2 * Copyright(c) 2015, 2016 Intel Corporation.
4 * This file is provided under a dual BSD/GPLv2 license. When using or
5 * redistributing this file, you may do so under either license.
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of version 2 of the GNU General Public License as
11 * published by the Free Software Foundation.
13 * This program is distributed in the hope that it will be useful, but
14 * WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
16 * General Public License for more details.
20 * Redistribution and use in source and binary forms, with or without
21 * modification, are permitted provided that the following conditions
24 * - Redistributions of source code must retain the above copyright
25 * notice, this list of conditions and the following disclaimer.
26 * - Redistributions in binary form must reproduce the above copyright
27 * notice, this list of conditions and the following disclaimer in
28 * the documentation and/or other materials provided with the
30 * - Neither the name of Intel Corporation nor the names of its
31 * contributors may be used to endorse or promote products derived
32 * from this software without specific prior written permission.
34 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
35 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
36 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
37 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
38 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
39 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
40 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
41 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
42 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
43 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
44 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
48 #include <linux/spinlock.h>
49 #include <linux/seqlock.h>
50 #include <linux/netdevice.h>
51 #include <linux/moduleparam.h>
52 #include <linux/bitops.h>
53 #include <linux/timer.h>
54 #include <linux/vmalloc.h>
55 #include <linux/highmem.h>
64 /* must be a power of 2 >= 64 <= 32768 */
65 #define SDMA_DESCQ_CNT 2048
66 #define SDMA_DESC_INTR 64
67 #define INVALID_TAIL 0xffff
69 static uint sdma_descq_cnt
= SDMA_DESCQ_CNT
;
70 module_param(sdma_descq_cnt
, uint
, S_IRUGO
);
71 MODULE_PARM_DESC(sdma_descq_cnt
, "Number of SDMA descq entries");
73 static uint sdma_idle_cnt
= 250;
74 module_param(sdma_idle_cnt
, uint
, S_IRUGO
);
75 MODULE_PARM_DESC(sdma_idle_cnt
, "sdma interrupt idle delay (ns,default 250)");
78 module_param_named(num_sdma
, mod_num_sdma
, uint
, S_IRUGO
);
79 MODULE_PARM_DESC(num_sdma
, "Set max number SDMA engines to use");
81 static uint sdma_desct_intr
= SDMA_DESC_INTR
;
82 module_param_named(desct_intr
, sdma_desct_intr
, uint
, S_IRUGO
| S_IWUSR
);
83 MODULE_PARM_DESC(desct_intr
, "Number of SDMA descriptor before interrupt");
85 #define SDMA_WAIT_BATCH_SIZE 20
86 /* max wait time for a SDMA engine to indicate it has halted */
87 #define SDMA_ERR_HALT_TIMEOUT 10 /* ms */
88 /* all SDMA engine errors that cause a halt */
90 #define SD(name) SEND_DMA_##name
91 #define ALL_SDMA_ENG_HALT_ERRS \
92 (SD(ENG_ERR_STATUS_SDMA_WRONG_DW_ERR_SMASK) \
93 | SD(ENG_ERR_STATUS_SDMA_GEN_MISMATCH_ERR_SMASK) \
94 | SD(ENG_ERR_STATUS_SDMA_TOO_LONG_ERR_SMASK) \
95 | SD(ENG_ERR_STATUS_SDMA_TAIL_OUT_OF_BOUNDS_ERR_SMASK) \
96 | SD(ENG_ERR_STATUS_SDMA_FIRST_DESC_ERR_SMASK) \
97 | SD(ENG_ERR_STATUS_SDMA_MEM_READ_ERR_SMASK) \
98 | SD(ENG_ERR_STATUS_SDMA_HALT_ERR_SMASK) \
99 | SD(ENG_ERR_STATUS_SDMA_LENGTH_MISMATCH_ERR_SMASK) \
100 | SD(ENG_ERR_STATUS_SDMA_PACKET_DESC_OVERFLOW_ERR_SMASK) \
101 | SD(ENG_ERR_STATUS_SDMA_HEADER_SELECT_ERR_SMASK) \
102 | SD(ENG_ERR_STATUS_SDMA_HEADER_ADDRESS_ERR_SMASK) \
103 | SD(ENG_ERR_STATUS_SDMA_HEADER_LENGTH_ERR_SMASK) \
104 | SD(ENG_ERR_STATUS_SDMA_TIMEOUT_ERR_SMASK) \
105 | SD(ENG_ERR_STATUS_SDMA_DESC_TABLE_UNC_ERR_SMASK) \
106 | SD(ENG_ERR_STATUS_SDMA_ASSEMBLY_UNC_ERR_SMASK) \
107 | SD(ENG_ERR_STATUS_SDMA_PACKET_TRACKING_UNC_ERR_SMASK) \
108 | SD(ENG_ERR_STATUS_SDMA_HEADER_STORAGE_UNC_ERR_SMASK) \
109 | SD(ENG_ERR_STATUS_SDMA_HEADER_REQUEST_FIFO_UNC_ERR_SMASK))
111 /* sdma_sendctrl operations */
112 #define SDMA_SENDCTRL_OP_ENABLE BIT(0)
113 #define SDMA_SENDCTRL_OP_INTENABLE BIT(1)
114 #define SDMA_SENDCTRL_OP_HALT BIT(2)
115 #define SDMA_SENDCTRL_OP_CLEANUP BIT(3)
117 /* handle long defines */
118 #define SDMA_EGRESS_PACKET_OCCUPANCY_SMASK \
119 SEND_EGRESS_SEND_DMA_STATUS_SDMA_EGRESS_PACKET_OCCUPANCY_SMASK
120 #define SDMA_EGRESS_PACKET_OCCUPANCY_SHIFT \
121 SEND_EGRESS_SEND_DMA_STATUS_SDMA_EGRESS_PACKET_OCCUPANCY_SHIFT
123 static const char * const sdma_state_names
[] = {
124 [sdma_state_s00_hw_down
] = "s00_HwDown",
125 [sdma_state_s10_hw_start_up_halt_wait
] = "s10_HwStartUpHaltWait",
126 [sdma_state_s15_hw_start_up_clean_wait
] = "s15_HwStartUpCleanWait",
127 [sdma_state_s20_idle
] = "s20_Idle",
128 [sdma_state_s30_sw_clean_up_wait
] = "s30_SwCleanUpWait",
129 [sdma_state_s40_hw_clean_up_wait
] = "s40_HwCleanUpWait",
130 [sdma_state_s50_hw_halt_wait
] = "s50_HwHaltWait",
131 [sdma_state_s60_idle_halt_wait
] = "s60_IdleHaltWait",
132 [sdma_state_s80_hw_freeze
] = "s80_HwFreeze",
133 [sdma_state_s82_freeze_sw_clean
] = "s82_FreezeSwClean",
134 [sdma_state_s99_running
] = "s99_Running",
137 #ifdef CONFIG_SDMA_VERBOSITY
138 static const char * const sdma_event_names
[] = {
139 [sdma_event_e00_go_hw_down
] = "e00_GoHwDown",
140 [sdma_event_e10_go_hw_start
] = "e10_GoHwStart",
141 [sdma_event_e15_hw_halt_done
] = "e15_HwHaltDone",
142 [sdma_event_e25_hw_clean_up_done
] = "e25_HwCleanUpDone",
143 [sdma_event_e30_go_running
] = "e30_GoRunning",
144 [sdma_event_e40_sw_cleaned
] = "e40_SwCleaned",
145 [sdma_event_e50_hw_cleaned
] = "e50_HwCleaned",
146 [sdma_event_e60_hw_halted
] = "e60_HwHalted",
147 [sdma_event_e70_go_idle
] = "e70_GoIdle",
148 [sdma_event_e80_hw_freeze
] = "e80_HwFreeze",
149 [sdma_event_e81_hw_frozen
] = "e81_HwFrozen",
150 [sdma_event_e82_hw_unfreeze
] = "e82_HwUnfreeze",
151 [sdma_event_e85_link_down
] = "e85_LinkDown",
152 [sdma_event_e90_sw_halted
] = "e90_SwHalted",
156 static const struct sdma_set_state_action sdma_action_table
[] = {
157 [sdma_state_s00_hw_down
] = {
158 .go_s99_running_tofalse
= 1,
164 [sdma_state_s10_hw_start_up_halt_wait
] = {
170 [sdma_state_s15_hw_start_up_clean_wait
] = {
176 [sdma_state_s20_idle
] = {
182 [sdma_state_s30_sw_clean_up_wait
] = {
188 [sdma_state_s40_hw_clean_up_wait
] = {
194 [sdma_state_s50_hw_halt_wait
] = {
200 [sdma_state_s60_idle_halt_wait
] = {
201 .go_s99_running_tofalse
= 1,
207 [sdma_state_s80_hw_freeze
] = {
213 [sdma_state_s82_freeze_sw_clean
] = {
219 [sdma_state_s99_running
] = {
224 .go_s99_running_totrue
= 1,
228 #define SDMA_TAIL_UPDATE_THRESH 0x1F
230 /* declare all statics here rather than keep sorting */
231 static void sdma_complete(struct kref
*);
232 static void sdma_finalput(struct sdma_state
*);
233 static void sdma_get(struct sdma_state
*);
234 static void sdma_hw_clean_up_task(unsigned long);
235 static void sdma_put(struct sdma_state
*);
236 static void sdma_set_state(struct sdma_engine
*, enum sdma_states
);
237 static void sdma_start_hw_clean_up(struct sdma_engine
*);
238 static void sdma_sw_clean_up_task(unsigned long);
239 static void sdma_sendctrl(struct sdma_engine
*, unsigned);
240 static void init_sdma_regs(struct sdma_engine
*, u32
, uint
);
241 static void sdma_process_event(
242 struct sdma_engine
*sde
,
243 enum sdma_events event
);
244 static void __sdma_process_event(
245 struct sdma_engine
*sde
,
246 enum sdma_events event
);
247 static void dump_sdma_state(struct sdma_engine
*sde
);
248 static void sdma_make_progress(struct sdma_engine
*sde
, u64 status
);
249 static void sdma_desc_avail(struct sdma_engine
*sde
, uint avail
);
250 static void sdma_flush_descq(struct sdma_engine
*sde
);
253 * sdma_state_name() - return state string from enum
256 static const char *sdma_state_name(enum sdma_states state
)
258 return sdma_state_names
[state
];
261 static void sdma_get(struct sdma_state
*ss
)
266 static void sdma_complete(struct kref
*kref
)
268 struct sdma_state
*ss
=
269 container_of(kref
, struct sdma_state
, kref
);
274 static void sdma_put(struct sdma_state
*ss
)
276 kref_put(&ss
->kref
, sdma_complete
);
279 static void sdma_finalput(struct sdma_state
*ss
)
282 wait_for_completion(&ss
->comp
);
285 static inline void write_sde_csr(
286 struct sdma_engine
*sde
,
290 write_kctxt_csr(sde
->dd
, sde
->this_idx
, offset0
, value
);
293 static inline u64
read_sde_csr(
294 struct sdma_engine
*sde
,
297 return read_kctxt_csr(sde
->dd
, sde
->this_idx
, offset0
);
301 * sdma_wait_for_packet_egress() - wait for the VL FIFO occupancy for
302 * sdma engine 'sde' to drop to 0.
304 static void sdma_wait_for_packet_egress(struct sdma_engine
*sde
,
307 u64 off
= 8 * sde
->this_idx
;
308 struct hfi1_devdata
*dd
= sde
->dd
;
315 reg
= read_csr(dd
, off
+ SEND_EGRESS_SEND_DMA_STATUS
);
317 reg
&= SDMA_EGRESS_PACKET_OCCUPANCY_SMASK
;
318 reg
>>= SDMA_EGRESS_PACKET_OCCUPANCY_SHIFT
;
321 /* counter is reest if accupancy count changes */
325 /* timed out - bounce the link */
326 dd_dev_err(dd
, "%s: engine %u timeout waiting for packets to egress, remaining count %u, bouncing link\n",
327 __func__
, sde
->this_idx
, (u32
)reg
);
328 queue_work(dd
->pport
->link_wq
,
329 &dd
->pport
->link_bounce_work
);
337 * sdma_wait() - wait for packet egress to complete for all SDMA engines,
338 * and pause for credit return.
340 void sdma_wait(struct hfi1_devdata
*dd
)
344 for (i
= 0; i
< dd
->num_sdma
; i
++) {
345 struct sdma_engine
*sde
= &dd
->per_sdma
[i
];
347 sdma_wait_for_packet_egress(sde
, 0);
351 static inline void sdma_set_desc_cnt(struct sdma_engine
*sde
, unsigned cnt
)
355 if (!(sde
->dd
->flags
& HFI1_HAS_SDMA_TIMEOUT
))
358 reg
&= SD(DESC_CNT_CNT_MASK
);
359 reg
<<= SD(DESC_CNT_CNT_SHIFT
);
360 write_sde_csr(sde
, SD(DESC_CNT
), reg
);
363 static inline void complete_tx(struct sdma_engine
*sde
,
364 struct sdma_txreq
*tx
,
367 /* protect against complete modifying */
368 struct iowait
*wait
= tx
->wait
;
369 callback_t complete
= tx
->complete
;
371 #ifdef CONFIG_HFI1_DEBUG_SDMA_ORDER
372 trace_hfi1_sdma_out_sn(sde
, tx
->sn
);
373 if (WARN_ON_ONCE(sde
->head_sn
!= tx
->sn
))
374 dd_dev_err(sde
->dd
, "expected %llu got %llu\n",
375 sde
->head_sn
, tx
->sn
);
378 __sdma_txclean(sde
->dd
, tx
);
380 (*complete
)(tx
, res
);
381 if (wait
&& iowait_sdma_dec(wait
))
382 iowait_drain_wakeup(wait
);
386 * Complete all the sdma requests with a SDMA_TXREQ_S_ABORTED status
388 * Depending on timing there can be txreqs in two places:
389 * - in the descq ring
390 * - in the flush list
392 * To avoid ordering issues the descq ring needs to be flushed
393 * first followed by the flush list.
395 * This routine is called from two places
396 * - From a work queue item
397 * - Directly from the state machine just before setting the
400 * Must be called with head_lock held
403 static void sdma_flush(struct sdma_engine
*sde
)
405 struct sdma_txreq
*txp
, *txp_next
;
406 LIST_HEAD(flushlist
);
409 /* flush from head to tail */
410 sdma_flush_descq(sde
);
411 spin_lock_irqsave(&sde
->flushlist_lock
, flags
);
412 /* copy flush list */
413 list_for_each_entry_safe(txp
, txp_next
, &sde
->flushlist
, list
) {
414 list_del_init(&txp
->list
);
415 list_add_tail(&txp
->list
, &flushlist
);
417 spin_unlock_irqrestore(&sde
->flushlist_lock
, flags
);
418 /* flush from flush list */
419 list_for_each_entry_safe(txp
, txp_next
, &flushlist
, list
)
420 complete_tx(sde
, txp
, SDMA_TXREQ_S_ABORTED
);
424 * Fields a work request for flushing the descq ring
427 * If the engine has been brought to running during
428 * the scheduling delay, the flush is ignored, assuming
429 * that the process of bringing the engine to running
430 * would have done this flush prior to going to running.
433 static void sdma_field_flush(struct work_struct
*work
)
436 struct sdma_engine
*sde
=
437 container_of(work
, struct sdma_engine
, flush_worker
);
439 write_seqlock_irqsave(&sde
->head_lock
, flags
);
440 if (!__sdma_running(sde
))
442 write_sequnlock_irqrestore(&sde
->head_lock
, flags
);
445 static void sdma_err_halt_wait(struct work_struct
*work
)
447 struct sdma_engine
*sde
= container_of(work
, struct sdma_engine
,
450 unsigned long timeout
;
452 timeout
= jiffies
+ msecs_to_jiffies(SDMA_ERR_HALT_TIMEOUT
);
454 statuscsr
= read_sde_csr(sde
, SD(STATUS
));
455 statuscsr
&= SD(STATUS_ENG_HALTED_SMASK
);
458 if (time_after(jiffies
, timeout
)) {
460 "SDMA engine %d - timeout waiting for engine to halt\n",
463 * Continue anyway. This could happen if there was
464 * an uncorrectable error in the wrong spot.
468 usleep_range(80, 120);
471 sdma_process_event(sde
, sdma_event_e15_hw_halt_done
);
474 static void sdma_err_progress_check_schedule(struct sdma_engine
*sde
)
476 if (!is_bx(sde
->dd
) && HFI1_CAP_IS_KSET(SDMA_AHG
)) {
478 struct hfi1_devdata
*dd
= sde
->dd
;
480 for (index
= 0; index
< dd
->num_sdma
; index
++) {
481 struct sdma_engine
*curr_sdma
= &dd
->per_sdma
[index
];
483 if (curr_sdma
!= sde
)
484 curr_sdma
->progress_check_head
=
485 curr_sdma
->descq_head
;
488 "SDMA engine %d - check scheduled\n",
490 mod_timer(&sde
->err_progress_check_timer
, jiffies
+ 10);
494 static void sdma_err_progress_check(struct timer_list
*t
)
497 struct sdma_engine
*sde
= from_timer(sde
, t
, err_progress_check_timer
);
499 dd_dev_err(sde
->dd
, "SDE progress check event\n");
500 for (index
= 0; index
< sde
->dd
->num_sdma
; index
++) {
501 struct sdma_engine
*curr_sde
= &sde
->dd
->per_sdma
[index
];
504 /* check progress on each engine except the current one */
508 * We must lock interrupts when acquiring sde->lock,
509 * to avoid a deadlock if interrupt triggers and spins on
510 * the same lock on same CPU
512 spin_lock_irqsave(&curr_sde
->tail_lock
, flags
);
513 write_seqlock(&curr_sde
->head_lock
);
515 /* skip non-running queues */
516 if (curr_sde
->state
.current_state
!= sdma_state_s99_running
) {
517 write_sequnlock(&curr_sde
->head_lock
);
518 spin_unlock_irqrestore(&curr_sde
->tail_lock
, flags
);
522 if ((curr_sde
->descq_head
!= curr_sde
->descq_tail
) &&
523 (curr_sde
->descq_head
==
524 curr_sde
->progress_check_head
))
525 __sdma_process_event(curr_sde
,
526 sdma_event_e90_sw_halted
);
527 write_sequnlock(&curr_sde
->head_lock
);
528 spin_unlock_irqrestore(&curr_sde
->tail_lock
, flags
);
530 schedule_work(&sde
->err_halt_worker
);
533 static void sdma_hw_clean_up_task(unsigned long opaque
)
535 struct sdma_engine
*sde
= (struct sdma_engine
*)opaque
;
539 #ifdef CONFIG_SDMA_VERBOSITY
540 dd_dev_err(sde
->dd
, "CONFIG SDMA(%u) %s:%d %s()\n",
541 sde
->this_idx
, slashstrip(__FILE__
), __LINE__
,
544 statuscsr
= read_sde_csr(sde
, SD(STATUS
));
545 statuscsr
&= SD(STATUS_ENG_CLEANED_UP_SMASK
);
551 sdma_process_event(sde
, sdma_event_e25_hw_clean_up_done
);
554 static inline struct sdma_txreq
*get_txhead(struct sdma_engine
*sde
)
556 return sde
->tx_ring
[sde
->tx_head
& sde
->sdma_mask
];
560 * flush ring for recovery
562 static void sdma_flush_descq(struct sdma_engine
*sde
)
566 struct sdma_txreq
*txp
= get_txhead(sde
);
568 /* The reason for some of the complexity of this code is that
569 * not all descriptors have corresponding txps. So, we have to
570 * be able to skip over descs until we wander into the range of
571 * the next txp on the list.
573 head
= sde
->descq_head
& sde
->sdma_mask
;
574 tail
= sde
->descq_tail
& sde
->sdma_mask
;
575 while (head
!= tail
) {
576 /* advance head, wrap if needed */
577 head
= ++sde
->descq_head
& sde
->sdma_mask
;
578 /* if now past this txp's descs, do the callback */
579 if (txp
&& txp
->next_descq_idx
== head
) {
580 /* remove from list */
581 sde
->tx_ring
[sde
->tx_head
++ & sde
->sdma_mask
] = NULL
;
582 complete_tx(sde
, txp
, SDMA_TXREQ_S_ABORTED
);
583 trace_hfi1_sdma_progress(sde
, head
, tail
, txp
);
584 txp
= get_txhead(sde
);
589 sdma_desc_avail(sde
, sdma_descq_freecnt(sde
));
592 static void sdma_sw_clean_up_task(unsigned long opaque
)
594 struct sdma_engine
*sde
= (struct sdma_engine
*)opaque
;
597 spin_lock_irqsave(&sde
->tail_lock
, flags
);
598 write_seqlock(&sde
->head_lock
);
601 * At this point, the following should always be true:
602 * - We are halted, so no more descriptors are getting retired.
603 * - We are not running, so no one is submitting new work.
604 * - Only we can send the e40_sw_cleaned, so we can't start
605 * running again until we say so. So, the active list and
606 * descq are ours to play with.
610 * In the error clean up sequence, software clean must be called
611 * before the hardware clean so we can use the hardware head in
612 * the progress routine. A hardware clean or SPC unfreeze will
613 * reset the hardware head.
615 * Process all retired requests. The progress routine will use the
616 * latest physical hardware head - we are not running so speed does
619 sdma_make_progress(sde
, 0);
624 * Reset our notion of head and tail.
625 * Note that the HW registers have been reset via an earlier
630 sde
->desc_avail
= sdma_descq_freecnt(sde
);
633 __sdma_process_event(sde
, sdma_event_e40_sw_cleaned
);
635 write_sequnlock(&sde
->head_lock
);
636 spin_unlock_irqrestore(&sde
->tail_lock
, flags
);
639 static void sdma_sw_tear_down(struct sdma_engine
*sde
)
641 struct sdma_state
*ss
= &sde
->state
;
643 /* Releasing this reference means the state machine has stopped. */
646 /* stop waiting for all unfreeze events to complete */
647 atomic_set(&sde
->dd
->sdma_unfreeze_count
, -1);
648 wake_up_interruptible(&sde
->dd
->sdma_unfreeze_wq
);
651 static void sdma_start_hw_clean_up(struct sdma_engine
*sde
)
653 tasklet_hi_schedule(&sde
->sdma_hw_clean_up_task
);
656 static void sdma_set_state(struct sdma_engine
*sde
,
657 enum sdma_states next_state
)
659 struct sdma_state
*ss
= &sde
->state
;
660 const struct sdma_set_state_action
*action
= sdma_action_table
;
663 trace_hfi1_sdma_state(
665 sdma_state_names
[ss
->current_state
],
666 sdma_state_names
[next_state
]);
668 /* debugging bookkeeping */
669 ss
->previous_state
= ss
->current_state
;
670 ss
->previous_op
= ss
->current_op
;
671 ss
->current_state
= next_state
;
673 if (ss
->previous_state
!= sdma_state_s99_running
&&
674 next_state
== sdma_state_s99_running
)
677 if (action
[next_state
].op_enable
)
678 op
|= SDMA_SENDCTRL_OP_ENABLE
;
680 if (action
[next_state
].op_intenable
)
681 op
|= SDMA_SENDCTRL_OP_INTENABLE
;
683 if (action
[next_state
].op_halt
)
684 op
|= SDMA_SENDCTRL_OP_HALT
;
686 if (action
[next_state
].op_cleanup
)
687 op
|= SDMA_SENDCTRL_OP_CLEANUP
;
689 if (action
[next_state
].go_s99_running_tofalse
)
690 ss
->go_s99_running
= 0;
692 if (action
[next_state
].go_s99_running_totrue
)
693 ss
->go_s99_running
= 1;
696 sdma_sendctrl(sde
, ss
->current_op
);
700 * sdma_get_descq_cnt() - called when device probed
702 * Return a validated descq count.
704 * This is currently only used in the verbs initialization to build the tx
707 * This will probably be deleted in favor of a more scalable approach to
711 u16
sdma_get_descq_cnt(void)
713 u16 count
= sdma_descq_cnt
;
716 return SDMA_DESCQ_CNT
;
717 /* count must be a power of 2 greater than 64 and less than
718 * 32768. Otherwise return default.
720 if (!is_power_of_2(count
))
721 return SDMA_DESCQ_CNT
;
722 if (count
< 64 || count
> 32768)
723 return SDMA_DESCQ_CNT
;
728 * sdma_engine_get_vl() - return vl for a given sdma engine
731 * This function returns the vl mapped to a given engine, or an error if
732 * the mapping can't be found. The mapping fields are protected by RCU.
734 int sdma_engine_get_vl(struct sdma_engine
*sde
)
736 struct hfi1_devdata
*dd
= sde
->dd
;
737 struct sdma_vl_map
*m
;
740 if (sde
->this_idx
>= TXE_NUM_SDMA_ENGINES
)
744 m
= rcu_dereference(dd
->sdma_map
);
749 vl
= m
->engine_to_vl
[sde
->this_idx
];
756 * sdma_select_engine_vl() - select sdma engine
758 * @selector: a spreading factor
762 * This function returns an engine based on the selector and a vl. The
763 * mapping fields are protected by RCU.
765 struct sdma_engine
*sdma_select_engine_vl(
766 struct hfi1_devdata
*dd
,
770 struct sdma_vl_map
*m
;
771 struct sdma_map_elem
*e
;
772 struct sdma_engine
*rval
;
774 /* NOTE This should only happen if SC->VL changed after the initial
775 * checks on the QP/AH
776 * Default will return engine 0 below
784 m
= rcu_dereference(dd
->sdma_map
);
787 return &dd
->per_sdma
[0];
789 e
= m
->map
[vl
& m
->mask
];
790 rval
= e
->sde
[selector
& e
->mask
];
794 rval
= !rval
? &dd
->per_sdma
[0] : rval
;
795 trace_hfi1_sdma_engine_select(dd
, selector
, vl
, rval
->this_idx
);
800 * sdma_select_engine_sc() - select sdma engine
802 * @selector: a spreading factor
806 * This function returns an engine based on the selector and an sc.
808 struct sdma_engine
*sdma_select_engine_sc(
809 struct hfi1_devdata
*dd
,
813 u8 vl
= sc_to_vlt(dd
, sc5
);
815 return sdma_select_engine_vl(dd
, selector
, vl
);
818 struct sdma_rht_map_elem
{
821 struct sdma_engine
*sde
[0];
824 struct sdma_rht_node
{
825 unsigned long cpu_id
;
826 struct sdma_rht_map_elem
*map
[HFI1_MAX_VLS_SUPPORTED
];
827 struct rhash_head node
;
830 #define NR_CPUS_HINT 192
832 static const struct rhashtable_params sdma_rht_params
= {
833 .nelem_hint
= NR_CPUS_HINT
,
834 .head_offset
= offsetof(struct sdma_rht_node
, node
),
835 .key_offset
= offsetof(struct sdma_rht_node
, cpu_id
),
836 .key_len
= FIELD_SIZEOF(struct sdma_rht_node
, cpu_id
),
839 .automatic_shrinking
= true,
843 * sdma_select_user_engine() - select sdma engine based on user setup
845 * @selector: a spreading factor
848 * This function returns an sdma engine for a user sdma request.
849 * User defined sdma engine affinity setting is honored when applicable,
850 * otherwise system default sdma engine mapping is used. To ensure correct
851 * ordering, the mapping from <selector, vl> to sde must remain unchanged.
853 struct sdma_engine
*sdma_select_user_engine(struct hfi1_devdata
*dd
,
856 struct sdma_rht_node
*rht_node
;
857 struct sdma_engine
*sde
= NULL
;
858 const struct cpumask
*current_mask
= ¤t
->cpus_allowed
;
859 unsigned long cpu_id
;
862 * To ensure that always the same sdma engine(s) will be
863 * selected make sure the process is pinned to this CPU only.
865 if (cpumask_weight(current_mask
) != 1)
868 cpu_id
= smp_processor_id();
870 rht_node
= rhashtable_lookup_fast(dd
->sdma_rht
, &cpu_id
,
873 if (rht_node
&& rht_node
->map
[vl
]) {
874 struct sdma_rht_map_elem
*map
= rht_node
->map
[vl
];
876 sde
= map
->sde
[selector
& map
->mask
];
884 return sdma_select_engine_vl(dd
, selector
, vl
);
887 static void sdma_populate_sde_map(struct sdma_rht_map_elem
*map
)
891 for (i
= 0; i
< roundup_pow_of_two(map
->ctr
? : 1) - map
->ctr
; i
++)
892 map
->sde
[map
->ctr
+ i
] = map
->sde
[i
];
895 static void sdma_cleanup_sde_map(struct sdma_rht_map_elem
*map
,
896 struct sdma_engine
*sde
)
900 /* only need to check the first ctr entries for a match */
901 for (i
= 0; i
< map
->ctr
; i
++) {
902 if (map
->sde
[i
] == sde
) {
903 memmove(&map
->sde
[i
], &map
->sde
[i
+ 1],
904 (map
->ctr
- i
- 1) * sizeof(map
->sde
[0]));
906 pow
= roundup_pow_of_two(map
->ctr
? : 1);
908 sdma_populate_sde_map(map
);
915 * Prevents concurrent reads and writes of the sdma engine cpu_mask
917 static DEFINE_MUTEX(process_to_sde_mutex
);
919 ssize_t
sdma_set_cpu_to_sde_map(struct sdma_engine
*sde
, const char *buf
,
922 struct hfi1_devdata
*dd
= sde
->dd
;
923 cpumask_var_t mask
, new_mask
;
927 vl
= sdma_engine_get_vl(sde
);
928 if (unlikely(vl
< 0))
931 ret
= zalloc_cpumask_var(&mask
, GFP_KERNEL
);
935 ret
= zalloc_cpumask_var(&new_mask
, GFP_KERNEL
);
937 free_cpumask_var(mask
);
940 ret
= cpulist_parse(buf
, mask
);
944 if (!cpumask_subset(mask
, cpu_online_mask
)) {
945 dd_dev_warn(sde
->dd
, "Invalid CPU mask\n");
950 sz
= sizeof(struct sdma_rht_map_elem
) +
951 (TXE_NUM_SDMA_ENGINES
* sizeof(struct sdma_engine
*));
953 mutex_lock(&process_to_sde_mutex
);
955 for_each_cpu(cpu
, mask
) {
956 struct sdma_rht_node
*rht_node
;
958 /* Check if we have this already mapped */
959 if (cpumask_test_cpu(cpu
, &sde
->cpu_mask
)) {
960 cpumask_set_cpu(cpu
, new_mask
);
964 if (vl
>= ARRAY_SIZE(rht_node
->map
)) {
969 rht_node
= rhashtable_lookup_fast(dd
->sdma_rht
, &cpu
,
972 rht_node
= kzalloc(sizeof(*rht_node
), GFP_KERNEL
);
978 rht_node
->map
[vl
] = kzalloc(sz
, GFP_KERNEL
);
979 if (!rht_node
->map
[vl
]) {
984 rht_node
->cpu_id
= cpu
;
985 rht_node
->map
[vl
]->mask
= 0;
986 rht_node
->map
[vl
]->ctr
= 1;
987 rht_node
->map
[vl
]->sde
[0] = sde
;
989 ret
= rhashtable_insert_fast(dd
->sdma_rht
,
993 kfree(rht_node
->map
[vl
]);
995 dd_dev_err(sde
->dd
, "Failed to set process to sde affinity for cpu %lu\n",
1003 /* Add new user mappings */
1004 if (!rht_node
->map
[vl
])
1005 rht_node
->map
[vl
] = kzalloc(sz
, GFP_KERNEL
);
1007 if (!rht_node
->map
[vl
]) {
1012 rht_node
->map
[vl
]->ctr
++;
1013 ctr
= rht_node
->map
[vl
]->ctr
;
1014 rht_node
->map
[vl
]->sde
[ctr
- 1] = sde
;
1015 pow
= roundup_pow_of_two(ctr
);
1016 rht_node
->map
[vl
]->mask
= pow
- 1;
1018 /* Populate the sde map table */
1019 sdma_populate_sde_map(rht_node
->map
[vl
]);
1021 cpumask_set_cpu(cpu
, new_mask
);
1024 /* Clean up old mappings */
1025 for_each_cpu(cpu
, cpu_online_mask
) {
1026 struct sdma_rht_node
*rht_node
;
1028 /* Don't cleanup sdes that are set in the new mask */
1029 if (cpumask_test_cpu(cpu
, mask
))
1032 rht_node
= rhashtable_lookup_fast(dd
->sdma_rht
, &cpu
,
1038 /* Remove mappings for old sde */
1039 for (i
= 0; i
< HFI1_MAX_VLS_SUPPORTED
; i
++)
1040 if (rht_node
->map
[i
])
1041 sdma_cleanup_sde_map(rht_node
->map
[i
],
1044 /* Free empty hash table entries */
1045 for (i
= 0; i
< HFI1_MAX_VLS_SUPPORTED
; i
++) {
1046 if (!rht_node
->map
[i
])
1049 if (rht_node
->map
[i
]->ctr
) {
1056 ret
= rhashtable_remove_fast(dd
->sdma_rht
,
1061 for (i
= 0; i
< HFI1_MAX_VLS_SUPPORTED
; i
++)
1062 kfree(rht_node
->map
[i
]);
1069 cpumask_copy(&sde
->cpu_mask
, new_mask
);
1071 mutex_unlock(&process_to_sde_mutex
);
1073 free_cpumask_var(mask
);
1074 free_cpumask_var(new_mask
);
1075 return ret
? : strnlen(buf
, PAGE_SIZE
);
1078 ssize_t
sdma_get_cpu_to_sde_map(struct sdma_engine
*sde
, char *buf
)
1080 mutex_lock(&process_to_sde_mutex
);
1081 if (cpumask_empty(&sde
->cpu_mask
))
1082 snprintf(buf
, PAGE_SIZE
, "%s\n", "empty");
1084 cpumap_print_to_pagebuf(true, buf
, &sde
->cpu_mask
);
1085 mutex_unlock(&process_to_sde_mutex
);
1086 return strnlen(buf
, PAGE_SIZE
);
1089 static void sdma_rht_free(void *ptr
, void *arg
)
1091 struct sdma_rht_node
*rht_node
= ptr
;
1094 for (i
= 0; i
< HFI1_MAX_VLS_SUPPORTED
; i
++)
1095 kfree(rht_node
->map
[i
]);
1101 * sdma_seqfile_dump_cpu_list() - debugfs dump the cpu to sdma mappings
1106 * This routine dumps the process to sde mappings per cpu
1108 void sdma_seqfile_dump_cpu_list(struct seq_file
*s
,
1109 struct hfi1_devdata
*dd
,
1110 unsigned long cpuid
)
1112 struct sdma_rht_node
*rht_node
;
1115 rht_node
= rhashtable_lookup_fast(dd
->sdma_rht
, &cpuid
,
1120 seq_printf(s
, "cpu%3lu: ", cpuid
);
1121 for (i
= 0; i
< HFI1_MAX_VLS_SUPPORTED
; i
++) {
1122 if (!rht_node
->map
[i
] || !rht_node
->map
[i
]->ctr
)
1125 seq_printf(s
, " vl%d: [", i
);
1127 for (j
= 0; j
< rht_node
->map
[i
]->ctr
; j
++) {
1128 if (!rht_node
->map
[i
]->sde
[j
])
1134 seq_printf(s
, " sdma%2d",
1135 rht_node
->map
[i
]->sde
[j
]->this_idx
);
1144 * Free the indicated map struct
1146 static void sdma_map_free(struct sdma_vl_map
*m
)
1150 for (i
= 0; m
&& i
< m
->actual_vls
; i
++)
1156 * Handle RCU callback
1158 static void sdma_map_rcu_callback(struct rcu_head
*list
)
1160 struct sdma_vl_map
*m
= container_of(list
, struct sdma_vl_map
, list
);
1166 * sdma_map_init - called when # vls change
1168 * @port: port number
1169 * @num_vls: number of vls
1170 * @vl_engines: per vl engine mapping (optional)
1172 * This routine changes the mapping based on the number of vls.
1174 * vl_engines is used to specify a non-uniform vl/engine loading. NULL
1175 * implies auto computing the loading and giving each VLs a uniform
1176 * distribution of engines per VL.
1178 * The auto algorithm computes the sde_per_vl and the number of extra
1179 * engines. Any extra engines are added from the last VL on down.
1181 * rcu locking is used here to control access to the mapping fields.
1183 * If either the num_vls or num_sdma are non-power of 2, the array sizes
1184 * in the struct sdma_vl_map and the struct sdma_map_elem are rounded
1185 * up to the next highest power of 2 and the first entry is reused
1186 * in a round robin fashion.
1188 * If an error occurs the map change is not done and the mapping is
1192 int sdma_map_init(struct hfi1_devdata
*dd
, u8 port
, u8 num_vls
, u8
*vl_engines
)
1195 int extra
, sde_per_vl
;
1197 u8 lvl_engines
[OPA_MAX_VLS
];
1198 struct sdma_vl_map
*oldmap
, *newmap
;
1200 if (!(dd
->flags
& HFI1_HAS_SEND_DMA
))
1204 /* truncate divide */
1205 sde_per_vl
= dd
->num_sdma
/ num_vls
;
1207 extra
= dd
->num_sdma
% num_vls
;
1208 vl_engines
= lvl_engines
;
1209 /* add extras from last vl down */
1210 for (i
= num_vls
- 1; i
>= 0; i
--, extra
--)
1211 vl_engines
[i
] = sde_per_vl
+ (extra
> 0 ? 1 : 0);
1215 sizeof(struct sdma_vl_map
) +
1216 roundup_pow_of_two(num_vls
) *
1217 sizeof(struct sdma_map_elem
*),
1221 newmap
->actual_vls
= num_vls
;
1222 newmap
->vls
= roundup_pow_of_two(num_vls
);
1223 newmap
->mask
= (1 << ilog2(newmap
->vls
)) - 1;
1224 /* initialize back-map */
1225 for (i
= 0; i
< TXE_NUM_SDMA_ENGINES
; i
++)
1226 newmap
->engine_to_vl
[i
] = -1;
1227 for (i
= 0; i
< newmap
->vls
; i
++) {
1228 /* save for wrap around */
1229 int first_engine
= engine
;
1231 if (i
< newmap
->actual_vls
) {
1232 int sz
= roundup_pow_of_two(vl_engines
[i
]);
1234 /* only allocate once */
1235 newmap
->map
[i
] = kzalloc(
1236 sizeof(struct sdma_map_elem
) +
1237 sz
* sizeof(struct sdma_engine
*),
1239 if (!newmap
->map
[i
])
1241 newmap
->map
[i
]->mask
= (1 << ilog2(sz
)) - 1;
1242 /* assign engines */
1243 for (j
= 0; j
< sz
; j
++) {
1244 newmap
->map
[i
]->sde
[j
] =
1245 &dd
->per_sdma
[engine
];
1246 if (++engine
>= first_engine
+ vl_engines
[i
])
1247 /* wrap back to first engine */
1248 engine
= first_engine
;
1250 /* assign back-map */
1251 for (j
= 0; j
< vl_engines
[i
]; j
++)
1252 newmap
->engine_to_vl
[first_engine
+ j
] = i
;
1254 /* just re-use entry without allocating */
1255 newmap
->map
[i
] = newmap
->map
[i
% num_vls
];
1257 engine
= first_engine
+ vl_engines
[i
];
1259 /* newmap in hand, save old map */
1260 spin_lock_irq(&dd
->sde_map_lock
);
1261 oldmap
= rcu_dereference_protected(dd
->sdma_map
,
1262 lockdep_is_held(&dd
->sde_map_lock
));
1264 /* publish newmap */
1265 rcu_assign_pointer(dd
->sdma_map
, newmap
);
1267 spin_unlock_irq(&dd
->sde_map_lock
);
1268 /* success, free any old map after grace period */
1270 call_rcu(&oldmap
->list
, sdma_map_rcu_callback
);
1273 /* free any partial allocation */
1274 sdma_map_free(newmap
);
1279 * sdma_clean() Clean up allocated memory
1280 * @dd: struct hfi1_devdata
1281 * @num_engines: num sdma engines
1283 * This routine can be called regardless of the success of
1286 void sdma_clean(struct hfi1_devdata
*dd
, size_t num_engines
)
1289 struct sdma_engine
*sde
;
1291 if (dd
->sdma_pad_dma
) {
1292 dma_free_coherent(&dd
->pcidev
->dev
, 4,
1293 (void *)dd
->sdma_pad_dma
,
1295 dd
->sdma_pad_dma
= NULL
;
1296 dd
->sdma_pad_phys
= 0;
1298 if (dd
->sdma_heads_dma
) {
1299 dma_free_coherent(&dd
->pcidev
->dev
, dd
->sdma_heads_size
,
1300 (void *)dd
->sdma_heads_dma
,
1301 dd
->sdma_heads_phys
);
1302 dd
->sdma_heads_dma
= NULL
;
1303 dd
->sdma_heads_phys
= 0;
1305 for (i
= 0; dd
->per_sdma
&& i
< num_engines
; ++i
) {
1306 sde
= &dd
->per_sdma
[i
];
1308 sde
->head_dma
= NULL
;
1314 sde
->descq_cnt
* sizeof(u64
[2]),
1319 sde
->descq_phys
= 0;
1321 kvfree(sde
->tx_ring
);
1322 sde
->tx_ring
= NULL
;
1324 spin_lock_irq(&dd
->sde_map_lock
);
1325 sdma_map_free(rcu_access_pointer(dd
->sdma_map
));
1326 RCU_INIT_POINTER(dd
->sdma_map
, NULL
);
1327 spin_unlock_irq(&dd
->sde_map_lock
);
1329 kfree(dd
->per_sdma
);
1330 dd
->per_sdma
= NULL
;
1333 rhashtable_free_and_destroy(dd
->sdma_rht
, sdma_rht_free
, NULL
);
1334 kfree(dd
->sdma_rht
);
1335 dd
->sdma_rht
= NULL
;
1340 * sdma_init() - called when device probed
1342 * @port: port number (currently only zero)
1344 * Initializes each sde and its csrs.
1345 * Interrupts are not required to be enabled.
1348 * 0 - success, -errno on failure
1350 int sdma_init(struct hfi1_devdata
*dd
, u8 port
)
1353 struct sdma_engine
*sde
;
1354 struct rhashtable
*tmp_sdma_rht
;
1357 struct hfi1_pportdata
*ppd
= dd
->pport
+ port
;
1358 u32 per_sdma_credits
;
1359 uint idle_cnt
= sdma_idle_cnt
;
1360 size_t num_engines
= dd
->chip_sdma_engines
;
1363 if (!HFI1_CAP_IS_KSET(SDMA
)) {
1364 HFI1_CAP_CLEAR(SDMA_AHG
);
1368 /* can't exceed chip support */
1369 mod_num_sdma
<= dd
->chip_sdma_engines
&&
1370 /* count must be >= vls */
1371 mod_num_sdma
>= num_vls
)
1372 num_engines
= mod_num_sdma
;
1374 dd_dev_info(dd
, "SDMA mod_num_sdma: %u\n", mod_num_sdma
);
1375 dd_dev_info(dd
, "SDMA chip_sdma_engines: %u\n", dd
->chip_sdma_engines
);
1376 dd_dev_info(dd
, "SDMA chip_sdma_mem_size: %u\n",
1377 dd
->chip_sdma_mem_size
);
1380 dd
->chip_sdma_mem_size
/ (num_engines
* SDMA_BLOCK_SIZE
);
1382 /* set up freeze waitqueue */
1383 init_waitqueue_head(&dd
->sdma_unfreeze_wq
);
1384 atomic_set(&dd
->sdma_unfreeze_count
, 0);
1386 descq_cnt
= sdma_get_descq_cnt();
1387 dd_dev_info(dd
, "SDMA engines %zu descq_cnt %u\n",
1388 num_engines
, descq_cnt
);
1390 /* alloc memory for array of send engines */
1391 dd
->per_sdma
= kcalloc_node(num_engines
, sizeof(*dd
->per_sdma
),
1392 GFP_KERNEL
, dd
->node
);
1396 idle_cnt
= ns_to_cclock(dd
, idle_cnt
);
1399 SDMA_DESC1_HEAD_TO_HOST_FLAG
;
1402 SDMA_DESC1_INT_REQ_FLAG
;
1404 if (!sdma_desct_intr
)
1405 sdma_desct_intr
= SDMA_DESC_INTR
;
1407 /* Allocate memory for SendDMA descriptor FIFOs */
1408 for (this_idx
= 0; this_idx
< num_engines
; ++this_idx
) {
1409 sde
= &dd
->per_sdma
[this_idx
];
1412 sde
->this_idx
= this_idx
;
1413 sde
->descq_cnt
= descq_cnt
;
1414 sde
->desc_avail
= sdma_descq_freecnt(sde
);
1415 sde
->sdma_shift
= ilog2(descq_cnt
);
1416 sde
->sdma_mask
= (1 << sde
->sdma_shift
) - 1;
1418 /* Create a mask specifically for each interrupt source */
1419 sde
->int_mask
= (u64
)1 << (0 * TXE_NUM_SDMA_ENGINES
+
1421 sde
->progress_mask
= (u64
)1 << (1 * TXE_NUM_SDMA_ENGINES
+
1423 sde
->idle_mask
= (u64
)1 << (2 * TXE_NUM_SDMA_ENGINES
+
1425 /* Create a combined mask to cover all 3 interrupt sources */
1426 sde
->imask
= sde
->int_mask
| sde
->progress_mask
|
1429 spin_lock_init(&sde
->tail_lock
);
1430 seqlock_init(&sde
->head_lock
);
1431 spin_lock_init(&sde
->senddmactrl_lock
);
1432 spin_lock_init(&sde
->flushlist_lock
);
1433 /* insure there is always a zero bit */
1434 sde
->ahg_bits
= 0xfffffffe00000000ULL
;
1436 sdma_set_state(sde
, sdma_state_s00_hw_down
);
1438 /* set up reference counting */
1439 kref_init(&sde
->state
.kref
);
1440 init_completion(&sde
->state
.comp
);
1442 INIT_LIST_HEAD(&sde
->flushlist
);
1443 INIT_LIST_HEAD(&sde
->dmawait
);
1446 get_kctxt_csr_addr(dd
, this_idx
, SD(TAIL
));
1448 tasklet_init(&sde
->sdma_hw_clean_up_task
, sdma_hw_clean_up_task
,
1449 (unsigned long)sde
);
1451 tasklet_init(&sde
->sdma_sw_clean_up_task
, sdma_sw_clean_up_task
,
1452 (unsigned long)sde
);
1453 INIT_WORK(&sde
->err_halt_worker
, sdma_err_halt_wait
);
1454 INIT_WORK(&sde
->flush_worker
, sdma_field_flush
);
1456 sde
->progress_check_head
= 0;
1458 timer_setup(&sde
->err_progress_check_timer
,
1459 sdma_err_progress_check
, 0);
1461 sde
->descq
= dma_zalloc_coherent(
1463 descq_cnt
* sizeof(u64
[2]),
1470 kvzalloc_node(sizeof(struct sdma_txreq
*) * descq_cnt
,
1471 GFP_KERNEL
, dd
->node
);
1476 dd
->sdma_heads_size
= L1_CACHE_BYTES
* num_engines
;
1477 /* Allocate memory for DMA of head registers to memory */
1478 dd
->sdma_heads_dma
= dma_zalloc_coherent(
1480 dd
->sdma_heads_size
,
1481 &dd
->sdma_heads_phys
,
1484 if (!dd
->sdma_heads_dma
) {
1485 dd_dev_err(dd
, "failed to allocate SendDMA head memory\n");
1489 /* Allocate memory for pad */
1490 dd
->sdma_pad_dma
= dma_zalloc_coherent(
1496 if (!dd
->sdma_pad_dma
) {
1497 dd_dev_err(dd
, "failed to allocate SendDMA pad memory\n");
1501 /* assign each engine to different cacheline and init registers */
1502 curr_head
= (void *)dd
->sdma_heads_dma
;
1503 for (this_idx
= 0; this_idx
< num_engines
; ++this_idx
) {
1504 unsigned long phys_offset
;
1506 sde
= &dd
->per_sdma
[this_idx
];
1508 sde
->head_dma
= curr_head
;
1509 curr_head
+= L1_CACHE_BYTES
;
1510 phys_offset
= (unsigned long)sde
->head_dma
-
1511 (unsigned long)dd
->sdma_heads_dma
;
1512 sde
->head_phys
= dd
->sdma_heads_phys
+ phys_offset
;
1513 init_sdma_regs(sde
, per_sdma_credits
, idle_cnt
);
1515 dd
->flags
|= HFI1_HAS_SEND_DMA
;
1516 dd
->flags
|= idle_cnt
? HFI1_HAS_SDMA_TIMEOUT
: 0;
1517 dd
->num_sdma
= num_engines
;
1518 ret
= sdma_map_init(dd
, port
, ppd
->vls_operational
, NULL
);
1522 tmp_sdma_rht
= kzalloc(sizeof(*tmp_sdma_rht
), GFP_KERNEL
);
1523 if (!tmp_sdma_rht
) {
1528 ret
= rhashtable_init(tmp_sdma_rht
, &sdma_rht_params
);
1531 dd
->sdma_rht
= tmp_sdma_rht
;
1533 dd_dev_info(dd
, "SDMA num_sdma: %u\n", dd
->num_sdma
);
1537 sdma_clean(dd
, num_engines
);
1542 * sdma_all_running() - called when the link goes up
1545 * This routine moves all engines to the running state.
1547 void sdma_all_running(struct hfi1_devdata
*dd
)
1549 struct sdma_engine
*sde
;
1552 /* move all engines to running */
1553 for (i
= 0; i
< dd
->num_sdma
; ++i
) {
1554 sde
= &dd
->per_sdma
[i
];
1555 sdma_process_event(sde
, sdma_event_e30_go_running
);
1560 * sdma_all_idle() - called when the link goes down
1563 * This routine moves all engines to the idle state.
1565 void sdma_all_idle(struct hfi1_devdata
*dd
)
1567 struct sdma_engine
*sde
;
1570 /* idle all engines */
1571 for (i
= 0; i
< dd
->num_sdma
; ++i
) {
1572 sde
= &dd
->per_sdma
[i
];
1573 sdma_process_event(sde
, sdma_event_e70_go_idle
);
1578 * sdma_start() - called to kick off state processing for all engines
1581 * This routine is for kicking off the state processing for all required
1582 * sdma engines. Interrupts need to be working at this point.
1585 void sdma_start(struct hfi1_devdata
*dd
)
1588 struct sdma_engine
*sde
;
1590 /* kick off the engines state processing */
1591 for (i
= 0; i
< dd
->num_sdma
; ++i
) {
1592 sde
= &dd
->per_sdma
[i
];
1593 sdma_process_event(sde
, sdma_event_e10_go_hw_start
);
1598 * sdma_exit() - used when module is removed
1601 void sdma_exit(struct hfi1_devdata
*dd
)
1604 struct sdma_engine
*sde
;
1606 for (this_idx
= 0; dd
->per_sdma
&& this_idx
< dd
->num_sdma
;
1608 sde
= &dd
->per_sdma
[this_idx
];
1609 if (!list_empty(&sde
->dmawait
))
1610 dd_dev_err(dd
, "sde %u: dmawait list not empty!\n",
1612 sdma_process_event(sde
, sdma_event_e00_go_hw_down
);
1614 del_timer_sync(&sde
->err_progress_check_timer
);
1617 * This waits for the state machine to exit so it is not
1618 * necessary to kill the sdma_sw_clean_up_task to make sure
1619 * it is not running.
1621 sdma_finalput(&sde
->state
);
1626 * unmap the indicated descriptor
1628 static inline void sdma_unmap_desc(
1629 struct hfi1_devdata
*dd
,
1630 struct sdma_desc
*descp
)
1632 switch (sdma_mapping_type(descp
)) {
1633 case SDMA_MAP_SINGLE
:
1636 sdma_mapping_addr(descp
),
1637 sdma_mapping_len(descp
),
1643 sdma_mapping_addr(descp
),
1644 sdma_mapping_len(descp
),
1651 * return the mode as indicated by the first
1652 * descriptor in the tx.
1654 static inline u8
ahg_mode(struct sdma_txreq
*tx
)
1656 return (tx
->descp
[0].qw
[1] & SDMA_DESC1_HEADER_MODE_SMASK
)
1657 >> SDMA_DESC1_HEADER_MODE_SHIFT
;
1661 * __sdma_txclean() - clean tx of mappings, descp *kmalloc's
1662 * @dd: hfi1_devdata for unmapping
1663 * @tx: tx request to clean
1665 * This is used in the progress routine to clean the tx or
1666 * by the ULP to toss an in-process tx build.
1668 * The code can be called multiple times without issue.
1671 void __sdma_txclean(
1672 struct hfi1_devdata
*dd
,
1673 struct sdma_txreq
*tx
)
1678 u8 skip
= 0, mode
= ahg_mode(tx
);
1681 sdma_unmap_desc(dd
, &tx
->descp
[0]);
1682 /* determine number of AHG descriptors to skip */
1683 if (mode
> SDMA_AHG_APPLY_UPDATE1
)
1685 for (i
= 1 + skip
; i
< tx
->num_desc
; i
++)
1686 sdma_unmap_desc(dd
, &tx
->descp
[i
]);
1689 kfree(tx
->coalesce_buf
);
1690 tx
->coalesce_buf
= NULL
;
1691 /* kmalloc'ed descp */
1692 if (unlikely(tx
->desc_limit
> ARRAY_SIZE(tx
->descs
))) {
1693 tx
->desc_limit
= ARRAY_SIZE(tx
->descs
);
1698 static inline u16
sdma_gethead(struct sdma_engine
*sde
)
1700 struct hfi1_devdata
*dd
= sde
->dd
;
1704 #ifdef CONFIG_SDMA_VERBOSITY
1705 dd_dev_err(sde
->dd
, "CONFIG SDMA(%u) %s:%d %s()\n",
1706 sde
->this_idx
, slashstrip(__FILE__
), __LINE__
, __func__
);
1710 use_dmahead
= HFI1_CAP_IS_KSET(USE_SDMA_HEAD
) && __sdma_running(sde
) &&
1711 (dd
->flags
& HFI1_HAS_SDMA_TIMEOUT
);
1712 hwhead
= use_dmahead
?
1713 (u16
)le64_to_cpu(*sde
->head_dma
) :
1714 (u16
)read_sde_csr(sde
, SD(HEAD
));
1716 if (unlikely(HFI1_CAP_IS_KSET(SDMA_HEAD_CHECK
))) {
1722 swhead
= sde
->descq_head
& sde
->sdma_mask
;
1723 /* this code is really bad for cache line trading */
1724 swtail
= READ_ONCE(sde
->descq_tail
) & sde
->sdma_mask
;
1725 cnt
= sde
->descq_cnt
;
1727 if (swhead
< swtail
)
1729 sane
= (hwhead
>= swhead
) & (hwhead
<= swtail
);
1730 else if (swhead
> swtail
)
1731 /* wrapped around */
1732 sane
= ((hwhead
>= swhead
) && (hwhead
< cnt
)) ||
1736 sane
= (hwhead
== swhead
);
1738 if (unlikely(!sane
)) {
1739 dd_dev_err(dd
, "SDMA(%u) bad head (%s) hwhd=%hu swhd=%hu swtl=%hu cnt=%hu\n",
1741 use_dmahead
? "dma" : "kreg",
1742 hwhead
, swhead
, swtail
, cnt
);
1744 /* try one more time, using csr */
1748 /* proceed as if no progress */
1756 * This is called when there are send DMA descriptors that might be
1759 * This is called with head_lock held.
1761 static void sdma_desc_avail(struct sdma_engine
*sde
, uint avail
)
1763 struct iowait
*wait
, *nw
;
1764 struct iowait
*waits
[SDMA_WAIT_BATCH_SIZE
];
1765 uint i
, n
= 0, seq
, max_idx
= 0;
1766 struct sdma_txreq
*stx
;
1767 struct hfi1_ibdev
*dev
= &sde
->dd
->verbs_dev
;
1768 u8 max_starved_cnt
= 0;
1770 #ifdef CONFIG_SDMA_VERBOSITY
1771 dd_dev_err(sde
->dd
, "CONFIG SDMA(%u) %s:%d %s()\n", sde
->this_idx
,
1772 slashstrip(__FILE__
), __LINE__
, __func__
);
1773 dd_dev_err(sde
->dd
, "avail: %u\n", avail
);
1777 seq
= read_seqbegin(&dev
->iowait_lock
);
1778 if (!list_empty(&sde
->dmawait
)) {
1779 /* at least one item */
1780 write_seqlock(&dev
->iowait_lock
);
1781 /* Harvest waiters wanting DMA descriptors */
1782 list_for_each_entry_safe(
1791 if (n
== ARRAY_SIZE(waits
))
1793 if (!list_empty(&wait
->tx_head
)) {
1794 stx
= list_first_entry(
1798 num_desc
= stx
->num_desc
;
1800 if (num_desc
> avail
)
1803 /* Find the most starved wait memeber */
1804 iowait_starve_find_max(wait
, &max_starved_cnt
,
1806 list_del_init(&wait
->list
);
1809 write_sequnlock(&dev
->iowait_lock
);
1812 } while (read_seqretry(&dev
->iowait_lock
, seq
));
1814 /* Schedule the most starved one first */
1816 waits
[max_idx
]->wakeup(waits
[max_idx
], SDMA_AVAIL_REASON
);
1818 for (i
= 0; i
< n
; i
++)
1820 waits
[i
]->wakeup(waits
[i
], SDMA_AVAIL_REASON
);
1823 /* head_lock must be held */
1824 static void sdma_make_progress(struct sdma_engine
*sde
, u64 status
)
1826 struct sdma_txreq
*txp
= NULL
;
1829 int idle_check_done
= 0;
1831 hwhead
= sdma_gethead(sde
);
1833 /* The reason for some of the complexity of this code is that
1834 * not all descriptors have corresponding txps. So, we have to
1835 * be able to skip over descs until we wander into the range of
1836 * the next txp on the list.
1840 txp
= get_txhead(sde
);
1841 swhead
= sde
->descq_head
& sde
->sdma_mask
;
1842 trace_hfi1_sdma_progress(sde
, hwhead
, swhead
, txp
);
1843 while (swhead
!= hwhead
) {
1844 /* advance head, wrap if needed */
1845 swhead
= ++sde
->descq_head
& sde
->sdma_mask
;
1847 /* if now past this txp's descs, do the callback */
1848 if (txp
&& txp
->next_descq_idx
== swhead
) {
1849 /* remove from list */
1850 sde
->tx_ring
[sde
->tx_head
++ & sde
->sdma_mask
] = NULL
;
1851 complete_tx(sde
, txp
, SDMA_TXREQ_S_OK
);
1852 /* see if there is another txp */
1853 txp
= get_txhead(sde
);
1855 trace_hfi1_sdma_progress(sde
, hwhead
, swhead
, txp
);
1860 * The SDMA idle interrupt is not guaranteed to be ordered with respect
1861 * to updates to the the dma_head location in host memory. The head
1862 * value read might not be fully up to date. If there are pending
1863 * descriptors and the SDMA idle interrupt fired then read from the
1864 * CSR SDMA head instead to get the latest value from the hardware.
1865 * The hardware SDMA head should be read at most once in this invocation
1866 * of sdma_make_progress(..) which is ensured by idle_check_done flag
1868 if ((status
& sde
->idle_mask
) && !idle_check_done
) {
1871 swtail
= READ_ONCE(sde
->descq_tail
) & sde
->sdma_mask
;
1872 if (swtail
!= hwhead
) {
1873 hwhead
= (u16
)read_sde_csr(sde
, SD(HEAD
));
1874 idle_check_done
= 1;
1879 sde
->last_status
= status
;
1881 sdma_desc_avail(sde
, sdma_descq_freecnt(sde
));
1885 * sdma_engine_interrupt() - interrupt handler for engine
1887 * @status: sdma interrupt reason
1889 * Status is a mask of the 3 possible interrupts for this engine. It will
1890 * contain bits _only_ for this SDMA engine. It will contain at least one
1891 * bit, it may contain more.
1893 void sdma_engine_interrupt(struct sdma_engine
*sde
, u64 status
)
1895 trace_hfi1_sdma_engine_interrupt(sde
, status
);
1896 write_seqlock(&sde
->head_lock
);
1897 sdma_set_desc_cnt(sde
, sdma_desct_intr
);
1898 if (status
& sde
->idle_mask
)
1899 sde
->idle_int_cnt
++;
1900 else if (status
& sde
->progress_mask
)
1901 sde
->progress_int_cnt
++;
1902 else if (status
& sde
->int_mask
)
1903 sde
->sdma_int_cnt
++;
1904 sdma_make_progress(sde
, status
);
1905 write_sequnlock(&sde
->head_lock
);
1909 * sdma_engine_error() - error handler for engine
1911 * @status: sdma interrupt reason
1913 void sdma_engine_error(struct sdma_engine
*sde
, u64 status
)
1915 unsigned long flags
;
1917 #ifdef CONFIG_SDMA_VERBOSITY
1918 dd_dev_err(sde
->dd
, "CONFIG SDMA(%u) error status 0x%llx state %s\n",
1920 (unsigned long long)status
,
1921 sdma_state_names
[sde
->state
.current_state
]);
1923 spin_lock_irqsave(&sde
->tail_lock
, flags
);
1924 write_seqlock(&sde
->head_lock
);
1925 if (status
& ALL_SDMA_ENG_HALT_ERRS
)
1926 __sdma_process_event(sde
, sdma_event_e60_hw_halted
);
1927 if (status
& ~SD(ENG_ERR_STATUS_SDMA_HALT_ERR_SMASK
)) {
1929 "SDMA (%u) engine error: 0x%llx state %s\n",
1931 (unsigned long long)status
,
1932 sdma_state_names
[sde
->state
.current_state
]);
1933 dump_sdma_state(sde
);
1935 write_sequnlock(&sde
->head_lock
);
1936 spin_unlock_irqrestore(&sde
->tail_lock
, flags
);
1939 static void sdma_sendctrl(struct sdma_engine
*sde
, unsigned op
)
1941 u64 set_senddmactrl
= 0;
1942 u64 clr_senddmactrl
= 0;
1943 unsigned long flags
;
1945 #ifdef CONFIG_SDMA_VERBOSITY
1946 dd_dev_err(sde
->dd
, "CONFIG SDMA(%u) senddmactrl E=%d I=%d H=%d C=%d\n",
1948 (op
& SDMA_SENDCTRL_OP_ENABLE
) ? 1 : 0,
1949 (op
& SDMA_SENDCTRL_OP_INTENABLE
) ? 1 : 0,
1950 (op
& SDMA_SENDCTRL_OP_HALT
) ? 1 : 0,
1951 (op
& SDMA_SENDCTRL_OP_CLEANUP
) ? 1 : 0);
1954 if (op
& SDMA_SENDCTRL_OP_ENABLE
)
1955 set_senddmactrl
|= SD(CTRL_SDMA_ENABLE_SMASK
);
1957 clr_senddmactrl
|= SD(CTRL_SDMA_ENABLE_SMASK
);
1959 if (op
& SDMA_SENDCTRL_OP_INTENABLE
)
1960 set_senddmactrl
|= SD(CTRL_SDMA_INT_ENABLE_SMASK
);
1962 clr_senddmactrl
|= SD(CTRL_SDMA_INT_ENABLE_SMASK
);
1964 if (op
& SDMA_SENDCTRL_OP_HALT
)
1965 set_senddmactrl
|= SD(CTRL_SDMA_HALT_SMASK
);
1967 clr_senddmactrl
|= SD(CTRL_SDMA_HALT_SMASK
);
1969 spin_lock_irqsave(&sde
->senddmactrl_lock
, flags
);
1971 sde
->p_senddmactrl
|= set_senddmactrl
;
1972 sde
->p_senddmactrl
&= ~clr_senddmactrl
;
1974 if (op
& SDMA_SENDCTRL_OP_CLEANUP
)
1975 write_sde_csr(sde
, SD(CTRL
),
1976 sde
->p_senddmactrl
|
1977 SD(CTRL_SDMA_CLEANUP_SMASK
));
1979 write_sde_csr(sde
, SD(CTRL
), sde
->p_senddmactrl
);
1981 spin_unlock_irqrestore(&sde
->senddmactrl_lock
, flags
);
1983 #ifdef CONFIG_SDMA_VERBOSITY
1984 sdma_dumpstate(sde
);
1988 static void sdma_setlengen(struct sdma_engine
*sde
)
1990 #ifdef CONFIG_SDMA_VERBOSITY
1991 dd_dev_err(sde
->dd
, "CONFIG SDMA(%u) %s:%d %s()\n",
1992 sde
->this_idx
, slashstrip(__FILE__
), __LINE__
, __func__
);
1996 * Set SendDmaLenGen and clear-then-set the MSB of the generation
1997 * count to enable generation checking and load the internal
1998 * generation counter.
2000 write_sde_csr(sde
, SD(LEN_GEN
),
2001 (sde
->descq_cnt
/ 64) << SD(LEN_GEN_LENGTH_SHIFT
));
2002 write_sde_csr(sde
, SD(LEN_GEN
),
2003 ((sde
->descq_cnt
/ 64) << SD(LEN_GEN_LENGTH_SHIFT
)) |
2004 (4ULL << SD(LEN_GEN_GENERATION_SHIFT
)));
2007 static inline void sdma_update_tail(struct sdma_engine
*sde
, u16 tail
)
2009 /* Commit writes to memory and advance the tail on the chip */
2010 smp_wmb(); /* see get_txhead() */
2011 writeq(tail
, sde
->tail_csr
);
2015 * This is called when changing to state s10_hw_start_up_halt_wait as
2016 * a result of send buffer errors or send DMA descriptor errors.
2018 static void sdma_hw_start_up(struct sdma_engine
*sde
)
2022 #ifdef CONFIG_SDMA_VERBOSITY
2023 dd_dev_err(sde
->dd
, "CONFIG SDMA(%u) %s:%d %s()\n",
2024 sde
->this_idx
, slashstrip(__FILE__
), __LINE__
, __func__
);
2027 sdma_setlengen(sde
);
2028 sdma_update_tail(sde
, 0); /* Set SendDmaTail */
2031 reg
= SD(ENG_ERR_CLEAR_SDMA_HEADER_REQUEST_FIFO_UNC_ERR_MASK
) <<
2032 SD(ENG_ERR_CLEAR_SDMA_HEADER_REQUEST_FIFO_UNC_ERR_SHIFT
);
2033 write_sde_csr(sde
, SD(ENG_ERR_CLEAR
), reg
);
2037 * set_sdma_integrity
2039 * Set the SEND_DMA_CHECK_ENABLE register for send DMA engine 'sde'.
2041 static void set_sdma_integrity(struct sdma_engine
*sde
)
2043 struct hfi1_devdata
*dd
= sde
->dd
;
2045 write_sde_csr(sde
, SD(CHECK_ENABLE
),
2046 hfi1_pkt_base_sdma_integrity(dd
));
2049 static void init_sdma_regs(
2050 struct sdma_engine
*sde
,
2055 #ifdef CONFIG_SDMA_VERBOSITY
2056 struct hfi1_devdata
*dd
= sde
->dd
;
2058 dd_dev_err(dd
, "CONFIG SDMA(%u) %s:%d %s()\n",
2059 sde
->this_idx
, slashstrip(__FILE__
), __LINE__
, __func__
);
2062 write_sde_csr(sde
, SD(BASE_ADDR
), sde
->descq_phys
);
2063 sdma_setlengen(sde
);
2064 sdma_update_tail(sde
, 0); /* Set SendDmaTail */
2065 write_sde_csr(sde
, SD(RELOAD_CNT
), idle_cnt
);
2066 write_sde_csr(sde
, SD(DESC_CNT
), 0);
2067 write_sde_csr(sde
, SD(HEAD_ADDR
), sde
->head_phys
);
2068 write_sde_csr(sde
, SD(MEMORY
),
2069 ((u64
)credits
<< SD(MEMORY_SDMA_MEMORY_CNT_SHIFT
)) |
2070 ((u64
)(credits
* sde
->this_idx
) <<
2071 SD(MEMORY_SDMA_MEMORY_INDEX_SHIFT
)));
2072 write_sde_csr(sde
, SD(ENG_ERR_MASK
), ~0ull);
2073 set_sdma_integrity(sde
);
2074 opmask
= OPCODE_CHECK_MASK_DISABLED
;
2075 opval
= OPCODE_CHECK_VAL_DISABLED
;
2076 write_sde_csr(sde
, SD(CHECK_OPCODE
),
2077 (opmask
<< SEND_CTXT_CHECK_OPCODE_MASK_SHIFT
) |
2078 (opval
<< SEND_CTXT_CHECK_OPCODE_VALUE_SHIFT
));
2081 #ifdef CONFIG_SDMA_VERBOSITY
2083 #define sdma_dumpstate_helper0(reg) do { \
2084 csr = read_csr(sde->dd, reg); \
2085 dd_dev_err(sde->dd, "%36s 0x%016llx\n", #reg, csr); \
2088 #define sdma_dumpstate_helper(reg) do { \
2089 csr = read_sde_csr(sde, reg); \
2090 dd_dev_err(sde->dd, "%36s[%02u] 0x%016llx\n", \
2091 #reg, sde->this_idx, csr); \
2094 #define sdma_dumpstate_helper2(reg) do { \
2095 csr = read_csr(sde->dd, reg + (8 * i)); \
2096 dd_dev_err(sde->dd, "%33s_%02u 0x%016llx\n", \
2100 void sdma_dumpstate(struct sdma_engine
*sde
)
2105 sdma_dumpstate_helper(SD(CTRL
));
2106 sdma_dumpstate_helper(SD(STATUS
));
2107 sdma_dumpstate_helper0(SD(ERR_STATUS
));
2108 sdma_dumpstate_helper0(SD(ERR_MASK
));
2109 sdma_dumpstate_helper(SD(ENG_ERR_STATUS
));
2110 sdma_dumpstate_helper(SD(ENG_ERR_MASK
));
2112 for (i
= 0; i
< CCE_NUM_INT_CSRS
; ++i
) {
2113 sdma_dumpstate_helper2(CCE_INT_STATUS
);
2114 sdma_dumpstate_helper2(CCE_INT_MASK
);
2115 sdma_dumpstate_helper2(CCE_INT_BLOCKED
);
2118 sdma_dumpstate_helper(SD(TAIL
));
2119 sdma_dumpstate_helper(SD(HEAD
));
2120 sdma_dumpstate_helper(SD(PRIORITY_THLD
));
2121 sdma_dumpstate_helper(SD(IDLE_CNT
));
2122 sdma_dumpstate_helper(SD(RELOAD_CNT
));
2123 sdma_dumpstate_helper(SD(DESC_CNT
));
2124 sdma_dumpstate_helper(SD(DESC_FETCHED_CNT
));
2125 sdma_dumpstate_helper(SD(MEMORY
));
2126 sdma_dumpstate_helper0(SD(ENGINES
));
2127 sdma_dumpstate_helper0(SD(MEM_SIZE
));
2128 /* sdma_dumpstate_helper(SEND_EGRESS_SEND_DMA_STATUS); */
2129 sdma_dumpstate_helper(SD(BASE_ADDR
));
2130 sdma_dumpstate_helper(SD(LEN_GEN
));
2131 sdma_dumpstate_helper(SD(HEAD_ADDR
));
2132 sdma_dumpstate_helper(SD(CHECK_ENABLE
));
2133 sdma_dumpstate_helper(SD(CHECK_VL
));
2134 sdma_dumpstate_helper(SD(CHECK_JOB_KEY
));
2135 sdma_dumpstate_helper(SD(CHECK_PARTITION_KEY
));
2136 sdma_dumpstate_helper(SD(CHECK_SLID
));
2137 sdma_dumpstate_helper(SD(CHECK_OPCODE
));
2141 static void dump_sdma_state(struct sdma_engine
*sde
)
2143 struct hw_sdma_desc
*descqp
;
2148 u16 head
, tail
, cnt
;
2150 head
= sde
->descq_head
& sde
->sdma_mask
;
2151 tail
= sde
->descq_tail
& sde
->sdma_mask
;
2152 cnt
= sdma_descq_freecnt(sde
);
2155 "SDMA (%u) descq_head: %u descq_tail: %u freecnt: %u FLE %d\n",
2156 sde
->this_idx
, head
, tail
, cnt
,
2157 !list_empty(&sde
->flushlist
));
2159 /* print info for each entry in the descriptor queue */
2160 while (head
!= tail
) {
2161 char flags
[6] = { 'x', 'x', 'x', 'x', 0 };
2163 descqp
= &sde
->descq
[head
];
2164 desc
[0] = le64_to_cpu(descqp
->qw
[0]);
2165 desc
[1] = le64_to_cpu(descqp
->qw
[1]);
2166 flags
[0] = (desc
[1] & SDMA_DESC1_INT_REQ_FLAG
) ? 'I' : '-';
2167 flags
[1] = (desc
[1] & SDMA_DESC1_HEAD_TO_HOST_FLAG
) ?
2169 flags
[2] = (desc
[0] & SDMA_DESC0_FIRST_DESC_FLAG
) ? 'F' : '-';
2170 flags
[3] = (desc
[0] & SDMA_DESC0_LAST_DESC_FLAG
) ? 'L' : '-';
2171 addr
= (desc
[0] >> SDMA_DESC0_PHY_ADDR_SHIFT
)
2172 & SDMA_DESC0_PHY_ADDR_MASK
;
2173 gen
= (desc
[1] >> SDMA_DESC1_GENERATION_SHIFT
)
2174 & SDMA_DESC1_GENERATION_MASK
;
2175 len
= (desc
[0] >> SDMA_DESC0_BYTE_COUNT_SHIFT
)
2176 & SDMA_DESC0_BYTE_COUNT_MASK
;
2178 "SDMA sdmadesc[%u]: flags:%s addr:0x%016llx gen:%u len:%u bytes\n",
2179 head
, flags
, addr
, gen
, len
);
2181 "\tdesc0:0x%016llx desc1 0x%016llx\n",
2183 if (desc
[0] & SDMA_DESC0_FIRST_DESC_FLAG
)
2185 "\taidx: %u amode: %u alen: %u\n",
2187 SDMA_DESC1_HEADER_INDEX_SMASK
) >>
2188 SDMA_DESC1_HEADER_INDEX_SHIFT
),
2190 SDMA_DESC1_HEADER_MODE_SMASK
) >>
2191 SDMA_DESC1_HEADER_MODE_SHIFT
),
2193 SDMA_DESC1_HEADER_DWS_SMASK
) >>
2194 SDMA_DESC1_HEADER_DWS_SHIFT
));
2196 head
&= sde
->sdma_mask
;
2201 "SDE %u CPU %d STE %s C 0x%llx S 0x%016llx E 0x%llx T(HW) 0x%llx T(SW) 0x%x H(HW) 0x%llx H(SW) 0x%x H(D) 0x%llx DM 0x%llx GL 0x%llx R 0x%llx LIS 0x%llx AHGI 0x%llx TXT %u TXH %u DT %u DH %u FLNE %d DQF %u SLC 0x%llx\n"
2203 * sdma_seqfile_dump_sde() - debugfs dump of sde
2205 * @sde: send dma engine to dump
2207 * This routine dumps the sde to the indicated seq file.
2209 void sdma_seqfile_dump_sde(struct seq_file
*s
, struct sdma_engine
*sde
)
2212 struct hw_sdma_desc
*descqp
;
2218 head
= sde
->descq_head
& sde
->sdma_mask
;
2219 tail
= READ_ONCE(sde
->descq_tail
) & sde
->sdma_mask
;
2220 seq_printf(s
, SDE_FMT
, sde
->this_idx
,
2222 sdma_state_name(sde
->state
.current_state
),
2223 (unsigned long long)read_sde_csr(sde
, SD(CTRL
)),
2224 (unsigned long long)read_sde_csr(sde
, SD(STATUS
)),
2225 (unsigned long long)read_sde_csr(sde
, SD(ENG_ERR_STATUS
)),
2226 (unsigned long long)read_sde_csr(sde
, SD(TAIL
)), tail
,
2227 (unsigned long long)read_sde_csr(sde
, SD(HEAD
)), head
,
2228 (unsigned long long)le64_to_cpu(*sde
->head_dma
),
2229 (unsigned long long)read_sde_csr(sde
, SD(MEMORY
)),
2230 (unsigned long long)read_sde_csr(sde
, SD(LEN_GEN
)),
2231 (unsigned long long)read_sde_csr(sde
, SD(RELOAD_CNT
)),
2232 (unsigned long long)sde
->last_status
,
2233 (unsigned long long)sde
->ahg_bits
,
2238 !list_empty(&sde
->flushlist
),
2239 sde
->descq_full_count
,
2240 (unsigned long long)read_sde_csr(sde
, SEND_DMA_CHECK_SLID
));
2242 /* print info for each entry in the descriptor queue */
2243 while (head
!= tail
) {
2244 char flags
[6] = { 'x', 'x', 'x', 'x', 0 };
2246 descqp
= &sde
->descq
[head
];
2247 desc
[0] = le64_to_cpu(descqp
->qw
[0]);
2248 desc
[1] = le64_to_cpu(descqp
->qw
[1]);
2249 flags
[0] = (desc
[1] & SDMA_DESC1_INT_REQ_FLAG
) ? 'I' : '-';
2250 flags
[1] = (desc
[1] & SDMA_DESC1_HEAD_TO_HOST_FLAG
) ?
2252 flags
[2] = (desc
[0] & SDMA_DESC0_FIRST_DESC_FLAG
) ? 'F' : '-';
2253 flags
[3] = (desc
[0] & SDMA_DESC0_LAST_DESC_FLAG
) ? 'L' : '-';
2254 addr
= (desc
[0] >> SDMA_DESC0_PHY_ADDR_SHIFT
)
2255 & SDMA_DESC0_PHY_ADDR_MASK
;
2256 gen
= (desc
[1] >> SDMA_DESC1_GENERATION_SHIFT
)
2257 & SDMA_DESC1_GENERATION_MASK
;
2258 len
= (desc
[0] >> SDMA_DESC0_BYTE_COUNT_SHIFT
)
2259 & SDMA_DESC0_BYTE_COUNT_MASK
;
2261 "\tdesc[%u]: flags:%s addr:0x%016llx gen:%u len:%u bytes\n",
2262 head
, flags
, addr
, gen
, len
);
2263 if (desc
[0] & SDMA_DESC0_FIRST_DESC_FLAG
)
2264 seq_printf(s
, "\t\tahgidx: %u ahgmode: %u\n",
2266 SDMA_DESC1_HEADER_INDEX_SMASK
) >>
2267 SDMA_DESC1_HEADER_INDEX_SHIFT
),
2269 SDMA_DESC1_HEADER_MODE_SMASK
) >>
2270 SDMA_DESC1_HEADER_MODE_SHIFT
));
2271 head
= (head
+ 1) & sde
->sdma_mask
;
2276 * add the generation number into
2277 * the qw1 and return
2279 static inline u64
add_gen(struct sdma_engine
*sde
, u64 qw1
)
2281 u8 generation
= (sde
->descq_tail
>> sde
->sdma_shift
) & 3;
2283 qw1
&= ~SDMA_DESC1_GENERATION_SMASK
;
2284 qw1
|= ((u64
)generation
& SDMA_DESC1_GENERATION_MASK
)
2285 << SDMA_DESC1_GENERATION_SHIFT
;
2290 * This routine submits the indicated tx
2292 * Space has already been guaranteed and
2293 * tail side of ring is locked.
2295 * The hardware tail update is done
2296 * in the caller and that is facilitated
2297 * by returning the new tail.
2299 * There is special case logic for ahg
2300 * to not add the generation number for
2301 * up to 2 descriptors that follow the
2305 static inline u16
submit_tx(struct sdma_engine
*sde
, struct sdma_txreq
*tx
)
2309 struct sdma_desc
*descp
= tx
->descp
;
2310 u8 skip
= 0, mode
= ahg_mode(tx
);
2312 tail
= sde
->descq_tail
& sde
->sdma_mask
;
2313 sde
->descq
[tail
].qw
[0] = cpu_to_le64(descp
->qw
[0]);
2314 sde
->descq
[tail
].qw
[1] = cpu_to_le64(add_gen(sde
, descp
->qw
[1]));
2315 trace_hfi1_sdma_descriptor(sde
, descp
->qw
[0], descp
->qw
[1],
2316 tail
, &sde
->descq
[tail
]);
2317 tail
= ++sde
->descq_tail
& sde
->sdma_mask
;
2319 if (mode
> SDMA_AHG_APPLY_UPDATE1
)
2321 for (i
= 1; i
< tx
->num_desc
; i
++, descp
++) {
2324 sde
->descq
[tail
].qw
[0] = cpu_to_le64(descp
->qw
[0]);
2326 /* edits don't have generation */
2330 /* replace generation with real one for non-edits */
2331 qw1
= add_gen(sde
, descp
->qw
[1]);
2333 sde
->descq
[tail
].qw
[1] = cpu_to_le64(qw1
);
2334 trace_hfi1_sdma_descriptor(sde
, descp
->qw
[0], qw1
,
2335 tail
, &sde
->descq
[tail
]);
2336 tail
= ++sde
->descq_tail
& sde
->sdma_mask
;
2338 tx
->next_descq_idx
= tail
;
2339 #ifdef CONFIG_HFI1_DEBUG_SDMA_ORDER
2340 tx
->sn
= sde
->tail_sn
++;
2341 trace_hfi1_sdma_in_sn(sde
, tx
->sn
);
2342 WARN_ON_ONCE(sde
->tx_ring
[sde
->tx_tail
& sde
->sdma_mask
]);
2344 sde
->tx_ring
[sde
->tx_tail
++ & sde
->sdma_mask
] = tx
;
2345 sde
->desc_avail
-= tx
->num_desc
;
2350 * Check for progress
2352 static int sdma_check_progress(
2353 struct sdma_engine
*sde
,
2354 struct iowait
*wait
,
2355 struct sdma_txreq
*tx
,
2360 sde
->desc_avail
= sdma_descq_freecnt(sde
);
2361 if (tx
->num_desc
<= sde
->desc_avail
)
2363 /* pulse the head_lock */
2364 if (wait
&& wait
->sleep
) {
2367 seq
= raw_seqcount_begin(
2368 (const seqcount_t
*)&sde
->head_lock
.seqcount
);
2369 ret
= wait
->sleep(sde
, wait
, tx
, seq
, pkts_sent
);
2371 sde
->desc_avail
= sdma_descq_freecnt(sde
);
2379 * sdma_send_txreq() - submit a tx req to ring
2380 * @sde: sdma engine to use
2381 * @wait: wait structure to use when full (may be NULL)
2382 * @tx: sdma_txreq to submit
2383 * @pkts_sent: has any packet been sent yet?
2385 * The call submits the tx into the ring. If a iowait structure is non-NULL
2386 * the packet will be queued to the list in wait.
2389 * 0 - Success, -EINVAL - sdma_txreq incomplete, -EBUSY - no space in
2390 * ring (wait == NULL)
2391 * -EIOCBQUEUED - tx queued to iowait, -ECOMM bad sdma state
2393 int sdma_send_txreq(struct sdma_engine
*sde
,
2394 struct iowait
*wait
,
2395 struct sdma_txreq
*tx
,
2400 unsigned long flags
;
2402 /* user should have supplied entire packet */
2403 if (unlikely(tx
->tlen
))
2406 spin_lock_irqsave(&sde
->tail_lock
, flags
);
2408 if (unlikely(!__sdma_running(sde
)))
2410 if (unlikely(tx
->num_desc
> sde
->desc_avail
))
2412 tail
= submit_tx(sde
, tx
);
2414 iowait_sdma_inc(wait
);
2415 sdma_update_tail(sde
, tail
);
2417 spin_unlock_irqrestore(&sde
->tail_lock
, flags
);
2421 iowait_sdma_inc(wait
);
2422 tx
->next_descq_idx
= 0;
2423 #ifdef CONFIG_HFI1_DEBUG_SDMA_ORDER
2424 tx
->sn
= sde
->tail_sn
++;
2425 trace_hfi1_sdma_in_sn(sde
, tx
->sn
);
2427 spin_lock(&sde
->flushlist_lock
);
2428 list_add_tail(&tx
->list
, &sde
->flushlist
);
2429 spin_unlock(&sde
->flushlist_lock
);
2432 wait
->count
+= tx
->num_desc
;
2434 schedule_work(&sde
->flush_worker
);
2438 ret
= sdma_check_progress(sde
, wait
, tx
, pkts_sent
);
2439 if (ret
== -EAGAIN
) {
2443 sde
->descq_full_count
++;
2448 * sdma_send_txlist() - submit a list of tx req to ring
2449 * @sde: sdma engine to use
2450 * @wait: wait structure to use when full (may be NULL)
2451 * @tx_list: list of sdma_txreqs to submit
2452 * @count: pointer to a u32 which, after return will contain the total number of
2453 * sdma_txreqs removed from the tx_list. This will include sdma_txreqs
2454 * whose SDMA descriptors are submitted to the ring and the sdma_txreqs
2455 * which are added to SDMA engine flush list if the SDMA engine state is
2458 * The call submits the list into the ring.
2460 * If the iowait structure is non-NULL and not equal to the iowait list
2461 * the unprocessed part of the list will be appended to the list in wait.
2463 * In all cases, the tx_list will be updated so the head of the tx_list is
2464 * the list of descriptors that have yet to be transmitted.
2466 * The intent of this call is to provide a more efficient
2467 * way of submitting multiple packets to SDMA while holding the tail
2472 * -EINVAL - sdma_txreq incomplete, -EBUSY - no space in ring (wait == NULL)
2473 * -EIOCBQUEUED - tx queued to iowait, -ECOMM bad sdma state
2475 int sdma_send_txlist(struct sdma_engine
*sde
, struct iowait
*wait
,
2476 struct list_head
*tx_list
, u32
*count_out
)
2478 struct sdma_txreq
*tx
, *tx_next
;
2480 unsigned long flags
;
2481 u16 tail
= INVALID_TAIL
;
2482 u32 submit_count
= 0, flush_count
= 0, total_count
;
2484 spin_lock_irqsave(&sde
->tail_lock
, flags
);
2486 list_for_each_entry_safe(tx
, tx_next
, tx_list
, list
) {
2488 if (unlikely(!__sdma_running(sde
)))
2490 if (unlikely(tx
->num_desc
> sde
->desc_avail
))
2492 if (unlikely(tx
->tlen
)) {
2496 list_del_init(&tx
->list
);
2497 tail
= submit_tx(sde
, tx
);
2499 if (tail
!= INVALID_TAIL
&&
2500 (submit_count
& SDMA_TAIL_UPDATE_THRESH
) == 0) {
2501 sdma_update_tail(sde
, tail
);
2502 tail
= INVALID_TAIL
;
2506 total_count
= submit_count
+ flush_count
;
2508 iowait_sdma_add(wait
, total_count
);
2509 iowait_starve_clear(submit_count
> 0, wait
);
2511 if (tail
!= INVALID_TAIL
)
2512 sdma_update_tail(sde
, tail
);
2513 spin_unlock_irqrestore(&sde
->tail_lock
, flags
);
2514 *count_out
= total_count
;
2517 spin_lock(&sde
->flushlist_lock
);
2518 list_for_each_entry_safe(tx
, tx_next
, tx_list
, list
) {
2520 list_del_init(&tx
->list
);
2521 tx
->next_descq_idx
= 0;
2522 #ifdef CONFIG_HFI1_DEBUG_SDMA_ORDER
2523 tx
->sn
= sde
->tail_sn
++;
2524 trace_hfi1_sdma_in_sn(sde
, tx
->sn
);
2526 list_add_tail(&tx
->list
, &sde
->flushlist
);
2530 wait
->count
+= tx
->num_desc
;
2533 spin_unlock(&sde
->flushlist_lock
);
2534 schedule_work(&sde
->flush_worker
);
2538 ret
= sdma_check_progress(sde
, wait
, tx
, submit_count
> 0);
2539 if (ret
== -EAGAIN
) {
2543 sde
->descq_full_count
++;
2547 static void sdma_process_event(struct sdma_engine
*sde
, enum sdma_events event
)
2549 unsigned long flags
;
2551 spin_lock_irqsave(&sde
->tail_lock
, flags
);
2552 write_seqlock(&sde
->head_lock
);
2554 __sdma_process_event(sde
, event
);
2556 if (sde
->state
.current_state
== sdma_state_s99_running
)
2557 sdma_desc_avail(sde
, sdma_descq_freecnt(sde
));
2559 write_sequnlock(&sde
->head_lock
);
2560 spin_unlock_irqrestore(&sde
->tail_lock
, flags
);
2563 static void __sdma_process_event(struct sdma_engine
*sde
,
2564 enum sdma_events event
)
2566 struct sdma_state
*ss
= &sde
->state
;
2567 int need_progress
= 0;
2569 /* CONFIG SDMA temporary */
2570 #ifdef CONFIG_SDMA_VERBOSITY
2571 dd_dev_err(sde
->dd
, "CONFIG SDMA(%u) [%s] %s\n", sde
->this_idx
,
2572 sdma_state_names
[ss
->current_state
],
2573 sdma_event_names
[event
]);
2576 switch (ss
->current_state
) {
2577 case sdma_state_s00_hw_down
:
2579 case sdma_event_e00_go_hw_down
:
2581 case sdma_event_e30_go_running
:
2583 * If down, but running requested (usually result
2584 * of link up, then we need to start up.
2585 * This can happen when hw down is requested while
2586 * bringing the link up with traffic active on
2589 ss
->go_s99_running
= 1;
2590 /* fall through -- and start dma engine */
2591 case sdma_event_e10_go_hw_start
:
2592 /* This reference means the state machine is started */
2593 sdma_get(&sde
->state
);
2595 sdma_state_s10_hw_start_up_halt_wait
);
2597 case sdma_event_e15_hw_halt_done
:
2599 case sdma_event_e25_hw_clean_up_done
:
2601 case sdma_event_e40_sw_cleaned
:
2602 sdma_sw_tear_down(sde
);
2604 case sdma_event_e50_hw_cleaned
:
2606 case sdma_event_e60_hw_halted
:
2608 case sdma_event_e70_go_idle
:
2610 case sdma_event_e80_hw_freeze
:
2612 case sdma_event_e81_hw_frozen
:
2614 case sdma_event_e82_hw_unfreeze
:
2616 case sdma_event_e85_link_down
:
2618 case sdma_event_e90_sw_halted
:
2623 case sdma_state_s10_hw_start_up_halt_wait
:
2625 case sdma_event_e00_go_hw_down
:
2626 sdma_set_state(sde
, sdma_state_s00_hw_down
);
2627 sdma_sw_tear_down(sde
);
2629 case sdma_event_e10_go_hw_start
:
2631 case sdma_event_e15_hw_halt_done
:
2633 sdma_state_s15_hw_start_up_clean_wait
);
2634 sdma_start_hw_clean_up(sde
);
2636 case sdma_event_e25_hw_clean_up_done
:
2638 case sdma_event_e30_go_running
:
2639 ss
->go_s99_running
= 1;
2641 case sdma_event_e40_sw_cleaned
:
2643 case sdma_event_e50_hw_cleaned
:
2645 case sdma_event_e60_hw_halted
:
2646 schedule_work(&sde
->err_halt_worker
);
2648 case sdma_event_e70_go_idle
:
2649 ss
->go_s99_running
= 0;
2651 case sdma_event_e80_hw_freeze
:
2653 case sdma_event_e81_hw_frozen
:
2655 case sdma_event_e82_hw_unfreeze
:
2657 case sdma_event_e85_link_down
:
2659 case sdma_event_e90_sw_halted
:
2664 case sdma_state_s15_hw_start_up_clean_wait
:
2666 case sdma_event_e00_go_hw_down
:
2667 sdma_set_state(sde
, sdma_state_s00_hw_down
);
2668 sdma_sw_tear_down(sde
);
2670 case sdma_event_e10_go_hw_start
:
2672 case sdma_event_e15_hw_halt_done
:
2674 case sdma_event_e25_hw_clean_up_done
:
2675 sdma_hw_start_up(sde
);
2676 sdma_set_state(sde
, ss
->go_s99_running
?
2677 sdma_state_s99_running
:
2678 sdma_state_s20_idle
);
2680 case sdma_event_e30_go_running
:
2681 ss
->go_s99_running
= 1;
2683 case sdma_event_e40_sw_cleaned
:
2685 case sdma_event_e50_hw_cleaned
:
2687 case sdma_event_e60_hw_halted
:
2689 case sdma_event_e70_go_idle
:
2690 ss
->go_s99_running
= 0;
2692 case sdma_event_e80_hw_freeze
:
2694 case sdma_event_e81_hw_frozen
:
2696 case sdma_event_e82_hw_unfreeze
:
2698 case sdma_event_e85_link_down
:
2700 case sdma_event_e90_sw_halted
:
2705 case sdma_state_s20_idle
:
2707 case sdma_event_e00_go_hw_down
:
2708 sdma_set_state(sde
, sdma_state_s00_hw_down
);
2709 sdma_sw_tear_down(sde
);
2711 case sdma_event_e10_go_hw_start
:
2713 case sdma_event_e15_hw_halt_done
:
2715 case sdma_event_e25_hw_clean_up_done
:
2717 case sdma_event_e30_go_running
:
2718 sdma_set_state(sde
, sdma_state_s99_running
);
2719 ss
->go_s99_running
= 1;
2721 case sdma_event_e40_sw_cleaned
:
2723 case sdma_event_e50_hw_cleaned
:
2725 case sdma_event_e60_hw_halted
:
2726 sdma_set_state(sde
, sdma_state_s50_hw_halt_wait
);
2727 schedule_work(&sde
->err_halt_worker
);
2729 case sdma_event_e70_go_idle
:
2731 case sdma_event_e85_link_down
:
2733 case sdma_event_e80_hw_freeze
:
2734 sdma_set_state(sde
, sdma_state_s80_hw_freeze
);
2735 atomic_dec(&sde
->dd
->sdma_unfreeze_count
);
2736 wake_up_interruptible(&sde
->dd
->sdma_unfreeze_wq
);
2738 case sdma_event_e81_hw_frozen
:
2740 case sdma_event_e82_hw_unfreeze
:
2742 case sdma_event_e90_sw_halted
:
2747 case sdma_state_s30_sw_clean_up_wait
:
2749 case sdma_event_e00_go_hw_down
:
2750 sdma_set_state(sde
, sdma_state_s00_hw_down
);
2752 case sdma_event_e10_go_hw_start
:
2754 case sdma_event_e15_hw_halt_done
:
2756 case sdma_event_e25_hw_clean_up_done
:
2758 case sdma_event_e30_go_running
:
2759 ss
->go_s99_running
= 1;
2761 case sdma_event_e40_sw_cleaned
:
2762 sdma_set_state(sde
, sdma_state_s40_hw_clean_up_wait
);
2763 sdma_start_hw_clean_up(sde
);
2765 case sdma_event_e50_hw_cleaned
:
2767 case sdma_event_e60_hw_halted
:
2769 case sdma_event_e70_go_idle
:
2770 ss
->go_s99_running
= 0;
2772 case sdma_event_e80_hw_freeze
:
2774 case sdma_event_e81_hw_frozen
:
2776 case sdma_event_e82_hw_unfreeze
:
2778 case sdma_event_e85_link_down
:
2779 ss
->go_s99_running
= 0;
2781 case sdma_event_e90_sw_halted
:
2786 case sdma_state_s40_hw_clean_up_wait
:
2788 case sdma_event_e00_go_hw_down
:
2789 sdma_set_state(sde
, sdma_state_s00_hw_down
);
2790 tasklet_hi_schedule(&sde
->sdma_sw_clean_up_task
);
2792 case sdma_event_e10_go_hw_start
:
2794 case sdma_event_e15_hw_halt_done
:
2796 case sdma_event_e25_hw_clean_up_done
:
2797 sdma_hw_start_up(sde
);
2798 sdma_set_state(sde
, ss
->go_s99_running
?
2799 sdma_state_s99_running
:
2800 sdma_state_s20_idle
);
2802 case sdma_event_e30_go_running
:
2803 ss
->go_s99_running
= 1;
2805 case sdma_event_e40_sw_cleaned
:
2807 case sdma_event_e50_hw_cleaned
:
2809 case sdma_event_e60_hw_halted
:
2811 case sdma_event_e70_go_idle
:
2812 ss
->go_s99_running
= 0;
2814 case sdma_event_e80_hw_freeze
:
2816 case sdma_event_e81_hw_frozen
:
2818 case sdma_event_e82_hw_unfreeze
:
2820 case sdma_event_e85_link_down
:
2821 ss
->go_s99_running
= 0;
2823 case sdma_event_e90_sw_halted
:
2828 case sdma_state_s50_hw_halt_wait
:
2830 case sdma_event_e00_go_hw_down
:
2831 sdma_set_state(sde
, sdma_state_s00_hw_down
);
2832 tasklet_hi_schedule(&sde
->sdma_sw_clean_up_task
);
2834 case sdma_event_e10_go_hw_start
:
2836 case sdma_event_e15_hw_halt_done
:
2837 sdma_set_state(sde
, sdma_state_s30_sw_clean_up_wait
);
2838 tasklet_hi_schedule(&sde
->sdma_sw_clean_up_task
);
2840 case sdma_event_e25_hw_clean_up_done
:
2842 case sdma_event_e30_go_running
:
2843 ss
->go_s99_running
= 1;
2845 case sdma_event_e40_sw_cleaned
:
2847 case sdma_event_e50_hw_cleaned
:
2849 case sdma_event_e60_hw_halted
:
2850 schedule_work(&sde
->err_halt_worker
);
2852 case sdma_event_e70_go_idle
:
2853 ss
->go_s99_running
= 0;
2855 case sdma_event_e80_hw_freeze
:
2857 case sdma_event_e81_hw_frozen
:
2859 case sdma_event_e82_hw_unfreeze
:
2861 case sdma_event_e85_link_down
:
2862 ss
->go_s99_running
= 0;
2864 case sdma_event_e90_sw_halted
:
2869 case sdma_state_s60_idle_halt_wait
:
2871 case sdma_event_e00_go_hw_down
:
2872 sdma_set_state(sde
, sdma_state_s00_hw_down
);
2873 tasklet_hi_schedule(&sde
->sdma_sw_clean_up_task
);
2875 case sdma_event_e10_go_hw_start
:
2877 case sdma_event_e15_hw_halt_done
:
2878 sdma_set_state(sde
, sdma_state_s30_sw_clean_up_wait
);
2879 tasklet_hi_schedule(&sde
->sdma_sw_clean_up_task
);
2881 case sdma_event_e25_hw_clean_up_done
:
2883 case sdma_event_e30_go_running
:
2884 ss
->go_s99_running
= 1;
2886 case sdma_event_e40_sw_cleaned
:
2888 case sdma_event_e50_hw_cleaned
:
2890 case sdma_event_e60_hw_halted
:
2891 schedule_work(&sde
->err_halt_worker
);
2893 case sdma_event_e70_go_idle
:
2894 ss
->go_s99_running
= 0;
2896 case sdma_event_e80_hw_freeze
:
2898 case sdma_event_e81_hw_frozen
:
2900 case sdma_event_e82_hw_unfreeze
:
2902 case sdma_event_e85_link_down
:
2904 case sdma_event_e90_sw_halted
:
2909 case sdma_state_s80_hw_freeze
:
2911 case sdma_event_e00_go_hw_down
:
2912 sdma_set_state(sde
, sdma_state_s00_hw_down
);
2913 tasklet_hi_schedule(&sde
->sdma_sw_clean_up_task
);
2915 case sdma_event_e10_go_hw_start
:
2917 case sdma_event_e15_hw_halt_done
:
2919 case sdma_event_e25_hw_clean_up_done
:
2921 case sdma_event_e30_go_running
:
2922 ss
->go_s99_running
= 1;
2924 case sdma_event_e40_sw_cleaned
:
2926 case sdma_event_e50_hw_cleaned
:
2928 case sdma_event_e60_hw_halted
:
2930 case sdma_event_e70_go_idle
:
2931 ss
->go_s99_running
= 0;
2933 case sdma_event_e80_hw_freeze
:
2935 case sdma_event_e81_hw_frozen
:
2936 sdma_set_state(sde
, sdma_state_s82_freeze_sw_clean
);
2937 tasklet_hi_schedule(&sde
->sdma_sw_clean_up_task
);
2939 case sdma_event_e82_hw_unfreeze
:
2941 case sdma_event_e85_link_down
:
2943 case sdma_event_e90_sw_halted
:
2948 case sdma_state_s82_freeze_sw_clean
:
2950 case sdma_event_e00_go_hw_down
:
2951 sdma_set_state(sde
, sdma_state_s00_hw_down
);
2952 tasklet_hi_schedule(&sde
->sdma_sw_clean_up_task
);
2954 case sdma_event_e10_go_hw_start
:
2956 case sdma_event_e15_hw_halt_done
:
2958 case sdma_event_e25_hw_clean_up_done
:
2960 case sdma_event_e30_go_running
:
2961 ss
->go_s99_running
= 1;
2963 case sdma_event_e40_sw_cleaned
:
2964 /* notify caller this engine is done cleaning */
2965 atomic_dec(&sde
->dd
->sdma_unfreeze_count
);
2966 wake_up_interruptible(&sde
->dd
->sdma_unfreeze_wq
);
2968 case sdma_event_e50_hw_cleaned
:
2970 case sdma_event_e60_hw_halted
:
2972 case sdma_event_e70_go_idle
:
2973 ss
->go_s99_running
= 0;
2975 case sdma_event_e80_hw_freeze
:
2977 case sdma_event_e81_hw_frozen
:
2979 case sdma_event_e82_hw_unfreeze
:
2980 sdma_hw_start_up(sde
);
2981 sdma_set_state(sde
, ss
->go_s99_running
?
2982 sdma_state_s99_running
:
2983 sdma_state_s20_idle
);
2985 case sdma_event_e85_link_down
:
2987 case sdma_event_e90_sw_halted
:
2992 case sdma_state_s99_running
:
2994 case sdma_event_e00_go_hw_down
:
2995 sdma_set_state(sde
, sdma_state_s00_hw_down
);
2996 tasklet_hi_schedule(&sde
->sdma_sw_clean_up_task
);
2998 case sdma_event_e10_go_hw_start
:
3000 case sdma_event_e15_hw_halt_done
:
3002 case sdma_event_e25_hw_clean_up_done
:
3004 case sdma_event_e30_go_running
:
3006 case sdma_event_e40_sw_cleaned
:
3008 case sdma_event_e50_hw_cleaned
:
3010 case sdma_event_e60_hw_halted
:
3012 sdma_err_progress_check_schedule(sde
);
3014 case sdma_event_e90_sw_halted
:
3016 * SW initiated halt does not perform engines
3019 sdma_set_state(sde
, sdma_state_s50_hw_halt_wait
);
3020 schedule_work(&sde
->err_halt_worker
);
3022 case sdma_event_e70_go_idle
:
3023 sdma_set_state(sde
, sdma_state_s60_idle_halt_wait
);
3025 case sdma_event_e85_link_down
:
3026 ss
->go_s99_running
= 0;
3028 case sdma_event_e80_hw_freeze
:
3029 sdma_set_state(sde
, sdma_state_s80_hw_freeze
);
3030 atomic_dec(&sde
->dd
->sdma_unfreeze_count
);
3031 wake_up_interruptible(&sde
->dd
->sdma_unfreeze_wq
);
3033 case sdma_event_e81_hw_frozen
:
3035 case sdma_event_e82_hw_unfreeze
:
3041 ss
->last_event
= event
;
3043 sdma_make_progress(sde
, 0);
3047 * _extend_sdma_tx_descs() - helper to extend txreq
3049 * This is called once the initial nominal allocation
3050 * of descriptors in the sdma_txreq is exhausted.
3052 * The code will bump the allocation up to the max
3053 * of MAX_DESC (64) descriptors. There doesn't seem
3054 * much point in an interim step. The last descriptor
3055 * is reserved for coalesce buffer in order to support
3056 * cases where input packet has >MAX_DESC iovecs.
3059 static int _extend_sdma_tx_descs(struct hfi1_devdata
*dd
, struct sdma_txreq
*tx
)
3063 /* Handle last descriptor */
3064 if (unlikely((tx
->num_desc
== (MAX_DESC
- 1)))) {
3065 /* if tlen is 0, it is for padding, release last descriptor */
3067 tx
->desc_limit
= MAX_DESC
;
3068 } else if (!tx
->coalesce_buf
) {
3069 /* allocate coalesce buffer with space for padding */
3070 tx
->coalesce_buf
= kmalloc(tx
->tlen
+ sizeof(u32
),
3072 if (!tx
->coalesce_buf
)
3074 tx
->coalesce_idx
= 0;
3079 if (unlikely(tx
->num_desc
== MAX_DESC
))
3082 tx
->descp
= kmalloc_array(
3084 sizeof(struct sdma_desc
),
3089 /* reserve last descriptor for coalescing */
3090 tx
->desc_limit
= MAX_DESC
- 1;
3091 /* copy ones already built */
3092 for (i
= 0; i
< tx
->num_desc
; i
++)
3093 tx
->descp
[i
] = tx
->descs
[i
];
3096 __sdma_txclean(dd
, tx
);
3101 * ext_coal_sdma_tx_descs() - extend or coalesce sdma tx descriptors
3103 * This is called once the initial nominal allocation of descriptors
3104 * in the sdma_txreq is exhausted.
3106 * This function calls _extend_sdma_tx_descs to extend or allocate
3107 * coalesce buffer. If there is a allocated coalesce buffer, it will
3108 * copy the input packet data into the coalesce buffer. It also adds
3109 * coalesce buffer descriptor once when whole packet is received.
3113 * 0 - coalescing, don't populate descriptor
3114 * 1 - continue with populating descriptor
3116 int ext_coal_sdma_tx_descs(struct hfi1_devdata
*dd
, struct sdma_txreq
*tx
,
3117 int type
, void *kvaddr
, struct page
*page
,
3118 unsigned long offset
, u16 len
)
3123 rval
= _extend_sdma_tx_descs(dd
, tx
);
3125 __sdma_txclean(dd
, tx
);
3129 /* If coalesce buffer is allocated, copy data into it */
3130 if (tx
->coalesce_buf
) {
3131 if (type
== SDMA_MAP_NONE
) {
3132 __sdma_txclean(dd
, tx
);
3136 if (type
== SDMA_MAP_PAGE
) {
3137 kvaddr
= kmap(page
);
3139 } else if (WARN_ON(!kvaddr
)) {
3140 __sdma_txclean(dd
, tx
);
3144 memcpy(tx
->coalesce_buf
+ tx
->coalesce_idx
, kvaddr
, len
);
3145 tx
->coalesce_idx
+= len
;
3146 if (type
== SDMA_MAP_PAGE
)
3149 /* If there is more data, return */
3150 if (tx
->tlen
- tx
->coalesce_idx
)
3153 /* Whole packet is received; add any padding */
3154 pad_len
= tx
->packet_len
& (sizeof(u32
) - 1);
3156 pad_len
= sizeof(u32
) - pad_len
;
3157 memset(tx
->coalesce_buf
+ tx
->coalesce_idx
, 0, pad_len
);
3158 /* padding is taken care of for coalescing case */
3159 tx
->packet_len
+= pad_len
;
3160 tx
->tlen
+= pad_len
;
3163 /* dma map the coalesce buffer */
3164 addr
= dma_map_single(&dd
->pcidev
->dev
,
3169 if (unlikely(dma_mapping_error(&dd
->pcidev
->dev
, addr
))) {
3170 __sdma_txclean(dd
, tx
);
3174 /* Add descriptor for coalesce buffer */
3175 tx
->desc_limit
= MAX_DESC
;
3176 return _sdma_txadd_daddr(dd
, SDMA_MAP_SINGLE
, tx
,
3183 /* Update sdes when the lmc changes */
3184 void sdma_update_lmc(struct hfi1_devdata
*dd
, u64 mask
, u32 lid
)
3186 struct sdma_engine
*sde
;
3190 sreg
= ((mask
& SD(CHECK_SLID_MASK_MASK
)) <<
3191 SD(CHECK_SLID_MASK_SHIFT
)) |
3192 (((lid
& mask
) & SD(CHECK_SLID_VALUE_MASK
)) <<
3193 SD(CHECK_SLID_VALUE_SHIFT
));
3195 for (i
= 0; i
< dd
->num_sdma
; i
++) {
3196 hfi1_cdbg(LINKVERB
, "SendDmaEngine[%d].SLID_CHECK = 0x%x",
3198 sde
= &dd
->per_sdma
[i
];
3199 write_sde_csr(sde
, SD(CHECK_SLID
), sreg
);
3203 /* tx not dword sized - pad */
3204 int _pad_sdma_tx_descs(struct hfi1_devdata
*dd
, struct sdma_txreq
*tx
)
3209 if ((unlikely(tx
->num_desc
== tx
->desc_limit
))) {
3210 rval
= _extend_sdma_tx_descs(dd
, tx
);
3212 __sdma_txclean(dd
, tx
);
3216 /* finish the one just added */
3221 sizeof(u32
) - (tx
->packet_len
& (sizeof(u32
) - 1)));
3222 _sdma_close_tx(dd
, tx
);
3227 * Add ahg to the sdma_txreq
3229 * The logic will consume up to 3
3230 * descriptors at the beginning of
3233 void _sdma_txreq_ahgadd(
3234 struct sdma_txreq
*tx
,
3240 u32 i
, shift
= 0, desc
= 0;
3243 WARN_ON_ONCE(num_ahg
> 9 || (ahg_hlen
& 3) || ahg_hlen
== 4);
3246 mode
= SDMA_AHG_APPLY_UPDATE1
;
3247 else if (num_ahg
<= 5)
3248 mode
= SDMA_AHG_APPLY_UPDATE2
;
3250 mode
= SDMA_AHG_APPLY_UPDATE3
;
3252 /* initialize to consumed descriptors to zero */
3254 case SDMA_AHG_APPLY_UPDATE3
:
3256 tx
->descs
[2].qw
[0] = 0;
3257 tx
->descs
[2].qw
[1] = 0;
3259 case SDMA_AHG_APPLY_UPDATE2
:
3261 tx
->descs
[1].qw
[0] = 0;
3262 tx
->descs
[1].qw
[1] = 0;
3266 tx
->descs
[0].qw
[1] |=
3267 (((u64
)ahg_entry
& SDMA_DESC1_HEADER_INDEX_MASK
)
3268 << SDMA_DESC1_HEADER_INDEX_SHIFT
) |
3269 (((u64
)ahg_hlen
& SDMA_DESC1_HEADER_DWS_MASK
)
3270 << SDMA_DESC1_HEADER_DWS_SHIFT
) |
3271 (((u64
)mode
& SDMA_DESC1_HEADER_MODE_MASK
)
3272 << SDMA_DESC1_HEADER_MODE_SHIFT
) |
3273 (((u64
)ahg
[0] & SDMA_DESC1_HEADER_UPDATE1_MASK
)
3274 << SDMA_DESC1_HEADER_UPDATE1_SHIFT
);
3275 for (i
= 0; i
< (num_ahg
- 1); i
++) {
3276 if (!shift
&& !(i
& 2))
3278 tx
->descs
[desc
].qw
[!!(i
& 2)] |=
3281 shift
= (shift
+ 32) & 63;
3286 * sdma_ahg_alloc - allocate an AHG entry
3287 * @sde: engine to allocate from
3290 * 0-31 when successful, -EOPNOTSUPP if AHG is not enabled,
3291 * -ENOSPC if an entry is not available
3293 int sdma_ahg_alloc(struct sdma_engine
*sde
)
3299 trace_hfi1_ahg_allocate(sde
, -EINVAL
);
3303 nr
= ffz(READ_ONCE(sde
->ahg_bits
));
3305 trace_hfi1_ahg_allocate(sde
, -ENOSPC
);
3308 oldbit
= test_and_set_bit(nr
, &sde
->ahg_bits
);
3313 trace_hfi1_ahg_allocate(sde
, nr
);
3318 * sdma_ahg_free - free an AHG entry
3319 * @sde: engine to return AHG entry
3320 * @ahg_index: index to free
3322 * This routine frees the indicate AHG entry.
3324 void sdma_ahg_free(struct sdma_engine
*sde
, int ahg_index
)
3328 trace_hfi1_ahg_deallocate(sde
, ahg_index
);
3329 if (ahg_index
< 0 || ahg_index
> 31)
3331 clear_bit(ahg_index
, &sde
->ahg_bits
);
3335 * SPC freeze handling for SDMA engines. Called when the driver knows
3336 * the SPC is going into a freeze but before the freeze is fully
3337 * settled. Generally an error interrupt.
3339 * This event will pull the engine out of running so no more entries can be
3340 * added to the engine's queue.
3342 void sdma_freeze_notify(struct hfi1_devdata
*dd
, int link_down
)
3345 enum sdma_events event
= link_down
? sdma_event_e85_link_down
:
3346 sdma_event_e80_hw_freeze
;
3348 /* set up the wait but do not wait here */
3349 atomic_set(&dd
->sdma_unfreeze_count
, dd
->num_sdma
);
3351 /* tell all engines to stop running and wait */
3352 for (i
= 0; i
< dd
->num_sdma
; i
++)
3353 sdma_process_event(&dd
->per_sdma
[i
], event
);
3355 /* sdma_freeze() will wait for all engines to have stopped */
3359 * SPC freeze handling for SDMA engines. Called when the driver knows
3360 * the SPC is fully frozen.
3362 void sdma_freeze(struct hfi1_devdata
*dd
)
3368 * Make sure all engines have moved out of the running state before
3371 ret
= wait_event_interruptible(dd
->sdma_unfreeze_wq
,
3372 atomic_read(&dd
->sdma_unfreeze_count
) <=
3374 /* interrupted or count is negative, then unloading - just exit */
3375 if (ret
|| atomic_read(&dd
->sdma_unfreeze_count
) < 0)
3378 /* set up the count for the next wait */
3379 atomic_set(&dd
->sdma_unfreeze_count
, dd
->num_sdma
);
3381 /* tell all engines that the SPC is frozen, they can start cleaning */
3382 for (i
= 0; i
< dd
->num_sdma
; i
++)
3383 sdma_process_event(&dd
->per_sdma
[i
], sdma_event_e81_hw_frozen
);
3386 * Wait for everyone to finish software clean before exiting. The
3387 * software clean will read engine CSRs, so must be completed before
3388 * the next step, which will clear the engine CSRs.
3390 (void)wait_event_interruptible(dd
->sdma_unfreeze_wq
,
3391 atomic_read(&dd
->sdma_unfreeze_count
) <= 0);
3392 /* no need to check results - done no matter what */
3396 * SPC freeze handling for the SDMA engines. Called after the SPC is unfrozen.
3398 * The SPC freeze acts like a SDMA halt and a hardware clean combined. All
3399 * that is left is a software clean. We could do it after the SPC is fully
3400 * frozen, but then we'd have to add another state to wait for the unfreeze.
3401 * Instead, just defer the software clean until the unfreeze step.
3403 void sdma_unfreeze(struct hfi1_devdata
*dd
)
3407 /* tell all engines start freeze clean up */
3408 for (i
= 0; i
< dd
->num_sdma
; i
++)
3409 sdma_process_event(&dd
->per_sdma
[i
],
3410 sdma_event_e82_hw_unfreeze
);
3414 * _sdma_engine_progress_schedule() - schedule progress on engine
3415 * @sde: sdma_engine to schedule progress
3418 void _sdma_engine_progress_schedule(
3419 struct sdma_engine
*sde
)
3421 trace_hfi1_sdma_engine_progress(sde
, sde
->progress_mask
);
3422 /* assume we have selected a good cpu */
3424 CCE_INT_FORCE
+ (8 * (IS_SDMA_START
/ 64)),
3425 sde
->progress_mask
);