2 * AMD Cryptographic Coprocessor (CCP) driver
4 * Copyright (C) 2013,2017 Advanced Micro Devices, Inc.
6 * Author: Tom Lendacky <thomas.lendacky@amd.com>
7 * Author: Gary R Hook <gary.hook@amd.com>
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License version 2 as
11 * published by the Free Software Foundation.
14 #include <linux/module.h>
15 #include <linux/kernel.h>
16 #include <linux/pci.h>
17 #include <linux/interrupt.h>
18 #include <crypto/scatterwalk.h>
19 #include <crypto/des.h>
20 #include <linux/ccp.h>
24 /* SHA initial context values */
25 static const __be32 ccp_sha1_init
[SHA1_DIGEST_SIZE
/ sizeof(__be32
)] = {
26 cpu_to_be32(SHA1_H0
), cpu_to_be32(SHA1_H1
),
27 cpu_to_be32(SHA1_H2
), cpu_to_be32(SHA1_H3
),
31 static const __be32 ccp_sha224_init
[SHA256_DIGEST_SIZE
/ sizeof(__be32
)] = {
32 cpu_to_be32(SHA224_H0
), cpu_to_be32(SHA224_H1
),
33 cpu_to_be32(SHA224_H2
), cpu_to_be32(SHA224_H3
),
34 cpu_to_be32(SHA224_H4
), cpu_to_be32(SHA224_H5
),
35 cpu_to_be32(SHA224_H6
), cpu_to_be32(SHA224_H7
),
38 static const __be32 ccp_sha256_init
[SHA256_DIGEST_SIZE
/ sizeof(__be32
)] = {
39 cpu_to_be32(SHA256_H0
), cpu_to_be32(SHA256_H1
),
40 cpu_to_be32(SHA256_H2
), cpu_to_be32(SHA256_H3
),
41 cpu_to_be32(SHA256_H4
), cpu_to_be32(SHA256_H5
),
42 cpu_to_be32(SHA256_H6
), cpu_to_be32(SHA256_H7
),
45 static const __be64 ccp_sha384_init
[SHA512_DIGEST_SIZE
/ sizeof(__be64
)] = {
46 cpu_to_be64(SHA384_H0
), cpu_to_be64(SHA384_H1
),
47 cpu_to_be64(SHA384_H2
), cpu_to_be64(SHA384_H3
),
48 cpu_to_be64(SHA384_H4
), cpu_to_be64(SHA384_H5
),
49 cpu_to_be64(SHA384_H6
), cpu_to_be64(SHA384_H7
),
52 static const __be64 ccp_sha512_init
[SHA512_DIGEST_SIZE
/ sizeof(__be64
)] = {
53 cpu_to_be64(SHA512_H0
), cpu_to_be64(SHA512_H1
),
54 cpu_to_be64(SHA512_H2
), cpu_to_be64(SHA512_H3
),
55 cpu_to_be64(SHA512_H4
), cpu_to_be64(SHA512_H5
),
56 cpu_to_be64(SHA512_H6
), cpu_to_be64(SHA512_H7
),
59 #define CCP_NEW_JOBID(ccp) ((ccp->vdata->version == CCP_VERSION(3, 0)) ? \
60 ccp_gen_jobid(ccp) : 0)
62 static u32
ccp_gen_jobid(struct ccp_device
*ccp
)
64 return atomic_inc_return(&ccp
->current_id
) & CCP_JOBID_MASK
;
67 static void ccp_sg_free(struct ccp_sg_workarea
*wa
)
70 dma_unmap_sg(wa
->dma_dev
, wa
->dma_sg
, wa
->nents
, wa
->dma_dir
);
75 static int ccp_init_sg_workarea(struct ccp_sg_workarea
*wa
, struct device
*dev
,
76 struct scatterlist
*sg
, u64 len
,
77 enum dma_data_direction dma_dir
)
79 memset(wa
, 0, sizeof(*wa
));
85 wa
->nents
= sg_nents_for_len(sg
, len
);
95 if (dma_dir
== DMA_NONE
)
100 wa
->dma_dir
= dma_dir
;
101 wa
->dma_count
= dma_map_sg(dev
, sg
, wa
->nents
, dma_dir
);
108 static void ccp_update_sg_workarea(struct ccp_sg_workarea
*wa
, unsigned int len
)
110 unsigned int nbytes
= min_t(u64
, len
, wa
->bytes_left
);
115 wa
->sg_used
+= nbytes
;
116 wa
->bytes_left
-= nbytes
;
117 if (wa
->sg_used
== wa
->sg
->length
) {
118 wa
->sg
= sg_next(wa
->sg
);
123 static void ccp_dm_free(struct ccp_dm_workarea
*wa
)
125 if (wa
->length
<= CCP_DMAPOOL_MAX_SIZE
) {
127 dma_pool_free(wa
->dma_pool
, wa
->address
,
131 dma_unmap_single(wa
->dev
, wa
->dma
.address
, wa
->length
,
140 static int ccp_init_dm_workarea(struct ccp_dm_workarea
*wa
,
141 struct ccp_cmd_queue
*cmd_q
,
143 enum dma_data_direction dir
)
145 memset(wa
, 0, sizeof(*wa
));
150 wa
->dev
= cmd_q
->ccp
->dev
;
153 if (len
<= CCP_DMAPOOL_MAX_SIZE
) {
154 wa
->dma_pool
= cmd_q
->dma_pool
;
156 wa
->address
= dma_pool_alloc(wa
->dma_pool
, GFP_KERNEL
,
161 wa
->dma
.length
= CCP_DMAPOOL_MAX_SIZE
;
163 memset(wa
->address
, 0, CCP_DMAPOOL_MAX_SIZE
);
165 wa
->address
= kzalloc(len
, GFP_KERNEL
);
169 wa
->dma
.address
= dma_map_single(wa
->dev
, wa
->address
, len
,
171 if (dma_mapping_error(wa
->dev
, wa
->dma
.address
))
174 wa
->dma
.length
= len
;
181 static void ccp_set_dm_area(struct ccp_dm_workarea
*wa
, unsigned int wa_offset
,
182 struct scatterlist
*sg
, unsigned int sg_offset
,
185 WARN_ON(!wa
->address
);
187 scatterwalk_map_and_copy(wa
->address
+ wa_offset
, sg
, sg_offset
, len
,
191 static void ccp_get_dm_area(struct ccp_dm_workarea
*wa
, unsigned int wa_offset
,
192 struct scatterlist
*sg
, unsigned int sg_offset
,
195 WARN_ON(!wa
->address
);
197 scatterwalk_map_and_copy(wa
->address
+ wa_offset
, sg
, sg_offset
, len
,
201 static int ccp_reverse_set_dm_area(struct ccp_dm_workarea
*wa
,
202 unsigned int wa_offset
,
203 struct scatterlist
*sg
,
204 unsigned int sg_offset
,
209 ccp_set_dm_area(wa
, wa_offset
, sg
, sg_offset
, len
);
211 p
= wa
->address
+ wa_offset
;
223 static void ccp_reverse_get_dm_area(struct ccp_dm_workarea
*wa
,
224 unsigned int wa_offset
,
225 struct scatterlist
*sg
,
226 unsigned int sg_offset
,
231 p
= wa
->address
+ wa_offset
;
241 ccp_get_dm_area(wa
, wa_offset
, sg
, sg_offset
, len
);
244 static void ccp_free_data(struct ccp_data
*data
, struct ccp_cmd_queue
*cmd_q
)
246 ccp_dm_free(&data
->dm_wa
);
247 ccp_sg_free(&data
->sg_wa
);
250 static int ccp_init_data(struct ccp_data
*data
, struct ccp_cmd_queue
*cmd_q
,
251 struct scatterlist
*sg
, u64 sg_len
,
253 enum dma_data_direction dir
)
257 memset(data
, 0, sizeof(*data
));
259 ret
= ccp_init_sg_workarea(&data
->sg_wa
, cmd_q
->ccp
->dev
, sg
, sg_len
,
264 ret
= ccp_init_dm_workarea(&data
->dm_wa
, cmd_q
, dm_len
, dir
);
271 ccp_free_data(data
, cmd_q
);
276 static unsigned int ccp_queue_buf(struct ccp_data
*data
, unsigned int from
)
278 struct ccp_sg_workarea
*sg_wa
= &data
->sg_wa
;
279 struct ccp_dm_workarea
*dm_wa
= &data
->dm_wa
;
280 unsigned int buf_count
, nbytes
;
282 /* Clear the buffer if setting it */
284 memset(dm_wa
->address
, 0, dm_wa
->length
);
289 /* Perform the copy operation
290 * nbytes will always be <= UINT_MAX because dm_wa->length is
293 nbytes
= min_t(u64
, sg_wa
->bytes_left
, dm_wa
->length
);
294 scatterwalk_map_and_copy(dm_wa
->address
, sg_wa
->sg
, sg_wa
->sg_used
,
297 /* Update the structures and generate the count */
299 while (sg_wa
->bytes_left
&& (buf_count
< dm_wa
->length
)) {
300 nbytes
= min(sg_wa
->sg
->length
- sg_wa
->sg_used
,
301 dm_wa
->length
- buf_count
);
302 nbytes
= min_t(u64
, sg_wa
->bytes_left
, nbytes
);
305 ccp_update_sg_workarea(sg_wa
, nbytes
);
311 static unsigned int ccp_fill_queue_buf(struct ccp_data
*data
)
313 return ccp_queue_buf(data
, 0);
316 static unsigned int ccp_empty_queue_buf(struct ccp_data
*data
)
318 return ccp_queue_buf(data
, 1);
321 static void ccp_prepare_data(struct ccp_data
*src
, struct ccp_data
*dst
,
322 struct ccp_op
*op
, unsigned int block_size
,
325 unsigned int sg_src_len
, sg_dst_len
, op_len
;
327 /* The CCP can only DMA from/to one address each per operation. This
328 * requires that we find the smallest DMA area between the source
329 * and destination. The resulting len values will always be <= UINT_MAX
330 * because the dma length is an unsigned int.
332 sg_src_len
= sg_dma_len(src
->sg_wa
.sg
) - src
->sg_wa
.sg_used
;
333 sg_src_len
= min_t(u64
, src
->sg_wa
.bytes_left
, sg_src_len
);
336 sg_dst_len
= sg_dma_len(dst
->sg_wa
.sg
) - dst
->sg_wa
.sg_used
;
337 sg_dst_len
= min_t(u64
, src
->sg_wa
.bytes_left
, sg_dst_len
);
338 op_len
= min(sg_src_len
, sg_dst_len
);
343 /* The data operation length will be at least block_size in length
344 * or the smaller of available sg room remaining for the source or
347 op_len
= max(op_len
, block_size
);
349 /* Unless we have to buffer data, there's no reason to wait */
352 if (sg_src_len
< block_size
) {
353 /* Not enough data in the sg element, so it
354 * needs to be buffered into a blocksize chunk
356 int cp_len
= ccp_fill_queue_buf(src
);
359 op
->src
.u
.dma
.address
= src
->dm_wa
.dma
.address
;
360 op
->src
.u
.dma
.offset
= 0;
361 op
->src
.u
.dma
.length
= (blocksize_op
) ? block_size
: cp_len
;
363 /* Enough data in the sg element, but we need to
364 * adjust for any previously copied data
366 op
->src
.u
.dma
.address
= sg_dma_address(src
->sg_wa
.sg
);
367 op
->src
.u
.dma
.offset
= src
->sg_wa
.sg_used
;
368 op
->src
.u
.dma
.length
= op_len
& ~(block_size
- 1);
370 ccp_update_sg_workarea(&src
->sg_wa
, op
->src
.u
.dma
.length
);
374 if (sg_dst_len
< block_size
) {
375 /* Not enough room in the sg element or we're on the
376 * last piece of data (when using padding), so the
377 * output needs to be buffered into a blocksize chunk
380 op
->dst
.u
.dma
.address
= dst
->dm_wa
.dma
.address
;
381 op
->dst
.u
.dma
.offset
= 0;
382 op
->dst
.u
.dma
.length
= op
->src
.u
.dma
.length
;
384 /* Enough room in the sg element, but we need to
385 * adjust for any previously used area
387 op
->dst
.u
.dma
.address
= sg_dma_address(dst
->sg_wa
.sg
);
388 op
->dst
.u
.dma
.offset
= dst
->sg_wa
.sg_used
;
389 op
->dst
.u
.dma
.length
= op
->src
.u
.dma
.length
;
394 static void ccp_process_data(struct ccp_data
*src
, struct ccp_data
*dst
,
400 if (op
->dst
.u
.dma
.address
== dst
->dm_wa
.dma
.address
)
401 ccp_empty_queue_buf(dst
);
403 ccp_update_sg_workarea(&dst
->sg_wa
,
404 op
->dst
.u
.dma
.length
);
408 static int ccp_copy_to_from_sb(struct ccp_cmd_queue
*cmd_q
,
409 struct ccp_dm_workarea
*wa
, u32 jobid
, u32 sb
,
410 u32 byte_swap
, bool from
)
414 memset(&op
, 0, sizeof(op
));
422 op
.src
.type
= CCP_MEMTYPE_SB
;
424 op
.dst
.type
= CCP_MEMTYPE_SYSTEM
;
425 op
.dst
.u
.dma
.address
= wa
->dma
.address
;
426 op
.dst
.u
.dma
.length
= wa
->length
;
428 op
.src
.type
= CCP_MEMTYPE_SYSTEM
;
429 op
.src
.u
.dma
.address
= wa
->dma
.address
;
430 op
.src
.u
.dma
.length
= wa
->length
;
431 op
.dst
.type
= CCP_MEMTYPE_SB
;
435 op
.u
.passthru
.byte_swap
= byte_swap
;
437 return cmd_q
->ccp
->vdata
->perform
->passthru(&op
);
440 static int ccp_copy_to_sb(struct ccp_cmd_queue
*cmd_q
,
441 struct ccp_dm_workarea
*wa
, u32 jobid
, u32 sb
,
444 return ccp_copy_to_from_sb(cmd_q
, wa
, jobid
, sb
, byte_swap
, false);
447 static int ccp_copy_from_sb(struct ccp_cmd_queue
*cmd_q
,
448 struct ccp_dm_workarea
*wa
, u32 jobid
, u32 sb
,
451 return ccp_copy_to_from_sb(cmd_q
, wa
, jobid
, sb
, byte_swap
, true);
454 static int ccp_run_aes_cmac_cmd(struct ccp_cmd_queue
*cmd_q
,
457 struct ccp_aes_engine
*aes
= &cmd
->u
.aes
;
458 struct ccp_dm_workarea key
, ctx
;
461 unsigned int dm_offset
;
464 if (!((aes
->key_len
== AES_KEYSIZE_128
) ||
465 (aes
->key_len
== AES_KEYSIZE_192
) ||
466 (aes
->key_len
== AES_KEYSIZE_256
)))
469 if (aes
->src_len
& (AES_BLOCK_SIZE
- 1))
472 if (aes
->iv_len
!= AES_BLOCK_SIZE
)
475 if (!aes
->key
|| !aes
->iv
|| !aes
->src
)
478 if (aes
->cmac_final
) {
479 if (aes
->cmac_key_len
!= AES_BLOCK_SIZE
)
486 BUILD_BUG_ON(CCP_AES_KEY_SB_COUNT
!= 1);
487 BUILD_BUG_ON(CCP_AES_CTX_SB_COUNT
!= 1);
490 memset(&op
, 0, sizeof(op
));
492 op
.jobid
= CCP_NEW_JOBID(cmd_q
->ccp
);
493 op
.sb_key
= cmd_q
->sb_key
;
494 op
.sb_ctx
= cmd_q
->sb_ctx
;
496 op
.u
.aes
.type
= aes
->type
;
497 op
.u
.aes
.mode
= aes
->mode
;
498 op
.u
.aes
.action
= aes
->action
;
500 /* All supported key sizes fit in a single (32-byte) SB entry
501 * and must be in little endian format. Use the 256-bit byte
502 * swap passthru option to convert from big endian to little
505 ret
= ccp_init_dm_workarea(&key
, cmd_q
,
506 CCP_AES_KEY_SB_COUNT
* CCP_SB_BYTES
,
511 dm_offset
= CCP_SB_BYTES
- aes
->key_len
;
512 ccp_set_dm_area(&key
, dm_offset
, aes
->key
, 0, aes
->key_len
);
513 ret
= ccp_copy_to_sb(cmd_q
, &key
, op
.jobid
, op
.sb_key
,
514 CCP_PASSTHRU_BYTESWAP_256BIT
);
516 cmd
->engine_error
= cmd_q
->cmd_error
;
520 /* The AES context fits in a single (32-byte) SB entry and
521 * must be in little endian format. Use the 256-bit byte swap
522 * passthru option to convert from big endian to little endian.
524 ret
= ccp_init_dm_workarea(&ctx
, cmd_q
,
525 CCP_AES_CTX_SB_COUNT
* CCP_SB_BYTES
,
530 dm_offset
= CCP_SB_BYTES
- AES_BLOCK_SIZE
;
531 ccp_set_dm_area(&ctx
, dm_offset
, aes
->iv
, 0, aes
->iv_len
);
532 ret
= ccp_copy_to_sb(cmd_q
, &ctx
, op
.jobid
, op
.sb_ctx
,
533 CCP_PASSTHRU_BYTESWAP_256BIT
);
535 cmd
->engine_error
= cmd_q
->cmd_error
;
539 /* Send data to the CCP AES engine */
540 ret
= ccp_init_data(&src
, cmd_q
, aes
->src
, aes
->src_len
,
541 AES_BLOCK_SIZE
, DMA_TO_DEVICE
);
545 while (src
.sg_wa
.bytes_left
) {
546 ccp_prepare_data(&src
, NULL
, &op
, AES_BLOCK_SIZE
, true);
547 if (aes
->cmac_final
&& !src
.sg_wa
.bytes_left
) {
550 /* Push the K1/K2 key to the CCP now */
551 ret
= ccp_copy_from_sb(cmd_q
, &ctx
, op
.jobid
,
553 CCP_PASSTHRU_BYTESWAP_256BIT
);
555 cmd
->engine_error
= cmd_q
->cmd_error
;
559 ccp_set_dm_area(&ctx
, 0, aes
->cmac_key
, 0,
561 ret
= ccp_copy_to_sb(cmd_q
, &ctx
, op
.jobid
, op
.sb_ctx
,
562 CCP_PASSTHRU_BYTESWAP_256BIT
);
564 cmd
->engine_error
= cmd_q
->cmd_error
;
569 ret
= cmd_q
->ccp
->vdata
->perform
->aes(&op
);
571 cmd
->engine_error
= cmd_q
->cmd_error
;
575 ccp_process_data(&src
, NULL
, &op
);
578 /* Retrieve the AES context - convert from LE to BE using
579 * 32-byte (256-bit) byteswapping
581 ret
= ccp_copy_from_sb(cmd_q
, &ctx
, op
.jobid
, op
.sb_ctx
,
582 CCP_PASSTHRU_BYTESWAP_256BIT
);
584 cmd
->engine_error
= cmd_q
->cmd_error
;
588 /* ...but we only need AES_BLOCK_SIZE bytes */
589 dm_offset
= CCP_SB_BYTES
- AES_BLOCK_SIZE
;
590 ccp_get_dm_area(&ctx
, dm_offset
, aes
->iv
, 0, aes
->iv_len
);
593 ccp_free_data(&src
, cmd_q
);
604 static int ccp_run_aes_gcm_cmd(struct ccp_cmd_queue
*cmd_q
,
607 struct ccp_aes_engine
*aes
= &cmd
->u
.aes
;
608 struct ccp_dm_workarea key
, ctx
, final_wa
, tag
;
609 struct ccp_data src
, dst
;
613 unsigned long long *final
;
614 unsigned int dm_offset
;
616 bool in_place
= true; /* Default value */
619 struct scatterlist
*p_inp
, sg_inp
[2];
620 struct scatterlist
*p_tag
, sg_tag
[2];
621 struct scatterlist
*p_outp
, sg_outp
[2];
622 struct scatterlist
*p_aad
;
627 if (!((aes
->key_len
== AES_KEYSIZE_128
) ||
628 (aes
->key_len
== AES_KEYSIZE_192
) ||
629 (aes
->key_len
== AES_KEYSIZE_256
)))
632 if (!aes
->key
) /* Gotta have a key SGL */
635 /* First, decompose the source buffer into AAD & PT,
636 * and the destination buffer into AAD, CT & tag, or
637 * the input into CT & tag.
638 * It is expected that the input and output SGs will
639 * be valid, even if the AAD and input lengths are 0.
642 p_inp
= scatterwalk_ffwd(sg_inp
, aes
->src
, aes
->aad_len
);
643 p_outp
= scatterwalk_ffwd(sg_outp
, aes
->dst
, aes
->aad_len
);
644 if (aes
->action
== CCP_AES_ACTION_ENCRYPT
) {
646 p_tag
= scatterwalk_ffwd(sg_tag
, p_outp
, ilen
);
648 /* Input length for decryption includes tag */
649 ilen
= aes
->src_len
- AES_BLOCK_SIZE
;
650 p_tag
= scatterwalk_ffwd(sg_tag
, p_inp
, ilen
);
653 memset(&op
, 0, sizeof(op
));
655 op
.jobid
= CCP_NEW_JOBID(cmd_q
->ccp
);
656 op
.sb_key
= cmd_q
->sb_key
; /* Pre-allocated */
657 op
.sb_ctx
= cmd_q
->sb_ctx
; /* Pre-allocated */
659 op
.u
.aes
.type
= aes
->type
;
661 /* Copy the key to the LSB */
662 ret
= ccp_init_dm_workarea(&key
, cmd_q
,
663 CCP_AES_CTX_SB_COUNT
* CCP_SB_BYTES
,
668 dm_offset
= CCP_SB_BYTES
- aes
->key_len
;
669 ccp_set_dm_area(&key
, dm_offset
, aes
->key
, 0, aes
->key_len
);
670 ret
= ccp_copy_to_sb(cmd_q
, &key
, op
.jobid
, op
.sb_key
,
671 CCP_PASSTHRU_BYTESWAP_256BIT
);
673 cmd
->engine_error
= cmd_q
->cmd_error
;
677 /* Copy the context (IV) to the LSB.
678 * There is an assumption here that the IV is 96 bits in length, plus
679 * a nonce of 32 bits. If no IV is present, use a zeroed buffer.
681 ret
= ccp_init_dm_workarea(&ctx
, cmd_q
,
682 CCP_AES_CTX_SB_COUNT
* CCP_SB_BYTES
,
687 dm_offset
= CCP_AES_CTX_SB_COUNT
* CCP_SB_BYTES
- aes
->iv_len
;
688 ccp_set_dm_area(&ctx
, dm_offset
, aes
->iv
, 0, aes
->iv_len
);
690 ret
= ccp_copy_to_sb(cmd_q
, &ctx
, op
.jobid
, op
.sb_ctx
,
691 CCP_PASSTHRU_BYTESWAP_256BIT
);
693 cmd
->engine_error
= cmd_q
->cmd_error
;
698 if (aes
->aad_len
> 0) {
699 /* Step 1: Run a GHASH over the Additional Authenticated Data */
700 ret
= ccp_init_data(&aad
, cmd_q
, p_aad
, aes
->aad_len
,
706 op
.u
.aes
.mode
= CCP_AES_MODE_GHASH
;
707 op
.u
.aes
.action
= CCP_AES_GHASHAAD
;
709 while (aad
.sg_wa
.bytes_left
) {
710 ccp_prepare_data(&aad
, NULL
, &op
, AES_BLOCK_SIZE
, true);
712 ret
= cmd_q
->ccp
->vdata
->perform
->aes(&op
);
714 cmd
->engine_error
= cmd_q
->cmd_error
;
718 ccp_process_data(&aad
, NULL
, &op
);
723 op
.u
.aes
.mode
= CCP_AES_MODE_GCTR
;
724 op
.u
.aes
.action
= aes
->action
;
727 /* Step 2: Run a GCTR over the plaintext */
728 in_place
= (sg_virt(p_inp
) == sg_virt(p_outp
)) ? true : false;
730 ret
= ccp_init_data(&src
, cmd_q
, p_inp
, ilen
,
732 in_place
? DMA_BIDIRECTIONAL
740 ret
= ccp_init_data(&dst
, cmd_q
, p_outp
, ilen
,
741 AES_BLOCK_SIZE
, DMA_FROM_DEVICE
);
749 while (src
.sg_wa
.bytes_left
) {
750 ccp_prepare_data(&src
, &dst
, &op
, AES_BLOCK_SIZE
, true);
751 if (!src
.sg_wa
.bytes_left
) {
752 unsigned int nbytes
= aes
->src_len
757 op
.u
.aes
.size
= (nbytes
* 8) - 1;
761 ret
= cmd_q
->ccp
->vdata
->perform
->aes(&op
);
763 cmd
->engine_error
= cmd_q
->cmd_error
;
767 ccp_process_data(&src
, &dst
, &op
);
772 /* Step 3: Update the IV portion of the context with the original IV */
773 ret
= ccp_copy_from_sb(cmd_q
, &ctx
, op
.jobid
, op
.sb_ctx
,
774 CCP_PASSTHRU_BYTESWAP_256BIT
);
776 cmd
->engine_error
= cmd_q
->cmd_error
;
780 ccp_set_dm_area(&ctx
, dm_offset
, aes
->iv
, 0, aes
->iv_len
);
782 ret
= ccp_copy_to_sb(cmd_q
, &ctx
, op
.jobid
, op
.sb_ctx
,
783 CCP_PASSTHRU_BYTESWAP_256BIT
);
785 cmd
->engine_error
= cmd_q
->cmd_error
;
789 /* Step 4: Concatenate the lengths of the AAD and source, and
790 * hash that 16 byte buffer.
792 ret
= ccp_init_dm_workarea(&final_wa
, cmd_q
, AES_BLOCK_SIZE
,
796 final
= (unsigned long long *) final_wa
.address
;
797 final
[0] = cpu_to_be64(aes
->aad_len
* 8);
798 final
[1] = cpu_to_be64(ilen
* 8);
800 op
.u
.aes
.mode
= CCP_AES_MODE_GHASH
;
801 op
.u
.aes
.action
= CCP_AES_GHASHFINAL
;
802 op
.src
.type
= CCP_MEMTYPE_SYSTEM
;
803 op
.src
.u
.dma
.address
= final_wa
.dma
.address
;
804 op
.src
.u
.dma
.length
= AES_BLOCK_SIZE
;
805 op
.dst
.type
= CCP_MEMTYPE_SYSTEM
;
806 op
.dst
.u
.dma
.address
= final_wa
.dma
.address
;
807 op
.dst
.u
.dma
.length
= AES_BLOCK_SIZE
;
810 ret
= cmd_q
->ccp
->vdata
->perform
->aes(&op
);
814 if (aes
->action
== CCP_AES_ACTION_ENCRYPT
) {
815 /* Put the ciphered tag after the ciphertext. */
816 ccp_get_dm_area(&final_wa
, 0, p_tag
, 0, AES_BLOCK_SIZE
);
818 /* Does this ciphered tag match the input? */
819 ret
= ccp_init_dm_workarea(&tag
, cmd_q
, AES_BLOCK_SIZE
,
823 ccp_set_dm_area(&tag
, 0, p_tag
, 0, AES_BLOCK_SIZE
);
825 ret
= memcmp(tag
.address
, final_wa
.address
, AES_BLOCK_SIZE
);
830 ccp_dm_free(&final_wa
);
833 if (aes
->src_len
&& !in_place
)
834 ccp_free_data(&dst
, cmd_q
);
838 ccp_free_data(&src
, cmd_q
);
842 ccp_free_data(&aad
, cmd_q
);
853 static int ccp_run_aes_cmd(struct ccp_cmd_queue
*cmd_q
, struct ccp_cmd
*cmd
)
855 struct ccp_aes_engine
*aes
= &cmd
->u
.aes
;
856 struct ccp_dm_workarea key
, ctx
;
857 struct ccp_data src
, dst
;
859 unsigned int dm_offset
;
860 bool in_place
= false;
863 if (aes
->mode
== CCP_AES_MODE_CMAC
)
864 return ccp_run_aes_cmac_cmd(cmd_q
, cmd
);
866 if (aes
->mode
== CCP_AES_MODE_GCM
)
867 return ccp_run_aes_gcm_cmd(cmd_q
, cmd
);
869 if (!((aes
->key_len
== AES_KEYSIZE_128
) ||
870 (aes
->key_len
== AES_KEYSIZE_192
) ||
871 (aes
->key_len
== AES_KEYSIZE_256
)))
874 if (((aes
->mode
== CCP_AES_MODE_ECB
) ||
875 (aes
->mode
== CCP_AES_MODE_CBC
) ||
876 (aes
->mode
== CCP_AES_MODE_CFB
)) &&
877 (aes
->src_len
& (AES_BLOCK_SIZE
- 1)))
880 if (!aes
->key
|| !aes
->src
|| !aes
->dst
)
883 if (aes
->mode
!= CCP_AES_MODE_ECB
) {
884 if (aes
->iv_len
!= AES_BLOCK_SIZE
)
891 BUILD_BUG_ON(CCP_AES_KEY_SB_COUNT
!= 1);
892 BUILD_BUG_ON(CCP_AES_CTX_SB_COUNT
!= 1);
895 memset(&op
, 0, sizeof(op
));
897 op
.jobid
= CCP_NEW_JOBID(cmd_q
->ccp
);
898 op
.sb_key
= cmd_q
->sb_key
;
899 op
.sb_ctx
= cmd_q
->sb_ctx
;
900 op
.init
= (aes
->mode
== CCP_AES_MODE_ECB
) ? 0 : 1;
901 op
.u
.aes
.type
= aes
->type
;
902 op
.u
.aes
.mode
= aes
->mode
;
903 op
.u
.aes
.action
= aes
->action
;
905 /* All supported key sizes fit in a single (32-byte) SB entry
906 * and must be in little endian format. Use the 256-bit byte
907 * swap passthru option to convert from big endian to little
910 ret
= ccp_init_dm_workarea(&key
, cmd_q
,
911 CCP_AES_KEY_SB_COUNT
* CCP_SB_BYTES
,
916 dm_offset
= CCP_SB_BYTES
- aes
->key_len
;
917 ccp_set_dm_area(&key
, dm_offset
, aes
->key
, 0, aes
->key_len
);
918 ret
= ccp_copy_to_sb(cmd_q
, &key
, op
.jobid
, op
.sb_key
,
919 CCP_PASSTHRU_BYTESWAP_256BIT
);
921 cmd
->engine_error
= cmd_q
->cmd_error
;
925 /* The AES context fits in a single (32-byte) SB entry and
926 * must be in little endian format. Use the 256-bit byte swap
927 * passthru option to convert from big endian to little endian.
929 ret
= ccp_init_dm_workarea(&ctx
, cmd_q
,
930 CCP_AES_CTX_SB_COUNT
* CCP_SB_BYTES
,
935 if (aes
->mode
!= CCP_AES_MODE_ECB
) {
936 /* Load the AES context - convert to LE */
937 dm_offset
= CCP_SB_BYTES
- AES_BLOCK_SIZE
;
938 ccp_set_dm_area(&ctx
, dm_offset
, aes
->iv
, 0, aes
->iv_len
);
939 ret
= ccp_copy_to_sb(cmd_q
, &ctx
, op
.jobid
, op
.sb_ctx
,
940 CCP_PASSTHRU_BYTESWAP_256BIT
);
942 cmd
->engine_error
= cmd_q
->cmd_error
;
947 case CCP_AES_MODE_CFB
: /* CFB128 only */
948 case CCP_AES_MODE_CTR
:
949 op
.u
.aes
.size
= AES_BLOCK_SIZE
* BITS_PER_BYTE
- 1;
955 /* Prepare the input and output data workareas. For in-place
956 * operations we need to set the dma direction to BIDIRECTIONAL
957 * and copy the src workarea to the dst workarea.
959 if (sg_virt(aes
->src
) == sg_virt(aes
->dst
))
962 ret
= ccp_init_data(&src
, cmd_q
, aes
->src
, aes
->src_len
,
964 in_place
? DMA_BIDIRECTIONAL
: DMA_TO_DEVICE
);
971 ret
= ccp_init_data(&dst
, cmd_q
, aes
->dst
, aes
->src_len
,
972 AES_BLOCK_SIZE
, DMA_FROM_DEVICE
);
977 /* Send data to the CCP AES engine */
978 while (src
.sg_wa
.bytes_left
) {
979 ccp_prepare_data(&src
, &dst
, &op
, AES_BLOCK_SIZE
, true);
980 if (!src
.sg_wa
.bytes_left
) {
983 /* Since we don't retrieve the AES context in ECB
984 * mode we have to wait for the operation to complete
985 * on the last piece of data
987 if (aes
->mode
== CCP_AES_MODE_ECB
)
991 ret
= cmd_q
->ccp
->vdata
->perform
->aes(&op
);
993 cmd
->engine_error
= cmd_q
->cmd_error
;
997 ccp_process_data(&src
, &dst
, &op
);
1000 if (aes
->mode
!= CCP_AES_MODE_ECB
) {
1001 /* Retrieve the AES context - convert from LE to BE using
1002 * 32-byte (256-bit) byteswapping
1004 ret
= ccp_copy_from_sb(cmd_q
, &ctx
, op
.jobid
, op
.sb_ctx
,
1005 CCP_PASSTHRU_BYTESWAP_256BIT
);
1007 cmd
->engine_error
= cmd_q
->cmd_error
;
1011 /* ...but we only need AES_BLOCK_SIZE bytes */
1012 dm_offset
= CCP_SB_BYTES
- AES_BLOCK_SIZE
;
1013 ccp_get_dm_area(&ctx
, dm_offset
, aes
->iv
, 0, aes
->iv_len
);
1018 ccp_free_data(&dst
, cmd_q
);
1021 ccp_free_data(&src
, cmd_q
);
1032 static int ccp_run_xts_aes_cmd(struct ccp_cmd_queue
*cmd_q
,
1033 struct ccp_cmd
*cmd
)
1035 struct ccp_xts_aes_engine
*xts
= &cmd
->u
.xts
;
1036 struct ccp_dm_workarea key
, ctx
;
1037 struct ccp_data src
, dst
;
1039 unsigned int unit_size
, dm_offset
;
1040 bool in_place
= false;
1041 unsigned int sb_count
;
1042 enum ccp_aes_type aestype
;
1045 switch (xts
->unit_size
) {
1046 case CCP_XTS_AES_UNIT_SIZE_16
:
1049 case CCP_XTS_AES_UNIT_SIZE_512
:
1052 case CCP_XTS_AES_UNIT_SIZE_1024
:
1055 case CCP_XTS_AES_UNIT_SIZE_2048
:
1058 case CCP_XTS_AES_UNIT_SIZE_4096
:
1066 if (xts
->key_len
== AES_KEYSIZE_128
)
1067 aestype
= CCP_AES_TYPE_128
;
1068 else if (xts
->key_len
== AES_KEYSIZE_256
)
1069 aestype
= CCP_AES_TYPE_256
;
1073 if (!xts
->final
&& (xts
->src_len
& (AES_BLOCK_SIZE
- 1)))
1076 if (xts
->iv_len
!= AES_BLOCK_SIZE
)
1079 if (!xts
->key
|| !xts
->iv
|| !xts
->src
|| !xts
->dst
)
1082 BUILD_BUG_ON(CCP_XTS_AES_KEY_SB_COUNT
!= 1);
1083 BUILD_BUG_ON(CCP_XTS_AES_CTX_SB_COUNT
!= 1);
1086 memset(&op
, 0, sizeof(op
));
1088 op
.jobid
= CCP_NEW_JOBID(cmd_q
->ccp
);
1089 op
.sb_key
= cmd_q
->sb_key
;
1090 op
.sb_ctx
= cmd_q
->sb_ctx
;
1092 op
.u
.xts
.type
= aestype
;
1093 op
.u
.xts
.action
= xts
->action
;
1094 op
.u
.xts
.unit_size
= xts
->unit_size
;
1096 /* A version 3 device only supports 128-bit keys, which fits into a
1097 * single SB entry. A version 5 device uses a 512-bit vector, so two
1100 if (cmd_q
->ccp
->vdata
->version
== CCP_VERSION(3, 0))
1101 sb_count
= CCP_XTS_AES_KEY_SB_COUNT
;
1103 sb_count
= CCP5_XTS_AES_KEY_SB_COUNT
;
1104 ret
= ccp_init_dm_workarea(&key
, cmd_q
,
1105 sb_count
* CCP_SB_BYTES
,
1110 if (cmd_q
->ccp
->vdata
->version
== CCP_VERSION(3, 0)) {
1111 /* All supported key sizes must be in little endian format.
1112 * Use the 256-bit byte swap passthru option to convert from
1113 * big endian to little endian.
1115 dm_offset
= CCP_SB_BYTES
- AES_KEYSIZE_128
;
1116 ccp_set_dm_area(&key
, dm_offset
, xts
->key
, 0, xts
->key_len
);
1117 ccp_set_dm_area(&key
, 0, xts
->key
, xts
->key_len
, xts
->key_len
);
1119 /* Version 5 CCPs use a 512-bit space for the key: each portion
1120 * occupies 256 bits, or one entire slot, and is zero-padded.
1124 dm_offset
= CCP_SB_BYTES
;
1125 pad
= dm_offset
- xts
->key_len
;
1126 ccp_set_dm_area(&key
, pad
, xts
->key
, 0, xts
->key_len
);
1127 ccp_set_dm_area(&key
, dm_offset
+ pad
, xts
->key
, xts
->key_len
,
1130 ret
= ccp_copy_to_sb(cmd_q
, &key
, op
.jobid
, op
.sb_key
,
1131 CCP_PASSTHRU_BYTESWAP_256BIT
);
1133 cmd
->engine_error
= cmd_q
->cmd_error
;
1137 /* The AES context fits in a single (32-byte) SB entry and
1138 * for XTS is already in little endian format so no byte swapping
1141 ret
= ccp_init_dm_workarea(&ctx
, cmd_q
,
1142 CCP_XTS_AES_CTX_SB_COUNT
* CCP_SB_BYTES
,
1147 ccp_set_dm_area(&ctx
, 0, xts
->iv
, 0, xts
->iv_len
);
1148 ret
= ccp_copy_to_sb(cmd_q
, &ctx
, op
.jobid
, op
.sb_ctx
,
1149 CCP_PASSTHRU_BYTESWAP_NOOP
);
1151 cmd
->engine_error
= cmd_q
->cmd_error
;
1155 /* Prepare the input and output data workareas. For in-place
1156 * operations we need to set the dma direction to BIDIRECTIONAL
1157 * and copy the src workarea to the dst workarea.
1159 if (sg_virt(xts
->src
) == sg_virt(xts
->dst
))
1162 ret
= ccp_init_data(&src
, cmd_q
, xts
->src
, xts
->src_len
,
1164 in_place
? DMA_BIDIRECTIONAL
: DMA_TO_DEVICE
);
1171 ret
= ccp_init_data(&dst
, cmd_q
, xts
->dst
, xts
->src_len
,
1172 unit_size
, DMA_FROM_DEVICE
);
1177 /* Send data to the CCP AES engine */
1178 while (src
.sg_wa
.bytes_left
) {
1179 ccp_prepare_data(&src
, &dst
, &op
, unit_size
, true);
1180 if (!src
.sg_wa
.bytes_left
)
1183 ret
= cmd_q
->ccp
->vdata
->perform
->xts_aes(&op
);
1185 cmd
->engine_error
= cmd_q
->cmd_error
;
1189 ccp_process_data(&src
, &dst
, &op
);
1192 /* Retrieve the AES context - convert from LE to BE using
1193 * 32-byte (256-bit) byteswapping
1195 ret
= ccp_copy_from_sb(cmd_q
, &ctx
, op
.jobid
, op
.sb_ctx
,
1196 CCP_PASSTHRU_BYTESWAP_256BIT
);
1198 cmd
->engine_error
= cmd_q
->cmd_error
;
1202 /* ...but we only need AES_BLOCK_SIZE bytes */
1203 dm_offset
= CCP_SB_BYTES
- AES_BLOCK_SIZE
;
1204 ccp_get_dm_area(&ctx
, dm_offset
, xts
->iv
, 0, xts
->iv_len
);
1208 ccp_free_data(&dst
, cmd_q
);
1211 ccp_free_data(&src
, cmd_q
);
1222 static int ccp_run_des3_cmd(struct ccp_cmd_queue
*cmd_q
, struct ccp_cmd
*cmd
)
1224 struct ccp_des3_engine
*des3
= &cmd
->u
.des3
;
1226 struct ccp_dm_workarea key
, ctx
;
1227 struct ccp_data src
, dst
;
1229 unsigned int dm_offset
;
1230 unsigned int len_singlekey
;
1231 bool in_place
= false;
1235 if (!cmd_q
->ccp
->vdata
->perform
->des3
)
1238 if (des3
->key_len
!= DES3_EDE_KEY_SIZE
)
1241 if (((des3
->mode
== CCP_DES3_MODE_ECB
) ||
1242 (des3
->mode
== CCP_DES3_MODE_CBC
)) &&
1243 (des3
->src_len
& (DES3_EDE_BLOCK_SIZE
- 1)))
1246 if (!des3
->key
|| !des3
->src
|| !des3
->dst
)
1249 if (des3
->mode
!= CCP_DES3_MODE_ECB
) {
1250 if (des3
->iv_len
!= DES3_EDE_BLOCK_SIZE
)
1258 /* Zero out all the fields of the command desc */
1259 memset(&op
, 0, sizeof(op
));
1261 /* Set up the Function field */
1263 op
.jobid
= CCP_NEW_JOBID(cmd_q
->ccp
);
1264 op
.sb_key
= cmd_q
->sb_key
;
1266 op
.init
= (des3
->mode
== CCP_DES3_MODE_ECB
) ? 0 : 1;
1267 op
.u
.des3
.type
= des3
->type
;
1268 op
.u
.des3
.mode
= des3
->mode
;
1269 op
.u
.des3
.action
= des3
->action
;
1272 * All supported key sizes fit in a single (32-byte) KSB entry and
1273 * (like AES) must be in little endian format. Use the 256-bit byte
1274 * swap passthru option to convert from big endian to little endian.
1276 ret
= ccp_init_dm_workarea(&key
, cmd_q
,
1277 CCP_DES3_KEY_SB_COUNT
* CCP_SB_BYTES
,
1283 * The contents of the key triplet are in the reverse order of what
1284 * is required by the engine. Copy the 3 pieces individually to put
1285 * them where they belong.
1287 dm_offset
= CCP_SB_BYTES
- des3
->key_len
; /* Basic offset */
1289 len_singlekey
= des3
->key_len
/ 3;
1290 ccp_set_dm_area(&key
, dm_offset
+ 2 * len_singlekey
,
1291 des3
->key
, 0, len_singlekey
);
1292 ccp_set_dm_area(&key
, dm_offset
+ len_singlekey
,
1293 des3
->key
, len_singlekey
, len_singlekey
);
1294 ccp_set_dm_area(&key
, dm_offset
,
1295 des3
->key
, 2 * len_singlekey
, len_singlekey
);
1297 /* Copy the key to the SB */
1298 ret
= ccp_copy_to_sb(cmd_q
, &key
, op
.jobid
, op
.sb_key
,
1299 CCP_PASSTHRU_BYTESWAP_256BIT
);
1301 cmd
->engine_error
= cmd_q
->cmd_error
;
1306 * The DES3 context fits in a single (32-byte) KSB entry and
1307 * must be in little endian format. Use the 256-bit byte swap
1308 * passthru option to convert from big endian to little endian.
1310 if (des3
->mode
!= CCP_DES3_MODE_ECB
) {
1313 op
.sb_ctx
= cmd_q
->sb_ctx
;
1315 ret
= ccp_init_dm_workarea(&ctx
, cmd_q
,
1316 CCP_DES3_CTX_SB_COUNT
* CCP_SB_BYTES
,
1321 /* Load the context into the LSB */
1322 dm_offset
= CCP_SB_BYTES
- des3
->iv_len
;
1323 ccp_set_dm_area(&ctx
, dm_offset
, des3
->iv
, 0, des3
->iv_len
);
1325 if (cmd_q
->ccp
->vdata
->version
== CCP_VERSION(3, 0))
1326 load_mode
= CCP_PASSTHRU_BYTESWAP_NOOP
;
1328 load_mode
= CCP_PASSTHRU_BYTESWAP_256BIT
;
1329 ret
= ccp_copy_to_sb(cmd_q
, &ctx
, op
.jobid
, op
.sb_ctx
,
1332 cmd
->engine_error
= cmd_q
->cmd_error
;
1338 * Prepare the input and output data workareas. For in-place
1339 * operations we need to set the dma direction to BIDIRECTIONAL
1340 * and copy the src workarea to the dst workarea.
1342 if (sg_virt(des3
->src
) == sg_virt(des3
->dst
))
1345 ret
= ccp_init_data(&src
, cmd_q
, des3
->src
, des3
->src_len
,
1346 DES3_EDE_BLOCK_SIZE
,
1347 in_place
? DMA_BIDIRECTIONAL
: DMA_TO_DEVICE
);
1354 ret
= ccp_init_data(&dst
, cmd_q
, des3
->dst
, des3
->src_len
,
1355 DES3_EDE_BLOCK_SIZE
, DMA_FROM_DEVICE
);
1360 /* Send data to the CCP DES3 engine */
1361 while (src
.sg_wa
.bytes_left
) {
1362 ccp_prepare_data(&src
, &dst
, &op
, DES3_EDE_BLOCK_SIZE
, true);
1363 if (!src
.sg_wa
.bytes_left
) {
1366 /* Since we don't retrieve the context in ECB mode
1367 * we have to wait for the operation to complete
1368 * on the last piece of data
1373 ret
= cmd_q
->ccp
->vdata
->perform
->des3(&op
);
1375 cmd
->engine_error
= cmd_q
->cmd_error
;
1379 ccp_process_data(&src
, &dst
, &op
);
1382 if (des3
->mode
!= CCP_DES3_MODE_ECB
) {
1383 /* Retrieve the context and make BE */
1384 ret
= ccp_copy_from_sb(cmd_q
, &ctx
, op
.jobid
, op
.sb_ctx
,
1385 CCP_PASSTHRU_BYTESWAP_256BIT
);
1387 cmd
->engine_error
= cmd_q
->cmd_error
;
1391 /* ...but we only need the last DES3_EDE_BLOCK_SIZE bytes */
1392 if (cmd_q
->ccp
->vdata
->version
== CCP_VERSION(3, 0))
1393 dm_offset
= CCP_SB_BYTES
- des3
->iv_len
;
1396 ccp_get_dm_area(&ctx
, dm_offset
, des3
->iv
, 0,
1397 DES3_EDE_BLOCK_SIZE
);
1401 ccp_free_data(&dst
, cmd_q
);
1404 ccp_free_data(&src
, cmd_q
);
1407 if (des3
->mode
!= CCP_DES3_MODE_ECB
)
1416 static int ccp_run_sha_cmd(struct ccp_cmd_queue
*cmd_q
, struct ccp_cmd
*cmd
)
1418 struct ccp_sha_engine
*sha
= &cmd
->u
.sha
;
1419 struct ccp_dm_workarea ctx
;
1420 struct ccp_data src
;
1422 unsigned int ioffset
, ooffset
;
1423 unsigned int digest_size
;
1430 switch (sha
->type
) {
1431 case CCP_SHA_TYPE_1
:
1432 if (sha
->ctx_len
< SHA1_DIGEST_SIZE
)
1434 block_size
= SHA1_BLOCK_SIZE
;
1436 case CCP_SHA_TYPE_224
:
1437 if (sha
->ctx_len
< SHA224_DIGEST_SIZE
)
1439 block_size
= SHA224_BLOCK_SIZE
;
1441 case CCP_SHA_TYPE_256
:
1442 if (sha
->ctx_len
< SHA256_DIGEST_SIZE
)
1444 block_size
= SHA256_BLOCK_SIZE
;
1446 case CCP_SHA_TYPE_384
:
1447 if (cmd_q
->ccp
->vdata
->version
< CCP_VERSION(4, 0)
1448 || sha
->ctx_len
< SHA384_DIGEST_SIZE
)
1450 block_size
= SHA384_BLOCK_SIZE
;
1452 case CCP_SHA_TYPE_512
:
1453 if (cmd_q
->ccp
->vdata
->version
< CCP_VERSION(4, 0)
1454 || sha
->ctx_len
< SHA512_DIGEST_SIZE
)
1456 block_size
= SHA512_BLOCK_SIZE
;
1465 if (!sha
->final
&& (sha
->src_len
& (block_size
- 1)))
1468 /* The version 3 device can't handle zero-length input */
1469 if (cmd_q
->ccp
->vdata
->version
== CCP_VERSION(3, 0)) {
1471 if (!sha
->src_len
) {
1472 unsigned int digest_len
;
1475 /* Not final, just return */
1479 /* CCP can't do a zero length sha operation so the
1480 * caller must buffer the data.
1485 /* The CCP cannot perform zero-length sha operations
1486 * so the caller is required to buffer data for the
1487 * final operation. However, a sha operation for a
1488 * message with a total length of zero is valid so
1489 * known values are required to supply the result.
1491 switch (sha
->type
) {
1492 case CCP_SHA_TYPE_1
:
1493 sha_zero
= sha1_zero_message_hash
;
1494 digest_len
= SHA1_DIGEST_SIZE
;
1496 case CCP_SHA_TYPE_224
:
1497 sha_zero
= sha224_zero_message_hash
;
1498 digest_len
= SHA224_DIGEST_SIZE
;
1500 case CCP_SHA_TYPE_256
:
1501 sha_zero
= sha256_zero_message_hash
;
1502 digest_len
= SHA256_DIGEST_SIZE
;
1508 scatterwalk_map_and_copy((void *)sha_zero
, sha
->ctx
, 0,
1515 /* Set variables used throughout */
1516 switch (sha
->type
) {
1517 case CCP_SHA_TYPE_1
:
1518 digest_size
= SHA1_DIGEST_SIZE
;
1519 init
= (void *) ccp_sha1_init
;
1520 ctx_size
= SHA1_DIGEST_SIZE
;
1522 if (cmd_q
->ccp
->vdata
->version
!= CCP_VERSION(3, 0))
1523 ooffset
= ioffset
= CCP_SB_BYTES
- SHA1_DIGEST_SIZE
;
1525 ooffset
= ioffset
= 0;
1527 case CCP_SHA_TYPE_224
:
1528 digest_size
= SHA224_DIGEST_SIZE
;
1529 init
= (void *) ccp_sha224_init
;
1530 ctx_size
= SHA256_DIGEST_SIZE
;
1533 if (cmd_q
->ccp
->vdata
->version
!= CCP_VERSION(3, 0))
1534 ooffset
= CCP_SB_BYTES
- SHA224_DIGEST_SIZE
;
1538 case CCP_SHA_TYPE_256
:
1539 digest_size
= SHA256_DIGEST_SIZE
;
1540 init
= (void *) ccp_sha256_init
;
1541 ctx_size
= SHA256_DIGEST_SIZE
;
1543 ooffset
= ioffset
= 0;
1545 case CCP_SHA_TYPE_384
:
1546 digest_size
= SHA384_DIGEST_SIZE
;
1547 init
= (void *) ccp_sha384_init
;
1548 ctx_size
= SHA512_DIGEST_SIZE
;
1551 ooffset
= 2 * CCP_SB_BYTES
- SHA384_DIGEST_SIZE
;
1553 case CCP_SHA_TYPE_512
:
1554 digest_size
= SHA512_DIGEST_SIZE
;
1555 init
= (void *) ccp_sha512_init
;
1556 ctx_size
= SHA512_DIGEST_SIZE
;
1558 ooffset
= ioffset
= 0;
1565 /* For zero-length plaintext the src pointer is ignored;
1566 * otherwise both parts must be valid
1568 if (sha
->src_len
&& !sha
->src
)
1571 memset(&op
, 0, sizeof(op
));
1573 op
.jobid
= CCP_NEW_JOBID(cmd_q
->ccp
);
1574 op
.sb_ctx
= cmd_q
->sb_ctx
; /* Pre-allocated */
1575 op
.u
.sha
.type
= sha
->type
;
1576 op
.u
.sha
.msg_bits
= sha
->msg_bits
;
1578 /* For SHA1/224/256 the context fits in a single (32-byte) SB entry;
1579 * SHA384/512 require 2 adjacent SB slots, with the right half in the
1580 * first slot, and the left half in the second. Each portion must then
1581 * be in little endian format: use the 256-bit byte swap option.
1583 ret
= ccp_init_dm_workarea(&ctx
, cmd_q
, sb_count
* CCP_SB_BYTES
,
1588 switch (sha
->type
) {
1589 case CCP_SHA_TYPE_1
:
1590 case CCP_SHA_TYPE_224
:
1591 case CCP_SHA_TYPE_256
:
1592 memcpy(ctx
.address
+ ioffset
, init
, ctx_size
);
1594 case CCP_SHA_TYPE_384
:
1595 case CCP_SHA_TYPE_512
:
1596 memcpy(ctx
.address
+ ctx_size
/ 2, init
,
1598 memcpy(ctx
.address
, init
+ ctx_size
/ 2,
1606 /* Restore the context */
1607 ccp_set_dm_area(&ctx
, 0, sha
->ctx
, 0,
1608 sb_count
* CCP_SB_BYTES
);
1611 ret
= ccp_copy_to_sb(cmd_q
, &ctx
, op
.jobid
, op
.sb_ctx
,
1612 CCP_PASSTHRU_BYTESWAP_256BIT
);
1614 cmd
->engine_error
= cmd_q
->cmd_error
;
1619 /* Send data to the CCP SHA engine; block_size is set above */
1620 ret
= ccp_init_data(&src
, cmd_q
, sha
->src
, sha
->src_len
,
1621 block_size
, DMA_TO_DEVICE
);
1625 while (src
.sg_wa
.bytes_left
) {
1626 ccp_prepare_data(&src
, NULL
, &op
, block_size
, false);
1627 if (sha
->final
&& !src
.sg_wa
.bytes_left
)
1630 ret
= cmd_q
->ccp
->vdata
->perform
->sha(&op
);
1632 cmd
->engine_error
= cmd_q
->cmd_error
;
1636 ccp_process_data(&src
, NULL
, &op
);
1640 ret
= cmd_q
->ccp
->vdata
->perform
->sha(&op
);
1642 cmd
->engine_error
= cmd_q
->cmd_error
;
1647 /* Retrieve the SHA context - convert from LE to BE using
1648 * 32-byte (256-bit) byteswapping to BE
1650 ret
= ccp_copy_from_sb(cmd_q
, &ctx
, op
.jobid
, op
.sb_ctx
,
1651 CCP_PASSTHRU_BYTESWAP_256BIT
);
1653 cmd
->engine_error
= cmd_q
->cmd_error
;
1658 /* Finishing up, so get the digest */
1659 switch (sha
->type
) {
1660 case CCP_SHA_TYPE_1
:
1661 case CCP_SHA_TYPE_224
:
1662 case CCP_SHA_TYPE_256
:
1663 ccp_get_dm_area(&ctx
, ooffset
,
1667 case CCP_SHA_TYPE_384
:
1668 case CCP_SHA_TYPE_512
:
1669 ccp_get_dm_area(&ctx
, 0,
1670 sha
->ctx
, LSB_ITEM_SIZE
- ooffset
,
1672 ccp_get_dm_area(&ctx
, LSB_ITEM_SIZE
+ ooffset
,
1674 LSB_ITEM_SIZE
- ooffset
);
1681 /* Stash the context */
1682 ccp_get_dm_area(&ctx
, 0, sha
->ctx
, 0,
1683 sb_count
* CCP_SB_BYTES
);
1686 if (sha
->final
&& sha
->opad
) {
1687 /* HMAC operation, recursively perform final SHA */
1688 struct ccp_cmd hmac_cmd
;
1689 struct scatterlist sg
;
1692 if (sha
->opad_len
!= block_size
) {
1697 hmac_buf
= kmalloc(block_size
+ digest_size
, GFP_KERNEL
);
1702 sg_init_one(&sg
, hmac_buf
, block_size
+ digest_size
);
1704 scatterwalk_map_and_copy(hmac_buf
, sha
->opad
, 0, block_size
, 0);
1705 switch (sha
->type
) {
1706 case CCP_SHA_TYPE_1
:
1707 case CCP_SHA_TYPE_224
:
1708 case CCP_SHA_TYPE_256
:
1709 memcpy(hmac_buf
+ block_size
,
1710 ctx
.address
+ ooffset
,
1713 case CCP_SHA_TYPE_384
:
1714 case CCP_SHA_TYPE_512
:
1715 memcpy(hmac_buf
+ block_size
,
1716 ctx
.address
+ LSB_ITEM_SIZE
+ ooffset
,
1718 memcpy(hmac_buf
+ block_size
+
1719 (LSB_ITEM_SIZE
- ooffset
),
1728 memset(&hmac_cmd
, 0, sizeof(hmac_cmd
));
1729 hmac_cmd
.engine
= CCP_ENGINE_SHA
;
1730 hmac_cmd
.u
.sha
.type
= sha
->type
;
1731 hmac_cmd
.u
.sha
.ctx
= sha
->ctx
;
1732 hmac_cmd
.u
.sha
.ctx_len
= sha
->ctx_len
;
1733 hmac_cmd
.u
.sha
.src
= &sg
;
1734 hmac_cmd
.u
.sha
.src_len
= block_size
+ digest_size
;
1735 hmac_cmd
.u
.sha
.opad
= NULL
;
1736 hmac_cmd
.u
.sha
.opad_len
= 0;
1737 hmac_cmd
.u
.sha
.first
= 1;
1738 hmac_cmd
.u
.sha
.final
= 1;
1739 hmac_cmd
.u
.sha
.msg_bits
= (block_size
+ digest_size
) << 3;
1741 ret
= ccp_run_sha_cmd(cmd_q
, &hmac_cmd
);
1743 cmd
->engine_error
= hmac_cmd
.engine_error
;
1750 ccp_free_data(&src
, cmd_q
);
1758 static int ccp_run_rsa_cmd(struct ccp_cmd_queue
*cmd_q
, struct ccp_cmd
*cmd
)
1760 struct ccp_rsa_engine
*rsa
= &cmd
->u
.rsa
;
1761 struct ccp_dm_workarea exp
, src
, dst
;
1763 unsigned int sb_count
, i_len
, o_len
;
1766 /* Check against the maximum allowable size, in bits */
1767 if (rsa
->key_size
> cmd_q
->ccp
->vdata
->rsamax
)
1770 if (!rsa
->exp
|| !rsa
->mod
|| !rsa
->src
|| !rsa
->dst
)
1773 memset(&op
, 0, sizeof(op
));
1775 op
.jobid
= CCP_NEW_JOBID(cmd_q
->ccp
);
1777 /* The RSA modulus must precede the message being acted upon, so
1778 * it must be copied to a DMA area where the message and the
1779 * modulus can be concatenated. Therefore the input buffer
1780 * length required is twice the output buffer length (which
1781 * must be a multiple of 256-bits). Compute o_len, i_len in bytes.
1782 * Buffer sizes must be a multiple of 32 bytes; rounding up may be
1785 o_len
= 32 * ((rsa
->key_size
+ 255) / 256);
1789 if (cmd_q
->ccp
->vdata
->version
< CCP_VERSION(5, 0)) {
1790 /* sb_count is the number of storage block slots required
1793 sb_count
= o_len
/ CCP_SB_BYTES
;
1794 op
.sb_key
= cmd_q
->ccp
->vdata
->perform
->sballoc(cmd_q
,
1799 /* A version 5 device allows a modulus size that will not fit
1800 * in the LSB, so the command will transfer it from memory.
1801 * Set the sb key to the default, even though it's not used.
1803 op
.sb_key
= cmd_q
->sb_key
;
1806 /* The RSA exponent must be in little endian format. Reverse its
1809 ret
= ccp_init_dm_workarea(&exp
, cmd_q
, o_len
, DMA_TO_DEVICE
);
1813 ret
= ccp_reverse_set_dm_area(&exp
, 0, rsa
->exp
, 0, rsa
->exp_len
);
1817 if (cmd_q
->ccp
->vdata
->version
< CCP_VERSION(5, 0)) {
1818 /* Copy the exponent to the local storage block, using
1819 * as many 32-byte blocks as were allocated above. It's
1820 * already little endian, so no further change is required.
1822 ret
= ccp_copy_to_sb(cmd_q
, &exp
, op
.jobid
, op
.sb_key
,
1823 CCP_PASSTHRU_BYTESWAP_NOOP
);
1825 cmd
->engine_error
= cmd_q
->cmd_error
;
1829 /* The exponent can be retrieved from memory via DMA. */
1830 op
.exp
.u
.dma
.address
= exp
.dma
.address
;
1831 op
.exp
.u
.dma
.offset
= 0;
1834 /* Concatenate the modulus and the message. Both the modulus and
1835 * the operands must be in little endian format. Since the input
1836 * is in big endian format it must be converted.
1838 ret
= ccp_init_dm_workarea(&src
, cmd_q
, i_len
, DMA_TO_DEVICE
);
1842 ret
= ccp_reverse_set_dm_area(&src
, 0, rsa
->mod
, 0, rsa
->mod_len
);
1845 ret
= ccp_reverse_set_dm_area(&src
, o_len
, rsa
->src
, 0, rsa
->src_len
);
1849 /* Prepare the output area for the operation */
1850 ret
= ccp_init_dm_workarea(&dst
, cmd_q
, o_len
, DMA_FROM_DEVICE
);
1855 op
.src
.u
.dma
.address
= src
.dma
.address
;
1856 op
.src
.u
.dma
.offset
= 0;
1857 op
.src
.u
.dma
.length
= i_len
;
1858 op
.dst
.u
.dma
.address
= dst
.dma
.address
;
1859 op
.dst
.u
.dma
.offset
= 0;
1860 op
.dst
.u
.dma
.length
= o_len
;
1862 op
.u
.rsa
.mod_size
= rsa
->key_size
;
1863 op
.u
.rsa
.input_len
= i_len
;
1865 ret
= cmd_q
->ccp
->vdata
->perform
->rsa(&op
);
1867 cmd
->engine_error
= cmd_q
->cmd_error
;
1871 ccp_reverse_get_dm_area(&dst
, 0, rsa
->dst
, 0, rsa
->mod_len
);
1884 cmd_q
->ccp
->vdata
->perform
->sbfree(cmd_q
, op
.sb_key
, sb_count
);
1889 static int ccp_run_passthru_cmd(struct ccp_cmd_queue
*cmd_q
,
1890 struct ccp_cmd
*cmd
)
1892 struct ccp_passthru_engine
*pt
= &cmd
->u
.passthru
;
1893 struct ccp_dm_workarea mask
;
1894 struct ccp_data src
, dst
;
1896 bool in_place
= false;
1900 if (!pt
->final
&& (pt
->src_len
& (CCP_PASSTHRU_BLOCKSIZE
- 1)))
1903 if (!pt
->src
|| !pt
->dst
)
1906 if (pt
->bit_mod
!= CCP_PASSTHRU_BITWISE_NOOP
) {
1907 if (pt
->mask_len
!= CCP_PASSTHRU_MASKSIZE
)
1913 BUILD_BUG_ON(CCP_PASSTHRU_SB_COUNT
!= 1);
1915 memset(&op
, 0, sizeof(op
));
1917 op
.jobid
= CCP_NEW_JOBID(cmd_q
->ccp
);
1919 if (pt
->bit_mod
!= CCP_PASSTHRU_BITWISE_NOOP
) {
1921 op
.sb_key
= cmd_q
->sb_key
;
1923 ret
= ccp_init_dm_workarea(&mask
, cmd_q
,
1924 CCP_PASSTHRU_SB_COUNT
*
1930 ccp_set_dm_area(&mask
, 0, pt
->mask
, 0, pt
->mask_len
);
1931 ret
= ccp_copy_to_sb(cmd_q
, &mask
, op
.jobid
, op
.sb_key
,
1932 CCP_PASSTHRU_BYTESWAP_NOOP
);
1934 cmd
->engine_error
= cmd_q
->cmd_error
;
1939 /* Prepare the input and output data workareas. For in-place
1940 * operations we need to set the dma direction to BIDIRECTIONAL
1941 * and copy the src workarea to the dst workarea.
1943 if (sg_virt(pt
->src
) == sg_virt(pt
->dst
))
1946 ret
= ccp_init_data(&src
, cmd_q
, pt
->src
, pt
->src_len
,
1947 CCP_PASSTHRU_MASKSIZE
,
1948 in_place
? DMA_BIDIRECTIONAL
: DMA_TO_DEVICE
);
1955 ret
= ccp_init_data(&dst
, cmd_q
, pt
->dst
, pt
->src_len
,
1956 CCP_PASSTHRU_MASKSIZE
, DMA_FROM_DEVICE
);
1961 /* Send data to the CCP Passthru engine
1962 * Because the CCP engine works on a single source and destination
1963 * dma address at a time, each entry in the source scatterlist
1964 * (after the dma_map_sg call) must be less than or equal to the
1965 * (remaining) length in the destination scatterlist entry and the
1966 * length must be a multiple of CCP_PASSTHRU_BLOCKSIZE
1968 dst
.sg_wa
.sg_used
= 0;
1969 for (i
= 1; i
<= src
.sg_wa
.dma_count
; i
++) {
1970 if (!dst
.sg_wa
.sg
||
1971 (dst
.sg_wa
.sg
->length
< src
.sg_wa
.sg
->length
)) {
1976 if (i
== src
.sg_wa
.dma_count
) {
1981 op
.src
.type
= CCP_MEMTYPE_SYSTEM
;
1982 op
.src
.u
.dma
.address
= sg_dma_address(src
.sg_wa
.sg
);
1983 op
.src
.u
.dma
.offset
= 0;
1984 op
.src
.u
.dma
.length
= sg_dma_len(src
.sg_wa
.sg
);
1986 op
.dst
.type
= CCP_MEMTYPE_SYSTEM
;
1987 op
.dst
.u
.dma
.address
= sg_dma_address(dst
.sg_wa
.sg
);
1988 op
.dst
.u
.dma
.offset
= dst
.sg_wa
.sg_used
;
1989 op
.dst
.u
.dma
.length
= op
.src
.u
.dma
.length
;
1991 ret
= cmd_q
->ccp
->vdata
->perform
->passthru(&op
);
1993 cmd
->engine_error
= cmd_q
->cmd_error
;
1997 dst
.sg_wa
.sg_used
+= src
.sg_wa
.sg
->length
;
1998 if (dst
.sg_wa
.sg_used
== dst
.sg_wa
.sg
->length
) {
1999 dst
.sg_wa
.sg
= sg_next(dst
.sg_wa
.sg
);
2000 dst
.sg_wa
.sg_used
= 0;
2002 src
.sg_wa
.sg
= sg_next(src
.sg_wa
.sg
);
2007 ccp_free_data(&dst
, cmd_q
);
2010 ccp_free_data(&src
, cmd_q
);
2013 if (pt
->bit_mod
!= CCP_PASSTHRU_BITWISE_NOOP
)
2019 static int ccp_run_passthru_nomap_cmd(struct ccp_cmd_queue
*cmd_q
,
2020 struct ccp_cmd
*cmd
)
2022 struct ccp_passthru_nomap_engine
*pt
= &cmd
->u
.passthru_nomap
;
2023 struct ccp_dm_workarea mask
;
2027 if (!pt
->final
&& (pt
->src_len
& (CCP_PASSTHRU_BLOCKSIZE
- 1)))
2030 if (!pt
->src_dma
|| !pt
->dst_dma
)
2033 if (pt
->bit_mod
!= CCP_PASSTHRU_BITWISE_NOOP
) {
2034 if (pt
->mask_len
!= CCP_PASSTHRU_MASKSIZE
)
2040 BUILD_BUG_ON(CCP_PASSTHRU_SB_COUNT
!= 1);
2042 memset(&op
, 0, sizeof(op
));
2044 op
.jobid
= CCP_NEW_JOBID(cmd_q
->ccp
);
2046 if (pt
->bit_mod
!= CCP_PASSTHRU_BITWISE_NOOP
) {
2048 op
.sb_key
= cmd_q
->sb_key
;
2050 mask
.length
= pt
->mask_len
;
2051 mask
.dma
.address
= pt
->mask
;
2052 mask
.dma
.length
= pt
->mask_len
;
2054 ret
= ccp_copy_to_sb(cmd_q
, &mask
, op
.jobid
, op
.sb_key
,
2055 CCP_PASSTHRU_BYTESWAP_NOOP
);
2057 cmd
->engine_error
= cmd_q
->cmd_error
;
2062 /* Send data to the CCP Passthru engine */
2066 op
.src
.type
= CCP_MEMTYPE_SYSTEM
;
2067 op
.src
.u
.dma
.address
= pt
->src_dma
;
2068 op
.src
.u
.dma
.offset
= 0;
2069 op
.src
.u
.dma
.length
= pt
->src_len
;
2071 op
.dst
.type
= CCP_MEMTYPE_SYSTEM
;
2072 op
.dst
.u
.dma
.address
= pt
->dst_dma
;
2073 op
.dst
.u
.dma
.offset
= 0;
2074 op
.dst
.u
.dma
.length
= pt
->src_len
;
2076 ret
= cmd_q
->ccp
->vdata
->perform
->passthru(&op
);
2078 cmd
->engine_error
= cmd_q
->cmd_error
;
2083 static int ccp_run_ecc_mm_cmd(struct ccp_cmd_queue
*cmd_q
, struct ccp_cmd
*cmd
)
2085 struct ccp_ecc_engine
*ecc
= &cmd
->u
.ecc
;
2086 struct ccp_dm_workarea src
, dst
;
2091 if (!ecc
->u
.mm
.operand_1
||
2092 (ecc
->u
.mm
.operand_1_len
> CCP_ECC_MODULUS_BYTES
))
2095 if (ecc
->function
!= CCP_ECC_FUNCTION_MINV_384BIT
)
2096 if (!ecc
->u
.mm
.operand_2
||
2097 (ecc
->u
.mm
.operand_2_len
> CCP_ECC_MODULUS_BYTES
))
2100 if (!ecc
->u
.mm
.result
||
2101 (ecc
->u
.mm
.result_len
< CCP_ECC_MODULUS_BYTES
))
2104 memset(&op
, 0, sizeof(op
));
2106 op
.jobid
= CCP_NEW_JOBID(cmd_q
->ccp
);
2108 /* Concatenate the modulus and the operands. Both the modulus and
2109 * the operands must be in little endian format. Since the input
2110 * is in big endian format it must be converted and placed in a
2111 * fixed length buffer.
2113 ret
= ccp_init_dm_workarea(&src
, cmd_q
, CCP_ECC_SRC_BUF_SIZE
,
2118 /* Save the workarea address since it is updated in order to perform
2123 /* Copy the ECC modulus */
2124 ret
= ccp_reverse_set_dm_area(&src
, 0, ecc
->mod
, 0, ecc
->mod_len
);
2127 src
.address
+= CCP_ECC_OPERAND_SIZE
;
2129 /* Copy the first operand */
2130 ret
= ccp_reverse_set_dm_area(&src
, 0, ecc
->u
.mm
.operand_1
, 0,
2131 ecc
->u
.mm
.operand_1_len
);
2134 src
.address
+= CCP_ECC_OPERAND_SIZE
;
2136 if (ecc
->function
!= CCP_ECC_FUNCTION_MINV_384BIT
) {
2137 /* Copy the second operand */
2138 ret
= ccp_reverse_set_dm_area(&src
, 0, ecc
->u
.mm
.operand_2
, 0,
2139 ecc
->u
.mm
.operand_2_len
);
2142 src
.address
+= CCP_ECC_OPERAND_SIZE
;
2145 /* Restore the workarea address */
2148 /* Prepare the output area for the operation */
2149 ret
= ccp_init_dm_workarea(&dst
, cmd_q
, CCP_ECC_DST_BUF_SIZE
,
2155 op
.src
.u
.dma
.address
= src
.dma
.address
;
2156 op
.src
.u
.dma
.offset
= 0;
2157 op
.src
.u
.dma
.length
= src
.length
;
2158 op
.dst
.u
.dma
.address
= dst
.dma
.address
;
2159 op
.dst
.u
.dma
.offset
= 0;
2160 op
.dst
.u
.dma
.length
= dst
.length
;
2162 op
.u
.ecc
.function
= cmd
->u
.ecc
.function
;
2164 ret
= cmd_q
->ccp
->vdata
->perform
->ecc(&op
);
2166 cmd
->engine_error
= cmd_q
->cmd_error
;
2170 ecc
->ecc_result
= le16_to_cpup(
2171 (const __le16
*)(dst
.address
+ CCP_ECC_RESULT_OFFSET
));
2172 if (!(ecc
->ecc_result
& CCP_ECC_RESULT_SUCCESS
)) {
2177 /* Save the ECC result */
2178 ccp_reverse_get_dm_area(&dst
, 0, ecc
->u
.mm
.result
, 0,
2179 CCP_ECC_MODULUS_BYTES
);
2190 static int ccp_run_ecc_pm_cmd(struct ccp_cmd_queue
*cmd_q
, struct ccp_cmd
*cmd
)
2192 struct ccp_ecc_engine
*ecc
= &cmd
->u
.ecc
;
2193 struct ccp_dm_workarea src
, dst
;
2198 if (!ecc
->u
.pm
.point_1
.x
||
2199 (ecc
->u
.pm
.point_1
.x_len
> CCP_ECC_MODULUS_BYTES
) ||
2200 !ecc
->u
.pm
.point_1
.y
||
2201 (ecc
->u
.pm
.point_1
.y_len
> CCP_ECC_MODULUS_BYTES
))
2204 if (ecc
->function
== CCP_ECC_FUNCTION_PADD_384BIT
) {
2205 if (!ecc
->u
.pm
.point_2
.x
||
2206 (ecc
->u
.pm
.point_2
.x_len
> CCP_ECC_MODULUS_BYTES
) ||
2207 !ecc
->u
.pm
.point_2
.y
||
2208 (ecc
->u
.pm
.point_2
.y_len
> CCP_ECC_MODULUS_BYTES
))
2211 if (!ecc
->u
.pm
.domain_a
||
2212 (ecc
->u
.pm
.domain_a_len
> CCP_ECC_MODULUS_BYTES
))
2215 if (ecc
->function
== CCP_ECC_FUNCTION_PMUL_384BIT
)
2216 if (!ecc
->u
.pm
.scalar
||
2217 (ecc
->u
.pm
.scalar_len
> CCP_ECC_MODULUS_BYTES
))
2221 if (!ecc
->u
.pm
.result
.x
||
2222 (ecc
->u
.pm
.result
.x_len
< CCP_ECC_MODULUS_BYTES
) ||
2223 !ecc
->u
.pm
.result
.y
||
2224 (ecc
->u
.pm
.result
.y_len
< CCP_ECC_MODULUS_BYTES
))
2227 memset(&op
, 0, sizeof(op
));
2229 op
.jobid
= CCP_NEW_JOBID(cmd_q
->ccp
);
2231 /* Concatenate the modulus and the operands. Both the modulus and
2232 * the operands must be in little endian format. Since the input
2233 * is in big endian format it must be converted and placed in a
2234 * fixed length buffer.
2236 ret
= ccp_init_dm_workarea(&src
, cmd_q
, CCP_ECC_SRC_BUF_SIZE
,
2241 /* Save the workarea address since it is updated in order to perform
2246 /* Copy the ECC modulus */
2247 ret
= ccp_reverse_set_dm_area(&src
, 0, ecc
->mod
, 0, ecc
->mod_len
);
2250 src
.address
+= CCP_ECC_OPERAND_SIZE
;
2252 /* Copy the first point X and Y coordinate */
2253 ret
= ccp_reverse_set_dm_area(&src
, 0, ecc
->u
.pm
.point_1
.x
, 0,
2254 ecc
->u
.pm
.point_1
.x_len
);
2257 src
.address
+= CCP_ECC_OPERAND_SIZE
;
2258 ret
= ccp_reverse_set_dm_area(&src
, 0, ecc
->u
.pm
.point_1
.y
, 0,
2259 ecc
->u
.pm
.point_1
.y_len
);
2262 src
.address
+= CCP_ECC_OPERAND_SIZE
;
2264 /* Set the first point Z coordinate to 1 */
2265 *src
.address
= 0x01;
2266 src
.address
+= CCP_ECC_OPERAND_SIZE
;
2268 if (ecc
->function
== CCP_ECC_FUNCTION_PADD_384BIT
) {
2269 /* Copy the second point X and Y coordinate */
2270 ret
= ccp_reverse_set_dm_area(&src
, 0, ecc
->u
.pm
.point_2
.x
, 0,
2271 ecc
->u
.pm
.point_2
.x_len
);
2274 src
.address
+= CCP_ECC_OPERAND_SIZE
;
2275 ret
= ccp_reverse_set_dm_area(&src
, 0, ecc
->u
.pm
.point_2
.y
, 0,
2276 ecc
->u
.pm
.point_2
.y_len
);
2279 src
.address
+= CCP_ECC_OPERAND_SIZE
;
2281 /* Set the second point Z coordinate to 1 */
2282 *src
.address
= 0x01;
2283 src
.address
+= CCP_ECC_OPERAND_SIZE
;
2285 /* Copy the Domain "a" parameter */
2286 ret
= ccp_reverse_set_dm_area(&src
, 0, ecc
->u
.pm
.domain_a
, 0,
2287 ecc
->u
.pm
.domain_a_len
);
2290 src
.address
+= CCP_ECC_OPERAND_SIZE
;
2292 if (ecc
->function
== CCP_ECC_FUNCTION_PMUL_384BIT
) {
2293 /* Copy the scalar value */
2294 ret
= ccp_reverse_set_dm_area(&src
, 0,
2295 ecc
->u
.pm
.scalar
, 0,
2296 ecc
->u
.pm
.scalar_len
);
2299 src
.address
+= CCP_ECC_OPERAND_SIZE
;
2303 /* Restore the workarea address */
2306 /* Prepare the output area for the operation */
2307 ret
= ccp_init_dm_workarea(&dst
, cmd_q
, CCP_ECC_DST_BUF_SIZE
,
2313 op
.src
.u
.dma
.address
= src
.dma
.address
;
2314 op
.src
.u
.dma
.offset
= 0;
2315 op
.src
.u
.dma
.length
= src
.length
;
2316 op
.dst
.u
.dma
.address
= dst
.dma
.address
;
2317 op
.dst
.u
.dma
.offset
= 0;
2318 op
.dst
.u
.dma
.length
= dst
.length
;
2320 op
.u
.ecc
.function
= cmd
->u
.ecc
.function
;
2322 ret
= cmd_q
->ccp
->vdata
->perform
->ecc(&op
);
2324 cmd
->engine_error
= cmd_q
->cmd_error
;
2328 ecc
->ecc_result
= le16_to_cpup(
2329 (const __le16
*)(dst
.address
+ CCP_ECC_RESULT_OFFSET
));
2330 if (!(ecc
->ecc_result
& CCP_ECC_RESULT_SUCCESS
)) {
2335 /* Save the workarea address since it is updated as we walk through
2336 * to copy the point math result
2340 /* Save the ECC result X and Y coordinates */
2341 ccp_reverse_get_dm_area(&dst
, 0, ecc
->u
.pm
.result
.x
, 0,
2342 CCP_ECC_MODULUS_BYTES
);
2343 dst
.address
+= CCP_ECC_OUTPUT_SIZE
;
2344 ccp_reverse_get_dm_area(&dst
, 0, ecc
->u
.pm
.result
.y
, 0,
2345 CCP_ECC_MODULUS_BYTES
);
2346 dst
.address
+= CCP_ECC_OUTPUT_SIZE
;
2348 /* Restore the workarea address */
2360 static int ccp_run_ecc_cmd(struct ccp_cmd_queue
*cmd_q
, struct ccp_cmd
*cmd
)
2362 struct ccp_ecc_engine
*ecc
= &cmd
->u
.ecc
;
2364 ecc
->ecc_result
= 0;
2367 (ecc
->mod_len
> CCP_ECC_MODULUS_BYTES
))
2370 switch (ecc
->function
) {
2371 case CCP_ECC_FUNCTION_MMUL_384BIT
:
2372 case CCP_ECC_FUNCTION_MADD_384BIT
:
2373 case CCP_ECC_FUNCTION_MINV_384BIT
:
2374 return ccp_run_ecc_mm_cmd(cmd_q
, cmd
);
2376 case CCP_ECC_FUNCTION_PADD_384BIT
:
2377 case CCP_ECC_FUNCTION_PMUL_384BIT
:
2378 case CCP_ECC_FUNCTION_PDBL_384BIT
:
2379 return ccp_run_ecc_pm_cmd(cmd_q
, cmd
);
2386 int ccp_run_cmd(struct ccp_cmd_queue
*cmd_q
, struct ccp_cmd
*cmd
)
2390 cmd
->engine_error
= 0;
2391 cmd_q
->cmd_error
= 0;
2392 cmd_q
->int_rcvd
= 0;
2393 cmd_q
->free_slots
= cmd_q
->ccp
->vdata
->perform
->get_free_slots(cmd_q
);
2395 switch (cmd
->engine
) {
2396 case CCP_ENGINE_AES
:
2397 ret
= ccp_run_aes_cmd(cmd_q
, cmd
);
2399 case CCP_ENGINE_XTS_AES_128
:
2400 ret
= ccp_run_xts_aes_cmd(cmd_q
, cmd
);
2402 case CCP_ENGINE_DES3
:
2403 ret
= ccp_run_des3_cmd(cmd_q
, cmd
);
2405 case CCP_ENGINE_SHA
:
2406 ret
= ccp_run_sha_cmd(cmd_q
, cmd
);
2408 case CCP_ENGINE_RSA
:
2409 ret
= ccp_run_rsa_cmd(cmd_q
, cmd
);
2411 case CCP_ENGINE_PASSTHRU
:
2412 if (cmd
->flags
& CCP_CMD_PASSTHRU_NO_DMA_MAP
)
2413 ret
= ccp_run_passthru_nomap_cmd(cmd_q
, cmd
);
2415 ret
= ccp_run_passthru_cmd(cmd_q
, cmd
);
2417 case CCP_ENGINE_ECC
:
2418 ret
= ccp_run_ecc_cmd(cmd_q
, cmd
);