Linux 4.6-rc6
[cris-mirror.git] / include / linux / kernel.h
blob2f7775e229b093d549aff01270bf3cd2371e5771
1 #ifndef _LINUX_KERNEL_H
2 #define _LINUX_KERNEL_H
5 #include <stdarg.h>
6 #include <linux/linkage.h>
7 #include <linux/stddef.h>
8 #include <linux/types.h>
9 #include <linux/compiler.h>
10 #include <linux/bitops.h>
11 #include <linux/log2.h>
12 #include <linux/typecheck.h>
13 #include <linux/printk.h>
14 #include <linux/dynamic_debug.h>
15 #include <asm/byteorder.h>
16 #include <uapi/linux/kernel.h>
18 #define USHRT_MAX ((u16)(~0U))
19 #define SHRT_MAX ((s16)(USHRT_MAX>>1))
20 #define SHRT_MIN ((s16)(-SHRT_MAX - 1))
21 #define INT_MAX ((int)(~0U>>1))
22 #define INT_MIN (-INT_MAX - 1)
23 #define UINT_MAX (~0U)
24 #define LONG_MAX ((long)(~0UL>>1))
25 #define LONG_MIN (-LONG_MAX - 1)
26 #define ULONG_MAX (~0UL)
27 #define LLONG_MAX ((long long)(~0ULL>>1))
28 #define LLONG_MIN (-LLONG_MAX - 1)
29 #define ULLONG_MAX (~0ULL)
30 #define SIZE_MAX (~(size_t)0)
32 #define U8_MAX ((u8)~0U)
33 #define S8_MAX ((s8)(U8_MAX>>1))
34 #define S8_MIN ((s8)(-S8_MAX - 1))
35 #define U16_MAX ((u16)~0U)
36 #define S16_MAX ((s16)(U16_MAX>>1))
37 #define S16_MIN ((s16)(-S16_MAX - 1))
38 #define U32_MAX ((u32)~0U)
39 #define S32_MAX ((s32)(U32_MAX>>1))
40 #define S32_MIN ((s32)(-S32_MAX - 1))
41 #define U64_MAX ((u64)~0ULL)
42 #define S64_MAX ((s64)(U64_MAX>>1))
43 #define S64_MIN ((s64)(-S64_MAX - 1))
45 #define STACK_MAGIC 0xdeadbeef
47 #define REPEAT_BYTE(x) ((~0ul / 0xff) * (x))
49 #define ALIGN(x, a) __ALIGN_KERNEL((x), (a))
50 #define __ALIGN_MASK(x, mask) __ALIGN_KERNEL_MASK((x), (mask))
51 #define PTR_ALIGN(p, a) ((typeof(p))ALIGN((unsigned long)(p), (a)))
52 #define IS_ALIGNED(x, a) (((x) & ((typeof(x))(a) - 1)) == 0)
54 #define ARRAY_SIZE(arr) (sizeof(arr) / sizeof((arr)[0]) + __must_be_array(arr))
57 * This looks more complex than it should be. But we need to
58 * get the type for the ~ right in round_down (it needs to be
59 * as wide as the result!), and we want to evaluate the macro
60 * arguments just once each.
62 #define __round_mask(x, y) ((__typeof__(x))((y)-1))
63 #define round_up(x, y) ((((x)-1) | __round_mask(x, y))+1)
64 #define round_down(x, y) ((x) & ~__round_mask(x, y))
66 #define FIELD_SIZEOF(t, f) (sizeof(((t*)0)->f))
67 #define DIV_ROUND_UP __KERNEL_DIV_ROUND_UP
68 #define DIV_ROUND_UP_ULL(ll,d) \
69 ({ unsigned long long _tmp = (ll)+(d)-1; do_div(_tmp, d); _tmp; })
71 #if BITS_PER_LONG == 32
72 # define DIV_ROUND_UP_SECTOR_T(ll,d) DIV_ROUND_UP_ULL(ll, d)
73 #else
74 # define DIV_ROUND_UP_SECTOR_T(ll,d) DIV_ROUND_UP(ll,d)
75 #endif
77 /* The `const' in roundup() prevents gcc-3.3 from calling __divdi3 */
78 #define roundup(x, y) ( \
79 { \
80 const typeof(y) __y = y; \
81 (((x) + (__y - 1)) / __y) * __y; \
82 } \
84 #define rounddown(x, y) ( \
85 { \
86 typeof(x) __x = (x); \
87 __x - (__x % (y)); \
88 } \
92 * Divide positive or negative dividend by positive divisor and round
93 * to closest integer. Result is undefined for negative divisors and
94 * for negative dividends if the divisor variable type is unsigned.
96 #define DIV_ROUND_CLOSEST(x, divisor)( \
97 { \
98 typeof(x) __x = x; \
99 typeof(divisor) __d = divisor; \
100 (((typeof(x))-1) > 0 || \
101 ((typeof(divisor))-1) > 0 || (__x) > 0) ? \
102 (((__x) + ((__d) / 2)) / (__d)) : \
103 (((__x) - ((__d) / 2)) / (__d)); \
107 * Same as above but for u64 dividends. divisor must be a 32-bit
108 * number.
110 #define DIV_ROUND_CLOSEST_ULL(x, divisor)( \
112 typeof(divisor) __d = divisor; \
113 unsigned long long _tmp = (x) + (__d) / 2; \
114 do_div(_tmp, __d); \
115 _tmp; \
120 * Multiplies an integer by a fraction, while avoiding unnecessary
121 * overflow or loss of precision.
123 #define mult_frac(x, numer, denom)( \
125 typeof(x) quot = (x) / (denom); \
126 typeof(x) rem = (x) % (denom); \
127 (quot * (numer)) + ((rem * (numer)) / (denom)); \
132 #define _RET_IP_ (unsigned long)__builtin_return_address(0)
133 #define _THIS_IP_ ({ __label__ __here; __here: (unsigned long)&&__here; })
135 #ifdef CONFIG_LBDAF
136 # include <asm/div64.h>
137 # define sector_div(a, b) do_div(a, b)
138 #else
139 # define sector_div(n, b)( \
141 int _res; \
142 _res = (n) % (b); \
143 (n) /= (b); \
144 _res; \
147 #endif
150 * upper_32_bits - return bits 32-63 of a number
151 * @n: the number we're accessing
153 * A basic shift-right of a 64- or 32-bit quantity. Use this to suppress
154 * the "right shift count >= width of type" warning when that quantity is
155 * 32-bits.
157 #define upper_32_bits(n) ((u32)(((n) >> 16) >> 16))
160 * lower_32_bits - return bits 0-31 of a number
161 * @n: the number we're accessing
163 #define lower_32_bits(n) ((u32)(n))
165 struct completion;
166 struct pt_regs;
167 struct user;
169 #ifdef CONFIG_PREEMPT_VOLUNTARY
170 extern int _cond_resched(void);
171 # define might_resched() _cond_resched()
172 #else
173 # define might_resched() do { } while (0)
174 #endif
176 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
177 void ___might_sleep(const char *file, int line, int preempt_offset);
178 void __might_sleep(const char *file, int line, int preempt_offset);
180 * might_sleep - annotation for functions that can sleep
182 * this macro will print a stack trace if it is executed in an atomic
183 * context (spinlock, irq-handler, ...).
185 * This is a useful debugging help to be able to catch problems early and not
186 * be bitten later when the calling function happens to sleep when it is not
187 * supposed to.
189 # define might_sleep() \
190 do { __might_sleep(__FILE__, __LINE__, 0); might_resched(); } while (0)
191 # define sched_annotate_sleep() (current->task_state_change = 0)
192 #else
193 static inline void ___might_sleep(const char *file, int line,
194 int preempt_offset) { }
195 static inline void __might_sleep(const char *file, int line,
196 int preempt_offset) { }
197 # define might_sleep() do { might_resched(); } while (0)
198 # define sched_annotate_sleep() do { } while (0)
199 #endif
201 #define might_sleep_if(cond) do { if (cond) might_sleep(); } while (0)
204 * abs - return absolute value of an argument
205 * @x: the value. If it is unsigned type, it is converted to signed type first.
206 * char is treated as if it was signed (regardless of whether it really is)
207 * but the macro's return type is preserved as char.
209 * Return: an absolute value of x.
211 #define abs(x) __abs_choose_expr(x, long long, \
212 __abs_choose_expr(x, long, \
213 __abs_choose_expr(x, int, \
214 __abs_choose_expr(x, short, \
215 __abs_choose_expr(x, char, \
216 __builtin_choose_expr( \
217 __builtin_types_compatible_p(typeof(x), char), \
218 (char)({ signed char __x = (x); __x<0?-__x:__x; }), \
219 ((void)0)))))))
221 #define __abs_choose_expr(x, type, other) __builtin_choose_expr( \
222 __builtin_types_compatible_p(typeof(x), signed type) || \
223 __builtin_types_compatible_p(typeof(x), unsigned type), \
224 ({ signed type __x = (x); __x < 0 ? -__x : __x; }), other)
227 * reciprocal_scale - "scale" a value into range [0, ep_ro)
228 * @val: value
229 * @ep_ro: right open interval endpoint
231 * Perform a "reciprocal multiplication" in order to "scale" a value into
232 * range [0, ep_ro), where the upper interval endpoint is right-open.
233 * This is useful, e.g. for accessing a index of an array containing
234 * ep_ro elements, for example. Think of it as sort of modulus, only that
235 * the result isn't that of modulo. ;) Note that if initial input is a
236 * small value, then result will return 0.
238 * Return: a result based on val in interval [0, ep_ro).
240 static inline u32 reciprocal_scale(u32 val, u32 ep_ro)
242 return (u32)(((u64) val * ep_ro) >> 32);
245 #if defined(CONFIG_MMU) && \
246 (defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP))
247 #define might_fault() __might_fault(__FILE__, __LINE__)
248 void __might_fault(const char *file, int line);
249 #else
250 static inline void might_fault(void) { }
251 #endif
253 extern struct atomic_notifier_head panic_notifier_list;
254 extern long (*panic_blink)(int state);
255 __printf(1, 2)
256 void panic(const char *fmt, ...)
257 __noreturn __cold;
258 void nmi_panic(struct pt_regs *regs, const char *msg);
259 extern void oops_enter(void);
260 extern void oops_exit(void);
261 void print_oops_end_marker(void);
262 extern int oops_may_print(void);
263 void do_exit(long error_code)
264 __noreturn;
265 void complete_and_exit(struct completion *, long)
266 __noreturn;
268 /* Internal, do not use. */
269 int __must_check _kstrtoul(const char *s, unsigned int base, unsigned long *res);
270 int __must_check _kstrtol(const char *s, unsigned int base, long *res);
272 int __must_check kstrtoull(const char *s, unsigned int base, unsigned long long *res);
273 int __must_check kstrtoll(const char *s, unsigned int base, long long *res);
276 * kstrtoul - convert a string to an unsigned long
277 * @s: The start of the string. The string must be null-terminated, and may also
278 * include a single newline before its terminating null. The first character
279 * may also be a plus sign, but not a minus sign.
280 * @base: The number base to use. The maximum supported base is 16. If base is
281 * given as 0, then the base of the string is automatically detected with the
282 * conventional semantics - If it begins with 0x the number will be parsed as a
283 * hexadecimal (case insensitive), if it otherwise begins with 0, it will be
284 * parsed as an octal number. Otherwise it will be parsed as a decimal.
285 * @res: Where to write the result of the conversion on success.
287 * Returns 0 on success, -ERANGE on overflow and -EINVAL on parsing error.
288 * Used as a replacement for the obsolete simple_strtoull. Return code must
289 * be checked.
291 static inline int __must_check kstrtoul(const char *s, unsigned int base, unsigned long *res)
294 * We want to shortcut function call, but
295 * __builtin_types_compatible_p(unsigned long, unsigned long long) = 0.
297 if (sizeof(unsigned long) == sizeof(unsigned long long) &&
298 __alignof__(unsigned long) == __alignof__(unsigned long long))
299 return kstrtoull(s, base, (unsigned long long *)res);
300 else
301 return _kstrtoul(s, base, res);
305 * kstrtol - convert a string to a long
306 * @s: The start of the string. The string must be null-terminated, and may also
307 * include a single newline before its terminating null. The first character
308 * may also be a plus sign or a minus sign.
309 * @base: The number base to use. The maximum supported base is 16. If base is
310 * given as 0, then the base of the string is automatically detected with the
311 * conventional semantics - If it begins with 0x the number will be parsed as a
312 * hexadecimal (case insensitive), if it otherwise begins with 0, it will be
313 * parsed as an octal number. Otherwise it will be parsed as a decimal.
314 * @res: Where to write the result of the conversion on success.
316 * Returns 0 on success, -ERANGE on overflow and -EINVAL on parsing error.
317 * Used as a replacement for the obsolete simple_strtoull. Return code must
318 * be checked.
320 static inline int __must_check kstrtol(const char *s, unsigned int base, long *res)
323 * We want to shortcut function call, but
324 * __builtin_types_compatible_p(long, long long) = 0.
326 if (sizeof(long) == sizeof(long long) &&
327 __alignof__(long) == __alignof__(long long))
328 return kstrtoll(s, base, (long long *)res);
329 else
330 return _kstrtol(s, base, res);
333 int __must_check kstrtouint(const char *s, unsigned int base, unsigned int *res);
334 int __must_check kstrtoint(const char *s, unsigned int base, int *res);
336 static inline int __must_check kstrtou64(const char *s, unsigned int base, u64 *res)
338 return kstrtoull(s, base, res);
341 static inline int __must_check kstrtos64(const char *s, unsigned int base, s64 *res)
343 return kstrtoll(s, base, res);
346 static inline int __must_check kstrtou32(const char *s, unsigned int base, u32 *res)
348 return kstrtouint(s, base, res);
351 static inline int __must_check kstrtos32(const char *s, unsigned int base, s32 *res)
353 return kstrtoint(s, base, res);
356 int __must_check kstrtou16(const char *s, unsigned int base, u16 *res);
357 int __must_check kstrtos16(const char *s, unsigned int base, s16 *res);
358 int __must_check kstrtou8(const char *s, unsigned int base, u8 *res);
359 int __must_check kstrtos8(const char *s, unsigned int base, s8 *res);
360 int __must_check kstrtobool(const char *s, bool *res);
362 int __must_check kstrtoull_from_user(const char __user *s, size_t count, unsigned int base, unsigned long long *res);
363 int __must_check kstrtoll_from_user(const char __user *s, size_t count, unsigned int base, long long *res);
364 int __must_check kstrtoul_from_user(const char __user *s, size_t count, unsigned int base, unsigned long *res);
365 int __must_check kstrtol_from_user(const char __user *s, size_t count, unsigned int base, long *res);
366 int __must_check kstrtouint_from_user(const char __user *s, size_t count, unsigned int base, unsigned int *res);
367 int __must_check kstrtoint_from_user(const char __user *s, size_t count, unsigned int base, int *res);
368 int __must_check kstrtou16_from_user(const char __user *s, size_t count, unsigned int base, u16 *res);
369 int __must_check kstrtos16_from_user(const char __user *s, size_t count, unsigned int base, s16 *res);
370 int __must_check kstrtou8_from_user(const char __user *s, size_t count, unsigned int base, u8 *res);
371 int __must_check kstrtos8_from_user(const char __user *s, size_t count, unsigned int base, s8 *res);
372 int __must_check kstrtobool_from_user(const char __user *s, size_t count, bool *res);
374 static inline int __must_check kstrtou64_from_user(const char __user *s, size_t count, unsigned int base, u64 *res)
376 return kstrtoull_from_user(s, count, base, res);
379 static inline int __must_check kstrtos64_from_user(const char __user *s, size_t count, unsigned int base, s64 *res)
381 return kstrtoll_from_user(s, count, base, res);
384 static inline int __must_check kstrtou32_from_user(const char __user *s, size_t count, unsigned int base, u32 *res)
386 return kstrtouint_from_user(s, count, base, res);
389 static inline int __must_check kstrtos32_from_user(const char __user *s, size_t count, unsigned int base, s32 *res)
391 return kstrtoint_from_user(s, count, base, res);
394 /* Obsolete, do not use. Use kstrto<foo> instead */
396 extern unsigned long simple_strtoul(const char *,char **,unsigned int);
397 extern long simple_strtol(const char *,char **,unsigned int);
398 extern unsigned long long simple_strtoull(const char *,char **,unsigned int);
399 extern long long simple_strtoll(const char *,char **,unsigned int);
401 extern int num_to_str(char *buf, int size, unsigned long long num);
403 /* lib/printf utilities */
405 extern __printf(2, 3) int sprintf(char *buf, const char * fmt, ...);
406 extern __printf(2, 0) int vsprintf(char *buf, const char *, va_list);
407 extern __printf(3, 4)
408 int snprintf(char *buf, size_t size, const char *fmt, ...);
409 extern __printf(3, 0)
410 int vsnprintf(char *buf, size_t size, const char *fmt, va_list args);
411 extern __printf(3, 4)
412 int scnprintf(char *buf, size_t size, const char *fmt, ...);
413 extern __printf(3, 0)
414 int vscnprintf(char *buf, size_t size, const char *fmt, va_list args);
415 extern __printf(2, 3)
416 char *kasprintf(gfp_t gfp, const char *fmt, ...);
417 extern __printf(2, 0)
418 char *kvasprintf(gfp_t gfp, const char *fmt, va_list args);
419 extern __printf(2, 0)
420 const char *kvasprintf_const(gfp_t gfp, const char *fmt, va_list args);
422 extern __scanf(2, 3)
423 int sscanf(const char *, const char *, ...);
424 extern __scanf(2, 0)
425 int vsscanf(const char *, const char *, va_list);
427 extern int get_option(char **str, int *pint);
428 extern char *get_options(const char *str, int nints, int *ints);
429 extern unsigned long long memparse(const char *ptr, char **retptr);
430 extern bool parse_option_str(const char *str, const char *option);
432 extern int core_kernel_text(unsigned long addr);
433 extern int core_kernel_data(unsigned long addr);
434 extern int __kernel_text_address(unsigned long addr);
435 extern int kernel_text_address(unsigned long addr);
436 extern int func_ptr_is_kernel_text(void *ptr);
438 unsigned long int_sqrt(unsigned long);
440 extern void bust_spinlocks(int yes);
441 extern int oops_in_progress; /* If set, an oops, panic(), BUG() or die() is in progress */
442 extern int panic_timeout;
443 extern int panic_on_oops;
444 extern int panic_on_unrecovered_nmi;
445 extern int panic_on_io_nmi;
446 extern int panic_on_warn;
447 extern int sysctl_panic_on_stackoverflow;
449 extern bool crash_kexec_post_notifiers;
452 * panic_cpu is used for synchronizing panic() and crash_kexec() execution. It
453 * holds a CPU number which is executing panic() currently. A value of
454 * PANIC_CPU_INVALID means no CPU has entered panic() or crash_kexec().
456 extern atomic_t panic_cpu;
457 #define PANIC_CPU_INVALID -1
460 * Only to be used by arch init code. If the user over-wrote the default
461 * CONFIG_PANIC_TIMEOUT, honor it.
463 static inline void set_arch_panic_timeout(int timeout, int arch_default_timeout)
465 if (panic_timeout == arch_default_timeout)
466 panic_timeout = timeout;
468 extern const char *print_tainted(void);
469 enum lockdep_ok {
470 LOCKDEP_STILL_OK,
471 LOCKDEP_NOW_UNRELIABLE
473 extern void add_taint(unsigned flag, enum lockdep_ok);
474 extern int test_taint(unsigned flag);
475 extern unsigned long get_taint(void);
476 extern int root_mountflags;
478 extern bool early_boot_irqs_disabled;
480 /* Values used for system_state */
481 extern enum system_states {
482 SYSTEM_BOOTING,
483 SYSTEM_RUNNING,
484 SYSTEM_HALT,
485 SYSTEM_POWER_OFF,
486 SYSTEM_RESTART,
487 } system_state;
489 #define TAINT_PROPRIETARY_MODULE 0
490 #define TAINT_FORCED_MODULE 1
491 #define TAINT_CPU_OUT_OF_SPEC 2
492 #define TAINT_FORCED_RMMOD 3
493 #define TAINT_MACHINE_CHECK 4
494 #define TAINT_BAD_PAGE 5
495 #define TAINT_USER 6
496 #define TAINT_DIE 7
497 #define TAINT_OVERRIDDEN_ACPI_TABLE 8
498 #define TAINT_WARN 9
499 #define TAINT_CRAP 10
500 #define TAINT_FIRMWARE_WORKAROUND 11
501 #define TAINT_OOT_MODULE 12
502 #define TAINT_UNSIGNED_MODULE 13
503 #define TAINT_SOFTLOCKUP 14
504 #define TAINT_LIVEPATCH 15
506 extern const char hex_asc[];
507 #define hex_asc_lo(x) hex_asc[((x) & 0x0f)]
508 #define hex_asc_hi(x) hex_asc[((x) & 0xf0) >> 4]
510 static inline char *hex_byte_pack(char *buf, u8 byte)
512 *buf++ = hex_asc_hi(byte);
513 *buf++ = hex_asc_lo(byte);
514 return buf;
517 extern const char hex_asc_upper[];
518 #define hex_asc_upper_lo(x) hex_asc_upper[((x) & 0x0f)]
519 #define hex_asc_upper_hi(x) hex_asc_upper[((x) & 0xf0) >> 4]
521 static inline char *hex_byte_pack_upper(char *buf, u8 byte)
523 *buf++ = hex_asc_upper_hi(byte);
524 *buf++ = hex_asc_upper_lo(byte);
525 return buf;
528 extern int hex_to_bin(char ch);
529 extern int __must_check hex2bin(u8 *dst, const char *src, size_t count);
530 extern char *bin2hex(char *dst, const void *src, size_t count);
532 bool mac_pton(const char *s, u8 *mac);
535 * General tracing related utility functions - trace_printk(),
536 * tracing_on/tracing_off and tracing_start()/tracing_stop
538 * Use tracing_on/tracing_off when you want to quickly turn on or off
539 * tracing. It simply enables or disables the recording of the trace events.
540 * This also corresponds to the user space /sys/kernel/debug/tracing/tracing_on
541 * file, which gives a means for the kernel and userspace to interact.
542 * Place a tracing_off() in the kernel where you want tracing to end.
543 * From user space, examine the trace, and then echo 1 > tracing_on
544 * to continue tracing.
546 * tracing_stop/tracing_start has slightly more overhead. It is used
547 * by things like suspend to ram where disabling the recording of the
548 * trace is not enough, but tracing must actually stop because things
549 * like calling smp_processor_id() may crash the system.
551 * Most likely, you want to use tracing_on/tracing_off.
554 enum ftrace_dump_mode {
555 DUMP_NONE,
556 DUMP_ALL,
557 DUMP_ORIG,
560 #ifdef CONFIG_TRACING
561 void tracing_on(void);
562 void tracing_off(void);
563 int tracing_is_on(void);
564 void tracing_snapshot(void);
565 void tracing_snapshot_alloc(void);
567 extern void tracing_start(void);
568 extern void tracing_stop(void);
570 static inline __printf(1, 2)
571 void ____trace_printk_check_format(const char *fmt, ...)
574 #define __trace_printk_check_format(fmt, args...) \
575 do { \
576 if (0) \
577 ____trace_printk_check_format(fmt, ##args); \
578 } while (0)
581 * trace_printk - printf formatting in the ftrace buffer
582 * @fmt: the printf format for printing
584 * Note: __trace_printk is an internal function for trace_printk and
585 * the @ip is passed in via the trace_printk macro.
587 * This function allows a kernel developer to debug fast path sections
588 * that printk is not appropriate for. By scattering in various
589 * printk like tracing in the code, a developer can quickly see
590 * where problems are occurring.
592 * This is intended as a debugging tool for the developer only.
593 * Please refrain from leaving trace_printks scattered around in
594 * your code. (Extra memory is used for special buffers that are
595 * allocated when trace_printk() is used)
597 * A little optization trick is done here. If there's only one
598 * argument, there's no need to scan the string for printf formats.
599 * The trace_puts() will suffice. But how can we take advantage of
600 * using trace_puts() when trace_printk() has only one argument?
601 * By stringifying the args and checking the size we can tell
602 * whether or not there are args. __stringify((__VA_ARGS__)) will
603 * turn into "()\0" with a size of 3 when there are no args, anything
604 * else will be bigger. All we need to do is define a string to this,
605 * and then take its size and compare to 3. If it's bigger, use
606 * do_trace_printk() otherwise, optimize it to trace_puts(). Then just
607 * let gcc optimize the rest.
610 #define trace_printk(fmt, ...) \
611 do { \
612 char _______STR[] = __stringify((__VA_ARGS__)); \
613 if (sizeof(_______STR) > 3) \
614 do_trace_printk(fmt, ##__VA_ARGS__); \
615 else \
616 trace_puts(fmt); \
617 } while (0)
619 #define do_trace_printk(fmt, args...) \
620 do { \
621 static const char *trace_printk_fmt __used \
622 __attribute__((section("__trace_printk_fmt"))) = \
623 __builtin_constant_p(fmt) ? fmt : NULL; \
625 __trace_printk_check_format(fmt, ##args); \
627 if (__builtin_constant_p(fmt)) \
628 __trace_bprintk(_THIS_IP_, trace_printk_fmt, ##args); \
629 else \
630 __trace_printk(_THIS_IP_, fmt, ##args); \
631 } while (0)
633 extern __printf(2, 3)
634 int __trace_bprintk(unsigned long ip, const char *fmt, ...);
636 extern __printf(2, 3)
637 int __trace_printk(unsigned long ip, const char *fmt, ...);
640 * trace_puts - write a string into the ftrace buffer
641 * @str: the string to record
643 * Note: __trace_bputs is an internal function for trace_puts and
644 * the @ip is passed in via the trace_puts macro.
646 * This is similar to trace_printk() but is made for those really fast
647 * paths that a developer wants the least amount of "Heisenbug" affects,
648 * where the processing of the print format is still too much.
650 * This function allows a kernel developer to debug fast path sections
651 * that printk is not appropriate for. By scattering in various
652 * printk like tracing in the code, a developer can quickly see
653 * where problems are occurring.
655 * This is intended as a debugging tool for the developer only.
656 * Please refrain from leaving trace_puts scattered around in
657 * your code. (Extra memory is used for special buffers that are
658 * allocated when trace_puts() is used)
660 * Returns: 0 if nothing was written, positive # if string was.
661 * (1 when __trace_bputs is used, strlen(str) when __trace_puts is used)
664 #define trace_puts(str) ({ \
665 static const char *trace_printk_fmt __used \
666 __attribute__((section("__trace_printk_fmt"))) = \
667 __builtin_constant_p(str) ? str : NULL; \
669 if (__builtin_constant_p(str)) \
670 __trace_bputs(_THIS_IP_, trace_printk_fmt); \
671 else \
672 __trace_puts(_THIS_IP_, str, strlen(str)); \
674 extern int __trace_bputs(unsigned long ip, const char *str);
675 extern int __trace_puts(unsigned long ip, const char *str, int size);
677 extern void trace_dump_stack(int skip);
680 * The double __builtin_constant_p is because gcc will give us an error
681 * if we try to allocate the static variable to fmt if it is not a
682 * constant. Even with the outer if statement.
684 #define ftrace_vprintk(fmt, vargs) \
685 do { \
686 if (__builtin_constant_p(fmt)) { \
687 static const char *trace_printk_fmt __used \
688 __attribute__((section("__trace_printk_fmt"))) = \
689 __builtin_constant_p(fmt) ? fmt : NULL; \
691 __ftrace_vbprintk(_THIS_IP_, trace_printk_fmt, vargs); \
692 } else \
693 __ftrace_vprintk(_THIS_IP_, fmt, vargs); \
694 } while (0)
696 extern __printf(2, 0) int
697 __ftrace_vbprintk(unsigned long ip, const char *fmt, va_list ap);
699 extern __printf(2, 0) int
700 __ftrace_vprintk(unsigned long ip, const char *fmt, va_list ap);
702 extern void ftrace_dump(enum ftrace_dump_mode oops_dump_mode);
703 #else
704 static inline void tracing_start(void) { }
705 static inline void tracing_stop(void) { }
706 static inline void trace_dump_stack(int skip) { }
708 static inline void tracing_on(void) { }
709 static inline void tracing_off(void) { }
710 static inline int tracing_is_on(void) { return 0; }
711 static inline void tracing_snapshot(void) { }
712 static inline void tracing_snapshot_alloc(void) { }
714 static inline __printf(1, 2)
715 int trace_printk(const char *fmt, ...)
717 return 0;
719 static __printf(1, 0) inline int
720 ftrace_vprintk(const char *fmt, va_list ap)
722 return 0;
724 static inline void ftrace_dump(enum ftrace_dump_mode oops_dump_mode) { }
725 #endif /* CONFIG_TRACING */
728 * min()/max()/clamp() macros that also do
729 * strict type-checking.. See the
730 * "unnecessary" pointer comparison.
732 #define min(x, y) ({ \
733 typeof(x) _min1 = (x); \
734 typeof(y) _min2 = (y); \
735 (void) (&_min1 == &_min2); \
736 _min1 < _min2 ? _min1 : _min2; })
738 #define max(x, y) ({ \
739 typeof(x) _max1 = (x); \
740 typeof(y) _max2 = (y); \
741 (void) (&_max1 == &_max2); \
742 _max1 > _max2 ? _max1 : _max2; })
744 #define min3(x, y, z) min((typeof(x))min(x, y), z)
745 #define max3(x, y, z) max((typeof(x))max(x, y), z)
748 * min_not_zero - return the minimum that is _not_ zero, unless both are zero
749 * @x: value1
750 * @y: value2
752 #define min_not_zero(x, y) ({ \
753 typeof(x) __x = (x); \
754 typeof(y) __y = (y); \
755 __x == 0 ? __y : ((__y == 0) ? __x : min(__x, __y)); })
758 * clamp - return a value clamped to a given range with strict typechecking
759 * @val: current value
760 * @lo: lowest allowable value
761 * @hi: highest allowable value
763 * This macro does strict typechecking of lo/hi to make sure they are of the
764 * same type as val. See the unnecessary pointer comparisons.
766 #define clamp(val, lo, hi) min((typeof(val))max(val, lo), hi)
769 * ..and if you can't take the strict
770 * types, you can specify one yourself.
772 * Or not use min/max/clamp at all, of course.
774 #define min_t(type, x, y) ({ \
775 type __min1 = (x); \
776 type __min2 = (y); \
777 __min1 < __min2 ? __min1: __min2; })
779 #define max_t(type, x, y) ({ \
780 type __max1 = (x); \
781 type __max2 = (y); \
782 __max1 > __max2 ? __max1: __max2; })
785 * clamp_t - return a value clamped to a given range using a given type
786 * @type: the type of variable to use
787 * @val: current value
788 * @lo: minimum allowable value
789 * @hi: maximum allowable value
791 * This macro does no typechecking and uses temporary variables of type
792 * 'type' to make all the comparisons.
794 #define clamp_t(type, val, lo, hi) min_t(type, max_t(type, val, lo), hi)
797 * clamp_val - return a value clamped to a given range using val's type
798 * @val: current value
799 * @lo: minimum allowable value
800 * @hi: maximum allowable value
802 * This macro does no typechecking and uses temporary variables of whatever
803 * type the input argument 'val' is. This is useful when val is an unsigned
804 * type and min and max are literals that will otherwise be assigned a signed
805 * integer type.
807 #define clamp_val(val, lo, hi) clamp_t(typeof(val), val, lo, hi)
811 * swap - swap value of @a and @b
813 #define swap(a, b) \
814 do { typeof(a) __tmp = (a); (a) = (b); (b) = __tmp; } while (0)
817 * container_of - cast a member of a structure out to the containing structure
818 * @ptr: the pointer to the member.
819 * @type: the type of the container struct this is embedded in.
820 * @member: the name of the member within the struct.
823 #define container_of(ptr, type, member) ({ \
824 const typeof( ((type *)0)->member ) *__mptr = (ptr); \
825 (type *)( (char *)__mptr - offsetof(type,member) );})
827 /* Rebuild everything on CONFIG_FTRACE_MCOUNT_RECORD */
828 #ifdef CONFIG_FTRACE_MCOUNT_RECORD
829 # define REBUILD_DUE_TO_FTRACE_MCOUNT_RECORD
830 #endif
832 /* Permissions on a sysfs file: you didn't miss the 0 prefix did you? */
833 #define VERIFY_OCTAL_PERMISSIONS(perms) \
834 (BUILD_BUG_ON_ZERO((perms) < 0) + \
835 BUILD_BUG_ON_ZERO((perms) > 0777) + \
836 /* USER_READABLE >= GROUP_READABLE >= OTHER_READABLE */ \
837 BUILD_BUG_ON_ZERO((((perms) >> 6) & 4) < (((perms) >> 3) & 4)) + \
838 BUILD_BUG_ON_ZERO((((perms) >> 3) & 4) < ((perms) & 4)) + \
839 /* USER_WRITABLE >= GROUP_WRITABLE */ \
840 BUILD_BUG_ON_ZERO((((perms) >> 6) & 2) < (((perms) >> 3) & 2)) + \
841 /* OTHER_WRITABLE? Generally considered a bad idea. */ \
842 BUILD_BUG_ON_ZERO((perms) & 2) + \
843 (perms))
844 #endif