x86/topology: Fix function name in documentation
[cris-mirror.git] / drivers / infiniband / hw / hfi1 / verbs.c
blob471d55c5006689303208e5770247bda8733e5cad
1 /*
2 * Copyright(c) 2015 - 2017 Intel Corporation.
4 * This file is provided under a dual BSD/GPLv2 license. When using or
5 * redistributing this file, you may do so under either license.
7 * GPL LICENSE SUMMARY
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of version 2 of the GNU General Public License as
11 * published by the Free Software Foundation.
13 * This program is distributed in the hope that it will be useful, but
14 * WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
16 * General Public License for more details.
18 * BSD LICENSE
20 * Redistribution and use in source and binary forms, with or without
21 * modification, are permitted provided that the following conditions
22 * are met:
24 * - Redistributions of source code must retain the above copyright
25 * notice, this list of conditions and the following disclaimer.
26 * - Redistributions in binary form must reproduce the above copyright
27 * notice, this list of conditions and the following disclaimer in
28 * the documentation and/or other materials provided with the
29 * distribution.
30 * - Neither the name of Intel Corporation nor the names of its
31 * contributors may be used to endorse or promote products derived
32 * from this software without specific prior written permission.
34 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
35 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
36 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
37 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
38 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
39 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
40 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
41 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
42 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
43 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
44 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
48 #include <rdma/ib_mad.h>
49 #include <rdma/ib_user_verbs.h>
50 #include <linux/io.h>
51 #include <linux/module.h>
52 #include <linux/utsname.h>
53 #include <linux/rculist.h>
54 #include <linux/mm.h>
55 #include <linux/vmalloc.h>
56 #include <rdma/opa_addr.h>
58 #include "hfi.h"
59 #include "common.h"
60 #include "device.h"
61 #include "trace.h"
62 #include "qp.h"
63 #include "verbs_txreq.h"
64 #include "debugfs.h"
65 #include "vnic.h"
67 static unsigned int hfi1_lkey_table_size = 16;
68 module_param_named(lkey_table_size, hfi1_lkey_table_size, uint,
69 S_IRUGO);
70 MODULE_PARM_DESC(lkey_table_size,
71 "LKEY table size in bits (2^n, 1 <= n <= 23)");
73 static unsigned int hfi1_max_pds = 0xFFFF;
74 module_param_named(max_pds, hfi1_max_pds, uint, S_IRUGO);
75 MODULE_PARM_DESC(max_pds,
76 "Maximum number of protection domains to support");
78 static unsigned int hfi1_max_ahs = 0xFFFF;
79 module_param_named(max_ahs, hfi1_max_ahs, uint, S_IRUGO);
80 MODULE_PARM_DESC(max_ahs, "Maximum number of address handles to support");
82 unsigned int hfi1_max_cqes = 0x2FFFFF;
83 module_param_named(max_cqes, hfi1_max_cqes, uint, S_IRUGO);
84 MODULE_PARM_DESC(max_cqes,
85 "Maximum number of completion queue entries to support");
87 unsigned int hfi1_max_cqs = 0x1FFFF;
88 module_param_named(max_cqs, hfi1_max_cqs, uint, S_IRUGO);
89 MODULE_PARM_DESC(max_cqs, "Maximum number of completion queues to support");
91 unsigned int hfi1_max_qp_wrs = 0x3FFF;
92 module_param_named(max_qp_wrs, hfi1_max_qp_wrs, uint, S_IRUGO);
93 MODULE_PARM_DESC(max_qp_wrs, "Maximum number of QP WRs to support");
95 unsigned int hfi1_max_qps = 32768;
96 module_param_named(max_qps, hfi1_max_qps, uint, S_IRUGO);
97 MODULE_PARM_DESC(max_qps, "Maximum number of QPs to support");
99 unsigned int hfi1_max_sges = 0x60;
100 module_param_named(max_sges, hfi1_max_sges, uint, S_IRUGO);
101 MODULE_PARM_DESC(max_sges, "Maximum number of SGEs to support");
103 unsigned int hfi1_max_mcast_grps = 16384;
104 module_param_named(max_mcast_grps, hfi1_max_mcast_grps, uint, S_IRUGO);
105 MODULE_PARM_DESC(max_mcast_grps,
106 "Maximum number of multicast groups to support");
108 unsigned int hfi1_max_mcast_qp_attached = 16;
109 module_param_named(max_mcast_qp_attached, hfi1_max_mcast_qp_attached,
110 uint, S_IRUGO);
111 MODULE_PARM_DESC(max_mcast_qp_attached,
112 "Maximum number of attached QPs to support");
114 unsigned int hfi1_max_srqs = 1024;
115 module_param_named(max_srqs, hfi1_max_srqs, uint, S_IRUGO);
116 MODULE_PARM_DESC(max_srqs, "Maximum number of SRQs to support");
118 unsigned int hfi1_max_srq_sges = 128;
119 module_param_named(max_srq_sges, hfi1_max_srq_sges, uint, S_IRUGO);
120 MODULE_PARM_DESC(max_srq_sges, "Maximum number of SRQ SGEs to support");
122 unsigned int hfi1_max_srq_wrs = 0x1FFFF;
123 module_param_named(max_srq_wrs, hfi1_max_srq_wrs, uint, S_IRUGO);
124 MODULE_PARM_DESC(max_srq_wrs, "Maximum number of SRQ WRs support");
126 unsigned short piothreshold = 256;
127 module_param(piothreshold, ushort, S_IRUGO);
128 MODULE_PARM_DESC(piothreshold, "size used to determine sdma vs. pio");
130 #define COPY_CACHELESS 1
131 #define COPY_ADAPTIVE 2
132 static unsigned int sge_copy_mode;
133 module_param(sge_copy_mode, uint, S_IRUGO);
134 MODULE_PARM_DESC(sge_copy_mode,
135 "Verbs copy mode: 0 use memcpy, 1 use cacheless copy, 2 adapt based on WSS");
137 static void verbs_sdma_complete(
138 struct sdma_txreq *cookie,
139 int status);
141 static int pio_wait(struct rvt_qp *qp,
142 struct send_context *sc,
143 struct hfi1_pkt_state *ps,
144 u32 flag);
146 /* Length of buffer to create verbs txreq cache name */
147 #define TXREQ_NAME_LEN 24
149 /* 16B trailing buffer */
150 static const u8 trail_buf[MAX_16B_PADDING];
152 static uint wss_threshold;
153 module_param(wss_threshold, uint, S_IRUGO);
154 MODULE_PARM_DESC(wss_threshold, "Percentage (1-100) of LLC to use as a threshold for a cacheless copy");
155 static uint wss_clean_period = 256;
156 module_param(wss_clean_period, uint, S_IRUGO);
157 MODULE_PARM_DESC(wss_clean_period, "Count of verbs copies before an entry in the page copy table is cleaned");
159 /* memory working set size */
160 struct hfi1_wss {
161 unsigned long *entries;
162 atomic_t total_count;
163 atomic_t clean_counter;
164 atomic_t clean_entry;
166 int threshold;
167 int num_entries;
168 long pages_mask;
171 static struct hfi1_wss wss;
173 int hfi1_wss_init(void)
175 long llc_size;
176 long llc_bits;
177 long table_size;
178 long table_bits;
180 /* check for a valid percent range - default to 80 if none or invalid */
181 if (wss_threshold < 1 || wss_threshold > 100)
182 wss_threshold = 80;
183 /* reject a wildly large period */
184 if (wss_clean_period > 1000000)
185 wss_clean_period = 256;
186 /* reject a zero period */
187 if (wss_clean_period == 0)
188 wss_clean_period = 1;
191 * Calculate the table size - the next power of 2 larger than the
192 * LLC size. LLC size is in KiB.
194 llc_size = wss_llc_size() * 1024;
195 table_size = roundup_pow_of_two(llc_size);
197 /* one bit per page in rounded up table */
198 llc_bits = llc_size / PAGE_SIZE;
199 table_bits = table_size / PAGE_SIZE;
200 wss.pages_mask = table_bits - 1;
201 wss.num_entries = table_bits / BITS_PER_LONG;
203 wss.threshold = (llc_bits * wss_threshold) / 100;
204 if (wss.threshold == 0)
205 wss.threshold = 1;
207 atomic_set(&wss.clean_counter, wss_clean_period);
209 wss.entries = kcalloc(wss.num_entries, sizeof(*wss.entries),
210 GFP_KERNEL);
211 if (!wss.entries) {
212 hfi1_wss_exit();
213 return -ENOMEM;
216 return 0;
219 void hfi1_wss_exit(void)
221 /* coded to handle partially initialized and repeat callers */
222 kfree(wss.entries);
223 wss.entries = NULL;
227 * Advance the clean counter. When the clean period has expired,
228 * clean an entry.
230 * This is implemented in atomics to avoid locking. Because multiple
231 * variables are involved, it can be racy which can lead to slightly
232 * inaccurate information. Since this is only a heuristic, this is
233 * OK. Any innaccuracies will clean themselves out as the counter
234 * advances. That said, it is unlikely the entry clean operation will
235 * race - the next possible racer will not start until the next clean
236 * period.
238 * The clean counter is implemented as a decrement to zero. When zero
239 * is reached an entry is cleaned.
241 static void wss_advance_clean_counter(void)
243 int entry;
244 int weight;
245 unsigned long bits;
247 /* become the cleaner if we decrement the counter to zero */
248 if (atomic_dec_and_test(&wss.clean_counter)) {
250 * Set, not add, the clean period. This avoids an issue
251 * where the counter could decrement below the clean period.
252 * Doing a set can result in lost decrements, slowing the
253 * clean advance. Since this a heuristic, this possible
254 * slowdown is OK.
256 * An alternative is to loop, advancing the counter by a
257 * clean period until the result is > 0. However, this could
258 * lead to several threads keeping another in the clean loop.
259 * This could be mitigated by limiting the number of times
260 * we stay in the loop.
262 atomic_set(&wss.clean_counter, wss_clean_period);
265 * Uniquely grab the entry to clean and move to next.
266 * The current entry is always the lower bits of
267 * wss.clean_entry. The table size, wss.num_entries,
268 * is always a power-of-2.
270 entry = (atomic_inc_return(&wss.clean_entry) - 1)
271 & (wss.num_entries - 1);
273 /* clear the entry and count the bits */
274 bits = xchg(&wss.entries[entry], 0);
275 weight = hweight64((u64)bits);
276 /* only adjust the contended total count if needed */
277 if (weight)
278 atomic_sub(weight, &wss.total_count);
283 * Insert the given address into the working set array.
285 static void wss_insert(void *address)
287 u32 page = ((unsigned long)address >> PAGE_SHIFT) & wss.pages_mask;
288 u32 entry = page / BITS_PER_LONG; /* assumes this ends up a shift */
289 u32 nr = page & (BITS_PER_LONG - 1);
291 if (!test_and_set_bit(nr, &wss.entries[entry]))
292 atomic_inc(&wss.total_count);
294 wss_advance_clean_counter();
298 * Is the working set larger than the threshold?
300 static inline bool wss_exceeds_threshold(void)
302 return atomic_read(&wss.total_count) >= wss.threshold;
306 * Translate ib_wr_opcode into ib_wc_opcode.
308 const enum ib_wc_opcode ib_hfi1_wc_opcode[] = {
309 [IB_WR_RDMA_WRITE] = IB_WC_RDMA_WRITE,
310 [IB_WR_RDMA_WRITE_WITH_IMM] = IB_WC_RDMA_WRITE,
311 [IB_WR_SEND] = IB_WC_SEND,
312 [IB_WR_SEND_WITH_IMM] = IB_WC_SEND,
313 [IB_WR_RDMA_READ] = IB_WC_RDMA_READ,
314 [IB_WR_ATOMIC_CMP_AND_SWP] = IB_WC_COMP_SWAP,
315 [IB_WR_ATOMIC_FETCH_AND_ADD] = IB_WC_FETCH_ADD,
316 [IB_WR_SEND_WITH_INV] = IB_WC_SEND,
317 [IB_WR_LOCAL_INV] = IB_WC_LOCAL_INV,
318 [IB_WR_REG_MR] = IB_WC_REG_MR
322 * Length of header by opcode, 0 --> not supported
324 const u8 hdr_len_by_opcode[256] = {
325 /* RC */
326 [IB_OPCODE_RC_SEND_FIRST] = 12 + 8,
327 [IB_OPCODE_RC_SEND_MIDDLE] = 12 + 8,
328 [IB_OPCODE_RC_SEND_LAST] = 12 + 8,
329 [IB_OPCODE_RC_SEND_LAST_WITH_IMMEDIATE] = 12 + 8 + 4,
330 [IB_OPCODE_RC_SEND_ONLY] = 12 + 8,
331 [IB_OPCODE_RC_SEND_ONLY_WITH_IMMEDIATE] = 12 + 8 + 4,
332 [IB_OPCODE_RC_RDMA_WRITE_FIRST] = 12 + 8 + 16,
333 [IB_OPCODE_RC_RDMA_WRITE_MIDDLE] = 12 + 8,
334 [IB_OPCODE_RC_RDMA_WRITE_LAST] = 12 + 8,
335 [IB_OPCODE_RC_RDMA_WRITE_LAST_WITH_IMMEDIATE] = 12 + 8 + 4,
336 [IB_OPCODE_RC_RDMA_WRITE_ONLY] = 12 + 8 + 16,
337 [IB_OPCODE_RC_RDMA_WRITE_ONLY_WITH_IMMEDIATE] = 12 + 8 + 20,
338 [IB_OPCODE_RC_RDMA_READ_REQUEST] = 12 + 8 + 16,
339 [IB_OPCODE_RC_RDMA_READ_RESPONSE_FIRST] = 12 + 8 + 4,
340 [IB_OPCODE_RC_RDMA_READ_RESPONSE_MIDDLE] = 12 + 8,
341 [IB_OPCODE_RC_RDMA_READ_RESPONSE_LAST] = 12 + 8 + 4,
342 [IB_OPCODE_RC_RDMA_READ_RESPONSE_ONLY] = 12 + 8 + 4,
343 [IB_OPCODE_RC_ACKNOWLEDGE] = 12 + 8 + 4,
344 [IB_OPCODE_RC_ATOMIC_ACKNOWLEDGE] = 12 + 8 + 4 + 8,
345 [IB_OPCODE_RC_COMPARE_SWAP] = 12 + 8 + 28,
346 [IB_OPCODE_RC_FETCH_ADD] = 12 + 8 + 28,
347 [IB_OPCODE_RC_SEND_LAST_WITH_INVALIDATE] = 12 + 8 + 4,
348 [IB_OPCODE_RC_SEND_ONLY_WITH_INVALIDATE] = 12 + 8 + 4,
349 /* UC */
350 [IB_OPCODE_UC_SEND_FIRST] = 12 + 8,
351 [IB_OPCODE_UC_SEND_MIDDLE] = 12 + 8,
352 [IB_OPCODE_UC_SEND_LAST] = 12 + 8,
353 [IB_OPCODE_UC_SEND_LAST_WITH_IMMEDIATE] = 12 + 8 + 4,
354 [IB_OPCODE_UC_SEND_ONLY] = 12 + 8,
355 [IB_OPCODE_UC_SEND_ONLY_WITH_IMMEDIATE] = 12 + 8 + 4,
356 [IB_OPCODE_UC_RDMA_WRITE_FIRST] = 12 + 8 + 16,
357 [IB_OPCODE_UC_RDMA_WRITE_MIDDLE] = 12 + 8,
358 [IB_OPCODE_UC_RDMA_WRITE_LAST] = 12 + 8,
359 [IB_OPCODE_UC_RDMA_WRITE_LAST_WITH_IMMEDIATE] = 12 + 8 + 4,
360 [IB_OPCODE_UC_RDMA_WRITE_ONLY] = 12 + 8 + 16,
361 [IB_OPCODE_UC_RDMA_WRITE_ONLY_WITH_IMMEDIATE] = 12 + 8 + 20,
362 /* UD */
363 [IB_OPCODE_UD_SEND_ONLY] = 12 + 8 + 8,
364 [IB_OPCODE_UD_SEND_ONLY_WITH_IMMEDIATE] = 12 + 8 + 12
367 static const opcode_handler opcode_handler_tbl[256] = {
368 /* RC */
369 [IB_OPCODE_RC_SEND_FIRST] = &hfi1_rc_rcv,
370 [IB_OPCODE_RC_SEND_MIDDLE] = &hfi1_rc_rcv,
371 [IB_OPCODE_RC_SEND_LAST] = &hfi1_rc_rcv,
372 [IB_OPCODE_RC_SEND_LAST_WITH_IMMEDIATE] = &hfi1_rc_rcv,
373 [IB_OPCODE_RC_SEND_ONLY] = &hfi1_rc_rcv,
374 [IB_OPCODE_RC_SEND_ONLY_WITH_IMMEDIATE] = &hfi1_rc_rcv,
375 [IB_OPCODE_RC_RDMA_WRITE_FIRST] = &hfi1_rc_rcv,
376 [IB_OPCODE_RC_RDMA_WRITE_MIDDLE] = &hfi1_rc_rcv,
377 [IB_OPCODE_RC_RDMA_WRITE_LAST] = &hfi1_rc_rcv,
378 [IB_OPCODE_RC_RDMA_WRITE_LAST_WITH_IMMEDIATE] = &hfi1_rc_rcv,
379 [IB_OPCODE_RC_RDMA_WRITE_ONLY] = &hfi1_rc_rcv,
380 [IB_OPCODE_RC_RDMA_WRITE_ONLY_WITH_IMMEDIATE] = &hfi1_rc_rcv,
381 [IB_OPCODE_RC_RDMA_READ_REQUEST] = &hfi1_rc_rcv,
382 [IB_OPCODE_RC_RDMA_READ_RESPONSE_FIRST] = &hfi1_rc_rcv,
383 [IB_OPCODE_RC_RDMA_READ_RESPONSE_MIDDLE] = &hfi1_rc_rcv,
384 [IB_OPCODE_RC_RDMA_READ_RESPONSE_LAST] = &hfi1_rc_rcv,
385 [IB_OPCODE_RC_RDMA_READ_RESPONSE_ONLY] = &hfi1_rc_rcv,
386 [IB_OPCODE_RC_ACKNOWLEDGE] = &hfi1_rc_rcv,
387 [IB_OPCODE_RC_ATOMIC_ACKNOWLEDGE] = &hfi1_rc_rcv,
388 [IB_OPCODE_RC_COMPARE_SWAP] = &hfi1_rc_rcv,
389 [IB_OPCODE_RC_FETCH_ADD] = &hfi1_rc_rcv,
390 [IB_OPCODE_RC_SEND_LAST_WITH_INVALIDATE] = &hfi1_rc_rcv,
391 [IB_OPCODE_RC_SEND_ONLY_WITH_INVALIDATE] = &hfi1_rc_rcv,
392 /* UC */
393 [IB_OPCODE_UC_SEND_FIRST] = &hfi1_uc_rcv,
394 [IB_OPCODE_UC_SEND_MIDDLE] = &hfi1_uc_rcv,
395 [IB_OPCODE_UC_SEND_LAST] = &hfi1_uc_rcv,
396 [IB_OPCODE_UC_SEND_LAST_WITH_IMMEDIATE] = &hfi1_uc_rcv,
397 [IB_OPCODE_UC_SEND_ONLY] = &hfi1_uc_rcv,
398 [IB_OPCODE_UC_SEND_ONLY_WITH_IMMEDIATE] = &hfi1_uc_rcv,
399 [IB_OPCODE_UC_RDMA_WRITE_FIRST] = &hfi1_uc_rcv,
400 [IB_OPCODE_UC_RDMA_WRITE_MIDDLE] = &hfi1_uc_rcv,
401 [IB_OPCODE_UC_RDMA_WRITE_LAST] = &hfi1_uc_rcv,
402 [IB_OPCODE_UC_RDMA_WRITE_LAST_WITH_IMMEDIATE] = &hfi1_uc_rcv,
403 [IB_OPCODE_UC_RDMA_WRITE_ONLY] = &hfi1_uc_rcv,
404 [IB_OPCODE_UC_RDMA_WRITE_ONLY_WITH_IMMEDIATE] = &hfi1_uc_rcv,
405 /* UD */
406 [IB_OPCODE_UD_SEND_ONLY] = &hfi1_ud_rcv,
407 [IB_OPCODE_UD_SEND_ONLY_WITH_IMMEDIATE] = &hfi1_ud_rcv,
408 /* CNP */
409 [IB_OPCODE_CNP] = &hfi1_cnp_rcv
412 #define OPMASK 0x1f
414 static const u32 pio_opmask[BIT(3)] = {
415 /* RC */
416 [IB_OPCODE_RC >> 5] =
417 BIT(RC_OP(SEND_ONLY) & OPMASK) |
418 BIT(RC_OP(SEND_ONLY_WITH_IMMEDIATE) & OPMASK) |
419 BIT(RC_OP(RDMA_WRITE_ONLY) & OPMASK) |
420 BIT(RC_OP(RDMA_WRITE_ONLY_WITH_IMMEDIATE) & OPMASK) |
421 BIT(RC_OP(RDMA_READ_REQUEST) & OPMASK) |
422 BIT(RC_OP(ACKNOWLEDGE) & OPMASK) |
423 BIT(RC_OP(ATOMIC_ACKNOWLEDGE) & OPMASK) |
424 BIT(RC_OP(COMPARE_SWAP) & OPMASK) |
425 BIT(RC_OP(FETCH_ADD) & OPMASK),
426 /* UC */
427 [IB_OPCODE_UC >> 5] =
428 BIT(UC_OP(SEND_ONLY) & OPMASK) |
429 BIT(UC_OP(SEND_ONLY_WITH_IMMEDIATE) & OPMASK) |
430 BIT(UC_OP(RDMA_WRITE_ONLY) & OPMASK) |
431 BIT(UC_OP(RDMA_WRITE_ONLY_WITH_IMMEDIATE) & OPMASK),
435 * System image GUID.
437 __be64 ib_hfi1_sys_image_guid;
440 * hfi1_copy_sge - copy data to SGE memory
441 * @ss: the SGE state
442 * @data: the data to copy
443 * @length: the length of the data
444 * @release: boolean to release MR
445 * @copy_last: do a separate copy of the last 8 bytes
447 void hfi1_copy_sge(
448 struct rvt_sge_state *ss,
449 void *data, u32 length,
450 bool release,
451 bool copy_last)
453 struct rvt_sge *sge = &ss->sge;
454 int i;
455 bool in_last = false;
456 bool cacheless_copy = false;
458 if (sge_copy_mode == COPY_CACHELESS) {
459 cacheless_copy = length >= PAGE_SIZE;
460 } else if (sge_copy_mode == COPY_ADAPTIVE) {
461 if (length >= PAGE_SIZE) {
463 * NOTE: this *assumes*:
464 * o The first vaddr is the dest.
465 * o If multiple pages, then vaddr is sequential.
467 wss_insert(sge->vaddr);
468 if (length >= (2 * PAGE_SIZE))
469 wss_insert(sge->vaddr + PAGE_SIZE);
471 cacheless_copy = wss_exceeds_threshold();
472 } else {
473 wss_advance_clean_counter();
476 if (copy_last) {
477 if (length > 8) {
478 length -= 8;
479 } else {
480 copy_last = false;
481 in_last = true;
485 again:
486 while (length) {
487 u32 len = rvt_get_sge_length(sge, length);
489 WARN_ON_ONCE(len == 0);
490 if (unlikely(in_last)) {
491 /* enforce byte transfer ordering */
492 for (i = 0; i < len; i++)
493 ((u8 *)sge->vaddr)[i] = ((u8 *)data)[i];
494 } else if (cacheless_copy) {
495 cacheless_memcpy(sge->vaddr, data, len);
496 } else {
497 memcpy(sge->vaddr, data, len);
499 rvt_update_sge(ss, len, release);
500 data += len;
501 length -= len;
504 if (copy_last) {
505 copy_last = false;
506 in_last = true;
507 length = 8;
508 goto again;
513 * Make sure the QP is ready and able to accept the given opcode.
515 static inline opcode_handler qp_ok(struct hfi1_packet *packet)
517 if (!(ib_rvt_state_ops[packet->qp->state] & RVT_PROCESS_RECV_OK))
518 return NULL;
519 if (((packet->opcode & RVT_OPCODE_QP_MASK) ==
520 packet->qp->allowed_ops) ||
521 (packet->opcode == IB_OPCODE_CNP))
522 return opcode_handler_tbl[packet->opcode];
524 return NULL;
527 static u64 hfi1_fault_tx(struct rvt_qp *qp, u8 opcode, u64 pbc)
529 #ifdef CONFIG_FAULT_INJECTION
530 if ((opcode & IB_OPCODE_MSP) == IB_OPCODE_MSP)
532 * In order to drop non-IB traffic we
533 * set PbcInsertHrc to NONE (0x2).
534 * The packet will still be delivered
535 * to the receiving node but a
536 * KHdrHCRCErr (KDETH packet with a bad
537 * HCRC) will be triggered and the
538 * packet will not be delivered to the
539 * correct context.
541 pbc |= (u64)PBC_IHCRC_NONE << PBC_INSERT_HCRC_SHIFT;
542 else
544 * In order to drop regular verbs
545 * traffic we set the PbcTestEbp
546 * flag. The packet will still be
547 * delivered to the receiving node but
548 * a 'late ebp error' will be
549 * triggered and will be dropped.
551 pbc |= PBC_TEST_EBP;
552 #endif
553 return pbc;
556 static int hfi1_do_pkey_check(struct hfi1_packet *packet)
558 struct hfi1_ctxtdata *rcd = packet->rcd;
559 struct hfi1_pportdata *ppd = rcd->ppd;
560 struct hfi1_16b_header *hdr = packet->hdr;
561 u16 pkey;
563 /* Pkey check needed only for bypass packets */
564 if (packet->etype != RHF_RCV_TYPE_BYPASS)
565 return 0;
567 /* Perform pkey check */
568 pkey = hfi1_16B_get_pkey(hdr);
569 return ingress_pkey_check(ppd, pkey, packet->sc,
570 packet->qp->s_pkey_index,
571 packet->slid, true);
574 static inline void hfi1_handle_packet(struct hfi1_packet *packet,
575 bool is_mcast)
577 u32 qp_num;
578 struct hfi1_ctxtdata *rcd = packet->rcd;
579 struct hfi1_pportdata *ppd = rcd->ppd;
580 struct hfi1_ibport *ibp = rcd_to_iport(rcd);
581 struct rvt_dev_info *rdi = &ppd->dd->verbs_dev.rdi;
582 opcode_handler packet_handler;
583 unsigned long flags;
585 inc_opstats(packet->tlen, &rcd->opstats->stats[packet->opcode]);
587 if (unlikely(is_mcast)) {
588 struct rvt_mcast *mcast;
589 struct rvt_mcast_qp *p;
591 if (!packet->grh)
592 goto drop;
593 mcast = rvt_mcast_find(&ibp->rvp,
594 &packet->grh->dgid,
595 opa_get_lid(packet->dlid, 9B));
596 if (!mcast)
597 goto drop;
598 list_for_each_entry_rcu(p, &mcast->qp_list, list) {
599 packet->qp = p->qp;
600 if (hfi1_do_pkey_check(packet))
601 goto drop;
602 spin_lock_irqsave(&packet->qp->r_lock, flags);
603 packet_handler = qp_ok(packet);
604 if (likely(packet_handler))
605 packet_handler(packet);
606 else
607 ibp->rvp.n_pkt_drops++;
608 spin_unlock_irqrestore(&packet->qp->r_lock, flags);
611 * Notify rvt_multicast_detach() if it is waiting for us
612 * to finish.
614 if (atomic_dec_return(&mcast->refcount) <= 1)
615 wake_up(&mcast->wait);
616 } else {
617 /* Get the destination QP number. */
618 qp_num = ib_bth_get_qpn(packet->ohdr);
619 rcu_read_lock();
620 packet->qp = rvt_lookup_qpn(rdi, &ibp->rvp, qp_num);
621 if (!packet->qp)
622 goto unlock_drop;
624 if (hfi1_do_pkey_check(packet))
625 goto unlock_drop;
627 if (unlikely(hfi1_dbg_fault_opcode(packet->qp, packet->opcode,
628 true)))
629 goto unlock_drop;
631 spin_lock_irqsave(&packet->qp->r_lock, flags);
632 packet_handler = qp_ok(packet);
633 if (likely(packet_handler))
634 packet_handler(packet);
635 else
636 ibp->rvp.n_pkt_drops++;
637 spin_unlock_irqrestore(&packet->qp->r_lock, flags);
638 rcu_read_unlock();
640 return;
641 unlock_drop:
642 rcu_read_unlock();
643 drop:
644 ibp->rvp.n_pkt_drops++;
648 * hfi1_ib_rcv - process an incoming packet
649 * @packet: data packet information
651 * This is called to process an incoming packet at interrupt level.
653 void hfi1_ib_rcv(struct hfi1_packet *packet)
655 struct hfi1_ctxtdata *rcd = packet->rcd;
657 trace_input_ibhdr(rcd->dd, packet, !!(rhf_dc_info(packet->rhf)));
658 hfi1_handle_packet(packet, hfi1_check_mcast(packet->dlid));
661 void hfi1_16B_rcv(struct hfi1_packet *packet)
663 struct hfi1_ctxtdata *rcd = packet->rcd;
665 trace_input_ibhdr(rcd->dd, packet, false);
666 hfi1_handle_packet(packet, hfi1_check_mcast(packet->dlid));
670 * This is called from a timer to check for QPs
671 * which need kernel memory in order to send a packet.
673 static void mem_timer(struct timer_list *t)
675 struct hfi1_ibdev *dev = from_timer(dev, t, mem_timer);
676 struct list_head *list = &dev->memwait;
677 struct rvt_qp *qp = NULL;
678 struct iowait *wait;
679 unsigned long flags;
680 struct hfi1_qp_priv *priv;
682 write_seqlock_irqsave(&dev->iowait_lock, flags);
683 if (!list_empty(list)) {
684 wait = list_first_entry(list, struct iowait, list);
685 qp = iowait_to_qp(wait);
686 priv = qp->priv;
687 list_del_init(&priv->s_iowait.list);
688 priv->s_iowait.lock = NULL;
689 /* refcount held until actual wake up */
690 if (!list_empty(list))
691 mod_timer(&dev->mem_timer, jiffies + 1);
693 write_sequnlock_irqrestore(&dev->iowait_lock, flags);
695 if (qp)
696 hfi1_qp_wakeup(qp, RVT_S_WAIT_KMEM);
700 * This is called with progress side lock held.
702 /* New API */
703 static void verbs_sdma_complete(
704 struct sdma_txreq *cookie,
705 int status)
707 struct verbs_txreq *tx =
708 container_of(cookie, struct verbs_txreq, txreq);
709 struct rvt_qp *qp = tx->qp;
711 spin_lock(&qp->s_lock);
712 if (tx->wqe) {
713 hfi1_send_complete(qp, tx->wqe, IB_WC_SUCCESS);
714 } else if (qp->ibqp.qp_type == IB_QPT_RC) {
715 struct hfi1_opa_header *hdr;
717 hdr = &tx->phdr.hdr;
718 hfi1_rc_send_complete(qp, hdr);
720 spin_unlock(&qp->s_lock);
722 hfi1_put_txreq(tx);
725 static int wait_kmem(struct hfi1_ibdev *dev,
726 struct rvt_qp *qp,
727 struct hfi1_pkt_state *ps)
729 struct hfi1_qp_priv *priv = qp->priv;
730 unsigned long flags;
731 int ret = 0;
733 spin_lock_irqsave(&qp->s_lock, flags);
734 if (ib_rvt_state_ops[qp->state] & RVT_PROCESS_RECV_OK) {
735 write_seqlock(&dev->iowait_lock);
736 list_add_tail(&ps->s_txreq->txreq.list,
737 &priv->s_iowait.tx_head);
738 if (list_empty(&priv->s_iowait.list)) {
739 if (list_empty(&dev->memwait))
740 mod_timer(&dev->mem_timer, jiffies + 1);
741 qp->s_flags |= RVT_S_WAIT_KMEM;
742 list_add_tail(&priv->s_iowait.list, &dev->memwait);
743 priv->s_iowait.lock = &dev->iowait_lock;
744 trace_hfi1_qpsleep(qp, RVT_S_WAIT_KMEM);
745 rvt_get_qp(qp);
747 write_sequnlock(&dev->iowait_lock);
748 qp->s_flags &= ~RVT_S_BUSY;
749 ret = -EBUSY;
751 spin_unlock_irqrestore(&qp->s_lock, flags);
753 return ret;
757 * This routine calls txadds for each sg entry.
759 * Add failures will revert the sge cursor
761 static noinline int build_verbs_ulp_payload(
762 struct sdma_engine *sde,
763 u32 length,
764 struct verbs_txreq *tx)
766 struct rvt_sge_state *ss = tx->ss;
767 struct rvt_sge *sg_list = ss->sg_list;
768 struct rvt_sge sge = ss->sge;
769 u8 num_sge = ss->num_sge;
770 u32 len;
771 int ret = 0;
773 while (length) {
774 len = ss->sge.length;
775 if (len > length)
776 len = length;
777 if (len > ss->sge.sge_length)
778 len = ss->sge.sge_length;
779 WARN_ON_ONCE(len == 0);
780 ret = sdma_txadd_kvaddr(
781 sde->dd,
782 &tx->txreq,
783 ss->sge.vaddr,
784 len);
785 if (ret)
786 goto bail_txadd;
787 rvt_update_sge(ss, len, false);
788 length -= len;
790 return ret;
791 bail_txadd:
792 /* unwind cursor */
793 ss->sge = sge;
794 ss->num_sge = num_sge;
795 ss->sg_list = sg_list;
796 return ret;
800 * update_tx_opstats - record stats by opcode
801 * @qp; the qp
802 * @ps: transmit packet state
803 * @plen: the plen in dwords
805 * This is a routine to record the tx opstats after a
806 * packet has been presented to the egress mechanism.
808 static void update_tx_opstats(struct rvt_qp *qp, struct hfi1_pkt_state *ps,
809 u32 plen)
811 #ifdef CONFIG_DEBUG_FS
812 struct hfi1_devdata *dd = dd_from_ibdev(qp->ibqp.device);
813 struct hfi1_opcode_stats_perctx *s = get_cpu_ptr(dd->tx_opstats);
815 inc_opstats(plen * 4, &s->stats[ps->opcode]);
816 put_cpu_ptr(s);
817 #endif
821 * Build the number of DMA descriptors needed to send length bytes of data.
823 * NOTE: DMA mapping is held in the tx until completed in the ring or
824 * the tx desc is freed without having been submitted to the ring
826 * This routine ensures all the helper routine calls succeed.
828 /* New API */
829 static int build_verbs_tx_desc(
830 struct sdma_engine *sde,
831 u32 length,
832 struct verbs_txreq *tx,
833 struct hfi1_ahg_info *ahg_info,
834 u64 pbc)
836 int ret = 0;
837 struct hfi1_sdma_header *phdr = &tx->phdr;
838 u16 hdrbytes = (tx->hdr_dwords + sizeof(pbc) / 4) << 2;
839 u8 extra_bytes = 0;
841 if (tx->phdr.hdr.hdr_type) {
843 * hdrbytes accounts for PBC. Need to subtract 8 bytes
844 * before calculating padding.
846 extra_bytes = hfi1_get_16b_padding(hdrbytes - 8, length) +
847 (SIZE_OF_CRC << 2) + SIZE_OF_LT;
849 if (!ahg_info->ahgcount) {
850 ret = sdma_txinit_ahg(
851 &tx->txreq,
852 ahg_info->tx_flags,
853 hdrbytes + length +
854 extra_bytes,
855 ahg_info->ahgidx,
857 NULL,
859 verbs_sdma_complete);
860 if (ret)
861 goto bail_txadd;
862 phdr->pbc = cpu_to_le64(pbc);
863 ret = sdma_txadd_kvaddr(
864 sde->dd,
865 &tx->txreq,
866 phdr,
867 hdrbytes);
868 if (ret)
869 goto bail_txadd;
870 } else {
871 ret = sdma_txinit_ahg(
872 &tx->txreq,
873 ahg_info->tx_flags,
874 length,
875 ahg_info->ahgidx,
876 ahg_info->ahgcount,
877 ahg_info->ahgdesc,
878 hdrbytes,
879 verbs_sdma_complete);
880 if (ret)
881 goto bail_txadd;
883 /* add the ulp payload - if any. tx->ss can be NULL for acks */
884 if (tx->ss) {
885 ret = build_verbs_ulp_payload(sde, length, tx);
886 if (ret)
887 goto bail_txadd;
890 /* add icrc, lt byte, and padding to flit */
891 if (extra_bytes)
892 ret = sdma_txadd_kvaddr(sde->dd, &tx->txreq,
893 (void *)trail_buf, extra_bytes);
895 bail_txadd:
896 return ret;
899 int hfi1_verbs_send_dma(struct rvt_qp *qp, struct hfi1_pkt_state *ps,
900 u64 pbc)
902 struct hfi1_qp_priv *priv = qp->priv;
903 struct hfi1_ahg_info *ahg_info = priv->s_ahg;
904 u32 hdrwords = ps->s_txreq->hdr_dwords;
905 u32 len = ps->s_txreq->s_cur_size;
906 u32 plen;
907 struct hfi1_ibdev *dev = ps->dev;
908 struct hfi1_pportdata *ppd = ps->ppd;
909 struct verbs_txreq *tx;
910 u8 sc5 = priv->s_sc;
911 int ret;
912 u32 dwords;
914 if (ps->s_txreq->phdr.hdr.hdr_type) {
915 u8 extra_bytes = hfi1_get_16b_padding((hdrwords << 2), len);
917 dwords = (len + extra_bytes + (SIZE_OF_CRC << 2) +
918 SIZE_OF_LT) >> 2;
919 } else {
920 dwords = (len + 3) >> 2;
922 plen = hdrwords + dwords + sizeof(pbc) / 4;
924 tx = ps->s_txreq;
925 if (!sdma_txreq_built(&tx->txreq)) {
926 if (likely(pbc == 0)) {
927 u32 vl = sc_to_vlt(dd_from_ibdev(qp->ibqp.device), sc5);
929 /* No vl15 here */
930 /* set PBC_DC_INFO bit (aka SC[4]) in pbc */
931 if (ps->s_txreq->phdr.hdr.hdr_type)
932 pbc |= PBC_PACKET_BYPASS |
933 PBC_INSERT_BYPASS_ICRC;
934 else
935 pbc |= (ib_is_sc5(sc5) << PBC_DC_INFO_SHIFT);
937 if (unlikely(hfi1_dbg_fault_opcode(qp, ps->opcode,
938 false)))
939 pbc = hfi1_fault_tx(qp, ps->opcode, pbc);
940 pbc = create_pbc(ppd,
941 pbc,
942 qp->srate_mbps,
944 plen);
946 tx->wqe = qp->s_wqe;
947 ret = build_verbs_tx_desc(tx->sde, len, tx, ahg_info, pbc);
948 if (unlikely(ret))
949 goto bail_build;
951 ret = sdma_send_txreq(tx->sde, &priv->s_iowait, &tx->txreq,
952 ps->pkts_sent);
953 if (unlikely(ret < 0)) {
954 if (ret == -ECOMM)
955 goto bail_ecomm;
956 return ret;
959 update_tx_opstats(qp, ps, plen);
960 trace_sdma_output_ibhdr(dd_from_ibdev(qp->ibqp.device),
961 &ps->s_txreq->phdr.hdr, ib_is_sc5(sc5));
962 return ret;
964 bail_ecomm:
965 /* The current one got "sent" */
966 return 0;
967 bail_build:
968 ret = wait_kmem(dev, qp, ps);
969 if (!ret) {
970 /* free txreq - bad state */
971 hfi1_put_txreq(ps->s_txreq);
972 ps->s_txreq = NULL;
974 return ret;
978 * If we are now in the error state, return zero to flush the
979 * send work request.
981 static int pio_wait(struct rvt_qp *qp,
982 struct send_context *sc,
983 struct hfi1_pkt_state *ps,
984 u32 flag)
986 struct hfi1_qp_priv *priv = qp->priv;
987 struct hfi1_devdata *dd = sc->dd;
988 struct hfi1_ibdev *dev = &dd->verbs_dev;
989 unsigned long flags;
990 int ret = 0;
993 * Note that as soon as want_buffer() is called and
994 * possibly before it returns, sc_piobufavail()
995 * could be called. Therefore, put QP on the I/O wait list before
996 * enabling the PIO avail interrupt.
998 spin_lock_irqsave(&qp->s_lock, flags);
999 if (ib_rvt_state_ops[qp->state] & RVT_PROCESS_RECV_OK) {
1000 write_seqlock(&dev->iowait_lock);
1001 list_add_tail(&ps->s_txreq->txreq.list,
1002 &priv->s_iowait.tx_head);
1003 if (list_empty(&priv->s_iowait.list)) {
1004 struct hfi1_ibdev *dev = &dd->verbs_dev;
1005 int was_empty;
1007 dev->n_piowait += !!(flag & RVT_S_WAIT_PIO);
1008 dev->n_piodrain += !!(flag & RVT_S_WAIT_PIO_DRAIN);
1009 qp->s_flags |= flag;
1010 was_empty = list_empty(&sc->piowait);
1011 iowait_queue(ps->pkts_sent, &priv->s_iowait,
1012 &sc->piowait);
1013 priv->s_iowait.lock = &dev->iowait_lock;
1014 trace_hfi1_qpsleep(qp, RVT_S_WAIT_PIO);
1015 rvt_get_qp(qp);
1016 /* counting: only call wantpiobuf_intr if first user */
1017 if (was_empty)
1018 hfi1_sc_wantpiobuf_intr(sc, 1);
1020 write_sequnlock(&dev->iowait_lock);
1021 qp->s_flags &= ~RVT_S_BUSY;
1022 ret = -EBUSY;
1024 spin_unlock_irqrestore(&qp->s_lock, flags);
1025 return ret;
1028 static void verbs_pio_complete(void *arg, int code)
1030 struct rvt_qp *qp = (struct rvt_qp *)arg;
1031 struct hfi1_qp_priv *priv = qp->priv;
1033 if (iowait_pio_dec(&priv->s_iowait))
1034 iowait_drain_wakeup(&priv->s_iowait);
1037 int hfi1_verbs_send_pio(struct rvt_qp *qp, struct hfi1_pkt_state *ps,
1038 u64 pbc)
1040 struct hfi1_qp_priv *priv = qp->priv;
1041 u32 hdrwords = ps->s_txreq->hdr_dwords;
1042 struct rvt_sge_state *ss = ps->s_txreq->ss;
1043 u32 len = ps->s_txreq->s_cur_size;
1044 u32 dwords;
1045 u32 plen;
1046 struct hfi1_pportdata *ppd = ps->ppd;
1047 u32 *hdr;
1048 u8 sc5;
1049 unsigned long flags = 0;
1050 struct send_context *sc;
1051 struct pio_buf *pbuf;
1052 int wc_status = IB_WC_SUCCESS;
1053 int ret = 0;
1054 pio_release_cb cb = NULL;
1055 u8 extra_bytes = 0;
1057 if (ps->s_txreq->phdr.hdr.hdr_type) {
1058 u8 pad_size = hfi1_get_16b_padding((hdrwords << 2), len);
1060 extra_bytes = pad_size + (SIZE_OF_CRC << 2) + SIZE_OF_LT;
1061 dwords = (len + extra_bytes) >> 2;
1062 hdr = (u32 *)&ps->s_txreq->phdr.hdr.opah;
1063 } else {
1064 dwords = (len + 3) >> 2;
1065 hdr = (u32 *)&ps->s_txreq->phdr.hdr.ibh;
1067 plen = hdrwords + dwords + sizeof(pbc) / 4;
1069 /* only RC/UC use complete */
1070 switch (qp->ibqp.qp_type) {
1071 case IB_QPT_RC:
1072 case IB_QPT_UC:
1073 cb = verbs_pio_complete;
1074 break;
1075 default:
1076 break;
1079 /* vl15 special case taken care of in ud.c */
1080 sc5 = priv->s_sc;
1081 sc = ps->s_txreq->psc;
1083 if (likely(pbc == 0)) {
1084 u8 vl = sc_to_vlt(dd_from_ibdev(qp->ibqp.device), sc5);
1086 /* set PBC_DC_INFO bit (aka SC[4]) in pbc */
1087 if (ps->s_txreq->phdr.hdr.hdr_type)
1088 pbc |= PBC_PACKET_BYPASS | PBC_INSERT_BYPASS_ICRC;
1089 else
1090 pbc |= (ib_is_sc5(sc5) << PBC_DC_INFO_SHIFT);
1091 if (unlikely(hfi1_dbg_fault_opcode(qp, ps->opcode, false)))
1092 pbc = hfi1_fault_tx(qp, ps->opcode, pbc);
1093 pbc = create_pbc(ppd, pbc, qp->srate_mbps, vl, plen);
1095 if (cb)
1096 iowait_pio_inc(&priv->s_iowait);
1097 pbuf = sc_buffer_alloc(sc, plen, cb, qp);
1098 if (unlikely(!pbuf)) {
1099 if (cb)
1100 verbs_pio_complete(qp, 0);
1101 if (ppd->host_link_state != HLS_UP_ACTIVE) {
1103 * If we have filled the PIO buffers to capacity and are
1104 * not in an active state this request is not going to
1105 * go out to so just complete it with an error or else a
1106 * ULP or the core may be stuck waiting.
1108 hfi1_cdbg(
1109 PIO,
1110 "alloc failed. state not active, completing");
1111 wc_status = IB_WC_GENERAL_ERR;
1112 goto pio_bail;
1113 } else {
1115 * This is a normal occurrence. The PIO buffs are full
1116 * up but we are still happily sending, well we could be
1117 * so lets continue to queue the request.
1119 hfi1_cdbg(PIO, "alloc failed. state active, queuing");
1120 ret = pio_wait(qp, sc, ps, RVT_S_WAIT_PIO);
1121 if (!ret)
1122 /* txreq not queued - free */
1123 goto bail;
1124 /* tx consumed in wait */
1125 return ret;
1129 if (dwords == 0) {
1130 pio_copy(ppd->dd, pbuf, pbc, hdr, hdrwords);
1131 } else {
1132 seg_pio_copy_start(pbuf, pbc,
1133 hdr, hdrwords * 4);
1134 if (ss) {
1135 while (len) {
1136 void *addr = ss->sge.vaddr;
1137 u32 slen = ss->sge.length;
1139 if (slen > len)
1140 slen = len;
1141 rvt_update_sge(ss, slen, false);
1142 seg_pio_copy_mid(pbuf, addr, slen);
1143 len -= slen;
1146 /* add icrc, lt byte, and padding to flit */
1147 if (extra_bytes)
1148 seg_pio_copy_mid(pbuf, trail_buf, extra_bytes);
1150 seg_pio_copy_end(pbuf);
1153 update_tx_opstats(qp, ps, plen);
1154 trace_pio_output_ibhdr(dd_from_ibdev(qp->ibqp.device),
1155 &ps->s_txreq->phdr.hdr, ib_is_sc5(sc5));
1157 pio_bail:
1158 if (qp->s_wqe) {
1159 spin_lock_irqsave(&qp->s_lock, flags);
1160 hfi1_send_complete(qp, qp->s_wqe, wc_status);
1161 spin_unlock_irqrestore(&qp->s_lock, flags);
1162 } else if (qp->ibqp.qp_type == IB_QPT_RC) {
1163 spin_lock_irqsave(&qp->s_lock, flags);
1164 hfi1_rc_send_complete(qp, &ps->s_txreq->phdr.hdr);
1165 spin_unlock_irqrestore(&qp->s_lock, flags);
1168 ret = 0;
1170 bail:
1171 hfi1_put_txreq(ps->s_txreq);
1172 return ret;
1176 * egress_pkey_matches_entry - return 1 if the pkey matches ent (ent
1177 * being an entry from the partition key table), return 0
1178 * otherwise. Use the matching criteria for egress partition keys
1179 * specified in the OPAv1 spec., section 9.1l.7.
1181 static inline int egress_pkey_matches_entry(u16 pkey, u16 ent)
1183 u16 mkey = pkey & PKEY_LOW_15_MASK;
1184 u16 mentry = ent & PKEY_LOW_15_MASK;
1186 if (mkey == mentry) {
1188 * If pkey[15] is set (full partition member),
1189 * is bit 15 in the corresponding table element
1190 * clear (limited member)?
1192 if (pkey & PKEY_MEMBER_MASK)
1193 return !!(ent & PKEY_MEMBER_MASK);
1194 return 1;
1196 return 0;
1200 * egress_pkey_check - check P_KEY of a packet
1201 * @ppd: Physical IB port data
1202 * @slid: SLID for packet
1203 * @bkey: PKEY for header
1204 * @sc5: SC for packet
1205 * @s_pkey_index: It will be used for look up optimization for kernel contexts
1206 * only. If it is negative value, then it means user contexts is calling this
1207 * function.
1209 * It checks if hdr's pkey is valid.
1211 * Return: 0 on success, otherwise, 1
1213 int egress_pkey_check(struct hfi1_pportdata *ppd, u32 slid, u16 pkey,
1214 u8 sc5, int8_t s_pkey_index)
1216 struct hfi1_devdata *dd;
1217 int i;
1218 int is_user_ctxt_mechanism = (s_pkey_index < 0);
1220 if (!(ppd->part_enforce & HFI1_PART_ENFORCE_OUT))
1221 return 0;
1223 /* If SC15, pkey[0:14] must be 0x7fff */
1224 if ((sc5 == 0xf) && ((pkey & PKEY_LOW_15_MASK) != PKEY_LOW_15_MASK))
1225 goto bad;
1227 /* Is the pkey = 0x0, or 0x8000? */
1228 if ((pkey & PKEY_LOW_15_MASK) == 0)
1229 goto bad;
1232 * For the kernel contexts only, if a qp is passed into the function,
1233 * the most likely matching pkey has index qp->s_pkey_index
1235 if (!is_user_ctxt_mechanism &&
1236 egress_pkey_matches_entry(pkey, ppd->pkeys[s_pkey_index])) {
1237 return 0;
1240 for (i = 0; i < MAX_PKEY_VALUES; i++) {
1241 if (egress_pkey_matches_entry(pkey, ppd->pkeys[i]))
1242 return 0;
1244 bad:
1246 * For the user-context mechanism, the P_KEY check would only happen
1247 * once per SDMA request, not once per packet. Therefore, there's no
1248 * need to increment the counter for the user-context mechanism.
1250 if (!is_user_ctxt_mechanism) {
1251 incr_cntr64(&ppd->port_xmit_constraint_errors);
1252 dd = ppd->dd;
1253 if (!(dd->err_info_xmit_constraint.status &
1254 OPA_EI_STATUS_SMASK)) {
1255 dd->err_info_xmit_constraint.status |=
1256 OPA_EI_STATUS_SMASK;
1257 dd->err_info_xmit_constraint.slid = slid;
1258 dd->err_info_xmit_constraint.pkey = pkey;
1261 return 1;
1265 * get_send_routine - choose an egress routine
1267 * Choose an egress routine based on QP type
1268 * and size
1270 static inline send_routine get_send_routine(struct rvt_qp *qp,
1271 struct hfi1_pkt_state *ps)
1273 struct hfi1_devdata *dd = dd_from_ibdev(qp->ibqp.device);
1274 struct hfi1_qp_priv *priv = qp->priv;
1275 struct verbs_txreq *tx = ps->s_txreq;
1277 if (unlikely(!(dd->flags & HFI1_HAS_SEND_DMA)))
1278 return dd->process_pio_send;
1279 switch (qp->ibqp.qp_type) {
1280 case IB_QPT_SMI:
1281 return dd->process_pio_send;
1282 case IB_QPT_GSI:
1283 case IB_QPT_UD:
1284 break;
1285 case IB_QPT_UC:
1286 case IB_QPT_RC: {
1287 if (piothreshold &&
1288 tx->s_cur_size <= min(piothreshold, qp->pmtu) &&
1289 (BIT(ps->opcode & OPMASK) & pio_opmask[ps->opcode >> 5]) &&
1290 iowait_sdma_pending(&priv->s_iowait) == 0 &&
1291 !sdma_txreq_built(&tx->txreq))
1292 return dd->process_pio_send;
1293 break;
1295 default:
1296 break;
1298 return dd->process_dma_send;
1302 * hfi1_verbs_send - send a packet
1303 * @qp: the QP to send on
1304 * @ps: the state of the packet to send
1306 * Return zero if packet is sent or queued OK.
1307 * Return non-zero and clear qp->s_flags RVT_S_BUSY otherwise.
1309 int hfi1_verbs_send(struct rvt_qp *qp, struct hfi1_pkt_state *ps)
1311 struct hfi1_devdata *dd = dd_from_ibdev(qp->ibqp.device);
1312 struct hfi1_qp_priv *priv = qp->priv;
1313 struct ib_other_headers *ohdr;
1314 send_routine sr;
1315 int ret;
1316 u16 pkey;
1317 u32 slid;
1319 /* locate the pkey within the headers */
1320 if (ps->s_txreq->phdr.hdr.hdr_type) {
1321 struct hfi1_16b_header *hdr = &ps->s_txreq->phdr.hdr.opah;
1322 u8 l4 = hfi1_16B_get_l4(hdr);
1324 if (l4 == OPA_16B_L4_IB_GLOBAL)
1325 ohdr = &hdr->u.l.oth;
1326 else
1327 ohdr = &hdr->u.oth;
1328 slid = hfi1_16B_get_slid(hdr);
1329 pkey = hfi1_16B_get_pkey(hdr);
1330 } else {
1331 struct ib_header *hdr = &ps->s_txreq->phdr.hdr.ibh;
1332 u8 lnh = ib_get_lnh(hdr);
1334 if (lnh == HFI1_LRH_GRH)
1335 ohdr = &hdr->u.l.oth;
1336 else
1337 ohdr = &hdr->u.oth;
1338 slid = ib_get_slid(hdr);
1339 pkey = ib_bth_get_pkey(ohdr);
1342 ps->opcode = ib_bth_get_opcode(ohdr);
1343 sr = get_send_routine(qp, ps);
1344 ret = egress_pkey_check(dd->pport, slid, pkey,
1345 priv->s_sc, qp->s_pkey_index);
1346 if (unlikely(ret)) {
1348 * The value we are returning here does not get propagated to
1349 * the verbs caller. Thus we need to complete the request with
1350 * error otherwise the caller could be sitting waiting on the
1351 * completion event. Only do this for PIO. SDMA has its own
1352 * mechanism for handling the errors. So for SDMA we can just
1353 * return.
1355 if (sr == dd->process_pio_send) {
1356 unsigned long flags;
1358 hfi1_cdbg(PIO, "%s() Failed. Completing with err",
1359 __func__);
1360 spin_lock_irqsave(&qp->s_lock, flags);
1361 hfi1_send_complete(qp, qp->s_wqe, IB_WC_GENERAL_ERR);
1362 spin_unlock_irqrestore(&qp->s_lock, flags);
1364 return -EINVAL;
1366 if (sr == dd->process_dma_send && iowait_pio_pending(&priv->s_iowait))
1367 return pio_wait(qp,
1368 ps->s_txreq->psc,
1370 RVT_S_WAIT_PIO_DRAIN);
1371 return sr(qp, ps, 0);
1375 * hfi1_fill_device_attr - Fill in rvt dev info device attributes.
1376 * @dd: the device data structure
1378 static void hfi1_fill_device_attr(struct hfi1_devdata *dd)
1380 struct rvt_dev_info *rdi = &dd->verbs_dev.rdi;
1381 u32 ver = dd->dc8051_ver;
1383 memset(&rdi->dparms.props, 0, sizeof(rdi->dparms.props));
1385 rdi->dparms.props.fw_ver = ((u64)(dc8051_ver_maj(ver)) << 32) |
1386 ((u64)(dc8051_ver_min(ver)) << 16) |
1387 (u64)dc8051_ver_patch(ver);
1389 rdi->dparms.props.device_cap_flags = IB_DEVICE_BAD_PKEY_CNTR |
1390 IB_DEVICE_BAD_QKEY_CNTR | IB_DEVICE_SHUTDOWN_PORT |
1391 IB_DEVICE_SYS_IMAGE_GUID | IB_DEVICE_RC_RNR_NAK_GEN |
1392 IB_DEVICE_PORT_ACTIVE_EVENT | IB_DEVICE_SRQ_RESIZE |
1393 IB_DEVICE_MEM_MGT_EXTENSIONS |
1394 IB_DEVICE_RDMA_NETDEV_OPA_VNIC;
1395 rdi->dparms.props.page_size_cap = PAGE_SIZE;
1396 rdi->dparms.props.vendor_id = dd->oui1 << 16 | dd->oui2 << 8 | dd->oui3;
1397 rdi->dparms.props.vendor_part_id = dd->pcidev->device;
1398 rdi->dparms.props.hw_ver = dd->minrev;
1399 rdi->dparms.props.sys_image_guid = ib_hfi1_sys_image_guid;
1400 rdi->dparms.props.max_mr_size = U64_MAX;
1401 rdi->dparms.props.max_fast_reg_page_list_len = UINT_MAX;
1402 rdi->dparms.props.max_qp = hfi1_max_qps;
1403 rdi->dparms.props.max_qp_wr = hfi1_max_qp_wrs;
1404 rdi->dparms.props.max_sge = hfi1_max_sges;
1405 rdi->dparms.props.max_sge_rd = hfi1_max_sges;
1406 rdi->dparms.props.max_cq = hfi1_max_cqs;
1407 rdi->dparms.props.max_ah = hfi1_max_ahs;
1408 rdi->dparms.props.max_cqe = hfi1_max_cqes;
1409 rdi->dparms.props.max_mr = rdi->lkey_table.max;
1410 rdi->dparms.props.max_fmr = rdi->lkey_table.max;
1411 rdi->dparms.props.max_map_per_fmr = 32767;
1412 rdi->dparms.props.max_pd = hfi1_max_pds;
1413 rdi->dparms.props.max_qp_rd_atom = HFI1_MAX_RDMA_ATOMIC;
1414 rdi->dparms.props.max_qp_init_rd_atom = 255;
1415 rdi->dparms.props.max_srq = hfi1_max_srqs;
1416 rdi->dparms.props.max_srq_wr = hfi1_max_srq_wrs;
1417 rdi->dparms.props.max_srq_sge = hfi1_max_srq_sges;
1418 rdi->dparms.props.atomic_cap = IB_ATOMIC_GLOB;
1419 rdi->dparms.props.max_pkeys = hfi1_get_npkeys(dd);
1420 rdi->dparms.props.max_mcast_grp = hfi1_max_mcast_grps;
1421 rdi->dparms.props.max_mcast_qp_attach = hfi1_max_mcast_qp_attached;
1422 rdi->dparms.props.max_total_mcast_qp_attach =
1423 rdi->dparms.props.max_mcast_qp_attach *
1424 rdi->dparms.props.max_mcast_grp;
1427 static inline u16 opa_speed_to_ib(u16 in)
1429 u16 out = 0;
1431 if (in & OPA_LINK_SPEED_25G)
1432 out |= IB_SPEED_EDR;
1433 if (in & OPA_LINK_SPEED_12_5G)
1434 out |= IB_SPEED_FDR;
1436 return out;
1440 * Convert a single OPA link width (no multiple flags) to an IB value.
1441 * A zero OPA link width means link down, which means the IB width value
1442 * is a don't care.
1444 static inline u16 opa_width_to_ib(u16 in)
1446 switch (in) {
1447 case OPA_LINK_WIDTH_1X:
1448 /* map 2x and 3x to 1x as they don't exist in IB */
1449 case OPA_LINK_WIDTH_2X:
1450 case OPA_LINK_WIDTH_3X:
1451 return IB_WIDTH_1X;
1452 default: /* link down or unknown, return our largest width */
1453 case OPA_LINK_WIDTH_4X:
1454 return IB_WIDTH_4X;
1458 static int query_port(struct rvt_dev_info *rdi, u8 port_num,
1459 struct ib_port_attr *props)
1461 struct hfi1_ibdev *verbs_dev = dev_from_rdi(rdi);
1462 struct hfi1_devdata *dd = dd_from_dev(verbs_dev);
1463 struct hfi1_pportdata *ppd = &dd->pport[port_num - 1];
1464 u32 lid = ppd->lid;
1466 /* props being zeroed by the caller, avoid zeroing it here */
1467 props->lid = lid ? lid : 0;
1468 props->lmc = ppd->lmc;
1469 /* OPA logical states match IB logical states */
1470 props->state = driver_lstate(ppd);
1471 props->phys_state = driver_pstate(ppd);
1472 props->gid_tbl_len = HFI1_GUIDS_PER_PORT;
1473 props->active_width = (u8)opa_width_to_ib(ppd->link_width_active);
1474 /* see rate_show() in ib core/sysfs.c */
1475 props->active_speed = (u8)opa_speed_to_ib(ppd->link_speed_active);
1476 props->max_vl_num = ppd->vls_supported;
1478 /* Once we are a "first class" citizen and have added the OPA MTUs to
1479 * the core we can advertise the larger MTU enum to the ULPs, for now
1480 * advertise only 4K.
1482 * Those applications which are either OPA aware or pass the MTU enum
1483 * from the Path Records to us will get the new 8k MTU. Those that
1484 * attempt to process the MTU enum may fail in various ways.
1486 props->max_mtu = mtu_to_enum((!valid_ib_mtu(hfi1_max_mtu) ?
1487 4096 : hfi1_max_mtu), IB_MTU_4096);
1488 props->active_mtu = !valid_ib_mtu(ppd->ibmtu) ? props->max_mtu :
1489 mtu_to_enum(ppd->ibmtu, IB_MTU_4096);
1492 * sm_lid of 0xFFFF needs special handling so that it can
1493 * be differentiated from a permissve LID of 0xFFFF.
1494 * We set the grh_required flag here so the SA can program
1495 * the DGID in the address handle appropriately
1497 if (props->sm_lid == be16_to_cpu(IB_LID_PERMISSIVE))
1498 props->grh_required = true;
1500 return 0;
1503 static int modify_device(struct ib_device *device,
1504 int device_modify_mask,
1505 struct ib_device_modify *device_modify)
1507 struct hfi1_devdata *dd = dd_from_ibdev(device);
1508 unsigned i;
1509 int ret;
1511 if (device_modify_mask & ~(IB_DEVICE_MODIFY_SYS_IMAGE_GUID |
1512 IB_DEVICE_MODIFY_NODE_DESC)) {
1513 ret = -EOPNOTSUPP;
1514 goto bail;
1517 if (device_modify_mask & IB_DEVICE_MODIFY_NODE_DESC) {
1518 memcpy(device->node_desc, device_modify->node_desc,
1519 IB_DEVICE_NODE_DESC_MAX);
1520 for (i = 0; i < dd->num_pports; i++) {
1521 struct hfi1_ibport *ibp = &dd->pport[i].ibport_data;
1523 hfi1_node_desc_chg(ibp);
1527 if (device_modify_mask & IB_DEVICE_MODIFY_SYS_IMAGE_GUID) {
1528 ib_hfi1_sys_image_guid =
1529 cpu_to_be64(device_modify->sys_image_guid);
1530 for (i = 0; i < dd->num_pports; i++) {
1531 struct hfi1_ibport *ibp = &dd->pport[i].ibport_data;
1533 hfi1_sys_guid_chg(ibp);
1537 ret = 0;
1539 bail:
1540 return ret;
1543 static int shut_down_port(struct rvt_dev_info *rdi, u8 port_num)
1545 struct hfi1_ibdev *verbs_dev = dev_from_rdi(rdi);
1546 struct hfi1_devdata *dd = dd_from_dev(verbs_dev);
1547 struct hfi1_pportdata *ppd = &dd->pport[port_num - 1];
1548 int ret;
1550 set_link_down_reason(ppd, OPA_LINKDOWN_REASON_UNKNOWN, 0,
1551 OPA_LINKDOWN_REASON_UNKNOWN);
1552 ret = set_link_state(ppd, HLS_DN_DOWNDEF);
1553 return ret;
1556 static int hfi1_get_guid_be(struct rvt_dev_info *rdi, struct rvt_ibport *rvp,
1557 int guid_index, __be64 *guid)
1559 struct hfi1_ibport *ibp = container_of(rvp, struct hfi1_ibport, rvp);
1561 if (guid_index >= HFI1_GUIDS_PER_PORT)
1562 return -EINVAL;
1564 *guid = get_sguid(ibp, guid_index);
1565 return 0;
1569 * convert ah port,sl to sc
1571 u8 ah_to_sc(struct ib_device *ibdev, struct rdma_ah_attr *ah)
1573 struct hfi1_ibport *ibp = to_iport(ibdev, rdma_ah_get_port_num(ah));
1575 return ibp->sl_to_sc[rdma_ah_get_sl(ah)];
1578 static int hfi1_check_ah(struct ib_device *ibdev, struct rdma_ah_attr *ah_attr)
1580 struct hfi1_ibport *ibp;
1581 struct hfi1_pportdata *ppd;
1582 struct hfi1_devdata *dd;
1583 u8 sc5;
1585 if (hfi1_check_mcast(rdma_ah_get_dlid(ah_attr)) &&
1586 !(rdma_ah_get_ah_flags(ah_attr) & IB_AH_GRH))
1587 return -EINVAL;
1589 /* test the mapping for validity */
1590 ibp = to_iport(ibdev, rdma_ah_get_port_num(ah_attr));
1591 ppd = ppd_from_ibp(ibp);
1592 sc5 = ibp->sl_to_sc[rdma_ah_get_sl(ah_attr)];
1593 dd = dd_from_ppd(ppd);
1594 if (sc_to_vlt(dd, sc5) > num_vls && sc_to_vlt(dd, sc5) != 0xf)
1595 return -EINVAL;
1596 return 0;
1599 static void hfi1_notify_new_ah(struct ib_device *ibdev,
1600 struct rdma_ah_attr *ah_attr,
1601 struct rvt_ah *ah)
1603 struct hfi1_ibport *ibp;
1604 struct hfi1_pportdata *ppd;
1605 struct hfi1_devdata *dd;
1606 u8 sc5;
1607 struct rdma_ah_attr *attr = &ah->attr;
1610 * Do not trust reading anything from rvt_ah at this point as it is not
1611 * done being setup. We can however modify things which we need to set.
1614 ibp = to_iport(ibdev, rdma_ah_get_port_num(ah_attr));
1615 ppd = ppd_from_ibp(ibp);
1616 sc5 = ibp->sl_to_sc[rdma_ah_get_sl(&ah->attr)];
1617 hfi1_update_ah_attr(ibdev, attr);
1618 hfi1_make_opa_lid(attr);
1619 dd = dd_from_ppd(ppd);
1620 ah->vl = sc_to_vlt(dd, sc5);
1621 if (ah->vl < num_vls || ah->vl == 15)
1622 ah->log_pmtu = ilog2(dd->vld[ah->vl].mtu);
1626 * hfi1_get_npkeys - return the size of the PKEY table for context 0
1627 * @dd: the hfi1_ib device
1629 unsigned hfi1_get_npkeys(struct hfi1_devdata *dd)
1631 return ARRAY_SIZE(dd->pport[0].pkeys);
1634 static void init_ibport(struct hfi1_pportdata *ppd)
1636 struct hfi1_ibport *ibp = &ppd->ibport_data;
1637 size_t sz = ARRAY_SIZE(ibp->sl_to_sc);
1638 int i;
1640 for (i = 0; i < sz; i++) {
1641 ibp->sl_to_sc[i] = i;
1642 ibp->sc_to_sl[i] = i;
1645 for (i = 0; i < RVT_MAX_TRAP_LISTS ; i++)
1646 INIT_LIST_HEAD(&ibp->rvp.trap_lists[i].list);
1647 timer_setup(&ibp->rvp.trap_timer, hfi1_handle_trap_timer, 0);
1649 spin_lock_init(&ibp->rvp.lock);
1650 /* Set the prefix to the default value (see ch. 4.1.1) */
1651 ibp->rvp.gid_prefix = IB_DEFAULT_GID_PREFIX;
1652 ibp->rvp.sm_lid = 0;
1654 * Below should only set bits defined in OPA PortInfo.CapabilityMask
1655 * and PortInfo.CapabilityMask3
1657 ibp->rvp.port_cap_flags = IB_PORT_AUTO_MIGR_SUP |
1658 IB_PORT_CAP_MASK_NOTICE_SUP;
1659 ibp->rvp.port_cap3_flags = OPA_CAP_MASK3_IsSharedSpaceSupported;
1660 ibp->rvp.pma_counter_select[0] = IB_PMA_PORT_XMIT_DATA;
1661 ibp->rvp.pma_counter_select[1] = IB_PMA_PORT_RCV_DATA;
1662 ibp->rvp.pma_counter_select[2] = IB_PMA_PORT_XMIT_PKTS;
1663 ibp->rvp.pma_counter_select[3] = IB_PMA_PORT_RCV_PKTS;
1664 ibp->rvp.pma_counter_select[4] = IB_PMA_PORT_XMIT_WAIT;
1666 RCU_INIT_POINTER(ibp->rvp.qp[0], NULL);
1667 RCU_INIT_POINTER(ibp->rvp.qp[1], NULL);
1670 static void hfi1_get_dev_fw_str(struct ib_device *ibdev, char *str)
1672 struct rvt_dev_info *rdi = ib_to_rvt(ibdev);
1673 struct hfi1_ibdev *dev = dev_from_rdi(rdi);
1674 u32 ver = dd_from_dev(dev)->dc8051_ver;
1676 snprintf(str, IB_FW_VERSION_NAME_MAX, "%u.%u.%u", dc8051_ver_maj(ver),
1677 dc8051_ver_min(ver), dc8051_ver_patch(ver));
1680 static const char * const driver_cntr_names[] = {
1681 /* must be element 0*/
1682 "DRIVER_KernIntr",
1683 "DRIVER_ErrorIntr",
1684 "DRIVER_Tx_Errs",
1685 "DRIVER_Rcv_Errs",
1686 "DRIVER_HW_Errs",
1687 "DRIVER_NoPIOBufs",
1688 "DRIVER_CtxtsOpen",
1689 "DRIVER_RcvLen_Errs",
1690 "DRIVER_EgrBufFull",
1691 "DRIVER_EgrHdrFull"
1694 static DEFINE_MUTEX(cntr_names_lock); /* protects the *_cntr_names bufers */
1695 static const char **dev_cntr_names;
1696 static const char **port_cntr_names;
1697 static int num_driver_cntrs = ARRAY_SIZE(driver_cntr_names);
1698 static int num_dev_cntrs;
1699 static int num_port_cntrs;
1700 static int cntr_names_initialized;
1703 * Convert a list of names separated by '\n' into an array of NULL terminated
1704 * strings. Optionally some entries can be reserved in the array to hold extra
1705 * external strings.
1707 static int init_cntr_names(const char *names_in,
1708 const size_t names_len,
1709 int num_extra_names,
1710 int *num_cntrs,
1711 const char ***cntr_names)
1713 char *names_out, *p, **q;
1714 int i, n;
1716 n = 0;
1717 for (i = 0; i < names_len; i++)
1718 if (names_in[i] == '\n')
1719 n++;
1721 names_out = kmalloc((n + num_extra_names) * sizeof(char *) + names_len,
1722 GFP_KERNEL);
1723 if (!names_out) {
1724 *num_cntrs = 0;
1725 *cntr_names = NULL;
1726 return -ENOMEM;
1729 p = names_out + (n + num_extra_names) * sizeof(char *);
1730 memcpy(p, names_in, names_len);
1732 q = (char **)names_out;
1733 for (i = 0; i < n; i++) {
1734 q[i] = p;
1735 p = strchr(p, '\n');
1736 *p++ = '\0';
1739 *num_cntrs = n;
1740 *cntr_names = (const char **)names_out;
1741 return 0;
1744 static struct rdma_hw_stats *alloc_hw_stats(struct ib_device *ibdev,
1745 u8 port_num)
1747 int i, err;
1749 mutex_lock(&cntr_names_lock);
1750 if (!cntr_names_initialized) {
1751 struct hfi1_devdata *dd = dd_from_ibdev(ibdev);
1753 err = init_cntr_names(dd->cntrnames,
1754 dd->cntrnameslen,
1755 num_driver_cntrs,
1756 &num_dev_cntrs,
1757 &dev_cntr_names);
1758 if (err) {
1759 mutex_unlock(&cntr_names_lock);
1760 return NULL;
1763 for (i = 0; i < num_driver_cntrs; i++)
1764 dev_cntr_names[num_dev_cntrs + i] =
1765 driver_cntr_names[i];
1767 err = init_cntr_names(dd->portcntrnames,
1768 dd->portcntrnameslen,
1770 &num_port_cntrs,
1771 &port_cntr_names);
1772 if (err) {
1773 kfree(dev_cntr_names);
1774 dev_cntr_names = NULL;
1775 mutex_unlock(&cntr_names_lock);
1776 return NULL;
1778 cntr_names_initialized = 1;
1780 mutex_unlock(&cntr_names_lock);
1782 if (!port_num)
1783 return rdma_alloc_hw_stats_struct(
1784 dev_cntr_names,
1785 num_dev_cntrs + num_driver_cntrs,
1786 RDMA_HW_STATS_DEFAULT_LIFESPAN);
1787 else
1788 return rdma_alloc_hw_stats_struct(
1789 port_cntr_names,
1790 num_port_cntrs,
1791 RDMA_HW_STATS_DEFAULT_LIFESPAN);
1794 static u64 hfi1_sps_ints(void)
1796 unsigned long flags;
1797 struct hfi1_devdata *dd;
1798 u64 sps_ints = 0;
1800 spin_lock_irqsave(&hfi1_devs_lock, flags);
1801 list_for_each_entry(dd, &hfi1_dev_list, list) {
1802 sps_ints += get_all_cpu_total(dd->int_counter);
1804 spin_unlock_irqrestore(&hfi1_devs_lock, flags);
1805 return sps_ints;
1808 static int get_hw_stats(struct ib_device *ibdev, struct rdma_hw_stats *stats,
1809 u8 port, int index)
1811 u64 *values;
1812 int count;
1814 if (!port) {
1815 u64 *stats = (u64 *)&hfi1_stats;
1816 int i;
1818 hfi1_read_cntrs(dd_from_ibdev(ibdev), NULL, &values);
1819 values[num_dev_cntrs] = hfi1_sps_ints();
1820 for (i = 1; i < num_driver_cntrs; i++)
1821 values[num_dev_cntrs + i] = stats[i];
1822 count = num_dev_cntrs + num_driver_cntrs;
1823 } else {
1824 struct hfi1_ibport *ibp = to_iport(ibdev, port);
1826 hfi1_read_portcntrs(ppd_from_ibp(ibp), NULL, &values);
1827 count = num_port_cntrs;
1830 memcpy(stats->value, values, count * sizeof(u64));
1831 return count;
1835 * hfi1_register_ib_device - register our device with the infiniband core
1836 * @dd: the device data structure
1837 * Return 0 if successful, errno if unsuccessful.
1839 int hfi1_register_ib_device(struct hfi1_devdata *dd)
1841 struct hfi1_ibdev *dev = &dd->verbs_dev;
1842 struct ib_device *ibdev = &dev->rdi.ibdev;
1843 struct hfi1_pportdata *ppd = dd->pport;
1844 struct hfi1_ibport *ibp = &ppd->ibport_data;
1845 unsigned i;
1846 int ret;
1848 for (i = 0; i < dd->num_pports; i++)
1849 init_ibport(ppd + i);
1851 /* Only need to initialize non-zero fields. */
1853 timer_setup(&dev->mem_timer, mem_timer, 0);
1855 seqlock_init(&dev->iowait_lock);
1856 seqlock_init(&dev->txwait_lock);
1857 INIT_LIST_HEAD(&dev->txwait);
1858 INIT_LIST_HEAD(&dev->memwait);
1860 ret = verbs_txreq_init(dev);
1861 if (ret)
1862 goto err_verbs_txreq;
1864 /* Use first-port GUID as node guid */
1865 ibdev->node_guid = get_sguid(ibp, HFI1_PORT_GUID_INDEX);
1868 * The system image GUID is supposed to be the same for all
1869 * HFIs in a single system but since there can be other
1870 * device types in the system, we can't be sure this is unique.
1872 if (!ib_hfi1_sys_image_guid)
1873 ib_hfi1_sys_image_guid = ibdev->node_guid;
1874 ibdev->owner = THIS_MODULE;
1875 ibdev->phys_port_cnt = dd->num_pports;
1876 ibdev->dev.parent = &dd->pcidev->dev;
1877 ibdev->modify_device = modify_device;
1878 ibdev->alloc_hw_stats = alloc_hw_stats;
1879 ibdev->get_hw_stats = get_hw_stats;
1880 ibdev->alloc_rdma_netdev = hfi1_vnic_alloc_rn;
1882 /* keep process mad in the driver */
1883 ibdev->process_mad = hfi1_process_mad;
1884 ibdev->get_dev_fw_str = hfi1_get_dev_fw_str;
1886 strncpy(ibdev->node_desc, init_utsname()->nodename,
1887 sizeof(ibdev->node_desc));
1890 * Fill in rvt info object.
1892 dd->verbs_dev.rdi.driver_f.port_callback = hfi1_create_port_files;
1893 dd->verbs_dev.rdi.driver_f.get_pci_dev = get_pci_dev;
1894 dd->verbs_dev.rdi.driver_f.check_ah = hfi1_check_ah;
1895 dd->verbs_dev.rdi.driver_f.notify_new_ah = hfi1_notify_new_ah;
1896 dd->verbs_dev.rdi.driver_f.get_guid_be = hfi1_get_guid_be;
1897 dd->verbs_dev.rdi.driver_f.query_port_state = query_port;
1898 dd->verbs_dev.rdi.driver_f.shut_down_port = shut_down_port;
1899 dd->verbs_dev.rdi.driver_f.cap_mask_chg = hfi1_cap_mask_chg;
1901 * Fill in rvt info device attributes.
1903 hfi1_fill_device_attr(dd);
1905 /* queue pair */
1906 dd->verbs_dev.rdi.dparms.qp_table_size = hfi1_qp_table_size;
1907 dd->verbs_dev.rdi.dparms.qpn_start = 0;
1908 dd->verbs_dev.rdi.dparms.qpn_inc = 1;
1909 dd->verbs_dev.rdi.dparms.qos_shift = dd->qos_shift;
1910 dd->verbs_dev.rdi.dparms.qpn_res_start = kdeth_qp << 16;
1911 dd->verbs_dev.rdi.dparms.qpn_res_end =
1912 dd->verbs_dev.rdi.dparms.qpn_res_start + 65535;
1913 dd->verbs_dev.rdi.dparms.max_rdma_atomic = HFI1_MAX_RDMA_ATOMIC;
1914 dd->verbs_dev.rdi.dparms.psn_mask = PSN_MASK;
1915 dd->verbs_dev.rdi.dparms.psn_shift = PSN_SHIFT;
1916 dd->verbs_dev.rdi.dparms.psn_modify_mask = PSN_MODIFY_MASK;
1917 dd->verbs_dev.rdi.dparms.core_cap_flags = RDMA_CORE_PORT_INTEL_OPA |
1918 RDMA_CORE_CAP_OPA_AH;
1919 dd->verbs_dev.rdi.dparms.max_mad_size = OPA_MGMT_MAD_SIZE;
1921 dd->verbs_dev.rdi.driver_f.qp_priv_alloc = qp_priv_alloc;
1922 dd->verbs_dev.rdi.driver_f.qp_priv_free = qp_priv_free;
1923 dd->verbs_dev.rdi.driver_f.free_all_qps = free_all_qps;
1924 dd->verbs_dev.rdi.driver_f.notify_qp_reset = notify_qp_reset;
1925 dd->verbs_dev.rdi.driver_f.do_send = hfi1_do_send_from_rvt;
1926 dd->verbs_dev.rdi.driver_f.schedule_send = hfi1_schedule_send;
1927 dd->verbs_dev.rdi.driver_f.schedule_send_no_lock = _hfi1_schedule_send;
1928 dd->verbs_dev.rdi.driver_f.get_pmtu_from_attr = get_pmtu_from_attr;
1929 dd->verbs_dev.rdi.driver_f.notify_error_qp = notify_error_qp;
1930 dd->verbs_dev.rdi.driver_f.flush_qp_waiters = flush_qp_waiters;
1931 dd->verbs_dev.rdi.driver_f.stop_send_queue = stop_send_queue;
1932 dd->verbs_dev.rdi.driver_f.quiesce_qp = quiesce_qp;
1933 dd->verbs_dev.rdi.driver_f.notify_error_qp = notify_error_qp;
1934 dd->verbs_dev.rdi.driver_f.mtu_from_qp = mtu_from_qp;
1935 dd->verbs_dev.rdi.driver_f.mtu_to_path_mtu = mtu_to_path_mtu;
1936 dd->verbs_dev.rdi.driver_f.check_modify_qp = hfi1_check_modify_qp;
1937 dd->verbs_dev.rdi.driver_f.modify_qp = hfi1_modify_qp;
1938 dd->verbs_dev.rdi.driver_f.notify_restart_rc = hfi1_restart_rc;
1939 dd->verbs_dev.rdi.driver_f.check_send_wqe = hfi1_check_send_wqe;
1941 /* completeion queue */
1942 snprintf(dd->verbs_dev.rdi.dparms.cq_name,
1943 sizeof(dd->verbs_dev.rdi.dparms.cq_name),
1944 "hfi1_cq%d", dd->unit);
1945 dd->verbs_dev.rdi.dparms.node = dd->node;
1947 /* misc settings */
1948 dd->verbs_dev.rdi.flags = 0; /* Let rdmavt handle it all */
1949 dd->verbs_dev.rdi.dparms.lkey_table_size = hfi1_lkey_table_size;
1950 dd->verbs_dev.rdi.dparms.nports = dd->num_pports;
1951 dd->verbs_dev.rdi.dparms.npkeys = hfi1_get_npkeys(dd);
1953 /* post send table */
1954 dd->verbs_dev.rdi.post_parms = hfi1_post_parms;
1956 ppd = dd->pport;
1957 for (i = 0; i < dd->num_pports; i++, ppd++)
1958 rvt_init_port(&dd->verbs_dev.rdi,
1959 &ppd->ibport_data.rvp,
1961 ppd->pkeys);
1963 ret = rvt_register_device(&dd->verbs_dev.rdi);
1964 if (ret)
1965 goto err_verbs_txreq;
1967 ret = hfi1_verbs_register_sysfs(dd);
1968 if (ret)
1969 goto err_class;
1971 return ret;
1973 err_class:
1974 rvt_unregister_device(&dd->verbs_dev.rdi);
1975 err_verbs_txreq:
1976 verbs_txreq_exit(dev);
1977 dd_dev_err(dd, "cannot register verbs: %d!\n", -ret);
1978 return ret;
1981 void hfi1_unregister_ib_device(struct hfi1_devdata *dd)
1983 struct hfi1_ibdev *dev = &dd->verbs_dev;
1985 hfi1_verbs_unregister_sysfs(dd);
1987 rvt_unregister_device(&dd->verbs_dev.rdi);
1989 if (!list_empty(&dev->txwait))
1990 dd_dev_err(dd, "txwait list not empty!\n");
1991 if (!list_empty(&dev->memwait))
1992 dd_dev_err(dd, "memwait list not empty!\n");
1994 del_timer_sync(&dev->mem_timer);
1995 verbs_txreq_exit(dev);
1997 mutex_lock(&cntr_names_lock);
1998 kfree(dev_cntr_names);
1999 kfree(port_cntr_names);
2000 dev_cntr_names = NULL;
2001 port_cntr_names = NULL;
2002 cntr_names_initialized = 0;
2003 mutex_unlock(&cntr_names_lock);
2006 void hfi1_cnp_rcv(struct hfi1_packet *packet)
2008 struct hfi1_ibport *ibp = rcd_to_iport(packet->rcd);
2009 struct hfi1_pportdata *ppd = ppd_from_ibp(ibp);
2010 struct ib_header *hdr = packet->hdr;
2011 struct rvt_qp *qp = packet->qp;
2012 u32 lqpn, rqpn = 0;
2013 u16 rlid = 0;
2014 u8 sl, sc5, svc_type;
2016 switch (packet->qp->ibqp.qp_type) {
2017 case IB_QPT_UC:
2018 rlid = rdma_ah_get_dlid(&qp->remote_ah_attr);
2019 rqpn = qp->remote_qpn;
2020 svc_type = IB_CC_SVCTYPE_UC;
2021 break;
2022 case IB_QPT_RC:
2023 rlid = rdma_ah_get_dlid(&qp->remote_ah_attr);
2024 rqpn = qp->remote_qpn;
2025 svc_type = IB_CC_SVCTYPE_RC;
2026 break;
2027 case IB_QPT_SMI:
2028 case IB_QPT_GSI:
2029 case IB_QPT_UD:
2030 svc_type = IB_CC_SVCTYPE_UD;
2031 break;
2032 default:
2033 ibp->rvp.n_pkt_drops++;
2034 return;
2037 sc5 = hfi1_9B_get_sc5(hdr, packet->rhf);
2038 sl = ibp->sc_to_sl[sc5];
2039 lqpn = qp->ibqp.qp_num;
2041 process_becn(ppd, sl, rlid, lqpn, rqpn, svc_type);