1 #ifndef _LINUX_JIFFIES_H
2 #define _LINUX_JIFFIES_H
4 #include <linux/math64.h>
5 #include <linux/kernel.h>
6 #include <linux/types.h>
7 #include <linux/time.h>
8 #include <linux/timex.h>
9 #include <asm/param.h> /* for HZ */
10 #include <generated/timeconst.h>
13 * The following defines establish the engineering parameters of the PLL
14 * model. The HZ variable establishes the timer interrupt frequency, 100 Hz
15 * for the SunOS kernel, 256 Hz for the Ultrix kernel and 1024 Hz for the
16 * OSF/1 kernel. The SHIFT_HZ define expresses the same value as the
17 * nearest power of two in order to avoid hardware multiply operations.
19 #if HZ >= 12 && HZ < 24
21 #elif HZ >= 24 && HZ < 48
23 #elif HZ >= 48 && HZ < 96
25 #elif HZ >= 96 && HZ < 192
27 #elif HZ >= 192 && HZ < 384
29 #elif HZ >= 384 && HZ < 768
31 #elif HZ >= 768 && HZ < 1536
33 #elif HZ >= 1536 && HZ < 3072
35 #elif HZ >= 3072 && HZ < 6144
37 #elif HZ >= 6144 && HZ < 12288
40 # error Invalid value of HZ.
43 /* Suppose we want to divide two numbers NOM and DEN: NOM/DEN, then we can
44 * improve accuracy by shifting LSH bits, hence calculating:
46 * This however means trouble for large NOM, because (NOM << LSH) may no
47 * longer fit in 32 bits. The following way of calculating this gives us
48 * some slack, under the following conditions:
49 * - (NOM / DEN) fits in (32 - LSH) bits.
50 * - (NOM % DEN) fits in (32 - LSH) bits.
52 #define SH_DIV(NOM,DEN,LSH) ( (((NOM) / (DEN)) << (LSH)) \
53 + ((((NOM) % (DEN)) << (LSH)) + (DEN) / 2) / (DEN))
55 /* LATCH is used in the interval timer and ftape setup. */
56 #define LATCH ((CLOCK_TICK_RATE + HZ/2) / HZ) /* For divider */
58 extern int register_refined_jiffies(long clock_tick_rate
);
60 /* TICK_NSEC is the time between ticks in nsec assuming SHIFTED_HZ */
61 #define TICK_NSEC ((NSEC_PER_SEC+HZ/2)/HZ)
63 /* TICK_USEC is the time between ticks in usec assuming fake USER_HZ */
64 #define TICK_USEC ((1000000UL + USER_HZ/2) / USER_HZ)
66 /* some arch's have a small-data section that can be accessed register-relative
67 * but that can only take up to, say, 4-byte variables. jiffies being part of
68 * an 8-byte variable may not be correctly accessed unless we force the issue
70 #define __jiffy_data __attribute__((section(".data")))
73 * The 64-bit value is not atomic - you MUST NOT read it
74 * without sampling the sequence number in jiffies_lock.
75 * get_jiffies_64() will do this for you as appropriate.
77 extern u64 __jiffy_data jiffies_64
;
78 extern unsigned long volatile __jiffy_data jiffies
;
80 #if (BITS_PER_LONG < 64)
81 u64
get_jiffies_64(void);
83 static inline u64
get_jiffies_64(void)
90 * These inlines deal with timer wrapping correctly. You are
91 * strongly encouraged to use them
92 * 1. Because people otherwise forget
93 * 2. Because if the timer wrap changes in future you won't have to
94 * alter your driver code.
96 * time_after(a,b) returns true if the time a is after time b.
98 * Do this with "<0" and ">=0" to only test the sign of the result. A
99 * good compiler would generate better code (and a really good compiler
100 * wouldn't care). Gcc is currently neither.
102 #define time_after(a,b) \
103 (typecheck(unsigned long, a) && \
104 typecheck(unsigned long, b) && \
105 ((long)((b) - (a)) < 0))
106 #define time_before(a,b) time_after(b,a)
108 #define time_after_eq(a,b) \
109 (typecheck(unsigned long, a) && \
110 typecheck(unsigned long, b) && \
111 ((long)((a) - (b)) >= 0))
112 #define time_before_eq(a,b) time_after_eq(b,a)
115 * Calculate whether a is in the range of [b, c].
117 #define time_in_range(a,b,c) \
118 (time_after_eq(a,b) && \
122 * Calculate whether a is in the range of [b, c).
124 #define time_in_range_open(a,b,c) \
125 (time_after_eq(a,b) && \
128 /* Same as above, but does so with platform independent 64bit types.
129 * These must be used when utilizing jiffies_64 (i.e. return value of
130 * get_jiffies_64() */
131 #define time_after64(a,b) \
132 (typecheck(__u64, a) && \
133 typecheck(__u64, b) && \
134 ((__s64)((b) - (a)) < 0))
135 #define time_before64(a,b) time_after64(b,a)
137 #define time_after_eq64(a,b) \
138 (typecheck(__u64, a) && \
139 typecheck(__u64, b) && \
140 ((__s64)((a) - (b)) >= 0))
141 #define time_before_eq64(a,b) time_after_eq64(b,a)
143 #define time_in_range64(a, b, c) \
144 (time_after_eq64(a, b) && \
145 time_before_eq64(a, c))
148 * These four macros compare jiffies and 'a' for convenience.
151 /* time_is_before_jiffies(a) return true if a is before jiffies */
152 #define time_is_before_jiffies(a) time_after(jiffies, a)
154 /* time_is_after_jiffies(a) return true if a is after jiffies */
155 #define time_is_after_jiffies(a) time_before(jiffies, a)
157 /* time_is_before_eq_jiffies(a) return true if a is before or equal to jiffies*/
158 #define time_is_before_eq_jiffies(a) time_after_eq(jiffies, a)
160 /* time_is_after_eq_jiffies(a) return true if a is after or equal to jiffies*/
161 #define time_is_after_eq_jiffies(a) time_before_eq(jiffies, a)
164 * Have the 32 bit jiffies value wrap 5 minutes after boot
165 * so jiffies wrap bugs show up earlier.
167 #define INITIAL_JIFFIES ((unsigned long)(unsigned int) (-300*HZ))
170 * Change timeval to jiffies, trying to avoid the
171 * most obvious overflows..
173 * And some not so obvious.
175 * Note that we don't want to return LONG_MAX, because
176 * for various timeout reasons we often end up having
177 * to wait "jiffies+1" in order to guarantee that we wait
178 * at _least_ "jiffies" - so "jiffies+1" had better still
181 #define MAX_JIFFY_OFFSET ((LONG_MAX >> 1)-1)
183 extern unsigned long preset_lpj
;
186 * We want to do realistic conversions of time so we need to use the same
187 * values the update wall clock code uses as the jiffies size. This value
188 * is: TICK_NSEC (which is defined in timex.h). This
189 * is a constant and is in nanoseconds. We will use scaled math
190 * with a set of scales defined here as SEC_JIFFIE_SC, USEC_JIFFIE_SC and
191 * NSEC_JIFFIE_SC. Note that these defines contain nothing but
192 * constants and so are computed at compile time. SHIFT_HZ (computed in
193 * timex.h) adjusts the scaling for different HZ values.
195 * Scaled math??? What is that?
197 * Scaled math is a way to do integer math on values that would,
198 * otherwise, either overflow, underflow, or cause undesired div
199 * instructions to appear in the execution path. In short, we "scale"
200 * up the operands so they take more bits (more precision, less
201 * underflow), do the desired operation and then "scale" the result back
202 * by the same amount. If we do the scaling by shifting we avoid the
203 * costly mpy and the dastardly div instructions.
205 * Suppose, for example, we want to convert from seconds to jiffies
206 * where jiffies is defined in nanoseconds as NSEC_PER_JIFFIE. The
207 * simple math is: jiff = (sec * NSEC_PER_SEC) / NSEC_PER_JIFFIE; We
208 * observe that (NSEC_PER_SEC / NSEC_PER_JIFFIE) is a constant which we
209 * might calculate at compile time, however, the result will only have
210 * about 3-4 bits of precision (less for smaller values of HZ).
212 * So, we scale as follows:
213 * jiff = (sec) * (NSEC_PER_SEC / NSEC_PER_JIFFIE);
214 * jiff = ((sec) * ((NSEC_PER_SEC * SCALE)/ NSEC_PER_JIFFIE)) / SCALE;
215 * Then we make SCALE a power of two so:
216 * jiff = ((sec) * ((NSEC_PER_SEC << SCALE)/ NSEC_PER_JIFFIE)) >> SCALE;
218 * #define SEC_CONV = ((NSEC_PER_SEC << SCALE)/ NSEC_PER_JIFFIE))
219 * jiff = (sec * SEC_CONV) >> SCALE;
221 * Often the math we use will expand beyond 32-bits so we tell C how to
222 * do this and pass the 64-bit result of the mpy through the ">> SCALE"
223 * which should take the result back to 32-bits. We want this expansion
224 * to capture as much precision as possible. At the same time we don't
225 * want to overflow so we pick the SCALE to avoid this. In this file,
226 * that means using a different scale for each range of HZ values (as
227 * defined in timex.h).
229 * For those who want to know, gcc will give a 64-bit result from a "*"
230 * operator if the result is a long long AND at least one of the
231 * operands is cast to long long (usually just prior to the "*" so as
232 * not to confuse it into thinking it really has a 64-bit operand,
233 * which, buy the way, it can do, but it takes more code and at least 2
236 * We also need to be aware that one second in nanoseconds is only a
237 * couple of bits away from overflowing a 32-bit word, so we MUST use
238 * 64-bits to get the full range time in nanoseconds.
243 * Here are the scales we will use. One for seconds, nanoseconds and
246 * Within the limits of cpp we do a rough cut at the SEC_JIFFIE_SC and
247 * check if the sign bit is set. If not, we bump the shift count by 1.
248 * (Gets an extra bit of precision where we can use it.)
249 * We know it is set for HZ = 1024 and HZ = 100 not for 1000.
250 * Haven't tested others.
252 * Limits of cpp (for #if expressions) only long (no long long), but
253 * then we only need the most signicant bit.
256 #define SEC_JIFFIE_SC (31 - SHIFT_HZ)
257 #if !((((NSEC_PER_SEC << 2) / TICK_NSEC) << (SEC_JIFFIE_SC - 2)) & 0x80000000)
259 #define SEC_JIFFIE_SC (32 - SHIFT_HZ)
261 #define NSEC_JIFFIE_SC (SEC_JIFFIE_SC + 29)
262 #define SEC_CONVERSION ((unsigned long)((((u64)NSEC_PER_SEC << SEC_JIFFIE_SC) +\
263 TICK_NSEC -1) / (u64)TICK_NSEC))
265 #define NSEC_CONVERSION ((unsigned long)((((u64)1 << NSEC_JIFFIE_SC) +\
266 TICK_NSEC -1) / (u64)TICK_NSEC))
268 * The maximum jiffie value is (MAX_INT >> 1). Here we translate that
269 * into seconds. The 64-bit case will overflow if we are not careful,
270 * so use the messy SH_DIV macro to do it. Still all constants.
272 #if BITS_PER_LONG < 64
273 # define MAX_SEC_IN_JIFFIES \
274 (long)((u64)((u64)MAX_JIFFY_OFFSET * TICK_NSEC) / NSEC_PER_SEC)
275 #else /* take care of overflow on 64 bits machines */
276 # define MAX_SEC_IN_JIFFIES \
277 (SH_DIV((MAX_JIFFY_OFFSET >> SEC_JIFFIE_SC) * TICK_NSEC, NSEC_PER_SEC, 1) - 1)
282 * Convert various time units to each other:
284 extern unsigned int jiffies_to_msecs(const unsigned long j
);
285 extern unsigned int jiffies_to_usecs(const unsigned long j
);
287 static inline u64
jiffies_to_nsecs(const unsigned long j
)
289 return (u64
)jiffies_to_usecs(j
) * NSEC_PER_USEC
;
292 extern unsigned long __msecs_to_jiffies(const unsigned int m
);
293 #if HZ <= MSEC_PER_SEC && !(MSEC_PER_SEC % HZ)
295 * HZ is equal to or smaller than 1000, and 1000 is a nice round
296 * multiple of HZ, divide with the factor between them, but round
299 static inline unsigned long _msecs_to_jiffies(const unsigned int m
)
301 return (m
+ (MSEC_PER_SEC
/ HZ
) - 1) / (MSEC_PER_SEC
/ HZ
);
303 #elif HZ > MSEC_PER_SEC && !(HZ % MSEC_PER_SEC)
305 * HZ is larger than 1000, and HZ is a nice round multiple of 1000 -
306 * simply multiply with the factor between them.
308 * But first make sure the multiplication result cannot overflow:
310 static inline unsigned long _msecs_to_jiffies(const unsigned int m
)
312 if (m
> jiffies_to_msecs(MAX_JIFFY_OFFSET
))
313 return MAX_JIFFY_OFFSET
;
314 return m
* (HZ
/ MSEC_PER_SEC
);
318 * Generic case - multiply, round and divide. But first check that if
319 * we are doing a net multiplication, that we wouldn't overflow:
321 static inline unsigned long _msecs_to_jiffies(const unsigned int m
)
323 if (HZ
> MSEC_PER_SEC
&& m
> jiffies_to_msecs(MAX_JIFFY_OFFSET
))
324 return MAX_JIFFY_OFFSET
;
326 return (MSEC_TO_HZ_MUL32
* m
+ MSEC_TO_HZ_ADJ32
) >> MSEC_TO_HZ_SHR32
;
330 * msecs_to_jiffies: - convert milliseconds to jiffies
331 * @m: time in milliseconds
333 * conversion is done as follows:
335 * - negative values mean 'infinite timeout' (MAX_JIFFY_OFFSET)
337 * - 'too large' values [that would result in larger than
338 * MAX_JIFFY_OFFSET values] mean 'infinite timeout' too.
340 * - all other values are converted to jiffies by either multiplying
341 * the input value by a factor or dividing it with a factor and
342 * handling any 32-bit overflows.
343 * for the details see __msecs_to_jiffies()
345 * msecs_to_jiffies() checks for the passed in value being a constant
346 * via __builtin_constant_p() allowing gcc to eliminate most of the
347 * code, __msecs_to_jiffies() is called if the value passed does not
348 * allow constant folding and the actual conversion must be done at
350 * the HZ range specific helpers _msecs_to_jiffies() are called both
351 * directly here and from __msecs_to_jiffies() in the case where
352 * constant folding is not possible.
354 static __always_inline
unsigned long msecs_to_jiffies(const unsigned int m
)
356 if (__builtin_constant_p(m
)) {
358 return MAX_JIFFY_OFFSET
;
359 return _msecs_to_jiffies(m
);
361 return __msecs_to_jiffies(m
);
365 extern unsigned long __usecs_to_jiffies(const unsigned int u
);
366 #if !(USEC_PER_SEC % HZ)
367 static inline unsigned long _usecs_to_jiffies(const unsigned int u
)
369 return (u
+ (USEC_PER_SEC
/ HZ
) - 1) / (USEC_PER_SEC
/ HZ
);
372 static inline unsigned long _usecs_to_jiffies(const unsigned int u
)
374 return (USEC_TO_HZ_MUL32
* u
+ USEC_TO_HZ_ADJ32
)
380 * usecs_to_jiffies: - convert microseconds to jiffies
381 * @u: time in microseconds
383 * conversion is done as follows:
385 * - 'too large' values [that would result in larger than
386 * MAX_JIFFY_OFFSET values] mean 'infinite timeout' too.
388 * - all other values are converted to jiffies by either multiplying
389 * the input value by a factor or dividing it with a factor and
390 * handling any 32-bit overflows as for msecs_to_jiffies.
392 * usecs_to_jiffies() checks for the passed in value being a constant
393 * via __builtin_constant_p() allowing gcc to eliminate most of the
394 * code, __usecs_to_jiffies() is called if the value passed does not
395 * allow constant folding and the actual conversion must be done at
397 * the HZ range specific helpers _usecs_to_jiffies() are called both
398 * directly here and from __msecs_to_jiffies() in the case where
399 * constant folding is not possible.
401 static __always_inline
unsigned long usecs_to_jiffies(const unsigned int u
)
403 if (__builtin_constant_p(u
)) {
404 if (u
> jiffies_to_usecs(MAX_JIFFY_OFFSET
))
405 return MAX_JIFFY_OFFSET
;
406 return _usecs_to_jiffies(u
);
408 return __usecs_to_jiffies(u
);
412 extern unsigned long timespec64_to_jiffies(const struct timespec64
*value
);
413 extern void jiffies_to_timespec64(const unsigned long jiffies
,
414 struct timespec64
*value
);
415 static inline unsigned long timespec_to_jiffies(const struct timespec
*value
)
417 struct timespec64 ts
= timespec_to_timespec64(*value
);
419 return timespec64_to_jiffies(&ts
);
422 static inline void jiffies_to_timespec(const unsigned long jiffies
,
423 struct timespec
*value
)
425 struct timespec64 ts
;
427 jiffies_to_timespec64(jiffies
, &ts
);
428 *value
= timespec64_to_timespec(ts
);
431 extern unsigned long timeval_to_jiffies(const struct timeval
*value
);
432 extern void jiffies_to_timeval(const unsigned long jiffies
,
433 struct timeval
*value
);
435 extern clock_t jiffies_to_clock_t(unsigned long x
);
436 static inline clock_t jiffies_delta_to_clock_t(long delta
)
438 return jiffies_to_clock_t(max(0L, delta
));
441 extern unsigned long clock_t_to_jiffies(unsigned long x
);
442 extern u64
jiffies_64_to_clock_t(u64 x
);
443 extern u64
nsec_to_clock_t(u64 x
);
444 extern u64
nsecs_to_jiffies64(u64 n
);
445 extern unsigned long nsecs_to_jiffies(u64 n
);
447 #define TIMESTAMP_SIZE 30