4 * Copyright (C) 2013 Wolfram Sang <wsa@sang-engineering.com>
5 * Copyright (C) 2013 Renesas Solutions Corp.
7 * This program is free software; you can redistribute it and/or modify it
8 * under the terms of the GNU General Public License version 2 as published by
9 * the Free Software Foundation.
13 * This i2c core has a lot of interrupts, namely 8. We use their chaining as
14 * some kind of state machine.
16 * 1) The main xfer routine kicks off a transmission by putting the start bit
17 * (or repeated start) on the bus and enabling the transmit interrupt (TIE)
18 * since we need to send the slave address + RW bit in every case.
20 * 2) TIE sends slave address + RW bit and selects how to continue.
22 * 3a) Write case: We keep utilizing TIE as long as we have data to send. If we
23 * are done, we switch over to the transmission done interrupt (TEIE) and mark
24 * the message as completed (includes sending STOP) there.
26 * 3b) Read case: We switch over to receive interrupt (RIE). One dummy read is
27 * needed to start clocking, then we keep receiving until we are done. Note
28 * that we use the RDRFS mode all the time, i.e. we ACK/NACK every byte by
29 * writing to the ACKBT bit. I tried using the RDRFS mode only at the end of a
30 * message to create the final NACK as sketched in the datasheet. This caused
31 * some subtle races (when byte n was processed and byte n+1 was already
32 * waiting), though, and I started with the safe approach.
34 * 4) If we got a NACK somewhere, we flag the error and stop the transmission
37 * Also check the comments in the interrupt routines for some gory details.
40 #include <linux/clk.h>
41 #include <linux/completion.h>
42 #include <linux/err.h>
43 #include <linux/i2c.h>
44 #include <linux/interrupt.h>
46 #include <linux/module.h>
48 #include <linux/platform_device.h>
50 #define RIIC_ICCR1 0x00
51 #define RIIC_ICCR2 0x04
52 #define RIIC_ICMR1 0x08
53 #define RIIC_ICMR3 0x10
54 #define RIIC_ICSER 0x18
55 #define RIIC_ICIER 0x1c
56 #define RIIC_ICSR2 0x24
57 #define RIIC_ICBRL 0x34
58 #define RIIC_ICBRH 0x38
59 #define RIIC_ICDRT 0x3c
60 #define RIIC_ICDRR 0x40
62 #define ICCR1_ICE 0x80
63 #define ICCR1_IICRST 0x40
64 #define ICCR1_SOWP 0x10
66 #define ICCR2_BBSY 0x80
71 #define ICMR1_CKS_MASK 0x70
72 #define ICMR1_BCWP 0x08
73 #define ICMR1_CKS(_x) ((((_x) << 4) & ICMR1_CKS_MASK) | ICMR1_BCWP)
75 #define ICMR3_RDRFS 0x20
76 #define ICMR3_ACKWP 0x10
77 #define ICMR3_ACKBT 0x08
79 #define ICIER_TIE 0x80
80 #define ICIER_TEIE 0x40
81 #define ICIER_RIE 0x20
82 #define ICIER_NAKIE 0x10
83 #define ICIER_SPIE 0x08
85 #define ICSR2_NACKF 0x10
87 #define ICBR_RESERVED 0xe0 /* Should be 1 on writes */
89 #define RIIC_INIT_MSG -1
98 struct completion msg_done
;
99 struct i2c_adapter adapter
;
103 struct riic_irq_desc
{
109 static inline void riic_clear_set_bit(struct riic_dev
*riic
, u8 clear
, u8 set
, u8 reg
)
111 writeb((readb(riic
->base
+ reg
) & ~clear
) | set
, riic
->base
+ reg
);
114 static int riic_xfer(struct i2c_adapter
*adap
, struct i2c_msg msgs
[], int num
)
116 struct riic_dev
*riic
= i2c_get_adapdata(adap
);
117 unsigned long time_left
;
121 ret
= clk_prepare_enable(riic
->clk
);
125 if (readb(riic
->base
+ RIIC_ICCR2
) & ICCR2_BBSY
) {
130 reinit_completion(&riic
->msg_done
);
133 writeb(0, riic
->base
+ RIIC_ICSR2
);
135 for (i
= 0, start_bit
= ICCR2_ST
; i
< num
; i
++) {
136 riic
->bytes_left
= RIIC_INIT_MSG
;
137 riic
->buf
= msgs
[i
].buf
;
138 riic
->msg
= &msgs
[i
];
139 riic
->is_last
= (i
== num
- 1);
141 writeb(ICIER_NAKIE
| ICIER_TIE
, riic
->base
+ RIIC_ICIER
);
143 writeb(start_bit
, riic
->base
+ RIIC_ICCR2
);
145 time_left
= wait_for_completion_timeout(&riic
->msg_done
, riic
->adapter
.timeout
);
147 riic
->err
= -ETIMEDOUT
;
152 start_bit
= ICCR2_RS
;
156 clk_disable_unprepare(riic
->clk
);
158 return riic
->err
?: num
;
161 static irqreturn_t
riic_tdre_isr(int irq
, void *data
)
163 struct riic_dev
*riic
= data
;
166 if (!riic
->bytes_left
)
169 if (riic
->bytes_left
== RIIC_INIT_MSG
) {
170 val
= !!(riic
->msg
->flags
& I2C_M_RD
);
172 /* On read, switch over to receive interrupt */
173 riic_clear_set_bit(riic
, ICIER_TIE
, ICIER_RIE
, RIIC_ICIER
);
175 /* On write, initialize length */
176 riic
->bytes_left
= riic
->msg
->len
;
178 val
|= (riic
->msg
->addr
<< 1);
186 * Switch to transmission ended interrupt when done. Do check here
187 * after bytes_left was initialized to support SMBUS_QUICK (new msg has
190 if (riic
->bytes_left
== 0)
191 riic_clear_set_bit(riic
, ICIER_TIE
, ICIER_TEIE
, RIIC_ICIER
);
194 * This acks the TIE interrupt. We get another TIE immediately if our
195 * value could be moved to the shadow shift register right away. So
196 * this must be after updates to ICIER (where we want to disable TIE)!
198 writeb(val
, riic
->base
+ RIIC_ICDRT
);
203 static irqreturn_t
riic_tend_isr(int irq
, void *data
)
205 struct riic_dev
*riic
= data
;
207 if (readb(riic
->base
+ RIIC_ICSR2
) & ICSR2_NACKF
) {
208 /* We got a NACKIE */
209 readb(riic
->base
+ RIIC_ICDRR
); /* dummy read */
211 } else if (riic
->bytes_left
) {
215 if (riic
->is_last
|| riic
->err
) {
216 riic_clear_set_bit(riic
, ICIER_TEIE
, ICIER_SPIE
, RIIC_ICIER
);
217 writeb(ICCR2_SP
, riic
->base
+ RIIC_ICCR2
);
219 /* Transfer is complete, but do not send STOP */
220 riic_clear_set_bit(riic
, ICIER_TEIE
, 0, RIIC_ICIER
);
221 complete(&riic
->msg_done
);
227 static irqreturn_t
riic_rdrf_isr(int irq
, void *data
)
229 struct riic_dev
*riic
= data
;
231 if (!riic
->bytes_left
)
234 if (riic
->bytes_left
== RIIC_INIT_MSG
) {
235 riic
->bytes_left
= riic
->msg
->len
;
236 readb(riic
->base
+ RIIC_ICDRR
); /* dummy read */
240 if (riic
->bytes_left
== 1) {
241 /* STOP must come before we set ACKBT! */
243 riic_clear_set_bit(riic
, 0, ICIER_SPIE
, RIIC_ICIER
);
244 writeb(ICCR2_SP
, riic
->base
+ RIIC_ICCR2
);
247 riic_clear_set_bit(riic
, 0, ICMR3_ACKBT
, RIIC_ICMR3
);
250 riic_clear_set_bit(riic
, ICMR3_ACKBT
, 0, RIIC_ICMR3
);
253 /* Reading acks the RIE interrupt */
254 *riic
->buf
= readb(riic
->base
+ RIIC_ICDRR
);
261 static irqreturn_t
riic_stop_isr(int irq
, void *data
)
263 struct riic_dev
*riic
= data
;
265 /* read back registers to confirm writes have fully propagated */
266 writeb(0, riic
->base
+ RIIC_ICSR2
);
267 readb(riic
->base
+ RIIC_ICSR2
);
268 writeb(0, riic
->base
+ RIIC_ICIER
);
269 readb(riic
->base
+ RIIC_ICIER
);
271 complete(&riic
->msg_done
);
276 static u32
riic_func(struct i2c_adapter
*adap
)
278 return I2C_FUNC_I2C
| I2C_FUNC_SMBUS_EMUL
;
281 static const struct i2c_algorithm riic_algo
= {
282 .master_xfer
= riic_xfer
,
283 .functionality
= riic_func
,
286 static int riic_init_hw(struct riic_dev
*riic
, struct i2c_timings
*t
)
290 int total_ticks
, cks
, brl
, brh
;
292 ret
= clk_prepare_enable(riic
->clk
);
296 if (t
->bus_freq_hz
> 400000) {
297 dev_err(&riic
->adapter
.dev
,
298 "unsupported bus speed (%dHz). 400000 max\n",
300 clk_disable_unprepare(riic
->clk
);
304 rate
= clk_get_rate(riic
->clk
);
307 * Assume the default register settings:
308 * FER.SCLE = 1 (SCL sync circuit enabled, adds 2 or 3 cycles)
309 * FER.NFE = 1 (noise circuit enabled)
310 * MR3.NF = 0 (1 cycle of noise filtered out)
312 * Freq (CKS=000) = (I2CCLK + tr + tf)/ (BRH + 3 + 1) + (BRL + 3 + 1)
313 * Freq (CKS!=000) = (I2CCLK + tr + tf)/ (BRH + 2 + 1) + (BRL + 2 + 1)
317 * Determine reference clock rate. We must be able to get the desired
318 * frequency with only 62 clock ticks max (31 high, 31 low).
319 * Aim for a duty of 60% LOW, 40% HIGH.
321 total_ticks
= DIV_ROUND_UP(rate
, t
->bus_freq_hz
);
323 for (cks
= 0; cks
< 7; cks
++) {
325 * 60% low time must be less than BRL + 2 + 1
326 * BRL max register value is 0x1F.
328 brl
= ((total_ticks
* 6) / 10);
329 if (brl
<= (0x1F + 3))
336 if (brl
> (0x1F + 3)) {
337 dev_err(&riic
->adapter
.dev
, "invalid speed (%lu). Too slow.\n",
338 (unsigned long)t
->bus_freq_hz
);
339 clk_disable_unprepare(riic
->clk
);
343 brh
= total_ticks
- brl
;
345 /* Remove automatic clock ticks for sync circuit and NF */
355 * Remove clock ticks for rise and fall times. Convert ns to clock
358 brl
-= t
->scl_fall_ns
/ (1000000000 / rate
);
359 brh
-= t
->scl_rise_ns
/ (1000000000 / rate
);
361 /* Adjust for min register values for when SCLE=1 and NFE=1 */
367 pr_debug("i2c-riic: freq=%lu, duty=%d, fall=%lu, rise=%lu, cks=%d, brl=%d, brh=%d\n",
368 rate
/ total_ticks
, ((brl
+ 3) * 100) / (brl
+ brh
+ 6),
369 t
->scl_fall_ns
/ (1000000000 / rate
),
370 t
->scl_rise_ns
/ (1000000000 / rate
), cks
, brl
, brh
);
372 /* Changing the order of accessing IICRST and ICE may break things! */
373 writeb(ICCR1_IICRST
| ICCR1_SOWP
, riic
->base
+ RIIC_ICCR1
);
374 riic_clear_set_bit(riic
, 0, ICCR1_ICE
, RIIC_ICCR1
);
376 writeb(ICMR1_CKS(cks
), riic
->base
+ RIIC_ICMR1
);
377 writeb(brh
| ICBR_RESERVED
, riic
->base
+ RIIC_ICBRH
);
378 writeb(brl
| ICBR_RESERVED
, riic
->base
+ RIIC_ICBRL
);
380 writeb(0, riic
->base
+ RIIC_ICSER
);
381 writeb(ICMR3_ACKWP
| ICMR3_RDRFS
, riic
->base
+ RIIC_ICMR3
);
383 riic_clear_set_bit(riic
, ICCR1_IICRST
, 0, RIIC_ICCR1
);
385 clk_disable_unprepare(riic
->clk
);
390 static struct riic_irq_desc riic_irqs
[] = {
391 { .res_num
= 0, .isr
= riic_tend_isr
, .name
= "riic-tend" },
392 { .res_num
= 1, .isr
= riic_rdrf_isr
, .name
= "riic-rdrf" },
393 { .res_num
= 2, .isr
= riic_tdre_isr
, .name
= "riic-tdre" },
394 { .res_num
= 3, .isr
= riic_stop_isr
, .name
= "riic-stop" },
395 { .res_num
= 5, .isr
= riic_tend_isr
, .name
= "riic-nack" },
398 static int riic_i2c_probe(struct platform_device
*pdev
)
400 struct riic_dev
*riic
;
401 struct i2c_adapter
*adap
;
402 struct resource
*res
;
403 struct i2c_timings i2c_t
;
406 riic
= devm_kzalloc(&pdev
->dev
, sizeof(*riic
), GFP_KERNEL
);
410 res
= platform_get_resource(pdev
, IORESOURCE_MEM
, 0);
411 riic
->base
= devm_ioremap_resource(&pdev
->dev
, res
);
412 if (IS_ERR(riic
->base
))
413 return PTR_ERR(riic
->base
);
415 riic
->clk
= devm_clk_get(&pdev
->dev
, NULL
);
416 if (IS_ERR(riic
->clk
)) {
417 dev_err(&pdev
->dev
, "missing controller clock");
418 return PTR_ERR(riic
->clk
);
421 for (i
= 0; i
< ARRAY_SIZE(riic_irqs
); i
++) {
422 res
= platform_get_resource(pdev
, IORESOURCE_IRQ
, riic_irqs
[i
].res_num
);
426 ret
= devm_request_irq(&pdev
->dev
, res
->start
, riic_irqs
[i
].isr
,
427 0, riic_irqs
[i
].name
, riic
);
429 dev_err(&pdev
->dev
, "failed to request irq %s\n", riic_irqs
[i
].name
);
434 adap
= &riic
->adapter
;
435 i2c_set_adapdata(adap
, riic
);
436 strlcpy(adap
->name
, "Renesas RIIC adapter", sizeof(adap
->name
));
437 adap
->owner
= THIS_MODULE
;
438 adap
->algo
= &riic_algo
;
439 adap
->dev
.parent
= &pdev
->dev
;
440 adap
->dev
.of_node
= pdev
->dev
.of_node
;
442 init_completion(&riic
->msg_done
);
444 i2c_parse_fw_timings(&pdev
->dev
, &i2c_t
, true);
446 ret
= riic_init_hw(riic
, &i2c_t
);
451 ret
= i2c_add_adapter(adap
);
455 platform_set_drvdata(pdev
, riic
);
457 dev_info(&pdev
->dev
, "registered with %dHz bus speed\n",
462 static int riic_i2c_remove(struct platform_device
*pdev
)
464 struct riic_dev
*riic
= platform_get_drvdata(pdev
);
466 writeb(0, riic
->base
+ RIIC_ICIER
);
467 i2c_del_adapter(&riic
->adapter
);
472 static const struct of_device_id riic_i2c_dt_ids
[] = {
473 { .compatible
= "renesas,riic-rz" },
477 static struct platform_driver riic_i2c_driver
= {
478 .probe
= riic_i2c_probe
,
479 .remove
= riic_i2c_remove
,
482 .of_match_table
= riic_i2c_dt_ids
,
486 module_platform_driver(riic_i2c_driver
);
488 MODULE_DESCRIPTION("Renesas RIIC adapter");
489 MODULE_AUTHOR("Wolfram Sang <wsa@sang-engineering.com>");
490 MODULE_LICENSE("GPL v2");
491 MODULE_DEVICE_TABLE(of
, riic_i2c_dt_ids
);