Linux 4.6-rc6
[cris-mirror.git] / include / linux / mm_types.h
blobc2d75b4fa86c05012a509dd188e2a394d2cb2170
1 #ifndef _LINUX_MM_TYPES_H
2 #define _LINUX_MM_TYPES_H
4 #include <linux/auxvec.h>
5 #include <linux/types.h>
6 #include <linux/threads.h>
7 #include <linux/list.h>
8 #include <linux/spinlock.h>
9 #include <linux/rbtree.h>
10 #include <linux/rwsem.h>
11 #include <linux/completion.h>
12 #include <linux/cpumask.h>
13 #include <linux/uprobes.h>
14 #include <linux/page-flags-layout.h>
15 #include <asm/page.h>
16 #include <asm/mmu.h>
18 #ifndef AT_VECTOR_SIZE_ARCH
19 #define AT_VECTOR_SIZE_ARCH 0
20 #endif
21 #define AT_VECTOR_SIZE (2*(AT_VECTOR_SIZE_ARCH + AT_VECTOR_SIZE_BASE + 1))
23 struct address_space;
24 struct mem_cgroup;
26 #define USE_SPLIT_PTE_PTLOCKS (NR_CPUS >= CONFIG_SPLIT_PTLOCK_CPUS)
27 #define USE_SPLIT_PMD_PTLOCKS (USE_SPLIT_PTE_PTLOCKS && \
28 IS_ENABLED(CONFIG_ARCH_ENABLE_SPLIT_PMD_PTLOCK))
29 #define ALLOC_SPLIT_PTLOCKS (SPINLOCK_SIZE > BITS_PER_LONG/8)
32 * Each physical page in the system has a struct page associated with
33 * it to keep track of whatever it is we are using the page for at the
34 * moment. Note that we have no way to track which tasks are using
35 * a page, though if it is a pagecache page, rmap structures can tell us
36 * who is mapping it.
38 * The objects in struct page are organized in double word blocks in
39 * order to allows us to use atomic double word operations on portions
40 * of struct page. That is currently only used by slub but the arrangement
41 * allows the use of atomic double word operations on the flags/mapping
42 * and lru list pointers also.
44 struct page {
45 /* First double word block */
46 unsigned long flags; /* Atomic flags, some possibly
47 * updated asynchronously */
48 union {
49 struct address_space *mapping; /* If low bit clear, points to
50 * inode address_space, or NULL.
51 * If page mapped as anonymous
52 * memory, low bit is set, and
53 * it points to anon_vma object:
54 * see PAGE_MAPPING_ANON below.
56 void *s_mem; /* slab first object */
57 atomic_t compound_mapcount; /* first tail page */
58 /* page_deferred_list().next -- second tail page */
61 /* Second double word */
62 struct {
63 union {
64 pgoff_t index; /* Our offset within mapping. */
65 void *freelist; /* sl[aou]b first free object */
66 /* page_deferred_list().prev -- second tail page */
69 union {
70 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
71 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
72 /* Used for cmpxchg_double in slub */
73 unsigned long counters;
74 #else
76 * Keep _count separate from slub cmpxchg_double data.
77 * As the rest of the double word is protected by
78 * slab_lock but _count is not.
80 unsigned counters;
81 #endif
83 struct {
85 union {
87 * Count of ptes mapped in mms, to show
88 * when page is mapped & limit reverse
89 * map searches.
91 atomic_t _mapcount;
93 struct { /* SLUB */
94 unsigned inuse:16;
95 unsigned objects:15;
96 unsigned frozen:1;
98 int units; /* SLOB */
100 atomic_t _count; /* Usage count, see below. */
102 unsigned int active; /* SLAB */
107 * Third double word block
109 * WARNING: bit 0 of the first word encode PageTail(). That means
110 * the rest users of the storage space MUST NOT use the bit to
111 * avoid collision and false-positive PageTail().
113 union {
114 struct list_head lru; /* Pageout list, eg. active_list
115 * protected by zone->lru_lock !
116 * Can be used as a generic list
117 * by the page owner.
119 struct dev_pagemap *pgmap; /* ZONE_DEVICE pages are never on an
120 * lru or handled by a slab
121 * allocator, this points to the
122 * hosting device page map.
124 struct { /* slub per cpu partial pages */
125 struct page *next; /* Next partial slab */
126 #ifdef CONFIG_64BIT
127 int pages; /* Nr of partial slabs left */
128 int pobjects; /* Approximate # of objects */
129 #else
130 short int pages;
131 short int pobjects;
132 #endif
135 struct rcu_head rcu_head; /* Used by SLAB
136 * when destroying via RCU
138 /* Tail pages of compound page */
139 struct {
140 unsigned long compound_head; /* If bit zero is set */
142 /* First tail page only */
143 #ifdef CONFIG_64BIT
145 * On 64 bit system we have enough space in struct page
146 * to encode compound_dtor and compound_order with
147 * unsigned int. It can help compiler generate better or
148 * smaller code on some archtectures.
150 unsigned int compound_dtor;
151 unsigned int compound_order;
152 #else
153 unsigned short int compound_dtor;
154 unsigned short int compound_order;
155 #endif
158 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && USE_SPLIT_PMD_PTLOCKS
159 struct {
160 unsigned long __pad; /* do not overlay pmd_huge_pte
161 * with compound_head to avoid
162 * possible bit 0 collision.
164 pgtable_t pmd_huge_pte; /* protected by page->ptl */
166 #endif
169 /* Remainder is not double word aligned */
170 union {
171 unsigned long private; /* Mapping-private opaque data:
172 * usually used for buffer_heads
173 * if PagePrivate set; used for
174 * swp_entry_t if PageSwapCache;
175 * indicates order in the buddy
176 * system if PG_buddy is set.
178 #if USE_SPLIT_PTE_PTLOCKS
179 #if ALLOC_SPLIT_PTLOCKS
180 spinlock_t *ptl;
181 #else
182 spinlock_t ptl;
183 #endif
184 #endif
185 struct kmem_cache *slab_cache; /* SL[AU]B: Pointer to slab */
188 #ifdef CONFIG_MEMCG
189 struct mem_cgroup *mem_cgroup;
190 #endif
193 * On machines where all RAM is mapped into kernel address space,
194 * we can simply calculate the virtual address. On machines with
195 * highmem some memory is mapped into kernel virtual memory
196 * dynamically, so we need a place to store that address.
197 * Note that this field could be 16 bits on x86 ... ;)
199 * Architectures with slow multiplication can define
200 * WANT_PAGE_VIRTUAL in asm/page.h
202 #if defined(WANT_PAGE_VIRTUAL)
203 void *virtual; /* Kernel virtual address (NULL if
204 not kmapped, ie. highmem) */
205 #endif /* WANT_PAGE_VIRTUAL */
207 #ifdef CONFIG_KMEMCHECK
209 * kmemcheck wants to track the status of each byte in a page; this
210 * is a pointer to such a status block. NULL if not tracked.
212 void *shadow;
213 #endif
215 #ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
216 int _last_cpupid;
217 #endif
220 * The struct page can be forced to be double word aligned so that atomic ops
221 * on double words work. The SLUB allocator can make use of such a feature.
223 #ifdef CONFIG_HAVE_ALIGNED_STRUCT_PAGE
224 __aligned(2 * sizeof(unsigned long))
225 #endif
228 struct page_frag {
229 struct page *page;
230 #if (BITS_PER_LONG > 32) || (PAGE_SIZE >= 65536)
231 __u32 offset;
232 __u32 size;
233 #else
234 __u16 offset;
235 __u16 size;
236 #endif
239 #define PAGE_FRAG_CACHE_MAX_SIZE __ALIGN_MASK(32768, ~PAGE_MASK)
240 #define PAGE_FRAG_CACHE_MAX_ORDER get_order(PAGE_FRAG_CACHE_MAX_SIZE)
242 struct page_frag_cache {
243 void * va;
244 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
245 __u16 offset;
246 __u16 size;
247 #else
248 __u32 offset;
249 #endif
250 /* we maintain a pagecount bias, so that we dont dirty cache line
251 * containing page->_count every time we allocate a fragment.
253 unsigned int pagecnt_bias;
254 bool pfmemalloc;
257 typedef unsigned long vm_flags_t;
260 * A region containing a mapping of a non-memory backed file under NOMMU
261 * conditions. These are held in a global tree and are pinned by the VMAs that
262 * map parts of them.
264 struct vm_region {
265 struct rb_node vm_rb; /* link in global region tree */
266 vm_flags_t vm_flags; /* VMA vm_flags */
267 unsigned long vm_start; /* start address of region */
268 unsigned long vm_end; /* region initialised to here */
269 unsigned long vm_top; /* region allocated to here */
270 unsigned long vm_pgoff; /* the offset in vm_file corresponding to vm_start */
271 struct file *vm_file; /* the backing file or NULL */
273 int vm_usage; /* region usage count (access under nommu_region_sem) */
274 bool vm_icache_flushed : 1; /* true if the icache has been flushed for
275 * this region */
278 #ifdef CONFIG_USERFAULTFD
279 #define NULL_VM_UFFD_CTX ((struct vm_userfaultfd_ctx) { NULL, })
280 struct vm_userfaultfd_ctx {
281 struct userfaultfd_ctx *ctx;
283 #else /* CONFIG_USERFAULTFD */
284 #define NULL_VM_UFFD_CTX ((struct vm_userfaultfd_ctx) {})
285 struct vm_userfaultfd_ctx {};
286 #endif /* CONFIG_USERFAULTFD */
289 * This struct defines a memory VMM memory area. There is one of these
290 * per VM-area/task. A VM area is any part of the process virtual memory
291 * space that has a special rule for the page-fault handlers (ie a shared
292 * library, the executable area etc).
294 struct vm_area_struct {
295 /* The first cache line has the info for VMA tree walking. */
297 unsigned long vm_start; /* Our start address within vm_mm. */
298 unsigned long vm_end; /* The first byte after our end address
299 within vm_mm. */
301 /* linked list of VM areas per task, sorted by address */
302 struct vm_area_struct *vm_next, *vm_prev;
304 struct rb_node vm_rb;
307 * Largest free memory gap in bytes to the left of this VMA.
308 * Either between this VMA and vma->vm_prev, or between one of the
309 * VMAs below us in the VMA rbtree and its ->vm_prev. This helps
310 * get_unmapped_area find a free area of the right size.
312 unsigned long rb_subtree_gap;
314 /* Second cache line starts here. */
316 struct mm_struct *vm_mm; /* The address space we belong to. */
317 pgprot_t vm_page_prot; /* Access permissions of this VMA. */
318 unsigned long vm_flags; /* Flags, see mm.h. */
321 * For areas with an address space and backing store,
322 * linkage into the address_space->i_mmap interval tree.
324 struct {
325 struct rb_node rb;
326 unsigned long rb_subtree_last;
327 } shared;
330 * A file's MAP_PRIVATE vma can be in both i_mmap tree and anon_vma
331 * list, after a COW of one of the file pages. A MAP_SHARED vma
332 * can only be in the i_mmap tree. An anonymous MAP_PRIVATE, stack
333 * or brk vma (with NULL file) can only be in an anon_vma list.
335 struct list_head anon_vma_chain; /* Serialized by mmap_sem &
336 * page_table_lock */
337 struct anon_vma *anon_vma; /* Serialized by page_table_lock */
339 /* Function pointers to deal with this struct. */
340 const struct vm_operations_struct *vm_ops;
342 /* Information about our backing store: */
343 unsigned long vm_pgoff; /* Offset (within vm_file) in PAGE_SIZE
344 units */
345 struct file * vm_file; /* File we map to (can be NULL). */
346 void * vm_private_data; /* was vm_pte (shared mem) */
348 #ifndef CONFIG_MMU
349 struct vm_region *vm_region; /* NOMMU mapping region */
350 #endif
351 #ifdef CONFIG_NUMA
352 struct mempolicy *vm_policy; /* NUMA policy for the VMA */
353 #endif
354 struct vm_userfaultfd_ctx vm_userfaultfd_ctx;
357 struct core_thread {
358 struct task_struct *task;
359 struct core_thread *next;
362 struct core_state {
363 atomic_t nr_threads;
364 struct core_thread dumper;
365 struct completion startup;
368 enum {
369 MM_FILEPAGES, /* Resident file mapping pages */
370 MM_ANONPAGES, /* Resident anonymous pages */
371 MM_SWAPENTS, /* Anonymous swap entries */
372 MM_SHMEMPAGES, /* Resident shared memory pages */
373 NR_MM_COUNTERS
376 #if USE_SPLIT_PTE_PTLOCKS && defined(CONFIG_MMU)
377 #define SPLIT_RSS_COUNTING
378 /* per-thread cached information, */
379 struct task_rss_stat {
380 int events; /* for synchronization threshold */
381 int count[NR_MM_COUNTERS];
383 #endif /* USE_SPLIT_PTE_PTLOCKS */
385 struct mm_rss_stat {
386 atomic_long_t count[NR_MM_COUNTERS];
389 struct kioctx_table;
390 struct mm_struct {
391 struct vm_area_struct *mmap; /* list of VMAs */
392 struct rb_root mm_rb;
393 u32 vmacache_seqnum; /* per-thread vmacache */
394 #ifdef CONFIG_MMU
395 unsigned long (*get_unmapped_area) (struct file *filp,
396 unsigned long addr, unsigned long len,
397 unsigned long pgoff, unsigned long flags);
398 #endif
399 unsigned long mmap_base; /* base of mmap area */
400 unsigned long mmap_legacy_base; /* base of mmap area in bottom-up allocations */
401 unsigned long task_size; /* size of task vm space */
402 unsigned long highest_vm_end; /* highest vma end address */
403 pgd_t * pgd;
404 atomic_t mm_users; /* How many users with user space? */
405 atomic_t mm_count; /* How many references to "struct mm_struct" (users count as 1) */
406 atomic_long_t nr_ptes; /* PTE page table pages */
407 #if CONFIG_PGTABLE_LEVELS > 2
408 atomic_long_t nr_pmds; /* PMD page table pages */
409 #endif
410 int map_count; /* number of VMAs */
412 spinlock_t page_table_lock; /* Protects page tables and some counters */
413 struct rw_semaphore mmap_sem;
415 struct list_head mmlist; /* List of maybe swapped mm's. These are globally strung
416 * together off init_mm.mmlist, and are protected
417 * by mmlist_lock
421 unsigned long hiwater_rss; /* High-watermark of RSS usage */
422 unsigned long hiwater_vm; /* High-water virtual memory usage */
424 unsigned long total_vm; /* Total pages mapped */
425 unsigned long locked_vm; /* Pages that have PG_mlocked set */
426 unsigned long pinned_vm; /* Refcount permanently increased */
427 unsigned long data_vm; /* VM_WRITE & ~VM_SHARED & ~VM_STACK */
428 unsigned long exec_vm; /* VM_EXEC & ~VM_WRITE & ~VM_STACK */
429 unsigned long stack_vm; /* VM_STACK */
430 unsigned long def_flags;
431 unsigned long start_code, end_code, start_data, end_data;
432 unsigned long start_brk, brk, start_stack;
433 unsigned long arg_start, arg_end, env_start, env_end;
435 unsigned long saved_auxv[AT_VECTOR_SIZE]; /* for /proc/PID/auxv */
438 * Special counters, in some configurations protected by the
439 * page_table_lock, in other configurations by being atomic.
441 struct mm_rss_stat rss_stat;
443 struct linux_binfmt *binfmt;
445 cpumask_var_t cpu_vm_mask_var;
447 /* Architecture-specific MM context */
448 mm_context_t context;
450 unsigned long flags; /* Must use atomic bitops to access the bits */
452 struct core_state *core_state; /* coredumping support */
453 #ifdef CONFIG_AIO
454 spinlock_t ioctx_lock;
455 struct kioctx_table __rcu *ioctx_table;
456 #endif
457 #ifdef CONFIG_MEMCG
459 * "owner" points to a task that is regarded as the canonical
460 * user/owner of this mm. All of the following must be true in
461 * order for it to be changed:
463 * current == mm->owner
464 * current->mm != mm
465 * new_owner->mm == mm
466 * new_owner->alloc_lock is held
468 struct task_struct __rcu *owner;
469 #endif
471 /* store ref to file /proc/<pid>/exe symlink points to */
472 struct file __rcu *exe_file;
473 #ifdef CONFIG_MMU_NOTIFIER
474 struct mmu_notifier_mm *mmu_notifier_mm;
475 #endif
476 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
477 pgtable_t pmd_huge_pte; /* protected by page_table_lock */
478 #endif
479 #ifdef CONFIG_CPUMASK_OFFSTACK
480 struct cpumask cpumask_allocation;
481 #endif
482 #ifdef CONFIG_NUMA_BALANCING
484 * numa_next_scan is the next time that the PTEs will be marked
485 * pte_numa. NUMA hinting faults will gather statistics and migrate
486 * pages to new nodes if necessary.
488 unsigned long numa_next_scan;
490 /* Restart point for scanning and setting pte_numa */
491 unsigned long numa_scan_offset;
493 /* numa_scan_seq prevents two threads setting pte_numa */
494 int numa_scan_seq;
495 #endif
496 #if defined(CONFIG_NUMA_BALANCING) || defined(CONFIG_COMPACTION)
498 * An operation with batched TLB flushing is going on. Anything that
499 * can move process memory needs to flush the TLB when moving a
500 * PROT_NONE or PROT_NUMA mapped page.
502 bool tlb_flush_pending;
503 #endif
504 struct uprobes_state uprobes_state;
505 #ifdef CONFIG_X86_INTEL_MPX
506 /* address of the bounds directory */
507 void __user *bd_addr;
508 #endif
509 #ifdef CONFIG_HUGETLB_PAGE
510 atomic_long_t hugetlb_usage;
511 #endif
514 static inline void mm_init_cpumask(struct mm_struct *mm)
516 #ifdef CONFIG_CPUMASK_OFFSTACK
517 mm->cpu_vm_mask_var = &mm->cpumask_allocation;
518 #endif
519 cpumask_clear(mm->cpu_vm_mask_var);
522 /* Future-safe accessor for struct mm_struct's cpu_vm_mask. */
523 static inline cpumask_t *mm_cpumask(struct mm_struct *mm)
525 return mm->cpu_vm_mask_var;
528 #if defined(CONFIG_NUMA_BALANCING) || defined(CONFIG_COMPACTION)
530 * Memory barriers to keep this state in sync are graciously provided by
531 * the page table locks, outside of which no page table modifications happen.
532 * The barriers below prevent the compiler from re-ordering the instructions
533 * around the memory barriers that are already present in the code.
535 static inline bool mm_tlb_flush_pending(struct mm_struct *mm)
537 barrier();
538 return mm->tlb_flush_pending;
540 static inline void set_tlb_flush_pending(struct mm_struct *mm)
542 mm->tlb_flush_pending = true;
545 * Guarantee that the tlb_flush_pending store does not leak into the
546 * critical section updating the page tables
548 smp_mb__before_spinlock();
550 /* Clearing is done after a TLB flush, which also provides a barrier. */
551 static inline void clear_tlb_flush_pending(struct mm_struct *mm)
553 barrier();
554 mm->tlb_flush_pending = false;
556 #else
557 static inline bool mm_tlb_flush_pending(struct mm_struct *mm)
559 return false;
561 static inline void set_tlb_flush_pending(struct mm_struct *mm)
564 static inline void clear_tlb_flush_pending(struct mm_struct *mm)
567 #endif
569 struct vm_fault;
571 struct vm_special_mapping {
572 const char *name; /* The name, e.g. "[vdso]". */
575 * If .fault is not provided, this points to a
576 * NULL-terminated array of pages that back the special mapping.
578 * This must not be NULL unless .fault is provided.
580 struct page **pages;
583 * If non-NULL, then this is called to resolve page faults
584 * on the special mapping. If used, .pages is not checked.
586 int (*fault)(const struct vm_special_mapping *sm,
587 struct vm_area_struct *vma,
588 struct vm_fault *vmf);
591 enum tlb_flush_reason {
592 TLB_FLUSH_ON_TASK_SWITCH,
593 TLB_REMOTE_SHOOTDOWN,
594 TLB_LOCAL_SHOOTDOWN,
595 TLB_LOCAL_MM_SHOOTDOWN,
596 TLB_REMOTE_SEND_IPI,
597 NR_TLB_FLUSH_REASONS,
601 * A swap entry has to fit into a "unsigned long", as the entry is hidden
602 * in the "index" field of the swapper address space.
604 typedef struct {
605 unsigned long val;
606 } swp_entry_t;
608 #endif /* _LINUX_MM_TYPES_H */