x86/topology: Fix function name in documentation
[cris-mirror.git] / drivers / infiniband / hw / hfi1 / sdma.c
blob1f203309cf24bee6d5a67fead77cd0ab146ab3fe
1 /*
2 * Copyright(c) 2015, 2016 Intel Corporation.
4 * This file is provided under a dual BSD/GPLv2 license. When using or
5 * redistributing this file, you may do so under either license.
7 * GPL LICENSE SUMMARY
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of version 2 of the GNU General Public License as
11 * published by the Free Software Foundation.
13 * This program is distributed in the hope that it will be useful, but
14 * WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
16 * General Public License for more details.
18 * BSD LICENSE
20 * Redistribution and use in source and binary forms, with or without
21 * modification, are permitted provided that the following conditions
22 * are met:
24 * - Redistributions of source code must retain the above copyright
25 * notice, this list of conditions and the following disclaimer.
26 * - Redistributions in binary form must reproduce the above copyright
27 * notice, this list of conditions and the following disclaimer in
28 * the documentation and/or other materials provided with the
29 * distribution.
30 * - Neither the name of Intel Corporation nor the names of its
31 * contributors may be used to endorse or promote products derived
32 * from this software without specific prior written permission.
34 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
35 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
36 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
37 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
38 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
39 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
40 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
41 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
42 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
43 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
44 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
48 #include <linux/spinlock.h>
49 #include <linux/seqlock.h>
50 #include <linux/netdevice.h>
51 #include <linux/moduleparam.h>
52 #include <linux/bitops.h>
53 #include <linux/timer.h>
54 #include <linux/vmalloc.h>
55 #include <linux/highmem.h>
57 #include "hfi.h"
58 #include "common.h"
59 #include "qp.h"
60 #include "sdma.h"
61 #include "iowait.h"
62 #include "trace.h"
64 /* must be a power of 2 >= 64 <= 32768 */
65 #define SDMA_DESCQ_CNT 2048
66 #define SDMA_DESC_INTR 64
67 #define INVALID_TAIL 0xffff
69 static uint sdma_descq_cnt = SDMA_DESCQ_CNT;
70 module_param(sdma_descq_cnt, uint, S_IRUGO);
71 MODULE_PARM_DESC(sdma_descq_cnt, "Number of SDMA descq entries");
73 static uint sdma_idle_cnt = 250;
74 module_param(sdma_idle_cnt, uint, S_IRUGO);
75 MODULE_PARM_DESC(sdma_idle_cnt, "sdma interrupt idle delay (ns,default 250)");
77 uint mod_num_sdma;
78 module_param_named(num_sdma, mod_num_sdma, uint, S_IRUGO);
79 MODULE_PARM_DESC(num_sdma, "Set max number SDMA engines to use");
81 static uint sdma_desct_intr = SDMA_DESC_INTR;
82 module_param_named(desct_intr, sdma_desct_intr, uint, S_IRUGO | S_IWUSR);
83 MODULE_PARM_DESC(desct_intr, "Number of SDMA descriptor before interrupt");
85 #define SDMA_WAIT_BATCH_SIZE 20
86 /* max wait time for a SDMA engine to indicate it has halted */
87 #define SDMA_ERR_HALT_TIMEOUT 10 /* ms */
88 /* all SDMA engine errors that cause a halt */
90 #define SD(name) SEND_DMA_##name
91 #define ALL_SDMA_ENG_HALT_ERRS \
92 (SD(ENG_ERR_STATUS_SDMA_WRONG_DW_ERR_SMASK) \
93 | SD(ENG_ERR_STATUS_SDMA_GEN_MISMATCH_ERR_SMASK) \
94 | SD(ENG_ERR_STATUS_SDMA_TOO_LONG_ERR_SMASK) \
95 | SD(ENG_ERR_STATUS_SDMA_TAIL_OUT_OF_BOUNDS_ERR_SMASK) \
96 | SD(ENG_ERR_STATUS_SDMA_FIRST_DESC_ERR_SMASK) \
97 | SD(ENG_ERR_STATUS_SDMA_MEM_READ_ERR_SMASK) \
98 | SD(ENG_ERR_STATUS_SDMA_HALT_ERR_SMASK) \
99 | SD(ENG_ERR_STATUS_SDMA_LENGTH_MISMATCH_ERR_SMASK) \
100 | SD(ENG_ERR_STATUS_SDMA_PACKET_DESC_OVERFLOW_ERR_SMASK) \
101 | SD(ENG_ERR_STATUS_SDMA_HEADER_SELECT_ERR_SMASK) \
102 | SD(ENG_ERR_STATUS_SDMA_HEADER_ADDRESS_ERR_SMASK) \
103 | SD(ENG_ERR_STATUS_SDMA_HEADER_LENGTH_ERR_SMASK) \
104 | SD(ENG_ERR_STATUS_SDMA_TIMEOUT_ERR_SMASK) \
105 | SD(ENG_ERR_STATUS_SDMA_DESC_TABLE_UNC_ERR_SMASK) \
106 | SD(ENG_ERR_STATUS_SDMA_ASSEMBLY_UNC_ERR_SMASK) \
107 | SD(ENG_ERR_STATUS_SDMA_PACKET_TRACKING_UNC_ERR_SMASK) \
108 | SD(ENG_ERR_STATUS_SDMA_HEADER_STORAGE_UNC_ERR_SMASK) \
109 | SD(ENG_ERR_STATUS_SDMA_HEADER_REQUEST_FIFO_UNC_ERR_SMASK))
111 /* sdma_sendctrl operations */
112 #define SDMA_SENDCTRL_OP_ENABLE BIT(0)
113 #define SDMA_SENDCTRL_OP_INTENABLE BIT(1)
114 #define SDMA_SENDCTRL_OP_HALT BIT(2)
115 #define SDMA_SENDCTRL_OP_CLEANUP BIT(3)
117 /* handle long defines */
118 #define SDMA_EGRESS_PACKET_OCCUPANCY_SMASK \
119 SEND_EGRESS_SEND_DMA_STATUS_SDMA_EGRESS_PACKET_OCCUPANCY_SMASK
120 #define SDMA_EGRESS_PACKET_OCCUPANCY_SHIFT \
121 SEND_EGRESS_SEND_DMA_STATUS_SDMA_EGRESS_PACKET_OCCUPANCY_SHIFT
123 static const char * const sdma_state_names[] = {
124 [sdma_state_s00_hw_down] = "s00_HwDown",
125 [sdma_state_s10_hw_start_up_halt_wait] = "s10_HwStartUpHaltWait",
126 [sdma_state_s15_hw_start_up_clean_wait] = "s15_HwStartUpCleanWait",
127 [sdma_state_s20_idle] = "s20_Idle",
128 [sdma_state_s30_sw_clean_up_wait] = "s30_SwCleanUpWait",
129 [sdma_state_s40_hw_clean_up_wait] = "s40_HwCleanUpWait",
130 [sdma_state_s50_hw_halt_wait] = "s50_HwHaltWait",
131 [sdma_state_s60_idle_halt_wait] = "s60_IdleHaltWait",
132 [sdma_state_s80_hw_freeze] = "s80_HwFreeze",
133 [sdma_state_s82_freeze_sw_clean] = "s82_FreezeSwClean",
134 [sdma_state_s99_running] = "s99_Running",
137 #ifdef CONFIG_SDMA_VERBOSITY
138 static const char * const sdma_event_names[] = {
139 [sdma_event_e00_go_hw_down] = "e00_GoHwDown",
140 [sdma_event_e10_go_hw_start] = "e10_GoHwStart",
141 [sdma_event_e15_hw_halt_done] = "e15_HwHaltDone",
142 [sdma_event_e25_hw_clean_up_done] = "e25_HwCleanUpDone",
143 [sdma_event_e30_go_running] = "e30_GoRunning",
144 [sdma_event_e40_sw_cleaned] = "e40_SwCleaned",
145 [sdma_event_e50_hw_cleaned] = "e50_HwCleaned",
146 [sdma_event_e60_hw_halted] = "e60_HwHalted",
147 [sdma_event_e70_go_idle] = "e70_GoIdle",
148 [sdma_event_e80_hw_freeze] = "e80_HwFreeze",
149 [sdma_event_e81_hw_frozen] = "e81_HwFrozen",
150 [sdma_event_e82_hw_unfreeze] = "e82_HwUnfreeze",
151 [sdma_event_e85_link_down] = "e85_LinkDown",
152 [sdma_event_e90_sw_halted] = "e90_SwHalted",
154 #endif
156 static const struct sdma_set_state_action sdma_action_table[] = {
157 [sdma_state_s00_hw_down] = {
158 .go_s99_running_tofalse = 1,
159 .op_enable = 0,
160 .op_intenable = 0,
161 .op_halt = 0,
162 .op_cleanup = 0,
164 [sdma_state_s10_hw_start_up_halt_wait] = {
165 .op_enable = 0,
166 .op_intenable = 0,
167 .op_halt = 1,
168 .op_cleanup = 0,
170 [sdma_state_s15_hw_start_up_clean_wait] = {
171 .op_enable = 0,
172 .op_intenable = 1,
173 .op_halt = 0,
174 .op_cleanup = 1,
176 [sdma_state_s20_idle] = {
177 .op_enable = 0,
178 .op_intenable = 1,
179 .op_halt = 0,
180 .op_cleanup = 0,
182 [sdma_state_s30_sw_clean_up_wait] = {
183 .op_enable = 0,
184 .op_intenable = 0,
185 .op_halt = 0,
186 .op_cleanup = 0,
188 [sdma_state_s40_hw_clean_up_wait] = {
189 .op_enable = 0,
190 .op_intenable = 0,
191 .op_halt = 0,
192 .op_cleanup = 1,
194 [sdma_state_s50_hw_halt_wait] = {
195 .op_enable = 0,
196 .op_intenable = 0,
197 .op_halt = 0,
198 .op_cleanup = 0,
200 [sdma_state_s60_idle_halt_wait] = {
201 .go_s99_running_tofalse = 1,
202 .op_enable = 0,
203 .op_intenable = 0,
204 .op_halt = 1,
205 .op_cleanup = 0,
207 [sdma_state_s80_hw_freeze] = {
208 .op_enable = 0,
209 .op_intenable = 0,
210 .op_halt = 0,
211 .op_cleanup = 0,
213 [sdma_state_s82_freeze_sw_clean] = {
214 .op_enable = 0,
215 .op_intenable = 0,
216 .op_halt = 0,
217 .op_cleanup = 0,
219 [sdma_state_s99_running] = {
220 .op_enable = 1,
221 .op_intenable = 1,
222 .op_halt = 0,
223 .op_cleanup = 0,
224 .go_s99_running_totrue = 1,
228 #define SDMA_TAIL_UPDATE_THRESH 0x1F
230 /* declare all statics here rather than keep sorting */
231 static void sdma_complete(struct kref *);
232 static void sdma_finalput(struct sdma_state *);
233 static void sdma_get(struct sdma_state *);
234 static void sdma_hw_clean_up_task(unsigned long);
235 static void sdma_put(struct sdma_state *);
236 static void sdma_set_state(struct sdma_engine *, enum sdma_states);
237 static void sdma_start_hw_clean_up(struct sdma_engine *);
238 static void sdma_sw_clean_up_task(unsigned long);
239 static void sdma_sendctrl(struct sdma_engine *, unsigned);
240 static void init_sdma_regs(struct sdma_engine *, u32, uint);
241 static void sdma_process_event(
242 struct sdma_engine *sde,
243 enum sdma_events event);
244 static void __sdma_process_event(
245 struct sdma_engine *sde,
246 enum sdma_events event);
247 static void dump_sdma_state(struct sdma_engine *sde);
248 static void sdma_make_progress(struct sdma_engine *sde, u64 status);
249 static void sdma_desc_avail(struct sdma_engine *sde, uint avail);
250 static void sdma_flush_descq(struct sdma_engine *sde);
253 * sdma_state_name() - return state string from enum
254 * @state: state
256 static const char *sdma_state_name(enum sdma_states state)
258 return sdma_state_names[state];
261 static void sdma_get(struct sdma_state *ss)
263 kref_get(&ss->kref);
266 static void sdma_complete(struct kref *kref)
268 struct sdma_state *ss =
269 container_of(kref, struct sdma_state, kref);
271 complete(&ss->comp);
274 static void sdma_put(struct sdma_state *ss)
276 kref_put(&ss->kref, sdma_complete);
279 static void sdma_finalput(struct sdma_state *ss)
281 sdma_put(ss);
282 wait_for_completion(&ss->comp);
285 static inline void write_sde_csr(
286 struct sdma_engine *sde,
287 u32 offset0,
288 u64 value)
290 write_kctxt_csr(sde->dd, sde->this_idx, offset0, value);
293 static inline u64 read_sde_csr(
294 struct sdma_engine *sde,
295 u32 offset0)
297 return read_kctxt_csr(sde->dd, sde->this_idx, offset0);
301 * sdma_wait_for_packet_egress() - wait for the VL FIFO occupancy for
302 * sdma engine 'sde' to drop to 0.
304 static void sdma_wait_for_packet_egress(struct sdma_engine *sde,
305 int pause)
307 u64 off = 8 * sde->this_idx;
308 struct hfi1_devdata *dd = sde->dd;
309 int lcnt = 0;
310 u64 reg_prev;
311 u64 reg = 0;
313 while (1) {
314 reg_prev = reg;
315 reg = read_csr(dd, off + SEND_EGRESS_SEND_DMA_STATUS);
317 reg &= SDMA_EGRESS_PACKET_OCCUPANCY_SMASK;
318 reg >>= SDMA_EGRESS_PACKET_OCCUPANCY_SHIFT;
319 if (reg == 0)
320 break;
321 /* counter is reest if accupancy count changes */
322 if (reg != reg_prev)
323 lcnt = 0;
324 if (lcnt++ > 500) {
325 /* timed out - bounce the link */
326 dd_dev_err(dd, "%s: engine %u timeout waiting for packets to egress, remaining count %u, bouncing link\n",
327 __func__, sde->this_idx, (u32)reg);
328 queue_work(dd->pport->link_wq,
329 &dd->pport->link_bounce_work);
330 break;
332 udelay(1);
337 * sdma_wait() - wait for packet egress to complete for all SDMA engines,
338 * and pause for credit return.
340 void sdma_wait(struct hfi1_devdata *dd)
342 int i;
344 for (i = 0; i < dd->num_sdma; i++) {
345 struct sdma_engine *sde = &dd->per_sdma[i];
347 sdma_wait_for_packet_egress(sde, 0);
351 static inline void sdma_set_desc_cnt(struct sdma_engine *sde, unsigned cnt)
353 u64 reg;
355 if (!(sde->dd->flags & HFI1_HAS_SDMA_TIMEOUT))
356 return;
357 reg = cnt;
358 reg &= SD(DESC_CNT_CNT_MASK);
359 reg <<= SD(DESC_CNT_CNT_SHIFT);
360 write_sde_csr(sde, SD(DESC_CNT), reg);
363 static inline void complete_tx(struct sdma_engine *sde,
364 struct sdma_txreq *tx,
365 int res)
367 /* protect against complete modifying */
368 struct iowait *wait = tx->wait;
369 callback_t complete = tx->complete;
371 #ifdef CONFIG_HFI1_DEBUG_SDMA_ORDER
372 trace_hfi1_sdma_out_sn(sde, tx->sn);
373 if (WARN_ON_ONCE(sde->head_sn != tx->sn))
374 dd_dev_err(sde->dd, "expected %llu got %llu\n",
375 sde->head_sn, tx->sn);
376 sde->head_sn++;
377 #endif
378 __sdma_txclean(sde->dd, tx);
379 if (complete)
380 (*complete)(tx, res);
381 if (wait && iowait_sdma_dec(wait))
382 iowait_drain_wakeup(wait);
386 * Complete all the sdma requests with a SDMA_TXREQ_S_ABORTED status
388 * Depending on timing there can be txreqs in two places:
389 * - in the descq ring
390 * - in the flush list
392 * To avoid ordering issues the descq ring needs to be flushed
393 * first followed by the flush list.
395 * This routine is called from two places
396 * - From a work queue item
397 * - Directly from the state machine just before setting the
398 * state to running
400 * Must be called with head_lock held
403 static void sdma_flush(struct sdma_engine *sde)
405 struct sdma_txreq *txp, *txp_next;
406 LIST_HEAD(flushlist);
407 unsigned long flags;
409 /* flush from head to tail */
410 sdma_flush_descq(sde);
411 spin_lock_irqsave(&sde->flushlist_lock, flags);
412 /* copy flush list */
413 list_for_each_entry_safe(txp, txp_next, &sde->flushlist, list) {
414 list_del_init(&txp->list);
415 list_add_tail(&txp->list, &flushlist);
417 spin_unlock_irqrestore(&sde->flushlist_lock, flags);
418 /* flush from flush list */
419 list_for_each_entry_safe(txp, txp_next, &flushlist, list)
420 complete_tx(sde, txp, SDMA_TXREQ_S_ABORTED);
424 * Fields a work request for flushing the descq ring
425 * and the flush list
427 * If the engine has been brought to running during
428 * the scheduling delay, the flush is ignored, assuming
429 * that the process of bringing the engine to running
430 * would have done this flush prior to going to running.
433 static void sdma_field_flush(struct work_struct *work)
435 unsigned long flags;
436 struct sdma_engine *sde =
437 container_of(work, struct sdma_engine, flush_worker);
439 write_seqlock_irqsave(&sde->head_lock, flags);
440 if (!__sdma_running(sde))
441 sdma_flush(sde);
442 write_sequnlock_irqrestore(&sde->head_lock, flags);
445 static void sdma_err_halt_wait(struct work_struct *work)
447 struct sdma_engine *sde = container_of(work, struct sdma_engine,
448 err_halt_worker);
449 u64 statuscsr;
450 unsigned long timeout;
452 timeout = jiffies + msecs_to_jiffies(SDMA_ERR_HALT_TIMEOUT);
453 while (1) {
454 statuscsr = read_sde_csr(sde, SD(STATUS));
455 statuscsr &= SD(STATUS_ENG_HALTED_SMASK);
456 if (statuscsr)
457 break;
458 if (time_after(jiffies, timeout)) {
459 dd_dev_err(sde->dd,
460 "SDMA engine %d - timeout waiting for engine to halt\n",
461 sde->this_idx);
463 * Continue anyway. This could happen if there was
464 * an uncorrectable error in the wrong spot.
466 break;
468 usleep_range(80, 120);
471 sdma_process_event(sde, sdma_event_e15_hw_halt_done);
474 static void sdma_err_progress_check_schedule(struct sdma_engine *sde)
476 if (!is_bx(sde->dd) && HFI1_CAP_IS_KSET(SDMA_AHG)) {
477 unsigned index;
478 struct hfi1_devdata *dd = sde->dd;
480 for (index = 0; index < dd->num_sdma; index++) {
481 struct sdma_engine *curr_sdma = &dd->per_sdma[index];
483 if (curr_sdma != sde)
484 curr_sdma->progress_check_head =
485 curr_sdma->descq_head;
487 dd_dev_err(sde->dd,
488 "SDMA engine %d - check scheduled\n",
489 sde->this_idx);
490 mod_timer(&sde->err_progress_check_timer, jiffies + 10);
494 static void sdma_err_progress_check(struct timer_list *t)
496 unsigned index;
497 struct sdma_engine *sde = from_timer(sde, t, err_progress_check_timer);
499 dd_dev_err(sde->dd, "SDE progress check event\n");
500 for (index = 0; index < sde->dd->num_sdma; index++) {
501 struct sdma_engine *curr_sde = &sde->dd->per_sdma[index];
502 unsigned long flags;
504 /* check progress on each engine except the current one */
505 if (curr_sde == sde)
506 continue;
508 * We must lock interrupts when acquiring sde->lock,
509 * to avoid a deadlock if interrupt triggers and spins on
510 * the same lock on same CPU
512 spin_lock_irqsave(&curr_sde->tail_lock, flags);
513 write_seqlock(&curr_sde->head_lock);
515 /* skip non-running queues */
516 if (curr_sde->state.current_state != sdma_state_s99_running) {
517 write_sequnlock(&curr_sde->head_lock);
518 spin_unlock_irqrestore(&curr_sde->tail_lock, flags);
519 continue;
522 if ((curr_sde->descq_head != curr_sde->descq_tail) &&
523 (curr_sde->descq_head ==
524 curr_sde->progress_check_head))
525 __sdma_process_event(curr_sde,
526 sdma_event_e90_sw_halted);
527 write_sequnlock(&curr_sde->head_lock);
528 spin_unlock_irqrestore(&curr_sde->tail_lock, flags);
530 schedule_work(&sde->err_halt_worker);
533 static void sdma_hw_clean_up_task(unsigned long opaque)
535 struct sdma_engine *sde = (struct sdma_engine *)opaque;
536 u64 statuscsr;
538 while (1) {
539 #ifdef CONFIG_SDMA_VERBOSITY
540 dd_dev_err(sde->dd, "CONFIG SDMA(%u) %s:%d %s()\n",
541 sde->this_idx, slashstrip(__FILE__), __LINE__,
542 __func__);
543 #endif
544 statuscsr = read_sde_csr(sde, SD(STATUS));
545 statuscsr &= SD(STATUS_ENG_CLEANED_UP_SMASK);
546 if (statuscsr)
547 break;
548 udelay(10);
551 sdma_process_event(sde, sdma_event_e25_hw_clean_up_done);
554 static inline struct sdma_txreq *get_txhead(struct sdma_engine *sde)
556 return sde->tx_ring[sde->tx_head & sde->sdma_mask];
560 * flush ring for recovery
562 static void sdma_flush_descq(struct sdma_engine *sde)
564 u16 head, tail;
565 int progress = 0;
566 struct sdma_txreq *txp = get_txhead(sde);
568 /* The reason for some of the complexity of this code is that
569 * not all descriptors have corresponding txps. So, we have to
570 * be able to skip over descs until we wander into the range of
571 * the next txp on the list.
573 head = sde->descq_head & sde->sdma_mask;
574 tail = sde->descq_tail & sde->sdma_mask;
575 while (head != tail) {
576 /* advance head, wrap if needed */
577 head = ++sde->descq_head & sde->sdma_mask;
578 /* if now past this txp's descs, do the callback */
579 if (txp && txp->next_descq_idx == head) {
580 /* remove from list */
581 sde->tx_ring[sde->tx_head++ & sde->sdma_mask] = NULL;
582 complete_tx(sde, txp, SDMA_TXREQ_S_ABORTED);
583 trace_hfi1_sdma_progress(sde, head, tail, txp);
584 txp = get_txhead(sde);
586 progress++;
588 if (progress)
589 sdma_desc_avail(sde, sdma_descq_freecnt(sde));
592 static void sdma_sw_clean_up_task(unsigned long opaque)
594 struct sdma_engine *sde = (struct sdma_engine *)opaque;
595 unsigned long flags;
597 spin_lock_irqsave(&sde->tail_lock, flags);
598 write_seqlock(&sde->head_lock);
601 * At this point, the following should always be true:
602 * - We are halted, so no more descriptors are getting retired.
603 * - We are not running, so no one is submitting new work.
604 * - Only we can send the e40_sw_cleaned, so we can't start
605 * running again until we say so. So, the active list and
606 * descq are ours to play with.
610 * In the error clean up sequence, software clean must be called
611 * before the hardware clean so we can use the hardware head in
612 * the progress routine. A hardware clean or SPC unfreeze will
613 * reset the hardware head.
615 * Process all retired requests. The progress routine will use the
616 * latest physical hardware head - we are not running so speed does
617 * not matter.
619 sdma_make_progress(sde, 0);
621 sdma_flush(sde);
624 * Reset our notion of head and tail.
625 * Note that the HW registers have been reset via an earlier
626 * clean up.
628 sde->descq_tail = 0;
629 sde->descq_head = 0;
630 sde->desc_avail = sdma_descq_freecnt(sde);
631 *sde->head_dma = 0;
633 __sdma_process_event(sde, sdma_event_e40_sw_cleaned);
635 write_sequnlock(&sde->head_lock);
636 spin_unlock_irqrestore(&sde->tail_lock, flags);
639 static void sdma_sw_tear_down(struct sdma_engine *sde)
641 struct sdma_state *ss = &sde->state;
643 /* Releasing this reference means the state machine has stopped. */
644 sdma_put(ss);
646 /* stop waiting for all unfreeze events to complete */
647 atomic_set(&sde->dd->sdma_unfreeze_count, -1);
648 wake_up_interruptible(&sde->dd->sdma_unfreeze_wq);
651 static void sdma_start_hw_clean_up(struct sdma_engine *sde)
653 tasklet_hi_schedule(&sde->sdma_hw_clean_up_task);
656 static void sdma_set_state(struct sdma_engine *sde,
657 enum sdma_states next_state)
659 struct sdma_state *ss = &sde->state;
660 const struct sdma_set_state_action *action = sdma_action_table;
661 unsigned op = 0;
663 trace_hfi1_sdma_state(
664 sde,
665 sdma_state_names[ss->current_state],
666 sdma_state_names[next_state]);
668 /* debugging bookkeeping */
669 ss->previous_state = ss->current_state;
670 ss->previous_op = ss->current_op;
671 ss->current_state = next_state;
673 if (ss->previous_state != sdma_state_s99_running &&
674 next_state == sdma_state_s99_running)
675 sdma_flush(sde);
677 if (action[next_state].op_enable)
678 op |= SDMA_SENDCTRL_OP_ENABLE;
680 if (action[next_state].op_intenable)
681 op |= SDMA_SENDCTRL_OP_INTENABLE;
683 if (action[next_state].op_halt)
684 op |= SDMA_SENDCTRL_OP_HALT;
686 if (action[next_state].op_cleanup)
687 op |= SDMA_SENDCTRL_OP_CLEANUP;
689 if (action[next_state].go_s99_running_tofalse)
690 ss->go_s99_running = 0;
692 if (action[next_state].go_s99_running_totrue)
693 ss->go_s99_running = 1;
695 ss->current_op = op;
696 sdma_sendctrl(sde, ss->current_op);
700 * sdma_get_descq_cnt() - called when device probed
702 * Return a validated descq count.
704 * This is currently only used in the verbs initialization to build the tx
705 * list.
707 * This will probably be deleted in favor of a more scalable approach to
708 * alloc tx's.
711 u16 sdma_get_descq_cnt(void)
713 u16 count = sdma_descq_cnt;
715 if (!count)
716 return SDMA_DESCQ_CNT;
717 /* count must be a power of 2 greater than 64 and less than
718 * 32768. Otherwise return default.
720 if (!is_power_of_2(count))
721 return SDMA_DESCQ_CNT;
722 if (count < 64 || count > 32768)
723 return SDMA_DESCQ_CNT;
724 return count;
728 * sdma_engine_get_vl() - return vl for a given sdma engine
729 * @sde: sdma engine
731 * This function returns the vl mapped to a given engine, or an error if
732 * the mapping can't be found. The mapping fields are protected by RCU.
734 int sdma_engine_get_vl(struct sdma_engine *sde)
736 struct hfi1_devdata *dd = sde->dd;
737 struct sdma_vl_map *m;
738 u8 vl;
740 if (sde->this_idx >= TXE_NUM_SDMA_ENGINES)
741 return -EINVAL;
743 rcu_read_lock();
744 m = rcu_dereference(dd->sdma_map);
745 if (unlikely(!m)) {
746 rcu_read_unlock();
747 return -EINVAL;
749 vl = m->engine_to_vl[sde->this_idx];
750 rcu_read_unlock();
752 return vl;
756 * sdma_select_engine_vl() - select sdma engine
757 * @dd: devdata
758 * @selector: a spreading factor
759 * @vl: this vl
762 * This function returns an engine based on the selector and a vl. The
763 * mapping fields are protected by RCU.
765 struct sdma_engine *sdma_select_engine_vl(
766 struct hfi1_devdata *dd,
767 u32 selector,
768 u8 vl)
770 struct sdma_vl_map *m;
771 struct sdma_map_elem *e;
772 struct sdma_engine *rval;
774 /* NOTE This should only happen if SC->VL changed after the initial
775 * checks on the QP/AH
776 * Default will return engine 0 below
778 if (vl >= num_vls) {
779 rval = NULL;
780 goto done;
783 rcu_read_lock();
784 m = rcu_dereference(dd->sdma_map);
785 if (unlikely(!m)) {
786 rcu_read_unlock();
787 return &dd->per_sdma[0];
789 e = m->map[vl & m->mask];
790 rval = e->sde[selector & e->mask];
791 rcu_read_unlock();
793 done:
794 rval = !rval ? &dd->per_sdma[0] : rval;
795 trace_hfi1_sdma_engine_select(dd, selector, vl, rval->this_idx);
796 return rval;
800 * sdma_select_engine_sc() - select sdma engine
801 * @dd: devdata
802 * @selector: a spreading factor
803 * @sc5: the 5 bit sc
806 * This function returns an engine based on the selector and an sc.
808 struct sdma_engine *sdma_select_engine_sc(
809 struct hfi1_devdata *dd,
810 u32 selector,
811 u8 sc5)
813 u8 vl = sc_to_vlt(dd, sc5);
815 return sdma_select_engine_vl(dd, selector, vl);
818 struct sdma_rht_map_elem {
819 u32 mask;
820 u8 ctr;
821 struct sdma_engine *sde[0];
824 struct sdma_rht_node {
825 unsigned long cpu_id;
826 struct sdma_rht_map_elem *map[HFI1_MAX_VLS_SUPPORTED];
827 struct rhash_head node;
830 #define NR_CPUS_HINT 192
832 static const struct rhashtable_params sdma_rht_params = {
833 .nelem_hint = NR_CPUS_HINT,
834 .head_offset = offsetof(struct sdma_rht_node, node),
835 .key_offset = offsetof(struct sdma_rht_node, cpu_id),
836 .key_len = FIELD_SIZEOF(struct sdma_rht_node, cpu_id),
837 .max_size = NR_CPUS,
838 .min_size = 8,
839 .automatic_shrinking = true,
843 * sdma_select_user_engine() - select sdma engine based on user setup
844 * @dd: devdata
845 * @selector: a spreading factor
846 * @vl: this vl
848 * This function returns an sdma engine for a user sdma request.
849 * User defined sdma engine affinity setting is honored when applicable,
850 * otherwise system default sdma engine mapping is used. To ensure correct
851 * ordering, the mapping from <selector, vl> to sde must remain unchanged.
853 struct sdma_engine *sdma_select_user_engine(struct hfi1_devdata *dd,
854 u32 selector, u8 vl)
856 struct sdma_rht_node *rht_node;
857 struct sdma_engine *sde = NULL;
858 const struct cpumask *current_mask = &current->cpus_allowed;
859 unsigned long cpu_id;
862 * To ensure that always the same sdma engine(s) will be
863 * selected make sure the process is pinned to this CPU only.
865 if (cpumask_weight(current_mask) != 1)
866 goto out;
868 cpu_id = smp_processor_id();
869 rcu_read_lock();
870 rht_node = rhashtable_lookup_fast(dd->sdma_rht, &cpu_id,
871 sdma_rht_params);
873 if (rht_node && rht_node->map[vl]) {
874 struct sdma_rht_map_elem *map = rht_node->map[vl];
876 sde = map->sde[selector & map->mask];
878 rcu_read_unlock();
880 if (sde)
881 return sde;
883 out:
884 return sdma_select_engine_vl(dd, selector, vl);
887 static void sdma_populate_sde_map(struct sdma_rht_map_elem *map)
889 int i;
891 for (i = 0; i < roundup_pow_of_two(map->ctr ? : 1) - map->ctr; i++)
892 map->sde[map->ctr + i] = map->sde[i];
895 static void sdma_cleanup_sde_map(struct sdma_rht_map_elem *map,
896 struct sdma_engine *sde)
898 unsigned int i, pow;
900 /* only need to check the first ctr entries for a match */
901 for (i = 0; i < map->ctr; i++) {
902 if (map->sde[i] == sde) {
903 memmove(&map->sde[i], &map->sde[i + 1],
904 (map->ctr - i - 1) * sizeof(map->sde[0]));
905 map->ctr--;
906 pow = roundup_pow_of_two(map->ctr ? : 1);
907 map->mask = pow - 1;
908 sdma_populate_sde_map(map);
909 break;
915 * Prevents concurrent reads and writes of the sdma engine cpu_mask
917 static DEFINE_MUTEX(process_to_sde_mutex);
919 ssize_t sdma_set_cpu_to_sde_map(struct sdma_engine *sde, const char *buf,
920 size_t count)
922 struct hfi1_devdata *dd = sde->dd;
923 cpumask_var_t mask, new_mask;
924 unsigned long cpu;
925 int ret, vl, sz;
927 vl = sdma_engine_get_vl(sde);
928 if (unlikely(vl < 0))
929 return -EINVAL;
931 ret = zalloc_cpumask_var(&mask, GFP_KERNEL);
932 if (!ret)
933 return -ENOMEM;
935 ret = zalloc_cpumask_var(&new_mask, GFP_KERNEL);
936 if (!ret) {
937 free_cpumask_var(mask);
938 return -ENOMEM;
940 ret = cpulist_parse(buf, mask);
941 if (ret)
942 goto out_free;
944 if (!cpumask_subset(mask, cpu_online_mask)) {
945 dd_dev_warn(sde->dd, "Invalid CPU mask\n");
946 ret = -EINVAL;
947 goto out_free;
950 sz = sizeof(struct sdma_rht_map_elem) +
951 (TXE_NUM_SDMA_ENGINES * sizeof(struct sdma_engine *));
953 mutex_lock(&process_to_sde_mutex);
955 for_each_cpu(cpu, mask) {
956 struct sdma_rht_node *rht_node;
958 /* Check if we have this already mapped */
959 if (cpumask_test_cpu(cpu, &sde->cpu_mask)) {
960 cpumask_set_cpu(cpu, new_mask);
961 continue;
964 if (vl >= ARRAY_SIZE(rht_node->map)) {
965 ret = -EINVAL;
966 goto out;
969 rht_node = rhashtable_lookup_fast(dd->sdma_rht, &cpu,
970 sdma_rht_params);
971 if (!rht_node) {
972 rht_node = kzalloc(sizeof(*rht_node), GFP_KERNEL);
973 if (!rht_node) {
974 ret = -ENOMEM;
975 goto out;
978 rht_node->map[vl] = kzalloc(sz, GFP_KERNEL);
979 if (!rht_node->map[vl]) {
980 kfree(rht_node);
981 ret = -ENOMEM;
982 goto out;
984 rht_node->cpu_id = cpu;
985 rht_node->map[vl]->mask = 0;
986 rht_node->map[vl]->ctr = 1;
987 rht_node->map[vl]->sde[0] = sde;
989 ret = rhashtable_insert_fast(dd->sdma_rht,
990 &rht_node->node,
991 sdma_rht_params);
992 if (ret) {
993 kfree(rht_node->map[vl]);
994 kfree(rht_node);
995 dd_dev_err(sde->dd, "Failed to set process to sde affinity for cpu %lu\n",
996 cpu);
997 goto out;
1000 } else {
1001 int ctr, pow;
1003 /* Add new user mappings */
1004 if (!rht_node->map[vl])
1005 rht_node->map[vl] = kzalloc(sz, GFP_KERNEL);
1007 if (!rht_node->map[vl]) {
1008 ret = -ENOMEM;
1009 goto out;
1012 rht_node->map[vl]->ctr++;
1013 ctr = rht_node->map[vl]->ctr;
1014 rht_node->map[vl]->sde[ctr - 1] = sde;
1015 pow = roundup_pow_of_two(ctr);
1016 rht_node->map[vl]->mask = pow - 1;
1018 /* Populate the sde map table */
1019 sdma_populate_sde_map(rht_node->map[vl]);
1021 cpumask_set_cpu(cpu, new_mask);
1024 /* Clean up old mappings */
1025 for_each_cpu(cpu, cpu_online_mask) {
1026 struct sdma_rht_node *rht_node;
1028 /* Don't cleanup sdes that are set in the new mask */
1029 if (cpumask_test_cpu(cpu, mask))
1030 continue;
1032 rht_node = rhashtable_lookup_fast(dd->sdma_rht, &cpu,
1033 sdma_rht_params);
1034 if (rht_node) {
1035 bool empty = true;
1036 int i;
1038 /* Remove mappings for old sde */
1039 for (i = 0; i < HFI1_MAX_VLS_SUPPORTED; i++)
1040 if (rht_node->map[i])
1041 sdma_cleanup_sde_map(rht_node->map[i],
1042 sde);
1044 /* Free empty hash table entries */
1045 for (i = 0; i < HFI1_MAX_VLS_SUPPORTED; i++) {
1046 if (!rht_node->map[i])
1047 continue;
1049 if (rht_node->map[i]->ctr) {
1050 empty = false;
1051 break;
1055 if (empty) {
1056 ret = rhashtable_remove_fast(dd->sdma_rht,
1057 &rht_node->node,
1058 sdma_rht_params);
1059 WARN_ON(ret);
1061 for (i = 0; i < HFI1_MAX_VLS_SUPPORTED; i++)
1062 kfree(rht_node->map[i]);
1064 kfree(rht_node);
1069 cpumask_copy(&sde->cpu_mask, new_mask);
1070 out:
1071 mutex_unlock(&process_to_sde_mutex);
1072 out_free:
1073 free_cpumask_var(mask);
1074 free_cpumask_var(new_mask);
1075 return ret ? : strnlen(buf, PAGE_SIZE);
1078 ssize_t sdma_get_cpu_to_sde_map(struct sdma_engine *sde, char *buf)
1080 mutex_lock(&process_to_sde_mutex);
1081 if (cpumask_empty(&sde->cpu_mask))
1082 snprintf(buf, PAGE_SIZE, "%s\n", "empty");
1083 else
1084 cpumap_print_to_pagebuf(true, buf, &sde->cpu_mask);
1085 mutex_unlock(&process_to_sde_mutex);
1086 return strnlen(buf, PAGE_SIZE);
1089 static void sdma_rht_free(void *ptr, void *arg)
1091 struct sdma_rht_node *rht_node = ptr;
1092 int i;
1094 for (i = 0; i < HFI1_MAX_VLS_SUPPORTED; i++)
1095 kfree(rht_node->map[i]);
1097 kfree(rht_node);
1101 * sdma_seqfile_dump_cpu_list() - debugfs dump the cpu to sdma mappings
1102 * @s: seq file
1103 * @dd: hfi1_devdata
1104 * @cpuid: cpu id
1106 * This routine dumps the process to sde mappings per cpu
1108 void sdma_seqfile_dump_cpu_list(struct seq_file *s,
1109 struct hfi1_devdata *dd,
1110 unsigned long cpuid)
1112 struct sdma_rht_node *rht_node;
1113 int i, j;
1115 rht_node = rhashtable_lookup_fast(dd->sdma_rht, &cpuid,
1116 sdma_rht_params);
1117 if (!rht_node)
1118 return;
1120 seq_printf(s, "cpu%3lu: ", cpuid);
1121 for (i = 0; i < HFI1_MAX_VLS_SUPPORTED; i++) {
1122 if (!rht_node->map[i] || !rht_node->map[i]->ctr)
1123 continue;
1125 seq_printf(s, " vl%d: [", i);
1127 for (j = 0; j < rht_node->map[i]->ctr; j++) {
1128 if (!rht_node->map[i]->sde[j])
1129 continue;
1131 if (j > 0)
1132 seq_puts(s, ",");
1134 seq_printf(s, " sdma%2d",
1135 rht_node->map[i]->sde[j]->this_idx);
1137 seq_puts(s, " ]");
1140 seq_puts(s, "\n");
1144 * Free the indicated map struct
1146 static void sdma_map_free(struct sdma_vl_map *m)
1148 int i;
1150 for (i = 0; m && i < m->actual_vls; i++)
1151 kfree(m->map[i]);
1152 kfree(m);
1156 * Handle RCU callback
1158 static void sdma_map_rcu_callback(struct rcu_head *list)
1160 struct sdma_vl_map *m = container_of(list, struct sdma_vl_map, list);
1162 sdma_map_free(m);
1166 * sdma_map_init - called when # vls change
1167 * @dd: hfi1_devdata
1168 * @port: port number
1169 * @num_vls: number of vls
1170 * @vl_engines: per vl engine mapping (optional)
1172 * This routine changes the mapping based on the number of vls.
1174 * vl_engines is used to specify a non-uniform vl/engine loading. NULL
1175 * implies auto computing the loading and giving each VLs a uniform
1176 * distribution of engines per VL.
1178 * The auto algorithm computes the sde_per_vl and the number of extra
1179 * engines. Any extra engines are added from the last VL on down.
1181 * rcu locking is used here to control access to the mapping fields.
1183 * If either the num_vls or num_sdma are non-power of 2, the array sizes
1184 * in the struct sdma_vl_map and the struct sdma_map_elem are rounded
1185 * up to the next highest power of 2 and the first entry is reused
1186 * in a round robin fashion.
1188 * If an error occurs the map change is not done and the mapping is
1189 * not changed.
1192 int sdma_map_init(struct hfi1_devdata *dd, u8 port, u8 num_vls, u8 *vl_engines)
1194 int i, j;
1195 int extra, sde_per_vl;
1196 int engine = 0;
1197 u8 lvl_engines[OPA_MAX_VLS];
1198 struct sdma_vl_map *oldmap, *newmap;
1200 if (!(dd->flags & HFI1_HAS_SEND_DMA))
1201 return 0;
1203 if (!vl_engines) {
1204 /* truncate divide */
1205 sde_per_vl = dd->num_sdma / num_vls;
1206 /* extras */
1207 extra = dd->num_sdma % num_vls;
1208 vl_engines = lvl_engines;
1209 /* add extras from last vl down */
1210 for (i = num_vls - 1; i >= 0; i--, extra--)
1211 vl_engines[i] = sde_per_vl + (extra > 0 ? 1 : 0);
1213 /* build new map */
1214 newmap = kzalloc(
1215 sizeof(struct sdma_vl_map) +
1216 roundup_pow_of_two(num_vls) *
1217 sizeof(struct sdma_map_elem *),
1218 GFP_KERNEL);
1219 if (!newmap)
1220 goto bail;
1221 newmap->actual_vls = num_vls;
1222 newmap->vls = roundup_pow_of_two(num_vls);
1223 newmap->mask = (1 << ilog2(newmap->vls)) - 1;
1224 /* initialize back-map */
1225 for (i = 0; i < TXE_NUM_SDMA_ENGINES; i++)
1226 newmap->engine_to_vl[i] = -1;
1227 for (i = 0; i < newmap->vls; i++) {
1228 /* save for wrap around */
1229 int first_engine = engine;
1231 if (i < newmap->actual_vls) {
1232 int sz = roundup_pow_of_two(vl_engines[i]);
1234 /* only allocate once */
1235 newmap->map[i] = kzalloc(
1236 sizeof(struct sdma_map_elem) +
1237 sz * sizeof(struct sdma_engine *),
1238 GFP_KERNEL);
1239 if (!newmap->map[i])
1240 goto bail;
1241 newmap->map[i]->mask = (1 << ilog2(sz)) - 1;
1242 /* assign engines */
1243 for (j = 0; j < sz; j++) {
1244 newmap->map[i]->sde[j] =
1245 &dd->per_sdma[engine];
1246 if (++engine >= first_engine + vl_engines[i])
1247 /* wrap back to first engine */
1248 engine = first_engine;
1250 /* assign back-map */
1251 for (j = 0; j < vl_engines[i]; j++)
1252 newmap->engine_to_vl[first_engine + j] = i;
1253 } else {
1254 /* just re-use entry without allocating */
1255 newmap->map[i] = newmap->map[i % num_vls];
1257 engine = first_engine + vl_engines[i];
1259 /* newmap in hand, save old map */
1260 spin_lock_irq(&dd->sde_map_lock);
1261 oldmap = rcu_dereference_protected(dd->sdma_map,
1262 lockdep_is_held(&dd->sde_map_lock));
1264 /* publish newmap */
1265 rcu_assign_pointer(dd->sdma_map, newmap);
1267 spin_unlock_irq(&dd->sde_map_lock);
1268 /* success, free any old map after grace period */
1269 if (oldmap)
1270 call_rcu(&oldmap->list, sdma_map_rcu_callback);
1271 return 0;
1272 bail:
1273 /* free any partial allocation */
1274 sdma_map_free(newmap);
1275 return -ENOMEM;
1279 * sdma_clean() Clean up allocated memory
1280 * @dd: struct hfi1_devdata
1281 * @num_engines: num sdma engines
1283 * This routine can be called regardless of the success of
1284 * sdma_init()
1286 void sdma_clean(struct hfi1_devdata *dd, size_t num_engines)
1288 size_t i;
1289 struct sdma_engine *sde;
1291 if (dd->sdma_pad_dma) {
1292 dma_free_coherent(&dd->pcidev->dev, 4,
1293 (void *)dd->sdma_pad_dma,
1294 dd->sdma_pad_phys);
1295 dd->sdma_pad_dma = NULL;
1296 dd->sdma_pad_phys = 0;
1298 if (dd->sdma_heads_dma) {
1299 dma_free_coherent(&dd->pcidev->dev, dd->sdma_heads_size,
1300 (void *)dd->sdma_heads_dma,
1301 dd->sdma_heads_phys);
1302 dd->sdma_heads_dma = NULL;
1303 dd->sdma_heads_phys = 0;
1305 for (i = 0; dd->per_sdma && i < num_engines; ++i) {
1306 sde = &dd->per_sdma[i];
1308 sde->head_dma = NULL;
1309 sde->head_phys = 0;
1311 if (sde->descq) {
1312 dma_free_coherent(
1313 &dd->pcidev->dev,
1314 sde->descq_cnt * sizeof(u64[2]),
1315 sde->descq,
1316 sde->descq_phys
1318 sde->descq = NULL;
1319 sde->descq_phys = 0;
1321 kvfree(sde->tx_ring);
1322 sde->tx_ring = NULL;
1324 spin_lock_irq(&dd->sde_map_lock);
1325 sdma_map_free(rcu_access_pointer(dd->sdma_map));
1326 RCU_INIT_POINTER(dd->sdma_map, NULL);
1327 spin_unlock_irq(&dd->sde_map_lock);
1328 synchronize_rcu();
1329 kfree(dd->per_sdma);
1330 dd->per_sdma = NULL;
1332 if (dd->sdma_rht) {
1333 rhashtable_free_and_destroy(dd->sdma_rht, sdma_rht_free, NULL);
1334 kfree(dd->sdma_rht);
1335 dd->sdma_rht = NULL;
1340 * sdma_init() - called when device probed
1341 * @dd: hfi1_devdata
1342 * @port: port number (currently only zero)
1344 * Initializes each sde and its csrs.
1345 * Interrupts are not required to be enabled.
1347 * Returns:
1348 * 0 - success, -errno on failure
1350 int sdma_init(struct hfi1_devdata *dd, u8 port)
1352 unsigned this_idx;
1353 struct sdma_engine *sde;
1354 struct rhashtable *tmp_sdma_rht;
1355 u16 descq_cnt;
1356 void *curr_head;
1357 struct hfi1_pportdata *ppd = dd->pport + port;
1358 u32 per_sdma_credits;
1359 uint idle_cnt = sdma_idle_cnt;
1360 size_t num_engines = dd->chip_sdma_engines;
1361 int ret = -ENOMEM;
1363 if (!HFI1_CAP_IS_KSET(SDMA)) {
1364 HFI1_CAP_CLEAR(SDMA_AHG);
1365 return 0;
1367 if (mod_num_sdma &&
1368 /* can't exceed chip support */
1369 mod_num_sdma <= dd->chip_sdma_engines &&
1370 /* count must be >= vls */
1371 mod_num_sdma >= num_vls)
1372 num_engines = mod_num_sdma;
1374 dd_dev_info(dd, "SDMA mod_num_sdma: %u\n", mod_num_sdma);
1375 dd_dev_info(dd, "SDMA chip_sdma_engines: %u\n", dd->chip_sdma_engines);
1376 dd_dev_info(dd, "SDMA chip_sdma_mem_size: %u\n",
1377 dd->chip_sdma_mem_size);
1379 per_sdma_credits =
1380 dd->chip_sdma_mem_size / (num_engines * SDMA_BLOCK_SIZE);
1382 /* set up freeze waitqueue */
1383 init_waitqueue_head(&dd->sdma_unfreeze_wq);
1384 atomic_set(&dd->sdma_unfreeze_count, 0);
1386 descq_cnt = sdma_get_descq_cnt();
1387 dd_dev_info(dd, "SDMA engines %zu descq_cnt %u\n",
1388 num_engines, descq_cnt);
1390 /* alloc memory for array of send engines */
1391 dd->per_sdma = kcalloc_node(num_engines, sizeof(*dd->per_sdma),
1392 GFP_KERNEL, dd->node);
1393 if (!dd->per_sdma)
1394 return ret;
1396 idle_cnt = ns_to_cclock(dd, idle_cnt);
1397 if (idle_cnt)
1398 dd->default_desc1 =
1399 SDMA_DESC1_HEAD_TO_HOST_FLAG;
1400 else
1401 dd->default_desc1 =
1402 SDMA_DESC1_INT_REQ_FLAG;
1404 if (!sdma_desct_intr)
1405 sdma_desct_intr = SDMA_DESC_INTR;
1407 /* Allocate memory for SendDMA descriptor FIFOs */
1408 for (this_idx = 0; this_idx < num_engines; ++this_idx) {
1409 sde = &dd->per_sdma[this_idx];
1410 sde->dd = dd;
1411 sde->ppd = ppd;
1412 sde->this_idx = this_idx;
1413 sde->descq_cnt = descq_cnt;
1414 sde->desc_avail = sdma_descq_freecnt(sde);
1415 sde->sdma_shift = ilog2(descq_cnt);
1416 sde->sdma_mask = (1 << sde->sdma_shift) - 1;
1418 /* Create a mask specifically for each interrupt source */
1419 sde->int_mask = (u64)1 << (0 * TXE_NUM_SDMA_ENGINES +
1420 this_idx);
1421 sde->progress_mask = (u64)1 << (1 * TXE_NUM_SDMA_ENGINES +
1422 this_idx);
1423 sde->idle_mask = (u64)1 << (2 * TXE_NUM_SDMA_ENGINES +
1424 this_idx);
1425 /* Create a combined mask to cover all 3 interrupt sources */
1426 sde->imask = sde->int_mask | sde->progress_mask |
1427 sde->idle_mask;
1429 spin_lock_init(&sde->tail_lock);
1430 seqlock_init(&sde->head_lock);
1431 spin_lock_init(&sde->senddmactrl_lock);
1432 spin_lock_init(&sde->flushlist_lock);
1433 /* insure there is always a zero bit */
1434 sde->ahg_bits = 0xfffffffe00000000ULL;
1436 sdma_set_state(sde, sdma_state_s00_hw_down);
1438 /* set up reference counting */
1439 kref_init(&sde->state.kref);
1440 init_completion(&sde->state.comp);
1442 INIT_LIST_HEAD(&sde->flushlist);
1443 INIT_LIST_HEAD(&sde->dmawait);
1445 sde->tail_csr =
1446 get_kctxt_csr_addr(dd, this_idx, SD(TAIL));
1448 tasklet_init(&sde->sdma_hw_clean_up_task, sdma_hw_clean_up_task,
1449 (unsigned long)sde);
1451 tasklet_init(&sde->sdma_sw_clean_up_task, sdma_sw_clean_up_task,
1452 (unsigned long)sde);
1453 INIT_WORK(&sde->err_halt_worker, sdma_err_halt_wait);
1454 INIT_WORK(&sde->flush_worker, sdma_field_flush);
1456 sde->progress_check_head = 0;
1458 timer_setup(&sde->err_progress_check_timer,
1459 sdma_err_progress_check, 0);
1461 sde->descq = dma_zalloc_coherent(
1462 &dd->pcidev->dev,
1463 descq_cnt * sizeof(u64[2]),
1464 &sde->descq_phys,
1465 GFP_KERNEL
1467 if (!sde->descq)
1468 goto bail;
1469 sde->tx_ring =
1470 kvzalloc_node(sizeof(struct sdma_txreq *) * descq_cnt,
1471 GFP_KERNEL, dd->node);
1472 if (!sde->tx_ring)
1473 goto bail;
1476 dd->sdma_heads_size = L1_CACHE_BYTES * num_engines;
1477 /* Allocate memory for DMA of head registers to memory */
1478 dd->sdma_heads_dma = dma_zalloc_coherent(
1479 &dd->pcidev->dev,
1480 dd->sdma_heads_size,
1481 &dd->sdma_heads_phys,
1482 GFP_KERNEL
1484 if (!dd->sdma_heads_dma) {
1485 dd_dev_err(dd, "failed to allocate SendDMA head memory\n");
1486 goto bail;
1489 /* Allocate memory for pad */
1490 dd->sdma_pad_dma = dma_zalloc_coherent(
1491 &dd->pcidev->dev,
1492 sizeof(u32),
1493 &dd->sdma_pad_phys,
1494 GFP_KERNEL
1496 if (!dd->sdma_pad_dma) {
1497 dd_dev_err(dd, "failed to allocate SendDMA pad memory\n");
1498 goto bail;
1501 /* assign each engine to different cacheline and init registers */
1502 curr_head = (void *)dd->sdma_heads_dma;
1503 for (this_idx = 0; this_idx < num_engines; ++this_idx) {
1504 unsigned long phys_offset;
1506 sde = &dd->per_sdma[this_idx];
1508 sde->head_dma = curr_head;
1509 curr_head += L1_CACHE_BYTES;
1510 phys_offset = (unsigned long)sde->head_dma -
1511 (unsigned long)dd->sdma_heads_dma;
1512 sde->head_phys = dd->sdma_heads_phys + phys_offset;
1513 init_sdma_regs(sde, per_sdma_credits, idle_cnt);
1515 dd->flags |= HFI1_HAS_SEND_DMA;
1516 dd->flags |= idle_cnt ? HFI1_HAS_SDMA_TIMEOUT : 0;
1517 dd->num_sdma = num_engines;
1518 ret = sdma_map_init(dd, port, ppd->vls_operational, NULL);
1519 if (ret < 0)
1520 goto bail;
1522 tmp_sdma_rht = kzalloc(sizeof(*tmp_sdma_rht), GFP_KERNEL);
1523 if (!tmp_sdma_rht) {
1524 ret = -ENOMEM;
1525 goto bail;
1528 ret = rhashtable_init(tmp_sdma_rht, &sdma_rht_params);
1529 if (ret < 0)
1530 goto bail;
1531 dd->sdma_rht = tmp_sdma_rht;
1533 dd_dev_info(dd, "SDMA num_sdma: %u\n", dd->num_sdma);
1534 return 0;
1536 bail:
1537 sdma_clean(dd, num_engines);
1538 return ret;
1542 * sdma_all_running() - called when the link goes up
1543 * @dd: hfi1_devdata
1545 * This routine moves all engines to the running state.
1547 void sdma_all_running(struct hfi1_devdata *dd)
1549 struct sdma_engine *sde;
1550 unsigned int i;
1552 /* move all engines to running */
1553 for (i = 0; i < dd->num_sdma; ++i) {
1554 sde = &dd->per_sdma[i];
1555 sdma_process_event(sde, sdma_event_e30_go_running);
1560 * sdma_all_idle() - called when the link goes down
1561 * @dd: hfi1_devdata
1563 * This routine moves all engines to the idle state.
1565 void sdma_all_idle(struct hfi1_devdata *dd)
1567 struct sdma_engine *sde;
1568 unsigned int i;
1570 /* idle all engines */
1571 for (i = 0; i < dd->num_sdma; ++i) {
1572 sde = &dd->per_sdma[i];
1573 sdma_process_event(sde, sdma_event_e70_go_idle);
1578 * sdma_start() - called to kick off state processing for all engines
1579 * @dd: hfi1_devdata
1581 * This routine is for kicking off the state processing for all required
1582 * sdma engines. Interrupts need to be working at this point.
1585 void sdma_start(struct hfi1_devdata *dd)
1587 unsigned i;
1588 struct sdma_engine *sde;
1590 /* kick off the engines state processing */
1591 for (i = 0; i < dd->num_sdma; ++i) {
1592 sde = &dd->per_sdma[i];
1593 sdma_process_event(sde, sdma_event_e10_go_hw_start);
1598 * sdma_exit() - used when module is removed
1599 * @dd: hfi1_devdata
1601 void sdma_exit(struct hfi1_devdata *dd)
1603 unsigned this_idx;
1604 struct sdma_engine *sde;
1606 for (this_idx = 0; dd->per_sdma && this_idx < dd->num_sdma;
1607 ++this_idx) {
1608 sde = &dd->per_sdma[this_idx];
1609 if (!list_empty(&sde->dmawait))
1610 dd_dev_err(dd, "sde %u: dmawait list not empty!\n",
1611 sde->this_idx);
1612 sdma_process_event(sde, sdma_event_e00_go_hw_down);
1614 del_timer_sync(&sde->err_progress_check_timer);
1617 * This waits for the state machine to exit so it is not
1618 * necessary to kill the sdma_sw_clean_up_task to make sure
1619 * it is not running.
1621 sdma_finalput(&sde->state);
1626 * unmap the indicated descriptor
1628 static inline void sdma_unmap_desc(
1629 struct hfi1_devdata *dd,
1630 struct sdma_desc *descp)
1632 switch (sdma_mapping_type(descp)) {
1633 case SDMA_MAP_SINGLE:
1634 dma_unmap_single(
1635 &dd->pcidev->dev,
1636 sdma_mapping_addr(descp),
1637 sdma_mapping_len(descp),
1638 DMA_TO_DEVICE);
1639 break;
1640 case SDMA_MAP_PAGE:
1641 dma_unmap_page(
1642 &dd->pcidev->dev,
1643 sdma_mapping_addr(descp),
1644 sdma_mapping_len(descp),
1645 DMA_TO_DEVICE);
1646 break;
1651 * return the mode as indicated by the first
1652 * descriptor in the tx.
1654 static inline u8 ahg_mode(struct sdma_txreq *tx)
1656 return (tx->descp[0].qw[1] & SDMA_DESC1_HEADER_MODE_SMASK)
1657 >> SDMA_DESC1_HEADER_MODE_SHIFT;
1661 * __sdma_txclean() - clean tx of mappings, descp *kmalloc's
1662 * @dd: hfi1_devdata for unmapping
1663 * @tx: tx request to clean
1665 * This is used in the progress routine to clean the tx or
1666 * by the ULP to toss an in-process tx build.
1668 * The code can be called multiple times without issue.
1671 void __sdma_txclean(
1672 struct hfi1_devdata *dd,
1673 struct sdma_txreq *tx)
1675 u16 i;
1677 if (tx->num_desc) {
1678 u8 skip = 0, mode = ahg_mode(tx);
1680 /* unmap first */
1681 sdma_unmap_desc(dd, &tx->descp[0]);
1682 /* determine number of AHG descriptors to skip */
1683 if (mode > SDMA_AHG_APPLY_UPDATE1)
1684 skip = mode >> 1;
1685 for (i = 1 + skip; i < tx->num_desc; i++)
1686 sdma_unmap_desc(dd, &tx->descp[i]);
1687 tx->num_desc = 0;
1689 kfree(tx->coalesce_buf);
1690 tx->coalesce_buf = NULL;
1691 /* kmalloc'ed descp */
1692 if (unlikely(tx->desc_limit > ARRAY_SIZE(tx->descs))) {
1693 tx->desc_limit = ARRAY_SIZE(tx->descs);
1694 kfree(tx->descp);
1698 static inline u16 sdma_gethead(struct sdma_engine *sde)
1700 struct hfi1_devdata *dd = sde->dd;
1701 int use_dmahead;
1702 u16 hwhead;
1704 #ifdef CONFIG_SDMA_VERBOSITY
1705 dd_dev_err(sde->dd, "CONFIG SDMA(%u) %s:%d %s()\n",
1706 sde->this_idx, slashstrip(__FILE__), __LINE__, __func__);
1707 #endif
1709 retry:
1710 use_dmahead = HFI1_CAP_IS_KSET(USE_SDMA_HEAD) && __sdma_running(sde) &&
1711 (dd->flags & HFI1_HAS_SDMA_TIMEOUT);
1712 hwhead = use_dmahead ?
1713 (u16)le64_to_cpu(*sde->head_dma) :
1714 (u16)read_sde_csr(sde, SD(HEAD));
1716 if (unlikely(HFI1_CAP_IS_KSET(SDMA_HEAD_CHECK))) {
1717 u16 cnt;
1718 u16 swtail;
1719 u16 swhead;
1720 int sane;
1722 swhead = sde->descq_head & sde->sdma_mask;
1723 /* this code is really bad for cache line trading */
1724 swtail = READ_ONCE(sde->descq_tail) & sde->sdma_mask;
1725 cnt = sde->descq_cnt;
1727 if (swhead < swtail)
1728 /* not wrapped */
1729 sane = (hwhead >= swhead) & (hwhead <= swtail);
1730 else if (swhead > swtail)
1731 /* wrapped around */
1732 sane = ((hwhead >= swhead) && (hwhead < cnt)) ||
1733 (hwhead <= swtail);
1734 else
1735 /* empty */
1736 sane = (hwhead == swhead);
1738 if (unlikely(!sane)) {
1739 dd_dev_err(dd, "SDMA(%u) bad head (%s) hwhd=%hu swhd=%hu swtl=%hu cnt=%hu\n",
1740 sde->this_idx,
1741 use_dmahead ? "dma" : "kreg",
1742 hwhead, swhead, swtail, cnt);
1743 if (use_dmahead) {
1744 /* try one more time, using csr */
1745 use_dmahead = 0;
1746 goto retry;
1748 /* proceed as if no progress */
1749 hwhead = swhead;
1752 return hwhead;
1756 * This is called when there are send DMA descriptors that might be
1757 * available.
1759 * This is called with head_lock held.
1761 static void sdma_desc_avail(struct sdma_engine *sde, uint avail)
1763 struct iowait *wait, *nw;
1764 struct iowait *waits[SDMA_WAIT_BATCH_SIZE];
1765 uint i, n = 0, seq, max_idx = 0;
1766 struct sdma_txreq *stx;
1767 struct hfi1_ibdev *dev = &sde->dd->verbs_dev;
1768 u8 max_starved_cnt = 0;
1770 #ifdef CONFIG_SDMA_VERBOSITY
1771 dd_dev_err(sde->dd, "CONFIG SDMA(%u) %s:%d %s()\n", sde->this_idx,
1772 slashstrip(__FILE__), __LINE__, __func__);
1773 dd_dev_err(sde->dd, "avail: %u\n", avail);
1774 #endif
1776 do {
1777 seq = read_seqbegin(&dev->iowait_lock);
1778 if (!list_empty(&sde->dmawait)) {
1779 /* at least one item */
1780 write_seqlock(&dev->iowait_lock);
1781 /* Harvest waiters wanting DMA descriptors */
1782 list_for_each_entry_safe(
1783 wait,
1785 &sde->dmawait,
1786 list) {
1787 u16 num_desc = 0;
1789 if (!wait->wakeup)
1790 continue;
1791 if (n == ARRAY_SIZE(waits))
1792 break;
1793 if (!list_empty(&wait->tx_head)) {
1794 stx = list_first_entry(
1795 &wait->tx_head,
1796 struct sdma_txreq,
1797 list);
1798 num_desc = stx->num_desc;
1800 if (num_desc > avail)
1801 break;
1802 avail -= num_desc;
1803 /* Find the most starved wait memeber */
1804 iowait_starve_find_max(wait, &max_starved_cnt,
1805 n, &max_idx);
1806 list_del_init(&wait->list);
1807 waits[n++] = wait;
1809 write_sequnlock(&dev->iowait_lock);
1810 break;
1812 } while (read_seqretry(&dev->iowait_lock, seq));
1814 /* Schedule the most starved one first */
1815 if (n)
1816 waits[max_idx]->wakeup(waits[max_idx], SDMA_AVAIL_REASON);
1818 for (i = 0; i < n; i++)
1819 if (i != max_idx)
1820 waits[i]->wakeup(waits[i], SDMA_AVAIL_REASON);
1823 /* head_lock must be held */
1824 static void sdma_make_progress(struct sdma_engine *sde, u64 status)
1826 struct sdma_txreq *txp = NULL;
1827 int progress = 0;
1828 u16 hwhead, swhead;
1829 int idle_check_done = 0;
1831 hwhead = sdma_gethead(sde);
1833 /* The reason for some of the complexity of this code is that
1834 * not all descriptors have corresponding txps. So, we have to
1835 * be able to skip over descs until we wander into the range of
1836 * the next txp on the list.
1839 retry:
1840 txp = get_txhead(sde);
1841 swhead = sde->descq_head & sde->sdma_mask;
1842 trace_hfi1_sdma_progress(sde, hwhead, swhead, txp);
1843 while (swhead != hwhead) {
1844 /* advance head, wrap if needed */
1845 swhead = ++sde->descq_head & sde->sdma_mask;
1847 /* if now past this txp's descs, do the callback */
1848 if (txp && txp->next_descq_idx == swhead) {
1849 /* remove from list */
1850 sde->tx_ring[sde->tx_head++ & sde->sdma_mask] = NULL;
1851 complete_tx(sde, txp, SDMA_TXREQ_S_OK);
1852 /* see if there is another txp */
1853 txp = get_txhead(sde);
1855 trace_hfi1_sdma_progress(sde, hwhead, swhead, txp);
1856 progress++;
1860 * The SDMA idle interrupt is not guaranteed to be ordered with respect
1861 * to updates to the the dma_head location in host memory. The head
1862 * value read might not be fully up to date. If there are pending
1863 * descriptors and the SDMA idle interrupt fired then read from the
1864 * CSR SDMA head instead to get the latest value from the hardware.
1865 * The hardware SDMA head should be read at most once in this invocation
1866 * of sdma_make_progress(..) which is ensured by idle_check_done flag
1868 if ((status & sde->idle_mask) && !idle_check_done) {
1869 u16 swtail;
1871 swtail = READ_ONCE(sde->descq_tail) & sde->sdma_mask;
1872 if (swtail != hwhead) {
1873 hwhead = (u16)read_sde_csr(sde, SD(HEAD));
1874 idle_check_done = 1;
1875 goto retry;
1879 sde->last_status = status;
1880 if (progress)
1881 sdma_desc_avail(sde, sdma_descq_freecnt(sde));
1885 * sdma_engine_interrupt() - interrupt handler for engine
1886 * @sde: sdma engine
1887 * @status: sdma interrupt reason
1889 * Status is a mask of the 3 possible interrupts for this engine. It will
1890 * contain bits _only_ for this SDMA engine. It will contain at least one
1891 * bit, it may contain more.
1893 void sdma_engine_interrupt(struct sdma_engine *sde, u64 status)
1895 trace_hfi1_sdma_engine_interrupt(sde, status);
1896 write_seqlock(&sde->head_lock);
1897 sdma_set_desc_cnt(sde, sdma_desct_intr);
1898 if (status & sde->idle_mask)
1899 sde->idle_int_cnt++;
1900 else if (status & sde->progress_mask)
1901 sde->progress_int_cnt++;
1902 else if (status & sde->int_mask)
1903 sde->sdma_int_cnt++;
1904 sdma_make_progress(sde, status);
1905 write_sequnlock(&sde->head_lock);
1909 * sdma_engine_error() - error handler for engine
1910 * @sde: sdma engine
1911 * @status: sdma interrupt reason
1913 void sdma_engine_error(struct sdma_engine *sde, u64 status)
1915 unsigned long flags;
1917 #ifdef CONFIG_SDMA_VERBOSITY
1918 dd_dev_err(sde->dd, "CONFIG SDMA(%u) error status 0x%llx state %s\n",
1919 sde->this_idx,
1920 (unsigned long long)status,
1921 sdma_state_names[sde->state.current_state]);
1922 #endif
1923 spin_lock_irqsave(&sde->tail_lock, flags);
1924 write_seqlock(&sde->head_lock);
1925 if (status & ALL_SDMA_ENG_HALT_ERRS)
1926 __sdma_process_event(sde, sdma_event_e60_hw_halted);
1927 if (status & ~SD(ENG_ERR_STATUS_SDMA_HALT_ERR_SMASK)) {
1928 dd_dev_err(sde->dd,
1929 "SDMA (%u) engine error: 0x%llx state %s\n",
1930 sde->this_idx,
1931 (unsigned long long)status,
1932 sdma_state_names[sde->state.current_state]);
1933 dump_sdma_state(sde);
1935 write_sequnlock(&sde->head_lock);
1936 spin_unlock_irqrestore(&sde->tail_lock, flags);
1939 static void sdma_sendctrl(struct sdma_engine *sde, unsigned op)
1941 u64 set_senddmactrl = 0;
1942 u64 clr_senddmactrl = 0;
1943 unsigned long flags;
1945 #ifdef CONFIG_SDMA_VERBOSITY
1946 dd_dev_err(sde->dd, "CONFIG SDMA(%u) senddmactrl E=%d I=%d H=%d C=%d\n",
1947 sde->this_idx,
1948 (op & SDMA_SENDCTRL_OP_ENABLE) ? 1 : 0,
1949 (op & SDMA_SENDCTRL_OP_INTENABLE) ? 1 : 0,
1950 (op & SDMA_SENDCTRL_OP_HALT) ? 1 : 0,
1951 (op & SDMA_SENDCTRL_OP_CLEANUP) ? 1 : 0);
1952 #endif
1954 if (op & SDMA_SENDCTRL_OP_ENABLE)
1955 set_senddmactrl |= SD(CTRL_SDMA_ENABLE_SMASK);
1956 else
1957 clr_senddmactrl |= SD(CTRL_SDMA_ENABLE_SMASK);
1959 if (op & SDMA_SENDCTRL_OP_INTENABLE)
1960 set_senddmactrl |= SD(CTRL_SDMA_INT_ENABLE_SMASK);
1961 else
1962 clr_senddmactrl |= SD(CTRL_SDMA_INT_ENABLE_SMASK);
1964 if (op & SDMA_SENDCTRL_OP_HALT)
1965 set_senddmactrl |= SD(CTRL_SDMA_HALT_SMASK);
1966 else
1967 clr_senddmactrl |= SD(CTRL_SDMA_HALT_SMASK);
1969 spin_lock_irqsave(&sde->senddmactrl_lock, flags);
1971 sde->p_senddmactrl |= set_senddmactrl;
1972 sde->p_senddmactrl &= ~clr_senddmactrl;
1974 if (op & SDMA_SENDCTRL_OP_CLEANUP)
1975 write_sde_csr(sde, SD(CTRL),
1976 sde->p_senddmactrl |
1977 SD(CTRL_SDMA_CLEANUP_SMASK));
1978 else
1979 write_sde_csr(sde, SD(CTRL), sde->p_senddmactrl);
1981 spin_unlock_irqrestore(&sde->senddmactrl_lock, flags);
1983 #ifdef CONFIG_SDMA_VERBOSITY
1984 sdma_dumpstate(sde);
1985 #endif
1988 static void sdma_setlengen(struct sdma_engine *sde)
1990 #ifdef CONFIG_SDMA_VERBOSITY
1991 dd_dev_err(sde->dd, "CONFIG SDMA(%u) %s:%d %s()\n",
1992 sde->this_idx, slashstrip(__FILE__), __LINE__, __func__);
1993 #endif
1996 * Set SendDmaLenGen and clear-then-set the MSB of the generation
1997 * count to enable generation checking and load the internal
1998 * generation counter.
2000 write_sde_csr(sde, SD(LEN_GEN),
2001 (sde->descq_cnt / 64) << SD(LEN_GEN_LENGTH_SHIFT));
2002 write_sde_csr(sde, SD(LEN_GEN),
2003 ((sde->descq_cnt / 64) << SD(LEN_GEN_LENGTH_SHIFT)) |
2004 (4ULL << SD(LEN_GEN_GENERATION_SHIFT)));
2007 static inline void sdma_update_tail(struct sdma_engine *sde, u16 tail)
2009 /* Commit writes to memory and advance the tail on the chip */
2010 smp_wmb(); /* see get_txhead() */
2011 writeq(tail, sde->tail_csr);
2015 * This is called when changing to state s10_hw_start_up_halt_wait as
2016 * a result of send buffer errors or send DMA descriptor errors.
2018 static void sdma_hw_start_up(struct sdma_engine *sde)
2020 u64 reg;
2022 #ifdef CONFIG_SDMA_VERBOSITY
2023 dd_dev_err(sde->dd, "CONFIG SDMA(%u) %s:%d %s()\n",
2024 sde->this_idx, slashstrip(__FILE__), __LINE__, __func__);
2025 #endif
2027 sdma_setlengen(sde);
2028 sdma_update_tail(sde, 0); /* Set SendDmaTail */
2029 *sde->head_dma = 0;
2031 reg = SD(ENG_ERR_CLEAR_SDMA_HEADER_REQUEST_FIFO_UNC_ERR_MASK) <<
2032 SD(ENG_ERR_CLEAR_SDMA_HEADER_REQUEST_FIFO_UNC_ERR_SHIFT);
2033 write_sde_csr(sde, SD(ENG_ERR_CLEAR), reg);
2037 * set_sdma_integrity
2039 * Set the SEND_DMA_CHECK_ENABLE register for send DMA engine 'sde'.
2041 static void set_sdma_integrity(struct sdma_engine *sde)
2043 struct hfi1_devdata *dd = sde->dd;
2045 write_sde_csr(sde, SD(CHECK_ENABLE),
2046 hfi1_pkt_base_sdma_integrity(dd));
2049 static void init_sdma_regs(
2050 struct sdma_engine *sde,
2051 u32 credits,
2052 uint idle_cnt)
2054 u8 opval, opmask;
2055 #ifdef CONFIG_SDMA_VERBOSITY
2056 struct hfi1_devdata *dd = sde->dd;
2058 dd_dev_err(dd, "CONFIG SDMA(%u) %s:%d %s()\n",
2059 sde->this_idx, slashstrip(__FILE__), __LINE__, __func__);
2060 #endif
2062 write_sde_csr(sde, SD(BASE_ADDR), sde->descq_phys);
2063 sdma_setlengen(sde);
2064 sdma_update_tail(sde, 0); /* Set SendDmaTail */
2065 write_sde_csr(sde, SD(RELOAD_CNT), idle_cnt);
2066 write_sde_csr(sde, SD(DESC_CNT), 0);
2067 write_sde_csr(sde, SD(HEAD_ADDR), sde->head_phys);
2068 write_sde_csr(sde, SD(MEMORY),
2069 ((u64)credits << SD(MEMORY_SDMA_MEMORY_CNT_SHIFT)) |
2070 ((u64)(credits * sde->this_idx) <<
2071 SD(MEMORY_SDMA_MEMORY_INDEX_SHIFT)));
2072 write_sde_csr(sde, SD(ENG_ERR_MASK), ~0ull);
2073 set_sdma_integrity(sde);
2074 opmask = OPCODE_CHECK_MASK_DISABLED;
2075 opval = OPCODE_CHECK_VAL_DISABLED;
2076 write_sde_csr(sde, SD(CHECK_OPCODE),
2077 (opmask << SEND_CTXT_CHECK_OPCODE_MASK_SHIFT) |
2078 (opval << SEND_CTXT_CHECK_OPCODE_VALUE_SHIFT));
2081 #ifdef CONFIG_SDMA_VERBOSITY
2083 #define sdma_dumpstate_helper0(reg) do { \
2084 csr = read_csr(sde->dd, reg); \
2085 dd_dev_err(sde->dd, "%36s 0x%016llx\n", #reg, csr); \
2086 } while (0)
2088 #define sdma_dumpstate_helper(reg) do { \
2089 csr = read_sde_csr(sde, reg); \
2090 dd_dev_err(sde->dd, "%36s[%02u] 0x%016llx\n", \
2091 #reg, sde->this_idx, csr); \
2092 } while (0)
2094 #define sdma_dumpstate_helper2(reg) do { \
2095 csr = read_csr(sde->dd, reg + (8 * i)); \
2096 dd_dev_err(sde->dd, "%33s_%02u 0x%016llx\n", \
2097 #reg, i, csr); \
2098 } while (0)
2100 void sdma_dumpstate(struct sdma_engine *sde)
2102 u64 csr;
2103 unsigned i;
2105 sdma_dumpstate_helper(SD(CTRL));
2106 sdma_dumpstate_helper(SD(STATUS));
2107 sdma_dumpstate_helper0(SD(ERR_STATUS));
2108 sdma_dumpstate_helper0(SD(ERR_MASK));
2109 sdma_dumpstate_helper(SD(ENG_ERR_STATUS));
2110 sdma_dumpstate_helper(SD(ENG_ERR_MASK));
2112 for (i = 0; i < CCE_NUM_INT_CSRS; ++i) {
2113 sdma_dumpstate_helper2(CCE_INT_STATUS);
2114 sdma_dumpstate_helper2(CCE_INT_MASK);
2115 sdma_dumpstate_helper2(CCE_INT_BLOCKED);
2118 sdma_dumpstate_helper(SD(TAIL));
2119 sdma_dumpstate_helper(SD(HEAD));
2120 sdma_dumpstate_helper(SD(PRIORITY_THLD));
2121 sdma_dumpstate_helper(SD(IDLE_CNT));
2122 sdma_dumpstate_helper(SD(RELOAD_CNT));
2123 sdma_dumpstate_helper(SD(DESC_CNT));
2124 sdma_dumpstate_helper(SD(DESC_FETCHED_CNT));
2125 sdma_dumpstate_helper(SD(MEMORY));
2126 sdma_dumpstate_helper0(SD(ENGINES));
2127 sdma_dumpstate_helper0(SD(MEM_SIZE));
2128 /* sdma_dumpstate_helper(SEND_EGRESS_SEND_DMA_STATUS); */
2129 sdma_dumpstate_helper(SD(BASE_ADDR));
2130 sdma_dumpstate_helper(SD(LEN_GEN));
2131 sdma_dumpstate_helper(SD(HEAD_ADDR));
2132 sdma_dumpstate_helper(SD(CHECK_ENABLE));
2133 sdma_dumpstate_helper(SD(CHECK_VL));
2134 sdma_dumpstate_helper(SD(CHECK_JOB_KEY));
2135 sdma_dumpstate_helper(SD(CHECK_PARTITION_KEY));
2136 sdma_dumpstate_helper(SD(CHECK_SLID));
2137 sdma_dumpstate_helper(SD(CHECK_OPCODE));
2139 #endif
2141 static void dump_sdma_state(struct sdma_engine *sde)
2143 struct hw_sdma_desc *descqp;
2144 u64 desc[2];
2145 u64 addr;
2146 u8 gen;
2147 u16 len;
2148 u16 head, tail, cnt;
2150 head = sde->descq_head & sde->sdma_mask;
2151 tail = sde->descq_tail & sde->sdma_mask;
2152 cnt = sdma_descq_freecnt(sde);
2154 dd_dev_err(sde->dd,
2155 "SDMA (%u) descq_head: %u descq_tail: %u freecnt: %u FLE %d\n",
2156 sde->this_idx, head, tail, cnt,
2157 !list_empty(&sde->flushlist));
2159 /* print info for each entry in the descriptor queue */
2160 while (head != tail) {
2161 char flags[6] = { 'x', 'x', 'x', 'x', 0 };
2163 descqp = &sde->descq[head];
2164 desc[0] = le64_to_cpu(descqp->qw[0]);
2165 desc[1] = le64_to_cpu(descqp->qw[1]);
2166 flags[0] = (desc[1] & SDMA_DESC1_INT_REQ_FLAG) ? 'I' : '-';
2167 flags[1] = (desc[1] & SDMA_DESC1_HEAD_TO_HOST_FLAG) ?
2168 'H' : '-';
2169 flags[2] = (desc[0] & SDMA_DESC0_FIRST_DESC_FLAG) ? 'F' : '-';
2170 flags[3] = (desc[0] & SDMA_DESC0_LAST_DESC_FLAG) ? 'L' : '-';
2171 addr = (desc[0] >> SDMA_DESC0_PHY_ADDR_SHIFT)
2172 & SDMA_DESC0_PHY_ADDR_MASK;
2173 gen = (desc[1] >> SDMA_DESC1_GENERATION_SHIFT)
2174 & SDMA_DESC1_GENERATION_MASK;
2175 len = (desc[0] >> SDMA_DESC0_BYTE_COUNT_SHIFT)
2176 & SDMA_DESC0_BYTE_COUNT_MASK;
2177 dd_dev_err(sde->dd,
2178 "SDMA sdmadesc[%u]: flags:%s addr:0x%016llx gen:%u len:%u bytes\n",
2179 head, flags, addr, gen, len);
2180 dd_dev_err(sde->dd,
2181 "\tdesc0:0x%016llx desc1 0x%016llx\n",
2182 desc[0], desc[1]);
2183 if (desc[0] & SDMA_DESC0_FIRST_DESC_FLAG)
2184 dd_dev_err(sde->dd,
2185 "\taidx: %u amode: %u alen: %u\n",
2186 (u8)((desc[1] &
2187 SDMA_DESC1_HEADER_INDEX_SMASK) >>
2188 SDMA_DESC1_HEADER_INDEX_SHIFT),
2189 (u8)((desc[1] &
2190 SDMA_DESC1_HEADER_MODE_SMASK) >>
2191 SDMA_DESC1_HEADER_MODE_SHIFT),
2192 (u8)((desc[1] &
2193 SDMA_DESC1_HEADER_DWS_SMASK) >>
2194 SDMA_DESC1_HEADER_DWS_SHIFT));
2195 head++;
2196 head &= sde->sdma_mask;
2200 #define SDE_FMT \
2201 "SDE %u CPU %d STE %s C 0x%llx S 0x%016llx E 0x%llx T(HW) 0x%llx T(SW) 0x%x H(HW) 0x%llx H(SW) 0x%x H(D) 0x%llx DM 0x%llx GL 0x%llx R 0x%llx LIS 0x%llx AHGI 0x%llx TXT %u TXH %u DT %u DH %u FLNE %d DQF %u SLC 0x%llx\n"
2203 * sdma_seqfile_dump_sde() - debugfs dump of sde
2204 * @s: seq file
2205 * @sde: send dma engine to dump
2207 * This routine dumps the sde to the indicated seq file.
2209 void sdma_seqfile_dump_sde(struct seq_file *s, struct sdma_engine *sde)
2211 u16 head, tail;
2212 struct hw_sdma_desc *descqp;
2213 u64 desc[2];
2214 u64 addr;
2215 u8 gen;
2216 u16 len;
2218 head = sde->descq_head & sde->sdma_mask;
2219 tail = READ_ONCE(sde->descq_tail) & sde->sdma_mask;
2220 seq_printf(s, SDE_FMT, sde->this_idx,
2221 sde->cpu,
2222 sdma_state_name(sde->state.current_state),
2223 (unsigned long long)read_sde_csr(sde, SD(CTRL)),
2224 (unsigned long long)read_sde_csr(sde, SD(STATUS)),
2225 (unsigned long long)read_sde_csr(sde, SD(ENG_ERR_STATUS)),
2226 (unsigned long long)read_sde_csr(sde, SD(TAIL)), tail,
2227 (unsigned long long)read_sde_csr(sde, SD(HEAD)), head,
2228 (unsigned long long)le64_to_cpu(*sde->head_dma),
2229 (unsigned long long)read_sde_csr(sde, SD(MEMORY)),
2230 (unsigned long long)read_sde_csr(sde, SD(LEN_GEN)),
2231 (unsigned long long)read_sde_csr(sde, SD(RELOAD_CNT)),
2232 (unsigned long long)sde->last_status,
2233 (unsigned long long)sde->ahg_bits,
2234 sde->tx_tail,
2235 sde->tx_head,
2236 sde->descq_tail,
2237 sde->descq_head,
2238 !list_empty(&sde->flushlist),
2239 sde->descq_full_count,
2240 (unsigned long long)read_sde_csr(sde, SEND_DMA_CHECK_SLID));
2242 /* print info for each entry in the descriptor queue */
2243 while (head != tail) {
2244 char flags[6] = { 'x', 'x', 'x', 'x', 0 };
2246 descqp = &sde->descq[head];
2247 desc[0] = le64_to_cpu(descqp->qw[0]);
2248 desc[1] = le64_to_cpu(descqp->qw[1]);
2249 flags[0] = (desc[1] & SDMA_DESC1_INT_REQ_FLAG) ? 'I' : '-';
2250 flags[1] = (desc[1] & SDMA_DESC1_HEAD_TO_HOST_FLAG) ?
2251 'H' : '-';
2252 flags[2] = (desc[0] & SDMA_DESC0_FIRST_DESC_FLAG) ? 'F' : '-';
2253 flags[3] = (desc[0] & SDMA_DESC0_LAST_DESC_FLAG) ? 'L' : '-';
2254 addr = (desc[0] >> SDMA_DESC0_PHY_ADDR_SHIFT)
2255 & SDMA_DESC0_PHY_ADDR_MASK;
2256 gen = (desc[1] >> SDMA_DESC1_GENERATION_SHIFT)
2257 & SDMA_DESC1_GENERATION_MASK;
2258 len = (desc[0] >> SDMA_DESC0_BYTE_COUNT_SHIFT)
2259 & SDMA_DESC0_BYTE_COUNT_MASK;
2260 seq_printf(s,
2261 "\tdesc[%u]: flags:%s addr:0x%016llx gen:%u len:%u bytes\n",
2262 head, flags, addr, gen, len);
2263 if (desc[0] & SDMA_DESC0_FIRST_DESC_FLAG)
2264 seq_printf(s, "\t\tahgidx: %u ahgmode: %u\n",
2265 (u8)((desc[1] &
2266 SDMA_DESC1_HEADER_INDEX_SMASK) >>
2267 SDMA_DESC1_HEADER_INDEX_SHIFT),
2268 (u8)((desc[1] &
2269 SDMA_DESC1_HEADER_MODE_SMASK) >>
2270 SDMA_DESC1_HEADER_MODE_SHIFT));
2271 head = (head + 1) & sde->sdma_mask;
2276 * add the generation number into
2277 * the qw1 and return
2279 static inline u64 add_gen(struct sdma_engine *sde, u64 qw1)
2281 u8 generation = (sde->descq_tail >> sde->sdma_shift) & 3;
2283 qw1 &= ~SDMA_DESC1_GENERATION_SMASK;
2284 qw1 |= ((u64)generation & SDMA_DESC1_GENERATION_MASK)
2285 << SDMA_DESC1_GENERATION_SHIFT;
2286 return qw1;
2290 * This routine submits the indicated tx
2292 * Space has already been guaranteed and
2293 * tail side of ring is locked.
2295 * The hardware tail update is done
2296 * in the caller and that is facilitated
2297 * by returning the new tail.
2299 * There is special case logic for ahg
2300 * to not add the generation number for
2301 * up to 2 descriptors that follow the
2302 * first descriptor.
2305 static inline u16 submit_tx(struct sdma_engine *sde, struct sdma_txreq *tx)
2307 int i;
2308 u16 tail;
2309 struct sdma_desc *descp = tx->descp;
2310 u8 skip = 0, mode = ahg_mode(tx);
2312 tail = sde->descq_tail & sde->sdma_mask;
2313 sde->descq[tail].qw[0] = cpu_to_le64(descp->qw[0]);
2314 sde->descq[tail].qw[1] = cpu_to_le64(add_gen(sde, descp->qw[1]));
2315 trace_hfi1_sdma_descriptor(sde, descp->qw[0], descp->qw[1],
2316 tail, &sde->descq[tail]);
2317 tail = ++sde->descq_tail & sde->sdma_mask;
2318 descp++;
2319 if (mode > SDMA_AHG_APPLY_UPDATE1)
2320 skip = mode >> 1;
2321 for (i = 1; i < tx->num_desc; i++, descp++) {
2322 u64 qw1;
2324 sde->descq[tail].qw[0] = cpu_to_le64(descp->qw[0]);
2325 if (skip) {
2326 /* edits don't have generation */
2327 qw1 = descp->qw[1];
2328 skip--;
2329 } else {
2330 /* replace generation with real one for non-edits */
2331 qw1 = add_gen(sde, descp->qw[1]);
2333 sde->descq[tail].qw[1] = cpu_to_le64(qw1);
2334 trace_hfi1_sdma_descriptor(sde, descp->qw[0], qw1,
2335 tail, &sde->descq[tail]);
2336 tail = ++sde->descq_tail & sde->sdma_mask;
2338 tx->next_descq_idx = tail;
2339 #ifdef CONFIG_HFI1_DEBUG_SDMA_ORDER
2340 tx->sn = sde->tail_sn++;
2341 trace_hfi1_sdma_in_sn(sde, tx->sn);
2342 WARN_ON_ONCE(sde->tx_ring[sde->tx_tail & sde->sdma_mask]);
2343 #endif
2344 sde->tx_ring[sde->tx_tail++ & sde->sdma_mask] = tx;
2345 sde->desc_avail -= tx->num_desc;
2346 return tail;
2350 * Check for progress
2352 static int sdma_check_progress(
2353 struct sdma_engine *sde,
2354 struct iowait *wait,
2355 struct sdma_txreq *tx,
2356 bool pkts_sent)
2358 int ret;
2360 sde->desc_avail = sdma_descq_freecnt(sde);
2361 if (tx->num_desc <= sde->desc_avail)
2362 return -EAGAIN;
2363 /* pulse the head_lock */
2364 if (wait && wait->sleep) {
2365 unsigned seq;
2367 seq = raw_seqcount_begin(
2368 (const seqcount_t *)&sde->head_lock.seqcount);
2369 ret = wait->sleep(sde, wait, tx, seq, pkts_sent);
2370 if (ret == -EAGAIN)
2371 sde->desc_avail = sdma_descq_freecnt(sde);
2372 } else {
2373 ret = -EBUSY;
2375 return ret;
2379 * sdma_send_txreq() - submit a tx req to ring
2380 * @sde: sdma engine to use
2381 * @wait: wait structure to use when full (may be NULL)
2382 * @tx: sdma_txreq to submit
2383 * @pkts_sent: has any packet been sent yet?
2385 * The call submits the tx into the ring. If a iowait structure is non-NULL
2386 * the packet will be queued to the list in wait.
2388 * Return:
2389 * 0 - Success, -EINVAL - sdma_txreq incomplete, -EBUSY - no space in
2390 * ring (wait == NULL)
2391 * -EIOCBQUEUED - tx queued to iowait, -ECOMM bad sdma state
2393 int sdma_send_txreq(struct sdma_engine *sde,
2394 struct iowait *wait,
2395 struct sdma_txreq *tx,
2396 bool pkts_sent)
2398 int ret = 0;
2399 u16 tail;
2400 unsigned long flags;
2402 /* user should have supplied entire packet */
2403 if (unlikely(tx->tlen))
2404 return -EINVAL;
2405 tx->wait = wait;
2406 spin_lock_irqsave(&sde->tail_lock, flags);
2407 retry:
2408 if (unlikely(!__sdma_running(sde)))
2409 goto unlock_noconn;
2410 if (unlikely(tx->num_desc > sde->desc_avail))
2411 goto nodesc;
2412 tail = submit_tx(sde, tx);
2413 if (wait)
2414 iowait_sdma_inc(wait);
2415 sdma_update_tail(sde, tail);
2416 unlock:
2417 spin_unlock_irqrestore(&sde->tail_lock, flags);
2418 return ret;
2419 unlock_noconn:
2420 if (wait)
2421 iowait_sdma_inc(wait);
2422 tx->next_descq_idx = 0;
2423 #ifdef CONFIG_HFI1_DEBUG_SDMA_ORDER
2424 tx->sn = sde->tail_sn++;
2425 trace_hfi1_sdma_in_sn(sde, tx->sn);
2426 #endif
2427 spin_lock(&sde->flushlist_lock);
2428 list_add_tail(&tx->list, &sde->flushlist);
2429 spin_unlock(&sde->flushlist_lock);
2430 if (wait) {
2431 wait->tx_count++;
2432 wait->count += tx->num_desc;
2434 schedule_work(&sde->flush_worker);
2435 ret = -ECOMM;
2436 goto unlock;
2437 nodesc:
2438 ret = sdma_check_progress(sde, wait, tx, pkts_sent);
2439 if (ret == -EAGAIN) {
2440 ret = 0;
2441 goto retry;
2443 sde->descq_full_count++;
2444 goto unlock;
2448 * sdma_send_txlist() - submit a list of tx req to ring
2449 * @sde: sdma engine to use
2450 * @wait: wait structure to use when full (may be NULL)
2451 * @tx_list: list of sdma_txreqs to submit
2452 * @count: pointer to a u32 which, after return will contain the total number of
2453 * sdma_txreqs removed from the tx_list. This will include sdma_txreqs
2454 * whose SDMA descriptors are submitted to the ring and the sdma_txreqs
2455 * which are added to SDMA engine flush list if the SDMA engine state is
2456 * not running.
2458 * The call submits the list into the ring.
2460 * If the iowait structure is non-NULL and not equal to the iowait list
2461 * the unprocessed part of the list will be appended to the list in wait.
2463 * In all cases, the tx_list will be updated so the head of the tx_list is
2464 * the list of descriptors that have yet to be transmitted.
2466 * The intent of this call is to provide a more efficient
2467 * way of submitting multiple packets to SDMA while holding the tail
2468 * side locking.
2470 * Return:
2471 * 0 - Success,
2472 * -EINVAL - sdma_txreq incomplete, -EBUSY - no space in ring (wait == NULL)
2473 * -EIOCBQUEUED - tx queued to iowait, -ECOMM bad sdma state
2475 int sdma_send_txlist(struct sdma_engine *sde, struct iowait *wait,
2476 struct list_head *tx_list, u32 *count_out)
2478 struct sdma_txreq *tx, *tx_next;
2479 int ret = 0;
2480 unsigned long flags;
2481 u16 tail = INVALID_TAIL;
2482 u32 submit_count = 0, flush_count = 0, total_count;
2484 spin_lock_irqsave(&sde->tail_lock, flags);
2485 retry:
2486 list_for_each_entry_safe(tx, tx_next, tx_list, list) {
2487 tx->wait = wait;
2488 if (unlikely(!__sdma_running(sde)))
2489 goto unlock_noconn;
2490 if (unlikely(tx->num_desc > sde->desc_avail))
2491 goto nodesc;
2492 if (unlikely(tx->tlen)) {
2493 ret = -EINVAL;
2494 goto update_tail;
2496 list_del_init(&tx->list);
2497 tail = submit_tx(sde, tx);
2498 submit_count++;
2499 if (tail != INVALID_TAIL &&
2500 (submit_count & SDMA_TAIL_UPDATE_THRESH) == 0) {
2501 sdma_update_tail(sde, tail);
2502 tail = INVALID_TAIL;
2505 update_tail:
2506 total_count = submit_count + flush_count;
2507 if (wait) {
2508 iowait_sdma_add(wait, total_count);
2509 iowait_starve_clear(submit_count > 0, wait);
2511 if (tail != INVALID_TAIL)
2512 sdma_update_tail(sde, tail);
2513 spin_unlock_irqrestore(&sde->tail_lock, flags);
2514 *count_out = total_count;
2515 return ret;
2516 unlock_noconn:
2517 spin_lock(&sde->flushlist_lock);
2518 list_for_each_entry_safe(tx, tx_next, tx_list, list) {
2519 tx->wait = wait;
2520 list_del_init(&tx->list);
2521 tx->next_descq_idx = 0;
2522 #ifdef CONFIG_HFI1_DEBUG_SDMA_ORDER
2523 tx->sn = sde->tail_sn++;
2524 trace_hfi1_sdma_in_sn(sde, tx->sn);
2525 #endif
2526 list_add_tail(&tx->list, &sde->flushlist);
2527 flush_count++;
2528 if (wait) {
2529 wait->tx_count++;
2530 wait->count += tx->num_desc;
2533 spin_unlock(&sde->flushlist_lock);
2534 schedule_work(&sde->flush_worker);
2535 ret = -ECOMM;
2536 goto update_tail;
2537 nodesc:
2538 ret = sdma_check_progress(sde, wait, tx, submit_count > 0);
2539 if (ret == -EAGAIN) {
2540 ret = 0;
2541 goto retry;
2543 sde->descq_full_count++;
2544 goto update_tail;
2547 static void sdma_process_event(struct sdma_engine *sde, enum sdma_events event)
2549 unsigned long flags;
2551 spin_lock_irqsave(&sde->tail_lock, flags);
2552 write_seqlock(&sde->head_lock);
2554 __sdma_process_event(sde, event);
2556 if (sde->state.current_state == sdma_state_s99_running)
2557 sdma_desc_avail(sde, sdma_descq_freecnt(sde));
2559 write_sequnlock(&sde->head_lock);
2560 spin_unlock_irqrestore(&sde->tail_lock, flags);
2563 static void __sdma_process_event(struct sdma_engine *sde,
2564 enum sdma_events event)
2566 struct sdma_state *ss = &sde->state;
2567 int need_progress = 0;
2569 /* CONFIG SDMA temporary */
2570 #ifdef CONFIG_SDMA_VERBOSITY
2571 dd_dev_err(sde->dd, "CONFIG SDMA(%u) [%s] %s\n", sde->this_idx,
2572 sdma_state_names[ss->current_state],
2573 sdma_event_names[event]);
2574 #endif
2576 switch (ss->current_state) {
2577 case sdma_state_s00_hw_down:
2578 switch (event) {
2579 case sdma_event_e00_go_hw_down:
2580 break;
2581 case sdma_event_e30_go_running:
2583 * If down, but running requested (usually result
2584 * of link up, then we need to start up.
2585 * This can happen when hw down is requested while
2586 * bringing the link up with traffic active on
2587 * 7220, e.g.
2589 ss->go_s99_running = 1;
2590 /* fall through -- and start dma engine */
2591 case sdma_event_e10_go_hw_start:
2592 /* This reference means the state machine is started */
2593 sdma_get(&sde->state);
2594 sdma_set_state(sde,
2595 sdma_state_s10_hw_start_up_halt_wait);
2596 break;
2597 case sdma_event_e15_hw_halt_done:
2598 break;
2599 case sdma_event_e25_hw_clean_up_done:
2600 break;
2601 case sdma_event_e40_sw_cleaned:
2602 sdma_sw_tear_down(sde);
2603 break;
2604 case sdma_event_e50_hw_cleaned:
2605 break;
2606 case sdma_event_e60_hw_halted:
2607 break;
2608 case sdma_event_e70_go_idle:
2609 break;
2610 case sdma_event_e80_hw_freeze:
2611 break;
2612 case sdma_event_e81_hw_frozen:
2613 break;
2614 case sdma_event_e82_hw_unfreeze:
2615 break;
2616 case sdma_event_e85_link_down:
2617 break;
2618 case sdma_event_e90_sw_halted:
2619 break;
2621 break;
2623 case sdma_state_s10_hw_start_up_halt_wait:
2624 switch (event) {
2625 case sdma_event_e00_go_hw_down:
2626 sdma_set_state(sde, sdma_state_s00_hw_down);
2627 sdma_sw_tear_down(sde);
2628 break;
2629 case sdma_event_e10_go_hw_start:
2630 break;
2631 case sdma_event_e15_hw_halt_done:
2632 sdma_set_state(sde,
2633 sdma_state_s15_hw_start_up_clean_wait);
2634 sdma_start_hw_clean_up(sde);
2635 break;
2636 case sdma_event_e25_hw_clean_up_done:
2637 break;
2638 case sdma_event_e30_go_running:
2639 ss->go_s99_running = 1;
2640 break;
2641 case sdma_event_e40_sw_cleaned:
2642 break;
2643 case sdma_event_e50_hw_cleaned:
2644 break;
2645 case sdma_event_e60_hw_halted:
2646 schedule_work(&sde->err_halt_worker);
2647 break;
2648 case sdma_event_e70_go_idle:
2649 ss->go_s99_running = 0;
2650 break;
2651 case sdma_event_e80_hw_freeze:
2652 break;
2653 case sdma_event_e81_hw_frozen:
2654 break;
2655 case sdma_event_e82_hw_unfreeze:
2656 break;
2657 case sdma_event_e85_link_down:
2658 break;
2659 case sdma_event_e90_sw_halted:
2660 break;
2662 break;
2664 case sdma_state_s15_hw_start_up_clean_wait:
2665 switch (event) {
2666 case sdma_event_e00_go_hw_down:
2667 sdma_set_state(sde, sdma_state_s00_hw_down);
2668 sdma_sw_tear_down(sde);
2669 break;
2670 case sdma_event_e10_go_hw_start:
2671 break;
2672 case sdma_event_e15_hw_halt_done:
2673 break;
2674 case sdma_event_e25_hw_clean_up_done:
2675 sdma_hw_start_up(sde);
2676 sdma_set_state(sde, ss->go_s99_running ?
2677 sdma_state_s99_running :
2678 sdma_state_s20_idle);
2679 break;
2680 case sdma_event_e30_go_running:
2681 ss->go_s99_running = 1;
2682 break;
2683 case sdma_event_e40_sw_cleaned:
2684 break;
2685 case sdma_event_e50_hw_cleaned:
2686 break;
2687 case sdma_event_e60_hw_halted:
2688 break;
2689 case sdma_event_e70_go_idle:
2690 ss->go_s99_running = 0;
2691 break;
2692 case sdma_event_e80_hw_freeze:
2693 break;
2694 case sdma_event_e81_hw_frozen:
2695 break;
2696 case sdma_event_e82_hw_unfreeze:
2697 break;
2698 case sdma_event_e85_link_down:
2699 break;
2700 case sdma_event_e90_sw_halted:
2701 break;
2703 break;
2705 case sdma_state_s20_idle:
2706 switch (event) {
2707 case sdma_event_e00_go_hw_down:
2708 sdma_set_state(sde, sdma_state_s00_hw_down);
2709 sdma_sw_tear_down(sde);
2710 break;
2711 case sdma_event_e10_go_hw_start:
2712 break;
2713 case sdma_event_e15_hw_halt_done:
2714 break;
2715 case sdma_event_e25_hw_clean_up_done:
2716 break;
2717 case sdma_event_e30_go_running:
2718 sdma_set_state(sde, sdma_state_s99_running);
2719 ss->go_s99_running = 1;
2720 break;
2721 case sdma_event_e40_sw_cleaned:
2722 break;
2723 case sdma_event_e50_hw_cleaned:
2724 break;
2725 case sdma_event_e60_hw_halted:
2726 sdma_set_state(sde, sdma_state_s50_hw_halt_wait);
2727 schedule_work(&sde->err_halt_worker);
2728 break;
2729 case sdma_event_e70_go_idle:
2730 break;
2731 case sdma_event_e85_link_down:
2732 /* fall through */
2733 case sdma_event_e80_hw_freeze:
2734 sdma_set_state(sde, sdma_state_s80_hw_freeze);
2735 atomic_dec(&sde->dd->sdma_unfreeze_count);
2736 wake_up_interruptible(&sde->dd->sdma_unfreeze_wq);
2737 break;
2738 case sdma_event_e81_hw_frozen:
2739 break;
2740 case sdma_event_e82_hw_unfreeze:
2741 break;
2742 case sdma_event_e90_sw_halted:
2743 break;
2745 break;
2747 case sdma_state_s30_sw_clean_up_wait:
2748 switch (event) {
2749 case sdma_event_e00_go_hw_down:
2750 sdma_set_state(sde, sdma_state_s00_hw_down);
2751 break;
2752 case sdma_event_e10_go_hw_start:
2753 break;
2754 case sdma_event_e15_hw_halt_done:
2755 break;
2756 case sdma_event_e25_hw_clean_up_done:
2757 break;
2758 case sdma_event_e30_go_running:
2759 ss->go_s99_running = 1;
2760 break;
2761 case sdma_event_e40_sw_cleaned:
2762 sdma_set_state(sde, sdma_state_s40_hw_clean_up_wait);
2763 sdma_start_hw_clean_up(sde);
2764 break;
2765 case sdma_event_e50_hw_cleaned:
2766 break;
2767 case sdma_event_e60_hw_halted:
2768 break;
2769 case sdma_event_e70_go_idle:
2770 ss->go_s99_running = 0;
2771 break;
2772 case sdma_event_e80_hw_freeze:
2773 break;
2774 case sdma_event_e81_hw_frozen:
2775 break;
2776 case sdma_event_e82_hw_unfreeze:
2777 break;
2778 case sdma_event_e85_link_down:
2779 ss->go_s99_running = 0;
2780 break;
2781 case sdma_event_e90_sw_halted:
2782 break;
2784 break;
2786 case sdma_state_s40_hw_clean_up_wait:
2787 switch (event) {
2788 case sdma_event_e00_go_hw_down:
2789 sdma_set_state(sde, sdma_state_s00_hw_down);
2790 tasklet_hi_schedule(&sde->sdma_sw_clean_up_task);
2791 break;
2792 case sdma_event_e10_go_hw_start:
2793 break;
2794 case sdma_event_e15_hw_halt_done:
2795 break;
2796 case sdma_event_e25_hw_clean_up_done:
2797 sdma_hw_start_up(sde);
2798 sdma_set_state(sde, ss->go_s99_running ?
2799 sdma_state_s99_running :
2800 sdma_state_s20_idle);
2801 break;
2802 case sdma_event_e30_go_running:
2803 ss->go_s99_running = 1;
2804 break;
2805 case sdma_event_e40_sw_cleaned:
2806 break;
2807 case sdma_event_e50_hw_cleaned:
2808 break;
2809 case sdma_event_e60_hw_halted:
2810 break;
2811 case sdma_event_e70_go_idle:
2812 ss->go_s99_running = 0;
2813 break;
2814 case sdma_event_e80_hw_freeze:
2815 break;
2816 case sdma_event_e81_hw_frozen:
2817 break;
2818 case sdma_event_e82_hw_unfreeze:
2819 break;
2820 case sdma_event_e85_link_down:
2821 ss->go_s99_running = 0;
2822 break;
2823 case sdma_event_e90_sw_halted:
2824 break;
2826 break;
2828 case sdma_state_s50_hw_halt_wait:
2829 switch (event) {
2830 case sdma_event_e00_go_hw_down:
2831 sdma_set_state(sde, sdma_state_s00_hw_down);
2832 tasklet_hi_schedule(&sde->sdma_sw_clean_up_task);
2833 break;
2834 case sdma_event_e10_go_hw_start:
2835 break;
2836 case sdma_event_e15_hw_halt_done:
2837 sdma_set_state(sde, sdma_state_s30_sw_clean_up_wait);
2838 tasklet_hi_schedule(&sde->sdma_sw_clean_up_task);
2839 break;
2840 case sdma_event_e25_hw_clean_up_done:
2841 break;
2842 case sdma_event_e30_go_running:
2843 ss->go_s99_running = 1;
2844 break;
2845 case sdma_event_e40_sw_cleaned:
2846 break;
2847 case sdma_event_e50_hw_cleaned:
2848 break;
2849 case sdma_event_e60_hw_halted:
2850 schedule_work(&sde->err_halt_worker);
2851 break;
2852 case sdma_event_e70_go_idle:
2853 ss->go_s99_running = 0;
2854 break;
2855 case sdma_event_e80_hw_freeze:
2856 break;
2857 case sdma_event_e81_hw_frozen:
2858 break;
2859 case sdma_event_e82_hw_unfreeze:
2860 break;
2861 case sdma_event_e85_link_down:
2862 ss->go_s99_running = 0;
2863 break;
2864 case sdma_event_e90_sw_halted:
2865 break;
2867 break;
2869 case sdma_state_s60_idle_halt_wait:
2870 switch (event) {
2871 case sdma_event_e00_go_hw_down:
2872 sdma_set_state(sde, sdma_state_s00_hw_down);
2873 tasklet_hi_schedule(&sde->sdma_sw_clean_up_task);
2874 break;
2875 case sdma_event_e10_go_hw_start:
2876 break;
2877 case sdma_event_e15_hw_halt_done:
2878 sdma_set_state(sde, sdma_state_s30_sw_clean_up_wait);
2879 tasklet_hi_schedule(&sde->sdma_sw_clean_up_task);
2880 break;
2881 case sdma_event_e25_hw_clean_up_done:
2882 break;
2883 case sdma_event_e30_go_running:
2884 ss->go_s99_running = 1;
2885 break;
2886 case sdma_event_e40_sw_cleaned:
2887 break;
2888 case sdma_event_e50_hw_cleaned:
2889 break;
2890 case sdma_event_e60_hw_halted:
2891 schedule_work(&sde->err_halt_worker);
2892 break;
2893 case sdma_event_e70_go_idle:
2894 ss->go_s99_running = 0;
2895 break;
2896 case sdma_event_e80_hw_freeze:
2897 break;
2898 case sdma_event_e81_hw_frozen:
2899 break;
2900 case sdma_event_e82_hw_unfreeze:
2901 break;
2902 case sdma_event_e85_link_down:
2903 break;
2904 case sdma_event_e90_sw_halted:
2905 break;
2907 break;
2909 case sdma_state_s80_hw_freeze:
2910 switch (event) {
2911 case sdma_event_e00_go_hw_down:
2912 sdma_set_state(sde, sdma_state_s00_hw_down);
2913 tasklet_hi_schedule(&sde->sdma_sw_clean_up_task);
2914 break;
2915 case sdma_event_e10_go_hw_start:
2916 break;
2917 case sdma_event_e15_hw_halt_done:
2918 break;
2919 case sdma_event_e25_hw_clean_up_done:
2920 break;
2921 case sdma_event_e30_go_running:
2922 ss->go_s99_running = 1;
2923 break;
2924 case sdma_event_e40_sw_cleaned:
2925 break;
2926 case sdma_event_e50_hw_cleaned:
2927 break;
2928 case sdma_event_e60_hw_halted:
2929 break;
2930 case sdma_event_e70_go_idle:
2931 ss->go_s99_running = 0;
2932 break;
2933 case sdma_event_e80_hw_freeze:
2934 break;
2935 case sdma_event_e81_hw_frozen:
2936 sdma_set_state(sde, sdma_state_s82_freeze_sw_clean);
2937 tasklet_hi_schedule(&sde->sdma_sw_clean_up_task);
2938 break;
2939 case sdma_event_e82_hw_unfreeze:
2940 break;
2941 case sdma_event_e85_link_down:
2942 break;
2943 case sdma_event_e90_sw_halted:
2944 break;
2946 break;
2948 case sdma_state_s82_freeze_sw_clean:
2949 switch (event) {
2950 case sdma_event_e00_go_hw_down:
2951 sdma_set_state(sde, sdma_state_s00_hw_down);
2952 tasklet_hi_schedule(&sde->sdma_sw_clean_up_task);
2953 break;
2954 case sdma_event_e10_go_hw_start:
2955 break;
2956 case sdma_event_e15_hw_halt_done:
2957 break;
2958 case sdma_event_e25_hw_clean_up_done:
2959 break;
2960 case sdma_event_e30_go_running:
2961 ss->go_s99_running = 1;
2962 break;
2963 case sdma_event_e40_sw_cleaned:
2964 /* notify caller this engine is done cleaning */
2965 atomic_dec(&sde->dd->sdma_unfreeze_count);
2966 wake_up_interruptible(&sde->dd->sdma_unfreeze_wq);
2967 break;
2968 case sdma_event_e50_hw_cleaned:
2969 break;
2970 case sdma_event_e60_hw_halted:
2971 break;
2972 case sdma_event_e70_go_idle:
2973 ss->go_s99_running = 0;
2974 break;
2975 case sdma_event_e80_hw_freeze:
2976 break;
2977 case sdma_event_e81_hw_frozen:
2978 break;
2979 case sdma_event_e82_hw_unfreeze:
2980 sdma_hw_start_up(sde);
2981 sdma_set_state(sde, ss->go_s99_running ?
2982 sdma_state_s99_running :
2983 sdma_state_s20_idle);
2984 break;
2985 case sdma_event_e85_link_down:
2986 break;
2987 case sdma_event_e90_sw_halted:
2988 break;
2990 break;
2992 case sdma_state_s99_running:
2993 switch (event) {
2994 case sdma_event_e00_go_hw_down:
2995 sdma_set_state(sde, sdma_state_s00_hw_down);
2996 tasklet_hi_schedule(&sde->sdma_sw_clean_up_task);
2997 break;
2998 case sdma_event_e10_go_hw_start:
2999 break;
3000 case sdma_event_e15_hw_halt_done:
3001 break;
3002 case sdma_event_e25_hw_clean_up_done:
3003 break;
3004 case sdma_event_e30_go_running:
3005 break;
3006 case sdma_event_e40_sw_cleaned:
3007 break;
3008 case sdma_event_e50_hw_cleaned:
3009 break;
3010 case sdma_event_e60_hw_halted:
3011 need_progress = 1;
3012 sdma_err_progress_check_schedule(sde);
3013 /* fall through */
3014 case sdma_event_e90_sw_halted:
3016 * SW initiated halt does not perform engines
3017 * progress check
3019 sdma_set_state(sde, sdma_state_s50_hw_halt_wait);
3020 schedule_work(&sde->err_halt_worker);
3021 break;
3022 case sdma_event_e70_go_idle:
3023 sdma_set_state(sde, sdma_state_s60_idle_halt_wait);
3024 break;
3025 case sdma_event_e85_link_down:
3026 ss->go_s99_running = 0;
3027 /* fall through */
3028 case sdma_event_e80_hw_freeze:
3029 sdma_set_state(sde, sdma_state_s80_hw_freeze);
3030 atomic_dec(&sde->dd->sdma_unfreeze_count);
3031 wake_up_interruptible(&sde->dd->sdma_unfreeze_wq);
3032 break;
3033 case sdma_event_e81_hw_frozen:
3034 break;
3035 case sdma_event_e82_hw_unfreeze:
3036 break;
3038 break;
3041 ss->last_event = event;
3042 if (need_progress)
3043 sdma_make_progress(sde, 0);
3047 * _extend_sdma_tx_descs() - helper to extend txreq
3049 * This is called once the initial nominal allocation
3050 * of descriptors in the sdma_txreq is exhausted.
3052 * The code will bump the allocation up to the max
3053 * of MAX_DESC (64) descriptors. There doesn't seem
3054 * much point in an interim step. The last descriptor
3055 * is reserved for coalesce buffer in order to support
3056 * cases where input packet has >MAX_DESC iovecs.
3059 static int _extend_sdma_tx_descs(struct hfi1_devdata *dd, struct sdma_txreq *tx)
3061 int i;
3063 /* Handle last descriptor */
3064 if (unlikely((tx->num_desc == (MAX_DESC - 1)))) {
3065 /* if tlen is 0, it is for padding, release last descriptor */
3066 if (!tx->tlen) {
3067 tx->desc_limit = MAX_DESC;
3068 } else if (!tx->coalesce_buf) {
3069 /* allocate coalesce buffer with space for padding */
3070 tx->coalesce_buf = kmalloc(tx->tlen + sizeof(u32),
3071 GFP_ATOMIC);
3072 if (!tx->coalesce_buf)
3073 goto enomem;
3074 tx->coalesce_idx = 0;
3076 return 0;
3079 if (unlikely(tx->num_desc == MAX_DESC))
3080 goto enomem;
3082 tx->descp = kmalloc_array(
3083 MAX_DESC,
3084 sizeof(struct sdma_desc),
3085 GFP_ATOMIC);
3086 if (!tx->descp)
3087 goto enomem;
3089 /* reserve last descriptor for coalescing */
3090 tx->desc_limit = MAX_DESC - 1;
3091 /* copy ones already built */
3092 for (i = 0; i < tx->num_desc; i++)
3093 tx->descp[i] = tx->descs[i];
3094 return 0;
3095 enomem:
3096 __sdma_txclean(dd, tx);
3097 return -ENOMEM;
3101 * ext_coal_sdma_tx_descs() - extend or coalesce sdma tx descriptors
3103 * This is called once the initial nominal allocation of descriptors
3104 * in the sdma_txreq is exhausted.
3106 * This function calls _extend_sdma_tx_descs to extend or allocate
3107 * coalesce buffer. If there is a allocated coalesce buffer, it will
3108 * copy the input packet data into the coalesce buffer. It also adds
3109 * coalesce buffer descriptor once when whole packet is received.
3111 * Return:
3112 * <0 - error
3113 * 0 - coalescing, don't populate descriptor
3114 * 1 - continue with populating descriptor
3116 int ext_coal_sdma_tx_descs(struct hfi1_devdata *dd, struct sdma_txreq *tx,
3117 int type, void *kvaddr, struct page *page,
3118 unsigned long offset, u16 len)
3120 int pad_len, rval;
3121 dma_addr_t addr;
3123 rval = _extend_sdma_tx_descs(dd, tx);
3124 if (rval) {
3125 __sdma_txclean(dd, tx);
3126 return rval;
3129 /* If coalesce buffer is allocated, copy data into it */
3130 if (tx->coalesce_buf) {
3131 if (type == SDMA_MAP_NONE) {
3132 __sdma_txclean(dd, tx);
3133 return -EINVAL;
3136 if (type == SDMA_MAP_PAGE) {
3137 kvaddr = kmap(page);
3138 kvaddr += offset;
3139 } else if (WARN_ON(!kvaddr)) {
3140 __sdma_txclean(dd, tx);
3141 return -EINVAL;
3144 memcpy(tx->coalesce_buf + tx->coalesce_idx, kvaddr, len);
3145 tx->coalesce_idx += len;
3146 if (type == SDMA_MAP_PAGE)
3147 kunmap(page);
3149 /* If there is more data, return */
3150 if (tx->tlen - tx->coalesce_idx)
3151 return 0;
3153 /* Whole packet is received; add any padding */
3154 pad_len = tx->packet_len & (sizeof(u32) - 1);
3155 if (pad_len) {
3156 pad_len = sizeof(u32) - pad_len;
3157 memset(tx->coalesce_buf + tx->coalesce_idx, 0, pad_len);
3158 /* padding is taken care of for coalescing case */
3159 tx->packet_len += pad_len;
3160 tx->tlen += pad_len;
3163 /* dma map the coalesce buffer */
3164 addr = dma_map_single(&dd->pcidev->dev,
3165 tx->coalesce_buf,
3166 tx->tlen,
3167 DMA_TO_DEVICE);
3169 if (unlikely(dma_mapping_error(&dd->pcidev->dev, addr))) {
3170 __sdma_txclean(dd, tx);
3171 return -ENOSPC;
3174 /* Add descriptor for coalesce buffer */
3175 tx->desc_limit = MAX_DESC;
3176 return _sdma_txadd_daddr(dd, SDMA_MAP_SINGLE, tx,
3177 addr, tx->tlen);
3180 return 1;
3183 /* Update sdes when the lmc changes */
3184 void sdma_update_lmc(struct hfi1_devdata *dd, u64 mask, u32 lid)
3186 struct sdma_engine *sde;
3187 int i;
3188 u64 sreg;
3190 sreg = ((mask & SD(CHECK_SLID_MASK_MASK)) <<
3191 SD(CHECK_SLID_MASK_SHIFT)) |
3192 (((lid & mask) & SD(CHECK_SLID_VALUE_MASK)) <<
3193 SD(CHECK_SLID_VALUE_SHIFT));
3195 for (i = 0; i < dd->num_sdma; i++) {
3196 hfi1_cdbg(LINKVERB, "SendDmaEngine[%d].SLID_CHECK = 0x%x",
3197 i, (u32)sreg);
3198 sde = &dd->per_sdma[i];
3199 write_sde_csr(sde, SD(CHECK_SLID), sreg);
3203 /* tx not dword sized - pad */
3204 int _pad_sdma_tx_descs(struct hfi1_devdata *dd, struct sdma_txreq *tx)
3206 int rval = 0;
3208 tx->num_desc++;
3209 if ((unlikely(tx->num_desc == tx->desc_limit))) {
3210 rval = _extend_sdma_tx_descs(dd, tx);
3211 if (rval) {
3212 __sdma_txclean(dd, tx);
3213 return rval;
3216 /* finish the one just added */
3217 make_tx_sdma_desc(
3219 SDMA_MAP_NONE,
3220 dd->sdma_pad_phys,
3221 sizeof(u32) - (tx->packet_len & (sizeof(u32) - 1)));
3222 _sdma_close_tx(dd, tx);
3223 return rval;
3227 * Add ahg to the sdma_txreq
3229 * The logic will consume up to 3
3230 * descriptors at the beginning of
3231 * sdma_txreq.
3233 void _sdma_txreq_ahgadd(
3234 struct sdma_txreq *tx,
3235 u8 num_ahg,
3236 u8 ahg_entry,
3237 u32 *ahg,
3238 u8 ahg_hlen)
3240 u32 i, shift = 0, desc = 0;
3241 u8 mode;
3243 WARN_ON_ONCE(num_ahg > 9 || (ahg_hlen & 3) || ahg_hlen == 4);
3244 /* compute mode */
3245 if (num_ahg == 1)
3246 mode = SDMA_AHG_APPLY_UPDATE1;
3247 else if (num_ahg <= 5)
3248 mode = SDMA_AHG_APPLY_UPDATE2;
3249 else
3250 mode = SDMA_AHG_APPLY_UPDATE3;
3251 tx->num_desc++;
3252 /* initialize to consumed descriptors to zero */
3253 switch (mode) {
3254 case SDMA_AHG_APPLY_UPDATE3:
3255 tx->num_desc++;
3256 tx->descs[2].qw[0] = 0;
3257 tx->descs[2].qw[1] = 0;
3258 /* FALLTHROUGH */
3259 case SDMA_AHG_APPLY_UPDATE2:
3260 tx->num_desc++;
3261 tx->descs[1].qw[0] = 0;
3262 tx->descs[1].qw[1] = 0;
3263 break;
3265 ahg_hlen >>= 2;
3266 tx->descs[0].qw[1] |=
3267 (((u64)ahg_entry & SDMA_DESC1_HEADER_INDEX_MASK)
3268 << SDMA_DESC1_HEADER_INDEX_SHIFT) |
3269 (((u64)ahg_hlen & SDMA_DESC1_HEADER_DWS_MASK)
3270 << SDMA_DESC1_HEADER_DWS_SHIFT) |
3271 (((u64)mode & SDMA_DESC1_HEADER_MODE_MASK)
3272 << SDMA_DESC1_HEADER_MODE_SHIFT) |
3273 (((u64)ahg[0] & SDMA_DESC1_HEADER_UPDATE1_MASK)
3274 << SDMA_DESC1_HEADER_UPDATE1_SHIFT);
3275 for (i = 0; i < (num_ahg - 1); i++) {
3276 if (!shift && !(i & 2))
3277 desc++;
3278 tx->descs[desc].qw[!!(i & 2)] |=
3279 (((u64)ahg[i + 1])
3280 << shift);
3281 shift = (shift + 32) & 63;
3286 * sdma_ahg_alloc - allocate an AHG entry
3287 * @sde: engine to allocate from
3289 * Return:
3290 * 0-31 when successful, -EOPNOTSUPP if AHG is not enabled,
3291 * -ENOSPC if an entry is not available
3293 int sdma_ahg_alloc(struct sdma_engine *sde)
3295 int nr;
3296 int oldbit;
3298 if (!sde) {
3299 trace_hfi1_ahg_allocate(sde, -EINVAL);
3300 return -EINVAL;
3302 while (1) {
3303 nr = ffz(READ_ONCE(sde->ahg_bits));
3304 if (nr > 31) {
3305 trace_hfi1_ahg_allocate(sde, -ENOSPC);
3306 return -ENOSPC;
3308 oldbit = test_and_set_bit(nr, &sde->ahg_bits);
3309 if (!oldbit)
3310 break;
3311 cpu_relax();
3313 trace_hfi1_ahg_allocate(sde, nr);
3314 return nr;
3318 * sdma_ahg_free - free an AHG entry
3319 * @sde: engine to return AHG entry
3320 * @ahg_index: index to free
3322 * This routine frees the indicate AHG entry.
3324 void sdma_ahg_free(struct sdma_engine *sde, int ahg_index)
3326 if (!sde)
3327 return;
3328 trace_hfi1_ahg_deallocate(sde, ahg_index);
3329 if (ahg_index < 0 || ahg_index > 31)
3330 return;
3331 clear_bit(ahg_index, &sde->ahg_bits);
3335 * SPC freeze handling for SDMA engines. Called when the driver knows
3336 * the SPC is going into a freeze but before the freeze is fully
3337 * settled. Generally an error interrupt.
3339 * This event will pull the engine out of running so no more entries can be
3340 * added to the engine's queue.
3342 void sdma_freeze_notify(struct hfi1_devdata *dd, int link_down)
3344 int i;
3345 enum sdma_events event = link_down ? sdma_event_e85_link_down :
3346 sdma_event_e80_hw_freeze;
3348 /* set up the wait but do not wait here */
3349 atomic_set(&dd->sdma_unfreeze_count, dd->num_sdma);
3351 /* tell all engines to stop running and wait */
3352 for (i = 0; i < dd->num_sdma; i++)
3353 sdma_process_event(&dd->per_sdma[i], event);
3355 /* sdma_freeze() will wait for all engines to have stopped */
3359 * SPC freeze handling for SDMA engines. Called when the driver knows
3360 * the SPC is fully frozen.
3362 void sdma_freeze(struct hfi1_devdata *dd)
3364 int i;
3365 int ret;
3368 * Make sure all engines have moved out of the running state before
3369 * continuing.
3371 ret = wait_event_interruptible(dd->sdma_unfreeze_wq,
3372 atomic_read(&dd->sdma_unfreeze_count) <=
3374 /* interrupted or count is negative, then unloading - just exit */
3375 if (ret || atomic_read(&dd->sdma_unfreeze_count) < 0)
3376 return;
3378 /* set up the count for the next wait */
3379 atomic_set(&dd->sdma_unfreeze_count, dd->num_sdma);
3381 /* tell all engines that the SPC is frozen, they can start cleaning */
3382 for (i = 0; i < dd->num_sdma; i++)
3383 sdma_process_event(&dd->per_sdma[i], sdma_event_e81_hw_frozen);
3386 * Wait for everyone to finish software clean before exiting. The
3387 * software clean will read engine CSRs, so must be completed before
3388 * the next step, which will clear the engine CSRs.
3390 (void)wait_event_interruptible(dd->sdma_unfreeze_wq,
3391 atomic_read(&dd->sdma_unfreeze_count) <= 0);
3392 /* no need to check results - done no matter what */
3396 * SPC freeze handling for the SDMA engines. Called after the SPC is unfrozen.
3398 * The SPC freeze acts like a SDMA halt and a hardware clean combined. All
3399 * that is left is a software clean. We could do it after the SPC is fully
3400 * frozen, but then we'd have to add another state to wait for the unfreeze.
3401 * Instead, just defer the software clean until the unfreeze step.
3403 void sdma_unfreeze(struct hfi1_devdata *dd)
3405 int i;
3407 /* tell all engines start freeze clean up */
3408 for (i = 0; i < dd->num_sdma; i++)
3409 sdma_process_event(&dd->per_sdma[i],
3410 sdma_event_e82_hw_unfreeze);
3414 * _sdma_engine_progress_schedule() - schedule progress on engine
3415 * @sde: sdma_engine to schedule progress
3418 void _sdma_engine_progress_schedule(
3419 struct sdma_engine *sde)
3421 trace_hfi1_sdma_engine_progress(sde, sde->progress_mask);
3422 /* assume we have selected a good cpu */
3423 write_csr(sde->dd,
3424 CCE_INT_FORCE + (8 * (IS_SDMA_START / 64)),
3425 sde->progress_mask);