Linux 4.6-rc6
[cris-mirror.git] / mm / memory.c
blob305537fc86406076ba07b3cdfeb6bf7affbc8ff6
1 /*
2 * linux/mm/memory.c
4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
5 */
7 /*
8 * demand-loading started 01.12.91 - seems it is high on the list of
9 * things wanted, and it should be easy to implement. - Linus
13 * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
14 * pages started 02.12.91, seems to work. - Linus.
16 * Tested sharing by executing about 30 /bin/sh: under the old kernel it
17 * would have taken more than the 6M I have free, but it worked well as
18 * far as I could see.
20 * Also corrected some "invalidate()"s - I wasn't doing enough of them.
24 * Real VM (paging to/from disk) started 18.12.91. Much more work and
25 * thought has to go into this. Oh, well..
26 * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why.
27 * Found it. Everything seems to work now.
28 * 20.12.91 - Ok, making the swap-device changeable like the root.
32 * 05.04.94 - Multi-page memory management added for v1.1.
33 * Idea by Alex Bligh (alex@cconcepts.co.uk)
35 * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG
36 * (Gerhard.Wichert@pdb.siemens.de)
38 * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
41 #include <linux/kernel_stat.h>
42 #include <linux/mm.h>
43 #include <linux/hugetlb.h>
44 #include <linux/mman.h>
45 #include <linux/swap.h>
46 #include <linux/highmem.h>
47 #include <linux/pagemap.h>
48 #include <linux/ksm.h>
49 #include <linux/rmap.h>
50 #include <linux/export.h>
51 #include <linux/delayacct.h>
52 #include <linux/init.h>
53 #include <linux/pfn_t.h>
54 #include <linux/writeback.h>
55 #include <linux/memcontrol.h>
56 #include <linux/mmu_notifier.h>
57 #include <linux/kallsyms.h>
58 #include <linux/swapops.h>
59 #include <linux/elf.h>
60 #include <linux/gfp.h>
61 #include <linux/migrate.h>
62 #include <linux/string.h>
63 #include <linux/dma-debug.h>
64 #include <linux/debugfs.h>
65 #include <linux/userfaultfd_k.h>
67 #include <asm/io.h>
68 #include <asm/mmu_context.h>
69 #include <asm/pgalloc.h>
70 #include <asm/uaccess.h>
71 #include <asm/tlb.h>
72 #include <asm/tlbflush.h>
73 #include <asm/pgtable.h>
75 #include "internal.h"
77 #ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
78 #warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid.
79 #endif
81 #ifndef CONFIG_NEED_MULTIPLE_NODES
82 /* use the per-pgdat data instead for discontigmem - mbligh */
83 unsigned long max_mapnr;
84 struct page *mem_map;
86 EXPORT_SYMBOL(max_mapnr);
87 EXPORT_SYMBOL(mem_map);
88 #endif
91 * A number of key systems in x86 including ioremap() rely on the assumption
92 * that high_memory defines the upper bound on direct map memory, then end
93 * of ZONE_NORMAL. Under CONFIG_DISCONTIG this means that max_low_pfn and
94 * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
95 * and ZONE_HIGHMEM.
97 void * high_memory;
99 EXPORT_SYMBOL(high_memory);
102 * Randomize the address space (stacks, mmaps, brk, etc.).
104 * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
105 * as ancient (libc5 based) binaries can segfault. )
107 int randomize_va_space __read_mostly =
108 #ifdef CONFIG_COMPAT_BRK
110 #else
112 #endif
114 static int __init disable_randmaps(char *s)
116 randomize_va_space = 0;
117 return 1;
119 __setup("norandmaps", disable_randmaps);
121 unsigned long zero_pfn __read_mostly;
122 unsigned long highest_memmap_pfn __read_mostly;
124 EXPORT_SYMBOL(zero_pfn);
127 * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
129 static int __init init_zero_pfn(void)
131 zero_pfn = page_to_pfn(ZERO_PAGE(0));
132 return 0;
134 core_initcall(init_zero_pfn);
137 #if defined(SPLIT_RSS_COUNTING)
139 void sync_mm_rss(struct mm_struct *mm)
141 int i;
143 for (i = 0; i < NR_MM_COUNTERS; i++) {
144 if (current->rss_stat.count[i]) {
145 add_mm_counter(mm, i, current->rss_stat.count[i]);
146 current->rss_stat.count[i] = 0;
149 current->rss_stat.events = 0;
152 static void add_mm_counter_fast(struct mm_struct *mm, int member, int val)
154 struct task_struct *task = current;
156 if (likely(task->mm == mm))
157 task->rss_stat.count[member] += val;
158 else
159 add_mm_counter(mm, member, val);
161 #define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1)
162 #define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1)
164 /* sync counter once per 64 page faults */
165 #define TASK_RSS_EVENTS_THRESH (64)
166 static void check_sync_rss_stat(struct task_struct *task)
168 if (unlikely(task != current))
169 return;
170 if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH))
171 sync_mm_rss(task->mm);
173 #else /* SPLIT_RSS_COUNTING */
175 #define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member)
176 #define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member)
178 static void check_sync_rss_stat(struct task_struct *task)
182 #endif /* SPLIT_RSS_COUNTING */
184 #ifdef HAVE_GENERIC_MMU_GATHER
186 static bool tlb_next_batch(struct mmu_gather *tlb)
188 struct mmu_gather_batch *batch;
190 batch = tlb->active;
191 if (batch->next) {
192 tlb->active = batch->next;
193 return true;
196 if (tlb->batch_count == MAX_GATHER_BATCH_COUNT)
197 return false;
199 batch = (void *)__get_free_pages(GFP_NOWAIT | __GFP_NOWARN, 0);
200 if (!batch)
201 return false;
203 tlb->batch_count++;
204 batch->next = NULL;
205 batch->nr = 0;
206 batch->max = MAX_GATHER_BATCH;
208 tlb->active->next = batch;
209 tlb->active = batch;
211 return true;
214 /* tlb_gather_mmu
215 * Called to initialize an (on-stack) mmu_gather structure for page-table
216 * tear-down from @mm. The @fullmm argument is used when @mm is without
217 * users and we're going to destroy the full address space (exit/execve).
219 void tlb_gather_mmu(struct mmu_gather *tlb, struct mm_struct *mm, unsigned long start, unsigned long end)
221 tlb->mm = mm;
223 /* Is it from 0 to ~0? */
224 tlb->fullmm = !(start | (end+1));
225 tlb->need_flush_all = 0;
226 tlb->local.next = NULL;
227 tlb->local.nr = 0;
228 tlb->local.max = ARRAY_SIZE(tlb->__pages);
229 tlb->active = &tlb->local;
230 tlb->batch_count = 0;
232 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
233 tlb->batch = NULL;
234 #endif
236 __tlb_reset_range(tlb);
239 static void tlb_flush_mmu_tlbonly(struct mmu_gather *tlb)
241 if (!tlb->end)
242 return;
244 tlb_flush(tlb);
245 mmu_notifier_invalidate_range(tlb->mm, tlb->start, tlb->end);
246 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
247 tlb_table_flush(tlb);
248 #endif
249 __tlb_reset_range(tlb);
252 static void tlb_flush_mmu_free(struct mmu_gather *tlb)
254 struct mmu_gather_batch *batch;
256 for (batch = &tlb->local; batch && batch->nr; batch = batch->next) {
257 free_pages_and_swap_cache(batch->pages, batch->nr);
258 batch->nr = 0;
260 tlb->active = &tlb->local;
263 void tlb_flush_mmu(struct mmu_gather *tlb)
265 tlb_flush_mmu_tlbonly(tlb);
266 tlb_flush_mmu_free(tlb);
269 /* tlb_finish_mmu
270 * Called at the end of the shootdown operation to free up any resources
271 * that were required.
273 void tlb_finish_mmu(struct mmu_gather *tlb, unsigned long start, unsigned long end)
275 struct mmu_gather_batch *batch, *next;
277 tlb_flush_mmu(tlb);
279 /* keep the page table cache within bounds */
280 check_pgt_cache();
282 for (batch = tlb->local.next; batch; batch = next) {
283 next = batch->next;
284 free_pages((unsigned long)batch, 0);
286 tlb->local.next = NULL;
289 /* __tlb_remove_page
290 * Must perform the equivalent to __free_pte(pte_get_and_clear(ptep)), while
291 * handling the additional races in SMP caused by other CPUs caching valid
292 * mappings in their TLBs. Returns the number of free page slots left.
293 * When out of page slots we must call tlb_flush_mmu().
295 int __tlb_remove_page(struct mmu_gather *tlb, struct page *page)
297 struct mmu_gather_batch *batch;
299 VM_BUG_ON(!tlb->end);
301 batch = tlb->active;
302 batch->pages[batch->nr++] = page;
303 if (batch->nr == batch->max) {
304 if (!tlb_next_batch(tlb))
305 return 0;
306 batch = tlb->active;
308 VM_BUG_ON_PAGE(batch->nr > batch->max, page);
310 return batch->max - batch->nr;
313 #endif /* HAVE_GENERIC_MMU_GATHER */
315 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
318 * See the comment near struct mmu_table_batch.
321 static void tlb_remove_table_smp_sync(void *arg)
323 /* Simply deliver the interrupt */
326 static void tlb_remove_table_one(void *table)
329 * This isn't an RCU grace period and hence the page-tables cannot be
330 * assumed to be actually RCU-freed.
332 * It is however sufficient for software page-table walkers that rely on
333 * IRQ disabling. See the comment near struct mmu_table_batch.
335 smp_call_function(tlb_remove_table_smp_sync, NULL, 1);
336 __tlb_remove_table(table);
339 static void tlb_remove_table_rcu(struct rcu_head *head)
341 struct mmu_table_batch *batch;
342 int i;
344 batch = container_of(head, struct mmu_table_batch, rcu);
346 for (i = 0; i < batch->nr; i++)
347 __tlb_remove_table(batch->tables[i]);
349 free_page((unsigned long)batch);
352 void tlb_table_flush(struct mmu_gather *tlb)
354 struct mmu_table_batch **batch = &tlb->batch;
356 if (*batch) {
357 call_rcu_sched(&(*batch)->rcu, tlb_remove_table_rcu);
358 *batch = NULL;
362 void tlb_remove_table(struct mmu_gather *tlb, void *table)
364 struct mmu_table_batch **batch = &tlb->batch;
367 * When there's less then two users of this mm there cannot be a
368 * concurrent page-table walk.
370 if (atomic_read(&tlb->mm->mm_users) < 2) {
371 __tlb_remove_table(table);
372 return;
375 if (*batch == NULL) {
376 *batch = (struct mmu_table_batch *)__get_free_page(GFP_NOWAIT | __GFP_NOWARN);
377 if (*batch == NULL) {
378 tlb_remove_table_one(table);
379 return;
381 (*batch)->nr = 0;
383 (*batch)->tables[(*batch)->nr++] = table;
384 if ((*batch)->nr == MAX_TABLE_BATCH)
385 tlb_table_flush(tlb);
388 #endif /* CONFIG_HAVE_RCU_TABLE_FREE */
391 * Note: this doesn't free the actual pages themselves. That
392 * has been handled earlier when unmapping all the memory regions.
394 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
395 unsigned long addr)
397 pgtable_t token = pmd_pgtable(*pmd);
398 pmd_clear(pmd);
399 pte_free_tlb(tlb, token, addr);
400 atomic_long_dec(&tlb->mm->nr_ptes);
403 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
404 unsigned long addr, unsigned long end,
405 unsigned long floor, unsigned long ceiling)
407 pmd_t *pmd;
408 unsigned long next;
409 unsigned long start;
411 start = addr;
412 pmd = pmd_offset(pud, addr);
413 do {
414 next = pmd_addr_end(addr, end);
415 if (pmd_none_or_clear_bad(pmd))
416 continue;
417 free_pte_range(tlb, pmd, addr);
418 } while (pmd++, addr = next, addr != end);
420 start &= PUD_MASK;
421 if (start < floor)
422 return;
423 if (ceiling) {
424 ceiling &= PUD_MASK;
425 if (!ceiling)
426 return;
428 if (end - 1 > ceiling - 1)
429 return;
431 pmd = pmd_offset(pud, start);
432 pud_clear(pud);
433 pmd_free_tlb(tlb, pmd, start);
434 mm_dec_nr_pmds(tlb->mm);
437 static inline void free_pud_range(struct mmu_gather *tlb, pgd_t *pgd,
438 unsigned long addr, unsigned long end,
439 unsigned long floor, unsigned long ceiling)
441 pud_t *pud;
442 unsigned long next;
443 unsigned long start;
445 start = addr;
446 pud = pud_offset(pgd, addr);
447 do {
448 next = pud_addr_end(addr, end);
449 if (pud_none_or_clear_bad(pud))
450 continue;
451 free_pmd_range(tlb, pud, addr, next, floor, ceiling);
452 } while (pud++, addr = next, addr != end);
454 start &= PGDIR_MASK;
455 if (start < floor)
456 return;
457 if (ceiling) {
458 ceiling &= PGDIR_MASK;
459 if (!ceiling)
460 return;
462 if (end - 1 > ceiling - 1)
463 return;
465 pud = pud_offset(pgd, start);
466 pgd_clear(pgd);
467 pud_free_tlb(tlb, pud, start);
471 * This function frees user-level page tables of a process.
473 void free_pgd_range(struct mmu_gather *tlb,
474 unsigned long addr, unsigned long end,
475 unsigned long floor, unsigned long ceiling)
477 pgd_t *pgd;
478 unsigned long next;
481 * The next few lines have given us lots of grief...
483 * Why are we testing PMD* at this top level? Because often
484 * there will be no work to do at all, and we'd prefer not to
485 * go all the way down to the bottom just to discover that.
487 * Why all these "- 1"s? Because 0 represents both the bottom
488 * of the address space and the top of it (using -1 for the
489 * top wouldn't help much: the masks would do the wrong thing).
490 * The rule is that addr 0 and floor 0 refer to the bottom of
491 * the address space, but end 0 and ceiling 0 refer to the top
492 * Comparisons need to use "end - 1" and "ceiling - 1" (though
493 * that end 0 case should be mythical).
495 * Wherever addr is brought up or ceiling brought down, we must
496 * be careful to reject "the opposite 0" before it confuses the
497 * subsequent tests. But what about where end is brought down
498 * by PMD_SIZE below? no, end can't go down to 0 there.
500 * Whereas we round start (addr) and ceiling down, by different
501 * masks at different levels, in order to test whether a table
502 * now has no other vmas using it, so can be freed, we don't
503 * bother to round floor or end up - the tests don't need that.
506 addr &= PMD_MASK;
507 if (addr < floor) {
508 addr += PMD_SIZE;
509 if (!addr)
510 return;
512 if (ceiling) {
513 ceiling &= PMD_MASK;
514 if (!ceiling)
515 return;
517 if (end - 1 > ceiling - 1)
518 end -= PMD_SIZE;
519 if (addr > end - 1)
520 return;
522 pgd = pgd_offset(tlb->mm, addr);
523 do {
524 next = pgd_addr_end(addr, end);
525 if (pgd_none_or_clear_bad(pgd))
526 continue;
527 free_pud_range(tlb, pgd, addr, next, floor, ceiling);
528 } while (pgd++, addr = next, addr != end);
531 void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma,
532 unsigned long floor, unsigned long ceiling)
534 while (vma) {
535 struct vm_area_struct *next = vma->vm_next;
536 unsigned long addr = vma->vm_start;
539 * Hide vma from rmap and truncate_pagecache before freeing
540 * pgtables
542 unlink_anon_vmas(vma);
543 unlink_file_vma(vma);
545 if (is_vm_hugetlb_page(vma)) {
546 hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
547 floor, next? next->vm_start: ceiling);
548 } else {
550 * Optimization: gather nearby vmas into one call down
552 while (next && next->vm_start <= vma->vm_end + PMD_SIZE
553 && !is_vm_hugetlb_page(next)) {
554 vma = next;
555 next = vma->vm_next;
556 unlink_anon_vmas(vma);
557 unlink_file_vma(vma);
559 free_pgd_range(tlb, addr, vma->vm_end,
560 floor, next? next->vm_start: ceiling);
562 vma = next;
566 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd, unsigned long address)
568 spinlock_t *ptl;
569 pgtable_t new = pte_alloc_one(mm, address);
570 if (!new)
571 return -ENOMEM;
574 * Ensure all pte setup (eg. pte page lock and page clearing) are
575 * visible before the pte is made visible to other CPUs by being
576 * put into page tables.
578 * The other side of the story is the pointer chasing in the page
579 * table walking code (when walking the page table without locking;
580 * ie. most of the time). Fortunately, these data accesses consist
581 * of a chain of data-dependent loads, meaning most CPUs (alpha
582 * being the notable exception) will already guarantee loads are
583 * seen in-order. See the alpha page table accessors for the
584 * smp_read_barrier_depends() barriers in page table walking code.
586 smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
588 ptl = pmd_lock(mm, pmd);
589 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */
590 atomic_long_inc(&mm->nr_ptes);
591 pmd_populate(mm, pmd, new);
592 new = NULL;
594 spin_unlock(ptl);
595 if (new)
596 pte_free(mm, new);
597 return 0;
600 int __pte_alloc_kernel(pmd_t *pmd, unsigned long address)
602 pte_t *new = pte_alloc_one_kernel(&init_mm, address);
603 if (!new)
604 return -ENOMEM;
606 smp_wmb(); /* See comment in __pte_alloc */
608 spin_lock(&init_mm.page_table_lock);
609 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */
610 pmd_populate_kernel(&init_mm, pmd, new);
611 new = NULL;
613 spin_unlock(&init_mm.page_table_lock);
614 if (new)
615 pte_free_kernel(&init_mm, new);
616 return 0;
619 static inline void init_rss_vec(int *rss)
621 memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
624 static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
626 int i;
628 if (current->mm == mm)
629 sync_mm_rss(mm);
630 for (i = 0; i < NR_MM_COUNTERS; i++)
631 if (rss[i])
632 add_mm_counter(mm, i, rss[i]);
636 * This function is called to print an error when a bad pte
637 * is found. For example, we might have a PFN-mapped pte in
638 * a region that doesn't allow it.
640 * The calling function must still handle the error.
642 static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
643 pte_t pte, struct page *page)
645 pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
646 pud_t *pud = pud_offset(pgd, addr);
647 pmd_t *pmd = pmd_offset(pud, addr);
648 struct address_space *mapping;
649 pgoff_t index;
650 static unsigned long resume;
651 static unsigned long nr_shown;
652 static unsigned long nr_unshown;
655 * Allow a burst of 60 reports, then keep quiet for that minute;
656 * or allow a steady drip of one report per second.
658 if (nr_shown == 60) {
659 if (time_before(jiffies, resume)) {
660 nr_unshown++;
661 return;
663 if (nr_unshown) {
664 pr_alert("BUG: Bad page map: %lu messages suppressed\n",
665 nr_unshown);
666 nr_unshown = 0;
668 nr_shown = 0;
670 if (nr_shown++ == 0)
671 resume = jiffies + 60 * HZ;
673 mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
674 index = linear_page_index(vma, addr);
676 pr_alert("BUG: Bad page map in process %s pte:%08llx pmd:%08llx\n",
677 current->comm,
678 (long long)pte_val(pte), (long long)pmd_val(*pmd));
679 if (page)
680 dump_page(page, "bad pte");
681 pr_alert("addr:%p vm_flags:%08lx anon_vma:%p mapping:%p index:%lx\n",
682 (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
684 * Choose text because data symbols depend on CONFIG_KALLSYMS_ALL=y
686 pr_alert("file:%pD fault:%pf mmap:%pf readpage:%pf\n",
687 vma->vm_file,
688 vma->vm_ops ? vma->vm_ops->fault : NULL,
689 vma->vm_file ? vma->vm_file->f_op->mmap : NULL,
690 mapping ? mapping->a_ops->readpage : NULL);
691 dump_stack();
692 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
696 * vm_normal_page -- This function gets the "struct page" associated with a pte.
698 * "Special" mappings do not wish to be associated with a "struct page" (either
699 * it doesn't exist, or it exists but they don't want to touch it). In this
700 * case, NULL is returned here. "Normal" mappings do have a struct page.
702 * There are 2 broad cases. Firstly, an architecture may define a pte_special()
703 * pte bit, in which case this function is trivial. Secondly, an architecture
704 * may not have a spare pte bit, which requires a more complicated scheme,
705 * described below.
707 * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
708 * special mapping (even if there are underlying and valid "struct pages").
709 * COWed pages of a VM_PFNMAP are always normal.
711 * The way we recognize COWed pages within VM_PFNMAP mappings is through the
712 * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
713 * set, and the vm_pgoff will point to the first PFN mapped: thus every special
714 * mapping will always honor the rule
716 * pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
718 * And for normal mappings this is false.
720 * This restricts such mappings to be a linear translation from virtual address
721 * to pfn. To get around this restriction, we allow arbitrary mappings so long
722 * as the vma is not a COW mapping; in that case, we know that all ptes are
723 * special (because none can have been COWed).
726 * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
728 * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
729 * page" backing, however the difference is that _all_ pages with a struct
730 * page (that is, those where pfn_valid is true) are refcounted and considered
731 * normal pages by the VM. The disadvantage is that pages are refcounted
732 * (which can be slower and simply not an option for some PFNMAP users). The
733 * advantage is that we don't have to follow the strict linearity rule of
734 * PFNMAP mappings in order to support COWable mappings.
737 #ifdef __HAVE_ARCH_PTE_SPECIAL
738 # define HAVE_PTE_SPECIAL 1
739 #else
740 # define HAVE_PTE_SPECIAL 0
741 #endif
742 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
743 pte_t pte)
745 unsigned long pfn = pte_pfn(pte);
747 if (HAVE_PTE_SPECIAL) {
748 if (likely(!pte_special(pte)))
749 goto check_pfn;
750 if (vma->vm_ops && vma->vm_ops->find_special_page)
751 return vma->vm_ops->find_special_page(vma, addr);
752 if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
753 return NULL;
754 if (!is_zero_pfn(pfn))
755 print_bad_pte(vma, addr, pte, NULL);
756 return NULL;
759 /* !HAVE_PTE_SPECIAL case follows: */
761 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
762 if (vma->vm_flags & VM_MIXEDMAP) {
763 if (!pfn_valid(pfn))
764 return NULL;
765 goto out;
766 } else {
767 unsigned long off;
768 off = (addr - vma->vm_start) >> PAGE_SHIFT;
769 if (pfn == vma->vm_pgoff + off)
770 return NULL;
771 if (!is_cow_mapping(vma->vm_flags))
772 return NULL;
776 if (is_zero_pfn(pfn))
777 return NULL;
778 check_pfn:
779 if (unlikely(pfn > highest_memmap_pfn)) {
780 print_bad_pte(vma, addr, pte, NULL);
781 return NULL;
785 * NOTE! We still have PageReserved() pages in the page tables.
786 * eg. VDSO mappings can cause them to exist.
788 out:
789 return pfn_to_page(pfn);
792 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
793 struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
794 pmd_t pmd)
796 unsigned long pfn = pmd_pfn(pmd);
799 * There is no pmd_special() but there may be special pmds, e.g.
800 * in a direct-access (dax) mapping, so let's just replicate the
801 * !HAVE_PTE_SPECIAL case from vm_normal_page() here.
803 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
804 if (vma->vm_flags & VM_MIXEDMAP) {
805 if (!pfn_valid(pfn))
806 return NULL;
807 goto out;
808 } else {
809 unsigned long off;
810 off = (addr - vma->vm_start) >> PAGE_SHIFT;
811 if (pfn == vma->vm_pgoff + off)
812 return NULL;
813 if (!is_cow_mapping(vma->vm_flags))
814 return NULL;
818 if (is_zero_pfn(pfn))
819 return NULL;
820 if (unlikely(pfn > highest_memmap_pfn))
821 return NULL;
824 * NOTE! We still have PageReserved() pages in the page tables.
825 * eg. VDSO mappings can cause them to exist.
827 out:
828 return pfn_to_page(pfn);
830 #endif
833 * copy one vm_area from one task to the other. Assumes the page tables
834 * already present in the new task to be cleared in the whole range
835 * covered by this vma.
838 static inline unsigned long
839 copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
840 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
841 unsigned long addr, int *rss)
843 unsigned long vm_flags = vma->vm_flags;
844 pte_t pte = *src_pte;
845 struct page *page;
847 /* pte contains position in swap or file, so copy. */
848 if (unlikely(!pte_present(pte))) {
849 swp_entry_t entry = pte_to_swp_entry(pte);
851 if (likely(!non_swap_entry(entry))) {
852 if (swap_duplicate(entry) < 0)
853 return entry.val;
855 /* make sure dst_mm is on swapoff's mmlist. */
856 if (unlikely(list_empty(&dst_mm->mmlist))) {
857 spin_lock(&mmlist_lock);
858 if (list_empty(&dst_mm->mmlist))
859 list_add(&dst_mm->mmlist,
860 &src_mm->mmlist);
861 spin_unlock(&mmlist_lock);
863 rss[MM_SWAPENTS]++;
864 } else if (is_migration_entry(entry)) {
865 page = migration_entry_to_page(entry);
867 rss[mm_counter(page)]++;
869 if (is_write_migration_entry(entry) &&
870 is_cow_mapping(vm_flags)) {
872 * COW mappings require pages in both
873 * parent and child to be set to read.
875 make_migration_entry_read(&entry);
876 pte = swp_entry_to_pte(entry);
877 if (pte_swp_soft_dirty(*src_pte))
878 pte = pte_swp_mksoft_dirty(pte);
879 set_pte_at(src_mm, addr, src_pte, pte);
882 goto out_set_pte;
886 * If it's a COW mapping, write protect it both
887 * in the parent and the child
889 if (is_cow_mapping(vm_flags)) {
890 ptep_set_wrprotect(src_mm, addr, src_pte);
891 pte = pte_wrprotect(pte);
895 * If it's a shared mapping, mark it clean in
896 * the child
898 if (vm_flags & VM_SHARED)
899 pte = pte_mkclean(pte);
900 pte = pte_mkold(pte);
902 page = vm_normal_page(vma, addr, pte);
903 if (page) {
904 get_page(page);
905 page_dup_rmap(page, false);
906 rss[mm_counter(page)]++;
909 out_set_pte:
910 set_pte_at(dst_mm, addr, dst_pte, pte);
911 return 0;
914 static int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
915 pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma,
916 unsigned long addr, unsigned long end)
918 pte_t *orig_src_pte, *orig_dst_pte;
919 pte_t *src_pte, *dst_pte;
920 spinlock_t *src_ptl, *dst_ptl;
921 int progress = 0;
922 int rss[NR_MM_COUNTERS];
923 swp_entry_t entry = (swp_entry_t){0};
925 again:
926 init_rss_vec(rss);
928 dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
929 if (!dst_pte)
930 return -ENOMEM;
931 src_pte = pte_offset_map(src_pmd, addr);
932 src_ptl = pte_lockptr(src_mm, src_pmd);
933 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
934 orig_src_pte = src_pte;
935 orig_dst_pte = dst_pte;
936 arch_enter_lazy_mmu_mode();
938 do {
940 * We are holding two locks at this point - either of them
941 * could generate latencies in another task on another CPU.
943 if (progress >= 32) {
944 progress = 0;
945 if (need_resched() ||
946 spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
947 break;
949 if (pte_none(*src_pte)) {
950 progress++;
951 continue;
953 entry.val = copy_one_pte(dst_mm, src_mm, dst_pte, src_pte,
954 vma, addr, rss);
955 if (entry.val)
956 break;
957 progress += 8;
958 } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
960 arch_leave_lazy_mmu_mode();
961 spin_unlock(src_ptl);
962 pte_unmap(orig_src_pte);
963 add_mm_rss_vec(dst_mm, rss);
964 pte_unmap_unlock(orig_dst_pte, dst_ptl);
965 cond_resched();
967 if (entry.val) {
968 if (add_swap_count_continuation(entry, GFP_KERNEL) < 0)
969 return -ENOMEM;
970 progress = 0;
972 if (addr != end)
973 goto again;
974 return 0;
977 static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
978 pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma,
979 unsigned long addr, unsigned long end)
981 pmd_t *src_pmd, *dst_pmd;
982 unsigned long next;
984 dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
985 if (!dst_pmd)
986 return -ENOMEM;
987 src_pmd = pmd_offset(src_pud, addr);
988 do {
989 next = pmd_addr_end(addr, end);
990 if (pmd_trans_huge(*src_pmd) || pmd_devmap(*src_pmd)) {
991 int err;
992 VM_BUG_ON(next-addr != HPAGE_PMD_SIZE);
993 err = copy_huge_pmd(dst_mm, src_mm,
994 dst_pmd, src_pmd, addr, vma);
995 if (err == -ENOMEM)
996 return -ENOMEM;
997 if (!err)
998 continue;
999 /* fall through */
1001 if (pmd_none_or_clear_bad(src_pmd))
1002 continue;
1003 if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd,
1004 vma, addr, next))
1005 return -ENOMEM;
1006 } while (dst_pmd++, src_pmd++, addr = next, addr != end);
1007 return 0;
1010 static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1011 pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma,
1012 unsigned long addr, unsigned long end)
1014 pud_t *src_pud, *dst_pud;
1015 unsigned long next;
1017 dst_pud = pud_alloc(dst_mm, dst_pgd, addr);
1018 if (!dst_pud)
1019 return -ENOMEM;
1020 src_pud = pud_offset(src_pgd, addr);
1021 do {
1022 next = pud_addr_end(addr, end);
1023 if (pud_none_or_clear_bad(src_pud))
1024 continue;
1025 if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud,
1026 vma, addr, next))
1027 return -ENOMEM;
1028 } while (dst_pud++, src_pud++, addr = next, addr != end);
1029 return 0;
1032 int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1033 struct vm_area_struct *vma)
1035 pgd_t *src_pgd, *dst_pgd;
1036 unsigned long next;
1037 unsigned long addr = vma->vm_start;
1038 unsigned long end = vma->vm_end;
1039 unsigned long mmun_start; /* For mmu_notifiers */
1040 unsigned long mmun_end; /* For mmu_notifiers */
1041 bool is_cow;
1042 int ret;
1045 * Don't copy ptes where a page fault will fill them correctly.
1046 * Fork becomes much lighter when there are big shared or private
1047 * readonly mappings. The tradeoff is that copy_page_range is more
1048 * efficient than faulting.
1050 if (!(vma->vm_flags & (VM_HUGETLB | VM_PFNMAP | VM_MIXEDMAP)) &&
1051 !vma->anon_vma)
1052 return 0;
1054 if (is_vm_hugetlb_page(vma))
1055 return copy_hugetlb_page_range(dst_mm, src_mm, vma);
1057 if (unlikely(vma->vm_flags & VM_PFNMAP)) {
1059 * We do not free on error cases below as remove_vma
1060 * gets called on error from higher level routine
1062 ret = track_pfn_copy(vma);
1063 if (ret)
1064 return ret;
1068 * We need to invalidate the secondary MMU mappings only when
1069 * there could be a permission downgrade on the ptes of the
1070 * parent mm. And a permission downgrade will only happen if
1071 * is_cow_mapping() returns true.
1073 is_cow = is_cow_mapping(vma->vm_flags);
1074 mmun_start = addr;
1075 mmun_end = end;
1076 if (is_cow)
1077 mmu_notifier_invalidate_range_start(src_mm, mmun_start,
1078 mmun_end);
1080 ret = 0;
1081 dst_pgd = pgd_offset(dst_mm, addr);
1082 src_pgd = pgd_offset(src_mm, addr);
1083 do {
1084 next = pgd_addr_end(addr, end);
1085 if (pgd_none_or_clear_bad(src_pgd))
1086 continue;
1087 if (unlikely(copy_pud_range(dst_mm, src_mm, dst_pgd, src_pgd,
1088 vma, addr, next))) {
1089 ret = -ENOMEM;
1090 break;
1092 } while (dst_pgd++, src_pgd++, addr = next, addr != end);
1094 if (is_cow)
1095 mmu_notifier_invalidate_range_end(src_mm, mmun_start, mmun_end);
1096 return ret;
1099 static unsigned long zap_pte_range(struct mmu_gather *tlb,
1100 struct vm_area_struct *vma, pmd_t *pmd,
1101 unsigned long addr, unsigned long end,
1102 struct zap_details *details)
1104 struct mm_struct *mm = tlb->mm;
1105 int force_flush = 0;
1106 int rss[NR_MM_COUNTERS];
1107 spinlock_t *ptl;
1108 pte_t *start_pte;
1109 pte_t *pte;
1110 swp_entry_t entry;
1112 again:
1113 init_rss_vec(rss);
1114 start_pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
1115 pte = start_pte;
1116 arch_enter_lazy_mmu_mode();
1117 do {
1118 pte_t ptent = *pte;
1119 if (pte_none(ptent)) {
1120 continue;
1123 if (pte_present(ptent)) {
1124 struct page *page;
1126 page = vm_normal_page(vma, addr, ptent);
1127 if (unlikely(details) && page) {
1129 * unmap_shared_mapping_pages() wants to
1130 * invalidate cache without truncating:
1131 * unmap shared but keep private pages.
1133 if (details->check_mapping &&
1134 details->check_mapping != page->mapping)
1135 continue;
1137 ptent = ptep_get_and_clear_full(mm, addr, pte,
1138 tlb->fullmm);
1139 tlb_remove_tlb_entry(tlb, pte, addr);
1140 if (unlikely(!page))
1141 continue;
1143 if (!PageAnon(page)) {
1144 if (pte_dirty(ptent)) {
1146 * oom_reaper cannot tear down dirty
1147 * pages
1149 if (unlikely(details && details->ignore_dirty))
1150 continue;
1151 force_flush = 1;
1152 set_page_dirty(page);
1154 if (pte_young(ptent) &&
1155 likely(!(vma->vm_flags & VM_SEQ_READ)))
1156 mark_page_accessed(page);
1158 rss[mm_counter(page)]--;
1159 page_remove_rmap(page, false);
1160 if (unlikely(page_mapcount(page) < 0))
1161 print_bad_pte(vma, addr, ptent, page);
1162 if (unlikely(!__tlb_remove_page(tlb, page))) {
1163 force_flush = 1;
1164 addr += PAGE_SIZE;
1165 break;
1167 continue;
1169 /* only check swap_entries if explicitly asked for in details */
1170 if (unlikely(details && !details->check_swap_entries))
1171 continue;
1173 entry = pte_to_swp_entry(ptent);
1174 if (!non_swap_entry(entry))
1175 rss[MM_SWAPENTS]--;
1176 else if (is_migration_entry(entry)) {
1177 struct page *page;
1179 page = migration_entry_to_page(entry);
1180 rss[mm_counter(page)]--;
1182 if (unlikely(!free_swap_and_cache(entry)))
1183 print_bad_pte(vma, addr, ptent, NULL);
1184 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1185 } while (pte++, addr += PAGE_SIZE, addr != end);
1187 add_mm_rss_vec(mm, rss);
1188 arch_leave_lazy_mmu_mode();
1190 /* Do the actual TLB flush before dropping ptl */
1191 if (force_flush)
1192 tlb_flush_mmu_tlbonly(tlb);
1193 pte_unmap_unlock(start_pte, ptl);
1196 * If we forced a TLB flush (either due to running out of
1197 * batch buffers or because we needed to flush dirty TLB
1198 * entries before releasing the ptl), free the batched
1199 * memory too. Restart if we didn't do everything.
1201 if (force_flush) {
1202 force_flush = 0;
1203 tlb_flush_mmu_free(tlb);
1205 if (addr != end)
1206 goto again;
1209 return addr;
1212 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
1213 struct vm_area_struct *vma, pud_t *pud,
1214 unsigned long addr, unsigned long end,
1215 struct zap_details *details)
1217 pmd_t *pmd;
1218 unsigned long next;
1220 pmd = pmd_offset(pud, addr);
1221 do {
1222 next = pmd_addr_end(addr, end);
1223 if (pmd_trans_huge(*pmd) || pmd_devmap(*pmd)) {
1224 if (next - addr != HPAGE_PMD_SIZE) {
1225 #ifdef CONFIG_DEBUG_VM
1226 if (!rwsem_is_locked(&tlb->mm->mmap_sem)) {
1227 pr_err("%s: mmap_sem is unlocked! addr=0x%lx end=0x%lx vma->vm_start=0x%lx vma->vm_end=0x%lx\n",
1228 __func__, addr, end,
1229 vma->vm_start,
1230 vma->vm_end);
1231 BUG();
1233 #endif
1234 split_huge_pmd(vma, pmd, addr);
1235 } else if (zap_huge_pmd(tlb, vma, pmd, addr))
1236 goto next;
1237 /* fall through */
1240 * Here there can be other concurrent MADV_DONTNEED or
1241 * trans huge page faults running, and if the pmd is
1242 * none or trans huge it can change under us. This is
1243 * because MADV_DONTNEED holds the mmap_sem in read
1244 * mode.
1246 if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1247 goto next;
1248 next = zap_pte_range(tlb, vma, pmd, addr, next, details);
1249 next:
1250 cond_resched();
1251 } while (pmd++, addr = next, addr != end);
1253 return addr;
1256 static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
1257 struct vm_area_struct *vma, pgd_t *pgd,
1258 unsigned long addr, unsigned long end,
1259 struct zap_details *details)
1261 pud_t *pud;
1262 unsigned long next;
1264 pud = pud_offset(pgd, addr);
1265 do {
1266 next = pud_addr_end(addr, end);
1267 if (pud_none_or_clear_bad(pud))
1268 continue;
1269 next = zap_pmd_range(tlb, vma, pud, addr, next, details);
1270 } while (pud++, addr = next, addr != end);
1272 return addr;
1275 void unmap_page_range(struct mmu_gather *tlb,
1276 struct vm_area_struct *vma,
1277 unsigned long addr, unsigned long end,
1278 struct zap_details *details)
1280 pgd_t *pgd;
1281 unsigned long next;
1283 BUG_ON(addr >= end);
1284 tlb_start_vma(tlb, vma);
1285 pgd = pgd_offset(vma->vm_mm, addr);
1286 do {
1287 next = pgd_addr_end(addr, end);
1288 if (pgd_none_or_clear_bad(pgd))
1289 continue;
1290 next = zap_pud_range(tlb, vma, pgd, addr, next, details);
1291 } while (pgd++, addr = next, addr != end);
1292 tlb_end_vma(tlb, vma);
1296 static void unmap_single_vma(struct mmu_gather *tlb,
1297 struct vm_area_struct *vma, unsigned long start_addr,
1298 unsigned long end_addr,
1299 struct zap_details *details)
1301 unsigned long start = max(vma->vm_start, start_addr);
1302 unsigned long end;
1304 if (start >= vma->vm_end)
1305 return;
1306 end = min(vma->vm_end, end_addr);
1307 if (end <= vma->vm_start)
1308 return;
1310 if (vma->vm_file)
1311 uprobe_munmap(vma, start, end);
1313 if (unlikely(vma->vm_flags & VM_PFNMAP))
1314 untrack_pfn(vma, 0, 0);
1316 if (start != end) {
1317 if (unlikely(is_vm_hugetlb_page(vma))) {
1319 * It is undesirable to test vma->vm_file as it
1320 * should be non-null for valid hugetlb area.
1321 * However, vm_file will be NULL in the error
1322 * cleanup path of mmap_region. When
1323 * hugetlbfs ->mmap method fails,
1324 * mmap_region() nullifies vma->vm_file
1325 * before calling this function to clean up.
1326 * Since no pte has actually been setup, it is
1327 * safe to do nothing in this case.
1329 if (vma->vm_file) {
1330 i_mmap_lock_write(vma->vm_file->f_mapping);
1331 __unmap_hugepage_range_final(tlb, vma, start, end, NULL);
1332 i_mmap_unlock_write(vma->vm_file->f_mapping);
1334 } else
1335 unmap_page_range(tlb, vma, start, end, details);
1340 * unmap_vmas - unmap a range of memory covered by a list of vma's
1341 * @tlb: address of the caller's struct mmu_gather
1342 * @vma: the starting vma
1343 * @start_addr: virtual address at which to start unmapping
1344 * @end_addr: virtual address at which to end unmapping
1346 * Unmap all pages in the vma list.
1348 * Only addresses between `start' and `end' will be unmapped.
1350 * The VMA list must be sorted in ascending virtual address order.
1352 * unmap_vmas() assumes that the caller will flush the whole unmapped address
1353 * range after unmap_vmas() returns. So the only responsibility here is to
1354 * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
1355 * drops the lock and schedules.
1357 void unmap_vmas(struct mmu_gather *tlb,
1358 struct vm_area_struct *vma, unsigned long start_addr,
1359 unsigned long end_addr)
1361 struct mm_struct *mm = vma->vm_mm;
1363 mmu_notifier_invalidate_range_start(mm, start_addr, end_addr);
1364 for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next)
1365 unmap_single_vma(tlb, vma, start_addr, end_addr, NULL);
1366 mmu_notifier_invalidate_range_end(mm, start_addr, end_addr);
1370 * zap_page_range - remove user pages in a given range
1371 * @vma: vm_area_struct holding the applicable pages
1372 * @start: starting address of pages to zap
1373 * @size: number of bytes to zap
1374 * @details: details of shared cache invalidation
1376 * Caller must protect the VMA list
1378 void zap_page_range(struct vm_area_struct *vma, unsigned long start,
1379 unsigned long size, struct zap_details *details)
1381 struct mm_struct *mm = vma->vm_mm;
1382 struct mmu_gather tlb;
1383 unsigned long end = start + size;
1385 lru_add_drain();
1386 tlb_gather_mmu(&tlb, mm, start, end);
1387 update_hiwater_rss(mm);
1388 mmu_notifier_invalidate_range_start(mm, start, end);
1389 for ( ; vma && vma->vm_start < end; vma = vma->vm_next)
1390 unmap_single_vma(&tlb, vma, start, end, details);
1391 mmu_notifier_invalidate_range_end(mm, start, end);
1392 tlb_finish_mmu(&tlb, start, end);
1396 * zap_page_range_single - remove user pages in a given range
1397 * @vma: vm_area_struct holding the applicable pages
1398 * @address: starting address of pages to zap
1399 * @size: number of bytes to zap
1400 * @details: details of shared cache invalidation
1402 * The range must fit into one VMA.
1404 static void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
1405 unsigned long size, struct zap_details *details)
1407 struct mm_struct *mm = vma->vm_mm;
1408 struct mmu_gather tlb;
1409 unsigned long end = address + size;
1411 lru_add_drain();
1412 tlb_gather_mmu(&tlb, mm, address, end);
1413 update_hiwater_rss(mm);
1414 mmu_notifier_invalidate_range_start(mm, address, end);
1415 unmap_single_vma(&tlb, vma, address, end, details);
1416 mmu_notifier_invalidate_range_end(mm, address, end);
1417 tlb_finish_mmu(&tlb, address, end);
1421 * zap_vma_ptes - remove ptes mapping the vma
1422 * @vma: vm_area_struct holding ptes to be zapped
1423 * @address: starting address of pages to zap
1424 * @size: number of bytes to zap
1426 * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1428 * The entire address range must be fully contained within the vma.
1430 * Returns 0 if successful.
1432 int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1433 unsigned long size)
1435 if (address < vma->vm_start || address + size > vma->vm_end ||
1436 !(vma->vm_flags & VM_PFNMAP))
1437 return -1;
1438 zap_page_range_single(vma, address, size, NULL);
1439 return 0;
1441 EXPORT_SYMBOL_GPL(zap_vma_ptes);
1443 pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1444 spinlock_t **ptl)
1446 pgd_t * pgd = pgd_offset(mm, addr);
1447 pud_t * pud = pud_alloc(mm, pgd, addr);
1448 if (pud) {
1449 pmd_t * pmd = pmd_alloc(mm, pud, addr);
1450 if (pmd) {
1451 VM_BUG_ON(pmd_trans_huge(*pmd));
1452 return pte_alloc_map_lock(mm, pmd, addr, ptl);
1455 return NULL;
1459 * This is the old fallback for page remapping.
1461 * For historical reasons, it only allows reserved pages. Only
1462 * old drivers should use this, and they needed to mark their
1463 * pages reserved for the old functions anyway.
1465 static int insert_page(struct vm_area_struct *vma, unsigned long addr,
1466 struct page *page, pgprot_t prot)
1468 struct mm_struct *mm = vma->vm_mm;
1469 int retval;
1470 pte_t *pte;
1471 spinlock_t *ptl;
1473 retval = -EINVAL;
1474 if (PageAnon(page))
1475 goto out;
1476 retval = -ENOMEM;
1477 flush_dcache_page(page);
1478 pte = get_locked_pte(mm, addr, &ptl);
1479 if (!pte)
1480 goto out;
1481 retval = -EBUSY;
1482 if (!pte_none(*pte))
1483 goto out_unlock;
1485 /* Ok, finally just insert the thing.. */
1486 get_page(page);
1487 inc_mm_counter_fast(mm, mm_counter_file(page));
1488 page_add_file_rmap(page);
1489 set_pte_at(mm, addr, pte, mk_pte(page, prot));
1491 retval = 0;
1492 pte_unmap_unlock(pte, ptl);
1493 return retval;
1494 out_unlock:
1495 pte_unmap_unlock(pte, ptl);
1496 out:
1497 return retval;
1501 * vm_insert_page - insert single page into user vma
1502 * @vma: user vma to map to
1503 * @addr: target user address of this page
1504 * @page: source kernel page
1506 * This allows drivers to insert individual pages they've allocated
1507 * into a user vma.
1509 * The page has to be a nice clean _individual_ kernel allocation.
1510 * If you allocate a compound page, you need to have marked it as
1511 * such (__GFP_COMP), or manually just split the page up yourself
1512 * (see split_page()).
1514 * NOTE! Traditionally this was done with "remap_pfn_range()" which
1515 * took an arbitrary page protection parameter. This doesn't allow
1516 * that. Your vma protection will have to be set up correctly, which
1517 * means that if you want a shared writable mapping, you'd better
1518 * ask for a shared writable mapping!
1520 * The page does not need to be reserved.
1522 * Usually this function is called from f_op->mmap() handler
1523 * under mm->mmap_sem write-lock, so it can change vma->vm_flags.
1524 * Caller must set VM_MIXEDMAP on vma if it wants to call this
1525 * function from other places, for example from page-fault handler.
1527 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
1528 struct page *page)
1530 if (addr < vma->vm_start || addr >= vma->vm_end)
1531 return -EFAULT;
1532 if (!page_count(page))
1533 return -EINVAL;
1534 if (!(vma->vm_flags & VM_MIXEDMAP)) {
1535 BUG_ON(down_read_trylock(&vma->vm_mm->mmap_sem));
1536 BUG_ON(vma->vm_flags & VM_PFNMAP);
1537 vma->vm_flags |= VM_MIXEDMAP;
1539 return insert_page(vma, addr, page, vma->vm_page_prot);
1541 EXPORT_SYMBOL(vm_insert_page);
1543 static int insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1544 pfn_t pfn, pgprot_t prot)
1546 struct mm_struct *mm = vma->vm_mm;
1547 int retval;
1548 pte_t *pte, entry;
1549 spinlock_t *ptl;
1551 retval = -ENOMEM;
1552 pte = get_locked_pte(mm, addr, &ptl);
1553 if (!pte)
1554 goto out;
1555 retval = -EBUSY;
1556 if (!pte_none(*pte))
1557 goto out_unlock;
1559 /* Ok, finally just insert the thing.. */
1560 if (pfn_t_devmap(pfn))
1561 entry = pte_mkdevmap(pfn_t_pte(pfn, prot));
1562 else
1563 entry = pte_mkspecial(pfn_t_pte(pfn, prot));
1564 set_pte_at(mm, addr, pte, entry);
1565 update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
1567 retval = 0;
1568 out_unlock:
1569 pte_unmap_unlock(pte, ptl);
1570 out:
1571 return retval;
1575 * vm_insert_pfn - insert single pfn into user vma
1576 * @vma: user vma to map to
1577 * @addr: target user address of this page
1578 * @pfn: source kernel pfn
1580 * Similar to vm_insert_page, this allows drivers to insert individual pages
1581 * they've allocated into a user vma. Same comments apply.
1583 * This function should only be called from a vm_ops->fault handler, and
1584 * in that case the handler should return NULL.
1586 * vma cannot be a COW mapping.
1588 * As this is called only for pages that do not currently exist, we
1589 * do not need to flush old virtual caches or the TLB.
1591 int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1592 unsigned long pfn)
1594 return vm_insert_pfn_prot(vma, addr, pfn, vma->vm_page_prot);
1596 EXPORT_SYMBOL(vm_insert_pfn);
1599 * vm_insert_pfn_prot - insert single pfn into user vma with specified pgprot
1600 * @vma: user vma to map to
1601 * @addr: target user address of this page
1602 * @pfn: source kernel pfn
1603 * @pgprot: pgprot flags for the inserted page
1605 * This is exactly like vm_insert_pfn, except that it allows drivers to
1606 * to override pgprot on a per-page basis.
1608 * This only makes sense for IO mappings, and it makes no sense for
1609 * cow mappings. In general, using multiple vmas is preferable;
1610 * vm_insert_pfn_prot should only be used if using multiple VMAs is
1611 * impractical.
1613 int vm_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
1614 unsigned long pfn, pgprot_t pgprot)
1616 int ret;
1618 * Technically, architectures with pte_special can avoid all these
1619 * restrictions (same for remap_pfn_range). However we would like
1620 * consistency in testing and feature parity among all, so we should
1621 * try to keep these invariants in place for everybody.
1623 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
1624 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
1625 (VM_PFNMAP|VM_MIXEDMAP));
1626 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
1627 BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
1629 if (addr < vma->vm_start || addr >= vma->vm_end)
1630 return -EFAULT;
1631 if (track_pfn_insert(vma, &pgprot, __pfn_to_pfn_t(pfn, PFN_DEV)))
1632 return -EINVAL;
1634 ret = insert_pfn(vma, addr, __pfn_to_pfn_t(pfn, PFN_DEV), pgprot);
1636 return ret;
1638 EXPORT_SYMBOL(vm_insert_pfn_prot);
1640 int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
1641 pfn_t pfn)
1643 BUG_ON(!(vma->vm_flags & VM_MIXEDMAP));
1645 if (addr < vma->vm_start || addr >= vma->vm_end)
1646 return -EFAULT;
1649 * If we don't have pte special, then we have to use the pfn_valid()
1650 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
1651 * refcount the page if pfn_valid is true (hence insert_page rather
1652 * than insert_pfn). If a zero_pfn were inserted into a VM_MIXEDMAP
1653 * without pte special, it would there be refcounted as a normal page.
1655 if (!HAVE_PTE_SPECIAL && !pfn_t_devmap(pfn) && pfn_t_valid(pfn)) {
1656 struct page *page;
1659 * At this point we are committed to insert_page()
1660 * regardless of whether the caller specified flags that
1661 * result in pfn_t_has_page() == false.
1663 page = pfn_to_page(pfn_t_to_pfn(pfn));
1664 return insert_page(vma, addr, page, vma->vm_page_prot);
1666 return insert_pfn(vma, addr, pfn, vma->vm_page_prot);
1668 EXPORT_SYMBOL(vm_insert_mixed);
1671 * maps a range of physical memory into the requested pages. the old
1672 * mappings are removed. any references to nonexistent pages results
1673 * in null mappings (currently treated as "copy-on-access")
1675 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
1676 unsigned long addr, unsigned long end,
1677 unsigned long pfn, pgprot_t prot)
1679 pte_t *pte;
1680 spinlock_t *ptl;
1682 pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
1683 if (!pte)
1684 return -ENOMEM;
1685 arch_enter_lazy_mmu_mode();
1686 do {
1687 BUG_ON(!pte_none(*pte));
1688 set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
1689 pfn++;
1690 } while (pte++, addr += PAGE_SIZE, addr != end);
1691 arch_leave_lazy_mmu_mode();
1692 pte_unmap_unlock(pte - 1, ptl);
1693 return 0;
1696 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
1697 unsigned long addr, unsigned long end,
1698 unsigned long pfn, pgprot_t prot)
1700 pmd_t *pmd;
1701 unsigned long next;
1703 pfn -= addr >> PAGE_SHIFT;
1704 pmd = pmd_alloc(mm, pud, addr);
1705 if (!pmd)
1706 return -ENOMEM;
1707 VM_BUG_ON(pmd_trans_huge(*pmd));
1708 do {
1709 next = pmd_addr_end(addr, end);
1710 if (remap_pte_range(mm, pmd, addr, next,
1711 pfn + (addr >> PAGE_SHIFT), prot))
1712 return -ENOMEM;
1713 } while (pmd++, addr = next, addr != end);
1714 return 0;
1717 static inline int remap_pud_range(struct mm_struct *mm, pgd_t *pgd,
1718 unsigned long addr, unsigned long end,
1719 unsigned long pfn, pgprot_t prot)
1721 pud_t *pud;
1722 unsigned long next;
1724 pfn -= addr >> PAGE_SHIFT;
1725 pud = pud_alloc(mm, pgd, addr);
1726 if (!pud)
1727 return -ENOMEM;
1728 do {
1729 next = pud_addr_end(addr, end);
1730 if (remap_pmd_range(mm, pud, addr, next,
1731 pfn + (addr >> PAGE_SHIFT), prot))
1732 return -ENOMEM;
1733 } while (pud++, addr = next, addr != end);
1734 return 0;
1738 * remap_pfn_range - remap kernel memory to userspace
1739 * @vma: user vma to map to
1740 * @addr: target user address to start at
1741 * @pfn: physical address of kernel memory
1742 * @size: size of map area
1743 * @prot: page protection flags for this mapping
1745 * Note: this is only safe if the mm semaphore is held when called.
1747 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
1748 unsigned long pfn, unsigned long size, pgprot_t prot)
1750 pgd_t *pgd;
1751 unsigned long next;
1752 unsigned long end = addr + PAGE_ALIGN(size);
1753 struct mm_struct *mm = vma->vm_mm;
1754 int err;
1757 * Physically remapped pages are special. Tell the
1758 * rest of the world about it:
1759 * VM_IO tells people not to look at these pages
1760 * (accesses can have side effects).
1761 * VM_PFNMAP tells the core MM that the base pages are just
1762 * raw PFN mappings, and do not have a "struct page" associated
1763 * with them.
1764 * VM_DONTEXPAND
1765 * Disable vma merging and expanding with mremap().
1766 * VM_DONTDUMP
1767 * Omit vma from core dump, even when VM_IO turned off.
1769 * There's a horrible special case to handle copy-on-write
1770 * behaviour that some programs depend on. We mark the "original"
1771 * un-COW'ed pages by matching them up with "vma->vm_pgoff".
1772 * See vm_normal_page() for details.
1774 if (is_cow_mapping(vma->vm_flags)) {
1775 if (addr != vma->vm_start || end != vma->vm_end)
1776 return -EINVAL;
1777 vma->vm_pgoff = pfn;
1780 err = track_pfn_remap(vma, &prot, pfn, addr, PAGE_ALIGN(size));
1781 if (err)
1782 return -EINVAL;
1784 vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP;
1786 BUG_ON(addr >= end);
1787 pfn -= addr >> PAGE_SHIFT;
1788 pgd = pgd_offset(mm, addr);
1789 flush_cache_range(vma, addr, end);
1790 do {
1791 next = pgd_addr_end(addr, end);
1792 err = remap_pud_range(mm, pgd, addr, next,
1793 pfn + (addr >> PAGE_SHIFT), prot);
1794 if (err)
1795 break;
1796 } while (pgd++, addr = next, addr != end);
1798 if (err)
1799 untrack_pfn(vma, pfn, PAGE_ALIGN(size));
1801 return err;
1803 EXPORT_SYMBOL(remap_pfn_range);
1806 * vm_iomap_memory - remap memory to userspace
1807 * @vma: user vma to map to
1808 * @start: start of area
1809 * @len: size of area
1811 * This is a simplified io_remap_pfn_range() for common driver use. The
1812 * driver just needs to give us the physical memory range to be mapped,
1813 * we'll figure out the rest from the vma information.
1815 * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get
1816 * whatever write-combining details or similar.
1818 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
1820 unsigned long vm_len, pfn, pages;
1822 /* Check that the physical memory area passed in looks valid */
1823 if (start + len < start)
1824 return -EINVAL;
1826 * You *really* shouldn't map things that aren't page-aligned,
1827 * but we've historically allowed it because IO memory might
1828 * just have smaller alignment.
1830 len += start & ~PAGE_MASK;
1831 pfn = start >> PAGE_SHIFT;
1832 pages = (len + ~PAGE_MASK) >> PAGE_SHIFT;
1833 if (pfn + pages < pfn)
1834 return -EINVAL;
1836 /* We start the mapping 'vm_pgoff' pages into the area */
1837 if (vma->vm_pgoff > pages)
1838 return -EINVAL;
1839 pfn += vma->vm_pgoff;
1840 pages -= vma->vm_pgoff;
1842 /* Can we fit all of the mapping? */
1843 vm_len = vma->vm_end - vma->vm_start;
1844 if (vm_len >> PAGE_SHIFT > pages)
1845 return -EINVAL;
1847 /* Ok, let it rip */
1848 return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
1850 EXPORT_SYMBOL(vm_iomap_memory);
1852 static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
1853 unsigned long addr, unsigned long end,
1854 pte_fn_t fn, void *data)
1856 pte_t *pte;
1857 int err;
1858 pgtable_t token;
1859 spinlock_t *uninitialized_var(ptl);
1861 pte = (mm == &init_mm) ?
1862 pte_alloc_kernel(pmd, addr) :
1863 pte_alloc_map_lock(mm, pmd, addr, &ptl);
1864 if (!pte)
1865 return -ENOMEM;
1867 BUG_ON(pmd_huge(*pmd));
1869 arch_enter_lazy_mmu_mode();
1871 token = pmd_pgtable(*pmd);
1873 do {
1874 err = fn(pte++, token, addr, data);
1875 if (err)
1876 break;
1877 } while (addr += PAGE_SIZE, addr != end);
1879 arch_leave_lazy_mmu_mode();
1881 if (mm != &init_mm)
1882 pte_unmap_unlock(pte-1, ptl);
1883 return err;
1886 static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
1887 unsigned long addr, unsigned long end,
1888 pte_fn_t fn, void *data)
1890 pmd_t *pmd;
1891 unsigned long next;
1892 int err;
1894 BUG_ON(pud_huge(*pud));
1896 pmd = pmd_alloc(mm, pud, addr);
1897 if (!pmd)
1898 return -ENOMEM;
1899 do {
1900 next = pmd_addr_end(addr, end);
1901 err = apply_to_pte_range(mm, pmd, addr, next, fn, data);
1902 if (err)
1903 break;
1904 } while (pmd++, addr = next, addr != end);
1905 return err;
1908 static int apply_to_pud_range(struct mm_struct *mm, pgd_t *pgd,
1909 unsigned long addr, unsigned long end,
1910 pte_fn_t fn, void *data)
1912 pud_t *pud;
1913 unsigned long next;
1914 int err;
1916 pud = pud_alloc(mm, pgd, addr);
1917 if (!pud)
1918 return -ENOMEM;
1919 do {
1920 next = pud_addr_end(addr, end);
1921 err = apply_to_pmd_range(mm, pud, addr, next, fn, data);
1922 if (err)
1923 break;
1924 } while (pud++, addr = next, addr != end);
1925 return err;
1929 * Scan a region of virtual memory, filling in page tables as necessary
1930 * and calling a provided function on each leaf page table.
1932 int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
1933 unsigned long size, pte_fn_t fn, void *data)
1935 pgd_t *pgd;
1936 unsigned long next;
1937 unsigned long end = addr + size;
1938 int err;
1940 if (WARN_ON(addr >= end))
1941 return -EINVAL;
1943 pgd = pgd_offset(mm, addr);
1944 do {
1945 next = pgd_addr_end(addr, end);
1946 err = apply_to_pud_range(mm, pgd, addr, next, fn, data);
1947 if (err)
1948 break;
1949 } while (pgd++, addr = next, addr != end);
1951 return err;
1953 EXPORT_SYMBOL_GPL(apply_to_page_range);
1956 * handle_pte_fault chooses page fault handler according to an entry which was
1957 * read non-atomically. Before making any commitment, on those architectures
1958 * or configurations (e.g. i386 with PAE) which might give a mix of unmatched
1959 * parts, do_swap_page must check under lock before unmapping the pte and
1960 * proceeding (but do_wp_page is only called after already making such a check;
1961 * and do_anonymous_page can safely check later on).
1963 static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
1964 pte_t *page_table, pte_t orig_pte)
1966 int same = 1;
1967 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
1968 if (sizeof(pte_t) > sizeof(unsigned long)) {
1969 spinlock_t *ptl = pte_lockptr(mm, pmd);
1970 spin_lock(ptl);
1971 same = pte_same(*page_table, orig_pte);
1972 spin_unlock(ptl);
1974 #endif
1975 pte_unmap(page_table);
1976 return same;
1979 static inline void cow_user_page(struct page *dst, struct page *src, unsigned long va, struct vm_area_struct *vma)
1981 debug_dma_assert_idle(src);
1984 * If the source page was a PFN mapping, we don't have
1985 * a "struct page" for it. We do a best-effort copy by
1986 * just copying from the original user address. If that
1987 * fails, we just zero-fill it. Live with it.
1989 if (unlikely(!src)) {
1990 void *kaddr = kmap_atomic(dst);
1991 void __user *uaddr = (void __user *)(va & PAGE_MASK);
1994 * This really shouldn't fail, because the page is there
1995 * in the page tables. But it might just be unreadable,
1996 * in which case we just give up and fill the result with
1997 * zeroes.
1999 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE))
2000 clear_page(kaddr);
2001 kunmap_atomic(kaddr);
2002 flush_dcache_page(dst);
2003 } else
2004 copy_user_highpage(dst, src, va, vma);
2007 static gfp_t __get_fault_gfp_mask(struct vm_area_struct *vma)
2009 struct file *vm_file = vma->vm_file;
2011 if (vm_file)
2012 return mapping_gfp_mask(vm_file->f_mapping) | __GFP_FS | __GFP_IO;
2015 * Special mappings (e.g. VDSO) do not have any file so fake
2016 * a default GFP_KERNEL for them.
2018 return GFP_KERNEL;
2022 * Notify the address space that the page is about to become writable so that
2023 * it can prohibit this or wait for the page to get into an appropriate state.
2025 * We do this without the lock held, so that it can sleep if it needs to.
2027 static int do_page_mkwrite(struct vm_area_struct *vma, struct page *page,
2028 unsigned long address)
2030 struct vm_fault vmf;
2031 int ret;
2033 vmf.virtual_address = (void __user *)(address & PAGE_MASK);
2034 vmf.pgoff = page->index;
2035 vmf.flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
2036 vmf.gfp_mask = __get_fault_gfp_mask(vma);
2037 vmf.page = page;
2038 vmf.cow_page = NULL;
2040 ret = vma->vm_ops->page_mkwrite(vma, &vmf);
2041 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))
2042 return ret;
2043 if (unlikely(!(ret & VM_FAULT_LOCKED))) {
2044 lock_page(page);
2045 if (!page->mapping) {
2046 unlock_page(page);
2047 return 0; /* retry */
2049 ret |= VM_FAULT_LOCKED;
2050 } else
2051 VM_BUG_ON_PAGE(!PageLocked(page), page);
2052 return ret;
2056 * Handle write page faults for pages that can be reused in the current vma
2058 * This can happen either due to the mapping being with the VM_SHARED flag,
2059 * or due to us being the last reference standing to the page. In either
2060 * case, all we need to do here is to mark the page as writable and update
2061 * any related book-keeping.
2063 static inline int wp_page_reuse(struct mm_struct *mm,
2064 struct vm_area_struct *vma, unsigned long address,
2065 pte_t *page_table, spinlock_t *ptl, pte_t orig_pte,
2066 struct page *page, int page_mkwrite,
2067 int dirty_shared)
2068 __releases(ptl)
2070 pte_t entry;
2072 * Clear the pages cpupid information as the existing
2073 * information potentially belongs to a now completely
2074 * unrelated process.
2076 if (page)
2077 page_cpupid_xchg_last(page, (1 << LAST_CPUPID_SHIFT) - 1);
2079 flush_cache_page(vma, address, pte_pfn(orig_pte));
2080 entry = pte_mkyoung(orig_pte);
2081 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2082 if (ptep_set_access_flags(vma, address, page_table, entry, 1))
2083 update_mmu_cache(vma, address, page_table);
2084 pte_unmap_unlock(page_table, ptl);
2086 if (dirty_shared) {
2087 struct address_space *mapping;
2088 int dirtied;
2090 if (!page_mkwrite)
2091 lock_page(page);
2093 dirtied = set_page_dirty(page);
2094 VM_BUG_ON_PAGE(PageAnon(page), page);
2095 mapping = page->mapping;
2096 unlock_page(page);
2097 put_page(page);
2099 if ((dirtied || page_mkwrite) && mapping) {
2101 * Some device drivers do not set page.mapping
2102 * but still dirty their pages
2104 balance_dirty_pages_ratelimited(mapping);
2107 if (!page_mkwrite)
2108 file_update_time(vma->vm_file);
2111 return VM_FAULT_WRITE;
2115 * Handle the case of a page which we actually need to copy to a new page.
2117 * Called with mmap_sem locked and the old page referenced, but
2118 * without the ptl held.
2120 * High level logic flow:
2122 * - Allocate a page, copy the content of the old page to the new one.
2123 * - Handle book keeping and accounting - cgroups, mmu-notifiers, etc.
2124 * - Take the PTL. If the pte changed, bail out and release the allocated page
2125 * - If the pte is still the way we remember it, update the page table and all
2126 * relevant references. This includes dropping the reference the page-table
2127 * held to the old page, as well as updating the rmap.
2128 * - In any case, unlock the PTL and drop the reference we took to the old page.
2130 static int wp_page_copy(struct mm_struct *mm, struct vm_area_struct *vma,
2131 unsigned long address, pte_t *page_table, pmd_t *pmd,
2132 pte_t orig_pte, struct page *old_page)
2134 struct page *new_page = NULL;
2135 spinlock_t *ptl = NULL;
2136 pte_t entry;
2137 int page_copied = 0;
2138 const unsigned long mmun_start = address & PAGE_MASK; /* For mmu_notifiers */
2139 const unsigned long mmun_end = mmun_start + PAGE_SIZE; /* For mmu_notifiers */
2140 struct mem_cgroup *memcg;
2142 if (unlikely(anon_vma_prepare(vma)))
2143 goto oom;
2145 if (is_zero_pfn(pte_pfn(orig_pte))) {
2146 new_page = alloc_zeroed_user_highpage_movable(vma, address);
2147 if (!new_page)
2148 goto oom;
2149 } else {
2150 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
2151 if (!new_page)
2152 goto oom;
2153 cow_user_page(new_page, old_page, address, vma);
2156 if (mem_cgroup_try_charge(new_page, mm, GFP_KERNEL, &memcg, false))
2157 goto oom_free_new;
2159 __SetPageUptodate(new_page);
2161 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
2164 * Re-check the pte - we dropped the lock
2166 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2167 if (likely(pte_same(*page_table, orig_pte))) {
2168 if (old_page) {
2169 if (!PageAnon(old_page)) {
2170 dec_mm_counter_fast(mm,
2171 mm_counter_file(old_page));
2172 inc_mm_counter_fast(mm, MM_ANONPAGES);
2174 } else {
2175 inc_mm_counter_fast(mm, MM_ANONPAGES);
2177 flush_cache_page(vma, address, pte_pfn(orig_pte));
2178 entry = mk_pte(new_page, vma->vm_page_prot);
2179 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2181 * Clear the pte entry and flush it first, before updating the
2182 * pte with the new entry. This will avoid a race condition
2183 * seen in the presence of one thread doing SMC and another
2184 * thread doing COW.
2186 ptep_clear_flush_notify(vma, address, page_table);
2187 page_add_new_anon_rmap(new_page, vma, address, false);
2188 mem_cgroup_commit_charge(new_page, memcg, false, false);
2189 lru_cache_add_active_or_unevictable(new_page, vma);
2191 * We call the notify macro here because, when using secondary
2192 * mmu page tables (such as kvm shadow page tables), we want the
2193 * new page to be mapped directly into the secondary page table.
2195 set_pte_at_notify(mm, address, page_table, entry);
2196 update_mmu_cache(vma, address, page_table);
2197 if (old_page) {
2199 * Only after switching the pte to the new page may
2200 * we remove the mapcount here. Otherwise another
2201 * process may come and find the rmap count decremented
2202 * before the pte is switched to the new page, and
2203 * "reuse" the old page writing into it while our pte
2204 * here still points into it and can be read by other
2205 * threads.
2207 * The critical issue is to order this
2208 * page_remove_rmap with the ptp_clear_flush above.
2209 * Those stores are ordered by (if nothing else,)
2210 * the barrier present in the atomic_add_negative
2211 * in page_remove_rmap.
2213 * Then the TLB flush in ptep_clear_flush ensures that
2214 * no process can access the old page before the
2215 * decremented mapcount is visible. And the old page
2216 * cannot be reused until after the decremented
2217 * mapcount is visible. So transitively, TLBs to
2218 * old page will be flushed before it can be reused.
2220 page_remove_rmap(old_page, false);
2223 /* Free the old page.. */
2224 new_page = old_page;
2225 page_copied = 1;
2226 } else {
2227 mem_cgroup_cancel_charge(new_page, memcg, false);
2230 if (new_page)
2231 put_page(new_page);
2233 pte_unmap_unlock(page_table, ptl);
2234 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2235 if (old_page) {
2237 * Don't let another task, with possibly unlocked vma,
2238 * keep the mlocked page.
2240 if (page_copied && (vma->vm_flags & VM_LOCKED)) {
2241 lock_page(old_page); /* LRU manipulation */
2242 if (PageMlocked(old_page))
2243 munlock_vma_page(old_page);
2244 unlock_page(old_page);
2246 put_page(old_page);
2248 return page_copied ? VM_FAULT_WRITE : 0;
2249 oom_free_new:
2250 put_page(new_page);
2251 oom:
2252 if (old_page)
2253 put_page(old_page);
2254 return VM_FAULT_OOM;
2258 * Handle write page faults for VM_MIXEDMAP or VM_PFNMAP for a VM_SHARED
2259 * mapping
2261 static int wp_pfn_shared(struct mm_struct *mm,
2262 struct vm_area_struct *vma, unsigned long address,
2263 pte_t *page_table, spinlock_t *ptl, pte_t orig_pte,
2264 pmd_t *pmd)
2266 if (vma->vm_ops && vma->vm_ops->pfn_mkwrite) {
2267 struct vm_fault vmf = {
2268 .page = NULL,
2269 .pgoff = linear_page_index(vma, address),
2270 .virtual_address = (void __user *)(address & PAGE_MASK),
2271 .flags = FAULT_FLAG_WRITE | FAULT_FLAG_MKWRITE,
2273 int ret;
2275 pte_unmap_unlock(page_table, ptl);
2276 ret = vma->vm_ops->pfn_mkwrite(vma, &vmf);
2277 if (ret & VM_FAULT_ERROR)
2278 return ret;
2279 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2281 * We might have raced with another page fault while we
2282 * released the pte_offset_map_lock.
2284 if (!pte_same(*page_table, orig_pte)) {
2285 pte_unmap_unlock(page_table, ptl);
2286 return 0;
2289 return wp_page_reuse(mm, vma, address, page_table, ptl, orig_pte,
2290 NULL, 0, 0);
2293 static int wp_page_shared(struct mm_struct *mm, struct vm_area_struct *vma,
2294 unsigned long address, pte_t *page_table,
2295 pmd_t *pmd, spinlock_t *ptl, pte_t orig_pte,
2296 struct page *old_page)
2297 __releases(ptl)
2299 int page_mkwrite = 0;
2301 get_page(old_page);
2303 if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
2304 int tmp;
2306 pte_unmap_unlock(page_table, ptl);
2307 tmp = do_page_mkwrite(vma, old_page, address);
2308 if (unlikely(!tmp || (tmp &
2309 (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
2310 put_page(old_page);
2311 return tmp;
2314 * Since we dropped the lock we need to revalidate
2315 * the PTE as someone else may have changed it. If
2316 * they did, we just return, as we can count on the
2317 * MMU to tell us if they didn't also make it writable.
2319 page_table = pte_offset_map_lock(mm, pmd, address,
2320 &ptl);
2321 if (!pte_same(*page_table, orig_pte)) {
2322 unlock_page(old_page);
2323 pte_unmap_unlock(page_table, ptl);
2324 put_page(old_page);
2325 return 0;
2327 page_mkwrite = 1;
2330 return wp_page_reuse(mm, vma, address, page_table, ptl,
2331 orig_pte, old_page, page_mkwrite, 1);
2335 * This routine handles present pages, when users try to write
2336 * to a shared page. It is done by copying the page to a new address
2337 * and decrementing the shared-page counter for the old page.
2339 * Note that this routine assumes that the protection checks have been
2340 * done by the caller (the low-level page fault routine in most cases).
2341 * Thus we can safely just mark it writable once we've done any necessary
2342 * COW.
2344 * We also mark the page dirty at this point even though the page will
2345 * change only once the write actually happens. This avoids a few races,
2346 * and potentially makes it more efficient.
2348 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2349 * but allow concurrent faults), with pte both mapped and locked.
2350 * We return with mmap_sem still held, but pte unmapped and unlocked.
2352 static int do_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
2353 unsigned long address, pte_t *page_table, pmd_t *pmd,
2354 spinlock_t *ptl, pte_t orig_pte)
2355 __releases(ptl)
2357 struct page *old_page;
2359 old_page = vm_normal_page(vma, address, orig_pte);
2360 if (!old_page) {
2362 * VM_MIXEDMAP !pfn_valid() case, or VM_SOFTDIRTY clear on a
2363 * VM_PFNMAP VMA.
2365 * We should not cow pages in a shared writeable mapping.
2366 * Just mark the pages writable and/or call ops->pfn_mkwrite.
2368 if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2369 (VM_WRITE|VM_SHARED))
2370 return wp_pfn_shared(mm, vma, address, page_table, ptl,
2371 orig_pte, pmd);
2373 pte_unmap_unlock(page_table, ptl);
2374 return wp_page_copy(mm, vma, address, page_table, pmd,
2375 orig_pte, old_page);
2379 * Take out anonymous pages first, anonymous shared vmas are
2380 * not dirty accountable.
2382 if (PageAnon(old_page) && !PageKsm(old_page)) {
2383 if (!trylock_page(old_page)) {
2384 get_page(old_page);
2385 pte_unmap_unlock(page_table, ptl);
2386 lock_page(old_page);
2387 page_table = pte_offset_map_lock(mm, pmd, address,
2388 &ptl);
2389 if (!pte_same(*page_table, orig_pte)) {
2390 unlock_page(old_page);
2391 pte_unmap_unlock(page_table, ptl);
2392 put_page(old_page);
2393 return 0;
2395 put_page(old_page);
2397 if (reuse_swap_page(old_page)) {
2399 * The page is all ours. Move it to our anon_vma so
2400 * the rmap code will not search our parent or siblings.
2401 * Protected against the rmap code by the page lock.
2403 page_move_anon_rmap(old_page, vma, address);
2404 unlock_page(old_page);
2405 return wp_page_reuse(mm, vma, address, page_table, ptl,
2406 orig_pte, old_page, 0, 0);
2408 unlock_page(old_page);
2409 } else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2410 (VM_WRITE|VM_SHARED))) {
2411 return wp_page_shared(mm, vma, address, page_table, pmd,
2412 ptl, orig_pte, old_page);
2416 * Ok, we need to copy. Oh, well..
2418 get_page(old_page);
2420 pte_unmap_unlock(page_table, ptl);
2421 return wp_page_copy(mm, vma, address, page_table, pmd,
2422 orig_pte, old_page);
2425 static void unmap_mapping_range_vma(struct vm_area_struct *vma,
2426 unsigned long start_addr, unsigned long end_addr,
2427 struct zap_details *details)
2429 zap_page_range_single(vma, start_addr, end_addr - start_addr, details);
2432 static inline void unmap_mapping_range_tree(struct rb_root *root,
2433 struct zap_details *details)
2435 struct vm_area_struct *vma;
2436 pgoff_t vba, vea, zba, zea;
2438 vma_interval_tree_foreach(vma, root,
2439 details->first_index, details->last_index) {
2441 vba = vma->vm_pgoff;
2442 vea = vba + vma_pages(vma) - 1;
2443 zba = details->first_index;
2444 if (zba < vba)
2445 zba = vba;
2446 zea = details->last_index;
2447 if (zea > vea)
2448 zea = vea;
2450 unmap_mapping_range_vma(vma,
2451 ((zba - vba) << PAGE_SHIFT) + vma->vm_start,
2452 ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
2453 details);
2458 * unmap_mapping_range - unmap the portion of all mmaps in the specified
2459 * address_space corresponding to the specified page range in the underlying
2460 * file.
2462 * @mapping: the address space containing mmaps to be unmapped.
2463 * @holebegin: byte in first page to unmap, relative to the start of
2464 * the underlying file. This will be rounded down to a PAGE_SIZE
2465 * boundary. Note that this is different from truncate_pagecache(), which
2466 * must keep the partial page. In contrast, we must get rid of
2467 * partial pages.
2468 * @holelen: size of prospective hole in bytes. This will be rounded
2469 * up to a PAGE_SIZE boundary. A holelen of zero truncates to the
2470 * end of the file.
2471 * @even_cows: 1 when truncating a file, unmap even private COWed pages;
2472 * but 0 when invalidating pagecache, don't throw away private data.
2474 void unmap_mapping_range(struct address_space *mapping,
2475 loff_t const holebegin, loff_t const holelen, int even_cows)
2477 struct zap_details details = { };
2478 pgoff_t hba = holebegin >> PAGE_SHIFT;
2479 pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2481 /* Check for overflow. */
2482 if (sizeof(holelen) > sizeof(hlen)) {
2483 long long holeend =
2484 (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2485 if (holeend & ~(long long)ULONG_MAX)
2486 hlen = ULONG_MAX - hba + 1;
2489 details.check_mapping = even_cows? NULL: mapping;
2490 details.first_index = hba;
2491 details.last_index = hba + hlen - 1;
2492 if (details.last_index < details.first_index)
2493 details.last_index = ULONG_MAX;
2496 /* DAX uses i_mmap_lock to serialise file truncate vs page fault */
2497 i_mmap_lock_write(mapping);
2498 if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap)))
2499 unmap_mapping_range_tree(&mapping->i_mmap, &details);
2500 i_mmap_unlock_write(mapping);
2502 EXPORT_SYMBOL(unmap_mapping_range);
2505 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2506 * but allow concurrent faults), and pte mapped but not yet locked.
2507 * We return with pte unmapped and unlocked.
2509 * We return with the mmap_sem locked or unlocked in the same cases
2510 * as does filemap_fault().
2512 static int do_swap_page(struct mm_struct *mm, struct vm_area_struct *vma,
2513 unsigned long address, pte_t *page_table, pmd_t *pmd,
2514 unsigned int flags, pte_t orig_pte)
2516 spinlock_t *ptl;
2517 struct page *page, *swapcache;
2518 struct mem_cgroup *memcg;
2519 swp_entry_t entry;
2520 pte_t pte;
2521 int locked;
2522 int exclusive = 0;
2523 int ret = 0;
2525 if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
2526 goto out;
2528 entry = pte_to_swp_entry(orig_pte);
2529 if (unlikely(non_swap_entry(entry))) {
2530 if (is_migration_entry(entry)) {
2531 migration_entry_wait(mm, pmd, address);
2532 } else if (is_hwpoison_entry(entry)) {
2533 ret = VM_FAULT_HWPOISON;
2534 } else {
2535 print_bad_pte(vma, address, orig_pte, NULL);
2536 ret = VM_FAULT_SIGBUS;
2538 goto out;
2540 delayacct_set_flag(DELAYACCT_PF_SWAPIN);
2541 page = lookup_swap_cache(entry);
2542 if (!page) {
2543 page = swapin_readahead(entry,
2544 GFP_HIGHUSER_MOVABLE, vma, address);
2545 if (!page) {
2547 * Back out if somebody else faulted in this pte
2548 * while we released the pte lock.
2550 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2551 if (likely(pte_same(*page_table, orig_pte)))
2552 ret = VM_FAULT_OOM;
2553 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2554 goto unlock;
2557 /* Had to read the page from swap area: Major fault */
2558 ret = VM_FAULT_MAJOR;
2559 count_vm_event(PGMAJFAULT);
2560 mem_cgroup_count_vm_event(mm, PGMAJFAULT);
2561 } else if (PageHWPoison(page)) {
2563 * hwpoisoned dirty swapcache pages are kept for killing
2564 * owner processes (which may be unknown at hwpoison time)
2566 ret = VM_FAULT_HWPOISON;
2567 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2568 swapcache = page;
2569 goto out_release;
2572 swapcache = page;
2573 locked = lock_page_or_retry(page, mm, flags);
2575 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2576 if (!locked) {
2577 ret |= VM_FAULT_RETRY;
2578 goto out_release;
2582 * Make sure try_to_free_swap or reuse_swap_page or swapoff did not
2583 * release the swapcache from under us. The page pin, and pte_same
2584 * test below, are not enough to exclude that. Even if it is still
2585 * swapcache, we need to check that the page's swap has not changed.
2587 if (unlikely(!PageSwapCache(page) || page_private(page) != entry.val))
2588 goto out_page;
2590 page = ksm_might_need_to_copy(page, vma, address);
2591 if (unlikely(!page)) {
2592 ret = VM_FAULT_OOM;
2593 page = swapcache;
2594 goto out_page;
2597 if (mem_cgroup_try_charge(page, mm, GFP_KERNEL, &memcg, false)) {
2598 ret = VM_FAULT_OOM;
2599 goto out_page;
2603 * Back out if somebody else already faulted in this pte.
2605 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2606 if (unlikely(!pte_same(*page_table, orig_pte)))
2607 goto out_nomap;
2609 if (unlikely(!PageUptodate(page))) {
2610 ret = VM_FAULT_SIGBUS;
2611 goto out_nomap;
2615 * The page isn't present yet, go ahead with the fault.
2617 * Be careful about the sequence of operations here.
2618 * To get its accounting right, reuse_swap_page() must be called
2619 * while the page is counted on swap but not yet in mapcount i.e.
2620 * before page_add_anon_rmap() and swap_free(); try_to_free_swap()
2621 * must be called after the swap_free(), or it will never succeed.
2624 inc_mm_counter_fast(mm, MM_ANONPAGES);
2625 dec_mm_counter_fast(mm, MM_SWAPENTS);
2626 pte = mk_pte(page, vma->vm_page_prot);
2627 if ((flags & FAULT_FLAG_WRITE) && reuse_swap_page(page)) {
2628 pte = maybe_mkwrite(pte_mkdirty(pte), vma);
2629 flags &= ~FAULT_FLAG_WRITE;
2630 ret |= VM_FAULT_WRITE;
2631 exclusive = RMAP_EXCLUSIVE;
2633 flush_icache_page(vma, page);
2634 if (pte_swp_soft_dirty(orig_pte))
2635 pte = pte_mksoft_dirty(pte);
2636 set_pte_at(mm, address, page_table, pte);
2637 if (page == swapcache) {
2638 do_page_add_anon_rmap(page, vma, address, exclusive);
2639 mem_cgroup_commit_charge(page, memcg, true, false);
2640 } else { /* ksm created a completely new copy */
2641 page_add_new_anon_rmap(page, vma, address, false);
2642 mem_cgroup_commit_charge(page, memcg, false, false);
2643 lru_cache_add_active_or_unevictable(page, vma);
2646 swap_free(entry);
2647 if (mem_cgroup_swap_full(page) ||
2648 (vma->vm_flags & VM_LOCKED) || PageMlocked(page))
2649 try_to_free_swap(page);
2650 unlock_page(page);
2651 if (page != swapcache) {
2653 * Hold the lock to avoid the swap entry to be reused
2654 * until we take the PT lock for the pte_same() check
2655 * (to avoid false positives from pte_same). For
2656 * further safety release the lock after the swap_free
2657 * so that the swap count won't change under a
2658 * parallel locked swapcache.
2660 unlock_page(swapcache);
2661 put_page(swapcache);
2664 if (flags & FAULT_FLAG_WRITE) {
2665 ret |= do_wp_page(mm, vma, address, page_table, pmd, ptl, pte);
2666 if (ret & VM_FAULT_ERROR)
2667 ret &= VM_FAULT_ERROR;
2668 goto out;
2671 /* No need to invalidate - it was non-present before */
2672 update_mmu_cache(vma, address, page_table);
2673 unlock:
2674 pte_unmap_unlock(page_table, ptl);
2675 out:
2676 return ret;
2677 out_nomap:
2678 mem_cgroup_cancel_charge(page, memcg, false);
2679 pte_unmap_unlock(page_table, ptl);
2680 out_page:
2681 unlock_page(page);
2682 out_release:
2683 put_page(page);
2684 if (page != swapcache) {
2685 unlock_page(swapcache);
2686 put_page(swapcache);
2688 return ret;
2692 * This is like a special single-page "expand_{down|up}wards()",
2693 * except we must first make sure that 'address{-|+}PAGE_SIZE'
2694 * doesn't hit another vma.
2696 static inline int check_stack_guard_page(struct vm_area_struct *vma, unsigned long address)
2698 address &= PAGE_MASK;
2699 if ((vma->vm_flags & VM_GROWSDOWN) && address == vma->vm_start) {
2700 struct vm_area_struct *prev = vma->vm_prev;
2703 * Is there a mapping abutting this one below?
2705 * That's only ok if it's the same stack mapping
2706 * that has gotten split..
2708 if (prev && prev->vm_end == address)
2709 return prev->vm_flags & VM_GROWSDOWN ? 0 : -ENOMEM;
2711 return expand_downwards(vma, address - PAGE_SIZE);
2713 if ((vma->vm_flags & VM_GROWSUP) && address + PAGE_SIZE == vma->vm_end) {
2714 struct vm_area_struct *next = vma->vm_next;
2716 /* As VM_GROWSDOWN but s/below/above/ */
2717 if (next && next->vm_start == address + PAGE_SIZE)
2718 return next->vm_flags & VM_GROWSUP ? 0 : -ENOMEM;
2720 return expand_upwards(vma, address + PAGE_SIZE);
2722 return 0;
2726 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2727 * but allow concurrent faults), and pte mapped but not yet locked.
2728 * We return with mmap_sem still held, but pte unmapped and unlocked.
2730 static int do_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
2731 unsigned long address, pte_t *page_table, pmd_t *pmd,
2732 unsigned int flags)
2734 struct mem_cgroup *memcg;
2735 struct page *page;
2736 spinlock_t *ptl;
2737 pte_t entry;
2739 pte_unmap(page_table);
2741 /* File mapping without ->vm_ops ? */
2742 if (vma->vm_flags & VM_SHARED)
2743 return VM_FAULT_SIGBUS;
2745 /* Check if we need to add a guard page to the stack */
2746 if (check_stack_guard_page(vma, address) < 0)
2747 return VM_FAULT_SIGSEGV;
2749 /* Use the zero-page for reads */
2750 if (!(flags & FAULT_FLAG_WRITE) && !mm_forbids_zeropage(mm)) {
2751 entry = pte_mkspecial(pfn_pte(my_zero_pfn(address),
2752 vma->vm_page_prot));
2753 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2754 if (!pte_none(*page_table))
2755 goto unlock;
2756 /* Deliver the page fault to userland, check inside PT lock */
2757 if (userfaultfd_missing(vma)) {
2758 pte_unmap_unlock(page_table, ptl);
2759 return handle_userfault(vma, address, flags,
2760 VM_UFFD_MISSING);
2762 goto setpte;
2765 /* Allocate our own private page. */
2766 if (unlikely(anon_vma_prepare(vma)))
2767 goto oom;
2768 page = alloc_zeroed_user_highpage_movable(vma, address);
2769 if (!page)
2770 goto oom;
2772 if (mem_cgroup_try_charge(page, mm, GFP_KERNEL, &memcg, false))
2773 goto oom_free_page;
2776 * The memory barrier inside __SetPageUptodate makes sure that
2777 * preceeding stores to the page contents become visible before
2778 * the set_pte_at() write.
2780 __SetPageUptodate(page);
2782 entry = mk_pte(page, vma->vm_page_prot);
2783 if (vma->vm_flags & VM_WRITE)
2784 entry = pte_mkwrite(pte_mkdirty(entry));
2786 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2787 if (!pte_none(*page_table))
2788 goto release;
2790 /* Deliver the page fault to userland, check inside PT lock */
2791 if (userfaultfd_missing(vma)) {
2792 pte_unmap_unlock(page_table, ptl);
2793 mem_cgroup_cancel_charge(page, memcg, false);
2794 put_page(page);
2795 return handle_userfault(vma, address, flags,
2796 VM_UFFD_MISSING);
2799 inc_mm_counter_fast(mm, MM_ANONPAGES);
2800 page_add_new_anon_rmap(page, vma, address, false);
2801 mem_cgroup_commit_charge(page, memcg, false, false);
2802 lru_cache_add_active_or_unevictable(page, vma);
2803 setpte:
2804 set_pte_at(mm, address, page_table, entry);
2806 /* No need to invalidate - it was non-present before */
2807 update_mmu_cache(vma, address, page_table);
2808 unlock:
2809 pte_unmap_unlock(page_table, ptl);
2810 return 0;
2811 release:
2812 mem_cgroup_cancel_charge(page, memcg, false);
2813 put_page(page);
2814 goto unlock;
2815 oom_free_page:
2816 put_page(page);
2817 oom:
2818 return VM_FAULT_OOM;
2822 * The mmap_sem must have been held on entry, and may have been
2823 * released depending on flags and vma->vm_ops->fault() return value.
2824 * See filemap_fault() and __lock_page_retry().
2826 static int __do_fault(struct vm_area_struct *vma, unsigned long address,
2827 pgoff_t pgoff, unsigned int flags,
2828 struct page *cow_page, struct page **page)
2830 struct vm_fault vmf;
2831 int ret;
2833 vmf.virtual_address = (void __user *)(address & PAGE_MASK);
2834 vmf.pgoff = pgoff;
2835 vmf.flags = flags;
2836 vmf.page = NULL;
2837 vmf.gfp_mask = __get_fault_gfp_mask(vma);
2838 vmf.cow_page = cow_page;
2840 ret = vma->vm_ops->fault(vma, &vmf);
2841 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
2842 return ret;
2843 if (!vmf.page)
2844 goto out;
2846 if (unlikely(PageHWPoison(vmf.page))) {
2847 if (ret & VM_FAULT_LOCKED)
2848 unlock_page(vmf.page);
2849 put_page(vmf.page);
2850 return VM_FAULT_HWPOISON;
2853 if (unlikely(!(ret & VM_FAULT_LOCKED)))
2854 lock_page(vmf.page);
2855 else
2856 VM_BUG_ON_PAGE(!PageLocked(vmf.page), vmf.page);
2858 out:
2859 *page = vmf.page;
2860 return ret;
2864 * do_set_pte - setup new PTE entry for given page and add reverse page mapping.
2866 * @vma: virtual memory area
2867 * @address: user virtual address
2868 * @page: page to map
2869 * @pte: pointer to target page table entry
2870 * @write: true, if new entry is writable
2871 * @anon: true, if it's anonymous page
2873 * Caller must hold page table lock relevant for @pte.
2875 * Target users are page handler itself and implementations of
2876 * vm_ops->map_pages.
2878 void do_set_pte(struct vm_area_struct *vma, unsigned long address,
2879 struct page *page, pte_t *pte, bool write, bool anon)
2881 pte_t entry;
2883 flush_icache_page(vma, page);
2884 entry = mk_pte(page, vma->vm_page_prot);
2885 if (write)
2886 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2887 if (anon) {
2888 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
2889 page_add_new_anon_rmap(page, vma, address, false);
2890 } else {
2891 inc_mm_counter_fast(vma->vm_mm, mm_counter_file(page));
2892 page_add_file_rmap(page);
2894 set_pte_at(vma->vm_mm, address, pte, entry);
2896 /* no need to invalidate: a not-present page won't be cached */
2897 update_mmu_cache(vma, address, pte);
2900 static unsigned long fault_around_bytes __read_mostly =
2901 rounddown_pow_of_two(65536);
2903 #ifdef CONFIG_DEBUG_FS
2904 static int fault_around_bytes_get(void *data, u64 *val)
2906 *val = fault_around_bytes;
2907 return 0;
2911 * fault_around_pages() and fault_around_mask() expects fault_around_bytes
2912 * rounded down to nearest page order. It's what do_fault_around() expects to
2913 * see.
2915 static int fault_around_bytes_set(void *data, u64 val)
2917 if (val / PAGE_SIZE > PTRS_PER_PTE)
2918 return -EINVAL;
2919 if (val > PAGE_SIZE)
2920 fault_around_bytes = rounddown_pow_of_two(val);
2921 else
2922 fault_around_bytes = PAGE_SIZE; /* rounddown_pow_of_two(0) is undefined */
2923 return 0;
2925 DEFINE_SIMPLE_ATTRIBUTE(fault_around_bytes_fops,
2926 fault_around_bytes_get, fault_around_bytes_set, "%llu\n");
2928 static int __init fault_around_debugfs(void)
2930 void *ret;
2932 ret = debugfs_create_file("fault_around_bytes", 0644, NULL, NULL,
2933 &fault_around_bytes_fops);
2934 if (!ret)
2935 pr_warn("Failed to create fault_around_bytes in debugfs");
2936 return 0;
2938 late_initcall(fault_around_debugfs);
2939 #endif
2942 * do_fault_around() tries to map few pages around the fault address. The hope
2943 * is that the pages will be needed soon and this will lower the number of
2944 * faults to handle.
2946 * It uses vm_ops->map_pages() to map the pages, which skips the page if it's
2947 * not ready to be mapped: not up-to-date, locked, etc.
2949 * This function is called with the page table lock taken. In the split ptlock
2950 * case the page table lock only protects only those entries which belong to
2951 * the page table corresponding to the fault address.
2953 * This function doesn't cross the VMA boundaries, in order to call map_pages()
2954 * only once.
2956 * fault_around_pages() defines how many pages we'll try to map.
2957 * do_fault_around() expects it to return a power of two less than or equal to
2958 * PTRS_PER_PTE.
2960 * The virtual address of the area that we map is naturally aligned to the
2961 * fault_around_pages() value (and therefore to page order). This way it's
2962 * easier to guarantee that we don't cross page table boundaries.
2964 static void do_fault_around(struct vm_area_struct *vma, unsigned long address,
2965 pte_t *pte, pgoff_t pgoff, unsigned int flags)
2967 unsigned long start_addr, nr_pages, mask;
2968 pgoff_t max_pgoff;
2969 struct vm_fault vmf;
2970 int off;
2972 nr_pages = READ_ONCE(fault_around_bytes) >> PAGE_SHIFT;
2973 mask = ~(nr_pages * PAGE_SIZE - 1) & PAGE_MASK;
2975 start_addr = max(address & mask, vma->vm_start);
2976 off = ((address - start_addr) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1);
2977 pte -= off;
2978 pgoff -= off;
2981 * max_pgoff is either end of page table or end of vma
2982 * or fault_around_pages() from pgoff, depending what is nearest.
2984 max_pgoff = pgoff - ((start_addr >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)) +
2985 PTRS_PER_PTE - 1;
2986 max_pgoff = min3(max_pgoff, vma_pages(vma) + vma->vm_pgoff - 1,
2987 pgoff + nr_pages - 1);
2989 /* Check if it makes any sense to call ->map_pages */
2990 while (!pte_none(*pte)) {
2991 if (++pgoff > max_pgoff)
2992 return;
2993 start_addr += PAGE_SIZE;
2994 if (start_addr >= vma->vm_end)
2995 return;
2996 pte++;
2999 vmf.virtual_address = (void __user *) start_addr;
3000 vmf.pte = pte;
3001 vmf.pgoff = pgoff;
3002 vmf.max_pgoff = max_pgoff;
3003 vmf.flags = flags;
3004 vmf.gfp_mask = __get_fault_gfp_mask(vma);
3005 vma->vm_ops->map_pages(vma, &vmf);
3008 static int do_read_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3009 unsigned long address, pmd_t *pmd,
3010 pgoff_t pgoff, unsigned int flags, pte_t orig_pte)
3012 struct page *fault_page;
3013 spinlock_t *ptl;
3014 pte_t *pte;
3015 int ret = 0;
3018 * Let's call ->map_pages() first and use ->fault() as fallback
3019 * if page by the offset is not ready to be mapped (cold cache or
3020 * something).
3022 if (vma->vm_ops->map_pages && fault_around_bytes >> PAGE_SHIFT > 1) {
3023 pte = pte_offset_map_lock(mm, pmd, address, &ptl);
3024 do_fault_around(vma, address, pte, pgoff, flags);
3025 if (!pte_same(*pte, orig_pte))
3026 goto unlock_out;
3027 pte_unmap_unlock(pte, ptl);
3030 ret = __do_fault(vma, address, pgoff, flags, NULL, &fault_page);
3031 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3032 return ret;
3034 pte = pte_offset_map_lock(mm, pmd, address, &ptl);
3035 if (unlikely(!pte_same(*pte, orig_pte))) {
3036 pte_unmap_unlock(pte, ptl);
3037 unlock_page(fault_page);
3038 put_page(fault_page);
3039 return ret;
3041 do_set_pte(vma, address, fault_page, pte, false, false);
3042 unlock_page(fault_page);
3043 unlock_out:
3044 pte_unmap_unlock(pte, ptl);
3045 return ret;
3048 static int do_cow_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3049 unsigned long address, pmd_t *pmd,
3050 pgoff_t pgoff, unsigned int flags, pte_t orig_pte)
3052 struct page *fault_page, *new_page;
3053 struct mem_cgroup *memcg;
3054 spinlock_t *ptl;
3055 pte_t *pte;
3056 int ret;
3058 if (unlikely(anon_vma_prepare(vma)))
3059 return VM_FAULT_OOM;
3061 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
3062 if (!new_page)
3063 return VM_FAULT_OOM;
3065 if (mem_cgroup_try_charge(new_page, mm, GFP_KERNEL, &memcg, false)) {
3066 put_page(new_page);
3067 return VM_FAULT_OOM;
3070 ret = __do_fault(vma, address, pgoff, flags, new_page, &fault_page);
3071 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3072 goto uncharge_out;
3074 if (fault_page)
3075 copy_user_highpage(new_page, fault_page, address, vma);
3076 __SetPageUptodate(new_page);
3078 pte = pte_offset_map_lock(mm, pmd, address, &ptl);
3079 if (unlikely(!pte_same(*pte, orig_pte))) {
3080 pte_unmap_unlock(pte, ptl);
3081 if (fault_page) {
3082 unlock_page(fault_page);
3083 put_page(fault_page);
3084 } else {
3086 * The fault handler has no page to lock, so it holds
3087 * i_mmap_lock for read to protect against truncate.
3089 i_mmap_unlock_read(vma->vm_file->f_mapping);
3091 goto uncharge_out;
3093 do_set_pte(vma, address, new_page, pte, true, true);
3094 mem_cgroup_commit_charge(new_page, memcg, false, false);
3095 lru_cache_add_active_or_unevictable(new_page, vma);
3096 pte_unmap_unlock(pte, ptl);
3097 if (fault_page) {
3098 unlock_page(fault_page);
3099 put_page(fault_page);
3100 } else {
3102 * The fault handler has no page to lock, so it holds
3103 * i_mmap_lock for read to protect against truncate.
3105 i_mmap_unlock_read(vma->vm_file->f_mapping);
3107 return ret;
3108 uncharge_out:
3109 mem_cgroup_cancel_charge(new_page, memcg, false);
3110 put_page(new_page);
3111 return ret;
3114 static int do_shared_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3115 unsigned long address, pmd_t *pmd,
3116 pgoff_t pgoff, unsigned int flags, pte_t orig_pte)
3118 struct page *fault_page;
3119 struct address_space *mapping;
3120 spinlock_t *ptl;
3121 pte_t *pte;
3122 int dirtied = 0;
3123 int ret, tmp;
3125 ret = __do_fault(vma, address, pgoff, flags, NULL, &fault_page);
3126 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3127 return ret;
3130 * Check if the backing address space wants to know that the page is
3131 * about to become writable
3133 if (vma->vm_ops->page_mkwrite) {
3134 unlock_page(fault_page);
3135 tmp = do_page_mkwrite(vma, fault_page, address);
3136 if (unlikely(!tmp ||
3137 (tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
3138 put_page(fault_page);
3139 return tmp;
3143 pte = pte_offset_map_lock(mm, pmd, address, &ptl);
3144 if (unlikely(!pte_same(*pte, orig_pte))) {
3145 pte_unmap_unlock(pte, ptl);
3146 unlock_page(fault_page);
3147 put_page(fault_page);
3148 return ret;
3150 do_set_pte(vma, address, fault_page, pte, true, false);
3151 pte_unmap_unlock(pte, ptl);
3153 if (set_page_dirty(fault_page))
3154 dirtied = 1;
3156 * Take a local copy of the address_space - page.mapping may be zeroed
3157 * by truncate after unlock_page(). The address_space itself remains
3158 * pinned by vma->vm_file's reference. We rely on unlock_page()'s
3159 * release semantics to prevent the compiler from undoing this copying.
3161 mapping = page_rmapping(fault_page);
3162 unlock_page(fault_page);
3163 if ((dirtied || vma->vm_ops->page_mkwrite) && mapping) {
3165 * Some device drivers do not set page.mapping but still
3166 * dirty their pages
3168 balance_dirty_pages_ratelimited(mapping);
3171 if (!vma->vm_ops->page_mkwrite)
3172 file_update_time(vma->vm_file);
3174 return ret;
3178 * We enter with non-exclusive mmap_sem (to exclude vma changes,
3179 * but allow concurrent faults).
3180 * The mmap_sem may have been released depending on flags and our
3181 * return value. See filemap_fault() and __lock_page_or_retry().
3183 static int do_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3184 unsigned long address, pte_t *page_table, pmd_t *pmd,
3185 unsigned int flags, pte_t orig_pte)
3187 pgoff_t pgoff = linear_page_index(vma, address);
3189 pte_unmap(page_table);
3190 /* The VMA was not fully populated on mmap() or missing VM_DONTEXPAND */
3191 if (!vma->vm_ops->fault)
3192 return VM_FAULT_SIGBUS;
3193 if (!(flags & FAULT_FLAG_WRITE))
3194 return do_read_fault(mm, vma, address, pmd, pgoff, flags,
3195 orig_pte);
3196 if (!(vma->vm_flags & VM_SHARED))
3197 return do_cow_fault(mm, vma, address, pmd, pgoff, flags,
3198 orig_pte);
3199 return do_shared_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
3202 static int numa_migrate_prep(struct page *page, struct vm_area_struct *vma,
3203 unsigned long addr, int page_nid,
3204 int *flags)
3206 get_page(page);
3208 count_vm_numa_event(NUMA_HINT_FAULTS);
3209 if (page_nid == numa_node_id()) {
3210 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
3211 *flags |= TNF_FAULT_LOCAL;
3214 return mpol_misplaced(page, vma, addr);
3217 static int do_numa_page(struct mm_struct *mm, struct vm_area_struct *vma,
3218 unsigned long addr, pte_t pte, pte_t *ptep, pmd_t *pmd)
3220 struct page *page = NULL;
3221 spinlock_t *ptl;
3222 int page_nid = -1;
3223 int last_cpupid;
3224 int target_nid;
3225 bool migrated = false;
3226 bool was_writable = pte_write(pte);
3227 int flags = 0;
3229 /* A PROT_NONE fault should not end up here */
3230 BUG_ON(!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE)));
3233 * The "pte" at this point cannot be used safely without
3234 * validation through pte_unmap_same(). It's of NUMA type but
3235 * the pfn may be screwed if the read is non atomic.
3237 * We can safely just do a "set_pte_at()", because the old
3238 * page table entry is not accessible, so there would be no
3239 * concurrent hardware modifications to the PTE.
3241 ptl = pte_lockptr(mm, pmd);
3242 spin_lock(ptl);
3243 if (unlikely(!pte_same(*ptep, pte))) {
3244 pte_unmap_unlock(ptep, ptl);
3245 goto out;
3248 /* Make it present again */
3249 pte = pte_modify(pte, vma->vm_page_prot);
3250 pte = pte_mkyoung(pte);
3251 if (was_writable)
3252 pte = pte_mkwrite(pte);
3253 set_pte_at(mm, addr, ptep, pte);
3254 update_mmu_cache(vma, addr, ptep);
3256 page = vm_normal_page(vma, addr, pte);
3257 if (!page) {
3258 pte_unmap_unlock(ptep, ptl);
3259 return 0;
3262 /* TODO: handle PTE-mapped THP */
3263 if (PageCompound(page)) {
3264 pte_unmap_unlock(ptep, ptl);
3265 return 0;
3269 * Avoid grouping on RO pages in general. RO pages shouldn't hurt as
3270 * much anyway since they can be in shared cache state. This misses
3271 * the case where a mapping is writable but the process never writes
3272 * to it but pte_write gets cleared during protection updates and
3273 * pte_dirty has unpredictable behaviour between PTE scan updates,
3274 * background writeback, dirty balancing and application behaviour.
3276 if (!(vma->vm_flags & VM_WRITE))
3277 flags |= TNF_NO_GROUP;
3280 * Flag if the page is shared between multiple address spaces. This
3281 * is later used when determining whether to group tasks together
3283 if (page_mapcount(page) > 1 && (vma->vm_flags & VM_SHARED))
3284 flags |= TNF_SHARED;
3286 last_cpupid = page_cpupid_last(page);
3287 page_nid = page_to_nid(page);
3288 target_nid = numa_migrate_prep(page, vma, addr, page_nid, &flags);
3289 pte_unmap_unlock(ptep, ptl);
3290 if (target_nid == -1) {
3291 put_page(page);
3292 goto out;
3295 /* Migrate to the requested node */
3296 migrated = migrate_misplaced_page(page, vma, target_nid);
3297 if (migrated) {
3298 page_nid = target_nid;
3299 flags |= TNF_MIGRATED;
3300 } else
3301 flags |= TNF_MIGRATE_FAIL;
3303 out:
3304 if (page_nid != -1)
3305 task_numa_fault(last_cpupid, page_nid, 1, flags);
3306 return 0;
3309 static int create_huge_pmd(struct mm_struct *mm, struct vm_area_struct *vma,
3310 unsigned long address, pmd_t *pmd, unsigned int flags)
3312 if (vma_is_anonymous(vma))
3313 return do_huge_pmd_anonymous_page(mm, vma, address, pmd, flags);
3314 if (vma->vm_ops->pmd_fault)
3315 return vma->vm_ops->pmd_fault(vma, address, pmd, flags);
3316 return VM_FAULT_FALLBACK;
3319 static int wp_huge_pmd(struct mm_struct *mm, struct vm_area_struct *vma,
3320 unsigned long address, pmd_t *pmd, pmd_t orig_pmd,
3321 unsigned int flags)
3323 if (vma_is_anonymous(vma))
3324 return do_huge_pmd_wp_page(mm, vma, address, pmd, orig_pmd);
3325 if (vma->vm_ops->pmd_fault)
3326 return vma->vm_ops->pmd_fault(vma, address, pmd, flags);
3327 return VM_FAULT_FALLBACK;
3331 * These routines also need to handle stuff like marking pages dirty
3332 * and/or accessed for architectures that don't do it in hardware (most
3333 * RISC architectures). The early dirtying is also good on the i386.
3335 * There is also a hook called "update_mmu_cache()" that architectures
3336 * with external mmu caches can use to update those (ie the Sparc or
3337 * PowerPC hashed page tables that act as extended TLBs).
3339 * We enter with non-exclusive mmap_sem (to exclude vma changes,
3340 * but allow concurrent faults), and pte mapped but not yet locked.
3341 * We return with pte unmapped and unlocked.
3343 * The mmap_sem may have been released depending on flags and our
3344 * return value. See filemap_fault() and __lock_page_or_retry().
3346 static int handle_pte_fault(struct mm_struct *mm,
3347 struct vm_area_struct *vma, unsigned long address,
3348 pte_t *pte, pmd_t *pmd, unsigned int flags)
3350 pte_t entry;
3351 spinlock_t *ptl;
3354 * some architectures can have larger ptes than wordsize,
3355 * e.g.ppc44x-defconfig has CONFIG_PTE_64BIT=y and CONFIG_32BIT=y,
3356 * so READ_ONCE or ACCESS_ONCE cannot guarantee atomic accesses.
3357 * The code below just needs a consistent view for the ifs and
3358 * we later double check anyway with the ptl lock held. So here
3359 * a barrier will do.
3361 entry = *pte;
3362 barrier();
3363 if (!pte_present(entry)) {
3364 if (pte_none(entry)) {
3365 if (vma_is_anonymous(vma))
3366 return do_anonymous_page(mm, vma, address,
3367 pte, pmd, flags);
3368 else
3369 return do_fault(mm, vma, address, pte, pmd,
3370 flags, entry);
3372 return do_swap_page(mm, vma, address,
3373 pte, pmd, flags, entry);
3376 if (pte_protnone(entry))
3377 return do_numa_page(mm, vma, address, entry, pte, pmd);
3379 ptl = pte_lockptr(mm, pmd);
3380 spin_lock(ptl);
3381 if (unlikely(!pte_same(*pte, entry)))
3382 goto unlock;
3383 if (flags & FAULT_FLAG_WRITE) {
3384 if (!pte_write(entry))
3385 return do_wp_page(mm, vma, address,
3386 pte, pmd, ptl, entry);
3387 entry = pte_mkdirty(entry);
3389 entry = pte_mkyoung(entry);
3390 if (ptep_set_access_flags(vma, address, pte, entry, flags & FAULT_FLAG_WRITE)) {
3391 update_mmu_cache(vma, address, pte);
3392 } else {
3394 * This is needed only for protection faults but the arch code
3395 * is not yet telling us if this is a protection fault or not.
3396 * This still avoids useless tlb flushes for .text page faults
3397 * with threads.
3399 if (flags & FAULT_FLAG_WRITE)
3400 flush_tlb_fix_spurious_fault(vma, address);
3402 unlock:
3403 pte_unmap_unlock(pte, ptl);
3404 return 0;
3408 * By the time we get here, we already hold the mm semaphore
3410 * The mmap_sem may have been released depending on flags and our
3411 * return value. See filemap_fault() and __lock_page_or_retry().
3413 static int __handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3414 unsigned long address, unsigned int flags)
3416 pgd_t *pgd;
3417 pud_t *pud;
3418 pmd_t *pmd;
3419 pte_t *pte;
3421 if (!arch_vma_access_permitted(vma, flags & FAULT_FLAG_WRITE,
3422 flags & FAULT_FLAG_INSTRUCTION,
3423 flags & FAULT_FLAG_REMOTE))
3424 return VM_FAULT_SIGSEGV;
3426 if (unlikely(is_vm_hugetlb_page(vma)))
3427 return hugetlb_fault(mm, vma, address, flags);
3429 pgd = pgd_offset(mm, address);
3430 pud = pud_alloc(mm, pgd, address);
3431 if (!pud)
3432 return VM_FAULT_OOM;
3433 pmd = pmd_alloc(mm, pud, address);
3434 if (!pmd)
3435 return VM_FAULT_OOM;
3436 if (pmd_none(*pmd) && transparent_hugepage_enabled(vma)) {
3437 int ret = create_huge_pmd(mm, vma, address, pmd, flags);
3438 if (!(ret & VM_FAULT_FALLBACK))
3439 return ret;
3440 } else {
3441 pmd_t orig_pmd = *pmd;
3442 int ret;
3444 barrier();
3445 if (pmd_trans_huge(orig_pmd) || pmd_devmap(orig_pmd)) {
3446 unsigned int dirty = flags & FAULT_FLAG_WRITE;
3448 if (pmd_protnone(orig_pmd))
3449 return do_huge_pmd_numa_page(mm, vma, address,
3450 orig_pmd, pmd);
3452 if (dirty && !pmd_write(orig_pmd)) {
3453 ret = wp_huge_pmd(mm, vma, address, pmd,
3454 orig_pmd, flags);
3455 if (!(ret & VM_FAULT_FALLBACK))
3456 return ret;
3457 } else {
3458 huge_pmd_set_accessed(mm, vma, address, pmd,
3459 orig_pmd, dirty);
3460 return 0;
3466 * Use pte_alloc() instead of pte_alloc_map, because we can't
3467 * run pte_offset_map on the pmd, if an huge pmd could
3468 * materialize from under us from a different thread.
3470 if (unlikely(pte_alloc(mm, pmd, address)))
3471 return VM_FAULT_OOM;
3473 * If a huge pmd materialized under us just retry later. Use
3474 * pmd_trans_unstable() instead of pmd_trans_huge() to ensure the pmd
3475 * didn't become pmd_trans_huge under us and then back to pmd_none, as
3476 * a result of MADV_DONTNEED running immediately after a huge pmd fault
3477 * in a different thread of this mm, in turn leading to a misleading
3478 * pmd_trans_huge() retval. All we have to ensure is that it is a
3479 * regular pmd that we can walk with pte_offset_map() and we can do that
3480 * through an atomic read in C, which is what pmd_trans_unstable()
3481 * provides.
3483 if (unlikely(pmd_trans_unstable(pmd) || pmd_devmap(*pmd)))
3484 return 0;
3486 * A regular pmd is established and it can't morph into a huge pmd
3487 * from under us anymore at this point because we hold the mmap_sem
3488 * read mode and khugepaged takes it in write mode. So now it's
3489 * safe to run pte_offset_map().
3491 pte = pte_offset_map(pmd, address);
3493 return handle_pte_fault(mm, vma, address, pte, pmd, flags);
3497 * By the time we get here, we already hold the mm semaphore
3499 * The mmap_sem may have been released depending on flags and our
3500 * return value. See filemap_fault() and __lock_page_or_retry().
3502 int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3503 unsigned long address, unsigned int flags)
3505 int ret;
3507 __set_current_state(TASK_RUNNING);
3509 count_vm_event(PGFAULT);
3510 mem_cgroup_count_vm_event(mm, PGFAULT);
3512 /* do counter updates before entering really critical section. */
3513 check_sync_rss_stat(current);
3516 * Enable the memcg OOM handling for faults triggered in user
3517 * space. Kernel faults are handled more gracefully.
3519 if (flags & FAULT_FLAG_USER)
3520 mem_cgroup_oom_enable();
3522 ret = __handle_mm_fault(mm, vma, address, flags);
3524 if (flags & FAULT_FLAG_USER) {
3525 mem_cgroup_oom_disable();
3527 * The task may have entered a memcg OOM situation but
3528 * if the allocation error was handled gracefully (no
3529 * VM_FAULT_OOM), there is no need to kill anything.
3530 * Just clean up the OOM state peacefully.
3532 if (task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM))
3533 mem_cgroup_oom_synchronize(false);
3536 return ret;
3538 EXPORT_SYMBOL_GPL(handle_mm_fault);
3540 #ifndef __PAGETABLE_PUD_FOLDED
3542 * Allocate page upper directory.
3543 * We've already handled the fast-path in-line.
3545 int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
3547 pud_t *new = pud_alloc_one(mm, address);
3548 if (!new)
3549 return -ENOMEM;
3551 smp_wmb(); /* See comment in __pte_alloc */
3553 spin_lock(&mm->page_table_lock);
3554 if (pgd_present(*pgd)) /* Another has populated it */
3555 pud_free(mm, new);
3556 else
3557 pgd_populate(mm, pgd, new);
3558 spin_unlock(&mm->page_table_lock);
3559 return 0;
3561 #endif /* __PAGETABLE_PUD_FOLDED */
3563 #ifndef __PAGETABLE_PMD_FOLDED
3565 * Allocate page middle directory.
3566 * We've already handled the fast-path in-line.
3568 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
3570 pmd_t *new = pmd_alloc_one(mm, address);
3571 if (!new)
3572 return -ENOMEM;
3574 smp_wmb(); /* See comment in __pte_alloc */
3576 spin_lock(&mm->page_table_lock);
3577 #ifndef __ARCH_HAS_4LEVEL_HACK
3578 if (!pud_present(*pud)) {
3579 mm_inc_nr_pmds(mm);
3580 pud_populate(mm, pud, new);
3581 } else /* Another has populated it */
3582 pmd_free(mm, new);
3583 #else
3584 if (!pgd_present(*pud)) {
3585 mm_inc_nr_pmds(mm);
3586 pgd_populate(mm, pud, new);
3587 } else /* Another has populated it */
3588 pmd_free(mm, new);
3589 #endif /* __ARCH_HAS_4LEVEL_HACK */
3590 spin_unlock(&mm->page_table_lock);
3591 return 0;
3593 #endif /* __PAGETABLE_PMD_FOLDED */
3595 static int __follow_pte(struct mm_struct *mm, unsigned long address,
3596 pte_t **ptepp, spinlock_t **ptlp)
3598 pgd_t *pgd;
3599 pud_t *pud;
3600 pmd_t *pmd;
3601 pte_t *ptep;
3603 pgd = pgd_offset(mm, address);
3604 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
3605 goto out;
3607 pud = pud_offset(pgd, address);
3608 if (pud_none(*pud) || unlikely(pud_bad(*pud)))
3609 goto out;
3611 pmd = pmd_offset(pud, address);
3612 VM_BUG_ON(pmd_trans_huge(*pmd));
3613 if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
3614 goto out;
3616 /* We cannot handle huge page PFN maps. Luckily they don't exist. */
3617 if (pmd_huge(*pmd))
3618 goto out;
3620 ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
3621 if (!ptep)
3622 goto out;
3623 if (!pte_present(*ptep))
3624 goto unlock;
3625 *ptepp = ptep;
3626 return 0;
3627 unlock:
3628 pte_unmap_unlock(ptep, *ptlp);
3629 out:
3630 return -EINVAL;
3633 static inline int follow_pte(struct mm_struct *mm, unsigned long address,
3634 pte_t **ptepp, spinlock_t **ptlp)
3636 int res;
3638 /* (void) is needed to make gcc happy */
3639 (void) __cond_lock(*ptlp,
3640 !(res = __follow_pte(mm, address, ptepp, ptlp)));
3641 return res;
3645 * follow_pfn - look up PFN at a user virtual address
3646 * @vma: memory mapping
3647 * @address: user virtual address
3648 * @pfn: location to store found PFN
3650 * Only IO mappings and raw PFN mappings are allowed.
3652 * Returns zero and the pfn at @pfn on success, -ve otherwise.
3654 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
3655 unsigned long *pfn)
3657 int ret = -EINVAL;
3658 spinlock_t *ptl;
3659 pte_t *ptep;
3661 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
3662 return ret;
3664 ret = follow_pte(vma->vm_mm, address, &ptep, &ptl);
3665 if (ret)
3666 return ret;
3667 *pfn = pte_pfn(*ptep);
3668 pte_unmap_unlock(ptep, ptl);
3669 return 0;
3671 EXPORT_SYMBOL(follow_pfn);
3673 #ifdef CONFIG_HAVE_IOREMAP_PROT
3674 int follow_phys(struct vm_area_struct *vma,
3675 unsigned long address, unsigned int flags,
3676 unsigned long *prot, resource_size_t *phys)
3678 int ret = -EINVAL;
3679 pte_t *ptep, pte;
3680 spinlock_t *ptl;
3682 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
3683 goto out;
3685 if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
3686 goto out;
3687 pte = *ptep;
3689 if ((flags & FOLL_WRITE) && !pte_write(pte))
3690 goto unlock;
3692 *prot = pgprot_val(pte_pgprot(pte));
3693 *phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
3695 ret = 0;
3696 unlock:
3697 pte_unmap_unlock(ptep, ptl);
3698 out:
3699 return ret;
3702 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
3703 void *buf, int len, int write)
3705 resource_size_t phys_addr;
3706 unsigned long prot = 0;
3707 void __iomem *maddr;
3708 int offset = addr & (PAGE_SIZE-1);
3710 if (follow_phys(vma, addr, write, &prot, &phys_addr))
3711 return -EINVAL;
3713 maddr = ioremap_prot(phys_addr, PAGE_ALIGN(len + offset), prot);
3714 if (write)
3715 memcpy_toio(maddr + offset, buf, len);
3716 else
3717 memcpy_fromio(buf, maddr + offset, len);
3718 iounmap(maddr);
3720 return len;
3722 EXPORT_SYMBOL_GPL(generic_access_phys);
3723 #endif
3726 * Access another process' address space as given in mm. If non-NULL, use the
3727 * given task for page fault accounting.
3729 static int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
3730 unsigned long addr, void *buf, int len, int write)
3732 struct vm_area_struct *vma;
3733 void *old_buf = buf;
3735 down_read(&mm->mmap_sem);
3736 /* ignore errors, just check how much was successfully transferred */
3737 while (len) {
3738 int bytes, ret, offset;
3739 void *maddr;
3740 struct page *page = NULL;
3742 ret = get_user_pages_remote(tsk, mm, addr, 1,
3743 write, 1, &page, &vma);
3744 if (ret <= 0) {
3745 #ifndef CONFIG_HAVE_IOREMAP_PROT
3746 break;
3747 #else
3749 * Check if this is a VM_IO | VM_PFNMAP VMA, which
3750 * we can access using slightly different code.
3752 vma = find_vma(mm, addr);
3753 if (!vma || vma->vm_start > addr)
3754 break;
3755 if (vma->vm_ops && vma->vm_ops->access)
3756 ret = vma->vm_ops->access(vma, addr, buf,
3757 len, write);
3758 if (ret <= 0)
3759 break;
3760 bytes = ret;
3761 #endif
3762 } else {
3763 bytes = len;
3764 offset = addr & (PAGE_SIZE-1);
3765 if (bytes > PAGE_SIZE-offset)
3766 bytes = PAGE_SIZE-offset;
3768 maddr = kmap(page);
3769 if (write) {
3770 copy_to_user_page(vma, page, addr,
3771 maddr + offset, buf, bytes);
3772 set_page_dirty_lock(page);
3773 } else {
3774 copy_from_user_page(vma, page, addr,
3775 buf, maddr + offset, bytes);
3777 kunmap(page);
3778 put_page(page);
3780 len -= bytes;
3781 buf += bytes;
3782 addr += bytes;
3784 up_read(&mm->mmap_sem);
3786 return buf - old_buf;
3790 * access_remote_vm - access another process' address space
3791 * @mm: the mm_struct of the target address space
3792 * @addr: start address to access
3793 * @buf: source or destination buffer
3794 * @len: number of bytes to transfer
3795 * @write: whether the access is a write
3797 * The caller must hold a reference on @mm.
3799 int access_remote_vm(struct mm_struct *mm, unsigned long addr,
3800 void *buf, int len, int write)
3802 return __access_remote_vm(NULL, mm, addr, buf, len, write);
3806 * Access another process' address space.
3807 * Source/target buffer must be kernel space,
3808 * Do not walk the page table directly, use get_user_pages
3810 int access_process_vm(struct task_struct *tsk, unsigned long addr,
3811 void *buf, int len, int write)
3813 struct mm_struct *mm;
3814 int ret;
3816 mm = get_task_mm(tsk);
3817 if (!mm)
3818 return 0;
3820 ret = __access_remote_vm(tsk, mm, addr, buf, len, write);
3821 mmput(mm);
3823 return ret;
3827 * Print the name of a VMA.
3829 void print_vma_addr(char *prefix, unsigned long ip)
3831 struct mm_struct *mm = current->mm;
3832 struct vm_area_struct *vma;
3835 * Do not print if we are in atomic
3836 * contexts (in exception stacks, etc.):
3838 if (preempt_count())
3839 return;
3841 down_read(&mm->mmap_sem);
3842 vma = find_vma(mm, ip);
3843 if (vma && vma->vm_file) {
3844 struct file *f = vma->vm_file;
3845 char *buf = (char *)__get_free_page(GFP_KERNEL);
3846 if (buf) {
3847 char *p;
3849 p = file_path(f, buf, PAGE_SIZE);
3850 if (IS_ERR(p))
3851 p = "?";
3852 printk("%s%s[%lx+%lx]", prefix, kbasename(p),
3853 vma->vm_start,
3854 vma->vm_end - vma->vm_start);
3855 free_page((unsigned long)buf);
3858 up_read(&mm->mmap_sem);
3861 #if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP)
3862 void __might_fault(const char *file, int line)
3865 * Some code (nfs/sunrpc) uses socket ops on kernel memory while
3866 * holding the mmap_sem, this is safe because kernel memory doesn't
3867 * get paged out, therefore we'll never actually fault, and the
3868 * below annotations will generate false positives.
3870 if (segment_eq(get_fs(), KERNEL_DS))
3871 return;
3872 if (pagefault_disabled())
3873 return;
3874 __might_sleep(file, line, 0);
3875 #if defined(CONFIG_DEBUG_ATOMIC_SLEEP)
3876 if (current->mm)
3877 might_lock_read(&current->mm->mmap_sem);
3878 #endif
3880 EXPORT_SYMBOL(__might_fault);
3881 #endif
3883 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
3884 static void clear_gigantic_page(struct page *page,
3885 unsigned long addr,
3886 unsigned int pages_per_huge_page)
3888 int i;
3889 struct page *p = page;
3891 might_sleep();
3892 for (i = 0; i < pages_per_huge_page;
3893 i++, p = mem_map_next(p, page, i)) {
3894 cond_resched();
3895 clear_user_highpage(p, addr + i * PAGE_SIZE);
3898 void clear_huge_page(struct page *page,
3899 unsigned long addr, unsigned int pages_per_huge_page)
3901 int i;
3903 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
3904 clear_gigantic_page(page, addr, pages_per_huge_page);
3905 return;
3908 might_sleep();
3909 for (i = 0; i < pages_per_huge_page; i++) {
3910 cond_resched();
3911 clear_user_highpage(page + i, addr + i * PAGE_SIZE);
3915 static void copy_user_gigantic_page(struct page *dst, struct page *src,
3916 unsigned long addr,
3917 struct vm_area_struct *vma,
3918 unsigned int pages_per_huge_page)
3920 int i;
3921 struct page *dst_base = dst;
3922 struct page *src_base = src;
3924 for (i = 0; i < pages_per_huge_page; ) {
3925 cond_resched();
3926 copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma);
3928 i++;
3929 dst = mem_map_next(dst, dst_base, i);
3930 src = mem_map_next(src, src_base, i);
3934 void copy_user_huge_page(struct page *dst, struct page *src,
3935 unsigned long addr, struct vm_area_struct *vma,
3936 unsigned int pages_per_huge_page)
3938 int i;
3940 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
3941 copy_user_gigantic_page(dst, src, addr, vma,
3942 pages_per_huge_page);
3943 return;
3946 might_sleep();
3947 for (i = 0; i < pages_per_huge_page; i++) {
3948 cond_resched();
3949 copy_user_highpage(dst + i, src + i, addr + i*PAGE_SIZE, vma);
3952 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
3954 #if USE_SPLIT_PTE_PTLOCKS && ALLOC_SPLIT_PTLOCKS
3956 static struct kmem_cache *page_ptl_cachep;
3958 void __init ptlock_cache_init(void)
3960 page_ptl_cachep = kmem_cache_create("page->ptl", sizeof(spinlock_t), 0,
3961 SLAB_PANIC, NULL);
3964 bool ptlock_alloc(struct page *page)
3966 spinlock_t *ptl;
3968 ptl = kmem_cache_alloc(page_ptl_cachep, GFP_KERNEL);
3969 if (!ptl)
3970 return false;
3971 page->ptl = ptl;
3972 return true;
3975 void ptlock_free(struct page *page)
3977 kmem_cache_free(page_ptl_cachep, page->ptl);
3979 #endif