x86/topology: Fix function name in documentation
[cris-mirror.git] / drivers / infiniband / hw / hfi1 / init.c
blob33eba23567422e1a9d82f8008dfd89c0302aaba9
1 /*
2 * Copyright(c) 2015-2017 Intel Corporation.
4 * This file is provided under a dual BSD/GPLv2 license. When using or
5 * redistributing this file, you may do so under either license.
7 * GPL LICENSE SUMMARY
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of version 2 of the GNU General Public License as
11 * published by the Free Software Foundation.
13 * This program is distributed in the hope that it will be useful, but
14 * WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
16 * General Public License for more details.
18 * BSD LICENSE
20 * Redistribution and use in source and binary forms, with or without
21 * modification, are permitted provided that the following conditions
22 * are met:
24 * - Redistributions of source code must retain the above copyright
25 * notice, this list of conditions and the following disclaimer.
26 * - Redistributions in binary form must reproduce the above copyright
27 * notice, this list of conditions and the following disclaimer in
28 * the documentation and/or other materials provided with the
29 * distribution.
30 * - Neither the name of Intel Corporation nor the names of its
31 * contributors may be used to endorse or promote products derived
32 * from this software without specific prior written permission.
34 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
35 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
36 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
37 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
38 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
39 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
40 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
41 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
42 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
43 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
44 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
48 #include <linux/pci.h>
49 #include <linux/netdevice.h>
50 #include <linux/vmalloc.h>
51 #include <linux/delay.h>
52 #include <linux/idr.h>
53 #include <linux/module.h>
54 #include <linux/printk.h>
55 #include <linux/hrtimer.h>
56 #include <linux/bitmap.h>
57 #include <rdma/rdma_vt.h>
59 #include "hfi.h"
60 #include "device.h"
61 #include "common.h"
62 #include "trace.h"
63 #include "mad.h"
64 #include "sdma.h"
65 #include "debugfs.h"
66 #include "verbs.h"
67 #include "aspm.h"
68 #include "affinity.h"
69 #include "vnic.h"
70 #include "exp_rcv.h"
72 #undef pr_fmt
73 #define pr_fmt(fmt) DRIVER_NAME ": " fmt
75 #define HFI1_MAX_ACTIVE_WORKQUEUE_ENTRIES 5
77 * min buffers we want to have per context, after driver
79 #define HFI1_MIN_USER_CTXT_BUFCNT 7
81 #define HFI1_MIN_HDRQ_EGRBUF_CNT 2
82 #define HFI1_MAX_HDRQ_EGRBUF_CNT 16352
83 #define HFI1_MIN_EAGER_BUFFER_SIZE (4 * 1024) /* 4KB */
84 #define HFI1_MAX_EAGER_BUFFER_SIZE (256 * 1024) /* 256KB */
87 * Number of user receive contexts we are configured to use (to allow for more
88 * pio buffers per ctxt, etc.) Zero means use one user context per CPU.
90 int num_user_contexts = -1;
91 module_param_named(num_user_contexts, num_user_contexts, uint, S_IRUGO);
92 MODULE_PARM_DESC(
93 num_user_contexts, "Set max number of user contexts to use");
95 uint krcvqs[RXE_NUM_DATA_VL];
96 int krcvqsset;
97 module_param_array(krcvqs, uint, &krcvqsset, S_IRUGO);
98 MODULE_PARM_DESC(krcvqs, "Array of the number of non-control kernel receive queues by VL");
100 /* computed based on above array */
101 unsigned long n_krcvqs;
103 static unsigned hfi1_rcvarr_split = 25;
104 module_param_named(rcvarr_split, hfi1_rcvarr_split, uint, S_IRUGO);
105 MODULE_PARM_DESC(rcvarr_split, "Percent of context's RcvArray entries used for Eager buffers");
107 static uint eager_buffer_size = (8 << 20); /* 8MB */
108 module_param(eager_buffer_size, uint, S_IRUGO);
109 MODULE_PARM_DESC(eager_buffer_size, "Size of the eager buffers, default: 8MB");
111 static uint rcvhdrcnt = 2048; /* 2x the max eager buffer count */
112 module_param_named(rcvhdrcnt, rcvhdrcnt, uint, S_IRUGO);
113 MODULE_PARM_DESC(rcvhdrcnt, "Receive header queue count (default 2048)");
115 static uint hfi1_hdrq_entsize = 32;
116 module_param_named(hdrq_entsize, hfi1_hdrq_entsize, uint, S_IRUGO);
117 MODULE_PARM_DESC(hdrq_entsize, "Size of header queue entries: 2 - 8B, 16 - 64B (default), 32 - 128B");
119 unsigned int user_credit_return_threshold = 33; /* default is 33% */
120 module_param(user_credit_return_threshold, uint, S_IRUGO);
121 MODULE_PARM_DESC(user_credit_return_threshold, "Credit return threshold for user send contexts, return when unreturned credits passes this many blocks (in percent of allocated blocks, 0 is off)");
123 static inline u64 encode_rcv_header_entry_size(u16 size);
125 static struct idr hfi1_unit_table;
127 static int hfi1_create_kctxt(struct hfi1_devdata *dd,
128 struct hfi1_pportdata *ppd)
130 struct hfi1_ctxtdata *rcd;
131 int ret;
133 /* Control context has to be always 0 */
134 BUILD_BUG_ON(HFI1_CTRL_CTXT != 0);
136 ret = hfi1_create_ctxtdata(ppd, dd->node, &rcd);
137 if (ret < 0) {
138 dd_dev_err(dd, "Kernel receive context allocation failed\n");
139 return ret;
143 * Set up the kernel context flags here and now because they use
144 * default values for all receive side memories. User contexts will
145 * be handled as they are created.
147 rcd->flags = HFI1_CAP_KGET(MULTI_PKT_EGR) |
148 HFI1_CAP_KGET(NODROP_RHQ_FULL) |
149 HFI1_CAP_KGET(NODROP_EGR_FULL) |
150 HFI1_CAP_KGET(DMA_RTAIL);
152 /* Control context must use DMA_RTAIL */
153 if (rcd->ctxt == HFI1_CTRL_CTXT)
154 rcd->flags |= HFI1_CAP_DMA_RTAIL;
155 rcd->seq_cnt = 1;
157 rcd->sc = sc_alloc(dd, SC_ACK, rcd->rcvhdrqentsize, dd->node);
158 if (!rcd->sc) {
159 dd_dev_err(dd, "Kernel send context allocation failed\n");
160 return -ENOMEM;
162 hfi1_init_ctxt(rcd->sc);
164 return 0;
168 * Create the receive context array and one or more kernel contexts
170 int hfi1_create_kctxts(struct hfi1_devdata *dd)
172 u16 i;
173 int ret;
175 dd->rcd = kcalloc_node(dd->num_rcv_contexts, sizeof(*dd->rcd),
176 GFP_KERNEL, dd->node);
177 if (!dd->rcd)
178 return -ENOMEM;
180 for (i = 0; i < dd->first_dyn_alloc_ctxt; ++i) {
181 ret = hfi1_create_kctxt(dd, dd->pport);
182 if (ret)
183 goto bail;
186 return 0;
187 bail:
188 for (i = 0; dd->rcd && i < dd->first_dyn_alloc_ctxt; ++i)
189 hfi1_free_ctxt(dd->rcd[i]);
191 /* All the contexts should be freed, free the array */
192 kfree(dd->rcd);
193 dd->rcd = NULL;
194 return ret;
198 * Helper routines for the receive context reference count (rcd and uctxt).
200 static void hfi1_rcd_init(struct hfi1_ctxtdata *rcd)
202 kref_init(&rcd->kref);
206 * hfi1_rcd_free - When reference is zero clean up.
207 * @kref: pointer to an initialized rcd data structure
210 static void hfi1_rcd_free(struct kref *kref)
212 unsigned long flags;
213 struct hfi1_ctxtdata *rcd =
214 container_of(kref, struct hfi1_ctxtdata, kref);
216 hfi1_free_ctxtdata(rcd->dd, rcd);
218 spin_lock_irqsave(&rcd->dd->uctxt_lock, flags);
219 rcd->dd->rcd[rcd->ctxt] = NULL;
220 spin_unlock_irqrestore(&rcd->dd->uctxt_lock, flags);
222 kfree(rcd);
226 * hfi1_rcd_put - decrement reference for rcd
227 * @rcd: pointer to an initialized rcd data structure
229 * Use this to put a reference after the init.
231 int hfi1_rcd_put(struct hfi1_ctxtdata *rcd)
233 if (rcd)
234 return kref_put(&rcd->kref, hfi1_rcd_free);
236 return 0;
240 * hfi1_rcd_get - increment reference for rcd
241 * @rcd: pointer to an initialized rcd data structure
243 * Use this to get a reference after the init.
245 void hfi1_rcd_get(struct hfi1_ctxtdata *rcd)
247 kref_get(&rcd->kref);
251 * allocate_rcd_index - allocate an rcd index from the rcd array
252 * @dd: pointer to a valid devdata structure
253 * @rcd: rcd data structure to assign
254 * @index: pointer to index that is allocated
256 * Find an empty index in the rcd array, and assign the given rcd to it.
257 * If the array is full, we are EBUSY.
260 static int allocate_rcd_index(struct hfi1_devdata *dd,
261 struct hfi1_ctxtdata *rcd, u16 *index)
263 unsigned long flags;
264 u16 ctxt;
266 spin_lock_irqsave(&dd->uctxt_lock, flags);
267 for (ctxt = 0; ctxt < dd->num_rcv_contexts; ctxt++)
268 if (!dd->rcd[ctxt])
269 break;
271 if (ctxt < dd->num_rcv_contexts) {
272 rcd->ctxt = ctxt;
273 dd->rcd[ctxt] = rcd;
274 hfi1_rcd_init(rcd);
276 spin_unlock_irqrestore(&dd->uctxt_lock, flags);
278 if (ctxt >= dd->num_rcv_contexts)
279 return -EBUSY;
281 *index = ctxt;
283 return 0;
287 * hfi1_rcd_get_by_index_safe - validate the ctxt index before accessing the
288 * array
289 * @dd: pointer to a valid devdata structure
290 * @ctxt: the index of an possilbe rcd
292 * This is a wrapper for hfi1_rcd_get_by_index() to validate that the given
293 * ctxt index is valid.
295 * The caller is responsible for making the _put().
298 struct hfi1_ctxtdata *hfi1_rcd_get_by_index_safe(struct hfi1_devdata *dd,
299 u16 ctxt)
301 if (ctxt < dd->num_rcv_contexts)
302 return hfi1_rcd_get_by_index(dd, ctxt);
304 return NULL;
308 * hfi1_rcd_get_by_index
309 * @dd: pointer to a valid devdata structure
310 * @ctxt: the index of an possilbe rcd
312 * We need to protect access to the rcd array. If access is needed to
313 * one or more index, get the protecting spinlock and then increment the
314 * kref.
316 * The caller is responsible for making the _put().
319 struct hfi1_ctxtdata *hfi1_rcd_get_by_index(struct hfi1_devdata *dd, u16 ctxt)
321 unsigned long flags;
322 struct hfi1_ctxtdata *rcd = NULL;
324 spin_lock_irqsave(&dd->uctxt_lock, flags);
325 if (dd->rcd[ctxt]) {
326 rcd = dd->rcd[ctxt];
327 hfi1_rcd_get(rcd);
329 spin_unlock_irqrestore(&dd->uctxt_lock, flags);
331 return rcd;
335 * Common code for user and kernel context create and setup.
336 * NOTE: the initial kref is done here (hf1_rcd_init()).
338 int hfi1_create_ctxtdata(struct hfi1_pportdata *ppd, int numa,
339 struct hfi1_ctxtdata **context)
341 struct hfi1_devdata *dd = ppd->dd;
342 struct hfi1_ctxtdata *rcd;
343 unsigned kctxt_ngroups = 0;
344 u32 base;
346 if (dd->rcv_entries.nctxt_extra >
347 dd->num_rcv_contexts - dd->first_dyn_alloc_ctxt)
348 kctxt_ngroups = (dd->rcv_entries.nctxt_extra -
349 (dd->num_rcv_contexts - dd->first_dyn_alloc_ctxt));
350 rcd = kzalloc_node(sizeof(*rcd), GFP_KERNEL, numa);
351 if (rcd) {
352 u32 rcvtids, max_entries;
353 u16 ctxt;
354 int ret;
356 ret = allocate_rcd_index(dd, rcd, &ctxt);
357 if (ret) {
358 *context = NULL;
359 kfree(rcd);
360 return ret;
363 INIT_LIST_HEAD(&rcd->qp_wait_list);
364 hfi1_exp_tid_group_init(&rcd->tid_group_list);
365 hfi1_exp_tid_group_init(&rcd->tid_used_list);
366 hfi1_exp_tid_group_init(&rcd->tid_full_list);
367 rcd->ppd = ppd;
368 rcd->dd = dd;
369 __set_bit(0, rcd->in_use_ctxts);
370 rcd->numa_id = numa;
371 rcd->rcv_array_groups = dd->rcv_entries.ngroups;
373 mutex_init(&rcd->exp_lock);
375 hfi1_cdbg(PROC, "setting up context %u\n", rcd->ctxt);
378 * Calculate the context's RcvArray entry starting point.
379 * We do this here because we have to take into account all
380 * the RcvArray entries that previous context would have
381 * taken and we have to account for any extra groups assigned
382 * to the static (kernel) or dynamic (vnic/user) contexts.
384 if (ctxt < dd->first_dyn_alloc_ctxt) {
385 if (ctxt < kctxt_ngroups) {
386 base = ctxt * (dd->rcv_entries.ngroups + 1);
387 rcd->rcv_array_groups++;
388 } else {
389 base = kctxt_ngroups +
390 (ctxt * dd->rcv_entries.ngroups);
392 } else {
393 u16 ct = ctxt - dd->first_dyn_alloc_ctxt;
395 base = ((dd->n_krcv_queues * dd->rcv_entries.ngroups) +
396 kctxt_ngroups);
397 if (ct < dd->rcv_entries.nctxt_extra) {
398 base += ct * (dd->rcv_entries.ngroups + 1);
399 rcd->rcv_array_groups++;
400 } else {
401 base += dd->rcv_entries.nctxt_extra +
402 (ct * dd->rcv_entries.ngroups);
405 rcd->eager_base = base * dd->rcv_entries.group_size;
407 rcd->rcvhdrq_cnt = rcvhdrcnt;
408 rcd->rcvhdrqentsize = hfi1_hdrq_entsize;
410 * Simple Eager buffer allocation: we have already pre-allocated
411 * the number of RcvArray entry groups. Each ctxtdata structure
412 * holds the number of groups for that context.
414 * To follow CSR requirements and maintain cacheline alignment,
415 * make sure all sizes and bases are multiples of group_size.
417 * The expected entry count is what is left after assigning
418 * eager.
420 max_entries = rcd->rcv_array_groups *
421 dd->rcv_entries.group_size;
422 rcvtids = ((max_entries * hfi1_rcvarr_split) / 100);
423 rcd->egrbufs.count = round_down(rcvtids,
424 dd->rcv_entries.group_size);
425 if (rcd->egrbufs.count > MAX_EAGER_ENTRIES) {
426 dd_dev_err(dd, "ctxt%u: requested too many RcvArray entries.\n",
427 rcd->ctxt);
428 rcd->egrbufs.count = MAX_EAGER_ENTRIES;
430 hfi1_cdbg(PROC,
431 "ctxt%u: max Eager buffer RcvArray entries: %u\n",
432 rcd->ctxt, rcd->egrbufs.count);
435 * Allocate array that will hold the eager buffer accounting
436 * data.
437 * This will allocate the maximum possible buffer count based
438 * on the value of the RcvArray split parameter.
439 * The resulting value will be rounded down to the closest
440 * multiple of dd->rcv_entries.group_size.
442 rcd->egrbufs.buffers =
443 kcalloc_node(rcd->egrbufs.count,
444 sizeof(*rcd->egrbufs.buffers),
445 GFP_KERNEL, numa);
446 if (!rcd->egrbufs.buffers)
447 goto bail;
448 rcd->egrbufs.rcvtids =
449 kcalloc_node(rcd->egrbufs.count,
450 sizeof(*rcd->egrbufs.rcvtids),
451 GFP_KERNEL, numa);
452 if (!rcd->egrbufs.rcvtids)
453 goto bail;
454 rcd->egrbufs.size = eager_buffer_size;
456 * The size of the buffers programmed into the RcvArray
457 * entries needs to be big enough to handle the highest
458 * MTU supported.
460 if (rcd->egrbufs.size < hfi1_max_mtu) {
461 rcd->egrbufs.size = __roundup_pow_of_two(hfi1_max_mtu);
462 hfi1_cdbg(PROC,
463 "ctxt%u: eager bufs size too small. Adjusting to %zu\n",
464 rcd->ctxt, rcd->egrbufs.size);
466 rcd->egrbufs.rcvtid_size = HFI1_MAX_EAGER_BUFFER_SIZE;
468 /* Applicable only for statically created kernel contexts */
469 if (ctxt < dd->first_dyn_alloc_ctxt) {
470 rcd->opstats = kzalloc_node(sizeof(*rcd->opstats),
471 GFP_KERNEL, numa);
472 if (!rcd->opstats)
473 goto bail;
476 *context = rcd;
477 return 0;
480 bail:
481 *context = NULL;
482 hfi1_free_ctxt(rcd);
483 return -ENOMEM;
487 * hfi1_free_ctxt
488 * @rcd: pointer to an initialized rcd data structure
490 * This wrapper is the free function that matches hfi1_create_ctxtdata().
491 * When a context is done being used (kernel or user), this function is called
492 * for the "final" put to match the kref init from hf1i_create_ctxtdata().
493 * Other users of the context do a get/put sequence to make sure that the
494 * structure isn't removed while in use.
496 void hfi1_free_ctxt(struct hfi1_ctxtdata *rcd)
498 hfi1_rcd_put(rcd);
502 * Convert a receive header entry size that to the encoding used in the CSR.
504 * Return a zero if the given size is invalid.
506 static inline u64 encode_rcv_header_entry_size(u16 size)
508 /* there are only 3 valid receive header entry sizes */
509 if (size == 2)
510 return 1;
511 if (size == 16)
512 return 2;
513 else if (size == 32)
514 return 4;
515 return 0; /* invalid */
519 * Select the largest ccti value over all SLs to determine the intra-
520 * packet gap for the link.
522 * called with cca_timer_lock held (to protect access to cca_timer
523 * array), and rcu_read_lock() (to protect access to cc_state).
525 void set_link_ipg(struct hfi1_pportdata *ppd)
527 struct hfi1_devdata *dd = ppd->dd;
528 struct cc_state *cc_state;
529 int i;
530 u16 cce, ccti_limit, max_ccti = 0;
531 u16 shift, mult;
532 u64 src;
533 u32 current_egress_rate; /* Mbits /sec */
534 u32 max_pkt_time;
536 * max_pkt_time is the maximum packet egress time in units
537 * of the fabric clock period 1/(805 MHz).
540 cc_state = get_cc_state(ppd);
542 if (!cc_state)
544 * This should _never_ happen - rcu_read_lock() is held,
545 * and set_link_ipg() should not be called if cc_state
546 * is NULL.
548 return;
550 for (i = 0; i < OPA_MAX_SLS; i++) {
551 u16 ccti = ppd->cca_timer[i].ccti;
553 if (ccti > max_ccti)
554 max_ccti = ccti;
557 ccti_limit = cc_state->cct.ccti_limit;
558 if (max_ccti > ccti_limit)
559 max_ccti = ccti_limit;
561 cce = cc_state->cct.entries[max_ccti].entry;
562 shift = (cce & 0xc000) >> 14;
563 mult = (cce & 0x3fff);
565 current_egress_rate = active_egress_rate(ppd);
567 max_pkt_time = egress_cycles(ppd->ibmaxlen, current_egress_rate);
569 src = (max_pkt_time >> shift) * mult;
571 src &= SEND_STATIC_RATE_CONTROL_CSR_SRC_RELOAD_SMASK;
572 src <<= SEND_STATIC_RATE_CONTROL_CSR_SRC_RELOAD_SHIFT;
574 write_csr(dd, SEND_STATIC_RATE_CONTROL, src);
577 static enum hrtimer_restart cca_timer_fn(struct hrtimer *t)
579 struct cca_timer *cca_timer;
580 struct hfi1_pportdata *ppd;
581 int sl;
582 u16 ccti_timer, ccti_min;
583 struct cc_state *cc_state;
584 unsigned long flags;
585 enum hrtimer_restart ret = HRTIMER_NORESTART;
587 cca_timer = container_of(t, struct cca_timer, hrtimer);
588 ppd = cca_timer->ppd;
589 sl = cca_timer->sl;
591 rcu_read_lock();
593 cc_state = get_cc_state(ppd);
595 if (!cc_state) {
596 rcu_read_unlock();
597 return HRTIMER_NORESTART;
601 * 1) decrement ccti for SL
602 * 2) calculate IPG for link (set_link_ipg())
603 * 3) restart timer, unless ccti is at min value
606 ccti_min = cc_state->cong_setting.entries[sl].ccti_min;
607 ccti_timer = cc_state->cong_setting.entries[sl].ccti_timer;
609 spin_lock_irqsave(&ppd->cca_timer_lock, flags);
611 if (cca_timer->ccti > ccti_min) {
612 cca_timer->ccti--;
613 set_link_ipg(ppd);
616 if (cca_timer->ccti > ccti_min) {
617 unsigned long nsec = 1024 * ccti_timer;
618 /* ccti_timer is in units of 1.024 usec */
619 hrtimer_forward_now(t, ns_to_ktime(nsec));
620 ret = HRTIMER_RESTART;
623 spin_unlock_irqrestore(&ppd->cca_timer_lock, flags);
624 rcu_read_unlock();
625 return ret;
629 * Common code for initializing the physical port structure.
631 void hfi1_init_pportdata(struct pci_dev *pdev, struct hfi1_pportdata *ppd,
632 struct hfi1_devdata *dd, u8 hw_pidx, u8 port)
634 int i;
635 uint default_pkey_idx;
636 struct cc_state *cc_state;
638 ppd->dd = dd;
639 ppd->hw_pidx = hw_pidx;
640 ppd->port = port; /* IB port number, not index */
641 ppd->prev_link_width = LINK_WIDTH_DEFAULT;
643 * There are C_VL_COUNT number of PortVLXmitWait counters.
644 * Adding 1 to C_VL_COUNT to include the PortXmitWait counter.
646 for (i = 0; i < C_VL_COUNT + 1; i++) {
647 ppd->port_vl_xmit_wait_last[i] = 0;
648 ppd->vl_xmit_flit_cnt[i] = 0;
651 default_pkey_idx = 1;
653 ppd->pkeys[default_pkey_idx] = DEFAULT_P_KEY;
654 ppd->part_enforce |= HFI1_PART_ENFORCE_IN;
656 if (loopback) {
657 hfi1_early_err(&pdev->dev,
658 "Faking data partition 0x8001 in idx %u\n",
659 !default_pkey_idx);
660 ppd->pkeys[!default_pkey_idx] = 0x8001;
663 INIT_WORK(&ppd->link_vc_work, handle_verify_cap);
664 INIT_WORK(&ppd->link_up_work, handle_link_up);
665 INIT_WORK(&ppd->link_down_work, handle_link_down);
666 INIT_WORK(&ppd->freeze_work, handle_freeze);
667 INIT_WORK(&ppd->link_downgrade_work, handle_link_downgrade);
668 INIT_WORK(&ppd->sma_message_work, handle_sma_message);
669 INIT_WORK(&ppd->link_bounce_work, handle_link_bounce);
670 INIT_DELAYED_WORK(&ppd->start_link_work, handle_start_link);
671 INIT_WORK(&ppd->linkstate_active_work, receive_interrupt_work);
672 INIT_WORK(&ppd->qsfp_info.qsfp_work, qsfp_event);
674 mutex_init(&ppd->hls_lock);
675 spin_lock_init(&ppd->qsfp_info.qsfp_lock);
677 ppd->qsfp_info.ppd = ppd;
678 ppd->sm_trap_qp = 0x0;
679 ppd->sa_qp = 0x1;
681 ppd->hfi1_wq = NULL;
683 spin_lock_init(&ppd->cca_timer_lock);
685 for (i = 0; i < OPA_MAX_SLS; i++) {
686 hrtimer_init(&ppd->cca_timer[i].hrtimer, CLOCK_MONOTONIC,
687 HRTIMER_MODE_REL);
688 ppd->cca_timer[i].ppd = ppd;
689 ppd->cca_timer[i].sl = i;
690 ppd->cca_timer[i].ccti = 0;
691 ppd->cca_timer[i].hrtimer.function = cca_timer_fn;
694 ppd->cc_max_table_entries = IB_CC_TABLE_CAP_DEFAULT;
696 spin_lock_init(&ppd->cc_state_lock);
697 spin_lock_init(&ppd->cc_log_lock);
698 cc_state = kzalloc(sizeof(*cc_state), GFP_KERNEL);
699 RCU_INIT_POINTER(ppd->cc_state, cc_state);
700 if (!cc_state)
701 goto bail;
702 return;
704 bail:
706 hfi1_early_err(&pdev->dev,
707 "Congestion Control Agent disabled for port %d\n", port);
711 * Do initialization for device that is only needed on
712 * first detect, not on resets.
714 static int loadtime_init(struct hfi1_devdata *dd)
716 return 0;
720 * init_after_reset - re-initialize after a reset
721 * @dd: the hfi1_ib device
723 * sanity check at least some of the values after reset, and
724 * ensure no receive or transmit (explicitly, in case reset
725 * failed
727 static int init_after_reset(struct hfi1_devdata *dd)
729 int i;
730 struct hfi1_ctxtdata *rcd;
732 * Ensure chip does no sends or receives, tail updates, or
733 * pioavail updates while we re-initialize. This is mostly
734 * for the driver data structures, not chip registers.
736 for (i = 0; i < dd->num_rcv_contexts; i++) {
737 rcd = hfi1_rcd_get_by_index(dd, i);
738 hfi1_rcvctrl(dd, HFI1_RCVCTRL_CTXT_DIS |
739 HFI1_RCVCTRL_INTRAVAIL_DIS |
740 HFI1_RCVCTRL_TAILUPD_DIS, rcd);
741 hfi1_rcd_put(rcd);
743 pio_send_control(dd, PSC_GLOBAL_DISABLE);
744 for (i = 0; i < dd->num_send_contexts; i++)
745 sc_disable(dd->send_contexts[i].sc);
747 return 0;
750 static void enable_chip(struct hfi1_devdata *dd)
752 struct hfi1_ctxtdata *rcd;
753 u32 rcvmask;
754 u16 i;
756 /* enable PIO send */
757 pio_send_control(dd, PSC_GLOBAL_ENABLE);
760 * Enable kernel ctxts' receive and receive interrupt.
761 * Other ctxts done as user opens and initializes them.
763 for (i = 0; i < dd->first_dyn_alloc_ctxt; ++i) {
764 rcd = hfi1_rcd_get_by_index(dd, i);
765 if (!rcd)
766 continue;
767 rcvmask = HFI1_RCVCTRL_CTXT_ENB | HFI1_RCVCTRL_INTRAVAIL_ENB;
768 rcvmask |= HFI1_CAP_KGET_MASK(rcd->flags, DMA_RTAIL) ?
769 HFI1_RCVCTRL_TAILUPD_ENB : HFI1_RCVCTRL_TAILUPD_DIS;
770 if (!HFI1_CAP_KGET_MASK(rcd->flags, MULTI_PKT_EGR))
771 rcvmask |= HFI1_RCVCTRL_ONE_PKT_EGR_ENB;
772 if (HFI1_CAP_KGET_MASK(rcd->flags, NODROP_RHQ_FULL))
773 rcvmask |= HFI1_RCVCTRL_NO_RHQ_DROP_ENB;
774 if (HFI1_CAP_KGET_MASK(rcd->flags, NODROP_EGR_FULL))
775 rcvmask |= HFI1_RCVCTRL_NO_EGR_DROP_ENB;
776 hfi1_rcvctrl(dd, rcvmask, rcd);
777 sc_enable(rcd->sc);
778 hfi1_rcd_put(rcd);
783 * create_workqueues - create per port workqueues
784 * @dd: the hfi1_ib device
786 static int create_workqueues(struct hfi1_devdata *dd)
788 int pidx;
789 struct hfi1_pportdata *ppd;
791 for (pidx = 0; pidx < dd->num_pports; ++pidx) {
792 ppd = dd->pport + pidx;
793 if (!ppd->hfi1_wq) {
794 ppd->hfi1_wq =
795 alloc_workqueue(
796 "hfi%d_%d",
797 WQ_SYSFS | WQ_HIGHPRI | WQ_CPU_INTENSIVE,
798 HFI1_MAX_ACTIVE_WORKQUEUE_ENTRIES,
799 dd->unit, pidx);
800 if (!ppd->hfi1_wq)
801 goto wq_error;
803 if (!ppd->link_wq) {
805 * Make the link workqueue single-threaded to enforce
806 * serialization.
808 ppd->link_wq =
809 alloc_workqueue(
810 "hfi_link_%d_%d",
811 WQ_SYSFS | WQ_MEM_RECLAIM | WQ_UNBOUND,
812 1, /* max_active */
813 dd->unit, pidx);
814 if (!ppd->link_wq)
815 goto wq_error;
818 return 0;
819 wq_error:
820 pr_err("alloc_workqueue failed for port %d\n", pidx + 1);
821 for (pidx = 0; pidx < dd->num_pports; ++pidx) {
822 ppd = dd->pport + pidx;
823 if (ppd->hfi1_wq) {
824 destroy_workqueue(ppd->hfi1_wq);
825 ppd->hfi1_wq = NULL;
827 if (ppd->link_wq) {
828 destroy_workqueue(ppd->link_wq);
829 ppd->link_wq = NULL;
832 return -ENOMEM;
836 * hfi1_init - do the actual initialization sequence on the chip
837 * @dd: the hfi1_ib device
838 * @reinit: re-initializing, so don't allocate new memory
840 * Do the actual initialization sequence on the chip. This is done
841 * both from the init routine called from the PCI infrastructure, and
842 * when we reset the chip, or detect that it was reset internally,
843 * or it's administratively re-enabled.
845 * Memory allocation here and in called routines is only done in
846 * the first case (reinit == 0). We have to be careful, because even
847 * without memory allocation, we need to re-write all the chip registers
848 * TIDs, etc. after the reset or enable has completed.
850 int hfi1_init(struct hfi1_devdata *dd, int reinit)
852 int ret = 0, pidx, lastfail = 0;
853 unsigned long len;
854 u16 i;
855 struct hfi1_ctxtdata *rcd;
856 struct hfi1_pportdata *ppd;
858 /* Set up recv low level handlers */
859 dd->normal_rhf_rcv_functions[RHF_RCV_TYPE_EXPECTED] =
860 kdeth_process_expected;
861 dd->normal_rhf_rcv_functions[RHF_RCV_TYPE_EAGER] =
862 kdeth_process_eager;
863 dd->normal_rhf_rcv_functions[RHF_RCV_TYPE_IB] = process_receive_ib;
864 dd->normal_rhf_rcv_functions[RHF_RCV_TYPE_ERROR] =
865 process_receive_error;
866 dd->normal_rhf_rcv_functions[RHF_RCV_TYPE_BYPASS] =
867 process_receive_bypass;
868 dd->normal_rhf_rcv_functions[RHF_RCV_TYPE_INVALID5] =
869 process_receive_invalid;
870 dd->normal_rhf_rcv_functions[RHF_RCV_TYPE_INVALID6] =
871 process_receive_invalid;
872 dd->normal_rhf_rcv_functions[RHF_RCV_TYPE_INVALID7] =
873 process_receive_invalid;
874 dd->rhf_rcv_function_map = dd->normal_rhf_rcv_functions;
876 /* Set up send low level handlers */
877 dd->process_pio_send = hfi1_verbs_send_pio;
878 dd->process_dma_send = hfi1_verbs_send_dma;
879 dd->pio_inline_send = pio_copy;
880 dd->process_vnic_dma_send = hfi1_vnic_send_dma;
882 if (is_ax(dd)) {
883 atomic_set(&dd->drop_packet, DROP_PACKET_ON);
884 dd->do_drop = 1;
885 } else {
886 atomic_set(&dd->drop_packet, DROP_PACKET_OFF);
887 dd->do_drop = 0;
890 /* make sure the link is not "up" */
891 for (pidx = 0; pidx < dd->num_pports; ++pidx) {
892 ppd = dd->pport + pidx;
893 ppd->linkup = 0;
896 if (reinit)
897 ret = init_after_reset(dd);
898 else
899 ret = loadtime_init(dd);
900 if (ret)
901 goto done;
903 /* allocate dummy tail memory for all receive contexts */
904 dd->rcvhdrtail_dummy_kvaddr = dma_zalloc_coherent(
905 &dd->pcidev->dev, sizeof(u64),
906 &dd->rcvhdrtail_dummy_dma,
907 GFP_KERNEL);
909 if (!dd->rcvhdrtail_dummy_kvaddr) {
910 dd_dev_err(dd, "cannot allocate dummy tail memory\n");
911 ret = -ENOMEM;
912 goto done;
915 /* dd->rcd can be NULL if early initialization failed */
916 for (i = 0; dd->rcd && i < dd->first_dyn_alloc_ctxt; ++i) {
918 * Set up the (kernel) rcvhdr queue and egr TIDs. If doing
919 * re-init, the simplest way to handle this is to free
920 * existing, and re-allocate.
921 * Need to re-create rest of ctxt 0 ctxtdata as well.
923 rcd = hfi1_rcd_get_by_index(dd, i);
924 if (!rcd)
925 continue;
927 rcd->do_interrupt = &handle_receive_interrupt;
929 lastfail = hfi1_create_rcvhdrq(dd, rcd);
930 if (!lastfail)
931 lastfail = hfi1_setup_eagerbufs(rcd);
932 if (lastfail) {
933 dd_dev_err(dd,
934 "failed to allocate kernel ctxt's rcvhdrq and/or egr bufs\n");
935 ret = lastfail;
937 hfi1_rcd_put(rcd);
940 /* Allocate enough memory for user event notification. */
941 len = PAGE_ALIGN(dd->chip_rcv_contexts * HFI1_MAX_SHARED_CTXTS *
942 sizeof(*dd->events));
943 dd->events = vmalloc_user(len);
944 if (!dd->events)
945 dd_dev_err(dd, "Failed to allocate user events page\n");
947 * Allocate a page for device and port status.
948 * Page will be shared amongst all user processes.
950 dd->status = vmalloc_user(PAGE_SIZE);
951 if (!dd->status)
952 dd_dev_err(dd, "Failed to allocate dev status page\n");
953 else
954 dd->freezelen = PAGE_SIZE - (sizeof(*dd->status) -
955 sizeof(dd->status->freezemsg));
956 for (pidx = 0; pidx < dd->num_pports; ++pidx) {
957 ppd = dd->pport + pidx;
958 if (dd->status)
959 /* Currently, we only have one port */
960 ppd->statusp = &dd->status->port;
962 set_mtu(ppd);
965 /* enable chip even if we have an error, so we can debug cause */
966 enable_chip(dd);
968 done:
970 * Set status even if port serdes is not initialized
971 * so that diags will work.
973 if (dd->status)
974 dd->status->dev |= HFI1_STATUS_CHIP_PRESENT |
975 HFI1_STATUS_INITTED;
976 if (!ret) {
977 /* enable all interrupts from the chip */
978 set_intr_state(dd, 1);
980 /* chip is OK for user apps; mark it as initialized */
981 for (pidx = 0; pidx < dd->num_pports; ++pidx) {
982 ppd = dd->pport + pidx;
985 * start the serdes - must be after interrupts are
986 * enabled so we are notified when the link goes up
988 lastfail = bringup_serdes(ppd);
989 if (lastfail)
990 dd_dev_info(dd,
991 "Failed to bring up port %u\n",
992 ppd->port);
995 * Set status even if port serdes is not initialized
996 * so that diags will work.
998 if (ppd->statusp)
999 *ppd->statusp |= HFI1_STATUS_CHIP_PRESENT |
1000 HFI1_STATUS_INITTED;
1001 if (!ppd->link_speed_enabled)
1002 continue;
1006 /* if ret is non-zero, we probably should do some cleanup here... */
1007 return ret;
1010 static inline struct hfi1_devdata *__hfi1_lookup(int unit)
1012 return idr_find(&hfi1_unit_table, unit);
1015 struct hfi1_devdata *hfi1_lookup(int unit)
1017 struct hfi1_devdata *dd;
1018 unsigned long flags;
1020 spin_lock_irqsave(&hfi1_devs_lock, flags);
1021 dd = __hfi1_lookup(unit);
1022 spin_unlock_irqrestore(&hfi1_devs_lock, flags);
1024 return dd;
1028 * Stop the timers during unit shutdown, or after an error late
1029 * in initialization.
1031 static void stop_timers(struct hfi1_devdata *dd)
1033 struct hfi1_pportdata *ppd;
1034 int pidx;
1036 for (pidx = 0; pidx < dd->num_pports; ++pidx) {
1037 ppd = dd->pport + pidx;
1038 if (ppd->led_override_timer.function) {
1039 del_timer_sync(&ppd->led_override_timer);
1040 atomic_set(&ppd->led_override_timer_active, 0);
1046 * shutdown_device - shut down a device
1047 * @dd: the hfi1_ib device
1049 * This is called to make the device quiet when we are about to
1050 * unload the driver, and also when the device is administratively
1051 * disabled. It does not free any data structures.
1052 * Everything it does has to be setup again by hfi1_init(dd, 1)
1054 static void shutdown_device(struct hfi1_devdata *dd)
1056 struct hfi1_pportdata *ppd;
1057 struct hfi1_ctxtdata *rcd;
1058 unsigned pidx;
1059 int i;
1061 for (pidx = 0; pidx < dd->num_pports; ++pidx) {
1062 ppd = dd->pport + pidx;
1064 ppd->linkup = 0;
1065 if (ppd->statusp)
1066 *ppd->statusp &= ~(HFI1_STATUS_IB_CONF |
1067 HFI1_STATUS_IB_READY);
1069 dd->flags &= ~HFI1_INITTED;
1071 /* mask and clean up interrupts, but not errors */
1072 set_intr_state(dd, 0);
1073 hfi1_clean_up_interrupts(dd);
1075 for (pidx = 0; pidx < dd->num_pports; ++pidx) {
1076 ppd = dd->pport + pidx;
1077 for (i = 0; i < dd->num_rcv_contexts; i++) {
1078 rcd = hfi1_rcd_get_by_index(dd, i);
1079 hfi1_rcvctrl(dd, HFI1_RCVCTRL_TAILUPD_DIS |
1080 HFI1_RCVCTRL_CTXT_DIS |
1081 HFI1_RCVCTRL_INTRAVAIL_DIS |
1082 HFI1_RCVCTRL_PKEY_DIS |
1083 HFI1_RCVCTRL_ONE_PKT_EGR_DIS, rcd);
1084 hfi1_rcd_put(rcd);
1087 * Gracefully stop all sends allowing any in progress to
1088 * trickle out first.
1090 for (i = 0; i < dd->num_send_contexts; i++)
1091 sc_flush(dd->send_contexts[i].sc);
1095 * Enough for anything that's going to trickle out to have actually
1096 * done so.
1098 udelay(20);
1100 for (pidx = 0; pidx < dd->num_pports; ++pidx) {
1101 ppd = dd->pport + pidx;
1103 /* disable all contexts */
1104 for (i = 0; i < dd->num_send_contexts; i++)
1105 sc_disable(dd->send_contexts[i].sc);
1106 /* disable the send device */
1107 pio_send_control(dd, PSC_GLOBAL_DISABLE);
1109 shutdown_led_override(ppd);
1112 * Clear SerdesEnable.
1113 * We can't count on interrupts since we are stopping.
1115 hfi1_quiet_serdes(ppd);
1117 if (ppd->hfi1_wq) {
1118 destroy_workqueue(ppd->hfi1_wq);
1119 ppd->hfi1_wq = NULL;
1121 if (ppd->link_wq) {
1122 destroy_workqueue(ppd->link_wq);
1123 ppd->link_wq = NULL;
1126 sdma_exit(dd);
1130 * hfi1_free_ctxtdata - free a context's allocated data
1131 * @dd: the hfi1_ib device
1132 * @rcd: the ctxtdata structure
1134 * free up any allocated data for a context
1135 * It should never change any chip state, or global driver state.
1137 void hfi1_free_ctxtdata(struct hfi1_devdata *dd, struct hfi1_ctxtdata *rcd)
1139 u32 e;
1141 if (!rcd)
1142 return;
1144 if (rcd->rcvhdrq) {
1145 dma_free_coherent(&dd->pcidev->dev, rcd->rcvhdrq_size,
1146 rcd->rcvhdrq, rcd->rcvhdrq_dma);
1147 rcd->rcvhdrq = NULL;
1148 if (rcd->rcvhdrtail_kvaddr) {
1149 dma_free_coherent(&dd->pcidev->dev, PAGE_SIZE,
1150 (void *)rcd->rcvhdrtail_kvaddr,
1151 rcd->rcvhdrqtailaddr_dma);
1152 rcd->rcvhdrtail_kvaddr = NULL;
1156 /* all the RcvArray entries should have been cleared by now */
1157 kfree(rcd->egrbufs.rcvtids);
1158 rcd->egrbufs.rcvtids = NULL;
1160 for (e = 0; e < rcd->egrbufs.alloced; e++) {
1161 if (rcd->egrbufs.buffers[e].dma)
1162 dma_free_coherent(&dd->pcidev->dev,
1163 rcd->egrbufs.buffers[e].len,
1164 rcd->egrbufs.buffers[e].addr,
1165 rcd->egrbufs.buffers[e].dma);
1167 kfree(rcd->egrbufs.buffers);
1168 rcd->egrbufs.alloced = 0;
1169 rcd->egrbufs.buffers = NULL;
1171 sc_free(rcd->sc);
1172 rcd->sc = NULL;
1174 vfree(rcd->subctxt_uregbase);
1175 vfree(rcd->subctxt_rcvegrbuf);
1176 vfree(rcd->subctxt_rcvhdr_base);
1177 kfree(rcd->opstats);
1179 rcd->subctxt_uregbase = NULL;
1180 rcd->subctxt_rcvegrbuf = NULL;
1181 rcd->subctxt_rcvhdr_base = NULL;
1182 rcd->opstats = NULL;
1186 * Release our hold on the shared asic data. If we are the last one,
1187 * return the structure to be finalized outside the lock. Must be
1188 * holding hfi1_devs_lock.
1190 static struct hfi1_asic_data *release_asic_data(struct hfi1_devdata *dd)
1192 struct hfi1_asic_data *ad;
1193 int other;
1195 if (!dd->asic_data)
1196 return NULL;
1197 dd->asic_data->dds[dd->hfi1_id] = NULL;
1198 other = dd->hfi1_id ? 0 : 1;
1199 ad = dd->asic_data;
1200 dd->asic_data = NULL;
1201 /* return NULL if the other dd still has a link */
1202 return ad->dds[other] ? NULL : ad;
1205 static void finalize_asic_data(struct hfi1_devdata *dd,
1206 struct hfi1_asic_data *ad)
1208 clean_up_i2c(dd, ad);
1209 kfree(ad);
1212 static void __hfi1_free_devdata(struct kobject *kobj)
1214 struct hfi1_devdata *dd =
1215 container_of(kobj, struct hfi1_devdata, kobj);
1216 struct hfi1_asic_data *ad;
1217 unsigned long flags;
1219 spin_lock_irqsave(&hfi1_devs_lock, flags);
1220 idr_remove(&hfi1_unit_table, dd->unit);
1221 list_del(&dd->list);
1222 ad = release_asic_data(dd);
1223 spin_unlock_irqrestore(&hfi1_devs_lock, flags);
1224 if (ad)
1225 finalize_asic_data(dd, ad);
1226 free_platform_config(dd);
1227 rcu_barrier(); /* wait for rcu callbacks to complete */
1228 free_percpu(dd->int_counter);
1229 free_percpu(dd->rcv_limit);
1230 free_percpu(dd->send_schedule);
1231 free_percpu(dd->tx_opstats);
1232 sdma_clean(dd, dd->num_sdma);
1233 rvt_dealloc_device(&dd->verbs_dev.rdi);
1236 static struct kobj_type hfi1_devdata_type = {
1237 .release = __hfi1_free_devdata,
1240 void hfi1_free_devdata(struct hfi1_devdata *dd)
1242 kobject_put(&dd->kobj);
1246 * Allocate our primary per-unit data structure. Must be done via verbs
1247 * allocator, because the verbs cleanup process both does cleanup and
1248 * free of the data structure.
1249 * "extra" is for chip-specific data.
1251 * Use the idr mechanism to get a unit number for this unit.
1253 struct hfi1_devdata *hfi1_alloc_devdata(struct pci_dev *pdev, size_t extra)
1255 unsigned long flags;
1256 struct hfi1_devdata *dd;
1257 int ret, nports;
1259 /* extra is * number of ports */
1260 nports = extra / sizeof(struct hfi1_pportdata);
1262 dd = (struct hfi1_devdata *)rvt_alloc_device(sizeof(*dd) + extra,
1263 nports);
1264 if (!dd)
1265 return ERR_PTR(-ENOMEM);
1266 dd->num_pports = nports;
1267 dd->pport = (struct hfi1_pportdata *)(dd + 1);
1269 INIT_LIST_HEAD(&dd->list);
1270 idr_preload(GFP_KERNEL);
1271 spin_lock_irqsave(&hfi1_devs_lock, flags);
1273 ret = idr_alloc(&hfi1_unit_table, dd, 0, 0, GFP_NOWAIT);
1274 if (ret >= 0) {
1275 dd->unit = ret;
1276 list_add(&dd->list, &hfi1_dev_list);
1279 spin_unlock_irqrestore(&hfi1_devs_lock, flags);
1280 idr_preload_end();
1282 if (ret < 0) {
1283 hfi1_early_err(&pdev->dev,
1284 "Could not allocate unit ID: error %d\n", -ret);
1285 goto bail;
1287 rvt_set_ibdev_name(&dd->verbs_dev.rdi, "%s_%d", class_name(), dd->unit);
1290 * Initialize all locks for the device. This needs to be as early as
1291 * possible so locks are usable.
1293 spin_lock_init(&dd->sc_lock);
1294 spin_lock_init(&dd->sendctrl_lock);
1295 spin_lock_init(&dd->rcvctrl_lock);
1296 spin_lock_init(&dd->uctxt_lock);
1297 spin_lock_init(&dd->hfi1_diag_trans_lock);
1298 spin_lock_init(&dd->sc_init_lock);
1299 spin_lock_init(&dd->dc8051_memlock);
1300 seqlock_init(&dd->sc2vl_lock);
1301 spin_lock_init(&dd->sde_map_lock);
1302 spin_lock_init(&dd->pio_map_lock);
1303 mutex_init(&dd->dc8051_lock);
1304 init_waitqueue_head(&dd->event_queue);
1306 dd->int_counter = alloc_percpu(u64);
1307 if (!dd->int_counter) {
1308 ret = -ENOMEM;
1309 goto bail;
1312 dd->rcv_limit = alloc_percpu(u64);
1313 if (!dd->rcv_limit) {
1314 ret = -ENOMEM;
1315 goto bail;
1318 dd->send_schedule = alloc_percpu(u64);
1319 if (!dd->send_schedule) {
1320 ret = -ENOMEM;
1321 goto bail;
1324 dd->tx_opstats = alloc_percpu(struct hfi1_opcode_stats_perctx);
1325 if (!dd->tx_opstats) {
1326 ret = -ENOMEM;
1327 goto bail;
1330 kobject_init(&dd->kobj, &hfi1_devdata_type);
1331 return dd;
1333 bail:
1334 if (!list_empty(&dd->list))
1335 list_del_init(&dd->list);
1336 rvt_dealloc_device(&dd->verbs_dev.rdi);
1337 return ERR_PTR(ret);
1341 * Called from freeze mode handlers, and from PCI error
1342 * reporting code. Should be paranoid about state of
1343 * system and data structures.
1345 void hfi1_disable_after_error(struct hfi1_devdata *dd)
1347 if (dd->flags & HFI1_INITTED) {
1348 u32 pidx;
1350 dd->flags &= ~HFI1_INITTED;
1351 if (dd->pport)
1352 for (pidx = 0; pidx < dd->num_pports; ++pidx) {
1353 struct hfi1_pportdata *ppd;
1355 ppd = dd->pport + pidx;
1356 if (dd->flags & HFI1_PRESENT)
1357 set_link_state(ppd, HLS_DN_DISABLE);
1359 if (ppd->statusp)
1360 *ppd->statusp &= ~HFI1_STATUS_IB_READY;
1365 * Mark as having had an error for driver, and also
1366 * for /sys and status word mapped to user programs.
1367 * This marks unit as not usable, until reset.
1369 if (dd->status)
1370 dd->status->dev |= HFI1_STATUS_HWERROR;
1373 static void remove_one(struct pci_dev *);
1374 static int init_one(struct pci_dev *, const struct pci_device_id *);
1376 #define DRIVER_LOAD_MSG "Intel " DRIVER_NAME " loaded: "
1377 #define PFX DRIVER_NAME ": "
1379 const struct pci_device_id hfi1_pci_tbl[] = {
1380 { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL0) },
1381 { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL1) },
1382 { 0, }
1385 MODULE_DEVICE_TABLE(pci, hfi1_pci_tbl);
1387 static struct pci_driver hfi1_pci_driver = {
1388 .name = DRIVER_NAME,
1389 .probe = init_one,
1390 .remove = remove_one,
1391 .id_table = hfi1_pci_tbl,
1392 .err_handler = &hfi1_pci_err_handler,
1395 static void __init compute_krcvqs(void)
1397 int i;
1399 for (i = 0; i < krcvqsset; i++)
1400 n_krcvqs += krcvqs[i];
1404 * Do all the generic driver unit- and chip-independent memory
1405 * allocation and initialization.
1407 static int __init hfi1_mod_init(void)
1409 int ret;
1411 ret = dev_init();
1412 if (ret)
1413 goto bail;
1415 ret = node_affinity_init();
1416 if (ret)
1417 goto bail;
1419 /* validate max MTU before any devices start */
1420 if (!valid_opa_max_mtu(hfi1_max_mtu)) {
1421 pr_err("Invalid max_mtu 0x%x, using 0x%x instead\n",
1422 hfi1_max_mtu, HFI1_DEFAULT_MAX_MTU);
1423 hfi1_max_mtu = HFI1_DEFAULT_MAX_MTU;
1425 /* valid CUs run from 1-128 in powers of 2 */
1426 if (hfi1_cu > 128 || !is_power_of_2(hfi1_cu))
1427 hfi1_cu = 1;
1428 /* valid credit return threshold is 0-100, variable is unsigned */
1429 if (user_credit_return_threshold > 100)
1430 user_credit_return_threshold = 100;
1432 compute_krcvqs();
1434 * sanitize receive interrupt count, time must wait until after
1435 * the hardware type is known
1437 if (rcv_intr_count > RCV_HDR_HEAD_COUNTER_MASK)
1438 rcv_intr_count = RCV_HDR_HEAD_COUNTER_MASK;
1439 /* reject invalid combinations */
1440 if (rcv_intr_count == 0 && rcv_intr_timeout == 0) {
1441 pr_err("Invalid mode: both receive interrupt count and available timeout are zero - setting interrupt count to 1\n");
1442 rcv_intr_count = 1;
1444 if (rcv_intr_count > 1 && rcv_intr_timeout == 0) {
1446 * Avoid indefinite packet delivery by requiring a timeout
1447 * if count is > 1.
1449 pr_err("Invalid mode: receive interrupt count greater than 1 and available timeout is zero - setting available timeout to 1\n");
1450 rcv_intr_timeout = 1;
1452 if (rcv_intr_dynamic && !(rcv_intr_count > 1 && rcv_intr_timeout > 0)) {
1454 * The dynamic algorithm expects a non-zero timeout
1455 * and a count > 1.
1457 pr_err("Invalid mode: dynamic receive interrupt mitigation with invalid count and timeout - turning dynamic off\n");
1458 rcv_intr_dynamic = 0;
1461 /* sanitize link CRC options */
1462 link_crc_mask &= SUPPORTED_CRCS;
1465 * These must be called before the driver is registered with
1466 * the PCI subsystem.
1468 idr_init(&hfi1_unit_table);
1470 hfi1_dbg_init();
1471 ret = hfi1_wss_init();
1472 if (ret < 0)
1473 goto bail_wss;
1474 ret = pci_register_driver(&hfi1_pci_driver);
1475 if (ret < 0) {
1476 pr_err("Unable to register driver: error %d\n", -ret);
1477 goto bail_dev;
1479 goto bail; /* all OK */
1481 bail_dev:
1482 hfi1_wss_exit();
1483 bail_wss:
1484 hfi1_dbg_exit();
1485 idr_destroy(&hfi1_unit_table);
1486 dev_cleanup();
1487 bail:
1488 return ret;
1491 module_init(hfi1_mod_init);
1494 * Do the non-unit driver cleanup, memory free, etc. at unload.
1496 static void __exit hfi1_mod_cleanup(void)
1498 pci_unregister_driver(&hfi1_pci_driver);
1499 node_affinity_destroy();
1500 hfi1_wss_exit();
1501 hfi1_dbg_exit();
1503 idr_destroy(&hfi1_unit_table);
1504 dispose_firmware(); /* asymmetric with obtain_firmware() */
1505 dev_cleanup();
1508 module_exit(hfi1_mod_cleanup);
1510 /* this can only be called after a successful initialization */
1511 static void cleanup_device_data(struct hfi1_devdata *dd)
1513 int ctxt;
1514 int pidx;
1516 /* users can't do anything more with chip */
1517 for (pidx = 0; pidx < dd->num_pports; ++pidx) {
1518 struct hfi1_pportdata *ppd = &dd->pport[pidx];
1519 struct cc_state *cc_state;
1520 int i;
1522 if (ppd->statusp)
1523 *ppd->statusp &= ~HFI1_STATUS_CHIP_PRESENT;
1525 for (i = 0; i < OPA_MAX_SLS; i++)
1526 hrtimer_cancel(&ppd->cca_timer[i].hrtimer);
1528 spin_lock(&ppd->cc_state_lock);
1529 cc_state = get_cc_state_protected(ppd);
1530 RCU_INIT_POINTER(ppd->cc_state, NULL);
1531 spin_unlock(&ppd->cc_state_lock);
1533 if (cc_state)
1534 kfree_rcu(cc_state, rcu);
1537 free_credit_return(dd);
1539 if (dd->rcvhdrtail_dummy_kvaddr) {
1540 dma_free_coherent(&dd->pcidev->dev, sizeof(u64),
1541 (void *)dd->rcvhdrtail_dummy_kvaddr,
1542 dd->rcvhdrtail_dummy_dma);
1543 dd->rcvhdrtail_dummy_kvaddr = NULL;
1547 * Free any resources still in use (usually just kernel contexts)
1548 * at unload; we do for ctxtcnt, because that's what we allocate.
1550 for (ctxt = 0; dd->rcd && ctxt < dd->num_rcv_contexts; ctxt++) {
1551 struct hfi1_ctxtdata *rcd = dd->rcd[ctxt];
1553 if (rcd) {
1554 hfi1_clear_tids(rcd);
1555 hfi1_free_ctxt(rcd);
1559 kfree(dd->rcd);
1560 dd->rcd = NULL;
1562 free_pio_map(dd);
1563 /* must follow rcv context free - need to remove rcv's hooks */
1564 for (ctxt = 0; ctxt < dd->num_send_contexts; ctxt++)
1565 sc_free(dd->send_contexts[ctxt].sc);
1566 dd->num_send_contexts = 0;
1567 kfree(dd->send_contexts);
1568 dd->send_contexts = NULL;
1569 kfree(dd->hw_to_sw);
1570 dd->hw_to_sw = NULL;
1571 kfree(dd->boardname);
1572 vfree(dd->events);
1573 vfree(dd->status);
1577 * Clean up on unit shutdown, or error during unit load after
1578 * successful initialization.
1580 static void postinit_cleanup(struct hfi1_devdata *dd)
1582 hfi1_start_cleanup(dd);
1584 hfi1_pcie_ddcleanup(dd);
1585 hfi1_pcie_cleanup(dd->pcidev);
1587 cleanup_device_data(dd);
1589 hfi1_free_devdata(dd);
1592 static int init_validate_rcvhdrcnt(struct device *dev, uint thecnt)
1594 if (thecnt <= HFI1_MIN_HDRQ_EGRBUF_CNT) {
1595 hfi1_early_err(dev, "Receive header queue count too small\n");
1596 return -EINVAL;
1599 if (thecnt > HFI1_MAX_HDRQ_EGRBUF_CNT) {
1600 hfi1_early_err(dev,
1601 "Receive header queue count cannot be greater than %u\n",
1602 HFI1_MAX_HDRQ_EGRBUF_CNT);
1603 return -EINVAL;
1606 if (thecnt % HDRQ_INCREMENT) {
1607 hfi1_early_err(dev, "Receive header queue count %d must be divisible by %lu\n",
1608 thecnt, HDRQ_INCREMENT);
1609 return -EINVAL;
1612 return 0;
1615 static int init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
1617 int ret = 0, j, pidx, initfail;
1618 struct hfi1_devdata *dd;
1619 struct hfi1_pportdata *ppd;
1621 /* First, lock the non-writable module parameters */
1622 HFI1_CAP_LOCK();
1624 /* Validate dev ids */
1625 if (!(ent->device == PCI_DEVICE_ID_INTEL0 ||
1626 ent->device == PCI_DEVICE_ID_INTEL1)) {
1627 hfi1_early_err(&pdev->dev,
1628 "Failing on unknown Intel deviceid 0x%x\n",
1629 ent->device);
1630 ret = -ENODEV;
1631 goto bail;
1634 /* Validate some global module parameters */
1635 ret = init_validate_rcvhdrcnt(&pdev->dev, rcvhdrcnt);
1636 if (ret)
1637 goto bail;
1639 /* use the encoding function as a sanitization check */
1640 if (!encode_rcv_header_entry_size(hfi1_hdrq_entsize)) {
1641 hfi1_early_err(&pdev->dev, "Invalid HdrQ Entry size %u\n",
1642 hfi1_hdrq_entsize);
1643 ret = -EINVAL;
1644 goto bail;
1647 /* The receive eager buffer size must be set before the receive
1648 * contexts are created.
1650 * Set the eager buffer size. Validate that it falls in a range
1651 * allowed by the hardware - all powers of 2 between the min and
1652 * max. The maximum valid MTU is within the eager buffer range
1653 * so we do not need to cap the max_mtu by an eager buffer size
1654 * setting.
1656 if (eager_buffer_size) {
1657 if (!is_power_of_2(eager_buffer_size))
1658 eager_buffer_size =
1659 roundup_pow_of_two(eager_buffer_size);
1660 eager_buffer_size =
1661 clamp_val(eager_buffer_size,
1662 MIN_EAGER_BUFFER * 8,
1663 MAX_EAGER_BUFFER_TOTAL);
1664 hfi1_early_info(&pdev->dev, "Eager buffer size %u\n",
1665 eager_buffer_size);
1666 } else {
1667 hfi1_early_err(&pdev->dev, "Invalid Eager buffer size of 0\n");
1668 ret = -EINVAL;
1669 goto bail;
1672 /* restrict value of hfi1_rcvarr_split */
1673 hfi1_rcvarr_split = clamp_val(hfi1_rcvarr_split, 0, 100);
1675 ret = hfi1_pcie_init(pdev, ent);
1676 if (ret)
1677 goto bail;
1680 * Do device-specific initialization, function table setup, dd
1681 * allocation, etc.
1683 dd = hfi1_init_dd(pdev, ent);
1685 if (IS_ERR(dd)) {
1686 ret = PTR_ERR(dd);
1687 goto clean_bail; /* error already printed */
1690 ret = create_workqueues(dd);
1691 if (ret)
1692 goto clean_bail;
1694 /* do the generic initialization */
1695 initfail = hfi1_init(dd, 0);
1697 /* setup vnic */
1698 hfi1_vnic_setup(dd);
1700 ret = hfi1_register_ib_device(dd);
1703 * Now ready for use. this should be cleared whenever we
1704 * detect a reset, or initiate one. If earlier failure,
1705 * we still create devices, so diags, etc. can be used
1706 * to determine cause of problem.
1708 if (!initfail && !ret) {
1709 dd->flags |= HFI1_INITTED;
1710 /* create debufs files after init and ib register */
1711 hfi1_dbg_ibdev_init(&dd->verbs_dev);
1714 j = hfi1_device_create(dd);
1715 if (j)
1716 dd_dev_err(dd, "Failed to create /dev devices: %d\n", -j);
1718 if (initfail || ret) {
1719 hfi1_clean_up_interrupts(dd);
1720 stop_timers(dd);
1721 flush_workqueue(ib_wq);
1722 for (pidx = 0; pidx < dd->num_pports; ++pidx) {
1723 hfi1_quiet_serdes(dd->pport + pidx);
1724 ppd = dd->pport + pidx;
1725 if (ppd->hfi1_wq) {
1726 destroy_workqueue(ppd->hfi1_wq);
1727 ppd->hfi1_wq = NULL;
1729 if (ppd->link_wq) {
1730 destroy_workqueue(ppd->link_wq);
1731 ppd->link_wq = NULL;
1734 if (!j)
1735 hfi1_device_remove(dd);
1736 if (!ret)
1737 hfi1_unregister_ib_device(dd);
1738 hfi1_vnic_cleanup(dd);
1739 postinit_cleanup(dd);
1740 if (initfail)
1741 ret = initfail;
1742 goto bail; /* everything already cleaned */
1745 sdma_start(dd);
1747 return 0;
1749 clean_bail:
1750 hfi1_pcie_cleanup(pdev);
1751 bail:
1752 return ret;
1755 static void wait_for_clients(struct hfi1_devdata *dd)
1758 * Remove the device init value and complete the device if there is
1759 * no clients or wait for active clients to finish.
1761 if (atomic_dec_and_test(&dd->user_refcount))
1762 complete(&dd->user_comp);
1764 wait_for_completion(&dd->user_comp);
1767 static void remove_one(struct pci_dev *pdev)
1769 struct hfi1_devdata *dd = pci_get_drvdata(pdev);
1771 /* close debugfs files before ib unregister */
1772 hfi1_dbg_ibdev_exit(&dd->verbs_dev);
1774 /* remove the /dev hfi1 interface */
1775 hfi1_device_remove(dd);
1777 /* wait for existing user space clients to finish */
1778 wait_for_clients(dd);
1780 /* unregister from IB core */
1781 hfi1_unregister_ib_device(dd);
1783 /* cleanup vnic */
1784 hfi1_vnic_cleanup(dd);
1787 * Disable the IB link, disable interrupts on the device,
1788 * clear dma engines, etc.
1790 shutdown_device(dd);
1792 stop_timers(dd);
1794 /* wait until all of our (qsfp) queue_work() calls complete */
1795 flush_workqueue(ib_wq);
1797 postinit_cleanup(dd);
1801 * hfi1_create_rcvhdrq - create a receive header queue
1802 * @dd: the hfi1_ib device
1803 * @rcd: the context data
1805 * This must be contiguous memory (from an i/o perspective), and must be
1806 * DMA'able (which means for some systems, it will go through an IOMMU,
1807 * or be forced into a low address range).
1809 int hfi1_create_rcvhdrq(struct hfi1_devdata *dd, struct hfi1_ctxtdata *rcd)
1811 unsigned amt;
1812 u64 reg;
1814 if (!rcd->rcvhdrq) {
1815 dma_addr_t dma_hdrqtail;
1816 gfp_t gfp_flags;
1819 * rcvhdrqentsize is in DWs, so we have to convert to bytes
1820 * (* sizeof(u32)).
1822 amt = PAGE_ALIGN(rcd->rcvhdrq_cnt * rcd->rcvhdrqentsize *
1823 sizeof(u32));
1825 if (rcd->ctxt < dd->first_dyn_alloc_ctxt || rcd->is_vnic)
1826 gfp_flags = GFP_KERNEL;
1827 else
1828 gfp_flags = GFP_USER;
1829 rcd->rcvhdrq = dma_zalloc_coherent(
1830 &dd->pcidev->dev, amt, &rcd->rcvhdrq_dma,
1831 gfp_flags | __GFP_COMP);
1833 if (!rcd->rcvhdrq) {
1834 dd_dev_err(dd,
1835 "attempt to allocate %d bytes for ctxt %u rcvhdrq failed\n",
1836 amt, rcd->ctxt);
1837 goto bail;
1840 if (HFI1_CAP_KGET_MASK(rcd->flags, DMA_RTAIL)) {
1841 rcd->rcvhdrtail_kvaddr = dma_zalloc_coherent(
1842 &dd->pcidev->dev, PAGE_SIZE, &dma_hdrqtail,
1843 gfp_flags);
1844 if (!rcd->rcvhdrtail_kvaddr)
1845 goto bail_free;
1846 rcd->rcvhdrqtailaddr_dma = dma_hdrqtail;
1849 rcd->rcvhdrq_size = amt;
1852 * These values are per-context:
1853 * RcvHdrCnt
1854 * RcvHdrEntSize
1855 * RcvHdrSize
1857 reg = ((u64)(rcd->rcvhdrq_cnt >> HDRQ_SIZE_SHIFT)
1858 & RCV_HDR_CNT_CNT_MASK)
1859 << RCV_HDR_CNT_CNT_SHIFT;
1860 write_kctxt_csr(dd, rcd->ctxt, RCV_HDR_CNT, reg);
1861 reg = (encode_rcv_header_entry_size(rcd->rcvhdrqentsize)
1862 & RCV_HDR_ENT_SIZE_ENT_SIZE_MASK)
1863 << RCV_HDR_ENT_SIZE_ENT_SIZE_SHIFT;
1864 write_kctxt_csr(dd, rcd->ctxt, RCV_HDR_ENT_SIZE, reg);
1865 reg = (dd->rcvhdrsize & RCV_HDR_SIZE_HDR_SIZE_MASK)
1866 << RCV_HDR_SIZE_HDR_SIZE_SHIFT;
1867 write_kctxt_csr(dd, rcd->ctxt, RCV_HDR_SIZE, reg);
1870 * Program dummy tail address for every receive context
1871 * before enabling any receive context
1873 write_kctxt_csr(dd, rcd->ctxt, RCV_HDR_TAIL_ADDR,
1874 dd->rcvhdrtail_dummy_dma);
1876 return 0;
1878 bail_free:
1879 dd_dev_err(dd,
1880 "attempt to allocate 1 page for ctxt %u rcvhdrqtailaddr failed\n",
1881 rcd->ctxt);
1882 dma_free_coherent(&dd->pcidev->dev, amt, rcd->rcvhdrq,
1883 rcd->rcvhdrq_dma);
1884 rcd->rcvhdrq = NULL;
1885 bail:
1886 return -ENOMEM;
1890 * allocate eager buffers, both kernel and user contexts.
1891 * @rcd: the context we are setting up.
1893 * Allocate the eager TID buffers and program them into hip.
1894 * They are no longer completely contiguous, we do multiple allocation
1895 * calls. Otherwise we get the OOM code involved, by asking for too
1896 * much per call, with disastrous results on some kernels.
1898 int hfi1_setup_eagerbufs(struct hfi1_ctxtdata *rcd)
1900 struct hfi1_devdata *dd = rcd->dd;
1901 u32 max_entries, egrtop, alloced_bytes = 0, idx = 0;
1902 gfp_t gfp_flags;
1903 u16 order;
1904 int ret = 0;
1905 u16 round_mtu = roundup_pow_of_two(hfi1_max_mtu);
1908 * GFP_USER, but without GFP_FS, so buffer cache can be
1909 * coalesced (we hope); otherwise, even at order 4,
1910 * heavy filesystem activity makes these fail, and we can
1911 * use compound pages.
1913 gfp_flags = __GFP_RECLAIM | __GFP_IO | __GFP_COMP;
1916 * The minimum size of the eager buffers is a groups of MTU-sized
1917 * buffers.
1918 * The global eager_buffer_size parameter is checked against the
1919 * theoretical lower limit of the value. Here, we check against the
1920 * MTU.
1922 if (rcd->egrbufs.size < (round_mtu * dd->rcv_entries.group_size))
1923 rcd->egrbufs.size = round_mtu * dd->rcv_entries.group_size;
1925 * If using one-pkt-per-egr-buffer, lower the eager buffer
1926 * size to the max MTU (page-aligned).
1928 if (!HFI1_CAP_KGET_MASK(rcd->flags, MULTI_PKT_EGR))
1929 rcd->egrbufs.rcvtid_size = round_mtu;
1932 * Eager buffers sizes of 1MB or less require smaller TID sizes
1933 * to satisfy the "multiple of 8 RcvArray entries" requirement.
1935 if (rcd->egrbufs.size <= (1 << 20))
1936 rcd->egrbufs.rcvtid_size = max((unsigned long)round_mtu,
1937 rounddown_pow_of_two(rcd->egrbufs.size / 8));
1939 while (alloced_bytes < rcd->egrbufs.size &&
1940 rcd->egrbufs.alloced < rcd->egrbufs.count) {
1941 rcd->egrbufs.buffers[idx].addr =
1942 dma_zalloc_coherent(&dd->pcidev->dev,
1943 rcd->egrbufs.rcvtid_size,
1944 &rcd->egrbufs.buffers[idx].dma,
1945 gfp_flags);
1946 if (rcd->egrbufs.buffers[idx].addr) {
1947 rcd->egrbufs.buffers[idx].len =
1948 rcd->egrbufs.rcvtid_size;
1949 rcd->egrbufs.rcvtids[rcd->egrbufs.alloced].addr =
1950 rcd->egrbufs.buffers[idx].addr;
1951 rcd->egrbufs.rcvtids[rcd->egrbufs.alloced].dma =
1952 rcd->egrbufs.buffers[idx].dma;
1953 rcd->egrbufs.alloced++;
1954 alloced_bytes += rcd->egrbufs.rcvtid_size;
1955 idx++;
1956 } else {
1957 u32 new_size, i, j;
1958 u64 offset = 0;
1961 * Fail the eager buffer allocation if:
1962 * - we are already using the lowest acceptable size
1963 * - we are using one-pkt-per-egr-buffer (this implies
1964 * that we are accepting only one size)
1966 if (rcd->egrbufs.rcvtid_size == round_mtu ||
1967 !HFI1_CAP_KGET_MASK(rcd->flags, MULTI_PKT_EGR)) {
1968 dd_dev_err(dd, "ctxt%u: Failed to allocate eager buffers\n",
1969 rcd->ctxt);
1970 ret = -ENOMEM;
1971 goto bail_rcvegrbuf_phys;
1974 new_size = rcd->egrbufs.rcvtid_size / 2;
1977 * If the first attempt to allocate memory failed, don't
1978 * fail everything but continue with the next lower
1979 * size.
1981 if (idx == 0) {
1982 rcd->egrbufs.rcvtid_size = new_size;
1983 continue;
1987 * Re-partition already allocated buffers to a smaller
1988 * size.
1990 rcd->egrbufs.alloced = 0;
1991 for (i = 0, j = 0, offset = 0; j < idx; i++) {
1992 if (i >= rcd->egrbufs.count)
1993 break;
1994 rcd->egrbufs.rcvtids[i].dma =
1995 rcd->egrbufs.buffers[j].dma + offset;
1996 rcd->egrbufs.rcvtids[i].addr =
1997 rcd->egrbufs.buffers[j].addr + offset;
1998 rcd->egrbufs.alloced++;
1999 if ((rcd->egrbufs.buffers[j].dma + offset +
2000 new_size) ==
2001 (rcd->egrbufs.buffers[j].dma +
2002 rcd->egrbufs.buffers[j].len)) {
2003 j++;
2004 offset = 0;
2005 } else {
2006 offset += new_size;
2009 rcd->egrbufs.rcvtid_size = new_size;
2012 rcd->egrbufs.numbufs = idx;
2013 rcd->egrbufs.size = alloced_bytes;
2015 hfi1_cdbg(PROC,
2016 "ctxt%u: Alloced %u rcv tid entries @ %uKB, total %zuKB\n",
2017 rcd->ctxt, rcd->egrbufs.alloced,
2018 rcd->egrbufs.rcvtid_size / 1024, rcd->egrbufs.size / 1024);
2021 * Set the contexts rcv array head update threshold to the closest
2022 * power of 2 (so we can use a mask instead of modulo) below half
2023 * the allocated entries.
2025 rcd->egrbufs.threshold =
2026 rounddown_pow_of_two(rcd->egrbufs.alloced / 2);
2028 * Compute the expected RcvArray entry base. This is done after
2029 * allocating the eager buffers in order to maximize the
2030 * expected RcvArray entries for the context.
2032 max_entries = rcd->rcv_array_groups * dd->rcv_entries.group_size;
2033 egrtop = roundup(rcd->egrbufs.alloced, dd->rcv_entries.group_size);
2034 rcd->expected_count = max_entries - egrtop;
2035 if (rcd->expected_count > MAX_TID_PAIR_ENTRIES * 2)
2036 rcd->expected_count = MAX_TID_PAIR_ENTRIES * 2;
2038 rcd->expected_base = rcd->eager_base + egrtop;
2039 hfi1_cdbg(PROC, "ctxt%u: eager:%u, exp:%u, egrbase:%u, expbase:%u\n",
2040 rcd->ctxt, rcd->egrbufs.alloced, rcd->expected_count,
2041 rcd->eager_base, rcd->expected_base);
2043 if (!hfi1_rcvbuf_validate(rcd->egrbufs.rcvtid_size, PT_EAGER, &order)) {
2044 hfi1_cdbg(PROC,
2045 "ctxt%u: current Eager buffer size is invalid %u\n",
2046 rcd->ctxt, rcd->egrbufs.rcvtid_size);
2047 ret = -EINVAL;
2048 goto bail_rcvegrbuf_phys;
2051 for (idx = 0; idx < rcd->egrbufs.alloced; idx++) {
2052 hfi1_put_tid(dd, rcd->eager_base + idx, PT_EAGER,
2053 rcd->egrbufs.rcvtids[idx].dma, order);
2054 cond_resched();
2057 return 0;
2059 bail_rcvegrbuf_phys:
2060 for (idx = 0; idx < rcd->egrbufs.alloced &&
2061 rcd->egrbufs.buffers[idx].addr;
2062 idx++) {
2063 dma_free_coherent(&dd->pcidev->dev,
2064 rcd->egrbufs.buffers[idx].len,
2065 rcd->egrbufs.buffers[idx].addr,
2066 rcd->egrbufs.buffers[idx].dma);
2067 rcd->egrbufs.buffers[idx].addr = NULL;
2068 rcd->egrbufs.buffers[idx].dma = 0;
2069 rcd->egrbufs.buffers[idx].len = 0;
2072 return ret;