Linux 4.6-rc6
[cris-mirror.git] / include / linux / gfp.h
blob570383a4185371bda5713257898979057075d5a3
1 #ifndef __LINUX_GFP_H
2 #define __LINUX_GFP_H
4 #include <linux/mmdebug.h>
5 #include <linux/mmzone.h>
6 #include <linux/stddef.h>
7 #include <linux/linkage.h>
8 #include <linux/topology.h>
10 struct vm_area_struct;
13 * In case of changes, please don't forget to update
14 * include/trace/events/mmflags.h and tools/perf/builtin-kmem.c
17 /* Plain integer GFP bitmasks. Do not use this directly. */
18 #define ___GFP_DMA 0x01u
19 #define ___GFP_HIGHMEM 0x02u
20 #define ___GFP_DMA32 0x04u
21 #define ___GFP_MOVABLE 0x08u
22 #define ___GFP_RECLAIMABLE 0x10u
23 #define ___GFP_HIGH 0x20u
24 #define ___GFP_IO 0x40u
25 #define ___GFP_FS 0x80u
26 #define ___GFP_COLD 0x100u
27 #define ___GFP_NOWARN 0x200u
28 #define ___GFP_REPEAT 0x400u
29 #define ___GFP_NOFAIL 0x800u
30 #define ___GFP_NORETRY 0x1000u
31 #define ___GFP_MEMALLOC 0x2000u
32 #define ___GFP_COMP 0x4000u
33 #define ___GFP_ZERO 0x8000u
34 #define ___GFP_NOMEMALLOC 0x10000u
35 #define ___GFP_HARDWALL 0x20000u
36 #define ___GFP_THISNODE 0x40000u
37 #define ___GFP_ATOMIC 0x80000u
38 #define ___GFP_ACCOUNT 0x100000u
39 #define ___GFP_NOTRACK 0x200000u
40 #define ___GFP_DIRECT_RECLAIM 0x400000u
41 #define ___GFP_OTHER_NODE 0x800000u
42 #define ___GFP_WRITE 0x1000000u
43 #define ___GFP_KSWAPD_RECLAIM 0x2000000u
44 /* If the above are modified, __GFP_BITS_SHIFT may need updating */
47 * Physical address zone modifiers (see linux/mmzone.h - low four bits)
49 * Do not put any conditional on these. If necessary modify the definitions
50 * without the underscores and use them consistently. The definitions here may
51 * be used in bit comparisons.
53 #define __GFP_DMA ((__force gfp_t)___GFP_DMA)
54 #define __GFP_HIGHMEM ((__force gfp_t)___GFP_HIGHMEM)
55 #define __GFP_DMA32 ((__force gfp_t)___GFP_DMA32)
56 #define __GFP_MOVABLE ((__force gfp_t)___GFP_MOVABLE) /* ZONE_MOVABLE allowed */
57 #define GFP_ZONEMASK (__GFP_DMA|__GFP_HIGHMEM|__GFP_DMA32|__GFP_MOVABLE)
60 * Page mobility and placement hints
62 * These flags provide hints about how mobile the page is. Pages with similar
63 * mobility are placed within the same pageblocks to minimise problems due
64 * to external fragmentation.
66 * __GFP_MOVABLE (also a zone modifier) indicates that the page can be
67 * moved by page migration during memory compaction or can be reclaimed.
69 * __GFP_RECLAIMABLE is used for slab allocations that specify
70 * SLAB_RECLAIM_ACCOUNT and whose pages can be freed via shrinkers.
72 * __GFP_WRITE indicates the caller intends to dirty the page. Where possible,
73 * these pages will be spread between local zones to avoid all the dirty
74 * pages being in one zone (fair zone allocation policy).
76 * __GFP_HARDWALL enforces the cpuset memory allocation policy.
78 * __GFP_THISNODE forces the allocation to be satisified from the requested
79 * node with no fallbacks or placement policy enforcements.
81 * __GFP_ACCOUNT causes the allocation to be accounted to kmemcg (only relevant
82 * to kmem allocations).
84 #define __GFP_RECLAIMABLE ((__force gfp_t)___GFP_RECLAIMABLE)
85 #define __GFP_WRITE ((__force gfp_t)___GFP_WRITE)
86 #define __GFP_HARDWALL ((__force gfp_t)___GFP_HARDWALL)
87 #define __GFP_THISNODE ((__force gfp_t)___GFP_THISNODE)
88 #define __GFP_ACCOUNT ((__force gfp_t)___GFP_ACCOUNT)
91 * Watermark modifiers -- controls access to emergency reserves
93 * __GFP_HIGH indicates that the caller is high-priority and that granting
94 * the request is necessary before the system can make forward progress.
95 * For example, creating an IO context to clean pages.
97 * __GFP_ATOMIC indicates that the caller cannot reclaim or sleep and is
98 * high priority. Users are typically interrupt handlers. This may be
99 * used in conjunction with __GFP_HIGH
101 * __GFP_MEMALLOC allows access to all memory. This should only be used when
102 * the caller guarantees the allocation will allow more memory to be freed
103 * very shortly e.g. process exiting or swapping. Users either should
104 * be the MM or co-ordinating closely with the VM (e.g. swap over NFS).
106 * __GFP_NOMEMALLOC is used to explicitly forbid access to emergency reserves.
107 * This takes precedence over the __GFP_MEMALLOC flag if both are set.
109 #define __GFP_ATOMIC ((__force gfp_t)___GFP_ATOMIC)
110 #define __GFP_HIGH ((__force gfp_t)___GFP_HIGH)
111 #define __GFP_MEMALLOC ((__force gfp_t)___GFP_MEMALLOC)
112 #define __GFP_NOMEMALLOC ((__force gfp_t)___GFP_NOMEMALLOC)
115 * Reclaim modifiers
117 * __GFP_IO can start physical IO.
119 * __GFP_FS can call down to the low-level FS. Clearing the flag avoids the
120 * allocator recursing into the filesystem which might already be holding
121 * locks.
123 * __GFP_DIRECT_RECLAIM indicates that the caller may enter direct reclaim.
124 * This flag can be cleared to avoid unnecessary delays when a fallback
125 * option is available.
127 * __GFP_KSWAPD_RECLAIM indicates that the caller wants to wake kswapd when
128 * the low watermark is reached and have it reclaim pages until the high
129 * watermark is reached. A caller may wish to clear this flag when fallback
130 * options are available and the reclaim is likely to disrupt the system. The
131 * canonical example is THP allocation where a fallback is cheap but
132 * reclaim/compaction may cause indirect stalls.
134 * __GFP_RECLAIM is shorthand to allow/forbid both direct and kswapd reclaim.
136 * __GFP_REPEAT: Try hard to allocate the memory, but the allocation attempt
137 * _might_ fail. This depends upon the particular VM implementation.
139 * __GFP_NOFAIL: The VM implementation _must_ retry infinitely: the caller
140 * cannot handle allocation failures. New users should be evaluated carefully
141 * (and the flag should be used only when there is no reasonable failure
142 * policy) but it is definitely preferable to use the flag rather than
143 * opencode endless loop around allocator.
145 * __GFP_NORETRY: The VM implementation must not retry indefinitely and will
146 * return NULL when direct reclaim and memory compaction have failed to allow
147 * the allocation to succeed. The OOM killer is not called with the current
148 * implementation.
150 #define __GFP_IO ((__force gfp_t)___GFP_IO)
151 #define __GFP_FS ((__force gfp_t)___GFP_FS)
152 #define __GFP_DIRECT_RECLAIM ((__force gfp_t)___GFP_DIRECT_RECLAIM) /* Caller can reclaim */
153 #define __GFP_KSWAPD_RECLAIM ((__force gfp_t)___GFP_KSWAPD_RECLAIM) /* kswapd can wake */
154 #define __GFP_RECLAIM ((__force gfp_t)(___GFP_DIRECT_RECLAIM|___GFP_KSWAPD_RECLAIM))
155 #define __GFP_REPEAT ((__force gfp_t)___GFP_REPEAT)
156 #define __GFP_NOFAIL ((__force gfp_t)___GFP_NOFAIL)
157 #define __GFP_NORETRY ((__force gfp_t)___GFP_NORETRY)
160 * Action modifiers
162 * __GFP_COLD indicates that the caller does not expect to be used in the near
163 * future. Where possible, a cache-cold page will be returned.
165 * __GFP_NOWARN suppresses allocation failure reports.
167 * __GFP_COMP address compound page metadata.
169 * __GFP_ZERO returns a zeroed page on success.
171 * __GFP_NOTRACK avoids tracking with kmemcheck.
173 * __GFP_NOTRACK_FALSE_POSITIVE is an alias of __GFP_NOTRACK. It's a means of
174 * distinguishing in the source between false positives and allocations that
175 * cannot be supported (e.g. page tables).
177 * __GFP_OTHER_NODE is for allocations that are on a remote node but that
178 * should not be accounted for as a remote allocation in vmstat. A
179 * typical user would be khugepaged collapsing a huge page on a remote
180 * node.
182 #define __GFP_COLD ((__force gfp_t)___GFP_COLD)
183 #define __GFP_NOWARN ((__force gfp_t)___GFP_NOWARN)
184 #define __GFP_COMP ((__force gfp_t)___GFP_COMP)
185 #define __GFP_ZERO ((__force gfp_t)___GFP_ZERO)
186 #define __GFP_NOTRACK ((__force gfp_t)___GFP_NOTRACK)
187 #define __GFP_NOTRACK_FALSE_POSITIVE (__GFP_NOTRACK)
188 #define __GFP_OTHER_NODE ((__force gfp_t)___GFP_OTHER_NODE)
190 /* Room for N __GFP_FOO bits */
191 #define __GFP_BITS_SHIFT 26
192 #define __GFP_BITS_MASK ((__force gfp_t)((1 << __GFP_BITS_SHIFT) - 1))
195 * Useful GFP flag combinations that are commonly used. It is recommended
196 * that subsystems start with one of these combinations and then set/clear
197 * __GFP_FOO flags as necessary.
199 * GFP_ATOMIC users can not sleep and need the allocation to succeed. A lower
200 * watermark is applied to allow access to "atomic reserves"
202 * GFP_KERNEL is typical for kernel-internal allocations. The caller requires
203 * ZONE_NORMAL or a lower zone for direct access but can direct reclaim.
205 * GFP_KERNEL_ACCOUNT is the same as GFP_KERNEL, except the allocation is
206 * accounted to kmemcg.
208 * GFP_NOWAIT is for kernel allocations that should not stall for direct
209 * reclaim, start physical IO or use any filesystem callback.
211 * GFP_NOIO will use direct reclaim to discard clean pages or slab pages
212 * that do not require the starting of any physical IO.
214 * GFP_NOFS will use direct reclaim but will not use any filesystem interfaces.
216 * GFP_USER is for userspace allocations that also need to be directly
217 * accessibly by the kernel or hardware. It is typically used by hardware
218 * for buffers that are mapped to userspace (e.g. graphics) that hardware
219 * still must DMA to. cpuset limits are enforced for these allocations.
221 * GFP_DMA exists for historical reasons and should be avoided where possible.
222 * The flags indicates that the caller requires that the lowest zone be
223 * used (ZONE_DMA or 16M on x86-64). Ideally, this would be removed but
224 * it would require careful auditing as some users really require it and
225 * others use the flag to avoid lowmem reserves in ZONE_DMA and treat the
226 * lowest zone as a type of emergency reserve.
228 * GFP_DMA32 is similar to GFP_DMA except that the caller requires a 32-bit
229 * address.
231 * GFP_HIGHUSER is for userspace allocations that may be mapped to userspace,
232 * do not need to be directly accessible by the kernel but that cannot
233 * move once in use. An example may be a hardware allocation that maps
234 * data directly into userspace but has no addressing limitations.
236 * GFP_HIGHUSER_MOVABLE is for userspace allocations that the kernel does not
237 * need direct access to but can use kmap() when access is required. They
238 * are expected to be movable via page reclaim or page migration. Typically,
239 * pages on the LRU would also be allocated with GFP_HIGHUSER_MOVABLE.
241 * GFP_TRANSHUGE is used for THP allocations. They are compound allocations
242 * that will fail quickly if memory is not available and will not wake
243 * kswapd on failure.
245 #define GFP_ATOMIC (__GFP_HIGH|__GFP_ATOMIC|__GFP_KSWAPD_RECLAIM)
246 #define GFP_KERNEL (__GFP_RECLAIM | __GFP_IO | __GFP_FS)
247 #define GFP_KERNEL_ACCOUNT (GFP_KERNEL | __GFP_ACCOUNT)
248 #define GFP_NOWAIT (__GFP_KSWAPD_RECLAIM)
249 #define GFP_NOIO (__GFP_RECLAIM)
250 #define GFP_NOFS (__GFP_RECLAIM | __GFP_IO)
251 #define GFP_TEMPORARY (__GFP_RECLAIM | __GFP_IO | __GFP_FS | \
252 __GFP_RECLAIMABLE)
253 #define GFP_USER (__GFP_RECLAIM | __GFP_IO | __GFP_FS | __GFP_HARDWALL)
254 #define GFP_DMA __GFP_DMA
255 #define GFP_DMA32 __GFP_DMA32
256 #define GFP_HIGHUSER (GFP_USER | __GFP_HIGHMEM)
257 #define GFP_HIGHUSER_MOVABLE (GFP_HIGHUSER | __GFP_MOVABLE)
258 #define GFP_TRANSHUGE ((GFP_HIGHUSER_MOVABLE | __GFP_COMP | \
259 __GFP_NOMEMALLOC | __GFP_NORETRY | __GFP_NOWARN) & \
260 ~__GFP_RECLAIM)
262 /* Convert GFP flags to their corresponding migrate type */
263 #define GFP_MOVABLE_MASK (__GFP_RECLAIMABLE|__GFP_MOVABLE)
264 #define GFP_MOVABLE_SHIFT 3
266 static inline int gfpflags_to_migratetype(const gfp_t gfp_flags)
268 VM_WARN_ON((gfp_flags & GFP_MOVABLE_MASK) == GFP_MOVABLE_MASK);
269 BUILD_BUG_ON((1UL << GFP_MOVABLE_SHIFT) != ___GFP_MOVABLE);
270 BUILD_BUG_ON((___GFP_MOVABLE >> GFP_MOVABLE_SHIFT) != MIGRATE_MOVABLE);
272 if (unlikely(page_group_by_mobility_disabled))
273 return MIGRATE_UNMOVABLE;
275 /* Group based on mobility */
276 return (gfp_flags & GFP_MOVABLE_MASK) >> GFP_MOVABLE_SHIFT;
278 #undef GFP_MOVABLE_MASK
279 #undef GFP_MOVABLE_SHIFT
281 static inline bool gfpflags_allow_blocking(const gfp_t gfp_flags)
283 return !!(gfp_flags & __GFP_DIRECT_RECLAIM);
286 #ifdef CONFIG_HIGHMEM
287 #define OPT_ZONE_HIGHMEM ZONE_HIGHMEM
288 #else
289 #define OPT_ZONE_HIGHMEM ZONE_NORMAL
290 #endif
292 #ifdef CONFIG_ZONE_DMA
293 #define OPT_ZONE_DMA ZONE_DMA
294 #else
295 #define OPT_ZONE_DMA ZONE_NORMAL
296 #endif
298 #ifdef CONFIG_ZONE_DMA32
299 #define OPT_ZONE_DMA32 ZONE_DMA32
300 #else
301 #define OPT_ZONE_DMA32 ZONE_NORMAL
302 #endif
305 * GFP_ZONE_TABLE is a word size bitstring that is used for looking up the
306 * zone to use given the lowest 4 bits of gfp_t. Entries are ZONE_SHIFT long
307 * and there are 16 of them to cover all possible combinations of
308 * __GFP_DMA, __GFP_DMA32, __GFP_MOVABLE and __GFP_HIGHMEM.
310 * The zone fallback order is MOVABLE=>HIGHMEM=>NORMAL=>DMA32=>DMA.
311 * But GFP_MOVABLE is not only a zone specifier but also an allocation
312 * policy. Therefore __GFP_MOVABLE plus another zone selector is valid.
313 * Only 1 bit of the lowest 3 bits (DMA,DMA32,HIGHMEM) can be set to "1".
315 * bit result
316 * =================
317 * 0x0 => NORMAL
318 * 0x1 => DMA or NORMAL
319 * 0x2 => HIGHMEM or NORMAL
320 * 0x3 => BAD (DMA+HIGHMEM)
321 * 0x4 => DMA32 or DMA or NORMAL
322 * 0x5 => BAD (DMA+DMA32)
323 * 0x6 => BAD (HIGHMEM+DMA32)
324 * 0x7 => BAD (HIGHMEM+DMA32+DMA)
325 * 0x8 => NORMAL (MOVABLE+0)
326 * 0x9 => DMA or NORMAL (MOVABLE+DMA)
327 * 0xa => MOVABLE (Movable is valid only if HIGHMEM is set too)
328 * 0xb => BAD (MOVABLE+HIGHMEM+DMA)
329 * 0xc => DMA32 (MOVABLE+DMA32)
330 * 0xd => BAD (MOVABLE+DMA32+DMA)
331 * 0xe => BAD (MOVABLE+DMA32+HIGHMEM)
332 * 0xf => BAD (MOVABLE+DMA32+HIGHMEM+DMA)
334 * GFP_ZONES_SHIFT must be <= 2 on 32 bit platforms.
337 #if defined(CONFIG_ZONE_DEVICE) && (MAX_NR_ZONES-1) <= 4
338 /* ZONE_DEVICE is not a valid GFP zone specifier */
339 #define GFP_ZONES_SHIFT 2
340 #else
341 #define GFP_ZONES_SHIFT ZONES_SHIFT
342 #endif
344 #if 16 * GFP_ZONES_SHIFT > BITS_PER_LONG
345 #error GFP_ZONES_SHIFT too large to create GFP_ZONE_TABLE integer
346 #endif
348 #define GFP_ZONE_TABLE ( \
349 (ZONE_NORMAL << 0 * GFP_ZONES_SHIFT) \
350 | (OPT_ZONE_DMA << ___GFP_DMA * GFP_ZONES_SHIFT) \
351 | (OPT_ZONE_HIGHMEM << ___GFP_HIGHMEM * GFP_ZONES_SHIFT) \
352 | (OPT_ZONE_DMA32 << ___GFP_DMA32 * GFP_ZONES_SHIFT) \
353 | (ZONE_NORMAL << ___GFP_MOVABLE * GFP_ZONES_SHIFT) \
354 | (OPT_ZONE_DMA << (___GFP_MOVABLE | ___GFP_DMA) * GFP_ZONES_SHIFT) \
355 | (ZONE_MOVABLE << (___GFP_MOVABLE | ___GFP_HIGHMEM) * GFP_ZONES_SHIFT)\
356 | (OPT_ZONE_DMA32 << (___GFP_MOVABLE | ___GFP_DMA32) * GFP_ZONES_SHIFT)\
360 * GFP_ZONE_BAD is a bitmap for all combinations of __GFP_DMA, __GFP_DMA32
361 * __GFP_HIGHMEM and __GFP_MOVABLE that are not permitted. One flag per
362 * entry starting with bit 0. Bit is set if the combination is not
363 * allowed.
365 #define GFP_ZONE_BAD ( \
366 1 << (___GFP_DMA | ___GFP_HIGHMEM) \
367 | 1 << (___GFP_DMA | ___GFP_DMA32) \
368 | 1 << (___GFP_DMA32 | ___GFP_HIGHMEM) \
369 | 1 << (___GFP_DMA | ___GFP_DMA32 | ___GFP_HIGHMEM) \
370 | 1 << (___GFP_MOVABLE | ___GFP_HIGHMEM | ___GFP_DMA) \
371 | 1 << (___GFP_MOVABLE | ___GFP_DMA32 | ___GFP_DMA) \
372 | 1 << (___GFP_MOVABLE | ___GFP_DMA32 | ___GFP_HIGHMEM) \
373 | 1 << (___GFP_MOVABLE | ___GFP_DMA32 | ___GFP_DMA | ___GFP_HIGHMEM) \
376 static inline enum zone_type gfp_zone(gfp_t flags)
378 enum zone_type z;
379 int bit = (__force int) (flags & GFP_ZONEMASK);
381 z = (GFP_ZONE_TABLE >> (bit * GFP_ZONES_SHIFT)) &
382 ((1 << GFP_ZONES_SHIFT) - 1);
383 VM_BUG_ON((GFP_ZONE_BAD >> bit) & 1);
384 return z;
388 * There is only one page-allocator function, and two main namespaces to
389 * it. The alloc_page*() variants return 'struct page *' and as such
390 * can allocate highmem pages, the *get*page*() variants return
391 * virtual kernel addresses to the allocated page(s).
394 static inline int gfp_zonelist(gfp_t flags)
396 #ifdef CONFIG_NUMA
397 if (unlikely(flags & __GFP_THISNODE))
398 return ZONELIST_NOFALLBACK;
399 #endif
400 return ZONELIST_FALLBACK;
404 * We get the zone list from the current node and the gfp_mask.
405 * This zone list contains a maximum of MAXNODES*MAX_NR_ZONES zones.
406 * There are two zonelists per node, one for all zones with memory and
407 * one containing just zones from the node the zonelist belongs to.
409 * For the normal case of non-DISCONTIGMEM systems the NODE_DATA() gets
410 * optimized to &contig_page_data at compile-time.
412 static inline struct zonelist *node_zonelist(int nid, gfp_t flags)
414 return NODE_DATA(nid)->node_zonelists + gfp_zonelist(flags);
417 #ifndef HAVE_ARCH_FREE_PAGE
418 static inline void arch_free_page(struct page *page, int order) { }
419 #endif
420 #ifndef HAVE_ARCH_ALLOC_PAGE
421 static inline void arch_alloc_page(struct page *page, int order) { }
422 #endif
424 struct page *
425 __alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order,
426 struct zonelist *zonelist, nodemask_t *nodemask);
428 static inline struct page *
429 __alloc_pages(gfp_t gfp_mask, unsigned int order,
430 struct zonelist *zonelist)
432 return __alloc_pages_nodemask(gfp_mask, order, zonelist, NULL);
436 * Allocate pages, preferring the node given as nid. The node must be valid and
437 * online. For more general interface, see alloc_pages_node().
439 static inline struct page *
440 __alloc_pages_node(int nid, gfp_t gfp_mask, unsigned int order)
442 VM_BUG_ON(nid < 0 || nid >= MAX_NUMNODES);
443 VM_WARN_ON(!node_online(nid));
445 return __alloc_pages(gfp_mask, order, node_zonelist(nid, gfp_mask));
449 * Allocate pages, preferring the node given as nid. When nid == NUMA_NO_NODE,
450 * prefer the current CPU's closest node. Otherwise node must be valid and
451 * online.
453 static inline struct page *alloc_pages_node(int nid, gfp_t gfp_mask,
454 unsigned int order)
456 if (nid == NUMA_NO_NODE)
457 nid = numa_mem_id();
459 return __alloc_pages_node(nid, gfp_mask, order);
462 #ifdef CONFIG_NUMA
463 extern struct page *alloc_pages_current(gfp_t gfp_mask, unsigned order);
465 static inline struct page *
466 alloc_pages(gfp_t gfp_mask, unsigned int order)
468 return alloc_pages_current(gfp_mask, order);
470 extern struct page *alloc_pages_vma(gfp_t gfp_mask, int order,
471 struct vm_area_struct *vma, unsigned long addr,
472 int node, bool hugepage);
473 #define alloc_hugepage_vma(gfp_mask, vma, addr, order) \
474 alloc_pages_vma(gfp_mask, order, vma, addr, numa_node_id(), true)
475 #else
476 #define alloc_pages(gfp_mask, order) \
477 alloc_pages_node(numa_node_id(), gfp_mask, order)
478 #define alloc_pages_vma(gfp_mask, order, vma, addr, node, false)\
479 alloc_pages(gfp_mask, order)
480 #define alloc_hugepage_vma(gfp_mask, vma, addr, order) \
481 alloc_pages(gfp_mask, order)
482 #endif
483 #define alloc_page(gfp_mask) alloc_pages(gfp_mask, 0)
484 #define alloc_page_vma(gfp_mask, vma, addr) \
485 alloc_pages_vma(gfp_mask, 0, vma, addr, numa_node_id(), false)
486 #define alloc_page_vma_node(gfp_mask, vma, addr, node) \
487 alloc_pages_vma(gfp_mask, 0, vma, addr, node, false)
489 extern struct page *alloc_kmem_pages(gfp_t gfp_mask, unsigned int order);
490 extern struct page *alloc_kmem_pages_node(int nid, gfp_t gfp_mask,
491 unsigned int order);
493 extern unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order);
494 extern unsigned long get_zeroed_page(gfp_t gfp_mask);
496 void *alloc_pages_exact(size_t size, gfp_t gfp_mask);
497 void free_pages_exact(void *virt, size_t size);
498 void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask);
500 #define __get_free_page(gfp_mask) \
501 __get_free_pages((gfp_mask), 0)
503 #define __get_dma_pages(gfp_mask, order) \
504 __get_free_pages((gfp_mask) | GFP_DMA, (order))
506 extern void __free_pages(struct page *page, unsigned int order);
507 extern void free_pages(unsigned long addr, unsigned int order);
508 extern void free_hot_cold_page(struct page *page, bool cold);
509 extern void free_hot_cold_page_list(struct list_head *list, bool cold);
511 struct page_frag_cache;
512 extern void *__alloc_page_frag(struct page_frag_cache *nc,
513 unsigned int fragsz, gfp_t gfp_mask);
514 extern void __free_page_frag(void *addr);
516 extern void __free_kmem_pages(struct page *page, unsigned int order);
517 extern void free_kmem_pages(unsigned long addr, unsigned int order);
519 #define __free_page(page) __free_pages((page), 0)
520 #define free_page(addr) free_pages((addr), 0)
522 void page_alloc_init(void);
523 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp);
524 void drain_all_pages(struct zone *zone);
525 void drain_local_pages(struct zone *zone);
527 void page_alloc_init_late(void);
530 * gfp_allowed_mask is set to GFP_BOOT_MASK during early boot to restrict what
531 * GFP flags are used before interrupts are enabled. Once interrupts are
532 * enabled, it is set to __GFP_BITS_MASK while the system is running. During
533 * hibernation, it is used by PM to avoid I/O during memory allocation while
534 * devices are suspended.
536 extern gfp_t gfp_allowed_mask;
538 /* Returns true if the gfp_mask allows use of ALLOC_NO_WATERMARK */
539 bool gfp_pfmemalloc_allowed(gfp_t gfp_mask);
541 extern void pm_restrict_gfp_mask(void);
542 extern void pm_restore_gfp_mask(void);
544 #ifdef CONFIG_PM_SLEEP
545 extern bool pm_suspended_storage(void);
546 #else
547 static inline bool pm_suspended_storage(void)
549 return false;
551 #endif /* CONFIG_PM_SLEEP */
553 #if (defined(CONFIG_MEMORY_ISOLATION) && defined(CONFIG_COMPACTION)) || defined(CONFIG_CMA)
554 /* The below functions must be run on a range from a single zone. */
555 extern int alloc_contig_range(unsigned long start, unsigned long end,
556 unsigned migratetype);
557 extern void free_contig_range(unsigned long pfn, unsigned nr_pages);
558 #endif
560 #ifdef CONFIG_CMA
561 /* CMA stuff */
562 extern void init_cma_reserved_pageblock(struct page *page);
563 #endif
565 #endif /* __LINUX_GFP_H */