x86/topology: Fix function name in documentation
[cris-mirror.git] / drivers / md / dm-thin.c
blob629c555890c1be277d882ae42069c2f4342c8fa3
1 /*
2 * Copyright (C) 2011-2012 Red Hat UK.
4 * This file is released under the GPL.
5 */
7 #include "dm-thin-metadata.h"
8 #include "dm-bio-prison-v1.h"
9 #include "dm.h"
11 #include <linux/device-mapper.h>
12 #include <linux/dm-io.h>
13 #include <linux/dm-kcopyd.h>
14 #include <linux/jiffies.h>
15 #include <linux/log2.h>
16 #include <linux/list.h>
17 #include <linux/rculist.h>
18 #include <linux/init.h>
19 #include <linux/module.h>
20 #include <linux/slab.h>
21 #include <linux/vmalloc.h>
22 #include <linux/sort.h>
23 #include <linux/rbtree.h>
25 #define DM_MSG_PREFIX "thin"
28 * Tunable constants
30 #define ENDIO_HOOK_POOL_SIZE 1024
31 #define MAPPING_POOL_SIZE 1024
32 #define COMMIT_PERIOD HZ
33 #define NO_SPACE_TIMEOUT_SECS 60
35 static unsigned no_space_timeout_secs = NO_SPACE_TIMEOUT_SECS;
37 DECLARE_DM_KCOPYD_THROTTLE_WITH_MODULE_PARM(snapshot_copy_throttle,
38 "A percentage of time allocated for copy on write");
41 * The block size of the device holding pool data must be
42 * between 64KB and 1GB.
44 #define DATA_DEV_BLOCK_SIZE_MIN_SECTORS (64 * 1024 >> SECTOR_SHIFT)
45 #define DATA_DEV_BLOCK_SIZE_MAX_SECTORS (1024 * 1024 * 1024 >> SECTOR_SHIFT)
48 * Device id is restricted to 24 bits.
50 #define MAX_DEV_ID ((1 << 24) - 1)
53 * How do we handle breaking sharing of data blocks?
54 * =================================================
56 * We use a standard copy-on-write btree to store the mappings for the
57 * devices (note I'm talking about copy-on-write of the metadata here, not
58 * the data). When you take an internal snapshot you clone the root node
59 * of the origin btree. After this there is no concept of an origin or a
60 * snapshot. They are just two device trees that happen to point to the
61 * same data blocks.
63 * When we get a write in we decide if it's to a shared data block using
64 * some timestamp magic. If it is, we have to break sharing.
66 * Let's say we write to a shared block in what was the origin. The
67 * steps are:
69 * i) plug io further to this physical block. (see bio_prison code).
71 * ii) quiesce any read io to that shared data block. Obviously
72 * including all devices that share this block. (see dm_deferred_set code)
74 * iii) copy the data block to a newly allocate block. This step can be
75 * missed out if the io covers the block. (schedule_copy).
77 * iv) insert the new mapping into the origin's btree
78 * (process_prepared_mapping). This act of inserting breaks some
79 * sharing of btree nodes between the two devices. Breaking sharing only
80 * effects the btree of that specific device. Btrees for the other
81 * devices that share the block never change. The btree for the origin
82 * device as it was after the last commit is untouched, ie. we're using
83 * persistent data structures in the functional programming sense.
85 * v) unplug io to this physical block, including the io that triggered
86 * the breaking of sharing.
88 * Steps (ii) and (iii) occur in parallel.
90 * The metadata _doesn't_ need to be committed before the io continues. We
91 * get away with this because the io is always written to a _new_ block.
92 * If there's a crash, then:
94 * - The origin mapping will point to the old origin block (the shared
95 * one). This will contain the data as it was before the io that triggered
96 * the breaking of sharing came in.
98 * - The snap mapping still points to the old block. As it would after
99 * the commit.
101 * The downside of this scheme is the timestamp magic isn't perfect, and
102 * will continue to think that data block in the snapshot device is shared
103 * even after the write to the origin has broken sharing. I suspect data
104 * blocks will typically be shared by many different devices, so we're
105 * breaking sharing n + 1 times, rather than n, where n is the number of
106 * devices that reference this data block. At the moment I think the
107 * benefits far, far outweigh the disadvantages.
110 /*----------------------------------------------------------------*/
113 * Key building.
115 enum lock_space {
116 VIRTUAL,
117 PHYSICAL
120 static void build_key(struct dm_thin_device *td, enum lock_space ls,
121 dm_block_t b, dm_block_t e, struct dm_cell_key *key)
123 key->virtual = (ls == VIRTUAL);
124 key->dev = dm_thin_dev_id(td);
125 key->block_begin = b;
126 key->block_end = e;
129 static void build_data_key(struct dm_thin_device *td, dm_block_t b,
130 struct dm_cell_key *key)
132 build_key(td, PHYSICAL, b, b + 1llu, key);
135 static void build_virtual_key(struct dm_thin_device *td, dm_block_t b,
136 struct dm_cell_key *key)
138 build_key(td, VIRTUAL, b, b + 1llu, key);
141 /*----------------------------------------------------------------*/
143 #define THROTTLE_THRESHOLD (1 * HZ)
145 struct throttle {
146 struct rw_semaphore lock;
147 unsigned long threshold;
148 bool throttle_applied;
151 static void throttle_init(struct throttle *t)
153 init_rwsem(&t->lock);
154 t->throttle_applied = false;
157 static void throttle_work_start(struct throttle *t)
159 t->threshold = jiffies + THROTTLE_THRESHOLD;
162 static void throttle_work_update(struct throttle *t)
164 if (!t->throttle_applied && jiffies > t->threshold) {
165 down_write(&t->lock);
166 t->throttle_applied = true;
170 static void throttle_work_complete(struct throttle *t)
172 if (t->throttle_applied) {
173 t->throttle_applied = false;
174 up_write(&t->lock);
178 static void throttle_lock(struct throttle *t)
180 down_read(&t->lock);
183 static void throttle_unlock(struct throttle *t)
185 up_read(&t->lock);
188 /*----------------------------------------------------------------*/
191 * A pool device ties together a metadata device and a data device. It
192 * also provides the interface for creating and destroying internal
193 * devices.
195 struct dm_thin_new_mapping;
198 * The pool runs in 4 modes. Ordered in degraded order for comparisons.
200 enum pool_mode {
201 PM_WRITE, /* metadata may be changed */
202 PM_OUT_OF_DATA_SPACE, /* metadata may be changed, though data may not be allocated */
203 PM_READ_ONLY, /* metadata may not be changed */
204 PM_FAIL, /* all I/O fails */
207 struct pool_features {
208 enum pool_mode mode;
210 bool zero_new_blocks:1;
211 bool discard_enabled:1;
212 bool discard_passdown:1;
213 bool error_if_no_space:1;
216 struct thin_c;
217 typedef void (*process_bio_fn)(struct thin_c *tc, struct bio *bio);
218 typedef void (*process_cell_fn)(struct thin_c *tc, struct dm_bio_prison_cell *cell);
219 typedef void (*process_mapping_fn)(struct dm_thin_new_mapping *m);
221 #define CELL_SORT_ARRAY_SIZE 8192
223 struct pool {
224 struct list_head list;
225 struct dm_target *ti; /* Only set if a pool target is bound */
227 struct mapped_device *pool_md;
228 struct block_device *md_dev;
229 struct dm_pool_metadata *pmd;
231 dm_block_t low_water_blocks;
232 uint32_t sectors_per_block;
233 int sectors_per_block_shift;
235 struct pool_features pf;
236 bool low_water_triggered:1; /* A dm event has been sent */
237 bool suspended:1;
238 bool out_of_data_space:1;
240 struct dm_bio_prison *prison;
241 struct dm_kcopyd_client *copier;
243 struct workqueue_struct *wq;
244 struct throttle throttle;
245 struct work_struct worker;
246 struct delayed_work waker;
247 struct delayed_work no_space_timeout;
249 unsigned long last_commit_jiffies;
250 unsigned ref_count;
252 spinlock_t lock;
253 struct bio_list deferred_flush_bios;
254 struct list_head prepared_mappings;
255 struct list_head prepared_discards;
256 struct list_head prepared_discards_pt2;
257 struct list_head active_thins;
259 struct dm_deferred_set *shared_read_ds;
260 struct dm_deferred_set *all_io_ds;
262 struct dm_thin_new_mapping *next_mapping;
263 mempool_t *mapping_pool;
265 process_bio_fn process_bio;
266 process_bio_fn process_discard;
268 process_cell_fn process_cell;
269 process_cell_fn process_discard_cell;
271 process_mapping_fn process_prepared_mapping;
272 process_mapping_fn process_prepared_discard;
273 process_mapping_fn process_prepared_discard_pt2;
275 struct dm_bio_prison_cell **cell_sort_array;
278 static enum pool_mode get_pool_mode(struct pool *pool);
279 static void metadata_operation_failed(struct pool *pool, const char *op, int r);
282 * Target context for a pool.
284 struct pool_c {
285 struct dm_target *ti;
286 struct pool *pool;
287 struct dm_dev *data_dev;
288 struct dm_dev *metadata_dev;
289 struct dm_target_callbacks callbacks;
291 dm_block_t low_water_blocks;
292 struct pool_features requested_pf; /* Features requested during table load */
293 struct pool_features adjusted_pf; /* Features used after adjusting for constituent devices */
297 * Target context for a thin.
299 struct thin_c {
300 struct list_head list;
301 struct dm_dev *pool_dev;
302 struct dm_dev *origin_dev;
303 sector_t origin_size;
304 dm_thin_id dev_id;
306 struct pool *pool;
307 struct dm_thin_device *td;
308 struct mapped_device *thin_md;
310 bool requeue_mode:1;
311 spinlock_t lock;
312 struct list_head deferred_cells;
313 struct bio_list deferred_bio_list;
314 struct bio_list retry_on_resume_list;
315 struct rb_root sort_bio_list; /* sorted list of deferred bios */
318 * Ensures the thin is not destroyed until the worker has finished
319 * iterating the active_thins list.
321 atomic_t refcount;
322 struct completion can_destroy;
325 /*----------------------------------------------------------------*/
327 static bool block_size_is_power_of_two(struct pool *pool)
329 return pool->sectors_per_block_shift >= 0;
332 static sector_t block_to_sectors(struct pool *pool, dm_block_t b)
334 return block_size_is_power_of_two(pool) ?
335 (b << pool->sectors_per_block_shift) :
336 (b * pool->sectors_per_block);
339 /*----------------------------------------------------------------*/
341 struct discard_op {
342 struct thin_c *tc;
343 struct blk_plug plug;
344 struct bio *parent_bio;
345 struct bio *bio;
348 static void begin_discard(struct discard_op *op, struct thin_c *tc, struct bio *parent)
350 BUG_ON(!parent);
352 op->tc = tc;
353 blk_start_plug(&op->plug);
354 op->parent_bio = parent;
355 op->bio = NULL;
358 static int issue_discard(struct discard_op *op, dm_block_t data_b, dm_block_t data_e)
360 struct thin_c *tc = op->tc;
361 sector_t s = block_to_sectors(tc->pool, data_b);
362 sector_t len = block_to_sectors(tc->pool, data_e - data_b);
364 return __blkdev_issue_discard(tc->pool_dev->bdev, s, len,
365 GFP_NOWAIT, 0, &op->bio);
368 static void end_discard(struct discard_op *op, int r)
370 if (op->bio) {
372 * Even if one of the calls to issue_discard failed, we
373 * need to wait for the chain to complete.
375 bio_chain(op->bio, op->parent_bio);
376 bio_set_op_attrs(op->bio, REQ_OP_DISCARD, 0);
377 submit_bio(op->bio);
380 blk_finish_plug(&op->plug);
383 * Even if r is set, there could be sub discards in flight that we
384 * need to wait for.
386 if (r && !op->parent_bio->bi_status)
387 op->parent_bio->bi_status = errno_to_blk_status(r);
388 bio_endio(op->parent_bio);
391 /*----------------------------------------------------------------*/
394 * wake_worker() is used when new work is queued and when pool_resume is
395 * ready to continue deferred IO processing.
397 static void wake_worker(struct pool *pool)
399 queue_work(pool->wq, &pool->worker);
402 /*----------------------------------------------------------------*/
404 static int bio_detain(struct pool *pool, struct dm_cell_key *key, struct bio *bio,
405 struct dm_bio_prison_cell **cell_result)
407 int r;
408 struct dm_bio_prison_cell *cell_prealloc;
411 * Allocate a cell from the prison's mempool.
412 * This might block but it can't fail.
414 cell_prealloc = dm_bio_prison_alloc_cell(pool->prison, GFP_NOIO);
416 r = dm_bio_detain(pool->prison, key, bio, cell_prealloc, cell_result);
417 if (r)
419 * We reused an old cell; we can get rid of
420 * the new one.
422 dm_bio_prison_free_cell(pool->prison, cell_prealloc);
424 return r;
427 static void cell_release(struct pool *pool,
428 struct dm_bio_prison_cell *cell,
429 struct bio_list *bios)
431 dm_cell_release(pool->prison, cell, bios);
432 dm_bio_prison_free_cell(pool->prison, cell);
435 static void cell_visit_release(struct pool *pool,
436 void (*fn)(void *, struct dm_bio_prison_cell *),
437 void *context,
438 struct dm_bio_prison_cell *cell)
440 dm_cell_visit_release(pool->prison, fn, context, cell);
441 dm_bio_prison_free_cell(pool->prison, cell);
444 static void cell_release_no_holder(struct pool *pool,
445 struct dm_bio_prison_cell *cell,
446 struct bio_list *bios)
448 dm_cell_release_no_holder(pool->prison, cell, bios);
449 dm_bio_prison_free_cell(pool->prison, cell);
452 static void cell_error_with_code(struct pool *pool,
453 struct dm_bio_prison_cell *cell, blk_status_t error_code)
455 dm_cell_error(pool->prison, cell, error_code);
456 dm_bio_prison_free_cell(pool->prison, cell);
459 static blk_status_t get_pool_io_error_code(struct pool *pool)
461 return pool->out_of_data_space ? BLK_STS_NOSPC : BLK_STS_IOERR;
464 static void cell_error(struct pool *pool, struct dm_bio_prison_cell *cell)
466 cell_error_with_code(pool, cell, get_pool_io_error_code(pool));
469 static void cell_success(struct pool *pool, struct dm_bio_prison_cell *cell)
471 cell_error_with_code(pool, cell, 0);
474 static void cell_requeue(struct pool *pool, struct dm_bio_prison_cell *cell)
476 cell_error_with_code(pool, cell, BLK_STS_DM_REQUEUE);
479 /*----------------------------------------------------------------*/
482 * A global list of pools that uses a struct mapped_device as a key.
484 static struct dm_thin_pool_table {
485 struct mutex mutex;
486 struct list_head pools;
487 } dm_thin_pool_table;
489 static void pool_table_init(void)
491 mutex_init(&dm_thin_pool_table.mutex);
492 INIT_LIST_HEAD(&dm_thin_pool_table.pools);
495 static void pool_table_exit(void)
497 mutex_destroy(&dm_thin_pool_table.mutex);
500 static void __pool_table_insert(struct pool *pool)
502 BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
503 list_add(&pool->list, &dm_thin_pool_table.pools);
506 static void __pool_table_remove(struct pool *pool)
508 BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
509 list_del(&pool->list);
512 static struct pool *__pool_table_lookup(struct mapped_device *md)
514 struct pool *pool = NULL, *tmp;
516 BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
518 list_for_each_entry(tmp, &dm_thin_pool_table.pools, list) {
519 if (tmp->pool_md == md) {
520 pool = tmp;
521 break;
525 return pool;
528 static struct pool *__pool_table_lookup_metadata_dev(struct block_device *md_dev)
530 struct pool *pool = NULL, *tmp;
532 BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
534 list_for_each_entry(tmp, &dm_thin_pool_table.pools, list) {
535 if (tmp->md_dev == md_dev) {
536 pool = tmp;
537 break;
541 return pool;
544 /*----------------------------------------------------------------*/
546 struct dm_thin_endio_hook {
547 struct thin_c *tc;
548 struct dm_deferred_entry *shared_read_entry;
549 struct dm_deferred_entry *all_io_entry;
550 struct dm_thin_new_mapping *overwrite_mapping;
551 struct rb_node rb_node;
552 struct dm_bio_prison_cell *cell;
555 static void __merge_bio_list(struct bio_list *bios, struct bio_list *master)
557 bio_list_merge(bios, master);
558 bio_list_init(master);
561 static void error_bio_list(struct bio_list *bios, blk_status_t error)
563 struct bio *bio;
565 while ((bio = bio_list_pop(bios))) {
566 bio->bi_status = error;
567 bio_endio(bio);
571 static void error_thin_bio_list(struct thin_c *tc, struct bio_list *master,
572 blk_status_t error)
574 struct bio_list bios;
575 unsigned long flags;
577 bio_list_init(&bios);
579 spin_lock_irqsave(&tc->lock, flags);
580 __merge_bio_list(&bios, master);
581 spin_unlock_irqrestore(&tc->lock, flags);
583 error_bio_list(&bios, error);
586 static void requeue_deferred_cells(struct thin_c *tc)
588 struct pool *pool = tc->pool;
589 unsigned long flags;
590 struct list_head cells;
591 struct dm_bio_prison_cell *cell, *tmp;
593 INIT_LIST_HEAD(&cells);
595 spin_lock_irqsave(&tc->lock, flags);
596 list_splice_init(&tc->deferred_cells, &cells);
597 spin_unlock_irqrestore(&tc->lock, flags);
599 list_for_each_entry_safe(cell, tmp, &cells, user_list)
600 cell_requeue(pool, cell);
603 static void requeue_io(struct thin_c *tc)
605 struct bio_list bios;
606 unsigned long flags;
608 bio_list_init(&bios);
610 spin_lock_irqsave(&tc->lock, flags);
611 __merge_bio_list(&bios, &tc->deferred_bio_list);
612 __merge_bio_list(&bios, &tc->retry_on_resume_list);
613 spin_unlock_irqrestore(&tc->lock, flags);
615 error_bio_list(&bios, BLK_STS_DM_REQUEUE);
616 requeue_deferred_cells(tc);
619 static void error_retry_list_with_code(struct pool *pool, blk_status_t error)
621 struct thin_c *tc;
623 rcu_read_lock();
624 list_for_each_entry_rcu(tc, &pool->active_thins, list)
625 error_thin_bio_list(tc, &tc->retry_on_resume_list, error);
626 rcu_read_unlock();
629 static void error_retry_list(struct pool *pool)
631 error_retry_list_with_code(pool, get_pool_io_error_code(pool));
635 * This section of code contains the logic for processing a thin device's IO.
636 * Much of the code depends on pool object resources (lists, workqueues, etc)
637 * but most is exclusively called from the thin target rather than the thin-pool
638 * target.
641 static dm_block_t get_bio_block(struct thin_c *tc, struct bio *bio)
643 struct pool *pool = tc->pool;
644 sector_t block_nr = bio->bi_iter.bi_sector;
646 if (block_size_is_power_of_two(pool))
647 block_nr >>= pool->sectors_per_block_shift;
648 else
649 (void) sector_div(block_nr, pool->sectors_per_block);
651 return block_nr;
655 * Returns the _complete_ blocks that this bio covers.
657 static void get_bio_block_range(struct thin_c *tc, struct bio *bio,
658 dm_block_t *begin, dm_block_t *end)
660 struct pool *pool = tc->pool;
661 sector_t b = bio->bi_iter.bi_sector;
662 sector_t e = b + (bio->bi_iter.bi_size >> SECTOR_SHIFT);
664 b += pool->sectors_per_block - 1ull; /* so we round up */
666 if (block_size_is_power_of_two(pool)) {
667 b >>= pool->sectors_per_block_shift;
668 e >>= pool->sectors_per_block_shift;
669 } else {
670 (void) sector_div(b, pool->sectors_per_block);
671 (void) sector_div(e, pool->sectors_per_block);
674 if (e < b)
675 /* Can happen if the bio is within a single block. */
676 e = b;
678 *begin = b;
679 *end = e;
682 static void remap(struct thin_c *tc, struct bio *bio, dm_block_t block)
684 struct pool *pool = tc->pool;
685 sector_t bi_sector = bio->bi_iter.bi_sector;
687 bio_set_dev(bio, tc->pool_dev->bdev);
688 if (block_size_is_power_of_two(pool))
689 bio->bi_iter.bi_sector =
690 (block << pool->sectors_per_block_shift) |
691 (bi_sector & (pool->sectors_per_block - 1));
692 else
693 bio->bi_iter.bi_sector = (block * pool->sectors_per_block) +
694 sector_div(bi_sector, pool->sectors_per_block);
697 static void remap_to_origin(struct thin_c *tc, struct bio *bio)
699 bio_set_dev(bio, tc->origin_dev->bdev);
702 static int bio_triggers_commit(struct thin_c *tc, struct bio *bio)
704 return op_is_flush(bio->bi_opf) &&
705 dm_thin_changed_this_transaction(tc->td);
708 static void inc_all_io_entry(struct pool *pool, struct bio *bio)
710 struct dm_thin_endio_hook *h;
712 if (bio_op(bio) == REQ_OP_DISCARD)
713 return;
715 h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
716 h->all_io_entry = dm_deferred_entry_inc(pool->all_io_ds);
719 static void issue(struct thin_c *tc, struct bio *bio)
721 struct pool *pool = tc->pool;
722 unsigned long flags;
724 if (!bio_triggers_commit(tc, bio)) {
725 generic_make_request(bio);
726 return;
730 * Complete bio with an error if earlier I/O caused changes to
731 * the metadata that can't be committed e.g, due to I/O errors
732 * on the metadata device.
734 if (dm_thin_aborted_changes(tc->td)) {
735 bio_io_error(bio);
736 return;
740 * Batch together any bios that trigger commits and then issue a
741 * single commit for them in process_deferred_bios().
743 spin_lock_irqsave(&pool->lock, flags);
744 bio_list_add(&pool->deferred_flush_bios, bio);
745 spin_unlock_irqrestore(&pool->lock, flags);
748 static void remap_to_origin_and_issue(struct thin_c *tc, struct bio *bio)
750 remap_to_origin(tc, bio);
751 issue(tc, bio);
754 static void remap_and_issue(struct thin_c *tc, struct bio *bio,
755 dm_block_t block)
757 remap(tc, bio, block);
758 issue(tc, bio);
761 /*----------------------------------------------------------------*/
764 * Bio endio functions.
766 struct dm_thin_new_mapping {
767 struct list_head list;
769 bool pass_discard:1;
770 bool maybe_shared:1;
773 * Track quiescing, copying and zeroing preparation actions. When this
774 * counter hits zero the block is prepared and can be inserted into the
775 * btree.
777 atomic_t prepare_actions;
779 blk_status_t status;
780 struct thin_c *tc;
781 dm_block_t virt_begin, virt_end;
782 dm_block_t data_block;
783 struct dm_bio_prison_cell *cell;
786 * If the bio covers the whole area of a block then we can avoid
787 * zeroing or copying. Instead this bio is hooked. The bio will
788 * still be in the cell, so care has to be taken to avoid issuing
789 * the bio twice.
791 struct bio *bio;
792 bio_end_io_t *saved_bi_end_io;
795 static void __complete_mapping_preparation(struct dm_thin_new_mapping *m)
797 struct pool *pool = m->tc->pool;
799 if (atomic_dec_and_test(&m->prepare_actions)) {
800 list_add_tail(&m->list, &pool->prepared_mappings);
801 wake_worker(pool);
805 static void complete_mapping_preparation(struct dm_thin_new_mapping *m)
807 unsigned long flags;
808 struct pool *pool = m->tc->pool;
810 spin_lock_irqsave(&pool->lock, flags);
811 __complete_mapping_preparation(m);
812 spin_unlock_irqrestore(&pool->lock, flags);
815 static void copy_complete(int read_err, unsigned long write_err, void *context)
817 struct dm_thin_new_mapping *m = context;
819 m->status = read_err || write_err ? BLK_STS_IOERR : 0;
820 complete_mapping_preparation(m);
823 static void overwrite_endio(struct bio *bio)
825 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
826 struct dm_thin_new_mapping *m = h->overwrite_mapping;
828 bio->bi_end_io = m->saved_bi_end_io;
830 m->status = bio->bi_status;
831 complete_mapping_preparation(m);
834 /*----------------------------------------------------------------*/
837 * Workqueue.
841 * Prepared mapping jobs.
845 * This sends the bios in the cell, except the original holder, back
846 * to the deferred_bios list.
848 static void cell_defer_no_holder(struct thin_c *tc, struct dm_bio_prison_cell *cell)
850 struct pool *pool = tc->pool;
851 unsigned long flags;
853 spin_lock_irqsave(&tc->lock, flags);
854 cell_release_no_holder(pool, cell, &tc->deferred_bio_list);
855 spin_unlock_irqrestore(&tc->lock, flags);
857 wake_worker(pool);
860 static void thin_defer_bio(struct thin_c *tc, struct bio *bio);
862 struct remap_info {
863 struct thin_c *tc;
864 struct bio_list defer_bios;
865 struct bio_list issue_bios;
868 static void __inc_remap_and_issue_cell(void *context,
869 struct dm_bio_prison_cell *cell)
871 struct remap_info *info = context;
872 struct bio *bio;
874 while ((bio = bio_list_pop(&cell->bios))) {
875 if (op_is_flush(bio->bi_opf) || bio_op(bio) == REQ_OP_DISCARD)
876 bio_list_add(&info->defer_bios, bio);
877 else {
878 inc_all_io_entry(info->tc->pool, bio);
881 * We can't issue the bios with the bio prison lock
882 * held, so we add them to a list to issue on
883 * return from this function.
885 bio_list_add(&info->issue_bios, bio);
890 static void inc_remap_and_issue_cell(struct thin_c *tc,
891 struct dm_bio_prison_cell *cell,
892 dm_block_t block)
894 struct bio *bio;
895 struct remap_info info;
897 info.tc = tc;
898 bio_list_init(&info.defer_bios);
899 bio_list_init(&info.issue_bios);
902 * We have to be careful to inc any bios we're about to issue
903 * before the cell is released, and avoid a race with new bios
904 * being added to the cell.
906 cell_visit_release(tc->pool, __inc_remap_and_issue_cell,
907 &info, cell);
909 while ((bio = bio_list_pop(&info.defer_bios)))
910 thin_defer_bio(tc, bio);
912 while ((bio = bio_list_pop(&info.issue_bios)))
913 remap_and_issue(info.tc, bio, block);
916 static void process_prepared_mapping_fail(struct dm_thin_new_mapping *m)
918 cell_error(m->tc->pool, m->cell);
919 list_del(&m->list);
920 mempool_free(m, m->tc->pool->mapping_pool);
923 static void process_prepared_mapping(struct dm_thin_new_mapping *m)
925 struct thin_c *tc = m->tc;
926 struct pool *pool = tc->pool;
927 struct bio *bio = m->bio;
928 int r;
930 if (m->status) {
931 cell_error(pool, m->cell);
932 goto out;
936 * Commit the prepared block into the mapping btree.
937 * Any I/O for this block arriving after this point will get
938 * remapped to it directly.
940 r = dm_thin_insert_block(tc->td, m->virt_begin, m->data_block);
941 if (r) {
942 metadata_operation_failed(pool, "dm_thin_insert_block", r);
943 cell_error(pool, m->cell);
944 goto out;
948 * Release any bios held while the block was being provisioned.
949 * If we are processing a write bio that completely covers the block,
950 * we already processed it so can ignore it now when processing
951 * the bios in the cell.
953 if (bio) {
954 inc_remap_and_issue_cell(tc, m->cell, m->data_block);
955 bio_endio(bio);
956 } else {
957 inc_all_io_entry(tc->pool, m->cell->holder);
958 remap_and_issue(tc, m->cell->holder, m->data_block);
959 inc_remap_and_issue_cell(tc, m->cell, m->data_block);
962 out:
963 list_del(&m->list);
964 mempool_free(m, pool->mapping_pool);
967 /*----------------------------------------------------------------*/
969 static void free_discard_mapping(struct dm_thin_new_mapping *m)
971 struct thin_c *tc = m->tc;
972 if (m->cell)
973 cell_defer_no_holder(tc, m->cell);
974 mempool_free(m, tc->pool->mapping_pool);
977 static void process_prepared_discard_fail(struct dm_thin_new_mapping *m)
979 bio_io_error(m->bio);
980 free_discard_mapping(m);
983 static void process_prepared_discard_success(struct dm_thin_new_mapping *m)
985 bio_endio(m->bio);
986 free_discard_mapping(m);
989 static void process_prepared_discard_no_passdown(struct dm_thin_new_mapping *m)
991 int r;
992 struct thin_c *tc = m->tc;
994 r = dm_thin_remove_range(tc->td, m->cell->key.block_begin, m->cell->key.block_end);
995 if (r) {
996 metadata_operation_failed(tc->pool, "dm_thin_remove_range", r);
997 bio_io_error(m->bio);
998 } else
999 bio_endio(m->bio);
1001 cell_defer_no_holder(tc, m->cell);
1002 mempool_free(m, tc->pool->mapping_pool);
1005 /*----------------------------------------------------------------*/
1007 static void passdown_double_checking_shared_status(struct dm_thin_new_mapping *m,
1008 struct bio *discard_parent)
1011 * We've already unmapped this range of blocks, but before we
1012 * passdown we have to check that these blocks are now unused.
1014 int r = 0;
1015 bool used = true;
1016 struct thin_c *tc = m->tc;
1017 struct pool *pool = tc->pool;
1018 dm_block_t b = m->data_block, e, end = m->data_block + m->virt_end - m->virt_begin;
1019 struct discard_op op;
1021 begin_discard(&op, tc, discard_parent);
1022 while (b != end) {
1023 /* find start of unmapped run */
1024 for (; b < end; b++) {
1025 r = dm_pool_block_is_used(pool->pmd, b, &used);
1026 if (r)
1027 goto out;
1029 if (!used)
1030 break;
1033 if (b == end)
1034 break;
1036 /* find end of run */
1037 for (e = b + 1; e != end; e++) {
1038 r = dm_pool_block_is_used(pool->pmd, e, &used);
1039 if (r)
1040 goto out;
1042 if (used)
1043 break;
1046 r = issue_discard(&op, b, e);
1047 if (r)
1048 goto out;
1050 b = e;
1052 out:
1053 end_discard(&op, r);
1056 static void queue_passdown_pt2(struct dm_thin_new_mapping *m)
1058 unsigned long flags;
1059 struct pool *pool = m->tc->pool;
1061 spin_lock_irqsave(&pool->lock, flags);
1062 list_add_tail(&m->list, &pool->prepared_discards_pt2);
1063 spin_unlock_irqrestore(&pool->lock, flags);
1064 wake_worker(pool);
1067 static void passdown_endio(struct bio *bio)
1070 * It doesn't matter if the passdown discard failed, we still want
1071 * to unmap (we ignore err).
1073 queue_passdown_pt2(bio->bi_private);
1074 bio_put(bio);
1077 static void process_prepared_discard_passdown_pt1(struct dm_thin_new_mapping *m)
1079 int r;
1080 struct thin_c *tc = m->tc;
1081 struct pool *pool = tc->pool;
1082 struct bio *discard_parent;
1083 dm_block_t data_end = m->data_block + (m->virt_end - m->virt_begin);
1086 * Only this thread allocates blocks, so we can be sure that the
1087 * newly unmapped blocks will not be allocated before the end of
1088 * the function.
1090 r = dm_thin_remove_range(tc->td, m->virt_begin, m->virt_end);
1091 if (r) {
1092 metadata_operation_failed(pool, "dm_thin_remove_range", r);
1093 bio_io_error(m->bio);
1094 cell_defer_no_holder(tc, m->cell);
1095 mempool_free(m, pool->mapping_pool);
1096 return;
1100 * Increment the unmapped blocks. This prevents a race between the
1101 * passdown io and reallocation of freed blocks.
1103 r = dm_pool_inc_data_range(pool->pmd, m->data_block, data_end);
1104 if (r) {
1105 metadata_operation_failed(pool, "dm_pool_inc_data_range", r);
1106 bio_io_error(m->bio);
1107 cell_defer_no_holder(tc, m->cell);
1108 mempool_free(m, pool->mapping_pool);
1109 return;
1112 discard_parent = bio_alloc(GFP_NOIO, 1);
1113 if (!discard_parent) {
1114 DMWARN("%s: unable to allocate top level discard bio for passdown. Skipping passdown.",
1115 dm_device_name(tc->pool->pool_md));
1116 queue_passdown_pt2(m);
1118 } else {
1119 discard_parent->bi_end_io = passdown_endio;
1120 discard_parent->bi_private = m;
1122 if (m->maybe_shared)
1123 passdown_double_checking_shared_status(m, discard_parent);
1124 else {
1125 struct discard_op op;
1127 begin_discard(&op, tc, discard_parent);
1128 r = issue_discard(&op, m->data_block, data_end);
1129 end_discard(&op, r);
1134 static void process_prepared_discard_passdown_pt2(struct dm_thin_new_mapping *m)
1136 int r;
1137 struct thin_c *tc = m->tc;
1138 struct pool *pool = tc->pool;
1141 * The passdown has completed, so now we can decrement all those
1142 * unmapped blocks.
1144 r = dm_pool_dec_data_range(pool->pmd, m->data_block,
1145 m->data_block + (m->virt_end - m->virt_begin));
1146 if (r) {
1147 metadata_operation_failed(pool, "dm_pool_dec_data_range", r);
1148 bio_io_error(m->bio);
1149 } else
1150 bio_endio(m->bio);
1152 cell_defer_no_holder(tc, m->cell);
1153 mempool_free(m, pool->mapping_pool);
1156 static void process_prepared(struct pool *pool, struct list_head *head,
1157 process_mapping_fn *fn)
1159 unsigned long flags;
1160 struct list_head maps;
1161 struct dm_thin_new_mapping *m, *tmp;
1163 INIT_LIST_HEAD(&maps);
1164 spin_lock_irqsave(&pool->lock, flags);
1165 list_splice_init(head, &maps);
1166 spin_unlock_irqrestore(&pool->lock, flags);
1168 list_for_each_entry_safe(m, tmp, &maps, list)
1169 (*fn)(m);
1173 * Deferred bio jobs.
1175 static int io_overlaps_block(struct pool *pool, struct bio *bio)
1177 return bio->bi_iter.bi_size ==
1178 (pool->sectors_per_block << SECTOR_SHIFT);
1181 static int io_overwrites_block(struct pool *pool, struct bio *bio)
1183 return (bio_data_dir(bio) == WRITE) &&
1184 io_overlaps_block(pool, bio);
1187 static void save_and_set_endio(struct bio *bio, bio_end_io_t **save,
1188 bio_end_io_t *fn)
1190 *save = bio->bi_end_io;
1191 bio->bi_end_io = fn;
1194 static int ensure_next_mapping(struct pool *pool)
1196 if (pool->next_mapping)
1197 return 0;
1199 pool->next_mapping = mempool_alloc(pool->mapping_pool, GFP_ATOMIC);
1201 return pool->next_mapping ? 0 : -ENOMEM;
1204 static struct dm_thin_new_mapping *get_next_mapping(struct pool *pool)
1206 struct dm_thin_new_mapping *m = pool->next_mapping;
1208 BUG_ON(!pool->next_mapping);
1210 memset(m, 0, sizeof(struct dm_thin_new_mapping));
1211 INIT_LIST_HEAD(&m->list);
1212 m->bio = NULL;
1214 pool->next_mapping = NULL;
1216 return m;
1219 static void ll_zero(struct thin_c *tc, struct dm_thin_new_mapping *m,
1220 sector_t begin, sector_t end)
1222 int r;
1223 struct dm_io_region to;
1225 to.bdev = tc->pool_dev->bdev;
1226 to.sector = begin;
1227 to.count = end - begin;
1229 r = dm_kcopyd_zero(tc->pool->copier, 1, &to, 0, copy_complete, m);
1230 if (r < 0) {
1231 DMERR_LIMIT("dm_kcopyd_zero() failed");
1232 copy_complete(1, 1, m);
1236 static void remap_and_issue_overwrite(struct thin_c *tc, struct bio *bio,
1237 dm_block_t data_begin,
1238 struct dm_thin_new_mapping *m)
1240 struct pool *pool = tc->pool;
1241 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1243 h->overwrite_mapping = m;
1244 m->bio = bio;
1245 save_and_set_endio(bio, &m->saved_bi_end_io, overwrite_endio);
1246 inc_all_io_entry(pool, bio);
1247 remap_and_issue(tc, bio, data_begin);
1251 * A partial copy also needs to zero the uncopied region.
1253 static void schedule_copy(struct thin_c *tc, dm_block_t virt_block,
1254 struct dm_dev *origin, dm_block_t data_origin,
1255 dm_block_t data_dest,
1256 struct dm_bio_prison_cell *cell, struct bio *bio,
1257 sector_t len)
1259 int r;
1260 struct pool *pool = tc->pool;
1261 struct dm_thin_new_mapping *m = get_next_mapping(pool);
1263 m->tc = tc;
1264 m->virt_begin = virt_block;
1265 m->virt_end = virt_block + 1u;
1266 m->data_block = data_dest;
1267 m->cell = cell;
1270 * quiesce action + copy action + an extra reference held for the
1271 * duration of this function (we may need to inc later for a
1272 * partial zero).
1274 atomic_set(&m->prepare_actions, 3);
1276 if (!dm_deferred_set_add_work(pool->shared_read_ds, &m->list))
1277 complete_mapping_preparation(m); /* already quiesced */
1280 * IO to pool_dev remaps to the pool target's data_dev.
1282 * If the whole block of data is being overwritten, we can issue the
1283 * bio immediately. Otherwise we use kcopyd to clone the data first.
1285 if (io_overwrites_block(pool, bio))
1286 remap_and_issue_overwrite(tc, bio, data_dest, m);
1287 else {
1288 struct dm_io_region from, to;
1290 from.bdev = origin->bdev;
1291 from.sector = data_origin * pool->sectors_per_block;
1292 from.count = len;
1294 to.bdev = tc->pool_dev->bdev;
1295 to.sector = data_dest * pool->sectors_per_block;
1296 to.count = len;
1298 r = dm_kcopyd_copy(pool->copier, &from, 1, &to,
1299 0, copy_complete, m);
1300 if (r < 0) {
1301 DMERR_LIMIT("dm_kcopyd_copy() failed");
1302 copy_complete(1, 1, m);
1305 * We allow the zero to be issued, to simplify the
1306 * error path. Otherwise we'd need to start
1307 * worrying about decrementing the prepare_actions
1308 * counter.
1313 * Do we need to zero a tail region?
1315 if (len < pool->sectors_per_block && pool->pf.zero_new_blocks) {
1316 atomic_inc(&m->prepare_actions);
1317 ll_zero(tc, m,
1318 data_dest * pool->sectors_per_block + len,
1319 (data_dest + 1) * pool->sectors_per_block);
1323 complete_mapping_preparation(m); /* drop our ref */
1326 static void schedule_internal_copy(struct thin_c *tc, dm_block_t virt_block,
1327 dm_block_t data_origin, dm_block_t data_dest,
1328 struct dm_bio_prison_cell *cell, struct bio *bio)
1330 schedule_copy(tc, virt_block, tc->pool_dev,
1331 data_origin, data_dest, cell, bio,
1332 tc->pool->sectors_per_block);
1335 static void schedule_zero(struct thin_c *tc, dm_block_t virt_block,
1336 dm_block_t data_block, struct dm_bio_prison_cell *cell,
1337 struct bio *bio)
1339 struct pool *pool = tc->pool;
1340 struct dm_thin_new_mapping *m = get_next_mapping(pool);
1342 atomic_set(&m->prepare_actions, 1); /* no need to quiesce */
1343 m->tc = tc;
1344 m->virt_begin = virt_block;
1345 m->virt_end = virt_block + 1u;
1346 m->data_block = data_block;
1347 m->cell = cell;
1350 * If the whole block of data is being overwritten or we are not
1351 * zeroing pre-existing data, we can issue the bio immediately.
1352 * Otherwise we use kcopyd to zero the data first.
1354 if (pool->pf.zero_new_blocks) {
1355 if (io_overwrites_block(pool, bio))
1356 remap_and_issue_overwrite(tc, bio, data_block, m);
1357 else
1358 ll_zero(tc, m, data_block * pool->sectors_per_block,
1359 (data_block + 1) * pool->sectors_per_block);
1360 } else
1361 process_prepared_mapping(m);
1364 static void schedule_external_copy(struct thin_c *tc, dm_block_t virt_block,
1365 dm_block_t data_dest,
1366 struct dm_bio_prison_cell *cell, struct bio *bio)
1368 struct pool *pool = tc->pool;
1369 sector_t virt_block_begin = virt_block * pool->sectors_per_block;
1370 sector_t virt_block_end = (virt_block + 1) * pool->sectors_per_block;
1372 if (virt_block_end <= tc->origin_size)
1373 schedule_copy(tc, virt_block, tc->origin_dev,
1374 virt_block, data_dest, cell, bio,
1375 pool->sectors_per_block);
1377 else if (virt_block_begin < tc->origin_size)
1378 schedule_copy(tc, virt_block, tc->origin_dev,
1379 virt_block, data_dest, cell, bio,
1380 tc->origin_size - virt_block_begin);
1382 else
1383 schedule_zero(tc, virt_block, data_dest, cell, bio);
1386 static void set_pool_mode(struct pool *pool, enum pool_mode new_mode);
1388 static void check_for_space(struct pool *pool)
1390 int r;
1391 dm_block_t nr_free;
1393 if (get_pool_mode(pool) != PM_OUT_OF_DATA_SPACE)
1394 return;
1396 r = dm_pool_get_free_block_count(pool->pmd, &nr_free);
1397 if (r)
1398 return;
1400 if (nr_free)
1401 set_pool_mode(pool, PM_WRITE);
1405 * A non-zero return indicates read_only or fail_io mode.
1406 * Many callers don't care about the return value.
1408 static int commit(struct pool *pool)
1410 int r;
1412 if (get_pool_mode(pool) >= PM_READ_ONLY)
1413 return -EINVAL;
1415 r = dm_pool_commit_metadata(pool->pmd);
1416 if (r)
1417 metadata_operation_failed(pool, "dm_pool_commit_metadata", r);
1418 else
1419 check_for_space(pool);
1421 return r;
1424 static void check_low_water_mark(struct pool *pool, dm_block_t free_blocks)
1426 unsigned long flags;
1428 if (free_blocks <= pool->low_water_blocks && !pool->low_water_triggered) {
1429 DMWARN("%s: reached low water mark for data device: sending event.",
1430 dm_device_name(pool->pool_md));
1431 spin_lock_irqsave(&pool->lock, flags);
1432 pool->low_water_triggered = true;
1433 spin_unlock_irqrestore(&pool->lock, flags);
1434 dm_table_event(pool->ti->table);
1438 static int alloc_data_block(struct thin_c *tc, dm_block_t *result)
1440 int r;
1441 dm_block_t free_blocks;
1442 struct pool *pool = tc->pool;
1444 if (WARN_ON(get_pool_mode(pool) != PM_WRITE))
1445 return -EINVAL;
1447 r = dm_pool_get_free_block_count(pool->pmd, &free_blocks);
1448 if (r) {
1449 metadata_operation_failed(pool, "dm_pool_get_free_block_count", r);
1450 return r;
1453 check_low_water_mark(pool, free_blocks);
1455 if (!free_blocks) {
1457 * Try to commit to see if that will free up some
1458 * more space.
1460 r = commit(pool);
1461 if (r)
1462 return r;
1464 r = dm_pool_get_free_block_count(pool->pmd, &free_blocks);
1465 if (r) {
1466 metadata_operation_failed(pool, "dm_pool_get_free_block_count", r);
1467 return r;
1470 if (!free_blocks) {
1471 set_pool_mode(pool, PM_OUT_OF_DATA_SPACE);
1472 return -ENOSPC;
1476 r = dm_pool_alloc_data_block(pool->pmd, result);
1477 if (r) {
1478 metadata_operation_failed(pool, "dm_pool_alloc_data_block", r);
1479 return r;
1482 return 0;
1486 * If we have run out of space, queue bios until the device is
1487 * resumed, presumably after having been reloaded with more space.
1489 static void retry_on_resume(struct bio *bio)
1491 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1492 struct thin_c *tc = h->tc;
1493 unsigned long flags;
1495 spin_lock_irqsave(&tc->lock, flags);
1496 bio_list_add(&tc->retry_on_resume_list, bio);
1497 spin_unlock_irqrestore(&tc->lock, flags);
1500 static blk_status_t should_error_unserviceable_bio(struct pool *pool)
1502 enum pool_mode m = get_pool_mode(pool);
1504 switch (m) {
1505 case PM_WRITE:
1506 /* Shouldn't get here */
1507 DMERR_LIMIT("bio unserviceable, yet pool is in PM_WRITE mode");
1508 return BLK_STS_IOERR;
1510 case PM_OUT_OF_DATA_SPACE:
1511 return pool->pf.error_if_no_space ? BLK_STS_NOSPC : 0;
1513 case PM_READ_ONLY:
1514 case PM_FAIL:
1515 return BLK_STS_IOERR;
1516 default:
1517 /* Shouldn't get here */
1518 DMERR_LIMIT("bio unserviceable, yet pool has an unknown mode");
1519 return BLK_STS_IOERR;
1523 static void handle_unserviceable_bio(struct pool *pool, struct bio *bio)
1525 blk_status_t error = should_error_unserviceable_bio(pool);
1527 if (error) {
1528 bio->bi_status = error;
1529 bio_endio(bio);
1530 } else
1531 retry_on_resume(bio);
1534 static void retry_bios_on_resume(struct pool *pool, struct dm_bio_prison_cell *cell)
1536 struct bio *bio;
1537 struct bio_list bios;
1538 blk_status_t error;
1540 error = should_error_unserviceable_bio(pool);
1541 if (error) {
1542 cell_error_with_code(pool, cell, error);
1543 return;
1546 bio_list_init(&bios);
1547 cell_release(pool, cell, &bios);
1549 while ((bio = bio_list_pop(&bios)))
1550 retry_on_resume(bio);
1553 static void process_discard_cell_no_passdown(struct thin_c *tc,
1554 struct dm_bio_prison_cell *virt_cell)
1556 struct pool *pool = tc->pool;
1557 struct dm_thin_new_mapping *m = get_next_mapping(pool);
1560 * We don't need to lock the data blocks, since there's no
1561 * passdown. We only lock data blocks for allocation and breaking sharing.
1563 m->tc = tc;
1564 m->virt_begin = virt_cell->key.block_begin;
1565 m->virt_end = virt_cell->key.block_end;
1566 m->cell = virt_cell;
1567 m->bio = virt_cell->holder;
1569 if (!dm_deferred_set_add_work(pool->all_io_ds, &m->list))
1570 pool->process_prepared_discard(m);
1573 static void break_up_discard_bio(struct thin_c *tc, dm_block_t begin, dm_block_t end,
1574 struct bio *bio)
1576 struct pool *pool = tc->pool;
1578 int r;
1579 bool maybe_shared;
1580 struct dm_cell_key data_key;
1581 struct dm_bio_prison_cell *data_cell;
1582 struct dm_thin_new_mapping *m;
1583 dm_block_t virt_begin, virt_end, data_begin;
1585 while (begin != end) {
1586 r = ensure_next_mapping(pool);
1587 if (r)
1588 /* we did our best */
1589 return;
1591 r = dm_thin_find_mapped_range(tc->td, begin, end, &virt_begin, &virt_end,
1592 &data_begin, &maybe_shared);
1593 if (r)
1595 * Silently fail, letting any mappings we've
1596 * created complete.
1598 break;
1600 build_key(tc->td, PHYSICAL, data_begin, data_begin + (virt_end - virt_begin), &data_key);
1601 if (bio_detain(tc->pool, &data_key, NULL, &data_cell)) {
1602 /* contention, we'll give up with this range */
1603 begin = virt_end;
1604 continue;
1608 * IO may still be going to the destination block. We must
1609 * quiesce before we can do the removal.
1611 m = get_next_mapping(pool);
1612 m->tc = tc;
1613 m->maybe_shared = maybe_shared;
1614 m->virt_begin = virt_begin;
1615 m->virt_end = virt_end;
1616 m->data_block = data_begin;
1617 m->cell = data_cell;
1618 m->bio = bio;
1621 * The parent bio must not complete before sub discard bios are
1622 * chained to it (see end_discard's bio_chain)!
1624 * This per-mapping bi_remaining increment is paired with
1625 * the implicit decrement that occurs via bio_endio() in
1626 * end_discard().
1628 bio_inc_remaining(bio);
1629 if (!dm_deferred_set_add_work(pool->all_io_ds, &m->list))
1630 pool->process_prepared_discard(m);
1632 begin = virt_end;
1636 static void process_discard_cell_passdown(struct thin_c *tc, struct dm_bio_prison_cell *virt_cell)
1638 struct bio *bio = virt_cell->holder;
1639 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1642 * The virt_cell will only get freed once the origin bio completes.
1643 * This means it will remain locked while all the individual
1644 * passdown bios are in flight.
1646 h->cell = virt_cell;
1647 break_up_discard_bio(tc, virt_cell->key.block_begin, virt_cell->key.block_end, bio);
1650 * We complete the bio now, knowing that the bi_remaining field
1651 * will prevent completion until the sub range discards have
1652 * completed.
1654 bio_endio(bio);
1657 static void process_discard_bio(struct thin_c *tc, struct bio *bio)
1659 dm_block_t begin, end;
1660 struct dm_cell_key virt_key;
1661 struct dm_bio_prison_cell *virt_cell;
1663 get_bio_block_range(tc, bio, &begin, &end);
1664 if (begin == end) {
1666 * The discard covers less than a block.
1668 bio_endio(bio);
1669 return;
1672 build_key(tc->td, VIRTUAL, begin, end, &virt_key);
1673 if (bio_detain(tc->pool, &virt_key, bio, &virt_cell))
1675 * Potential starvation issue: We're relying on the
1676 * fs/application being well behaved, and not trying to
1677 * send IO to a region at the same time as discarding it.
1678 * If they do this persistently then it's possible this
1679 * cell will never be granted.
1681 return;
1683 tc->pool->process_discard_cell(tc, virt_cell);
1686 static void break_sharing(struct thin_c *tc, struct bio *bio, dm_block_t block,
1687 struct dm_cell_key *key,
1688 struct dm_thin_lookup_result *lookup_result,
1689 struct dm_bio_prison_cell *cell)
1691 int r;
1692 dm_block_t data_block;
1693 struct pool *pool = tc->pool;
1695 r = alloc_data_block(tc, &data_block);
1696 switch (r) {
1697 case 0:
1698 schedule_internal_copy(tc, block, lookup_result->block,
1699 data_block, cell, bio);
1700 break;
1702 case -ENOSPC:
1703 retry_bios_on_resume(pool, cell);
1704 break;
1706 default:
1707 DMERR_LIMIT("%s: alloc_data_block() failed: error = %d",
1708 __func__, r);
1709 cell_error(pool, cell);
1710 break;
1714 static void __remap_and_issue_shared_cell(void *context,
1715 struct dm_bio_prison_cell *cell)
1717 struct remap_info *info = context;
1718 struct bio *bio;
1720 while ((bio = bio_list_pop(&cell->bios))) {
1721 if (bio_data_dir(bio) == WRITE || op_is_flush(bio->bi_opf) ||
1722 bio_op(bio) == REQ_OP_DISCARD)
1723 bio_list_add(&info->defer_bios, bio);
1724 else {
1725 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1727 h->shared_read_entry = dm_deferred_entry_inc(info->tc->pool->shared_read_ds);
1728 inc_all_io_entry(info->tc->pool, bio);
1729 bio_list_add(&info->issue_bios, bio);
1734 static void remap_and_issue_shared_cell(struct thin_c *tc,
1735 struct dm_bio_prison_cell *cell,
1736 dm_block_t block)
1738 struct bio *bio;
1739 struct remap_info info;
1741 info.tc = tc;
1742 bio_list_init(&info.defer_bios);
1743 bio_list_init(&info.issue_bios);
1745 cell_visit_release(tc->pool, __remap_and_issue_shared_cell,
1746 &info, cell);
1748 while ((bio = bio_list_pop(&info.defer_bios)))
1749 thin_defer_bio(tc, bio);
1751 while ((bio = bio_list_pop(&info.issue_bios)))
1752 remap_and_issue(tc, bio, block);
1755 static void process_shared_bio(struct thin_c *tc, struct bio *bio,
1756 dm_block_t block,
1757 struct dm_thin_lookup_result *lookup_result,
1758 struct dm_bio_prison_cell *virt_cell)
1760 struct dm_bio_prison_cell *data_cell;
1761 struct pool *pool = tc->pool;
1762 struct dm_cell_key key;
1765 * If cell is already occupied, then sharing is already in the process
1766 * of being broken so we have nothing further to do here.
1768 build_data_key(tc->td, lookup_result->block, &key);
1769 if (bio_detain(pool, &key, bio, &data_cell)) {
1770 cell_defer_no_holder(tc, virt_cell);
1771 return;
1774 if (bio_data_dir(bio) == WRITE && bio->bi_iter.bi_size) {
1775 break_sharing(tc, bio, block, &key, lookup_result, data_cell);
1776 cell_defer_no_holder(tc, virt_cell);
1777 } else {
1778 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1780 h->shared_read_entry = dm_deferred_entry_inc(pool->shared_read_ds);
1781 inc_all_io_entry(pool, bio);
1782 remap_and_issue(tc, bio, lookup_result->block);
1784 remap_and_issue_shared_cell(tc, data_cell, lookup_result->block);
1785 remap_and_issue_shared_cell(tc, virt_cell, lookup_result->block);
1789 static void provision_block(struct thin_c *tc, struct bio *bio, dm_block_t block,
1790 struct dm_bio_prison_cell *cell)
1792 int r;
1793 dm_block_t data_block;
1794 struct pool *pool = tc->pool;
1797 * Remap empty bios (flushes) immediately, without provisioning.
1799 if (!bio->bi_iter.bi_size) {
1800 inc_all_io_entry(pool, bio);
1801 cell_defer_no_holder(tc, cell);
1803 remap_and_issue(tc, bio, 0);
1804 return;
1808 * Fill read bios with zeroes and complete them immediately.
1810 if (bio_data_dir(bio) == READ) {
1811 zero_fill_bio(bio);
1812 cell_defer_no_holder(tc, cell);
1813 bio_endio(bio);
1814 return;
1817 r = alloc_data_block(tc, &data_block);
1818 switch (r) {
1819 case 0:
1820 if (tc->origin_dev)
1821 schedule_external_copy(tc, block, data_block, cell, bio);
1822 else
1823 schedule_zero(tc, block, data_block, cell, bio);
1824 break;
1826 case -ENOSPC:
1827 retry_bios_on_resume(pool, cell);
1828 break;
1830 default:
1831 DMERR_LIMIT("%s: alloc_data_block() failed: error = %d",
1832 __func__, r);
1833 cell_error(pool, cell);
1834 break;
1838 static void process_cell(struct thin_c *tc, struct dm_bio_prison_cell *cell)
1840 int r;
1841 struct pool *pool = tc->pool;
1842 struct bio *bio = cell->holder;
1843 dm_block_t block = get_bio_block(tc, bio);
1844 struct dm_thin_lookup_result lookup_result;
1846 if (tc->requeue_mode) {
1847 cell_requeue(pool, cell);
1848 return;
1851 r = dm_thin_find_block(tc->td, block, 1, &lookup_result);
1852 switch (r) {
1853 case 0:
1854 if (lookup_result.shared)
1855 process_shared_bio(tc, bio, block, &lookup_result, cell);
1856 else {
1857 inc_all_io_entry(pool, bio);
1858 remap_and_issue(tc, bio, lookup_result.block);
1859 inc_remap_and_issue_cell(tc, cell, lookup_result.block);
1861 break;
1863 case -ENODATA:
1864 if (bio_data_dir(bio) == READ && tc->origin_dev) {
1865 inc_all_io_entry(pool, bio);
1866 cell_defer_no_holder(tc, cell);
1868 if (bio_end_sector(bio) <= tc->origin_size)
1869 remap_to_origin_and_issue(tc, bio);
1871 else if (bio->bi_iter.bi_sector < tc->origin_size) {
1872 zero_fill_bio(bio);
1873 bio->bi_iter.bi_size = (tc->origin_size - bio->bi_iter.bi_sector) << SECTOR_SHIFT;
1874 remap_to_origin_and_issue(tc, bio);
1876 } else {
1877 zero_fill_bio(bio);
1878 bio_endio(bio);
1880 } else
1881 provision_block(tc, bio, block, cell);
1882 break;
1884 default:
1885 DMERR_LIMIT("%s: dm_thin_find_block() failed: error = %d",
1886 __func__, r);
1887 cell_defer_no_holder(tc, cell);
1888 bio_io_error(bio);
1889 break;
1893 static void process_bio(struct thin_c *tc, struct bio *bio)
1895 struct pool *pool = tc->pool;
1896 dm_block_t block = get_bio_block(tc, bio);
1897 struct dm_bio_prison_cell *cell;
1898 struct dm_cell_key key;
1901 * If cell is already occupied, then the block is already
1902 * being provisioned so we have nothing further to do here.
1904 build_virtual_key(tc->td, block, &key);
1905 if (bio_detain(pool, &key, bio, &cell))
1906 return;
1908 process_cell(tc, cell);
1911 static void __process_bio_read_only(struct thin_c *tc, struct bio *bio,
1912 struct dm_bio_prison_cell *cell)
1914 int r;
1915 int rw = bio_data_dir(bio);
1916 dm_block_t block = get_bio_block(tc, bio);
1917 struct dm_thin_lookup_result lookup_result;
1919 r = dm_thin_find_block(tc->td, block, 1, &lookup_result);
1920 switch (r) {
1921 case 0:
1922 if (lookup_result.shared && (rw == WRITE) && bio->bi_iter.bi_size) {
1923 handle_unserviceable_bio(tc->pool, bio);
1924 if (cell)
1925 cell_defer_no_holder(tc, cell);
1926 } else {
1927 inc_all_io_entry(tc->pool, bio);
1928 remap_and_issue(tc, bio, lookup_result.block);
1929 if (cell)
1930 inc_remap_and_issue_cell(tc, cell, lookup_result.block);
1932 break;
1934 case -ENODATA:
1935 if (cell)
1936 cell_defer_no_holder(tc, cell);
1937 if (rw != READ) {
1938 handle_unserviceable_bio(tc->pool, bio);
1939 break;
1942 if (tc->origin_dev) {
1943 inc_all_io_entry(tc->pool, bio);
1944 remap_to_origin_and_issue(tc, bio);
1945 break;
1948 zero_fill_bio(bio);
1949 bio_endio(bio);
1950 break;
1952 default:
1953 DMERR_LIMIT("%s: dm_thin_find_block() failed: error = %d",
1954 __func__, r);
1955 if (cell)
1956 cell_defer_no_holder(tc, cell);
1957 bio_io_error(bio);
1958 break;
1962 static void process_bio_read_only(struct thin_c *tc, struct bio *bio)
1964 __process_bio_read_only(tc, bio, NULL);
1967 static void process_cell_read_only(struct thin_c *tc, struct dm_bio_prison_cell *cell)
1969 __process_bio_read_only(tc, cell->holder, cell);
1972 static void process_bio_success(struct thin_c *tc, struct bio *bio)
1974 bio_endio(bio);
1977 static void process_bio_fail(struct thin_c *tc, struct bio *bio)
1979 bio_io_error(bio);
1982 static void process_cell_success(struct thin_c *tc, struct dm_bio_prison_cell *cell)
1984 cell_success(tc->pool, cell);
1987 static void process_cell_fail(struct thin_c *tc, struct dm_bio_prison_cell *cell)
1989 cell_error(tc->pool, cell);
1993 * FIXME: should we also commit due to size of transaction, measured in
1994 * metadata blocks?
1996 static int need_commit_due_to_time(struct pool *pool)
1998 return !time_in_range(jiffies, pool->last_commit_jiffies,
1999 pool->last_commit_jiffies + COMMIT_PERIOD);
2002 #define thin_pbd(node) rb_entry((node), struct dm_thin_endio_hook, rb_node)
2003 #define thin_bio(pbd) dm_bio_from_per_bio_data((pbd), sizeof(struct dm_thin_endio_hook))
2005 static void __thin_bio_rb_add(struct thin_c *tc, struct bio *bio)
2007 struct rb_node **rbp, *parent;
2008 struct dm_thin_endio_hook *pbd;
2009 sector_t bi_sector = bio->bi_iter.bi_sector;
2011 rbp = &tc->sort_bio_list.rb_node;
2012 parent = NULL;
2013 while (*rbp) {
2014 parent = *rbp;
2015 pbd = thin_pbd(parent);
2017 if (bi_sector < thin_bio(pbd)->bi_iter.bi_sector)
2018 rbp = &(*rbp)->rb_left;
2019 else
2020 rbp = &(*rbp)->rb_right;
2023 pbd = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
2024 rb_link_node(&pbd->rb_node, parent, rbp);
2025 rb_insert_color(&pbd->rb_node, &tc->sort_bio_list);
2028 static void __extract_sorted_bios(struct thin_c *tc)
2030 struct rb_node *node;
2031 struct dm_thin_endio_hook *pbd;
2032 struct bio *bio;
2034 for (node = rb_first(&tc->sort_bio_list); node; node = rb_next(node)) {
2035 pbd = thin_pbd(node);
2036 bio = thin_bio(pbd);
2038 bio_list_add(&tc->deferred_bio_list, bio);
2039 rb_erase(&pbd->rb_node, &tc->sort_bio_list);
2042 WARN_ON(!RB_EMPTY_ROOT(&tc->sort_bio_list));
2045 static void __sort_thin_deferred_bios(struct thin_c *tc)
2047 struct bio *bio;
2048 struct bio_list bios;
2050 bio_list_init(&bios);
2051 bio_list_merge(&bios, &tc->deferred_bio_list);
2052 bio_list_init(&tc->deferred_bio_list);
2054 /* Sort deferred_bio_list using rb-tree */
2055 while ((bio = bio_list_pop(&bios)))
2056 __thin_bio_rb_add(tc, bio);
2059 * Transfer the sorted bios in sort_bio_list back to
2060 * deferred_bio_list to allow lockless submission of
2061 * all bios.
2063 __extract_sorted_bios(tc);
2066 static void process_thin_deferred_bios(struct thin_c *tc)
2068 struct pool *pool = tc->pool;
2069 unsigned long flags;
2070 struct bio *bio;
2071 struct bio_list bios;
2072 struct blk_plug plug;
2073 unsigned count = 0;
2075 if (tc->requeue_mode) {
2076 error_thin_bio_list(tc, &tc->deferred_bio_list,
2077 BLK_STS_DM_REQUEUE);
2078 return;
2081 bio_list_init(&bios);
2083 spin_lock_irqsave(&tc->lock, flags);
2085 if (bio_list_empty(&tc->deferred_bio_list)) {
2086 spin_unlock_irqrestore(&tc->lock, flags);
2087 return;
2090 __sort_thin_deferred_bios(tc);
2092 bio_list_merge(&bios, &tc->deferred_bio_list);
2093 bio_list_init(&tc->deferred_bio_list);
2095 spin_unlock_irqrestore(&tc->lock, flags);
2097 blk_start_plug(&plug);
2098 while ((bio = bio_list_pop(&bios))) {
2100 * If we've got no free new_mapping structs, and processing
2101 * this bio might require one, we pause until there are some
2102 * prepared mappings to process.
2104 if (ensure_next_mapping(pool)) {
2105 spin_lock_irqsave(&tc->lock, flags);
2106 bio_list_add(&tc->deferred_bio_list, bio);
2107 bio_list_merge(&tc->deferred_bio_list, &bios);
2108 spin_unlock_irqrestore(&tc->lock, flags);
2109 break;
2112 if (bio_op(bio) == REQ_OP_DISCARD)
2113 pool->process_discard(tc, bio);
2114 else
2115 pool->process_bio(tc, bio);
2117 if ((count++ & 127) == 0) {
2118 throttle_work_update(&pool->throttle);
2119 dm_pool_issue_prefetches(pool->pmd);
2122 blk_finish_plug(&plug);
2125 static int cmp_cells(const void *lhs, const void *rhs)
2127 struct dm_bio_prison_cell *lhs_cell = *((struct dm_bio_prison_cell **) lhs);
2128 struct dm_bio_prison_cell *rhs_cell = *((struct dm_bio_prison_cell **) rhs);
2130 BUG_ON(!lhs_cell->holder);
2131 BUG_ON(!rhs_cell->holder);
2133 if (lhs_cell->holder->bi_iter.bi_sector < rhs_cell->holder->bi_iter.bi_sector)
2134 return -1;
2136 if (lhs_cell->holder->bi_iter.bi_sector > rhs_cell->holder->bi_iter.bi_sector)
2137 return 1;
2139 return 0;
2142 static unsigned sort_cells(struct pool *pool, struct list_head *cells)
2144 unsigned count = 0;
2145 struct dm_bio_prison_cell *cell, *tmp;
2147 list_for_each_entry_safe(cell, tmp, cells, user_list) {
2148 if (count >= CELL_SORT_ARRAY_SIZE)
2149 break;
2151 pool->cell_sort_array[count++] = cell;
2152 list_del(&cell->user_list);
2155 sort(pool->cell_sort_array, count, sizeof(cell), cmp_cells, NULL);
2157 return count;
2160 static void process_thin_deferred_cells(struct thin_c *tc)
2162 struct pool *pool = tc->pool;
2163 unsigned long flags;
2164 struct list_head cells;
2165 struct dm_bio_prison_cell *cell;
2166 unsigned i, j, count;
2168 INIT_LIST_HEAD(&cells);
2170 spin_lock_irqsave(&tc->lock, flags);
2171 list_splice_init(&tc->deferred_cells, &cells);
2172 spin_unlock_irqrestore(&tc->lock, flags);
2174 if (list_empty(&cells))
2175 return;
2177 do {
2178 count = sort_cells(tc->pool, &cells);
2180 for (i = 0; i < count; i++) {
2181 cell = pool->cell_sort_array[i];
2182 BUG_ON(!cell->holder);
2185 * If we've got no free new_mapping structs, and processing
2186 * this bio might require one, we pause until there are some
2187 * prepared mappings to process.
2189 if (ensure_next_mapping(pool)) {
2190 for (j = i; j < count; j++)
2191 list_add(&pool->cell_sort_array[j]->user_list, &cells);
2193 spin_lock_irqsave(&tc->lock, flags);
2194 list_splice(&cells, &tc->deferred_cells);
2195 spin_unlock_irqrestore(&tc->lock, flags);
2196 return;
2199 if (bio_op(cell->holder) == REQ_OP_DISCARD)
2200 pool->process_discard_cell(tc, cell);
2201 else
2202 pool->process_cell(tc, cell);
2204 } while (!list_empty(&cells));
2207 static void thin_get(struct thin_c *tc);
2208 static void thin_put(struct thin_c *tc);
2211 * We can't hold rcu_read_lock() around code that can block. So we
2212 * find a thin with the rcu lock held; bump a refcount; then drop
2213 * the lock.
2215 static struct thin_c *get_first_thin(struct pool *pool)
2217 struct thin_c *tc = NULL;
2219 rcu_read_lock();
2220 if (!list_empty(&pool->active_thins)) {
2221 tc = list_entry_rcu(pool->active_thins.next, struct thin_c, list);
2222 thin_get(tc);
2224 rcu_read_unlock();
2226 return tc;
2229 static struct thin_c *get_next_thin(struct pool *pool, struct thin_c *tc)
2231 struct thin_c *old_tc = tc;
2233 rcu_read_lock();
2234 list_for_each_entry_continue_rcu(tc, &pool->active_thins, list) {
2235 thin_get(tc);
2236 thin_put(old_tc);
2237 rcu_read_unlock();
2238 return tc;
2240 thin_put(old_tc);
2241 rcu_read_unlock();
2243 return NULL;
2246 static void process_deferred_bios(struct pool *pool)
2248 unsigned long flags;
2249 struct bio *bio;
2250 struct bio_list bios;
2251 struct thin_c *tc;
2253 tc = get_first_thin(pool);
2254 while (tc) {
2255 process_thin_deferred_cells(tc);
2256 process_thin_deferred_bios(tc);
2257 tc = get_next_thin(pool, tc);
2261 * If there are any deferred flush bios, we must commit
2262 * the metadata before issuing them.
2264 bio_list_init(&bios);
2265 spin_lock_irqsave(&pool->lock, flags);
2266 bio_list_merge(&bios, &pool->deferred_flush_bios);
2267 bio_list_init(&pool->deferred_flush_bios);
2268 spin_unlock_irqrestore(&pool->lock, flags);
2270 if (bio_list_empty(&bios) &&
2271 !(dm_pool_changed_this_transaction(pool->pmd) && need_commit_due_to_time(pool)))
2272 return;
2274 if (commit(pool)) {
2275 while ((bio = bio_list_pop(&bios)))
2276 bio_io_error(bio);
2277 return;
2279 pool->last_commit_jiffies = jiffies;
2281 while ((bio = bio_list_pop(&bios)))
2282 generic_make_request(bio);
2285 static void do_worker(struct work_struct *ws)
2287 struct pool *pool = container_of(ws, struct pool, worker);
2289 throttle_work_start(&pool->throttle);
2290 dm_pool_issue_prefetches(pool->pmd);
2291 throttle_work_update(&pool->throttle);
2292 process_prepared(pool, &pool->prepared_mappings, &pool->process_prepared_mapping);
2293 throttle_work_update(&pool->throttle);
2294 process_prepared(pool, &pool->prepared_discards, &pool->process_prepared_discard);
2295 throttle_work_update(&pool->throttle);
2296 process_prepared(pool, &pool->prepared_discards_pt2, &pool->process_prepared_discard_pt2);
2297 throttle_work_update(&pool->throttle);
2298 process_deferred_bios(pool);
2299 throttle_work_complete(&pool->throttle);
2303 * We want to commit periodically so that not too much
2304 * unwritten data builds up.
2306 static void do_waker(struct work_struct *ws)
2308 struct pool *pool = container_of(to_delayed_work(ws), struct pool, waker);
2309 wake_worker(pool);
2310 queue_delayed_work(pool->wq, &pool->waker, COMMIT_PERIOD);
2313 static void notify_of_pool_mode_change_to_oods(struct pool *pool);
2316 * We're holding onto IO to allow userland time to react. After the
2317 * timeout either the pool will have been resized (and thus back in
2318 * PM_WRITE mode), or we degrade to PM_OUT_OF_DATA_SPACE w/ error_if_no_space.
2320 static void do_no_space_timeout(struct work_struct *ws)
2322 struct pool *pool = container_of(to_delayed_work(ws), struct pool,
2323 no_space_timeout);
2325 if (get_pool_mode(pool) == PM_OUT_OF_DATA_SPACE && !pool->pf.error_if_no_space) {
2326 pool->pf.error_if_no_space = true;
2327 notify_of_pool_mode_change_to_oods(pool);
2328 error_retry_list_with_code(pool, BLK_STS_NOSPC);
2332 /*----------------------------------------------------------------*/
2334 struct pool_work {
2335 struct work_struct worker;
2336 struct completion complete;
2339 static struct pool_work *to_pool_work(struct work_struct *ws)
2341 return container_of(ws, struct pool_work, worker);
2344 static void pool_work_complete(struct pool_work *pw)
2346 complete(&pw->complete);
2349 static void pool_work_wait(struct pool_work *pw, struct pool *pool,
2350 void (*fn)(struct work_struct *))
2352 INIT_WORK_ONSTACK(&pw->worker, fn);
2353 init_completion(&pw->complete);
2354 queue_work(pool->wq, &pw->worker);
2355 wait_for_completion(&pw->complete);
2358 /*----------------------------------------------------------------*/
2360 struct noflush_work {
2361 struct pool_work pw;
2362 struct thin_c *tc;
2365 static struct noflush_work *to_noflush(struct work_struct *ws)
2367 return container_of(to_pool_work(ws), struct noflush_work, pw);
2370 static void do_noflush_start(struct work_struct *ws)
2372 struct noflush_work *w = to_noflush(ws);
2373 w->tc->requeue_mode = true;
2374 requeue_io(w->tc);
2375 pool_work_complete(&w->pw);
2378 static void do_noflush_stop(struct work_struct *ws)
2380 struct noflush_work *w = to_noflush(ws);
2381 w->tc->requeue_mode = false;
2382 pool_work_complete(&w->pw);
2385 static void noflush_work(struct thin_c *tc, void (*fn)(struct work_struct *))
2387 struct noflush_work w;
2389 w.tc = tc;
2390 pool_work_wait(&w.pw, tc->pool, fn);
2393 /*----------------------------------------------------------------*/
2395 static enum pool_mode get_pool_mode(struct pool *pool)
2397 return pool->pf.mode;
2400 static void notify_of_pool_mode_change(struct pool *pool, const char *new_mode)
2402 dm_table_event(pool->ti->table);
2403 DMINFO("%s: switching pool to %s mode",
2404 dm_device_name(pool->pool_md), new_mode);
2407 static void notify_of_pool_mode_change_to_oods(struct pool *pool)
2409 if (!pool->pf.error_if_no_space)
2410 notify_of_pool_mode_change(pool, "out-of-data-space (queue IO)");
2411 else
2412 notify_of_pool_mode_change(pool, "out-of-data-space (error IO)");
2415 static bool passdown_enabled(struct pool_c *pt)
2417 return pt->adjusted_pf.discard_passdown;
2420 static void set_discard_callbacks(struct pool *pool)
2422 struct pool_c *pt = pool->ti->private;
2424 if (passdown_enabled(pt)) {
2425 pool->process_discard_cell = process_discard_cell_passdown;
2426 pool->process_prepared_discard = process_prepared_discard_passdown_pt1;
2427 pool->process_prepared_discard_pt2 = process_prepared_discard_passdown_pt2;
2428 } else {
2429 pool->process_discard_cell = process_discard_cell_no_passdown;
2430 pool->process_prepared_discard = process_prepared_discard_no_passdown;
2434 static void set_pool_mode(struct pool *pool, enum pool_mode new_mode)
2436 struct pool_c *pt = pool->ti->private;
2437 bool needs_check = dm_pool_metadata_needs_check(pool->pmd);
2438 enum pool_mode old_mode = get_pool_mode(pool);
2439 unsigned long no_space_timeout = READ_ONCE(no_space_timeout_secs) * HZ;
2442 * Never allow the pool to transition to PM_WRITE mode if user
2443 * intervention is required to verify metadata and data consistency.
2445 if (new_mode == PM_WRITE && needs_check) {
2446 DMERR("%s: unable to switch pool to write mode until repaired.",
2447 dm_device_name(pool->pool_md));
2448 if (old_mode != new_mode)
2449 new_mode = old_mode;
2450 else
2451 new_mode = PM_READ_ONLY;
2454 * If we were in PM_FAIL mode, rollback of metadata failed. We're
2455 * not going to recover without a thin_repair. So we never let the
2456 * pool move out of the old mode.
2458 if (old_mode == PM_FAIL)
2459 new_mode = old_mode;
2461 switch (new_mode) {
2462 case PM_FAIL:
2463 if (old_mode != new_mode)
2464 notify_of_pool_mode_change(pool, "failure");
2465 dm_pool_metadata_read_only(pool->pmd);
2466 pool->process_bio = process_bio_fail;
2467 pool->process_discard = process_bio_fail;
2468 pool->process_cell = process_cell_fail;
2469 pool->process_discard_cell = process_cell_fail;
2470 pool->process_prepared_mapping = process_prepared_mapping_fail;
2471 pool->process_prepared_discard = process_prepared_discard_fail;
2473 error_retry_list(pool);
2474 break;
2476 case PM_READ_ONLY:
2477 if (old_mode != new_mode)
2478 notify_of_pool_mode_change(pool, "read-only");
2479 dm_pool_metadata_read_only(pool->pmd);
2480 pool->process_bio = process_bio_read_only;
2481 pool->process_discard = process_bio_success;
2482 pool->process_cell = process_cell_read_only;
2483 pool->process_discard_cell = process_cell_success;
2484 pool->process_prepared_mapping = process_prepared_mapping_fail;
2485 pool->process_prepared_discard = process_prepared_discard_success;
2487 error_retry_list(pool);
2488 break;
2490 case PM_OUT_OF_DATA_SPACE:
2492 * Ideally we'd never hit this state; the low water mark
2493 * would trigger userland to extend the pool before we
2494 * completely run out of data space. However, many small
2495 * IOs to unprovisioned space can consume data space at an
2496 * alarming rate. Adjust your low water mark if you're
2497 * frequently seeing this mode.
2499 if (old_mode != new_mode)
2500 notify_of_pool_mode_change_to_oods(pool);
2501 pool->out_of_data_space = true;
2502 pool->process_bio = process_bio_read_only;
2503 pool->process_discard = process_discard_bio;
2504 pool->process_cell = process_cell_read_only;
2505 pool->process_prepared_mapping = process_prepared_mapping;
2506 set_discard_callbacks(pool);
2508 if (!pool->pf.error_if_no_space && no_space_timeout)
2509 queue_delayed_work(pool->wq, &pool->no_space_timeout, no_space_timeout);
2510 break;
2512 case PM_WRITE:
2513 if (old_mode != new_mode)
2514 notify_of_pool_mode_change(pool, "write");
2515 pool->out_of_data_space = false;
2516 pool->pf.error_if_no_space = pt->requested_pf.error_if_no_space;
2517 dm_pool_metadata_read_write(pool->pmd);
2518 pool->process_bio = process_bio;
2519 pool->process_discard = process_discard_bio;
2520 pool->process_cell = process_cell;
2521 pool->process_prepared_mapping = process_prepared_mapping;
2522 set_discard_callbacks(pool);
2523 break;
2526 pool->pf.mode = new_mode;
2528 * The pool mode may have changed, sync it so bind_control_target()
2529 * doesn't cause an unexpected mode transition on resume.
2531 pt->adjusted_pf.mode = new_mode;
2534 static void abort_transaction(struct pool *pool)
2536 const char *dev_name = dm_device_name(pool->pool_md);
2538 DMERR_LIMIT("%s: aborting current metadata transaction", dev_name);
2539 if (dm_pool_abort_metadata(pool->pmd)) {
2540 DMERR("%s: failed to abort metadata transaction", dev_name);
2541 set_pool_mode(pool, PM_FAIL);
2544 if (dm_pool_metadata_set_needs_check(pool->pmd)) {
2545 DMERR("%s: failed to set 'needs_check' flag in metadata", dev_name);
2546 set_pool_mode(pool, PM_FAIL);
2550 static void metadata_operation_failed(struct pool *pool, const char *op, int r)
2552 DMERR_LIMIT("%s: metadata operation '%s' failed: error = %d",
2553 dm_device_name(pool->pool_md), op, r);
2555 abort_transaction(pool);
2556 set_pool_mode(pool, PM_READ_ONLY);
2559 /*----------------------------------------------------------------*/
2562 * Mapping functions.
2566 * Called only while mapping a thin bio to hand it over to the workqueue.
2568 static void thin_defer_bio(struct thin_c *tc, struct bio *bio)
2570 unsigned long flags;
2571 struct pool *pool = tc->pool;
2573 spin_lock_irqsave(&tc->lock, flags);
2574 bio_list_add(&tc->deferred_bio_list, bio);
2575 spin_unlock_irqrestore(&tc->lock, flags);
2577 wake_worker(pool);
2580 static void thin_defer_bio_with_throttle(struct thin_c *tc, struct bio *bio)
2582 struct pool *pool = tc->pool;
2584 throttle_lock(&pool->throttle);
2585 thin_defer_bio(tc, bio);
2586 throttle_unlock(&pool->throttle);
2589 static void thin_defer_cell(struct thin_c *tc, struct dm_bio_prison_cell *cell)
2591 unsigned long flags;
2592 struct pool *pool = tc->pool;
2594 throttle_lock(&pool->throttle);
2595 spin_lock_irqsave(&tc->lock, flags);
2596 list_add_tail(&cell->user_list, &tc->deferred_cells);
2597 spin_unlock_irqrestore(&tc->lock, flags);
2598 throttle_unlock(&pool->throttle);
2600 wake_worker(pool);
2603 static void thin_hook_bio(struct thin_c *tc, struct bio *bio)
2605 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
2607 h->tc = tc;
2608 h->shared_read_entry = NULL;
2609 h->all_io_entry = NULL;
2610 h->overwrite_mapping = NULL;
2611 h->cell = NULL;
2615 * Non-blocking function called from the thin target's map function.
2617 static int thin_bio_map(struct dm_target *ti, struct bio *bio)
2619 int r;
2620 struct thin_c *tc = ti->private;
2621 dm_block_t block = get_bio_block(tc, bio);
2622 struct dm_thin_device *td = tc->td;
2623 struct dm_thin_lookup_result result;
2624 struct dm_bio_prison_cell *virt_cell, *data_cell;
2625 struct dm_cell_key key;
2627 thin_hook_bio(tc, bio);
2629 if (tc->requeue_mode) {
2630 bio->bi_status = BLK_STS_DM_REQUEUE;
2631 bio_endio(bio);
2632 return DM_MAPIO_SUBMITTED;
2635 if (get_pool_mode(tc->pool) == PM_FAIL) {
2636 bio_io_error(bio);
2637 return DM_MAPIO_SUBMITTED;
2640 if (op_is_flush(bio->bi_opf) || bio_op(bio) == REQ_OP_DISCARD) {
2641 thin_defer_bio_with_throttle(tc, bio);
2642 return DM_MAPIO_SUBMITTED;
2646 * We must hold the virtual cell before doing the lookup, otherwise
2647 * there's a race with discard.
2649 build_virtual_key(tc->td, block, &key);
2650 if (bio_detain(tc->pool, &key, bio, &virt_cell))
2651 return DM_MAPIO_SUBMITTED;
2653 r = dm_thin_find_block(td, block, 0, &result);
2656 * Note that we defer readahead too.
2658 switch (r) {
2659 case 0:
2660 if (unlikely(result.shared)) {
2662 * We have a race condition here between the
2663 * result.shared value returned by the lookup and
2664 * snapshot creation, which may cause new
2665 * sharing.
2667 * To avoid this always quiesce the origin before
2668 * taking the snap. You want to do this anyway to
2669 * ensure a consistent application view
2670 * (i.e. lockfs).
2672 * More distant ancestors are irrelevant. The
2673 * shared flag will be set in their case.
2675 thin_defer_cell(tc, virt_cell);
2676 return DM_MAPIO_SUBMITTED;
2679 build_data_key(tc->td, result.block, &key);
2680 if (bio_detain(tc->pool, &key, bio, &data_cell)) {
2681 cell_defer_no_holder(tc, virt_cell);
2682 return DM_MAPIO_SUBMITTED;
2685 inc_all_io_entry(tc->pool, bio);
2686 cell_defer_no_holder(tc, data_cell);
2687 cell_defer_no_holder(tc, virt_cell);
2689 remap(tc, bio, result.block);
2690 return DM_MAPIO_REMAPPED;
2692 case -ENODATA:
2693 case -EWOULDBLOCK:
2694 thin_defer_cell(tc, virt_cell);
2695 return DM_MAPIO_SUBMITTED;
2697 default:
2699 * Must always call bio_io_error on failure.
2700 * dm_thin_find_block can fail with -EINVAL if the
2701 * pool is switched to fail-io mode.
2703 bio_io_error(bio);
2704 cell_defer_no_holder(tc, virt_cell);
2705 return DM_MAPIO_SUBMITTED;
2709 static int pool_is_congested(struct dm_target_callbacks *cb, int bdi_bits)
2711 struct pool_c *pt = container_of(cb, struct pool_c, callbacks);
2712 struct request_queue *q;
2714 if (get_pool_mode(pt->pool) == PM_OUT_OF_DATA_SPACE)
2715 return 1;
2717 q = bdev_get_queue(pt->data_dev->bdev);
2718 return bdi_congested(q->backing_dev_info, bdi_bits);
2721 static void requeue_bios(struct pool *pool)
2723 unsigned long flags;
2724 struct thin_c *tc;
2726 rcu_read_lock();
2727 list_for_each_entry_rcu(tc, &pool->active_thins, list) {
2728 spin_lock_irqsave(&tc->lock, flags);
2729 bio_list_merge(&tc->deferred_bio_list, &tc->retry_on_resume_list);
2730 bio_list_init(&tc->retry_on_resume_list);
2731 spin_unlock_irqrestore(&tc->lock, flags);
2733 rcu_read_unlock();
2736 /*----------------------------------------------------------------
2737 * Binding of control targets to a pool object
2738 *--------------------------------------------------------------*/
2739 static bool data_dev_supports_discard(struct pool_c *pt)
2741 struct request_queue *q = bdev_get_queue(pt->data_dev->bdev);
2743 return q && blk_queue_discard(q);
2746 static bool is_factor(sector_t block_size, uint32_t n)
2748 return !sector_div(block_size, n);
2752 * If discard_passdown was enabled verify that the data device
2753 * supports discards. Disable discard_passdown if not.
2755 static void disable_passdown_if_not_supported(struct pool_c *pt)
2757 struct pool *pool = pt->pool;
2758 struct block_device *data_bdev = pt->data_dev->bdev;
2759 struct queue_limits *data_limits = &bdev_get_queue(data_bdev)->limits;
2760 const char *reason = NULL;
2761 char buf[BDEVNAME_SIZE];
2763 if (!pt->adjusted_pf.discard_passdown)
2764 return;
2766 if (!data_dev_supports_discard(pt))
2767 reason = "discard unsupported";
2769 else if (data_limits->max_discard_sectors < pool->sectors_per_block)
2770 reason = "max discard sectors smaller than a block";
2772 if (reason) {
2773 DMWARN("Data device (%s) %s: Disabling discard passdown.", bdevname(data_bdev, buf), reason);
2774 pt->adjusted_pf.discard_passdown = false;
2778 static int bind_control_target(struct pool *pool, struct dm_target *ti)
2780 struct pool_c *pt = ti->private;
2783 * We want to make sure that a pool in PM_FAIL mode is never upgraded.
2785 enum pool_mode old_mode = get_pool_mode(pool);
2786 enum pool_mode new_mode = pt->adjusted_pf.mode;
2789 * Don't change the pool's mode until set_pool_mode() below.
2790 * Otherwise the pool's process_* function pointers may
2791 * not match the desired pool mode.
2793 pt->adjusted_pf.mode = old_mode;
2795 pool->ti = ti;
2796 pool->pf = pt->adjusted_pf;
2797 pool->low_water_blocks = pt->low_water_blocks;
2799 set_pool_mode(pool, new_mode);
2801 return 0;
2804 static void unbind_control_target(struct pool *pool, struct dm_target *ti)
2806 if (pool->ti == ti)
2807 pool->ti = NULL;
2810 /*----------------------------------------------------------------
2811 * Pool creation
2812 *--------------------------------------------------------------*/
2813 /* Initialize pool features. */
2814 static void pool_features_init(struct pool_features *pf)
2816 pf->mode = PM_WRITE;
2817 pf->zero_new_blocks = true;
2818 pf->discard_enabled = true;
2819 pf->discard_passdown = true;
2820 pf->error_if_no_space = false;
2823 static void __pool_destroy(struct pool *pool)
2825 __pool_table_remove(pool);
2827 vfree(pool->cell_sort_array);
2828 if (dm_pool_metadata_close(pool->pmd) < 0)
2829 DMWARN("%s: dm_pool_metadata_close() failed.", __func__);
2831 dm_bio_prison_destroy(pool->prison);
2832 dm_kcopyd_client_destroy(pool->copier);
2834 if (pool->wq)
2835 destroy_workqueue(pool->wq);
2837 if (pool->next_mapping)
2838 mempool_free(pool->next_mapping, pool->mapping_pool);
2839 mempool_destroy(pool->mapping_pool);
2840 dm_deferred_set_destroy(pool->shared_read_ds);
2841 dm_deferred_set_destroy(pool->all_io_ds);
2842 kfree(pool);
2845 static struct kmem_cache *_new_mapping_cache;
2847 static struct pool *pool_create(struct mapped_device *pool_md,
2848 struct block_device *metadata_dev,
2849 unsigned long block_size,
2850 int read_only, char **error)
2852 int r;
2853 void *err_p;
2854 struct pool *pool;
2855 struct dm_pool_metadata *pmd;
2856 bool format_device = read_only ? false : true;
2858 pmd = dm_pool_metadata_open(metadata_dev, block_size, format_device);
2859 if (IS_ERR(pmd)) {
2860 *error = "Error creating metadata object";
2861 return (struct pool *)pmd;
2864 pool = kmalloc(sizeof(*pool), GFP_KERNEL);
2865 if (!pool) {
2866 *error = "Error allocating memory for pool";
2867 err_p = ERR_PTR(-ENOMEM);
2868 goto bad_pool;
2871 pool->pmd = pmd;
2872 pool->sectors_per_block = block_size;
2873 if (block_size & (block_size - 1))
2874 pool->sectors_per_block_shift = -1;
2875 else
2876 pool->sectors_per_block_shift = __ffs(block_size);
2877 pool->low_water_blocks = 0;
2878 pool_features_init(&pool->pf);
2879 pool->prison = dm_bio_prison_create();
2880 if (!pool->prison) {
2881 *error = "Error creating pool's bio prison";
2882 err_p = ERR_PTR(-ENOMEM);
2883 goto bad_prison;
2886 pool->copier = dm_kcopyd_client_create(&dm_kcopyd_throttle);
2887 if (IS_ERR(pool->copier)) {
2888 r = PTR_ERR(pool->copier);
2889 *error = "Error creating pool's kcopyd client";
2890 err_p = ERR_PTR(r);
2891 goto bad_kcopyd_client;
2895 * Create singlethreaded workqueue that will service all devices
2896 * that use this metadata.
2898 pool->wq = alloc_ordered_workqueue("dm-" DM_MSG_PREFIX, WQ_MEM_RECLAIM);
2899 if (!pool->wq) {
2900 *error = "Error creating pool's workqueue";
2901 err_p = ERR_PTR(-ENOMEM);
2902 goto bad_wq;
2905 throttle_init(&pool->throttle);
2906 INIT_WORK(&pool->worker, do_worker);
2907 INIT_DELAYED_WORK(&pool->waker, do_waker);
2908 INIT_DELAYED_WORK(&pool->no_space_timeout, do_no_space_timeout);
2909 spin_lock_init(&pool->lock);
2910 bio_list_init(&pool->deferred_flush_bios);
2911 INIT_LIST_HEAD(&pool->prepared_mappings);
2912 INIT_LIST_HEAD(&pool->prepared_discards);
2913 INIT_LIST_HEAD(&pool->prepared_discards_pt2);
2914 INIT_LIST_HEAD(&pool->active_thins);
2915 pool->low_water_triggered = false;
2916 pool->suspended = true;
2917 pool->out_of_data_space = false;
2919 pool->shared_read_ds = dm_deferred_set_create();
2920 if (!pool->shared_read_ds) {
2921 *error = "Error creating pool's shared read deferred set";
2922 err_p = ERR_PTR(-ENOMEM);
2923 goto bad_shared_read_ds;
2926 pool->all_io_ds = dm_deferred_set_create();
2927 if (!pool->all_io_ds) {
2928 *error = "Error creating pool's all io deferred set";
2929 err_p = ERR_PTR(-ENOMEM);
2930 goto bad_all_io_ds;
2933 pool->next_mapping = NULL;
2934 pool->mapping_pool = mempool_create_slab_pool(MAPPING_POOL_SIZE,
2935 _new_mapping_cache);
2936 if (!pool->mapping_pool) {
2937 *error = "Error creating pool's mapping mempool";
2938 err_p = ERR_PTR(-ENOMEM);
2939 goto bad_mapping_pool;
2942 pool->cell_sort_array = vmalloc(sizeof(*pool->cell_sort_array) * CELL_SORT_ARRAY_SIZE);
2943 if (!pool->cell_sort_array) {
2944 *error = "Error allocating cell sort array";
2945 err_p = ERR_PTR(-ENOMEM);
2946 goto bad_sort_array;
2949 pool->ref_count = 1;
2950 pool->last_commit_jiffies = jiffies;
2951 pool->pool_md = pool_md;
2952 pool->md_dev = metadata_dev;
2953 __pool_table_insert(pool);
2955 return pool;
2957 bad_sort_array:
2958 mempool_destroy(pool->mapping_pool);
2959 bad_mapping_pool:
2960 dm_deferred_set_destroy(pool->all_io_ds);
2961 bad_all_io_ds:
2962 dm_deferred_set_destroy(pool->shared_read_ds);
2963 bad_shared_read_ds:
2964 destroy_workqueue(pool->wq);
2965 bad_wq:
2966 dm_kcopyd_client_destroy(pool->copier);
2967 bad_kcopyd_client:
2968 dm_bio_prison_destroy(pool->prison);
2969 bad_prison:
2970 kfree(pool);
2971 bad_pool:
2972 if (dm_pool_metadata_close(pmd))
2973 DMWARN("%s: dm_pool_metadata_close() failed.", __func__);
2975 return err_p;
2978 static void __pool_inc(struct pool *pool)
2980 BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
2981 pool->ref_count++;
2984 static void __pool_dec(struct pool *pool)
2986 BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
2987 BUG_ON(!pool->ref_count);
2988 if (!--pool->ref_count)
2989 __pool_destroy(pool);
2992 static struct pool *__pool_find(struct mapped_device *pool_md,
2993 struct block_device *metadata_dev,
2994 unsigned long block_size, int read_only,
2995 char **error, int *created)
2997 struct pool *pool = __pool_table_lookup_metadata_dev(metadata_dev);
2999 if (pool) {
3000 if (pool->pool_md != pool_md) {
3001 *error = "metadata device already in use by a pool";
3002 return ERR_PTR(-EBUSY);
3004 __pool_inc(pool);
3006 } else {
3007 pool = __pool_table_lookup(pool_md);
3008 if (pool) {
3009 if (pool->md_dev != metadata_dev) {
3010 *error = "different pool cannot replace a pool";
3011 return ERR_PTR(-EINVAL);
3013 __pool_inc(pool);
3015 } else {
3016 pool = pool_create(pool_md, metadata_dev, block_size, read_only, error);
3017 *created = 1;
3021 return pool;
3024 /*----------------------------------------------------------------
3025 * Pool target methods
3026 *--------------------------------------------------------------*/
3027 static void pool_dtr(struct dm_target *ti)
3029 struct pool_c *pt = ti->private;
3031 mutex_lock(&dm_thin_pool_table.mutex);
3033 unbind_control_target(pt->pool, ti);
3034 __pool_dec(pt->pool);
3035 dm_put_device(ti, pt->metadata_dev);
3036 dm_put_device(ti, pt->data_dev);
3037 kfree(pt);
3039 mutex_unlock(&dm_thin_pool_table.mutex);
3042 static int parse_pool_features(struct dm_arg_set *as, struct pool_features *pf,
3043 struct dm_target *ti)
3045 int r;
3046 unsigned argc;
3047 const char *arg_name;
3049 static const struct dm_arg _args[] = {
3050 {0, 4, "Invalid number of pool feature arguments"},
3054 * No feature arguments supplied.
3056 if (!as->argc)
3057 return 0;
3059 r = dm_read_arg_group(_args, as, &argc, &ti->error);
3060 if (r)
3061 return -EINVAL;
3063 while (argc && !r) {
3064 arg_name = dm_shift_arg(as);
3065 argc--;
3067 if (!strcasecmp(arg_name, "skip_block_zeroing"))
3068 pf->zero_new_blocks = false;
3070 else if (!strcasecmp(arg_name, "ignore_discard"))
3071 pf->discard_enabled = false;
3073 else if (!strcasecmp(arg_name, "no_discard_passdown"))
3074 pf->discard_passdown = false;
3076 else if (!strcasecmp(arg_name, "read_only"))
3077 pf->mode = PM_READ_ONLY;
3079 else if (!strcasecmp(arg_name, "error_if_no_space"))
3080 pf->error_if_no_space = true;
3082 else {
3083 ti->error = "Unrecognised pool feature requested";
3084 r = -EINVAL;
3085 break;
3089 return r;
3092 static void metadata_low_callback(void *context)
3094 struct pool *pool = context;
3096 DMWARN("%s: reached low water mark for metadata device: sending event.",
3097 dm_device_name(pool->pool_md));
3099 dm_table_event(pool->ti->table);
3102 static sector_t get_dev_size(struct block_device *bdev)
3104 return i_size_read(bdev->bd_inode) >> SECTOR_SHIFT;
3107 static void warn_if_metadata_device_too_big(struct block_device *bdev)
3109 sector_t metadata_dev_size = get_dev_size(bdev);
3110 char buffer[BDEVNAME_SIZE];
3112 if (metadata_dev_size > THIN_METADATA_MAX_SECTORS_WARNING)
3113 DMWARN("Metadata device %s is larger than %u sectors: excess space will not be used.",
3114 bdevname(bdev, buffer), THIN_METADATA_MAX_SECTORS);
3117 static sector_t get_metadata_dev_size(struct block_device *bdev)
3119 sector_t metadata_dev_size = get_dev_size(bdev);
3121 if (metadata_dev_size > THIN_METADATA_MAX_SECTORS)
3122 metadata_dev_size = THIN_METADATA_MAX_SECTORS;
3124 return metadata_dev_size;
3127 static dm_block_t get_metadata_dev_size_in_blocks(struct block_device *bdev)
3129 sector_t metadata_dev_size = get_metadata_dev_size(bdev);
3131 sector_div(metadata_dev_size, THIN_METADATA_BLOCK_SIZE);
3133 return metadata_dev_size;
3137 * When a metadata threshold is crossed a dm event is triggered, and
3138 * userland should respond by growing the metadata device. We could let
3139 * userland set the threshold, like we do with the data threshold, but I'm
3140 * not sure they know enough to do this well.
3142 static dm_block_t calc_metadata_threshold(struct pool_c *pt)
3145 * 4M is ample for all ops with the possible exception of thin
3146 * device deletion which is harmless if it fails (just retry the
3147 * delete after you've grown the device).
3149 dm_block_t quarter = get_metadata_dev_size_in_blocks(pt->metadata_dev->bdev) / 4;
3150 return min((dm_block_t)1024ULL /* 4M */, quarter);
3154 * thin-pool <metadata dev> <data dev>
3155 * <data block size (sectors)>
3156 * <low water mark (blocks)>
3157 * [<#feature args> [<arg>]*]
3159 * Optional feature arguments are:
3160 * skip_block_zeroing: skips the zeroing of newly-provisioned blocks.
3161 * ignore_discard: disable discard
3162 * no_discard_passdown: don't pass discards down to the data device
3163 * read_only: Don't allow any changes to be made to the pool metadata.
3164 * error_if_no_space: error IOs, instead of queueing, if no space.
3166 static int pool_ctr(struct dm_target *ti, unsigned argc, char **argv)
3168 int r, pool_created = 0;
3169 struct pool_c *pt;
3170 struct pool *pool;
3171 struct pool_features pf;
3172 struct dm_arg_set as;
3173 struct dm_dev *data_dev;
3174 unsigned long block_size;
3175 dm_block_t low_water_blocks;
3176 struct dm_dev *metadata_dev;
3177 fmode_t metadata_mode;
3180 * FIXME Remove validation from scope of lock.
3182 mutex_lock(&dm_thin_pool_table.mutex);
3184 if (argc < 4) {
3185 ti->error = "Invalid argument count";
3186 r = -EINVAL;
3187 goto out_unlock;
3190 as.argc = argc;
3191 as.argv = argv;
3194 * Set default pool features.
3196 pool_features_init(&pf);
3198 dm_consume_args(&as, 4);
3199 r = parse_pool_features(&as, &pf, ti);
3200 if (r)
3201 goto out_unlock;
3203 metadata_mode = FMODE_READ | ((pf.mode == PM_READ_ONLY) ? 0 : FMODE_WRITE);
3204 r = dm_get_device(ti, argv[0], metadata_mode, &metadata_dev);
3205 if (r) {
3206 ti->error = "Error opening metadata block device";
3207 goto out_unlock;
3209 warn_if_metadata_device_too_big(metadata_dev->bdev);
3211 r = dm_get_device(ti, argv[1], FMODE_READ | FMODE_WRITE, &data_dev);
3212 if (r) {
3213 ti->error = "Error getting data device";
3214 goto out_metadata;
3217 if (kstrtoul(argv[2], 10, &block_size) || !block_size ||
3218 block_size < DATA_DEV_BLOCK_SIZE_MIN_SECTORS ||
3219 block_size > DATA_DEV_BLOCK_SIZE_MAX_SECTORS ||
3220 block_size & (DATA_DEV_BLOCK_SIZE_MIN_SECTORS - 1)) {
3221 ti->error = "Invalid block size";
3222 r = -EINVAL;
3223 goto out;
3226 if (kstrtoull(argv[3], 10, (unsigned long long *)&low_water_blocks)) {
3227 ti->error = "Invalid low water mark";
3228 r = -EINVAL;
3229 goto out;
3232 pt = kzalloc(sizeof(*pt), GFP_KERNEL);
3233 if (!pt) {
3234 r = -ENOMEM;
3235 goto out;
3238 pool = __pool_find(dm_table_get_md(ti->table), metadata_dev->bdev,
3239 block_size, pf.mode == PM_READ_ONLY, &ti->error, &pool_created);
3240 if (IS_ERR(pool)) {
3241 r = PTR_ERR(pool);
3242 goto out_free_pt;
3246 * 'pool_created' reflects whether this is the first table load.
3247 * Top level discard support is not allowed to be changed after
3248 * initial load. This would require a pool reload to trigger thin
3249 * device changes.
3251 if (!pool_created && pf.discard_enabled != pool->pf.discard_enabled) {
3252 ti->error = "Discard support cannot be disabled once enabled";
3253 r = -EINVAL;
3254 goto out_flags_changed;
3257 pt->pool = pool;
3258 pt->ti = ti;
3259 pt->metadata_dev = metadata_dev;
3260 pt->data_dev = data_dev;
3261 pt->low_water_blocks = low_water_blocks;
3262 pt->adjusted_pf = pt->requested_pf = pf;
3263 ti->num_flush_bios = 1;
3266 * Only need to enable discards if the pool should pass
3267 * them down to the data device. The thin device's discard
3268 * processing will cause mappings to be removed from the btree.
3270 if (pf.discard_enabled && pf.discard_passdown) {
3271 ti->num_discard_bios = 1;
3274 * Setting 'discards_supported' circumvents the normal
3275 * stacking of discard limits (this keeps the pool and
3276 * thin devices' discard limits consistent).
3278 ti->discards_supported = true;
3280 ti->private = pt;
3282 r = dm_pool_register_metadata_threshold(pt->pool->pmd,
3283 calc_metadata_threshold(pt),
3284 metadata_low_callback,
3285 pool);
3286 if (r)
3287 goto out_flags_changed;
3289 pt->callbacks.congested_fn = pool_is_congested;
3290 dm_table_add_target_callbacks(ti->table, &pt->callbacks);
3292 mutex_unlock(&dm_thin_pool_table.mutex);
3294 return 0;
3296 out_flags_changed:
3297 __pool_dec(pool);
3298 out_free_pt:
3299 kfree(pt);
3300 out:
3301 dm_put_device(ti, data_dev);
3302 out_metadata:
3303 dm_put_device(ti, metadata_dev);
3304 out_unlock:
3305 mutex_unlock(&dm_thin_pool_table.mutex);
3307 return r;
3310 static int pool_map(struct dm_target *ti, struct bio *bio)
3312 int r;
3313 struct pool_c *pt = ti->private;
3314 struct pool *pool = pt->pool;
3315 unsigned long flags;
3318 * As this is a singleton target, ti->begin is always zero.
3320 spin_lock_irqsave(&pool->lock, flags);
3321 bio_set_dev(bio, pt->data_dev->bdev);
3322 r = DM_MAPIO_REMAPPED;
3323 spin_unlock_irqrestore(&pool->lock, flags);
3325 return r;
3328 static int maybe_resize_data_dev(struct dm_target *ti, bool *need_commit)
3330 int r;
3331 struct pool_c *pt = ti->private;
3332 struct pool *pool = pt->pool;
3333 sector_t data_size = ti->len;
3334 dm_block_t sb_data_size;
3336 *need_commit = false;
3338 (void) sector_div(data_size, pool->sectors_per_block);
3340 r = dm_pool_get_data_dev_size(pool->pmd, &sb_data_size);
3341 if (r) {
3342 DMERR("%s: failed to retrieve data device size",
3343 dm_device_name(pool->pool_md));
3344 return r;
3347 if (data_size < sb_data_size) {
3348 DMERR("%s: pool target (%llu blocks) too small: expected %llu",
3349 dm_device_name(pool->pool_md),
3350 (unsigned long long)data_size, sb_data_size);
3351 return -EINVAL;
3353 } else if (data_size > sb_data_size) {
3354 if (dm_pool_metadata_needs_check(pool->pmd)) {
3355 DMERR("%s: unable to grow the data device until repaired.",
3356 dm_device_name(pool->pool_md));
3357 return 0;
3360 if (sb_data_size)
3361 DMINFO("%s: growing the data device from %llu to %llu blocks",
3362 dm_device_name(pool->pool_md),
3363 sb_data_size, (unsigned long long)data_size);
3364 r = dm_pool_resize_data_dev(pool->pmd, data_size);
3365 if (r) {
3366 metadata_operation_failed(pool, "dm_pool_resize_data_dev", r);
3367 return r;
3370 *need_commit = true;
3373 return 0;
3376 static int maybe_resize_metadata_dev(struct dm_target *ti, bool *need_commit)
3378 int r;
3379 struct pool_c *pt = ti->private;
3380 struct pool *pool = pt->pool;
3381 dm_block_t metadata_dev_size, sb_metadata_dev_size;
3383 *need_commit = false;
3385 metadata_dev_size = get_metadata_dev_size_in_blocks(pool->md_dev);
3387 r = dm_pool_get_metadata_dev_size(pool->pmd, &sb_metadata_dev_size);
3388 if (r) {
3389 DMERR("%s: failed to retrieve metadata device size",
3390 dm_device_name(pool->pool_md));
3391 return r;
3394 if (metadata_dev_size < sb_metadata_dev_size) {
3395 DMERR("%s: metadata device (%llu blocks) too small: expected %llu",
3396 dm_device_name(pool->pool_md),
3397 metadata_dev_size, sb_metadata_dev_size);
3398 return -EINVAL;
3400 } else if (metadata_dev_size > sb_metadata_dev_size) {
3401 if (dm_pool_metadata_needs_check(pool->pmd)) {
3402 DMERR("%s: unable to grow the metadata device until repaired.",
3403 dm_device_name(pool->pool_md));
3404 return 0;
3407 warn_if_metadata_device_too_big(pool->md_dev);
3408 DMINFO("%s: growing the metadata device from %llu to %llu blocks",
3409 dm_device_name(pool->pool_md),
3410 sb_metadata_dev_size, metadata_dev_size);
3411 r = dm_pool_resize_metadata_dev(pool->pmd, metadata_dev_size);
3412 if (r) {
3413 metadata_operation_failed(pool, "dm_pool_resize_metadata_dev", r);
3414 return r;
3417 *need_commit = true;
3420 return 0;
3424 * Retrieves the number of blocks of the data device from
3425 * the superblock and compares it to the actual device size,
3426 * thus resizing the data device in case it has grown.
3428 * This both copes with opening preallocated data devices in the ctr
3429 * being followed by a resume
3430 * -and-
3431 * calling the resume method individually after userspace has
3432 * grown the data device in reaction to a table event.
3434 static int pool_preresume(struct dm_target *ti)
3436 int r;
3437 bool need_commit1, need_commit2;
3438 struct pool_c *pt = ti->private;
3439 struct pool *pool = pt->pool;
3442 * Take control of the pool object.
3444 r = bind_control_target(pool, ti);
3445 if (r)
3446 return r;
3448 r = maybe_resize_data_dev(ti, &need_commit1);
3449 if (r)
3450 return r;
3452 r = maybe_resize_metadata_dev(ti, &need_commit2);
3453 if (r)
3454 return r;
3456 if (need_commit1 || need_commit2)
3457 (void) commit(pool);
3459 return 0;
3462 static void pool_suspend_active_thins(struct pool *pool)
3464 struct thin_c *tc;
3466 /* Suspend all active thin devices */
3467 tc = get_first_thin(pool);
3468 while (tc) {
3469 dm_internal_suspend_noflush(tc->thin_md);
3470 tc = get_next_thin(pool, tc);
3474 static void pool_resume_active_thins(struct pool *pool)
3476 struct thin_c *tc;
3478 /* Resume all active thin devices */
3479 tc = get_first_thin(pool);
3480 while (tc) {
3481 dm_internal_resume(tc->thin_md);
3482 tc = get_next_thin(pool, tc);
3486 static void pool_resume(struct dm_target *ti)
3488 struct pool_c *pt = ti->private;
3489 struct pool *pool = pt->pool;
3490 unsigned long flags;
3493 * Must requeue active_thins' bios and then resume
3494 * active_thins _before_ clearing 'suspend' flag.
3496 requeue_bios(pool);
3497 pool_resume_active_thins(pool);
3499 spin_lock_irqsave(&pool->lock, flags);
3500 pool->low_water_triggered = false;
3501 pool->suspended = false;
3502 spin_unlock_irqrestore(&pool->lock, flags);
3504 do_waker(&pool->waker.work);
3507 static void pool_presuspend(struct dm_target *ti)
3509 struct pool_c *pt = ti->private;
3510 struct pool *pool = pt->pool;
3511 unsigned long flags;
3513 spin_lock_irqsave(&pool->lock, flags);
3514 pool->suspended = true;
3515 spin_unlock_irqrestore(&pool->lock, flags);
3517 pool_suspend_active_thins(pool);
3520 static void pool_presuspend_undo(struct dm_target *ti)
3522 struct pool_c *pt = ti->private;
3523 struct pool *pool = pt->pool;
3524 unsigned long flags;
3526 pool_resume_active_thins(pool);
3528 spin_lock_irqsave(&pool->lock, flags);
3529 pool->suspended = false;
3530 spin_unlock_irqrestore(&pool->lock, flags);
3533 static void pool_postsuspend(struct dm_target *ti)
3535 struct pool_c *pt = ti->private;
3536 struct pool *pool = pt->pool;
3538 cancel_delayed_work_sync(&pool->waker);
3539 cancel_delayed_work_sync(&pool->no_space_timeout);
3540 flush_workqueue(pool->wq);
3541 (void) commit(pool);
3544 static int check_arg_count(unsigned argc, unsigned args_required)
3546 if (argc != args_required) {
3547 DMWARN("Message received with %u arguments instead of %u.",
3548 argc, args_required);
3549 return -EINVAL;
3552 return 0;
3555 static int read_dev_id(char *arg, dm_thin_id *dev_id, int warning)
3557 if (!kstrtoull(arg, 10, (unsigned long long *)dev_id) &&
3558 *dev_id <= MAX_DEV_ID)
3559 return 0;
3561 if (warning)
3562 DMWARN("Message received with invalid device id: %s", arg);
3564 return -EINVAL;
3567 static int process_create_thin_mesg(unsigned argc, char **argv, struct pool *pool)
3569 dm_thin_id dev_id;
3570 int r;
3572 r = check_arg_count(argc, 2);
3573 if (r)
3574 return r;
3576 r = read_dev_id(argv[1], &dev_id, 1);
3577 if (r)
3578 return r;
3580 r = dm_pool_create_thin(pool->pmd, dev_id);
3581 if (r) {
3582 DMWARN("Creation of new thinly-provisioned device with id %s failed.",
3583 argv[1]);
3584 return r;
3587 return 0;
3590 static int process_create_snap_mesg(unsigned argc, char **argv, struct pool *pool)
3592 dm_thin_id dev_id;
3593 dm_thin_id origin_dev_id;
3594 int r;
3596 r = check_arg_count(argc, 3);
3597 if (r)
3598 return r;
3600 r = read_dev_id(argv[1], &dev_id, 1);
3601 if (r)
3602 return r;
3604 r = read_dev_id(argv[2], &origin_dev_id, 1);
3605 if (r)
3606 return r;
3608 r = dm_pool_create_snap(pool->pmd, dev_id, origin_dev_id);
3609 if (r) {
3610 DMWARN("Creation of new snapshot %s of device %s failed.",
3611 argv[1], argv[2]);
3612 return r;
3615 return 0;
3618 static int process_delete_mesg(unsigned argc, char **argv, struct pool *pool)
3620 dm_thin_id dev_id;
3621 int r;
3623 r = check_arg_count(argc, 2);
3624 if (r)
3625 return r;
3627 r = read_dev_id(argv[1], &dev_id, 1);
3628 if (r)
3629 return r;
3631 r = dm_pool_delete_thin_device(pool->pmd, dev_id);
3632 if (r)
3633 DMWARN("Deletion of thin device %s failed.", argv[1]);
3635 return r;
3638 static int process_set_transaction_id_mesg(unsigned argc, char **argv, struct pool *pool)
3640 dm_thin_id old_id, new_id;
3641 int r;
3643 r = check_arg_count(argc, 3);
3644 if (r)
3645 return r;
3647 if (kstrtoull(argv[1], 10, (unsigned long long *)&old_id)) {
3648 DMWARN("set_transaction_id message: Unrecognised id %s.", argv[1]);
3649 return -EINVAL;
3652 if (kstrtoull(argv[2], 10, (unsigned long long *)&new_id)) {
3653 DMWARN("set_transaction_id message: Unrecognised new id %s.", argv[2]);
3654 return -EINVAL;
3657 r = dm_pool_set_metadata_transaction_id(pool->pmd, old_id, new_id);
3658 if (r) {
3659 DMWARN("Failed to change transaction id from %s to %s.",
3660 argv[1], argv[2]);
3661 return r;
3664 return 0;
3667 static int process_reserve_metadata_snap_mesg(unsigned argc, char **argv, struct pool *pool)
3669 int r;
3671 r = check_arg_count(argc, 1);
3672 if (r)
3673 return r;
3675 (void) commit(pool);
3677 r = dm_pool_reserve_metadata_snap(pool->pmd);
3678 if (r)
3679 DMWARN("reserve_metadata_snap message failed.");
3681 return r;
3684 static int process_release_metadata_snap_mesg(unsigned argc, char **argv, struct pool *pool)
3686 int r;
3688 r = check_arg_count(argc, 1);
3689 if (r)
3690 return r;
3692 r = dm_pool_release_metadata_snap(pool->pmd);
3693 if (r)
3694 DMWARN("release_metadata_snap message failed.");
3696 return r;
3700 * Messages supported:
3701 * create_thin <dev_id>
3702 * create_snap <dev_id> <origin_id>
3703 * delete <dev_id>
3704 * set_transaction_id <current_trans_id> <new_trans_id>
3705 * reserve_metadata_snap
3706 * release_metadata_snap
3708 static int pool_message(struct dm_target *ti, unsigned argc, char **argv)
3710 int r = -EINVAL;
3711 struct pool_c *pt = ti->private;
3712 struct pool *pool = pt->pool;
3714 if (get_pool_mode(pool) >= PM_READ_ONLY) {
3715 DMERR("%s: unable to service pool target messages in READ_ONLY or FAIL mode",
3716 dm_device_name(pool->pool_md));
3717 return -EOPNOTSUPP;
3720 if (!strcasecmp(argv[0], "create_thin"))
3721 r = process_create_thin_mesg(argc, argv, pool);
3723 else if (!strcasecmp(argv[0], "create_snap"))
3724 r = process_create_snap_mesg(argc, argv, pool);
3726 else if (!strcasecmp(argv[0], "delete"))
3727 r = process_delete_mesg(argc, argv, pool);
3729 else if (!strcasecmp(argv[0], "set_transaction_id"))
3730 r = process_set_transaction_id_mesg(argc, argv, pool);
3732 else if (!strcasecmp(argv[0], "reserve_metadata_snap"))
3733 r = process_reserve_metadata_snap_mesg(argc, argv, pool);
3735 else if (!strcasecmp(argv[0], "release_metadata_snap"))
3736 r = process_release_metadata_snap_mesg(argc, argv, pool);
3738 else
3739 DMWARN("Unrecognised thin pool target message received: %s", argv[0]);
3741 if (!r)
3742 (void) commit(pool);
3744 return r;
3747 static void emit_flags(struct pool_features *pf, char *result,
3748 unsigned sz, unsigned maxlen)
3750 unsigned count = !pf->zero_new_blocks + !pf->discard_enabled +
3751 !pf->discard_passdown + (pf->mode == PM_READ_ONLY) +
3752 pf->error_if_no_space;
3753 DMEMIT("%u ", count);
3755 if (!pf->zero_new_blocks)
3756 DMEMIT("skip_block_zeroing ");
3758 if (!pf->discard_enabled)
3759 DMEMIT("ignore_discard ");
3761 if (!pf->discard_passdown)
3762 DMEMIT("no_discard_passdown ");
3764 if (pf->mode == PM_READ_ONLY)
3765 DMEMIT("read_only ");
3767 if (pf->error_if_no_space)
3768 DMEMIT("error_if_no_space ");
3772 * Status line is:
3773 * <transaction id> <used metadata sectors>/<total metadata sectors>
3774 * <used data sectors>/<total data sectors> <held metadata root>
3775 * <pool mode> <discard config> <no space config> <needs_check>
3777 static void pool_status(struct dm_target *ti, status_type_t type,
3778 unsigned status_flags, char *result, unsigned maxlen)
3780 int r;
3781 unsigned sz = 0;
3782 uint64_t transaction_id;
3783 dm_block_t nr_free_blocks_data;
3784 dm_block_t nr_free_blocks_metadata;
3785 dm_block_t nr_blocks_data;
3786 dm_block_t nr_blocks_metadata;
3787 dm_block_t held_root;
3788 char buf[BDEVNAME_SIZE];
3789 char buf2[BDEVNAME_SIZE];
3790 struct pool_c *pt = ti->private;
3791 struct pool *pool = pt->pool;
3793 switch (type) {
3794 case STATUSTYPE_INFO:
3795 if (get_pool_mode(pool) == PM_FAIL) {
3796 DMEMIT("Fail");
3797 break;
3800 /* Commit to ensure statistics aren't out-of-date */
3801 if (!(status_flags & DM_STATUS_NOFLUSH_FLAG) && !dm_suspended(ti))
3802 (void) commit(pool);
3804 r = dm_pool_get_metadata_transaction_id(pool->pmd, &transaction_id);
3805 if (r) {
3806 DMERR("%s: dm_pool_get_metadata_transaction_id returned %d",
3807 dm_device_name(pool->pool_md), r);
3808 goto err;
3811 r = dm_pool_get_free_metadata_block_count(pool->pmd, &nr_free_blocks_metadata);
3812 if (r) {
3813 DMERR("%s: dm_pool_get_free_metadata_block_count returned %d",
3814 dm_device_name(pool->pool_md), r);
3815 goto err;
3818 r = dm_pool_get_metadata_dev_size(pool->pmd, &nr_blocks_metadata);
3819 if (r) {
3820 DMERR("%s: dm_pool_get_metadata_dev_size returned %d",
3821 dm_device_name(pool->pool_md), r);
3822 goto err;
3825 r = dm_pool_get_free_block_count(pool->pmd, &nr_free_blocks_data);
3826 if (r) {
3827 DMERR("%s: dm_pool_get_free_block_count returned %d",
3828 dm_device_name(pool->pool_md), r);
3829 goto err;
3832 r = dm_pool_get_data_dev_size(pool->pmd, &nr_blocks_data);
3833 if (r) {
3834 DMERR("%s: dm_pool_get_data_dev_size returned %d",
3835 dm_device_name(pool->pool_md), r);
3836 goto err;
3839 r = dm_pool_get_metadata_snap(pool->pmd, &held_root);
3840 if (r) {
3841 DMERR("%s: dm_pool_get_metadata_snap returned %d",
3842 dm_device_name(pool->pool_md), r);
3843 goto err;
3846 DMEMIT("%llu %llu/%llu %llu/%llu ",
3847 (unsigned long long)transaction_id,
3848 (unsigned long long)(nr_blocks_metadata - nr_free_blocks_metadata),
3849 (unsigned long long)nr_blocks_metadata,
3850 (unsigned long long)(nr_blocks_data - nr_free_blocks_data),
3851 (unsigned long long)nr_blocks_data);
3853 if (held_root)
3854 DMEMIT("%llu ", held_root);
3855 else
3856 DMEMIT("- ");
3858 if (pool->pf.mode == PM_OUT_OF_DATA_SPACE)
3859 DMEMIT("out_of_data_space ");
3860 else if (pool->pf.mode == PM_READ_ONLY)
3861 DMEMIT("ro ");
3862 else
3863 DMEMIT("rw ");
3865 if (!pool->pf.discard_enabled)
3866 DMEMIT("ignore_discard ");
3867 else if (pool->pf.discard_passdown)
3868 DMEMIT("discard_passdown ");
3869 else
3870 DMEMIT("no_discard_passdown ");
3872 if (pool->pf.error_if_no_space)
3873 DMEMIT("error_if_no_space ");
3874 else
3875 DMEMIT("queue_if_no_space ");
3877 if (dm_pool_metadata_needs_check(pool->pmd))
3878 DMEMIT("needs_check ");
3879 else
3880 DMEMIT("- ");
3882 break;
3884 case STATUSTYPE_TABLE:
3885 DMEMIT("%s %s %lu %llu ",
3886 format_dev_t(buf, pt->metadata_dev->bdev->bd_dev),
3887 format_dev_t(buf2, pt->data_dev->bdev->bd_dev),
3888 (unsigned long)pool->sectors_per_block,
3889 (unsigned long long)pt->low_water_blocks);
3890 emit_flags(&pt->requested_pf, result, sz, maxlen);
3891 break;
3893 return;
3895 err:
3896 DMEMIT("Error");
3899 static int pool_iterate_devices(struct dm_target *ti,
3900 iterate_devices_callout_fn fn, void *data)
3902 struct pool_c *pt = ti->private;
3904 return fn(ti, pt->data_dev, 0, ti->len, data);
3907 static void pool_io_hints(struct dm_target *ti, struct queue_limits *limits)
3909 struct pool_c *pt = ti->private;
3910 struct pool *pool = pt->pool;
3911 sector_t io_opt_sectors = limits->io_opt >> SECTOR_SHIFT;
3914 * If max_sectors is smaller than pool->sectors_per_block adjust it
3915 * to the highest possible power-of-2 factor of pool->sectors_per_block.
3916 * This is especially beneficial when the pool's data device is a RAID
3917 * device that has a full stripe width that matches pool->sectors_per_block
3918 * -- because even though partial RAID stripe-sized IOs will be issued to a
3919 * single RAID stripe; when aggregated they will end on a full RAID stripe
3920 * boundary.. which avoids additional partial RAID stripe writes cascading
3922 if (limits->max_sectors < pool->sectors_per_block) {
3923 while (!is_factor(pool->sectors_per_block, limits->max_sectors)) {
3924 if ((limits->max_sectors & (limits->max_sectors - 1)) == 0)
3925 limits->max_sectors--;
3926 limits->max_sectors = rounddown_pow_of_two(limits->max_sectors);
3931 * If the system-determined stacked limits are compatible with the
3932 * pool's blocksize (io_opt is a factor) do not override them.
3934 if (io_opt_sectors < pool->sectors_per_block ||
3935 !is_factor(io_opt_sectors, pool->sectors_per_block)) {
3936 if (is_factor(pool->sectors_per_block, limits->max_sectors))
3937 blk_limits_io_min(limits, limits->max_sectors << SECTOR_SHIFT);
3938 else
3939 blk_limits_io_min(limits, pool->sectors_per_block << SECTOR_SHIFT);
3940 blk_limits_io_opt(limits, pool->sectors_per_block << SECTOR_SHIFT);
3944 * pt->adjusted_pf is a staging area for the actual features to use.
3945 * They get transferred to the live pool in bind_control_target()
3946 * called from pool_preresume().
3948 if (!pt->adjusted_pf.discard_enabled) {
3950 * Must explicitly disallow stacking discard limits otherwise the
3951 * block layer will stack them if pool's data device has support.
3952 * QUEUE_FLAG_DISCARD wouldn't be set but there is no way for the
3953 * user to see that, so make sure to set all discard limits to 0.
3955 limits->discard_granularity = 0;
3956 return;
3959 disable_passdown_if_not_supported(pt);
3962 * The pool uses the same discard limits as the underlying data
3963 * device. DM core has already set this up.
3967 static struct target_type pool_target = {
3968 .name = "thin-pool",
3969 .features = DM_TARGET_SINGLETON | DM_TARGET_ALWAYS_WRITEABLE |
3970 DM_TARGET_IMMUTABLE,
3971 .version = {1, 19, 0},
3972 .module = THIS_MODULE,
3973 .ctr = pool_ctr,
3974 .dtr = pool_dtr,
3975 .map = pool_map,
3976 .presuspend = pool_presuspend,
3977 .presuspend_undo = pool_presuspend_undo,
3978 .postsuspend = pool_postsuspend,
3979 .preresume = pool_preresume,
3980 .resume = pool_resume,
3981 .message = pool_message,
3982 .status = pool_status,
3983 .iterate_devices = pool_iterate_devices,
3984 .io_hints = pool_io_hints,
3987 /*----------------------------------------------------------------
3988 * Thin target methods
3989 *--------------------------------------------------------------*/
3990 static void thin_get(struct thin_c *tc)
3992 atomic_inc(&tc->refcount);
3995 static void thin_put(struct thin_c *tc)
3997 if (atomic_dec_and_test(&tc->refcount))
3998 complete(&tc->can_destroy);
4001 static void thin_dtr(struct dm_target *ti)
4003 struct thin_c *tc = ti->private;
4004 unsigned long flags;
4006 spin_lock_irqsave(&tc->pool->lock, flags);
4007 list_del_rcu(&tc->list);
4008 spin_unlock_irqrestore(&tc->pool->lock, flags);
4009 synchronize_rcu();
4011 thin_put(tc);
4012 wait_for_completion(&tc->can_destroy);
4014 mutex_lock(&dm_thin_pool_table.mutex);
4016 __pool_dec(tc->pool);
4017 dm_pool_close_thin_device(tc->td);
4018 dm_put_device(ti, tc->pool_dev);
4019 if (tc->origin_dev)
4020 dm_put_device(ti, tc->origin_dev);
4021 kfree(tc);
4023 mutex_unlock(&dm_thin_pool_table.mutex);
4027 * Thin target parameters:
4029 * <pool_dev> <dev_id> [origin_dev]
4031 * pool_dev: the path to the pool (eg, /dev/mapper/my_pool)
4032 * dev_id: the internal device identifier
4033 * origin_dev: a device external to the pool that should act as the origin
4035 * If the pool device has discards disabled, they get disabled for the thin
4036 * device as well.
4038 static int thin_ctr(struct dm_target *ti, unsigned argc, char **argv)
4040 int r;
4041 struct thin_c *tc;
4042 struct dm_dev *pool_dev, *origin_dev;
4043 struct mapped_device *pool_md;
4044 unsigned long flags;
4046 mutex_lock(&dm_thin_pool_table.mutex);
4048 if (argc != 2 && argc != 3) {
4049 ti->error = "Invalid argument count";
4050 r = -EINVAL;
4051 goto out_unlock;
4054 tc = ti->private = kzalloc(sizeof(*tc), GFP_KERNEL);
4055 if (!tc) {
4056 ti->error = "Out of memory";
4057 r = -ENOMEM;
4058 goto out_unlock;
4060 tc->thin_md = dm_table_get_md(ti->table);
4061 spin_lock_init(&tc->lock);
4062 INIT_LIST_HEAD(&tc->deferred_cells);
4063 bio_list_init(&tc->deferred_bio_list);
4064 bio_list_init(&tc->retry_on_resume_list);
4065 tc->sort_bio_list = RB_ROOT;
4067 if (argc == 3) {
4068 r = dm_get_device(ti, argv[2], FMODE_READ, &origin_dev);
4069 if (r) {
4070 ti->error = "Error opening origin device";
4071 goto bad_origin_dev;
4073 tc->origin_dev = origin_dev;
4076 r = dm_get_device(ti, argv[0], dm_table_get_mode(ti->table), &pool_dev);
4077 if (r) {
4078 ti->error = "Error opening pool device";
4079 goto bad_pool_dev;
4081 tc->pool_dev = pool_dev;
4083 if (read_dev_id(argv[1], (unsigned long long *)&tc->dev_id, 0)) {
4084 ti->error = "Invalid device id";
4085 r = -EINVAL;
4086 goto bad_common;
4089 pool_md = dm_get_md(tc->pool_dev->bdev->bd_dev);
4090 if (!pool_md) {
4091 ti->error = "Couldn't get pool mapped device";
4092 r = -EINVAL;
4093 goto bad_common;
4096 tc->pool = __pool_table_lookup(pool_md);
4097 if (!tc->pool) {
4098 ti->error = "Couldn't find pool object";
4099 r = -EINVAL;
4100 goto bad_pool_lookup;
4102 __pool_inc(tc->pool);
4104 if (get_pool_mode(tc->pool) == PM_FAIL) {
4105 ti->error = "Couldn't open thin device, Pool is in fail mode";
4106 r = -EINVAL;
4107 goto bad_pool;
4110 r = dm_pool_open_thin_device(tc->pool->pmd, tc->dev_id, &tc->td);
4111 if (r) {
4112 ti->error = "Couldn't open thin internal device";
4113 goto bad_pool;
4116 r = dm_set_target_max_io_len(ti, tc->pool->sectors_per_block);
4117 if (r)
4118 goto bad;
4120 ti->num_flush_bios = 1;
4121 ti->flush_supported = true;
4122 ti->per_io_data_size = sizeof(struct dm_thin_endio_hook);
4124 /* In case the pool supports discards, pass them on. */
4125 if (tc->pool->pf.discard_enabled) {
4126 ti->discards_supported = true;
4127 ti->num_discard_bios = 1;
4128 ti->split_discard_bios = false;
4131 mutex_unlock(&dm_thin_pool_table.mutex);
4133 spin_lock_irqsave(&tc->pool->lock, flags);
4134 if (tc->pool->suspended) {
4135 spin_unlock_irqrestore(&tc->pool->lock, flags);
4136 mutex_lock(&dm_thin_pool_table.mutex); /* reacquire for __pool_dec */
4137 ti->error = "Unable to activate thin device while pool is suspended";
4138 r = -EINVAL;
4139 goto bad;
4141 atomic_set(&tc->refcount, 1);
4142 init_completion(&tc->can_destroy);
4143 list_add_tail_rcu(&tc->list, &tc->pool->active_thins);
4144 spin_unlock_irqrestore(&tc->pool->lock, flags);
4146 * This synchronize_rcu() call is needed here otherwise we risk a
4147 * wake_worker() call finding no bios to process (because the newly
4148 * added tc isn't yet visible). So this reduces latency since we
4149 * aren't then dependent on the periodic commit to wake_worker().
4151 synchronize_rcu();
4153 dm_put(pool_md);
4155 return 0;
4157 bad:
4158 dm_pool_close_thin_device(tc->td);
4159 bad_pool:
4160 __pool_dec(tc->pool);
4161 bad_pool_lookup:
4162 dm_put(pool_md);
4163 bad_common:
4164 dm_put_device(ti, tc->pool_dev);
4165 bad_pool_dev:
4166 if (tc->origin_dev)
4167 dm_put_device(ti, tc->origin_dev);
4168 bad_origin_dev:
4169 kfree(tc);
4170 out_unlock:
4171 mutex_unlock(&dm_thin_pool_table.mutex);
4173 return r;
4176 static int thin_map(struct dm_target *ti, struct bio *bio)
4178 bio->bi_iter.bi_sector = dm_target_offset(ti, bio->bi_iter.bi_sector);
4180 return thin_bio_map(ti, bio);
4183 static int thin_endio(struct dm_target *ti, struct bio *bio,
4184 blk_status_t *err)
4186 unsigned long flags;
4187 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
4188 struct list_head work;
4189 struct dm_thin_new_mapping *m, *tmp;
4190 struct pool *pool = h->tc->pool;
4192 if (h->shared_read_entry) {
4193 INIT_LIST_HEAD(&work);
4194 dm_deferred_entry_dec(h->shared_read_entry, &work);
4196 spin_lock_irqsave(&pool->lock, flags);
4197 list_for_each_entry_safe(m, tmp, &work, list) {
4198 list_del(&m->list);
4199 __complete_mapping_preparation(m);
4201 spin_unlock_irqrestore(&pool->lock, flags);
4204 if (h->all_io_entry) {
4205 INIT_LIST_HEAD(&work);
4206 dm_deferred_entry_dec(h->all_io_entry, &work);
4207 if (!list_empty(&work)) {
4208 spin_lock_irqsave(&pool->lock, flags);
4209 list_for_each_entry_safe(m, tmp, &work, list)
4210 list_add_tail(&m->list, &pool->prepared_discards);
4211 spin_unlock_irqrestore(&pool->lock, flags);
4212 wake_worker(pool);
4216 if (h->cell)
4217 cell_defer_no_holder(h->tc, h->cell);
4219 return DM_ENDIO_DONE;
4222 static void thin_presuspend(struct dm_target *ti)
4224 struct thin_c *tc = ti->private;
4226 if (dm_noflush_suspending(ti))
4227 noflush_work(tc, do_noflush_start);
4230 static void thin_postsuspend(struct dm_target *ti)
4232 struct thin_c *tc = ti->private;
4235 * The dm_noflush_suspending flag has been cleared by now, so
4236 * unfortunately we must always run this.
4238 noflush_work(tc, do_noflush_stop);
4241 static int thin_preresume(struct dm_target *ti)
4243 struct thin_c *tc = ti->private;
4245 if (tc->origin_dev)
4246 tc->origin_size = get_dev_size(tc->origin_dev->bdev);
4248 return 0;
4252 * <nr mapped sectors> <highest mapped sector>
4254 static void thin_status(struct dm_target *ti, status_type_t type,
4255 unsigned status_flags, char *result, unsigned maxlen)
4257 int r;
4258 ssize_t sz = 0;
4259 dm_block_t mapped, highest;
4260 char buf[BDEVNAME_SIZE];
4261 struct thin_c *tc = ti->private;
4263 if (get_pool_mode(tc->pool) == PM_FAIL) {
4264 DMEMIT("Fail");
4265 return;
4268 if (!tc->td)
4269 DMEMIT("-");
4270 else {
4271 switch (type) {
4272 case STATUSTYPE_INFO:
4273 r = dm_thin_get_mapped_count(tc->td, &mapped);
4274 if (r) {
4275 DMERR("dm_thin_get_mapped_count returned %d", r);
4276 goto err;
4279 r = dm_thin_get_highest_mapped_block(tc->td, &highest);
4280 if (r < 0) {
4281 DMERR("dm_thin_get_highest_mapped_block returned %d", r);
4282 goto err;
4285 DMEMIT("%llu ", mapped * tc->pool->sectors_per_block);
4286 if (r)
4287 DMEMIT("%llu", ((highest + 1) *
4288 tc->pool->sectors_per_block) - 1);
4289 else
4290 DMEMIT("-");
4291 break;
4293 case STATUSTYPE_TABLE:
4294 DMEMIT("%s %lu",
4295 format_dev_t(buf, tc->pool_dev->bdev->bd_dev),
4296 (unsigned long) tc->dev_id);
4297 if (tc->origin_dev)
4298 DMEMIT(" %s", format_dev_t(buf, tc->origin_dev->bdev->bd_dev));
4299 break;
4303 return;
4305 err:
4306 DMEMIT("Error");
4309 static int thin_iterate_devices(struct dm_target *ti,
4310 iterate_devices_callout_fn fn, void *data)
4312 sector_t blocks;
4313 struct thin_c *tc = ti->private;
4314 struct pool *pool = tc->pool;
4317 * We can't call dm_pool_get_data_dev_size() since that blocks. So
4318 * we follow a more convoluted path through to the pool's target.
4320 if (!pool->ti)
4321 return 0; /* nothing is bound */
4323 blocks = pool->ti->len;
4324 (void) sector_div(blocks, pool->sectors_per_block);
4325 if (blocks)
4326 return fn(ti, tc->pool_dev, 0, pool->sectors_per_block * blocks, data);
4328 return 0;
4331 static void thin_io_hints(struct dm_target *ti, struct queue_limits *limits)
4333 struct thin_c *tc = ti->private;
4334 struct pool *pool = tc->pool;
4336 if (!pool->pf.discard_enabled)
4337 return;
4339 limits->discard_granularity = pool->sectors_per_block << SECTOR_SHIFT;
4340 limits->max_discard_sectors = 2048 * 1024 * 16; /* 16G */
4343 static struct target_type thin_target = {
4344 .name = "thin",
4345 .version = {1, 19, 0},
4346 .module = THIS_MODULE,
4347 .ctr = thin_ctr,
4348 .dtr = thin_dtr,
4349 .map = thin_map,
4350 .end_io = thin_endio,
4351 .preresume = thin_preresume,
4352 .presuspend = thin_presuspend,
4353 .postsuspend = thin_postsuspend,
4354 .status = thin_status,
4355 .iterate_devices = thin_iterate_devices,
4356 .io_hints = thin_io_hints,
4359 /*----------------------------------------------------------------*/
4361 static int __init dm_thin_init(void)
4363 int r = -ENOMEM;
4365 pool_table_init();
4367 _new_mapping_cache = KMEM_CACHE(dm_thin_new_mapping, 0);
4368 if (!_new_mapping_cache)
4369 return r;
4371 r = dm_register_target(&thin_target);
4372 if (r)
4373 goto bad_new_mapping_cache;
4375 r = dm_register_target(&pool_target);
4376 if (r)
4377 goto bad_thin_target;
4379 return 0;
4381 bad_thin_target:
4382 dm_unregister_target(&thin_target);
4383 bad_new_mapping_cache:
4384 kmem_cache_destroy(_new_mapping_cache);
4386 return r;
4389 static void dm_thin_exit(void)
4391 dm_unregister_target(&thin_target);
4392 dm_unregister_target(&pool_target);
4394 kmem_cache_destroy(_new_mapping_cache);
4396 pool_table_exit();
4399 module_init(dm_thin_init);
4400 module_exit(dm_thin_exit);
4402 module_param_named(no_space_timeout, no_space_timeout_secs, uint, S_IRUGO | S_IWUSR);
4403 MODULE_PARM_DESC(no_space_timeout, "Out of data space queue IO timeout in seconds");
4405 MODULE_DESCRIPTION(DM_NAME " thin provisioning target");
4406 MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>");
4407 MODULE_LICENSE("GPL");