x86/topology: Fix function name in documentation
[cris-mirror.git] / drivers / crypto / inside-secure / safexcel_hash.c
blob122a2a58e98f3882ee276a54a4abe2c14f31b706
1 /*
2 * Copyright (C) 2017 Marvell
4 * Antoine Tenart <antoine.tenart@free-electrons.com>
6 * This file is licensed under the terms of the GNU General Public
7 * License version 2. This program is licensed "as is" without any
8 * warranty of any kind, whether express or implied.
9 */
11 #include <crypto/hmac.h>
12 #include <crypto/sha.h>
13 #include <linux/device.h>
14 #include <linux/dma-mapping.h>
15 #include <linux/dmapool.h>
17 #include "safexcel.h"
19 struct safexcel_ahash_ctx {
20 struct safexcel_context base;
21 struct safexcel_crypto_priv *priv;
23 u32 alg;
24 u32 digest;
26 u32 ipad[SHA1_DIGEST_SIZE / sizeof(u32)];
27 u32 opad[SHA1_DIGEST_SIZE / sizeof(u32)];
30 struct safexcel_ahash_req {
31 bool last_req;
32 bool finish;
33 bool hmac;
34 bool needs_inv;
36 int nents;
38 u8 state_sz; /* expected sate size, only set once */
39 u32 state[SHA256_DIGEST_SIZE / sizeof(u32)] __aligned(sizeof(u32));
41 u64 len;
42 u64 processed;
44 u8 cache[SHA256_BLOCK_SIZE] __aligned(sizeof(u32));
45 u8 cache_next[SHA256_BLOCK_SIZE] __aligned(sizeof(u32));
48 struct safexcel_ahash_export_state {
49 u64 len;
50 u64 processed;
52 u32 state[SHA256_DIGEST_SIZE / sizeof(u32)];
53 u8 cache[SHA256_BLOCK_SIZE];
56 static void safexcel_hash_token(struct safexcel_command_desc *cdesc,
57 u32 input_length, u32 result_length)
59 struct safexcel_token *token =
60 (struct safexcel_token *)cdesc->control_data.token;
62 token[0].opcode = EIP197_TOKEN_OPCODE_DIRECTION;
63 token[0].packet_length = input_length;
64 token[0].stat = EIP197_TOKEN_STAT_LAST_HASH;
65 token[0].instructions = EIP197_TOKEN_INS_TYPE_HASH;
67 token[1].opcode = EIP197_TOKEN_OPCODE_INSERT;
68 token[1].packet_length = result_length;
69 token[1].stat = EIP197_TOKEN_STAT_LAST_HASH |
70 EIP197_TOKEN_STAT_LAST_PACKET;
71 token[1].instructions = EIP197_TOKEN_INS_TYPE_OUTPUT |
72 EIP197_TOKEN_INS_INSERT_HASH_DIGEST;
75 static void safexcel_context_control(struct safexcel_ahash_ctx *ctx,
76 struct safexcel_ahash_req *req,
77 struct safexcel_command_desc *cdesc,
78 unsigned int digestsize,
79 unsigned int blocksize)
81 int i;
83 cdesc->control_data.control0 |= CONTEXT_CONTROL_TYPE_HASH_OUT;
84 cdesc->control_data.control0 |= ctx->alg;
85 cdesc->control_data.control0 |= ctx->digest;
87 if (ctx->digest == CONTEXT_CONTROL_DIGEST_PRECOMPUTED) {
88 if (req->processed) {
89 if (ctx->alg == CONTEXT_CONTROL_CRYPTO_ALG_SHA1)
90 cdesc->control_data.control0 |= CONTEXT_CONTROL_SIZE(6);
91 else if (ctx->alg == CONTEXT_CONTROL_CRYPTO_ALG_SHA224 ||
92 ctx->alg == CONTEXT_CONTROL_CRYPTO_ALG_SHA256)
93 cdesc->control_data.control0 |= CONTEXT_CONTROL_SIZE(9);
95 cdesc->control_data.control1 |= CONTEXT_CONTROL_DIGEST_CNT;
96 } else {
97 cdesc->control_data.control0 |= CONTEXT_CONTROL_RESTART_HASH;
100 if (!req->finish)
101 cdesc->control_data.control0 |= CONTEXT_CONTROL_NO_FINISH_HASH;
104 * Copy the input digest if needed, and setup the context
105 * fields. Do this now as we need it to setup the first command
106 * descriptor.
108 if (req->processed) {
109 for (i = 0; i < digestsize / sizeof(u32); i++)
110 ctx->base.ctxr->data[i] = cpu_to_le32(req->state[i]);
112 if (req->finish)
113 ctx->base.ctxr->data[i] = cpu_to_le32(req->processed / blocksize);
115 } else if (ctx->digest == CONTEXT_CONTROL_DIGEST_HMAC) {
116 cdesc->control_data.control0 |= CONTEXT_CONTROL_SIZE(10);
118 memcpy(ctx->base.ctxr->data, ctx->ipad, digestsize);
119 memcpy(ctx->base.ctxr->data + digestsize / sizeof(u32),
120 ctx->opad, digestsize);
124 static int safexcel_handle_req_result(struct safexcel_crypto_priv *priv, int ring,
125 struct crypto_async_request *async,
126 bool *should_complete, int *ret)
128 struct safexcel_result_desc *rdesc;
129 struct ahash_request *areq = ahash_request_cast(async);
130 struct crypto_ahash *ahash = crypto_ahash_reqtfm(areq);
131 struct safexcel_ahash_req *sreq = ahash_request_ctx(areq);
132 int cache_len;
134 *ret = 0;
136 spin_lock_bh(&priv->ring[ring].egress_lock);
137 rdesc = safexcel_ring_next_rptr(priv, &priv->ring[ring].rdr);
138 if (IS_ERR(rdesc)) {
139 dev_err(priv->dev,
140 "hash: result: could not retrieve the result descriptor\n");
141 *ret = PTR_ERR(rdesc);
142 } else if (rdesc->result_data.error_code) {
143 dev_err(priv->dev,
144 "hash: result: result descriptor error (%d)\n",
145 rdesc->result_data.error_code);
146 *ret = -EINVAL;
149 safexcel_complete(priv, ring);
150 spin_unlock_bh(&priv->ring[ring].egress_lock);
152 if (sreq->finish)
153 memcpy(areq->result, sreq->state,
154 crypto_ahash_digestsize(ahash));
156 if (sreq->nents) {
157 dma_unmap_sg(priv->dev, areq->src, sreq->nents, DMA_TO_DEVICE);
158 sreq->nents = 0;
161 safexcel_free_context(priv, async, sreq->state_sz);
163 cache_len = sreq->len - sreq->processed;
164 if (cache_len)
165 memcpy(sreq->cache, sreq->cache_next, cache_len);
167 *should_complete = true;
169 return 1;
172 static int safexcel_ahash_send_req(struct crypto_async_request *async, int ring,
173 struct safexcel_request *request,
174 int *commands, int *results)
176 struct ahash_request *areq = ahash_request_cast(async);
177 struct crypto_ahash *ahash = crypto_ahash_reqtfm(areq);
178 struct safexcel_ahash_req *req = ahash_request_ctx(areq);
179 struct safexcel_ahash_ctx *ctx = crypto_ahash_ctx(crypto_ahash_reqtfm(areq));
180 struct safexcel_crypto_priv *priv = ctx->priv;
181 struct safexcel_command_desc *cdesc, *first_cdesc = NULL;
182 struct safexcel_result_desc *rdesc;
183 struct scatterlist *sg;
184 int i, queued, len, cache_len, extra, n_cdesc = 0, ret = 0;
186 queued = len = req->len - req->processed;
187 if (queued < crypto_ahash_blocksize(ahash))
188 cache_len = queued;
189 else
190 cache_len = queued - areq->nbytes;
192 if (!req->last_req) {
193 /* If this is not the last request and the queued data does not
194 * fit into full blocks, cache it for the next send() call.
196 extra = queued & (crypto_ahash_blocksize(ahash) - 1);
197 if (!extra)
198 /* If this is not the last request and the queued data
199 * is a multiple of a block, cache the last one for now.
201 extra = queued - crypto_ahash_blocksize(ahash);
203 if (extra) {
204 sg_pcopy_to_buffer(areq->src, sg_nents(areq->src),
205 req->cache_next, extra,
206 areq->nbytes - extra);
208 queued -= extra;
209 len -= extra;
211 if (!queued) {
212 *commands = 0;
213 *results = 0;
214 return 0;
219 spin_lock_bh(&priv->ring[ring].egress_lock);
221 /* Add a command descriptor for the cached data, if any */
222 if (cache_len) {
223 ctx->base.cache = kzalloc(cache_len, EIP197_GFP_FLAGS(*async));
224 if (!ctx->base.cache) {
225 ret = -ENOMEM;
226 goto unlock;
228 memcpy(ctx->base.cache, req->cache, cache_len);
229 ctx->base.cache_dma = dma_map_single(priv->dev, ctx->base.cache,
230 cache_len, DMA_TO_DEVICE);
231 if (dma_mapping_error(priv->dev, ctx->base.cache_dma)) {
232 ret = -EINVAL;
233 goto free_cache;
236 ctx->base.cache_sz = cache_len;
237 first_cdesc = safexcel_add_cdesc(priv, ring, 1,
238 (cache_len == len),
239 ctx->base.cache_dma,
240 cache_len, len,
241 ctx->base.ctxr_dma);
242 if (IS_ERR(first_cdesc)) {
243 ret = PTR_ERR(first_cdesc);
244 goto unmap_cache;
246 n_cdesc++;
248 queued -= cache_len;
249 if (!queued)
250 goto send_command;
253 /* Now handle the current ahash request buffer(s) */
254 req->nents = dma_map_sg(priv->dev, areq->src,
255 sg_nents_for_len(areq->src, areq->nbytes),
256 DMA_TO_DEVICE);
257 if (!req->nents) {
258 ret = -ENOMEM;
259 goto cdesc_rollback;
262 for_each_sg(areq->src, sg, req->nents, i) {
263 int sglen = sg_dma_len(sg);
265 /* Do not overflow the request */
266 if (queued - sglen < 0)
267 sglen = queued;
269 cdesc = safexcel_add_cdesc(priv, ring, !n_cdesc,
270 !(queued - sglen), sg_dma_address(sg),
271 sglen, len, ctx->base.ctxr_dma);
272 if (IS_ERR(cdesc)) {
273 ret = PTR_ERR(cdesc);
274 goto cdesc_rollback;
276 n_cdesc++;
278 if (n_cdesc == 1)
279 first_cdesc = cdesc;
281 queued -= sglen;
282 if (!queued)
283 break;
286 send_command:
287 /* Setup the context options */
288 safexcel_context_control(ctx, req, first_cdesc, req->state_sz,
289 crypto_ahash_blocksize(ahash));
291 /* Add the token */
292 safexcel_hash_token(first_cdesc, len, req->state_sz);
294 ctx->base.result_dma = dma_map_single(priv->dev, req->state,
295 req->state_sz, DMA_FROM_DEVICE);
296 if (dma_mapping_error(priv->dev, ctx->base.result_dma)) {
297 ret = -EINVAL;
298 goto cdesc_rollback;
301 /* Add a result descriptor */
302 rdesc = safexcel_add_rdesc(priv, ring, 1, 1, ctx->base.result_dma,
303 req->state_sz);
304 if (IS_ERR(rdesc)) {
305 ret = PTR_ERR(rdesc);
306 goto cdesc_rollback;
309 spin_unlock_bh(&priv->ring[ring].egress_lock);
311 req->processed += len;
312 request->req = &areq->base;
314 *commands = n_cdesc;
315 *results = 1;
316 return 0;
318 cdesc_rollback:
319 for (i = 0; i < n_cdesc; i++)
320 safexcel_ring_rollback_wptr(priv, &priv->ring[ring].cdr);
321 unmap_cache:
322 if (ctx->base.cache_dma) {
323 dma_unmap_single(priv->dev, ctx->base.cache_dma,
324 ctx->base.cache_sz, DMA_TO_DEVICE);
325 ctx->base.cache_sz = 0;
327 free_cache:
328 kfree(ctx->base.cache);
329 ctx->base.cache = NULL;
331 unlock:
332 spin_unlock_bh(&priv->ring[ring].egress_lock);
333 return ret;
336 static inline bool safexcel_ahash_needs_inv_get(struct ahash_request *areq)
338 struct safexcel_ahash_ctx *ctx = crypto_ahash_ctx(crypto_ahash_reqtfm(areq));
339 struct safexcel_ahash_req *req = ahash_request_ctx(areq);
340 struct crypto_ahash *ahash = crypto_ahash_reqtfm(areq);
341 unsigned int state_w_sz = req->state_sz / sizeof(u32);
342 int i;
344 for (i = 0; i < state_w_sz; i++)
345 if (ctx->base.ctxr->data[i] != cpu_to_le32(req->state[i]))
346 return true;
348 if (ctx->base.ctxr->data[state_w_sz] !=
349 cpu_to_le32(req->processed / crypto_ahash_blocksize(ahash)))
350 return true;
352 return false;
355 static int safexcel_handle_inv_result(struct safexcel_crypto_priv *priv,
356 int ring,
357 struct crypto_async_request *async,
358 bool *should_complete, int *ret)
360 struct safexcel_result_desc *rdesc;
361 struct ahash_request *areq = ahash_request_cast(async);
362 struct crypto_ahash *ahash = crypto_ahash_reqtfm(areq);
363 struct safexcel_ahash_ctx *ctx = crypto_ahash_ctx(ahash);
364 int enq_ret;
366 *ret = 0;
368 spin_lock_bh(&priv->ring[ring].egress_lock);
369 rdesc = safexcel_ring_next_rptr(priv, &priv->ring[ring].rdr);
370 if (IS_ERR(rdesc)) {
371 dev_err(priv->dev,
372 "hash: invalidate: could not retrieve the result descriptor\n");
373 *ret = PTR_ERR(rdesc);
374 } else if (rdesc->result_data.error_code) {
375 dev_err(priv->dev,
376 "hash: invalidate: result descriptor error (%d)\n",
377 rdesc->result_data.error_code);
378 *ret = -EINVAL;
381 safexcel_complete(priv, ring);
382 spin_unlock_bh(&priv->ring[ring].egress_lock);
384 if (ctx->base.exit_inv) {
385 dma_pool_free(priv->context_pool, ctx->base.ctxr,
386 ctx->base.ctxr_dma);
388 *should_complete = true;
389 return 1;
392 ring = safexcel_select_ring(priv);
393 ctx->base.ring = ring;
395 spin_lock_bh(&priv->ring[ring].queue_lock);
396 enq_ret = crypto_enqueue_request(&priv->ring[ring].queue, async);
397 spin_unlock_bh(&priv->ring[ring].queue_lock);
399 if (enq_ret != -EINPROGRESS)
400 *ret = enq_ret;
402 queue_work(priv->ring[ring].workqueue,
403 &priv->ring[ring].work_data.work);
405 *should_complete = false;
407 return 1;
410 static int safexcel_handle_result(struct safexcel_crypto_priv *priv, int ring,
411 struct crypto_async_request *async,
412 bool *should_complete, int *ret)
414 struct ahash_request *areq = ahash_request_cast(async);
415 struct safexcel_ahash_req *req = ahash_request_ctx(areq);
416 int err;
418 BUG_ON(priv->version == EIP97 && req->needs_inv);
420 if (req->needs_inv) {
421 req->needs_inv = false;
422 err = safexcel_handle_inv_result(priv, ring, async,
423 should_complete, ret);
424 } else {
425 err = safexcel_handle_req_result(priv, ring, async,
426 should_complete, ret);
429 return err;
432 static int safexcel_ahash_send_inv(struct crypto_async_request *async,
433 int ring, struct safexcel_request *request,
434 int *commands, int *results)
436 struct ahash_request *areq = ahash_request_cast(async);
437 struct safexcel_ahash_ctx *ctx = crypto_ahash_ctx(crypto_ahash_reqtfm(areq));
438 int ret;
440 ret = safexcel_invalidate_cache(async, ctx->priv,
441 ctx->base.ctxr_dma, ring, request);
442 if (unlikely(ret))
443 return ret;
445 *commands = 1;
446 *results = 1;
448 return 0;
451 static int safexcel_ahash_send(struct crypto_async_request *async,
452 int ring, struct safexcel_request *request,
453 int *commands, int *results)
455 struct ahash_request *areq = ahash_request_cast(async);
456 struct safexcel_ahash_req *req = ahash_request_ctx(areq);
457 int ret;
459 if (req->needs_inv)
460 ret = safexcel_ahash_send_inv(async, ring, request,
461 commands, results);
462 else
463 ret = safexcel_ahash_send_req(async, ring, request,
464 commands, results);
465 return ret;
468 static int safexcel_ahash_exit_inv(struct crypto_tfm *tfm)
470 struct safexcel_ahash_ctx *ctx = crypto_tfm_ctx(tfm);
471 struct safexcel_crypto_priv *priv = ctx->priv;
472 AHASH_REQUEST_ON_STACK(req, __crypto_ahash_cast(tfm));
473 struct safexcel_ahash_req *rctx = ahash_request_ctx(req);
474 struct safexcel_inv_result result = {};
475 int ring = ctx->base.ring;
477 memset(req, 0, sizeof(struct ahash_request));
479 /* create invalidation request */
480 init_completion(&result.completion);
481 ahash_request_set_callback(req, CRYPTO_TFM_REQ_MAY_BACKLOG,
482 safexcel_inv_complete, &result);
484 ahash_request_set_tfm(req, __crypto_ahash_cast(tfm));
485 ctx = crypto_tfm_ctx(req->base.tfm);
486 ctx->base.exit_inv = true;
487 rctx->needs_inv = true;
489 spin_lock_bh(&priv->ring[ring].queue_lock);
490 crypto_enqueue_request(&priv->ring[ring].queue, &req->base);
491 spin_unlock_bh(&priv->ring[ring].queue_lock);
493 queue_work(priv->ring[ring].workqueue,
494 &priv->ring[ring].work_data.work);
496 wait_for_completion_interruptible(&result.completion);
498 if (result.error) {
499 dev_warn(priv->dev, "hash: completion error (%d)\n",
500 result.error);
501 return result.error;
504 return 0;
507 /* safexcel_ahash_cache: cache data until at least one request can be sent to
508 * the engine, aka. when there is at least 1 block size in the pipe.
510 static int safexcel_ahash_cache(struct ahash_request *areq)
512 struct safexcel_ahash_req *req = ahash_request_ctx(areq);
513 struct crypto_ahash *ahash = crypto_ahash_reqtfm(areq);
514 int queued, cache_len;
516 /* cache_len: everyting accepted by the driver but not sent yet,
517 * tot sz handled by update() - last req sz - tot sz handled by send()
519 cache_len = req->len - areq->nbytes - req->processed;
520 /* queued: everything accepted by the driver which will be handled by
521 * the next send() calls.
522 * tot sz handled by update() - tot sz handled by send()
524 queued = req->len - req->processed;
527 * In case there isn't enough bytes to proceed (less than a
528 * block size), cache the data until we have enough.
530 if (cache_len + areq->nbytes <= crypto_ahash_blocksize(ahash)) {
531 sg_pcopy_to_buffer(areq->src, sg_nents(areq->src),
532 req->cache + cache_len,
533 areq->nbytes, 0);
534 return areq->nbytes;
537 /* We couldn't cache all the data */
538 return -E2BIG;
541 static int safexcel_ahash_enqueue(struct ahash_request *areq)
543 struct safexcel_ahash_ctx *ctx = crypto_ahash_ctx(crypto_ahash_reqtfm(areq));
544 struct safexcel_ahash_req *req = ahash_request_ctx(areq);
545 struct safexcel_crypto_priv *priv = ctx->priv;
546 int ret, ring;
548 req->needs_inv = false;
550 if (ctx->base.ctxr) {
551 if (priv->version == EIP197 &&
552 !ctx->base.needs_inv && req->processed &&
553 ctx->digest == CONTEXT_CONTROL_DIGEST_PRECOMPUTED)
554 /* We're still setting needs_inv here, even though it is
555 * cleared right away, because the needs_inv flag can be
556 * set in other functions and we want to keep the same
557 * logic.
559 ctx->base.needs_inv = safexcel_ahash_needs_inv_get(areq);
561 if (ctx->base.needs_inv) {
562 ctx->base.needs_inv = false;
563 req->needs_inv = true;
565 } else {
566 ctx->base.ring = safexcel_select_ring(priv);
567 ctx->base.ctxr = dma_pool_zalloc(priv->context_pool,
568 EIP197_GFP_FLAGS(areq->base),
569 &ctx->base.ctxr_dma);
570 if (!ctx->base.ctxr)
571 return -ENOMEM;
574 ring = ctx->base.ring;
576 spin_lock_bh(&priv->ring[ring].queue_lock);
577 ret = crypto_enqueue_request(&priv->ring[ring].queue, &areq->base);
578 spin_unlock_bh(&priv->ring[ring].queue_lock);
580 queue_work(priv->ring[ring].workqueue,
581 &priv->ring[ring].work_data.work);
583 return ret;
586 static int safexcel_ahash_update(struct ahash_request *areq)
588 struct safexcel_ahash_ctx *ctx = crypto_ahash_ctx(crypto_ahash_reqtfm(areq));
589 struct safexcel_ahash_req *req = ahash_request_ctx(areq);
590 struct crypto_ahash *ahash = crypto_ahash_reqtfm(areq);
592 /* If the request is 0 length, do nothing */
593 if (!areq->nbytes)
594 return 0;
596 req->len += areq->nbytes;
598 safexcel_ahash_cache(areq);
601 * We're not doing partial updates when performing an hmac request.
602 * Everything will be handled by the final() call.
604 if (ctx->digest == CONTEXT_CONTROL_DIGEST_HMAC)
605 return 0;
607 if (req->hmac)
608 return safexcel_ahash_enqueue(areq);
610 if (!req->last_req &&
611 req->len - req->processed > crypto_ahash_blocksize(ahash))
612 return safexcel_ahash_enqueue(areq);
614 return 0;
617 static int safexcel_ahash_final(struct ahash_request *areq)
619 struct safexcel_ahash_req *req = ahash_request_ctx(areq);
620 struct safexcel_ahash_ctx *ctx = crypto_ahash_ctx(crypto_ahash_reqtfm(areq));
622 req->last_req = true;
623 req->finish = true;
625 /* If we have an overall 0 length request */
626 if (!(req->len + areq->nbytes)) {
627 if (ctx->alg == CONTEXT_CONTROL_CRYPTO_ALG_SHA1)
628 memcpy(areq->result, sha1_zero_message_hash,
629 SHA1_DIGEST_SIZE);
630 else if (ctx->alg == CONTEXT_CONTROL_CRYPTO_ALG_SHA224)
631 memcpy(areq->result, sha224_zero_message_hash,
632 SHA224_DIGEST_SIZE);
633 else if (ctx->alg == CONTEXT_CONTROL_CRYPTO_ALG_SHA256)
634 memcpy(areq->result, sha256_zero_message_hash,
635 SHA256_DIGEST_SIZE);
637 return 0;
640 return safexcel_ahash_enqueue(areq);
643 static int safexcel_ahash_finup(struct ahash_request *areq)
645 struct safexcel_ahash_req *req = ahash_request_ctx(areq);
647 req->last_req = true;
648 req->finish = true;
650 safexcel_ahash_update(areq);
651 return safexcel_ahash_final(areq);
654 static int safexcel_ahash_export(struct ahash_request *areq, void *out)
656 struct crypto_ahash *ahash = crypto_ahash_reqtfm(areq);
657 struct safexcel_ahash_req *req = ahash_request_ctx(areq);
658 struct safexcel_ahash_export_state *export = out;
660 export->len = req->len;
661 export->processed = req->processed;
663 memcpy(export->state, req->state, req->state_sz);
664 memcpy(export->cache, req->cache, crypto_ahash_blocksize(ahash));
666 return 0;
669 static int safexcel_ahash_import(struct ahash_request *areq, const void *in)
671 struct crypto_ahash *ahash = crypto_ahash_reqtfm(areq);
672 struct safexcel_ahash_req *req = ahash_request_ctx(areq);
673 const struct safexcel_ahash_export_state *export = in;
674 int ret;
676 ret = crypto_ahash_init(areq);
677 if (ret)
678 return ret;
680 req->len = export->len;
681 req->processed = export->processed;
683 memcpy(req->cache, export->cache, crypto_ahash_blocksize(ahash));
684 memcpy(req->state, export->state, req->state_sz);
686 return 0;
689 static int safexcel_ahash_cra_init(struct crypto_tfm *tfm)
691 struct safexcel_ahash_ctx *ctx = crypto_tfm_ctx(tfm);
692 struct safexcel_alg_template *tmpl =
693 container_of(__crypto_ahash_alg(tfm->__crt_alg),
694 struct safexcel_alg_template, alg.ahash);
696 ctx->priv = tmpl->priv;
697 ctx->base.send = safexcel_ahash_send;
698 ctx->base.handle_result = safexcel_handle_result;
700 crypto_ahash_set_reqsize(__crypto_ahash_cast(tfm),
701 sizeof(struct safexcel_ahash_req));
702 return 0;
705 static int safexcel_sha1_init(struct ahash_request *areq)
707 struct safexcel_ahash_ctx *ctx = crypto_ahash_ctx(crypto_ahash_reqtfm(areq));
708 struct safexcel_ahash_req *req = ahash_request_ctx(areq);
710 memset(req, 0, sizeof(*req));
712 req->state[0] = SHA1_H0;
713 req->state[1] = SHA1_H1;
714 req->state[2] = SHA1_H2;
715 req->state[3] = SHA1_H3;
716 req->state[4] = SHA1_H4;
718 ctx->alg = CONTEXT_CONTROL_CRYPTO_ALG_SHA1;
719 ctx->digest = CONTEXT_CONTROL_DIGEST_PRECOMPUTED;
720 req->state_sz = SHA1_DIGEST_SIZE;
722 return 0;
725 static int safexcel_sha1_digest(struct ahash_request *areq)
727 int ret = safexcel_sha1_init(areq);
729 if (ret)
730 return ret;
732 return safexcel_ahash_finup(areq);
735 static void safexcel_ahash_cra_exit(struct crypto_tfm *tfm)
737 struct safexcel_ahash_ctx *ctx = crypto_tfm_ctx(tfm);
738 struct safexcel_crypto_priv *priv = ctx->priv;
739 int ret;
741 /* context not allocated, skip invalidation */
742 if (!ctx->base.ctxr)
743 return;
745 if (priv->version == EIP197) {
746 ret = safexcel_ahash_exit_inv(tfm);
747 if (ret)
748 dev_warn(priv->dev, "hash: invalidation error %d\n", ret);
749 } else {
750 dma_pool_free(priv->context_pool, ctx->base.ctxr,
751 ctx->base.ctxr_dma);
755 struct safexcel_alg_template safexcel_alg_sha1 = {
756 .type = SAFEXCEL_ALG_TYPE_AHASH,
757 .alg.ahash = {
758 .init = safexcel_sha1_init,
759 .update = safexcel_ahash_update,
760 .final = safexcel_ahash_final,
761 .finup = safexcel_ahash_finup,
762 .digest = safexcel_sha1_digest,
763 .export = safexcel_ahash_export,
764 .import = safexcel_ahash_import,
765 .halg = {
766 .digestsize = SHA1_DIGEST_SIZE,
767 .statesize = sizeof(struct safexcel_ahash_export_state),
768 .base = {
769 .cra_name = "sha1",
770 .cra_driver_name = "safexcel-sha1",
771 .cra_priority = 300,
772 .cra_flags = CRYPTO_ALG_ASYNC |
773 CRYPTO_ALG_KERN_DRIVER_ONLY,
774 .cra_blocksize = SHA1_BLOCK_SIZE,
775 .cra_ctxsize = sizeof(struct safexcel_ahash_ctx),
776 .cra_init = safexcel_ahash_cra_init,
777 .cra_exit = safexcel_ahash_cra_exit,
778 .cra_module = THIS_MODULE,
784 static int safexcel_hmac_sha1_init(struct ahash_request *areq)
786 struct safexcel_ahash_ctx *ctx = crypto_ahash_ctx(crypto_ahash_reqtfm(areq));
788 safexcel_sha1_init(areq);
789 ctx->digest = CONTEXT_CONTROL_DIGEST_HMAC;
790 return 0;
793 static int safexcel_hmac_sha1_digest(struct ahash_request *areq)
795 int ret = safexcel_hmac_sha1_init(areq);
797 if (ret)
798 return ret;
800 return safexcel_ahash_finup(areq);
803 struct safexcel_ahash_result {
804 struct completion completion;
805 int error;
808 static void safexcel_ahash_complete(struct crypto_async_request *req, int error)
810 struct safexcel_ahash_result *result = req->data;
812 if (error == -EINPROGRESS)
813 return;
815 result->error = error;
816 complete(&result->completion);
819 static int safexcel_hmac_init_pad(struct ahash_request *areq,
820 unsigned int blocksize, const u8 *key,
821 unsigned int keylen, u8 *ipad, u8 *opad)
823 struct safexcel_ahash_result result;
824 struct scatterlist sg;
825 int ret, i;
826 u8 *keydup;
828 if (keylen <= blocksize) {
829 memcpy(ipad, key, keylen);
830 } else {
831 keydup = kmemdup(key, keylen, GFP_KERNEL);
832 if (!keydup)
833 return -ENOMEM;
835 ahash_request_set_callback(areq, CRYPTO_TFM_REQ_MAY_BACKLOG,
836 safexcel_ahash_complete, &result);
837 sg_init_one(&sg, keydup, keylen);
838 ahash_request_set_crypt(areq, &sg, ipad, keylen);
839 init_completion(&result.completion);
841 ret = crypto_ahash_digest(areq);
842 if (ret == -EINPROGRESS) {
843 wait_for_completion_interruptible(&result.completion);
844 ret = result.error;
847 /* Avoid leaking */
848 memzero_explicit(keydup, keylen);
849 kfree(keydup);
851 if (ret)
852 return ret;
854 keylen = crypto_ahash_digestsize(crypto_ahash_reqtfm(areq));
857 memset(ipad + keylen, 0, blocksize - keylen);
858 memcpy(opad, ipad, blocksize);
860 for (i = 0; i < blocksize; i++) {
861 ipad[i] ^= HMAC_IPAD_VALUE;
862 opad[i] ^= HMAC_OPAD_VALUE;
865 return 0;
868 static int safexcel_hmac_init_iv(struct ahash_request *areq,
869 unsigned int blocksize, u8 *pad, void *state)
871 struct safexcel_ahash_result result;
872 struct safexcel_ahash_req *req;
873 struct scatterlist sg;
874 int ret;
876 ahash_request_set_callback(areq, CRYPTO_TFM_REQ_MAY_BACKLOG,
877 safexcel_ahash_complete, &result);
878 sg_init_one(&sg, pad, blocksize);
879 ahash_request_set_crypt(areq, &sg, pad, blocksize);
880 init_completion(&result.completion);
882 ret = crypto_ahash_init(areq);
883 if (ret)
884 return ret;
886 req = ahash_request_ctx(areq);
887 req->hmac = true;
888 req->last_req = true;
890 ret = crypto_ahash_update(areq);
891 if (ret && ret != -EINPROGRESS && ret != -EBUSY)
892 return ret;
894 wait_for_completion_interruptible(&result.completion);
895 if (result.error)
896 return result.error;
898 return crypto_ahash_export(areq, state);
901 static int safexcel_hmac_setkey(const char *alg, const u8 *key,
902 unsigned int keylen, void *istate, void *ostate)
904 struct ahash_request *areq;
905 struct crypto_ahash *tfm;
906 unsigned int blocksize;
907 u8 *ipad, *opad;
908 int ret;
910 tfm = crypto_alloc_ahash(alg, CRYPTO_ALG_TYPE_AHASH,
911 CRYPTO_ALG_TYPE_AHASH_MASK);
912 if (IS_ERR(tfm))
913 return PTR_ERR(tfm);
915 areq = ahash_request_alloc(tfm, GFP_KERNEL);
916 if (!areq) {
917 ret = -ENOMEM;
918 goto free_ahash;
921 crypto_ahash_clear_flags(tfm, ~0);
922 blocksize = crypto_tfm_alg_blocksize(crypto_ahash_tfm(tfm));
924 ipad = kzalloc(2 * blocksize, GFP_KERNEL);
925 if (!ipad) {
926 ret = -ENOMEM;
927 goto free_request;
930 opad = ipad + blocksize;
932 ret = safexcel_hmac_init_pad(areq, blocksize, key, keylen, ipad, opad);
933 if (ret)
934 goto free_ipad;
936 ret = safexcel_hmac_init_iv(areq, blocksize, ipad, istate);
937 if (ret)
938 goto free_ipad;
940 ret = safexcel_hmac_init_iv(areq, blocksize, opad, ostate);
942 free_ipad:
943 kfree(ipad);
944 free_request:
945 ahash_request_free(areq);
946 free_ahash:
947 crypto_free_ahash(tfm);
949 return ret;
952 static int safexcel_hmac_sha1_setkey(struct crypto_ahash *tfm, const u8 *key,
953 unsigned int keylen)
955 struct safexcel_ahash_ctx *ctx = crypto_tfm_ctx(crypto_ahash_tfm(tfm));
956 struct safexcel_crypto_priv *priv = ctx->priv;
957 struct safexcel_ahash_export_state istate, ostate;
958 int ret, i;
960 ret = safexcel_hmac_setkey("safexcel-sha1", key, keylen, &istate, &ostate);
961 if (ret)
962 return ret;
964 if (priv->version == EIP197 && ctx->base.ctxr) {
965 for (i = 0; i < SHA1_DIGEST_SIZE / sizeof(u32); i++) {
966 if (ctx->ipad[i] != le32_to_cpu(istate.state[i]) ||
967 ctx->opad[i] != le32_to_cpu(ostate.state[i])) {
968 ctx->base.needs_inv = true;
969 break;
974 memcpy(ctx->ipad, &istate.state, SHA1_DIGEST_SIZE);
975 memcpy(ctx->opad, &ostate.state, SHA1_DIGEST_SIZE);
977 return 0;
980 struct safexcel_alg_template safexcel_alg_hmac_sha1 = {
981 .type = SAFEXCEL_ALG_TYPE_AHASH,
982 .alg.ahash = {
983 .init = safexcel_hmac_sha1_init,
984 .update = safexcel_ahash_update,
985 .final = safexcel_ahash_final,
986 .finup = safexcel_ahash_finup,
987 .digest = safexcel_hmac_sha1_digest,
988 .setkey = safexcel_hmac_sha1_setkey,
989 .export = safexcel_ahash_export,
990 .import = safexcel_ahash_import,
991 .halg = {
992 .digestsize = SHA1_DIGEST_SIZE,
993 .statesize = sizeof(struct safexcel_ahash_export_state),
994 .base = {
995 .cra_name = "hmac(sha1)",
996 .cra_driver_name = "safexcel-hmac-sha1",
997 .cra_priority = 300,
998 .cra_flags = CRYPTO_ALG_ASYNC |
999 CRYPTO_ALG_KERN_DRIVER_ONLY,
1000 .cra_blocksize = SHA1_BLOCK_SIZE,
1001 .cra_ctxsize = sizeof(struct safexcel_ahash_ctx),
1002 .cra_init = safexcel_ahash_cra_init,
1003 .cra_exit = safexcel_ahash_cra_exit,
1004 .cra_module = THIS_MODULE,
1010 static int safexcel_sha256_init(struct ahash_request *areq)
1012 struct safexcel_ahash_ctx *ctx = crypto_ahash_ctx(crypto_ahash_reqtfm(areq));
1013 struct safexcel_ahash_req *req = ahash_request_ctx(areq);
1015 memset(req, 0, sizeof(*req));
1017 req->state[0] = SHA256_H0;
1018 req->state[1] = SHA256_H1;
1019 req->state[2] = SHA256_H2;
1020 req->state[3] = SHA256_H3;
1021 req->state[4] = SHA256_H4;
1022 req->state[5] = SHA256_H5;
1023 req->state[6] = SHA256_H6;
1024 req->state[7] = SHA256_H7;
1026 ctx->alg = CONTEXT_CONTROL_CRYPTO_ALG_SHA256;
1027 ctx->digest = CONTEXT_CONTROL_DIGEST_PRECOMPUTED;
1028 req->state_sz = SHA256_DIGEST_SIZE;
1030 return 0;
1033 static int safexcel_sha256_digest(struct ahash_request *areq)
1035 int ret = safexcel_sha256_init(areq);
1037 if (ret)
1038 return ret;
1040 return safexcel_ahash_finup(areq);
1043 struct safexcel_alg_template safexcel_alg_sha256 = {
1044 .type = SAFEXCEL_ALG_TYPE_AHASH,
1045 .alg.ahash = {
1046 .init = safexcel_sha256_init,
1047 .update = safexcel_ahash_update,
1048 .final = safexcel_ahash_final,
1049 .finup = safexcel_ahash_finup,
1050 .digest = safexcel_sha256_digest,
1051 .export = safexcel_ahash_export,
1052 .import = safexcel_ahash_import,
1053 .halg = {
1054 .digestsize = SHA256_DIGEST_SIZE,
1055 .statesize = sizeof(struct safexcel_ahash_export_state),
1056 .base = {
1057 .cra_name = "sha256",
1058 .cra_driver_name = "safexcel-sha256",
1059 .cra_priority = 300,
1060 .cra_flags = CRYPTO_ALG_ASYNC |
1061 CRYPTO_ALG_KERN_DRIVER_ONLY,
1062 .cra_blocksize = SHA256_BLOCK_SIZE,
1063 .cra_ctxsize = sizeof(struct safexcel_ahash_ctx),
1064 .cra_init = safexcel_ahash_cra_init,
1065 .cra_exit = safexcel_ahash_cra_exit,
1066 .cra_module = THIS_MODULE,
1072 static int safexcel_sha224_init(struct ahash_request *areq)
1074 struct safexcel_ahash_ctx *ctx = crypto_ahash_ctx(crypto_ahash_reqtfm(areq));
1075 struct safexcel_ahash_req *req = ahash_request_ctx(areq);
1077 memset(req, 0, sizeof(*req));
1079 req->state[0] = SHA224_H0;
1080 req->state[1] = SHA224_H1;
1081 req->state[2] = SHA224_H2;
1082 req->state[3] = SHA224_H3;
1083 req->state[4] = SHA224_H4;
1084 req->state[5] = SHA224_H5;
1085 req->state[6] = SHA224_H6;
1086 req->state[7] = SHA224_H7;
1088 ctx->alg = CONTEXT_CONTROL_CRYPTO_ALG_SHA224;
1089 ctx->digest = CONTEXT_CONTROL_DIGEST_PRECOMPUTED;
1090 req->state_sz = SHA256_DIGEST_SIZE;
1092 return 0;
1095 static int safexcel_sha224_digest(struct ahash_request *areq)
1097 int ret = safexcel_sha224_init(areq);
1099 if (ret)
1100 return ret;
1102 return safexcel_ahash_finup(areq);
1105 struct safexcel_alg_template safexcel_alg_sha224 = {
1106 .type = SAFEXCEL_ALG_TYPE_AHASH,
1107 .alg.ahash = {
1108 .init = safexcel_sha224_init,
1109 .update = safexcel_ahash_update,
1110 .final = safexcel_ahash_final,
1111 .finup = safexcel_ahash_finup,
1112 .digest = safexcel_sha224_digest,
1113 .export = safexcel_ahash_export,
1114 .import = safexcel_ahash_import,
1115 .halg = {
1116 .digestsize = SHA224_DIGEST_SIZE,
1117 .statesize = sizeof(struct safexcel_ahash_export_state),
1118 .base = {
1119 .cra_name = "sha224",
1120 .cra_driver_name = "safexcel-sha224",
1121 .cra_priority = 300,
1122 .cra_flags = CRYPTO_ALG_ASYNC |
1123 CRYPTO_ALG_KERN_DRIVER_ONLY,
1124 .cra_blocksize = SHA224_BLOCK_SIZE,
1125 .cra_ctxsize = sizeof(struct safexcel_ahash_ctx),
1126 .cra_init = safexcel_ahash_cra_init,
1127 .cra_exit = safexcel_ahash_cra_exit,
1128 .cra_module = THIS_MODULE,