->trans_lock
);
2243 pr_debug("BTRFS: cleaner removing %llu\n", root
->objectid
);
2245 btrfs_kill_all_delayed_nodes(root
);
2247 if (btrfs_header_backref_rev(root
->node
) <
2248 BTRFS_MIXED_BACKREF_REV
)
2249 ret
= btrfs_drop_snapshot(root
, NULL
, 0, 0);
2251 ret
= btrfs_drop_snapshot(root
, NULL
, 1, 0);
2253 return (ret
< 0) ? 0 : 1;
2256 void btrfs_apply_pending_changes(struct btrfs_fs_info
*fs_info
)
2261 prev
= xchg(&fs_info
->pending_changes
, 0);
2265 bit
= 1 << BTRFS_PENDING_SET_INODE_MAP_CACHE
;
2267 btrfs_set_opt(fs_info
->mount_opt
, INODE_MAP_CACHE
);
2270 bit
= 1 << BTRFS_PENDING_CLEAR_INODE_MAP_CACHE
;
2272 btrfs_clear_opt(fs_info
->mount_opt
, INODE_MAP_CACHE
);
2275 bit
= 1 << BTRFS_PENDING_COMMIT
;
2277 btrfs_debug(fs_info
, "pending commit done");
2282 "unknown pending changes left 0x%lx, ignoring", prev
);