x86/topology: Fix function name in documentation
[cris-mirror.git] / drivers / infiniband / core / umem_odp.c
blob2aadf5813a40a10c58a001076f7af910cd720596
1 /*
2 * Copyright (c) 2014 Mellanox Technologies. All rights reserved.
4 * This software is available to you under a choice of one of two
5 * licenses. You may choose to be licensed under the terms of the GNU
6 * General Public License (GPL) Version 2, available from the file
7 * COPYING in the main directory of this source tree, or the
8 * OpenIB.org BSD license below:
10 * Redistribution and use in source and binary forms, with or
11 * without modification, are permitted provided that the following
12 * conditions are met:
14 * - Redistributions of source code must retain the above
15 * copyright notice, this list of conditions and the following
16 * disclaimer.
18 * - Redistributions in binary form must reproduce the above
19 * copyright notice, this list of conditions and the following
20 * disclaimer in the documentation and/or other materials
21 * provided with the distribution.
23 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
24 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
25 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
26 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
27 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
28 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
29 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
30 * SOFTWARE.
33 #include <linux/types.h>
34 #include <linux/sched.h>
35 #include <linux/sched/mm.h>
36 #include <linux/sched/task.h>
37 #include <linux/pid.h>
38 #include <linux/slab.h>
39 #include <linux/export.h>
40 #include <linux/vmalloc.h>
41 #include <linux/hugetlb.h>
42 #include <linux/interval_tree_generic.h>
44 #include <rdma/ib_verbs.h>
45 #include <rdma/ib_umem.h>
46 #include <rdma/ib_umem_odp.h>
49 * The ib_umem list keeps track of memory regions for which the HW
50 * device request to receive notification when the related memory
51 * mapping is changed.
53 * ib_umem_lock protects the list.
56 static u64 node_start(struct umem_odp_node *n)
58 struct ib_umem_odp *umem_odp =
59 container_of(n, struct ib_umem_odp, interval_tree);
61 return ib_umem_start(umem_odp->umem);
64 /* Note that the representation of the intervals in the interval tree
65 * considers the ending point as contained in the interval, while the
66 * function ib_umem_end returns the first address which is not contained
67 * in the umem.
69 static u64 node_last(struct umem_odp_node *n)
71 struct ib_umem_odp *umem_odp =
72 container_of(n, struct ib_umem_odp, interval_tree);
74 return ib_umem_end(umem_odp->umem) - 1;
77 INTERVAL_TREE_DEFINE(struct umem_odp_node, rb, u64, __subtree_last,
78 node_start, node_last, static, rbt_ib_umem)
80 static void ib_umem_notifier_start_account(struct ib_umem *item)
82 mutex_lock(&item->odp_data->umem_mutex);
84 /* Only update private counters for this umem if it has them.
85 * Otherwise skip it. All page faults will be delayed for this umem. */
86 if (item->odp_data->mn_counters_active) {
87 int notifiers_count = item->odp_data->notifiers_count++;
89 if (notifiers_count == 0)
90 /* Initialize the completion object for waiting on
91 * notifiers. Since notifier_count is zero, no one
92 * should be waiting right now. */
93 reinit_completion(&item->odp_data->notifier_completion);
95 mutex_unlock(&item->odp_data->umem_mutex);
98 static void ib_umem_notifier_end_account(struct ib_umem *item)
100 mutex_lock(&item->odp_data->umem_mutex);
102 /* Only update private counters for this umem if it has them.
103 * Otherwise skip it. All page faults will be delayed for this umem. */
104 if (item->odp_data->mn_counters_active) {
106 * This sequence increase will notify the QP page fault that
107 * the page that is going to be mapped in the spte could have
108 * been freed.
110 ++item->odp_data->notifiers_seq;
111 if (--item->odp_data->notifiers_count == 0)
112 complete_all(&item->odp_data->notifier_completion);
114 mutex_unlock(&item->odp_data->umem_mutex);
117 /* Account for a new mmu notifier in an ib_ucontext. */
118 static void ib_ucontext_notifier_start_account(struct ib_ucontext *context)
120 atomic_inc(&context->notifier_count);
123 /* Account for a terminating mmu notifier in an ib_ucontext.
125 * Must be called with the ib_ucontext->umem_rwsem semaphore unlocked, since
126 * the function takes the semaphore itself. */
127 static void ib_ucontext_notifier_end_account(struct ib_ucontext *context)
129 int zero_notifiers = atomic_dec_and_test(&context->notifier_count);
131 if (zero_notifiers &&
132 !list_empty(&context->no_private_counters)) {
133 /* No currently running mmu notifiers. Now is the chance to
134 * add private accounting to all previously added umems. */
135 struct ib_umem_odp *odp_data, *next;
137 /* Prevent concurrent mmu notifiers from working on the
138 * no_private_counters list. */
139 down_write(&context->umem_rwsem);
141 /* Read the notifier_count again, with the umem_rwsem
142 * semaphore taken for write. */
143 if (!atomic_read(&context->notifier_count)) {
144 list_for_each_entry_safe(odp_data, next,
145 &context->no_private_counters,
146 no_private_counters) {
147 mutex_lock(&odp_data->umem_mutex);
148 odp_data->mn_counters_active = true;
149 list_del(&odp_data->no_private_counters);
150 complete_all(&odp_data->notifier_completion);
151 mutex_unlock(&odp_data->umem_mutex);
155 up_write(&context->umem_rwsem);
159 static int ib_umem_notifier_release_trampoline(struct ib_umem *item, u64 start,
160 u64 end, void *cookie) {
162 * Increase the number of notifiers running, to
163 * prevent any further fault handling on this MR.
165 ib_umem_notifier_start_account(item);
166 item->odp_data->dying = 1;
167 /* Make sure that the fact the umem is dying is out before we release
168 * all pending page faults. */
169 smp_wmb();
170 complete_all(&item->odp_data->notifier_completion);
171 item->context->invalidate_range(item, ib_umem_start(item),
172 ib_umem_end(item));
173 return 0;
176 static void ib_umem_notifier_release(struct mmu_notifier *mn,
177 struct mm_struct *mm)
179 struct ib_ucontext *context = container_of(mn, struct ib_ucontext, mn);
181 if (!context->invalidate_range)
182 return;
184 ib_ucontext_notifier_start_account(context);
185 down_read(&context->umem_rwsem);
186 rbt_ib_umem_for_each_in_range(&context->umem_tree, 0,
187 ULLONG_MAX,
188 ib_umem_notifier_release_trampoline,
189 NULL);
190 up_read(&context->umem_rwsem);
193 static int invalidate_page_trampoline(struct ib_umem *item, u64 start,
194 u64 end, void *cookie)
196 ib_umem_notifier_start_account(item);
197 item->context->invalidate_range(item, start, start + PAGE_SIZE);
198 ib_umem_notifier_end_account(item);
199 return 0;
202 static int invalidate_range_start_trampoline(struct ib_umem *item, u64 start,
203 u64 end, void *cookie)
205 ib_umem_notifier_start_account(item);
206 item->context->invalidate_range(item, start, end);
207 return 0;
210 static void ib_umem_notifier_invalidate_range_start(struct mmu_notifier *mn,
211 struct mm_struct *mm,
212 unsigned long start,
213 unsigned long end)
215 struct ib_ucontext *context = container_of(mn, struct ib_ucontext, mn);
217 if (!context->invalidate_range)
218 return;
220 ib_ucontext_notifier_start_account(context);
221 down_read(&context->umem_rwsem);
222 rbt_ib_umem_for_each_in_range(&context->umem_tree, start,
223 end,
224 invalidate_range_start_trampoline, NULL);
225 up_read(&context->umem_rwsem);
228 static int invalidate_range_end_trampoline(struct ib_umem *item, u64 start,
229 u64 end, void *cookie)
231 ib_umem_notifier_end_account(item);
232 return 0;
235 static void ib_umem_notifier_invalidate_range_end(struct mmu_notifier *mn,
236 struct mm_struct *mm,
237 unsigned long start,
238 unsigned long end)
240 struct ib_ucontext *context = container_of(mn, struct ib_ucontext, mn);
242 if (!context->invalidate_range)
243 return;
245 down_read(&context->umem_rwsem);
246 rbt_ib_umem_for_each_in_range(&context->umem_tree, start,
247 end,
248 invalidate_range_end_trampoline, NULL);
249 up_read(&context->umem_rwsem);
250 ib_ucontext_notifier_end_account(context);
253 static const struct mmu_notifier_ops ib_umem_notifiers = {
254 .release = ib_umem_notifier_release,
255 .invalidate_range_start = ib_umem_notifier_invalidate_range_start,
256 .invalidate_range_end = ib_umem_notifier_invalidate_range_end,
259 struct ib_umem *ib_alloc_odp_umem(struct ib_ucontext *context,
260 unsigned long addr,
261 size_t size)
263 struct ib_umem *umem;
264 struct ib_umem_odp *odp_data;
265 int pages = size >> PAGE_SHIFT;
266 int ret;
268 umem = kzalloc(sizeof(*umem), GFP_KERNEL);
269 if (!umem)
270 return ERR_PTR(-ENOMEM);
272 umem->context = context;
273 umem->length = size;
274 umem->address = addr;
275 umem->page_shift = PAGE_SHIFT;
276 umem->writable = 1;
278 odp_data = kzalloc(sizeof(*odp_data), GFP_KERNEL);
279 if (!odp_data) {
280 ret = -ENOMEM;
281 goto out_umem;
283 odp_data->umem = umem;
285 mutex_init(&odp_data->umem_mutex);
286 init_completion(&odp_data->notifier_completion);
288 odp_data->page_list = vzalloc(pages * sizeof(*odp_data->page_list));
289 if (!odp_data->page_list) {
290 ret = -ENOMEM;
291 goto out_odp_data;
294 odp_data->dma_list = vzalloc(pages * sizeof(*odp_data->dma_list));
295 if (!odp_data->dma_list) {
296 ret = -ENOMEM;
297 goto out_page_list;
300 down_write(&context->umem_rwsem);
301 context->odp_mrs_count++;
302 rbt_ib_umem_insert(&odp_data->interval_tree, &context->umem_tree);
303 if (likely(!atomic_read(&context->notifier_count)))
304 odp_data->mn_counters_active = true;
305 else
306 list_add(&odp_data->no_private_counters,
307 &context->no_private_counters);
308 up_write(&context->umem_rwsem);
310 umem->odp_data = odp_data;
312 return umem;
314 out_page_list:
315 vfree(odp_data->page_list);
316 out_odp_data:
317 kfree(odp_data);
318 out_umem:
319 kfree(umem);
320 return ERR_PTR(ret);
322 EXPORT_SYMBOL(ib_alloc_odp_umem);
324 int ib_umem_odp_get(struct ib_ucontext *context, struct ib_umem *umem,
325 int access)
327 int ret_val;
328 struct pid *our_pid;
329 struct mm_struct *mm = get_task_mm(current);
331 if (!mm)
332 return -EINVAL;
334 if (access & IB_ACCESS_HUGETLB) {
335 struct vm_area_struct *vma;
336 struct hstate *h;
338 down_read(&mm->mmap_sem);
339 vma = find_vma(mm, ib_umem_start(umem));
340 if (!vma || !is_vm_hugetlb_page(vma)) {
341 up_read(&mm->mmap_sem);
342 return -EINVAL;
344 h = hstate_vma(vma);
345 umem->page_shift = huge_page_shift(h);
346 up_read(&mm->mmap_sem);
347 umem->hugetlb = 1;
348 } else {
349 umem->hugetlb = 0;
352 /* Prevent creating ODP MRs in child processes */
353 rcu_read_lock();
354 our_pid = get_task_pid(current->group_leader, PIDTYPE_PID);
355 rcu_read_unlock();
356 put_pid(our_pid);
357 if (context->tgid != our_pid) {
358 ret_val = -EINVAL;
359 goto out_mm;
362 umem->odp_data = kzalloc(sizeof(*umem->odp_data), GFP_KERNEL);
363 if (!umem->odp_data) {
364 ret_val = -ENOMEM;
365 goto out_mm;
367 umem->odp_data->umem = umem;
369 mutex_init(&umem->odp_data->umem_mutex);
371 init_completion(&umem->odp_data->notifier_completion);
373 if (ib_umem_num_pages(umem)) {
374 umem->odp_data->page_list = vzalloc(ib_umem_num_pages(umem) *
375 sizeof(*umem->odp_data->page_list));
376 if (!umem->odp_data->page_list) {
377 ret_val = -ENOMEM;
378 goto out_odp_data;
381 umem->odp_data->dma_list = vzalloc(ib_umem_num_pages(umem) *
382 sizeof(*umem->odp_data->dma_list));
383 if (!umem->odp_data->dma_list) {
384 ret_val = -ENOMEM;
385 goto out_page_list;
390 * When using MMU notifiers, we will get a
391 * notification before the "current" task (and MM) is
392 * destroyed. We use the umem_rwsem semaphore to synchronize.
394 down_write(&context->umem_rwsem);
395 context->odp_mrs_count++;
396 if (likely(ib_umem_start(umem) != ib_umem_end(umem)))
397 rbt_ib_umem_insert(&umem->odp_data->interval_tree,
398 &context->umem_tree);
399 if (likely(!atomic_read(&context->notifier_count)) ||
400 context->odp_mrs_count == 1)
401 umem->odp_data->mn_counters_active = true;
402 else
403 list_add(&umem->odp_data->no_private_counters,
404 &context->no_private_counters);
405 downgrade_write(&context->umem_rwsem);
407 if (context->odp_mrs_count == 1) {
409 * Note that at this point, no MMU notifier is running
410 * for this context!
412 atomic_set(&context->notifier_count, 0);
413 INIT_HLIST_NODE(&context->mn.hlist);
414 context->mn.ops = &ib_umem_notifiers;
416 * Lock-dep detects a false positive for mmap_sem vs.
417 * umem_rwsem, due to not grasping downgrade_write correctly.
419 lockdep_off();
420 ret_val = mmu_notifier_register(&context->mn, mm);
421 lockdep_on();
422 if (ret_val) {
423 pr_err("Failed to register mmu_notifier %d\n", ret_val);
424 ret_val = -EBUSY;
425 goto out_mutex;
429 up_read(&context->umem_rwsem);
432 * Note that doing an mmput can cause a notifier for the relevant mm.
433 * If the notifier is called while we hold the umem_rwsem, this will
434 * cause a deadlock. Therefore, we release the reference only after we
435 * released the semaphore.
437 mmput(mm);
438 return 0;
440 out_mutex:
441 up_read(&context->umem_rwsem);
442 vfree(umem->odp_data->dma_list);
443 out_page_list:
444 vfree(umem->odp_data->page_list);
445 out_odp_data:
446 kfree(umem->odp_data);
447 out_mm:
448 mmput(mm);
449 return ret_val;
452 void ib_umem_odp_release(struct ib_umem *umem)
454 struct ib_ucontext *context = umem->context;
457 * Ensure that no more pages are mapped in the umem.
459 * It is the driver's responsibility to ensure, before calling us,
460 * that the hardware will not attempt to access the MR any more.
462 ib_umem_odp_unmap_dma_pages(umem, ib_umem_start(umem),
463 ib_umem_end(umem));
465 down_write(&context->umem_rwsem);
466 if (likely(ib_umem_start(umem) != ib_umem_end(umem)))
467 rbt_ib_umem_remove(&umem->odp_data->interval_tree,
468 &context->umem_tree);
469 context->odp_mrs_count--;
470 if (!umem->odp_data->mn_counters_active) {
471 list_del(&umem->odp_data->no_private_counters);
472 complete_all(&umem->odp_data->notifier_completion);
476 * Downgrade the lock to a read lock. This ensures that the notifiers
477 * (who lock the mutex for reading) will be able to finish, and we
478 * will be able to enventually obtain the mmu notifiers SRCU. Note
479 * that since we are doing it atomically, no other user could register
480 * and unregister while we do the check.
482 downgrade_write(&context->umem_rwsem);
483 if (!context->odp_mrs_count) {
484 struct task_struct *owning_process = NULL;
485 struct mm_struct *owning_mm = NULL;
487 owning_process = get_pid_task(context->tgid,
488 PIDTYPE_PID);
489 if (owning_process == NULL)
491 * The process is already dead, notifier were removed
492 * already.
494 goto out;
496 owning_mm = get_task_mm(owning_process);
497 if (owning_mm == NULL)
499 * The process' mm is already dead, notifier were
500 * removed already.
502 goto out_put_task;
503 mmu_notifier_unregister(&context->mn, owning_mm);
505 mmput(owning_mm);
507 out_put_task:
508 put_task_struct(owning_process);
510 out:
511 up_read(&context->umem_rwsem);
513 vfree(umem->odp_data->dma_list);
514 vfree(umem->odp_data->page_list);
515 kfree(umem->odp_data);
516 kfree(umem);
520 * Map for DMA and insert a single page into the on-demand paging page tables.
522 * @umem: the umem to insert the page to.
523 * @page_index: index in the umem to add the page to.
524 * @page: the page struct to map and add.
525 * @access_mask: access permissions needed for this page.
526 * @current_seq: sequence number for synchronization with invalidations.
527 * the sequence number is taken from
528 * umem->odp_data->notifiers_seq.
530 * The function returns -EFAULT if the DMA mapping operation fails. It returns
531 * -EAGAIN if a concurrent invalidation prevents us from updating the page.
533 * The page is released via put_page even if the operation failed. For
534 * on-demand pinning, the page is released whenever it isn't stored in the
535 * umem.
537 static int ib_umem_odp_map_dma_single_page(
538 struct ib_umem *umem,
539 int page_index,
540 struct page *page,
541 u64 access_mask,
542 unsigned long current_seq)
544 struct ib_device *dev = umem->context->device;
545 dma_addr_t dma_addr;
546 int stored_page = 0;
547 int remove_existing_mapping = 0;
548 int ret = 0;
551 * Note: we avoid writing if seq is different from the initial seq, to
552 * handle case of a racing notifier. This check also allows us to bail
553 * early if we have a notifier running in parallel with us.
555 if (ib_umem_mmu_notifier_retry(umem, current_seq)) {
556 ret = -EAGAIN;
557 goto out;
559 if (!(umem->odp_data->dma_list[page_index])) {
560 dma_addr = ib_dma_map_page(dev,
561 page,
562 0, BIT(umem->page_shift),
563 DMA_BIDIRECTIONAL);
564 if (ib_dma_mapping_error(dev, dma_addr)) {
565 ret = -EFAULT;
566 goto out;
568 umem->odp_data->dma_list[page_index] = dma_addr | access_mask;
569 umem->odp_data->page_list[page_index] = page;
570 umem->npages++;
571 stored_page = 1;
572 } else if (umem->odp_data->page_list[page_index] == page) {
573 umem->odp_data->dma_list[page_index] |= access_mask;
574 } else {
575 pr_err("error: got different pages in IB device and from get_user_pages. IB device page: %p, gup page: %p\n",
576 umem->odp_data->page_list[page_index], page);
577 /* Better remove the mapping now, to prevent any further
578 * damage. */
579 remove_existing_mapping = 1;
582 out:
583 /* On Demand Paging - avoid pinning the page */
584 if (umem->context->invalidate_range || !stored_page)
585 put_page(page);
587 if (remove_existing_mapping && umem->context->invalidate_range) {
588 invalidate_page_trampoline(
589 umem,
590 ib_umem_start(umem) + (page_index >> umem->page_shift),
591 ib_umem_start(umem) + ((page_index + 1) >>
592 umem->page_shift),
593 NULL);
594 ret = -EAGAIN;
597 return ret;
601 * ib_umem_odp_map_dma_pages - Pin and DMA map userspace memory in an ODP MR.
603 * Pins the range of pages passed in the argument, and maps them to
604 * DMA addresses. The DMA addresses of the mapped pages is updated in
605 * umem->odp_data->dma_list.
607 * Returns the number of pages mapped in success, negative error code
608 * for failure.
609 * An -EAGAIN error code is returned when a concurrent mmu notifier prevents
610 * the function from completing its task.
611 * An -ENOENT error code indicates that userspace process is being terminated
612 * and mm was already destroyed.
613 * @umem: the umem to map and pin
614 * @user_virt: the address from which we need to map.
615 * @bcnt: the minimal number of bytes to pin and map. The mapping might be
616 * bigger due to alignment, and may also be smaller in case of an error
617 * pinning or mapping a page. The actual pages mapped is returned in
618 * the return value.
619 * @access_mask: bit mask of the requested access permissions for the given
620 * range.
621 * @current_seq: the MMU notifiers sequance value for synchronization with
622 * invalidations. the sequance number is read from
623 * umem->odp_data->notifiers_seq before calling this function
625 int ib_umem_odp_map_dma_pages(struct ib_umem *umem, u64 user_virt, u64 bcnt,
626 u64 access_mask, unsigned long current_seq)
628 struct task_struct *owning_process = NULL;
629 struct mm_struct *owning_mm = NULL;
630 struct page **local_page_list = NULL;
631 u64 page_mask, off;
632 int j, k, ret = 0, start_idx, npages = 0, page_shift;
633 unsigned int flags = 0;
634 phys_addr_t p = 0;
636 if (access_mask == 0)
637 return -EINVAL;
639 if (user_virt < ib_umem_start(umem) ||
640 user_virt + bcnt > ib_umem_end(umem))
641 return -EFAULT;
643 local_page_list = (struct page **)__get_free_page(GFP_KERNEL);
644 if (!local_page_list)
645 return -ENOMEM;
647 page_shift = umem->page_shift;
648 page_mask = ~(BIT(page_shift) - 1);
649 off = user_virt & (~page_mask);
650 user_virt = user_virt & page_mask;
651 bcnt += off; /* Charge for the first page offset as well. */
653 owning_process = get_pid_task(umem->context->tgid, PIDTYPE_PID);
654 if (owning_process == NULL) {
655 ret = -EINVAL;
656 goto out_no_task;
659 owning_mm = get_task_mm(owning_process);
660 if (owning_mm == NULL) {
661 ret = -ENOENT;
662 goto out_put_task;
665 if (access_mask & ODP_WRITE_ALLOWED_BIT)
666 flags |= FOLL_WRITE;
668 start_idx = (user_virt - ib_umem_start(umem)) >> page_shift;
669 k = start_idx;
671 while (bcnt > 0) {
672 const size_t gup_num_pages = min_t(size_t,
673 (bcnt + BIT(page_shift) - 1) >> page_shift,
674 PAGE_SIZE / sizeof(struct page *));
676 down_read(&owning_mm->mmap_sem);
678 * Note: this might result in redundent page getting. We can
679 * avoid this by checking dma_list to be 0 before calling
680 * get_user_pages. However, this make the code much more
681 * complex (and doesn't gain us much performance in most use
682 * cases).
684 npages = get_user_pages_remote(owning_process, owning_mm,
685 user_virt, gup_num_pages,
686 flags, local_page_list, NULL, NULL);
687 up_read(&owning_mm->mmap_sem);
689 if (npages < 0)
690 break;
692 bcnt -= min_t(size_t, npages << PAGE_SHIFT, bcnt);
693 mutex_lock(&umem->odp_data->umem_mutex);
694 for (j = 0; j < npages; j++, user_virt += PAGE_SIZE) {
695 if (user_virt & ~page_mask) {
696 p += PAGE_SIZE;
697 if (page_to_phys(local_page_list[j]) != p) {
698 ret = -EFAULT;
699 break;
701 put_page(local_page_list[j]);
702 continue;
705 ret = ib_umem_odp_map_dma_single_page(
706 umem, k, local_page_list[j],
707 access_mask, current_seq);
708 if (ret < 0)
709 break;
711 p = page_to_phys(local_page_list[j]);
712 k++;
714 mutex_unlock(&umem->odp_data->umem_mutex);
716 if (ret < 0) {
717 /* Release left over pages when handling errors. */
718 for (++j; j < npages; ++j)
719 put_page(local_page_list[j]);
720 break;
724 if (ret >= 0) {
725 if (npages < 0 && k == start_idx)
726 ret = npages;
727 else
728 ret = k - start_idx;
731 mmput(owning_mm);
732 out_put_task:
733 put_task_struct(owning_process);
734 out_no_task:
735 free_page((unsigned long)local_page_list);
736 return ret;
738 EXPORT_SYMBOL(ib_umem_odp_map_dma_pages);
740 void ib_umem_odp_unmap_dma_pages(struct ib_umem *umem, u64 virt,
741 u64 bound)
743 int idx;
744 u64 addr;
745 struct ib_device *dev = umem->context->device;
747 virt = max_t(u64, virt, ib_umem_start(umem));
748 bound = min_t(u64, bound, ib_umem_end(umem));
749 /* Note that during the run of this function, the
750 * notifiers_count of the MR is > 0, preventing any racing
751 * faults from completion. We might be racing with other
752 * invalidations, so we must make sure we free each page only
753 * once. */
754 mutex_lock(&umem->odp_data->umem_mutex);
755 for (addr = virt; addr < bound; addr += BIT(umem->page_shift)) {
756 idx = (addr - ib_umem_start(umem)) >> umem->page_shift;
757 if (umem->odp_data->page_list[idx]) {
758 struct page *page = umem->odp_data->page_list[idx];
759 dma_addr_t dma = umem->odp_data->dma_list[idx];
760 dma_addr_t dma_addr = dma & ODP_DMA_ADDR_MASK;
762 WARN_ON(!dma_addr);
764 ib_dma_unmap_page(dev, dma_addr, PAGE_SIZE,
765 DMA_BIDIRECTIONAL);
766 if (dma & ODP_WRITE_ALLOWED_BIT) {
767 struct page *head_page = compound_head(page);
769 * set_page_dirty prefers being called with
770 * the page lock. However, MMU notifiers are
771 * called sometimes with and sometimes without
772 * the lock. We rely on the umem_mutex instead
773 * to prevent other mmu notifiers from
774 * continuing and allowing the page mapping to
775 * be removed.
777 set_page_dirty(head_page);
779 /* on demand pinning support */
780 if (!umem->context->invalidate_range)
781 put_page(page);
782 umem->odp_data->page_list[idx] = NULL;
783 umem->odp_data->dma_list[idx] = 0;
784 umem->npages--;
787 mutex_unlock(&umem->odp_data->umem_mutex);
789 EXPORT_SYMBOL(ib_umem_odp_unmap_dma_pages);
791 /* @last is not a part of the interval. See comment for function
792 * node_last.
794 int rbt_ib_umem_for_each_in_range(struct rb_root_cached *root,
795 u64 start, u64 last,
796 umem_call_back cb,
797 void *cookie)
799 int ret_val = 0;
800 struct umem_odp_node *node, *next;
801 struct ib_umem_odp *umem;
803 if (unlikely(start == last))
804 return ret_val;
806 for (node = rbt_ib_umem_iter_first(root, start, last - 1);
807 node; node = next) {
808 next = rbt_ib_umem_iter_next(node, start, last - 1);
809 umem = container_of(node, struct ib_umem_odp, interval_tree);
810 ret_val = cb(umem->umem, start, last, cookie) || ret_val;
813 return ret_val;
815 EXPORT_SYMBOL(rbt_ib_umem_for_each_in_range);
817 struct ib_umem_odp *rbt_ib_umem_lookup(struct rb_root_cached *root,
818 u64 addr, u64 length)
820 struct umem_odp_node *node;
822 node = rbt_ib_umem_iter_first(root, addr, addr + length - 1);
823 if (node)
824 return container_of(node, struct ib_umem_odp, interval_tree);
825 return NULL;
828 EXPORT_SYMBOL(rbt_ib_umem_lookup);