2 * Register map access API
4 * Copyright 2011 Wolfson Microelectronics plc
6 * Author: Mark Brown <broonie@opensource.wolfsonmicro.com>
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License version 2 as
10 * published by the Free Software Foundation.
13 #include <linux/device.h>
14 #include <linux/slab.h>
15 #include <linux/export.h>
16 #include <linux/mutex.h>
17 #include <linux/err.h>
19 #include <linux/rbtree.h>
20 #include <linux/sched.h>
21 #include <linux/delay.h>
22 #include <linux/log2.h>
23 #include <linux/hwspinlock.h>
25 #define CREATE_TRACE_POINTS
31 * Sometimes for failures during very early init the trace
32 * infrastructure isn't available early enough to be used. For this
33 * sort of problem defining LOG_DEVICE will add printks for basic
34 * register I/O on a specific device.
38 static int _regmap_update_bits(struct regmap
*map
, unsigned int reg
,
39 unsigned int mask
, unsigned int val
,
40 bool *change
, bool force_write
);
42 static int _regmap_bus_reg_read(void *context
, unsigned int reg
,
44 static int _regmap_bus_read(void *context
, unsigned int reg
,
46 static int _regmap_bus_formatted_write(void *context
, unsigned int reg
,
48 static int _regmap_bus_reg_write(void *context
, unsigned int reg
,
50 static int _regmap_bus_raw_write(void *context
, unsigned int reg
,
53 bool regmap_reg_in_ranges(unsigned int reg
,
54 const struct regmap_range
*ranges
,
57 const struct regmap_range
*r
;
60 for (i
= 0, r
= ranges
; i
< nranges
; i
++, r
++)
61 if (regmap_reg_in_range(reg
, r
))
65 EXPORT_SYMBOL_GPL(regmap_reg_in_ranges
);
67 bool regmap_check_range_table(struct regmap
*map
, unsigned int reg
,
68 const struct regmap_access_table
*table
)
70 /* Check "no ranges" first */
71 if (regmap_reg_in_ranges(reg
, table
->no_ranges
, table
->n_no_ranges
))
74 /* In case zero "yes ranges" are supplied, any reg is OK */
75 if (!table
->n_yes_ranges
)
78 return regmap_reg_in_ranges(reg
, table
->yes_ranges
,
81 EXPORT_SYMBOL_GPL(regmap_check_range_table
);
83 bool regmap_writeable(struct regmap
*map
, unsigned int reg
)
85 if (map
->max_register
&& reg
> map
->max_register
)
88 if (map
->writeable_reg
)
89 return map
->writeable_reg(map
->dev
, reg
);
92 return regmap_check_range_table(map
, reg
, map
->wr_table
);
97 bool regmap_cached(struct regmap
*map
, unsigned int reg
)
102 if (map
->cache
== REGCACHE_NONE
)
108 if (map
->max_register
&& reg
> map
->max_register
)
111 map
->lock(map
->lock_arg
);
112 ret
= regcache_read(map
, reg
, &val
);
113 map
->unlock(map
->lock_arg
);
120 bool regmap_readable(struct regmap
*map
, unsigned int reg
)
125 if (map
->max_register
&& reg
> map
->max_register
)
128 if (map
->format
.format_write
)
131 if (map
->readable_reg
)
132 return map
->readable_reg(map
->dev
, reg
);
135 return regmap_check_range_table(map
, reg
, map
->rd_table
);
140 bool regmap_volatile(struct regmap
*map
, unsigned int reg
)
142 if (!map
->format
.format_write
&& !regmap_readable(map
, reg
))
145 if (map
->volatile_reg
)
146 return map
->volatile_reg(map
->dev
, reg
);
148 if (map
->volatile_table
)
149 return regmap_check_range_table(map
, reg
, map
->volatile_table
);
157 bool regmap_precious(struct regmap
*map
, unsigned int reg
)
159 if (!regmap_readable(map
, reg
))
162 if (map
->precious_reg
)
163 return map
->precious_reg(map
->dev
, reg
);
165 if (map
->precious_table
)
166 return regmap_check_range_table(map
, reg
, map
->precious_table
);
171 static bool regmap_volatile_range(struct regmap
*map
, unsigned int reg
,
176 for (i
= 0; i
< num
; i
++)
177 if (!regmap_volatile(map
, reg
+ i
))
183 static void regmap_format_2_6_write(struct regmap
*map
,
184 unsigned int reg
, unsigned int val
)
186 u8
*out
= map
->work_buf
;
188 *out
= (reg
<< 6) | val
;
191 static void regmap_format_4_12_write(struct regmap
*map
,
192 unsigned int reg
, unsigned int val
)
194 __be16
*out
= map
->work_buf
;
195 *out
= cpu_to_be16((reg
<< 12) | val
);
198 static void regmap_format_7_9_write(struct regmap
*map
,
199 unsigned int reg
, unsigned int val
)
201 __be16
*out
= map
->work_buf
;
202 *out
= cpu_to_be16((reg
<< 9) | val
);
205 static void regmap_format_10_14_write(struct regmap
*map
,
206 unsigned int reg
, unsigned int val
)
208 u8
*out
= map
->work_buf
;
211 out
[1] = (val
>> 8) | (reg
<< 6);
215 static void regmap_format_8(void *buf
, unsigned int val
, unsigned int shift
)
222 static void regmap_format_16_be(void *buf
, unsigned int val
, unsigned int shift
)
226 b
[0] = cpu_to_be16(val
<< shift
);
229 static void regmap_format_16_le(void *buf
, unsigned int val
, unsigned int shift
)
233 b
[0] = cpu_to_le16(val
<< shift
);
236 static void regmap_format_16_native(void *buf
, unsigned int val
,
239 *(u16
*)buf
= val
<< shift
;
242 static void regmap_format_24(void *buf
, unsigned int val
, unsigned int shift
)
253 static void regmap_format_32_be(void *buf
, unsigned int val
, unsigned int shift
)
257 b
[0] = cpu_to_be32(val
<< shift
);
260 static void regmap_format_32_le(void *buf
, unsigned int val
, unsigned int shift
)
264 b
[0] = cpu_to_le32(val
<< shift
);
267 static void regmap_format_32_native(void *buf
, unsigned int val
,
270 *(u32
*)buf
= val
<< shift
;
274 static void regmap_format_64_be(void *buf
, unsigned int val
, unsigned int shift
)
278 b
[0] = cpu_to_be64((u64
)val
<< shift
);
281 static void regmap_format_64_le(void *buf
, unsigned int val
, unsigned int shift
)
285 b
[0] = cpu_to_le64((u64
)val
<< shift
);
288 static void regmap_format_64_native(void *buf
, unsigned int val
,
291 *(u64
*)buf
= (u64
)val
<< shift
;
295 static void regmap_parse_inplace_noop(void *buf
)
299 static unsigned int regmap_parse_8(const void *buf
)
306 static unsigned int regmap_parse_16_be(const void *buf
)
308 const __be16
*b
= buf
;
310 return be16_to_cpu(b
[0]);
313 static unsigned int regmap_parse_16_le(const void *buf
)
315 const __le16
*b
= buf
;
317 return le16_to_cpu(b
[0]);
320 static void regmap_parse_16_be_inplace(void *buf
)
324 b
[0] = be16_to_cpu(b
[0]);
327 static void regmap_parse_16_le_inplace(void *buf
)
331 b
[0] = le16_to_cpu(b
[0]);
334 static unsigned int regmap_parse_16_native(const void *buf
)
339 static unsigned int regmap_parse_24(const void *buf
)
342 unsigned int ret
= b
[2];
343 ret
|= ((unsigned int)b
[1]) << 8;
344 ret
|= ((unsigned int)b
[0]) << 16;
349 static unsigned int regmap_parse_32_be(const void *buf
)
351 const __be32
*b
= buf
;
353 return be32_to_cpu(b
[0]);
356 static unsigned int regmap_parse_32_le(const void *buf
)
358 const __le32
*b
= buf
;
360 return le32_to_cpu(b
[0]);
363 static void regmap_parse_32_be_inplace(void *buf
)
367 b
[0] = be32_to_cpu(b
[0]);
370 static void regmap_parse_32_le_inplace(void *buf
)
374 b
[0] = le32_to_cpu(b
[0]);
377 static unsigned int regmap_parse_32_native(const void *buf
)
383 static unsigned int regmap_parse_64_be(const void *buf
)
385 const __be64
*b
= buf
;
387 return be64_to_cpu(b
[0]);
390 static unsigned int regmap_parse_64_le(const void *buf
)
392 const __le64
*b
= buf
;
394 return le64_to_cpu(b
[0]);
397 static void regmap_parse_64_be_inplace(void *buf
)
401 b
[0] = be64_to_cpu(b
[0]);
404 static void regmap_parse_64_le_inplace(void *buf
)
408 b
[0] = le64_to_cpu(b
[0]);
411 static unsigned int regmap_parse_64_native(const void *buf
)
417 static void regmap_lock_hwlock(void *__map
)
419 struct regmap
*map
= __map
;
421 hwspin_lock_timeout(map
->hwlock
, UINT_MAX
);
424 static void regmap_lock_hwlock_irq(void *__map
)
426 struct regmap
*map
= __map
;
428 hwspin_lock_timeout_irq(map
->hwlock
, UINT_MAX
);
431 static void regmap_lock_hwlock_irqsave(void *__map
)
433 struct regmap
*map
= __map
;
435 hwspin_lock_timeout_irqsave(map
->hwlock
, UINT_MAX
,
436 &map
->spinlock_flags
);
439 static void regmap_unlock_hwlock(void *__map
)
441 struct regmap
*map
= __map
;
443 hwspin_unlock(map
->hwlock
);
446 static void regmap_unlock_hwlock_irq(void *__map
)
448 struct regmap
*map
= __map
;
450 hwspin_unlock_irq(map
->hwlock
);
453 static void regmap_unlock_hwlock_irqrestore(void *__map
)
455 struct regmap
*map
= __map
;
457 hwspin_unlock_irqrestore(map
->hwlock
, &map
->spinlock_flags
);
460 static void regmap_lock_unlock_none(void *__map
)
465 static void regmap_lock_mutex(void *__map
)
467 struct regmap
*map
= __map
;
468 mutex_lock(&map
->mutex
);
471 static void regmap_unlock_mutex(void *__map
)
473 struct regmap
*map
= __map
;
474 mutex_unlock(&map
->mutex
);
477 static void regmap_lock_spinlock(void *__map
)
478 __acquires(&map
->spinlock
)
480 struct regmap
*map
= __map
;
483 spin_lock_irqsave(&map
->spinlock
, flags
);
484 map
->spinlock_flags
= flags
;
487 static void regmap_unlock_spinlock(void *__map
)
488 __releases(&map
->spinlock
)
490 struct regmap
*map
= __map
;
491 spin_unlock_irqrestore(&map
->spinlock
, map
->spinlock_flags
);
494 static void dev_get_regmap_release(struct device
*dev
, void *res
)
497 * We don't actually have anything to do here; the goal here
498 * is not to manage the regmap but to provide a simple way to
499 * get the regmap back given a struct device.
503 static bool _regmap_range_add(struct regmap
*map
,
504 struct regmap_range_node
*data
)
506 struct rb_root
*root
= &map
->range_tree
;
507 struct rb_node
**new = &(root
->rb_node
), *parent
= NULL
;
510 struct regmap_range_node
*this =
511 rb_entry(*new, struct regmap_range_node
, node
);
514 if (data
->range_max
< this->range_min
)
515 new = &((*new)->rb_left
);
516 else if (data
->range_min
> this->range_max
)
517 new = &((*new)->rb_right
);
522 rb_link_node(&data
->node
, parent
, new);
523 rb_insert_color(&data
->node
, root
);
528 static struct regmap_range_node
*_regmap_range_lookup(struct regmap
*map
,
531 struct rb_node
*node
= map
->range_tree
.rb_node
;
534 struct regmap_range_node
*this =
535 rb_entry(node
, struct regmap_range_node
, node
);
537 if (reg
< this->range_min
)
538 node
= node
->rb_left
;
539 else if (reg
> this->range_max
)
540 node
= node
->rb_right
;
548 static void regmap_range_exit(struct regmap
*map
)
550 struct rb_node
*next
;
551 struct regmap_range_node
*range_node
;
553 next
= rb_first(&map
->range_tree
);
555 range_node
= rb_entry(next
, struct regmap_range_node
, node
);
556 next
= rb_next(&range_node
->node
);
557 rb_erase(&range_node
->node
, &map
->range_tree
);
561 kfree(map
->selector_work_buf
);
564 int regmap_attach_dev(struct device
*dev
, struct regmap
*map
,
565 const struct regmap_config
*config
)
571 regmap_debugfs_init(map
, config
->name
);
573 /* Add a devres resource for dev_get_regmap() */
574 m
= devres_alloc(dev_get_regmap_release
, sizeof(*m
), GFP_KERNEL
);
576 regmap_debugfs_exit(map
);
584 EXPORT_SYMBOL_GPL(regmap_attach_dev
);
586 static enum regmap_endian
regmap_get_reg_endian(const struct regmap_bus
*bus
,
587 const struct regmap_config
*config
)
589 enum regmap_endian endian
;
591 /* Retrieve the endianness specification from the regmap config */
592 endian
= config
->reg_format_endian
;
594 /* If the regmap config specified a non-default value, use that */
595 if (endian
!= REGMAP_ENDIAN_DEFAULT
)
598 /* Retrieve the endianness specification from the bus config */
599 if (bus
&& bus
->reg_format_endian_default
)
600 endian
= bus
->reg_format_endian_default
;
602 /* If the bus specified a non-default value, use that */
603 if (endian
!= REGMAP_ENDIAN_DEFAULT
)
606 /* Use this if no other value was found */
607 return REGMAP_ENDIAN_BIG
;
610 enum regmap_endian
regmap_get_val_endian(struct device
*dev
,
611 const struct regmap_bus
*bus
,
612 const struct regmap_config
*config
)
614 struct device_node
*np
;
615 enum regmap_endian endian
;
617 /* Retrieve the endianness specification from the regmap config */
618 endian
= config
->val_format_endian
;
620 /* If the regmap config specified a non-default value, use that */
621 if (endian
!= REGMAP_ENDIAN_DEFAULT
)
624 /* If the dev and dev->of_node exist try to get endianness from DT */
625 if (dev
&& dev
->of_node
) {
628 /* Parse the device's DT node for an endianness specification */
629 if (of_property_read_bool(np
, "big-endian"))
630 endian
= REGMAP_ENDIAN_BIG
;
631 else if (of_property_read_bool(np
, "little-endian"))
632 endian
= REGMAP_ENDIAN_LITTLE
;
633 else if (of_property_read_bool(np
, "native-endian"))
634 endian
= REGMAP_ENDIAN_NATIVE
;
636 /* If the endianness was specified in DT, use that */
637 if (endian
!= REGMAP_ENDIAN_DEFAULT
)
641 /* Retrieve the endianness specification from the bus config */
642 if (bus
&& bus
->val_format_endian_default
)
643 endian
= bus
->val_format_endian_default
;
645 /* If the bus specified a non-default value, use that */
646 if (endian
!= REGMAP_ENDIAN_DEFAULT
)
649 /* Use this if no other value was found */
650 return REGMAP_ENDIAN_BIG
;
652 EXPORT_SYMBOL_GPL(regmap_get_val_endian
);
654 struct regmap
*__regmap_init(struct device
*dev
,
655 const struct regmap_bus
*bus
,
657 const struct regmap_config
*config
,
658 struct lock_class_key
*lock_key
,
659 const char *lock_name
)
663 enum regmap_endian reg_endian
, val_endian
;
669 map
= kzalloc(sizeof(*map
), GFP_KERNEL
);
676 map
->name
= kstrdup_const(config
->name
, GFP_KERNEL
);
683 if (config
->disable_locking
) {
684 map
->lock
= map
->unlock
= regmap_lock_unlock_none
;
685 regmap_debugfs_disable(map
);
686 } else if (config
->lock
&& config
->unlock
) {
687 map
->lock
= config
->lock
;
688 map
->unlock
= config
->unlock
;
689 map
->lock_arg
= config
->lock_arg
;
690 } else if (config
->use_hwlock
) {
691 map
->hwlock
= hwspin_lock_request_specific(config
->hwlock_id
);
697 switch (config
->hwlock_mode
) {
698 case HWLOCK_IRQSTATE
:
699 map
->lock
= regmap_lock_hwlock_irqsave
;
700 map
->unlock
= regmap_unlock_hwlock_irqrestore
;
703 map
->lock
= regmap_lock_hwlock_irq
;
704 map
->unlock
= regmap_unlock_hwlock_irq
;
707 map
->lock
= regmap_lock_hwlock
;
708 map
->unlock
= regmap_unlock_hwlock
;
714 if ((bus
&& bus
->fast_io
) ||
716 spin_lock_init(&map
->spinlock
);
717 map
->lock
= regmap_lock_spinlock
;
718 map
->unlock
= regmap_unlock_spinlock
;
719 lockdep_set_class_and_name(&map
->spinlock
,
720 lock_key
, lock_name
);
722 mutex_init(&map
->mutex
);
723 map
->lock
= regmap_lock_mutex
;
724 map
->unlock
= regmap_unlock_mutex
;
725 lockdep_set_class_and_name(&map
->mutex
,
726 lock_key
, lock_name
);
732 * When we write in fast-paths with regmap_bulk_write() don't allocate
733 * scratch buffers with sleeping allocations.
735 if ((bus
&& bus
->fast_io
) || config
->fast_io
)
736 map
->alloc_flags
= GFP_ATOMIC
;
738 map
->alloc_flags
= GFP_KERNEL
;
740 map
->format
.reg_bytes
= DIV_ROUND_UP(config
->reg_bits
, 8);
741 map
->format
.pad_bytes
= config
->pad_bits
/ 8;
742 map
->format
.val_bytes
= DIV_ROUND_UP(config
->val_bits
, 8);
743 map
->format
.buf_size
= DIV_ROUND_UP(config
->reg_bits
+
744 config
->val_bits
+ config
->pad_bits
, 8);
745 map
->reg_shift
= config
->pad_bits
% 8;
746 if (config
->reg_stride
)
747 map
->reg_stride
= config
->reg_stride
;
750 if (is_power_of_2(map
->reg_stride
))
751 map
->reg_stride_order
= ilog2(map
->reg_stride
);
753 map
->reg_stride_order
= -1;
754 map
->use_single_read
= config
->use_single_rw
|| !bus
|| !bus
->read
;
755 map
->use_single_write
= config
->use_single_rw
|| !bus
|| !bus
->write
;
756 map
->can_multi_write
= config
->can_multi_write
&& bus
&& bus
->write
;
758 map
->max_raw_read
= bus
->max_raw_read
;
759 map
->max_raw_write
= bus
->max_raw_write
;
763 map
->bus_context
= bus_context
;
764 map
->max_register
= config
->max_register
;
765 map
->wr_table
= config
->wr_table
;
766 map
->rd_table
= config
->rd_table
;
767 map
->volatile_table
= config
->volatile_table
;
768 map
->precious_table
= config
->precious_table
;
769 map
->writeable_reg
= config
->writeable_reg
;
770 map
->readable_reg
= config
->readable_reg
;
771 map
->volatile_reg
= config
->volatile_reg
;
772 map
->precious_reg
= config
->precious_reg
;
773 map
->cache_type
= config
->cache_type
;
775 spin_lock_init(&map
->async_lock
);
776 INIT_LIST_HEAD(&map
->async_list
);
777 INIT_LIST_HEAD(&map
->async_free
);
778 init_waitqueue_head(&map
->async_waitq
);
780 if (config
->read_flag_mask
||
781 config
->write_flag_mask
||
782 config
->zero_flag_mask
) {
783 map
->read_flag_mask
= config
->read_flag_mask
;
784 map
->write_flag_mask
= config
->write_flag_mask
;
786 map
->read_flag_mask
= bus
->read_flag_mask
;
790 map
->reg_read
= config
->reg_read
;
791 map
->reg_write
= config
->reg_write
;
793 map
->defer_caching
= false;
794 goto skip_format_initialization
;
795 } else if (!bus
->read
|| !bus
->write
) {
796 map
->reg_read
= _regmap_bus_reg_read
;
797 map
->reg_write
= _regmap_bus_reg_write
;
799 map
->defer_caching
= false;
800 goto skip_format_initialization
;
802 map
->reg_read
= _regmap_bus_read
;
803 map
->reg_update_bits
= bus
->reg_update_bits
;
806 reg_endian
= regmap_get_reg_endian(bus
, config
);
807 val_endian
= regmap_get_val_endian(dev
, bus
, config
);
809 switch (config
->reg_bits
+ map
->reg_shift
) {
811 switch (config
->val_bits
) {
813 map
->format
.format_write
= regmap_format_2_6_write
;
821 switch (config
->val_bits
) {
823 map
->format
.format_write
= regmap_format_4_12_write
;
831 switch (config
->val_bits
) {
833 map
->format
.format_write
= regmap_format_7_9_write
;
841 switch (config
->val_bits
) {
843 map
->format
.format_write
= regmap_format_10_14_write
;
851 map
->format
.format_reg
= regmap_format_8
;
855 switch (reg_endian
) {
856 case REGMAP_ENDIAN_BIG
:
857 map
->format
.format_reg
= regmap_format_16_be
;
859 case REGMAP_ENDIAN_LITTLE
:
860 map
->format
.format_reg
= regmap_format_16_le
;
862 case REGMAP_ENDIAN_NATIVE
:
863 map
->format
.format_reg
= regmap_format_16_native
;
871 if (reg_endian
!= REGMAP_ENDIAN_BIG
)
873 map
->format
.format_reg
= regmap_format_24
;
877 switch (reg_endian
) {
878 case REGMAP_ENDIAN_BIG
:
879 map
->format
.format_reg
= regmap_format_32_be
;
881 case REGMAP_ENDIAN_LITTLE
:
882 map
->format
.format_reg
= regmap_format_32_le
;
884 case REGMAP_ENDIAN_NATIVE
:
885 map
->format
.format_reg
= regmap_format_32_native
;
894 switch (reg_endian
) {
895 case REGMAP_ENDIAN_BIG
:
896 map
->format
.format_reg
= regmap_format_64_be
;
898 case REGMAP_ENDIAN_LITTLE
:
899 map
->format
.format_reg
= regmap_format_64_le
;
901 case REGMAP_ENDIAN_NATIVE
:
902 map
->format
.format_reg
= regmap_format_64_native
;
914 if (val_endian
== REGMAP_ENDIAN_NATIVE
)
915 map
->format
.parse_inplace
= regmap_parse_inplace_noop
;
917 switch (config
->val_bits
) {
919 map
->format
.format_val
= regmap_format_8
;
920 map
->format
.parse_val
= regmap_parse_8
;
921 map
->format
.parse_inplace
= regmap_parse_inplace_noop
;
924 switch (val_endian
) {
925 case REGMAP_ENDIAN_BIG
:
926 map
->format
.format_val
= regmap_format_16_be
;
927 map
->format
.parse_val
= regmap_parse_16_be
;
928 map
->format
.parse_inplace
= regmap_parse_16_be_inplace
;
930 case REGMAP_ENDIAN_LITTLE
:
931 map
->format
.format_val
= regmap_format_16_le
;
932 map
->format
.parse_val
= regmap_parse_16_le
;
933 map
->format
.parse_inplace
= regmap_parse_16_le_inplace
;
935 case REGMAP_ENDIAN_NATIVE
:
936 map
->format
.format_val
= regmap_format_16_native
;
937 map
->format
.parse_val
= regmap_parse_16_native
;
944 if (val_endian
!= REGMAP_ENDIAN_BIG
)
946 map
->format
.format_val
= regmap_format_24
;
947 map
->format
.parse_val
= regmap_parse_24
;
950 switch (val_endian
) {
951 case REGMAP_ENDIAN_BIG
:
952 map
->format
.format_val
= regmap_format_32_be
;
953 map
->format
.parse_val
= regmap_parse_32_be
;
954 map
->format
.parse_inplace
= regmap_parse_32_be_inplace
;
956 case REGMAP_ENDIAN_LITTLE
:
957 map
->format
.format_val
= regmap_format_32_le
;
958 map
->format
.parse_val
= regmap_parse_32_le
;
959 map
->format
.parse_inplace
= regmap_parse_32_le_inplace
;
961 case REGMAP_ENDIAN_NATIVE
:
962 map
->format
.format_val
= regmap_format_32_native
;
963 map
->format
.parse_val
= regmap_parse_32_native
;
971 switch (val_endian
) {
972 case REGMAP_ENDIAN_BIG
:
973 map
->format
.format_val
= regmap_format_64_be
;
974 map
->format
.parse_val
= regmap_parse_64_be
;
975 map
->format
.parse_inplace
= regmap_parse_64_be_inplace
;
977 case REGMAP_ENDIAN_LITTLE
:
978 map
->format
.format_val
= regmap_format_64_le
;
979 map
->format
.parse_val
= regmap_parse_64_le
;
980 map
->format
.parse_inplace
= regmap_parse_64_le_inplace
;
982 case REGMAP_ENDIAN_NATIVE
:
983 map
->format
.format_val
= regmap_format_64_native
;
984 map
->format
.parse_val
= regmap_parse_64_native
;
993 if (map
->format
.format_write
) {
994 if ((reg_endian
!= REGMAP_ENDIAN_BIG
) ||
995 (val_endian
!= REGMAP_ENDIAN_BIG
))
997 map
->use_single_write
= true;
1000 if (!map
->format
.format_write
&&
1001 !(map
->format
.format_reg
&& map
->format
.format_val
))
1004 map
->work_buf
= kzalloc(map
->format
.buf_size
, GFP_KERNEL
);
1005 if (map
->work_buf
== NULL
) {
1010 if (map
->format
.format_write
) {
1011 map
->defer_caching
= false;
1012 map
->reg_write
= _regmap_bus_formatted_write
;
1013 } else if (map
->format
.format_val
) {
1014 map
->defer_caching
= true;
1015 map
->reg_write
= _regmap_bus_raw_write
;
1018 skip_format_initialization
:
1020 map
->range_tree
= RB_ROOT
;
1021 for (i
= 0; i
< config
->num_ranges
; i
++) {
1022 const struct regmap_range_cfg
*range_cfg
= &config
->ranges
[i
];
1023 struct regmap_range_node
*new;
1026 if (range_cfg
->range_max
< range_cfg
->range_min
) {
1027 dev_err(map
->dev
, "Invalid range %d: %d < %d\n", i
,
1028 range_cfg
->range_max
, range_cfg
->range_min
);
1032 if (range_cfg
->range_max
> map
->max_register
) {
1033 dev_err(map
->dev
, "Invalid range %d: %d > %d\n", i
,
1034 range_cfg
->range_max
, map
->max_register
);
1038 if (range_cfg
->selector_reg
> map
->max_register
) {
1040 "Invalid range %d: selector out of map\n", i
);
1044 if (range_cfg
->window_len
== 0) {
1045 dev_err(map
->dev
, "Invalid range %d: window_len 0\n",
1050 /* Make sure, that this register range has no selector
1051 or data window within its boundary */
1052 for (j
= 0; j
< config
->num_ranges
; j
++) {
1053 unsigned sel_reg
= config
->ranges
[j
].selector_reg
;
1054 unsigned win_min
= config
->ranges
[j
].window_start
;
1055 unsigned win_max
= win_min
+
1056 config
->ranges
[j
].window_len
- 1;
1058 /* Allow data window inside its own virtual range */
1062 if (range_cfg
->range_min
<= sel_reg
&&
1063 sel_reg
<= range_cfg
->range_max
) {
1065 "Range %d: selector for %d in window\n",
1070 if (!(win_max
< range_cfg
->range_min
||
1071 win_min
> range_cfg
->range_max
)) {
1073 "Range %d: window for %d in window\n",
1079 new = kzalloc(sizeof(*new), GFP_KERNEL
);
1086 new->name
= range_cfg
->name
;
1087 new->range_min
= range_cfg
->range_min
;
1088 new->range_max
= range_cfg
->range_max
;
1089 new->selector_reg
= range_cfg
->selector_reg
;
1090 new->selector_mask
= range_cfg
->selector_mask
;
1091 new->selector_shift
= range_cfg
->selector_shift
;
1092 new->window_start
= range_cfg
->window_start
;
1093 new->window_len
= range_cfg
->window_len
;
1095 if (!_regmap_range_add(map
, new)) {
1096 dev_err(map
->dev
, "Failed to add range %d\n", i
);
1101 if (map
->selector_work_buf
== NULL
) {
1102 map
->selector_work_buf
=
1103 kzalloc(map
->format
.buf_size
, GFP_KERNEL
);
1104 if (map
->selector_work_buf
== NULL
) {
1111 ret
= regcache_init(map
, config
);
1116 ret
= regmap_attach_dev(dev
, map
, config
);
1126 regmap_range_exit(map
);
1127 kfree(map
->work_buf
);
1130 hwspin_lock_free(map
->hwlock
);
1132 kfree_const(map
->name
);
1136 return ERR_PTR(ret
);
1138 EXPORT_SYMBOL_GPL(__regmap_init
);
1140 static void devm_regmap_release(struct device
*dev
, void *res
)
1142 regmap_exit(*(struct regmap
**)res
);
1145 struct regmap
*__devm_regmap_init(struct device
*dev
,
1146 const struct regmap_bus
*bus
,
1148 const struct regmap_config
*config
,
1149 struct lock_class_key
*lock_key
,
1150 const char *lock_name
)
1152 struct regmap
**ptr
, *regmap
;
1154 ptr
= devres_alloc(devm_regmap_release
, sizeof(*ptr
), GFP_KERNEL
);
1156 return ERR_PTR(-ENOMEM
);
1158 regmap
= __regmap_init(dev
, bus
, bus_context
, config
,
1159 lock_key
, lock_name
);
1160 if (!IS_ERR(regmap
)) {
1162 devres_add(dev
, ptr
);
1169 EXPORT_SYMBOL_GPL(__devm_regmap_init
);
1171 static void regmap_field_init(struct regmap_field
*rm_field
,
1172 struct regmap
*regmap
, struct reg_field reg_field
)
1174 rm_field
->regmap
= regmap
;
1175 rm_field
->reg
= reg_field
.reg
;
1176 rm_field
->shift
= reg_field
.lsb
;
1177 rm_field
->mask
= GENMASK(reg_field
.msb
, reg_field
.lsb
);
1178 rm_field
->id_size
= reg_field
.id_size
;
1179 rm_field
->id_offset
= reg_field
.id_offset
;
1183 * devm_regmap_field_alloc() - Allocate and initialise a register field.
1185 * @dev: Device that will be interacted with
1186 * @regmap: regmap bank in which this register field is located.
1187 * @reg_field: Register field with in the bank.
1189 * The return value will be an ERR_PTR() on error or a valid pointer
1190 * to a struct regmap_field. The regmap_field will be automatically freed
1191 * by the device management code.
1193 struct regmap_field
*devm_regmap_field_alloc(struct device
*dev
,
1194 struct regmap
*regmap
, struct reg_field reg_field
)
1196 struct regmap_field
*rm_field
= devm_kzalloc(dev
,
1197 sizeof(*rm_field
), GFP_KERNEL
);
1199 return ERR_PTR(-ENOMEM
);
1201 regmap_field_init(rm_field
, regmap
, reg_field
);
1206 EXPORT_SYMBOL_GPL(devm_regmap_field_alloc
);
1209 * devm_regmap_field_free() - Free a register field allocated using
1210 * devm_regmap_field_alloc.
1212 * @dev: Device that will be interacted with
1213 * @field: regmap field which should be freed.
1215 * Free register field allocated using devm_regmap_field_alloc(). Usually
1216 * drivers need not call this function, as the memory allocated via devm
1217 * will be freed as per device-driver life-cyle.
1219 void devm_regmap_field_free(struct device
*dev
,
1220 struct regmap_field
*field
)
1222 devm_kfree(dev
, field
);
1224 EXPORT_SYMBOL_GPL(devm_regmap_field_free
);
1227 * regmap_field_alloc() - Allocate and initialise a register field.
1229 * @regmap: regmap bank in which this register field is located.
1230 * @reg_field: Register field with in the bank.
1232 * The return value will be an ERR_PTR() on error or a valid pointer
1233 * to a struct regmap_field. The regmap_field should be freed by the
1234 * user once its finished working with it using regmap_field_free().
1236 struct regmap_field
*regmap_field_alloc(struct regmap
*regmap
,
1237 struct reg_field reg_field
)
1239 struct regmap_field
*rm_field
= kzalloc(sizeof(*rm_field
), GFP_KERNEL
);
1242 return ERR_PTR(-ENOMEM
);
1244 regmap_field_init(rm_field
, regmap
, reg_field
);
1248 EXPORT_SYMBOL_GPL(regmap_field_alloc
);
1251 * regmap_field_free() - Free register field allocated using
1252 * regmap_field_alloc.
1254 * @field: regmap field which should be freed.
1256 void regmap_field_free(struct regmap_field
*field
)
1260 EXPORT_SYMBOL_GPL(regmap_field_free
);
1263 * regmap_reinit_cache() - Reinitialise the current register cache
1265 * @map: Register map to operate on.
1266 * @config: New configuration. Only the cache data will be used.
1268 * Discard any existing register cache for the map and initialize a
1269 * new cache. This can be used to restore the cache to defaults or to
1270 * update the cache configuration to reflect runtime discovery of the
1273 * No explicit locking is done here, the user needs to ensure that
1274 * this function will not race with other calls to regmap.
1276 int regmap_reinit_cache(struct regmap
*map
, const struct regmap_config
*config
)
1279 regmap_debugfs_exit(map
);
1281 map
->max_register
= config
->max_register
;
1282 map
->writeable_reg
= config
->writeable_reg
;
1283 map
->readable_reg
= config
->readable_reg
;
1284 map
->volatile_reg
= config
->volatile_reg
;
1285 map
->precious_reg
= config
->precious_reg
;
1286 map
->cache_type
= config
->cache_type
;
1288 regmap_debugfs_init(map
, config
->name
);
1290 map
->cache_bypass
= false;
1291 map
->cache_only
= false;
1293 return regcache_init(map
, config
);
1295 EXPORT_SYMBOL_GPL(regmap_reinit_cache
);
1298 * regmap_exit() - Free a previously allocated register map
1300 * @map: Register map to operate on.
1302 void regmap_exit(struct regmap
*map
)
1304 struct regmap_async
*async
;
1307 regmap_debugfs_exit(map
);
1308 regmap_range_exit(map
);
1309 if (map
->bus
&& map
->bus
->free_context
)
1310 map
->bus
->free_context(map
->bus_context
);
1311 kfree(map
->work_buf
);
1312 while (!list_empty(&map
->async_free
)) {
1313 async
= list_first_entry_or_null(&map
->async_free
,
1314 struct regmap_async
,
1316 list_del(&async
->list
);
1317 kfree(async
->work_buf
);
1321 hwspin_lock_free(map
->hwlock
);
1322 kfree_const(map
->name
);
1325 EXPORT_SYMBOL_GPL(regmap_exit
);
1327 static int dev_get_regmap_match(struct device
*dev
, void *res
, void *data
)
1329 struct regmap
**r
= res
;
1335 /* If the user didn't specify a name match any */
1337 return (*r
)->name
== data
;
1343 * dev_get_regmap() - Obtain the regmap (if any) for a device
1345 * @dev: Device to retrieve the map for
1346 * @name: Optional name for the register map, usually NULL.
1348 * Returns the regmap for the device if one is present, or NULL. If
1349 * name is specified then it must match the name specified when
1350 * registering the device, if it is NULL then the first regmap found
1351 * will be used. Devices with multiple register maps are very rare,
1352 * generic code should normally not need to specify a name.
1354 struct regmap
*dev_get_regmap(struct device
*dev
, const char *name
)
1356 struct regmap
**r
= devres_find(dev
, dev_get_regmap_release
,
1357 dev_get_regmap_match
, (void *)name
);
1363 EXPORT_SYMBOL_GPL(dev_get_regmap
);
1366 * regmap_get_device() - Obtain the device from a regmap
1368 * @map: Register map to operate on.
1370 * Returns the underlying device that the regmap has been created for.
1372 struct device
*regmap_get_device(struct regmap
*map
)
1376 EXPORT_SYMBOL_GPL(regmap_get_device
);
1378 static int _regmap_select_page(struct regmap
*map
, unsigned int *reg
,
1379 struct regmap_range_node
*range
,
1380 unsigned int val_num
)
1382 void *orig_work_buf
;
1383 unsigned int win_offset
;
1384 unsigned int win_page
;
1388 win_offset
= (*reg
- range
->range_min
) % range
->window_len
;
1389 win_page
= (*reg
- range
->range_min
) / range
->window_len
;
1392 /* Bulk write shouldn't cross range boundary */
1393 if (*reg
+ val_num
- 1 > range
->range_max
)
1396 /* ... or single page boundary */
1397 if (val_num
> range
->window_len
- win_offset
)
1401 /* It is possible to have selector register inside data window.
1402 In that case, selector register is located on every page and
1403 it needs no page switching, when accessed alone. */
1405 range
->window_start
+ win_offset
!= range
->selector_reg
) {
1406 /* Use separate work_buf during page switching */
1407 orig_work_buf
= map
->work_buf
;
1408 map
->work_buf
= map
->selector_work_buf
;
1410 ret
= _regmap_update_bits(map
, range
->selector_reg
,
1411 range
->selector_mask
,
1412 win_page
<< range
->selector_shift
,
1415 map
->work_buf
= orig_work_buf
;
1421 *reg
= range
->window_start
+ win_offset
;
1426 static void regmap_set_work_buf_flag_mask(struct regmap
*map
, int max_bytes
,
1432 if (!mask
|| !map
->work_buf
)
1435 buf
= map
->work_buf
;
1437 for (i
= 0; i
< max_bytes
; i
++)
1438 buf
[i
] |= (mask
>> (8 * i
)) & 0xff;
1441 int _regmap_raw_write(struct regmap
*map
, unsigned int reg
,
1442 const void *val
, size_t val_len
)
1444 struct regmap_range_node
*range
;
1445 unsigned long flags
;
1446 void *work_val
= map
->work_buf
+ map
->format
.reg_bytes
+
1447 map
->format
.pad_bytes
;
1449 int ret
= -ENOTSUPP
;
1455 /* Check for unwritable registers before we start */
1456 if (map
->writeable_reg
)
1457 for (i
= 0; i
< val_len
/ map
->format
.val_bytes
; i
++)
1458 if (!map
->writeable_reg(map
->dev
,
1459 reg
+ regmap_get_offset(map
, i
)))
1462 if (!map
->cache_bypass
&& map
->format
.parse_val
) {
1464 int val_bytes
= map
->format
.val_bytes
;
1465 for (i
= 0; i
< val_len
/ val_bytes
; i
++) {
1466 ival
= map
->format
.parse_val(val
+ (i
* val_bytes
));
1467 ret
= regcache_write(map
,
1468 reg
+ regmap_get_offset(map
, i
),
1472 "Error in caching of register: %x ret: %d\n",
1477 if (map
->cache_only
) {
1478 map
->cache_dirty
= true;
1483 range
= _regmap_range_lookup(map
, reg
);
1485 int val_num
= val_len
/ map
->format
.val_bytes
;
1486 int win_offset
= (reg
- range
->range_min
) % range
->window_len
;
1487 int win_residue
= range
->window_len
- win_offset
;
1489 /* If the write goes beyond the end of the window split it */
1490 while (val_num
> win_residue
) {
1491 dev_dbg(map
->dev
, "Writing window %d/%zu\n",
1492 win_residue
, val_len
/ map
->format
.val_bytes
);
1493 ret
= _regmap_raw_write(map
, reg
, val
, win_residue
*
1494 map
->format
.val_bytes
);
1499 val_num
-= win_residue
;
1500 val
+= win_residue
* map
->format
.val_bytes
;
1501 val_len
-= win_residue
* map
->format
.val_bytes
;
1503 win_offset
= (reg
- range
->range_min
) %
1505 win_residue
= range
->window_len
- win_offset
;
1508 ret
= _regmap_select_page(map
, ®
, range
, val_num
);
1513 map
->format
.format_reg(map
->work_buf
, reg
, map
->reg_shift
);
1514 regmap_set_work_buf_flag_mask(map
, map
->format
.reg_bytes
,
1515 map
->write_flag_mask
);
1518 * Essentially all I/O mechanisms will be faster with a single
1519 * buffer to write. Since register syncs often generate raw
1520 * writes of single registers optimise that case.
1522 if (val
!= work_val
&& val_len
== map
->format
.val_bytes
) {
1523 memcpy(work_val
, val
, map
->format
.val_bytes
);
1527 if (map
->async
&& map
->bus
->async_write
) {
1528 struct regmap_async
*async
;
1530 trace_regmap_async_write_start(map
, reg
, val_len
);
1532 spin_lock_irqsave(&map
->async_lock
, flags
);
1533 async
= list_first_entry_or_null(&map
->async_free
,
1534 struct regmap_async
,
1537 list_del(&async
->list
);
1538 spin_unlock_irqrestore(&map
->async_lock
, flags
);
1541 async
= map
->bus
->async_alloc();
1545 async
->work_buf
= kzalloc(map
->format
.buf_size
,
1546 GFP_KERNEL
| GFP_DMA
);
1547 if (!async
->work_buf
) {
1555 /* If the caller supplied the value we can use it safely. */
1556 memcpy(async
->work_buf
, map
->work_buf
, map
->format
.pad_bytes
+
1557 map
->format
.reg_bytes
+ map
->format
.val_bytes
);
1559 spin_lock_irqsave(&map
->async_lock
, flags
);
1560 list_add_tail(&async
->list
, &map
->async_list
);
1561 spin_unlock_irqrestore(&map
->async_lock
, flags
);
1563 if (val
!= work_val
)
1564 ret
= map
->bus
->async_write(map
->bus_context
,
1566 map
->format
.reg_bytes
+
1567 map
->format
.pad_bytes
,
1568 val
, val_len
, async
);
1570 ret
= map
->bus
->async_write(map
->bus_context
,
1572 map
->format
.reg_bytes
+
1573 map
->format
.pad_bytes
+
1574 val_len
, NULL
, 0, async
);
1577 dev_err(map
->dev
, "Failed to schedule write: %d\n",
1580 spin_lock_irqsave(&map
->async_lock
, flags
);
1581 list_move(&async
->list
, &map
->async_free
);
1582 spin_unlock_irqrestore(&map
->async_lock
, flags
);
1588 trace_regmap_hw_write_start(map
, reg
, val_len
/ map
->format
.val_bytes
);
1590 /* If we're doing a single register write we can probably just
1591 * send the work_buf directly, otherwise try to do a gather
1594 if (val
== work_val
)
1595 ret
= map
->bus
->write(map
->bus_context
, map
->work_buf
,
1596 map
->format
.reg_bytes
+
1597 map
->format
.pad_bytes
+
1599 else if (map
->bus
->gather_write
)
1600 ret
= map
->bus
->gather_write(map
->bus_context
, map
->work_buf
,
1601 map
->format
.reg_bytes
+
1602 map
->format
.pad_bytes
,
1605 /* If that didn't work fall back on linearising by hand. */
1606 if (ret
== -ENOTSUPP
) {
1607 len
= map
->format
.reg_bytes
+ map
->format
.pad_bytes
+ val_len
;
1608 buf
= kzalloc(len
, GFP_KERNEL
);
1612 memcpy(buf
, map
->work_buf
, map
->format
.reg_bytes
);
1613 memcpy(buf
+ map
->format
.reg_bytes
+ map
->format
.pad_bytes
,
1615 ret
= map
->bus
->write(map
->bus_context
, buf
, len
);
1618 } else if (ret
!= 0 && !map
->cache_bypass
&& map
->format
.parse_val
) {
1619 /* regcache_drop_region() takes lock that we already have,
1620 * thus call map->cache_ops->drop() directly
1622 if (map
->cache_ops
&& map
->cache_ops
->drop
)
1623 map
->cache_ops
->drop(map
, reg
, reg
+ 1);
1626 trace_regmap_hw_write_done(map
, reg
, val_len
/ map
->format
.val_bytes
);
1632 * regmap_can_raw_write - Test if regmap_raw_write() is supported
1634 * @map: Map to check.
1636 bool regmap_can_raw_write(struct regmap
*map
)
1638 return map
->bus
&& map
->bus
->write
&& map
->format
.format_val
&&
1639 map
->format
.format_reg
;
1641 EXPORT_SYMBOL_GPL(regmap_can_raw_write
);
1644 * regmap_get_raw_read_max - Get the maximum size we can read
1646 * @map: Map to check.
1648 size_t regmap_get_raw_read_max(struct regmap
*map
)
1650 return map
->max_raw_read
;
1652 EXPORT_SYMBOL_GPL(regmap_get_raw_read_max
);
1655 * regmap_get_raw_write_max - Get the maximum size we can read
1657 * @map: Map to check.
1659 size_t regmap_get_raw_write_max(struct regmap
*map
)
1661 return map
->max_raw_write
;
1663 EXPORT_SYMBOL_GPL(regmap_get_raw_write_max
);
1665 static int _regmap_bus_formatted_write(void *context
, unsigned int reg
,
1669 struct regmap_range_node
*range
;
1670 struct regmap
*map
= context
;
1672 WARN_ON(!map
->bus
|| !map
->format
.format_write
);
1674 range
= _regmap_range_lookup(map
, reg
);
1676 ret
= _regmap_select_page(map
, ®
, range
, 1);
1681 map
->format
.format_write(map
, reg
, val
);
1683 trace_regmap_hw_write_start(map
, reg
, 1);
1685 ret
= map
->bus
->write(map
->bus_context
, map
->work_buf
,
1686 map
->format
.buf_size
);
1688 trace_regmap_hw_write_done(map
, reg
, 1);
1693 static int _regmap_bus_reg_write(void *context
, unsigned int reg
,
1696 struct regmap
*map
= context
;
1698 return map
->bus
->reg_write(map
->bus_context
, reg
, val
);
1701 static int _regmap_bus_raw_write(void *context
, unsigned int reg
,
1704 struct regmap
*map
= context
;
1706 WARN_ON(!map
->bus
|| !map
->format
.format_val
);
1708 map
->format
.format_val(map
->work_buf
+ map
->format
.reg_bytes
1709 + map
->format
.pad_bytes
, val
, 0);
1710 return _regmap_raw_write(map
, reg
,
1712 map
->format
.reg_bytes
+
1713 map
->format
.pad_bytes
,
1714 map
->format
.val_bytes
);
1717 static inline void *_regmap_map_get_context(struct regmap
*map
)
1719 return (map
->bus
) ? map
: map
->bus_context
;
1722 int _regmap_write(struct regmap
*map
, unsigned int reg
,
1726 void *context
= _regmap_map_get_context(map
);
1728 if (!regmap_writeable(map
, reg
))
1731 if (!map
->cache_bypass
&& !map
->defer_caching
) {
1732 ret
= regcache_write(map
, reg
, val
);
1735 if (map
->cache_only
) {
1736 map
->cache_dirty
= true;
1742 if (map
->dev
&& strcmp(dev_name(map
->dev
), LOG_DEVICE
) == 0)
1743 dev_info(map
->dev
, "%x <= %x\n", reg
, val
);
1746 trace_regmap_reg_write(map
, reg
, val
);
1748 return map
->reg_write(context
, reg
, val
);
1752 * regmap_write() - Write a value to a single register
1754 * @map: Register map to write to
1755 * @reg: Register to write to
1756 * @val: Value to be written
1758 * A value of zero will be returned on success, a negative errno will
1759 * be returned in error cases.
1761 int regmap_write(struct regmap
*map
, unsigned int reg
, unsigned int val
)
1765 if (!IS_ALIGNED(reg
, map
->reg_stride
))
1768 map
->lock(map
->lock_arg
);
1770 ret
= _regmap_write(map
, reg
, val
);
1772 map
->unlock(map
->lock_arg
);
1776 EXPORT_SYMBOL_GPL(regmap_write
);
1779 * regmap_write_async() - Write a value to a single register asynchronously
1781 * @map: Register map to write to
1782 * @reg: Register to write to
1783 * @val: Value to be written
1785 * A value of zero will be returned on success, a negative errno will
1786 * be returned in error cases.
1788 int regmap_write_async(struct regmap
*map
, unsigned int reg
, unsigned int val
)
1792 if (!IS_ALIGNED(reg
, map
->reg_stride
))
1795 map
->lock(map
->lock_arg
);
1799 ret
= _regmap_write(map
, reg
, val
);
1803 map
->unlock(map
->lock_arg
);
1807 EXPORT_SYMBOL_GPL(regmap_write_async
);
1810 * regmap_raw_write() - Write raw values to one or more registers
1812 * @map: Register map to write to
1813 * @reg: Initial register to write to
1814 * @val: Block of data to be written, laid out for direct transmission to the
1816 * @val_len: Length of data pointed to by val.
1818 * This function is intended to be used for things like firmware
1819 * download where a large block of data needs to be transferred to the
1820 * device. No formatting will be done on the data provided.
1822 * A value of zero will be returned on success, a negative errno will
1823 * be returned in error cases.
1825 int regmap_raw_write(struct regmap
*map
, unsigned int reg
,
1826 const void *val
, size_t val_len
)
1830 if (!regmap_can_raw_write(map
))
1832 if (val_len
% map
->format
.val_bytes
)
1834 if (map
->max_raw_write
&& map
->max_raw_write
> val_len
)
1837 map
->lock(map
->lock_arg
);
1839 ret
= _regmap_raw_write(map
, reg
, val
, val_len
);
1841 map
->unlock(map
->lock_arg
);
1845 EXPORT_SYMBOL_GPL(regmap_raw_write
);
1848 * regmap_field_update_bits_base() - Perform a read/modify/write cycle a
1851 * @field: Register field to write to
1852 * @mask: Bitmask to change
1853 * @val: Value to be written
1854 * @change: Boolean indicating if a write was done
1855 * @async: Boolean indicating asynchronously
1856 * @force: Boolean indicating use force update
1858 * Perform a read/modify/write cycle on the register field with change,
1859 * async, force option.
1861 * A value of zero will be returned on success, a negative errno will
1862 * be returned in error cases.
1864 int regmap_field_update_bits_base(struct regmap_field
*field
,
1865 unsigned int mask
, unsigned int val
,
1866 bool *change
, bool async
, bool force
)
1868 mask
= (mask
<< field
->shift
) & field
->mask
;
1870 return regmap_update_bits_base(field
->regmap
, field
->reg
,
1871 mask
, val
<< field
->shift
,
1872 change
, async
, force
);
1874 EXPORT_SYMBOL_GPL(regmap_field_update_bits_base
);
1877 * regmap_fields_update_bits_base() - Perform a read/modify/write cycle a
1878 * register field with port ID
1880 * @field: Register field to write to
1882 * @mask: Bitmask to change
1883 * @val: Value to be written
1884 * @change: Boolean indicating if a write was done
1885 * @async: Boolean indicating asynchronously
1886 * @force: Boolean indicating use force update
1888 * A value of zero will be returned on success, a negative errno will
1889 * be returned in error cases.
1891 int regmap_fields_update_bits_base(struct regmap_field
*field
, unsigned int id
,
1892 unsigned int mask
, unsigned int val
,
1893 bool *change
, bool async
, bool force
)
1895 if (id
>= field
->id_size
)
1898 mask
= (mask
<< field
->shift
) & field
->mask
;
1900 return regmap_update_bits_base(field
->regmap
,
1901 field
->reg
+ (field
->id_offset
* id
),
1902 mask
, val
<< field
->shift
,
1903 change
, async
, force
);
1905 EXPORT_SYMBOL_GPL(regmap_fields_update_bits_base
);
1908 * regmap_bulk_write() - Write multiple registers to the device
1910 * @map: Register map to write to
1911 * @reg: First register to be write from
1912 * @val: Block of data to be written, in native register size for device
1913 * @val_count: Number of registers to write
1915 * This function is intended to be used for writing a large block of
1916 * data to the device either in single transfer or multiple transfer.
1918 * A value of zero will be returned on success, a negative errno will
1919 * be returned in error cases.
1921 int regmap_bulk_write(struct regmap
*map
, unsigned int reg
, const void *val
,
1925 size_t val_bytes
= map
->format
.val_bytes
;
1926 size_t total_size
= val_bytes
* val_count
;
1928 if (!IS_ALIGNED(reg
, map
->reg_stride
))
1932 * Some devices don't support bulk write, for
1933 * them we have a series of single write operations in the first two if
1936 * The first if block is used for memory mapped io. It does not allow
1937 * val_bytes of 3 for example.
1938 * The second one is for busses that do not provide raw I/O.
1939 * The third one is used for busses which do not have these limitations
1940 * and can write arbitrary value lengths.
1943 map
->lock(map
->lock_arg
);
1944 for (i
= 0; i
< val_count
; i
++) {
1947 switch (val_bytes
) {
1949 ival
= *(u8
*)(val
+ (i
* val_bytes
));
1952 ival
= *(u16
*)(val
+ (i
* val_bytes
));
1955 ival
= *(u32
*)(val
+ (i
* val_bytes
));
1959 ival
= *(u64
*)(val
+ (i
* val_bytes
));
1967 ret
= _regmap_write(map
,
1968 reg
+ regmap_get_offset(map
, i
),
1974 map
->unlock(map
->lock_arg
);
1975 } else if (map
->bus
&& !map
->format
.parse_inplace
) {
1977 const u16
*u16
= val
;
1978 const u32
*u32
= val
;
1981 for (i
= 0; i
< val_count
; i
++) {
1982 switch (map
->format
.val_bytes
) {
1996 ret
= regmap_write(map
, reg
+ (i
* map
->reg_stride
),
2001 } else if (map
->use_single_write
||
2002 (map
->max_raw_write
&& map
->max_raw_write
< total_size
)) {
2003 int chunk_stride
= map
->reg_stride
;
2004 size_t chunk_size
= val_bytes
;
2005 size_t chunk_count
= val_count
;
2007 if (!map
->use_single_write
) {
2008 chunk_size
= map
->max_raw_write
;
2009 if (chunk_size
% val_bytes
)
2010 chunk_size
-= chunk_size
% val_bytes
;
2011 chunk_count
= total_size
/ chunk_size
;
2012 chunk_stride
*= chunk_size
/ val_bytes
;
2015 map
->lock(map
->lock_arg
);
2016 /* Write as many bytes as possible with chunk_size */
2017 for (i
= 0; i
< chunk_count
; i
++) {
2018 ret
= _regmap_raw_write(map
,
2019 reg
+ (i
* chunk_stride
),
2020 val
+ (i
* chunk_size
),
2026 /* Write remaining bytes */
2027 if (!ret
&& chunk_size
* i
< total_size
) {
2028 ret
= _regmap_raw_write(map
, reg
+ (i
* chunk_stride
),
2029 val
+ (i
* chunk_size
),
2030 total_size
- i
* chunk_size
);
2032 map
->unlock(map
->lock_arg
);
2039 wval
= kmemdup(val
, val_count
* val_bytes
, map
->alloc_flags
);
2041 dev_err(map
->dev
, "Error in memory allocation\n");
2044 for (i
= 0; i
< val_count
* val_bytes
; i
+= val_bytes
)
2045 map
->format
.parse_inplace(wval
+ i
);
2047 map
->lock(map
->lock_arg
);
2048 ret
= _regmap_raw_write(map
, reg
, wval
, val_bytes
* val_count
);
2049 map
->unlock(map
->lock_arg
);
2055 EXPORT_SYMBOL_GPL(regmap_bulk_write
);
2058 * _regmap_raw_multi_reg_write()
2060 * the (register,newvalue) pairs in regs have not been formatted, but
2061 * they are all in the same page and have been changed to being page
2062 * relative. The page register has been written if that was necessary.
2064 static int _regmap_raw_multi_reg_write(struct regmap
*map
,
2065 const struct reg_sequence
*regs
,
2072 size_t val_bytes
= map
->format
.val_bytes
;
2073 size_t reg_bytes
= map
->format
.reg_bytes
;
2074 size_t pad_bytes
= map
->format
.pad_bytes
;
2075 size_t pair_size
= reg_bytes
+ pad_bytes
+ val_bytes
;
2076 size_t len
= pair_size
* num_regs
;
2081 buf
= kzalloc(len
, GFP_KERNEL
);
2085 /* We have to linearise by hand. */
2089 for (i
= 0; i
< num_regs
; i
++) {
2090 unsigned int reg
= regs
[i
].reg
;
2091 unsigned int val
= regs
[i
].def
;
2092 trace_regmap_hw_write_start(map
, reg
, 1);
2093 map
->format
.format_reg(u8
, reg
, map
->reg_shift
);
2094 u8
+= reg_bytes
+ pad_bytes
;
2095 map
->format
.format_val(u8
, val
, 0);
2099 *u8
|= map
->write_flag_mask
;
2101 ret
= map
->bus
->write(map
->bus_context
, buf
, len
);
2105 for (i
= 0; i
< num_regs
; i
++) {
2106 int reg
= regs
[i
].reg
;
2107 trace_regmap_hw_write_done(map
, reg
, 1);
2112 static unsigned int _regmap_register_page(struct regmap
*map
,
2114 struct regmap_range_node
*range
)
2116 unsigned int win_page
= (reg
- range
->range_min
) / range
->window_len
;
2121 static int _regmap_range_multi_paged_reg_write(struct regmap
*map
,
2122 struct reg_sequence
*regs
,
2127 struct reg_sequence
*base
;
2128 unsigned int this_page
= 0;
2129 unsigned int page_change
= 0;
2131 * the set of registers are not neccessarily in order, but
2132 * since the order of write must be preserved this algorithm
2133 * chops the set each time the page changes. This also applies
2134 * if there is a delay required at any point in the sequence.
2137 for (i
= 0, n
= 0; i
< num_regs
; i
++, n
++) {
2138 unsigned int reg
= regs
[i
].reg
;
2139 struct regmap_range_node
*range
;
2141 range
= _regmap_range_lookup(map
, reg
);
2143 unsigned int win_page
= _regmap_register_page(map
, reg
,
2147 this_page
= win_page
;
2148 if (win_page
!= this_page
) {
2149 this_page
= win_page
;
2154 /* If we have both a page change and a delay make sure to
2155 * write the regs and apply the delay before we change the
2159 if (page_change
|| regs
[i
].delay_us
) {
2161 /* For situations where the first write requires
2162 * a delay we need to make sure we don't call
2163 * raw_multi_reg_write with n=0
2164 * This can't occur with page breaks as we
2165 * never write on the first iteration
2167 if (regs
[i
].delay_us
&& i
== 0)
2170 ret
= _regmap_raw_multi_reg_write(map
, base
, n
);
2174 if (regs
[i
].delay_us
)
2175 udelay(regs
[i
].delay_us
);
2181 ret
= _regmap_select_page(map
,
2194 return _regmap_raw_multi_reg_write(map
, base
, n
);
2198 static int _regmap_multi_reg_write(struct regmap
*map
,
2199 const struct reg_sequence
*regs
,
2205 if (!map
->can_multi_write
) {
2206 for (i
= 0; i
< num_regs
; i
++) {
2207 ret
= _regmap_write(map
, regs
[i
].reg
, regs
[i
].def
);
2211 if (regs
[i
].delay_us
)
2212 udelay(regs
[i
].delay_us
);
2217 if (!map
->format
.parse_inplace
)
2220 if (map
->writeable_reg
)
2221 for (i
= 0; i
< num_regs
; i
++) {
2222 int reg
= regs
[i
].reg
;
2223 if (!map
->writeable_reg(map
->dev
, reg
))
2225 if (!IS_ALIGNED(reg
, map
->reg_stride
))
2229 if (!map
->cache_bypass
) {
2230 for (i
= 0; i
< num_regs
; i
++) {
2231 unsigned int val
= regs
[i
].def
;
2232 unsigned int reg
= regs
[i
].reg
;
2233 ret
= regcache_write(map
, reg
, val
);
2236 "Error in caching of register: %x ret: %d\n",
2241 if (map
->cache_only
) {
2242 map
->cache_dirty
= true;
2249 for (i
= 0; i
< num_regs
; i
++) {
2250 unsigned int reg
= regs
[i
].reg
;
2251 struct regmap_range_node
*range
;
2253 /* Coalesce all the writes between a page break or a delay
2256 range
= _regmap_range_lookup(map
, reg
);
2257 if (range
|| regs
[i
].delay_us
) {
2258 size_t len
= sizeof(struct reg_sequence
)*num_regs
;
2259 struct reg_sequence
*base
= kmemdup(regs
, len
,
2263 ret
= _regmap_range_multi_paged_reg_write(map
, base
,
2270 return _regmap_raw_multi_reg_write(map
, regs
, num_regs
);
2274 * regmap_multi_reg_write() - Write multiple registers to the device
2276 * @map: Register map to write to
2277 * @regs: Array of structures containing register,value to be written
2278 * @num_regs: Number of registers to write
2280 * Write multiple registers to the device where the set of register, value
2281 * pairs are supplied in any order, possibly not all in a single range.
2283 * The 'normal' block write mode will send ultimately send data on the
2284 * target bus as R,V1,V2,V3,..,Vn where successively higher registers are
2285 * addressed. However, this alternative block multi write mode will send
2286 * the data as R1,V1,R2,V2,..,Rn,Vn on the target bus. The target device
2287 * must of course support the mode.
2289 * A value of zero will be returned on success, a negative errno will be
2290 * returned in error cases.
2292 int regmap_multi_reg_write(struct regmap
*map
, const struct reg_sequence
*regs
,
2297 map
->lock(map
->lock_arg
);
2299 ret
= _regmap_multi_reg_write(map
, regs
, num_regs
);
2301 map
->unlock(map
->lock_arg
);
2305 EXPORT_SYMBOL_GPL(regmap_multi_reg_write
);
2308 * regmap_multi_reg_write_bypassed() - Write multiple registers to the
2309 * device but not the cache
2311 * @map: Register map to write to
2312 * @regs: Array of structures containing register,value to be written
2313 * @num_regs: Number of registers to write
2315 * Write multiple registers to the device but not the cache where the set
2316 * of register are supplied in any order.
2318 * This function is intended to be used for writing a large block of data
2319 * atomically to the device in single transfer for those I2C client devices
2320 * that implement this alternative block write mode.
2322 * A value of zero will be returned on success, a negative errno will
2323 * be returned in error cases.
2325 int regmap_multi_reg_write_bypassed(struct regmap
*map
,
2326 const struct reg_sequence
*regs
,
2332 map
->lock(map
->lock_arg
);
2334 bypass
= map
->cache_bypass
;
2335 map
->cache_bypass
= true;
2337 ret
= _regmap_multi_reg_write(map
, regs
, num_regs
);
2339 map
->cache_bypass
= bypass
;
2341 map
->unlock(map
->lock_arg
);
2345 EXPORT_SYMBOL_GPL(regmap_multi_reg_write_bypassed
);
2348 * regmap_raw_write_async() - Write raw values to one or more registers
2351 * @map: Register map to write to
2352 * @reg: Initial register to write to
2353 * @val: Block of data to be written, laid out for direct transmission to the
2354 * device. Must be valid until regmap_async_complete() is called.
2355 * @val_len: Length of data pointed to by val.
2357 * This function is intended to be used for things like firmware
2358 * download where a large block of data needs to be transferred to the
2359 * device. No formatting will be done on the data provided.
2361 * If supported by the underlying bus the write will be scheduled
2362 * asynchronously, helping maximise I/O speed on higher speed buses
2363 * like SPI. regmap_async_complete() can be called to ensure that all
2364 * asynchrnous writes have been completed.
2366 * A value of zero will be returned on success, a negative errno will
2367 * be returned in error cases.
2369 int regmap_raw_write_async(struct regmap
*map
, unsigned int reg
,
2370 const void *val
, size_t val_len
)
2374 if (val_len
% map
->format
.val_bytes
)
2376 if (!IS_ALIGNED(reg
, map
->reg_stride
))
2379 map
->lock(map
->lock_arg
);
2383 ret
= _regmap_raw_write(map
, reg
, val
, val_len
);
2387 map
->unlock(map
->lock_arg
);
2391 EXPORT_SYMBOL_GPL(regmap_raw_write_async
);
2393 static int _regmap_raw_read(struct regmap
*map
, unsigned int reg
, void *val
,
2394 unsigned int val_len
)
2396 struct regmap_range_node
*range
;
2401 if (!map
->bus
|| !map
->bus
->read
)
2404 range
= _regmap_range_lookup(map
, reg
);
2406 ret
= _regmap_select_page(map
, ®
, range
,
2407 val_len
/ map
->format
.val_bytes
);
2412 map
->format
.format_reg(map
->work_buf
, reg
, map
->reg_shift
);
2413 regmap_set_work_buf_flag_mask(map
, map
->format
.reg_bytes
,
2414 map
->read_flag_mask
);
2415 trace_regmap_hw_read_start(map
, reg
, val_len
/ map
->format
.val_bytes
);
2417 ret
= map
->bus
->read(map
->bus_context
, map
->work_buf
,
2418 map
->format
.reg_bytes
+ map
->format
.pad_bytes
,
2421 trace_regmap_hw_read_done(map
, reg
, val_len
/ map
->format
.val_bytes
);
2426 static int _regmap_bus_reg_read(void *context
, unsigned int reg
,
2429 struct regmap
*map
= context
;
2431 return map
->bus
->reg_read(map
->bus_context
, reg
, val
);
2434 static int _regmap_bus_read(void *context
, unsigned int reg
,
2438 struct regmap
*map
= context
;
2439 void *work_val
= map
->work_buf
+ map
->format
.reg_bytes
+
2440 map
->format
.pad_bytes
;
2442 if (!map
->format
.parse_val
)
2445 ret
= _regmap_raw_read(map
, reg
, work_val
, map
->format
.val_bytes
);
2447 *val
= map
->format
.parse_val(work_val
);
2452 static int _regmap_read(struct regmap
*map
, unsigned int reg
,
2456 void *context
= _regmap_map_get_context(map
);
2458 if (!map
->cache_bypass
) {
2459 ret
= regcache_read(map
, reg
, val
);
2464 if (map
->cache_only
)
2467 if (!regmap_readable(map
, reg
))
2470 ret
= map
->reg_read(context
, reg
, val
);
2473 if (map
->dev
&& strcmp(dev_name(map
->dev
), LOG_DEVICE
) == 0)
2474 dev_info(map
->dev
, "%x => %x\n", reg
, *val
);
2477 trace_regmap_reg_read(map
, reg
, *val
);
2479 if (!map
->cache_bypass
)
2480 regcache_write(map
, reg
, *val
);
2487 * regmap_read() - Read a value from a single register
2489 * @map: Register map to read from
2490 * @reg: Register to be read from
2491 * @val: Pointer to store read value
2493 * A value of zero will be returned on success, a negative errno will
2494 * be returned in error cases.
2496 int regmap_read(struct regmap
*map
, unsigned int reg
, unsigned int *val
)
2500 if (!IS_ALIGNED(reg
, map
->reg_stride
))
2503 map
->lock(map
->lock_arg
);
2505 ret
= _regmap_read(map
, reg
, val
);
2507 map
->unlock(map
->lock_arg
);
2511 EXPORT_SYMBOL_GPL(regmap_read
);
2514 * regmap_raw_read() - Read raw data from the device
2516 * @map: Register map to read from
2517 * @reg: First register to be read from
2518 * @val: Pointer to store read value
2519 * @val_len: Size of data to read
2521 * A value of zero will be returned on success, a negative errno will
2522 * be returned in error cases.
2524 int regmap_raw_read(struct regmap
*map
, unsigned int reg
, void *val
,
2527 size_t val_bytes
= map
->format
.val_bytes
;
2528 size_t val_count
= val_len
/ val_bytes
;
2534 if (val_len
% map
->format
.val_bytes
)
2536 if (!IS_ALIGNED(reg
, map
->reg_stride
))
2541 map
->lock(map
->lock_arg
);
2543 if (regmap_volatile_range(map
, reg
, val_count
) || map
->cache_bypass
||
2544 map
->cache_type
== REGCACHE_NONE
) {
2545 if (!map
->bus
->read
) {
2549 if (map
->max_raw_read
&& map
->max_raw_read
< val_len
) {
2554 /* Physical block read if there's no cache involved */
2555 ret
= _regmap_raw_read(map
, reg
, val
, val_len
);
2558 /* Otherwise go word by word for the cache; should be low
2559 * cost as we expect to hit the cache.
2561 for (i
= 0; i
< val_count
; i
++) {
2562 ret
= _regmap_read(map
, reg
+ regmap_get_offset(map
, i
),
2567 map
->format
.format_val(val
+ (i
* val_bytes
), v
, 0);
2572 map
->unlock(map
->lock_arg
);
2576 EXPORT_SYMBOL_GPL(regmap_raw_read
);
2579 * regmap_field_read() - Read a value to a single register field
2581 * @field: Register field to read from
2582 * @val: Pointer to store read value
2584 * A value of zero will be returned on success, a negative errno will
2585 * be returned in error cases.
2587 int regmap_field_read(struct regmap_field
*field
, unsigned int *val
)
2590 unsigned int reg_val
;
2591 ret
= regmap_read(field
->regmap
, field
->reg
, ®_val
);
2595 reg_val
&= field
->mask
;
2596 reg_val
>>= field
->shift
;
2601 EXPORT_SYMBOL_GPL(regmap_field_read
);
2604 * regmap_fields_read() - Read a value to a single register field with port ID
2606 * @field: Register field to read from
2608 * @val: Pointer to store read value
2610 * A value of zero will be returned on success, a negative errno will
2611 * be returned in error cases.
2613 int regmap_fields_read(struct regmap_field
*field
, unsigned int id
,
2617 unsigned int reg_val
;
2619 if (id
>= field
->id_size
)
2622 ret
= regmap_read(field
->regmap
,
2623 field
->reg
+ (field
->id_offset
* id
),
2628 reg_val
&= field
->mask
;
2629 reg_val
>>= field
->shift
;
2634 EXPORT_SYMBOL_GPL(regmap_fields_read
);
2637 * regmap_bulk_read() - Read multiple registers from the device
2639 * @map: Register map to read from
2640 * @reg: First register to be read from
2641 * @val: Pointer to store read value, in native register size for device
2642 * @val_count: Number of registers to read
2644 * A value of zero will be returned on success, a negative errno will
2645 * be returned in error cases.
2647 int regmap_bulk_read(struct regmap
*map
, unsigned int reg
, void *val
,
2651 size_t val_bytes
= map
->format
.val_bytes
;
2652 bool vol
= regmap_volatile_range(map
, reg
, val_count
);
2654 if (!IS_ALIGNED(reg
, map
->reg_stride
))
2657 if (map
->bus
&& map
->format
.parse_inplace
&& (vol
|| map
->cache_type
== REGCACHE_NONE
)) {
2659 * Some devices does not support bulk read, for
2660 * them we have a series of single read operations.
2662 size_t total_size
= val_bytes
* val_count
;
2664 if (!map
->use_single_read
&&
2665 (!map
->max_raw_read
|| map
->max_raw_read
> total_size
)) {
2666 ret
= regmap_raw_read(map
, reg
, val
,
2667 val_bytes
* val_count
);
2672 * Some devices do not support bulk read or do not
2673 * support large bulk reads, for them we have a series
2674 * of read operations.
2676 int chunk_stride
= map
->reg_stride
;
2677 size_t chunk_size
= val_bytes
;
2678 size_t chunk_count
= val_count
;
2680 if (!map
->use_single_read
) {
2681 chunk_size
= map
->max_raw_read
;
2682 if (chunk_size
% val_bytes
)
2683 chunk_size
-= chunk_size
% val_bytes
;
2684 chunk_count
= total_size
/ chunk_size
;
2685 chunk_stride
*= chunk_size
/ val_bytes
;
2688 /* Read bytes that fit into a multiple of chunk_size */
2689 for (i
= 0; i
< chunk_count
; i
++) {
2690 ret
= regmap_raw_read(map
,
2691 reg
+ (i
* chunk_stride
),
2692 val
+ (i
* chunk_size
),
2698 /* Read remaining bytes */
2699 if (chunk_size
* i
< total_size
) {
2700 ret
= regmap_raw_read(map
,
2701 reg
+ (i
* chunk_stride
),
2702 val
+ (i
* chunk_size
),
2703 total_size
- i
* chunk_size
);
2709 for (i
= 0; i
< val_count
* val_bytes
; i
+= val_bytes
)
2710 map
->format
.parse_inplace(val
+ i
);
2712 for (i
= 0; i
< val_count
; i
++) {
2714 ret
= regmap_read(map
, reg
+ regmap_get_offset(map
, i
),
2719 if (map
->format
.format_val
) {
2720 map
->format
.format_val(val
+ (i
* val_bytes
), ival
, 0);
2722 /* Devices providing read and write
2723 * operations can use the bulk I/O
2724 * functions if they define a val_bytes,
2725 * we assume that the values are native
2735 switch (map
->format
.val_bytes
) {
2759 EXPORT_SYMBOL_GPL(regmap_bulk_read
);
2761 static int _regmap_update_bits(struct regmap
*map
, unsigned int reg
,
2762 unsigned int mask
, unsigned int val
,
2763 bool *change
, bool force_write
)
2766 unsigned int tmp
, orig
;
2771 if (regmap_volatile(map
, reg
) && map
->reg_update_bits
) {
2772 ret
= map
->reg_update_bits(map
->bus_context
, reg
, mask
, val
);
2773 if (ret
== 0 && change
)
2776 ret
= _regmap_read(map
, reg
, &orig
);
2783 if (force_write
|| (tmp
!= orig
)) {
2784 ret
= _regmap_write(map
, reg
, tmp
);
2785 if (ret
== 0 && change
)
2794 * regmap_update_bits_base() - Perform a read/modify/write cycle on a register
2796 * @map: Register map to update
2797 * @reg: Register to update
2798 * @mask: Bitmask to change
2799 * @val: New value for bitmask
2800 * @change: Boolean indicating if a write was done
2801 * @async: Boolean indicating asynchronously
2802 * @force: Boolean indicating use force update
2804 * Perform a read/modify/write cycle on a register map with change, async, force
2809 * With most buses the read must be done synchronously so this is most useful
2810 * for devices with a cache which do not need to interact with the hardware to
2811 * determine the current register value.
2813 * Returns zero for success, a negative number on error.
2815 int regmap_update_bits_base(struct regmap
*map
, unsigned int reg
,
2816 unsigned int mask
, unsigned int val
,
2817 bool *change
, bool async
, bool force
)
2821 map
->lock(map
->lock_arg
);
2825 ret
= _regmap_update_bits(map
, reg
, mask
, val
, change
, force
);
2829 map
->unlock(map
->lock_arg
);
2833 EXPORT_SYMBOL_GPL(regmap_update_bits_base
);
2835 void regmap_async_complete_cb(struct regmap_async
*async
, int ret
)
2837 struct regmap
*map
= async
->map
;
2840 trace_regmap_async_io_complete(map
);
2842 spin_lock(&map
->async_lock
);
2843 list_move(&async
->list
, &map
->async_free
);
2844 wake
= list_empty(&map
->async_list
);
2847 map
->async_ret
= ret
;
2849 spin_unlock(&map
->async_lock
);
2852 wake_up(&map
->async_waitq
);
2854 EXPORT_SYMBOL_GPL(regmap_async_complete_cb
);
2856 static int regmap_async_is_done(struct regmap
*map
)
2858 unsigned long flags
;
2861 spin_lock_irqsave(&map
->async_lock
, flags
);
2862 ret
= list_empty(&map
->async_list
);
2863 spin_unlock_irqrestore(&map
->async_lock
, flags
);
2869 * regmap_async_complete - Ensure all asynchronous I/O has completed.
2871 * @map: Map to operate on.
2873 * Blocks until any pending asynchronous I/O has completed. Returns
2874 * an error code for any failed I/O operations.
2876 int regmap_async_complete(struct regmap
*map
)
2878 unsigned long flags
;
2881 /* Nothing to do with no async support */
2882 if (!map
->bus
|| !map
->bus
->async_write
)
2885 trace_regmap_async_complete_start(map
);
2887 wait_event(map
->async_waitq
, regmap_async_is_done(map
));
2889 spin_lock_irqsave(&map
->async_lock
, flags
);
2890 ret
= map
->async_ret
;
2892 spin_unlock_irqrestore(&map
->async_lock
, flags
);
2894 trace_regmap_async_complete_done(map
);
2898 EXPORT_SYMBOL_GPL(regmap_async_complete
);
2901 * regmap_register_patch - Register and apply register updates to be applied
2902 * on device initialistion
2904 * @map: Register map to apply updates to.
2905 * @regs: Values to update.
2906 * @num_regs: Number of entries in regs.
2908 * Register a set of register updates to be applied to the device
2909 * whenever the device registers are synchronised with the cache and
2910 * apply them immediately. Typically this is used to apply
2911 * corrections to be applied to the device defaults on startup, such
2912 * as the updates some vendors provide to undocumented registers.
2914 * The caller must ensure that this function cannot be called
2915 * concurrently with either itself or regcache_sync().
2917 int regmap_register_patch(struct regmap
*map
, const struct reg_sequence
*regs
,
2920 struct reg_sequence
*p
;
2924 if (WARN_ONCE(num_regs
<= 0, "invalid registers number (%d)\n",
2928 p
= krealloc(map
->patch
,
2929 sizeof(struct reg_sequence
) * (map
->patch_regs
+ num_regs
),
2932 memcpy(p
+ map
->patch_regs
, regs
, num_regs
* sizeof(*regs
));
2934 map
->patch_regs
+= num_regs
;
2939 map
->lock(map
->lock_arg
);
2941 bypass
= map
->cache_bypass
;
2943 map
->cache_bypass
= true;
2946 ret
= _regmap_multi_reg_write(map
, regs
, num_regs
);
2949 map
->cache_bypass
= bypass
;
2951 map
->unlock(map
->lock_arg
);
2953 regmap_async_complete(map
);
2957 EXPORT_SYMBOL_GPL(regmap_register_patch
);
2960 * regmap_get_val_bytes() - Report the size of a register value
2962 * @map: Register map to operate on.
2964 * Report the size of a register value, mainly intended to for use by
2965 * generic infrastructure built on top of regmap.
2967 int regmap_get_val_bytes(struct regmap
*map
)
2969 if (map
->format
.format_write
)
2972 return map
->format
.val_bytes
;
2974 EXPORT_SYMBOL_GPL(regmap_get_val_bytes
);
2977 * regmap_get_max_register() - Report the max register value
2979 * @map: Register map to operate on.
2981 * Report the max register value, mainly intended to for use by
2982 * generic infrastructure built on top of regmap.
2984 int regmap_get_max_register(struct regmap
*map
)
2986 return map
->max_register
? map
->max_register
: -EINVAL
;
2988 EXPORT_SYMBOL_GPL(regmap_get_max_register
);
2991 * regmap_get_reg_stride() - Report the register address stride
2993 * @map: Register map to operate on.
2995 * Report the register address stride, mainly intended to for use by
2996 * generic infrastructure built on top of regmap.
2998 int regmap_get_reg_stride(struct regmap
*map
)
3000 return map
->reg_stride
;
3002 EXPORT_SYMBOL_GPL(regmap_get_reg_stride
);
3004 int regmap_parse_val(struct regmap
*map
, const void *buf
,
3007 if (!map
->format
.parse_val
)
3010 *val
= map
->format
.parse_val(buf
);
3014 EXPORT_SYMBOL_GPL(regmap_parse_val
);
3016 static int __init
regmap_initcall(void)
3018 regmap_debugfs_initcall();
3022 postcore_initcall(regmap_initcall
);