x86/topology: Fix function name in documentation
[cris-mirror.git] / drivers / media / usb / gspca / ov534.c
blobf293921a1f2b6455c3a3618060c9cff4f52138af
1 /*
2 * ov534-ov7xxx gspca driver
4 * Copyright (C) 2008 Antonio Ospite <ospite@studenti.unina.it>
5 * Copyright (C) 2008 Jim Paris <jim@jtan.com>
6 * Copyright (C) 2009 Jean-Francois Moine http://moinejf.free.fr
8 * Based on a prototype written by Mark Ferrell <majortrips@gmail.com>
9 * USB protocol reverse engineered by Jim Paris <jim@jtan.com>
10 * https://jim.sh/svn/jim/devl/playstation/ps3/eye/test/
12 * PS3 Eye camera enhanced by Richard Kaswy http://kaswy.free.fr
13 * PS3 Eye camera - brightness, contrast, awb, agc, aec controls
14 * added by Max Thrun <bear24rw@gmail.com>
15 * PS3 Eye camera - FPS range extended by Joseph Howse
16 * <josephhowse@nummist.com> http://nummist.com
18 * This program is free software; you can redistribute it and/or modify
19 * it under the terms of the GNU General Public License as published by
20 * the Free Software Foundation; either version 2 of the License, or
21 * any later version.
23 * This program is distributed in the hope that it will be useful,
24 * but WITHOUT ANY WARRANTY; without even the implied warranty of
25 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
26 * GNU General Public License for more details.
29 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
31 #define MODULE_NAME "ov534"
33 #include "gspca.h"
35 #include <linux/fixp-arith.h>
36 #include <media/v4l2-ctrls.h>
38 #define OV534_REG_ADDRESS 0xf1 /* sensor address */
39 #define OV534_REG_SUBADDR 0xf2
40 #define OV534_REG_WRITE 0xf3
41 #define OV534_REG_READ 0xf4
42 #define OV534_REG_OPERATION 0xf5
43 #define OV534_REG_STATUS 0xf6
45 #define OV534_OP_WRITE_3 0x37
46 #define OV534_OP_WRITE_2 0x33
47 #define OV534_OP_READ_2 0xf9
49 #define CTRL_TIMEOUT 500
50 #define DEFAULT_FRAME_RATE 30
52 MODULE_AUTHOR("Antonio Ospite <ospite@studenti.unina.it>");
53 MODULE_DESCRIPTION("GSPCA/OV534 USB Camera Driver");
54 MODULE_LICENSE("GPL");
56 /* specific webcam descriptor */
57 struct sd {
58 struct gspca_dev gspca_dev; /* !! must be the first item */
60 struct v4l2_ctrl_handler ctrl_handler;
61 struct v4l2_ctrl *hue;
62 struct v4l2_ctrl *saturation;
63 struct v4l2_ctrl *brightness;
64 struct v4l2_ctrl *contrast;
65 struct { /* gain control cluster */
66 struct v4l2_ctrl *autogain;
67 struct v4l2_ctrl *gain;
69 struct v4l2_ctrl *autowhitebalance;
70 struct { /* exposure control cluster */
71 struct v4l2_ctrl *autoexposure;
72 struct v4l2_ctrl *exposure;
74 struct v4l2_ctrl *sharpness;
75 struct v4l2_ctrl *hflip;
76 struct v4l2_ctrl *vflip;
77 struct v4l2_ctrl *plfreq;
79 __u32 last_pts;
80 u16 last_fid;
81 u8 frame_rate;
83 u8 sensor;
85 enum sensors {
86 SENSOR_OV767x,
87 SENSOR_OV772x,
88 NSENSORS
91 static int sd_start(struct gspca_dev *gspca_dev);
92 static void sd_stopN(struct gspca_dev *gspca_dev);
95 static const struct v4l2_pix_format ov772x_mode[] = {
96 {320, 240, V4L2_PIX_FMT_YUYV, V4L2_FIELD_NONE,
97 .bytesperline = 320 * 2,
98 .sizeimage = 320 * 240 * 2,
99 .colorspace = V4L2_COLORSPACE_SRGB,
100 .priv = 1},
101 {640, 480, V4L2_PIX_FMT_YUYV, V4L2_FIELD_NONE,
102 .bytesperline = 640 * 2,
103 .sizeimage = 640 * 480 * 2,
104 .colorspace = V4L2_COLORSPACE_SRGB,
105 .priv = 0},
107 static const struct v4l2_pix_format ov767x_mode[] = {
108 {320, 240, V4L2_PIX_FMT_JPEG, V4L2_FIELD_NONE,
109 .bytesperline = 320,
110 .sizeimage = 320 * 240 * 3 / 8 + 590,
111 .colorspace = V4L2_COLORSPACE_JPEG},
112 {640, 480, V4L2_PIX_FMT_JPEG, V4L2_FIELD_NONE,
113 .bytesperline = 640,
114 .sizeimage = 640 * 480 * 3 / 8 + 590,
115 .colorspace = V4L2_COLORSPACE_JPEG},
118 static const u8 qvga_rates[] = {187, 150, 137, 125, 100, 75, 60, 50, 37, 30};
119 static const u8 vga_rates[] = {60, 50, 40, 30, 15};
121 static const struct framerates ov772x_framerates[] = {
122 { /* 320x240 */
123 .rates = qvga_rates,
124 .nrates = ARRAY_SIZE(qvga_rates),
126 { /* 640x480 */
127 .rates = vga_rates,
128 .nrates = ARRAY_SIZE(vga_rates),
132 struct reg_array {
133 const u8 (*val)[2];
134 int len;
137 static const u8 bridge_init_767x[][2] = {
138 /* comments from the ms-win file apollo7670.set */
139 /* str1 */
140 {0xf1, 0x42},
141 {0x88, 0xf8},
142 {0x89, 0xff},
143 {0x76, 0x03},
144 {0x92, 0x03},
145 {0x95, 0x10},
146 {0xe2, 0x00},
147 {0xe7, 0x3e},
148 {0x8d, 0x1c},
149 {0x8e, 0x00},
150 {0x8f, 0x00},
151 {0x1f, 0x00},
152 {0xc3, 0xf9},
153 {0x89, 0xff},
154 {0x88, 0xf8},
155 {0x76, 0x03},
156 {0x92, 0x01},
157 {0x93, 0x18},
158 {0x1c, 0x00},
159 {0x1d, 0x48},
160 {0x1d, 0x00},
161 {0x1d, 0xff},
162 {0x1d, 0x02},
163 {0x1d, 0x58},
164 {0x1d, 0x00},
165 {0x1c, 0x0a},
166 {0x1d, 0x0a},
167 {0x1d, 0x0e},
168 {0xc0, 0x50}, /* HSize 640 */
169 {0xc1, 0x3c}, /* VSize 480 */
170 {0x34, 0x05}, /* enable Audio Suspend mode */
171 {0xc2, 0x0c}, /* Input YUV */
172 {0xc3, 0xf9}, /* enable PRE */
173 {0x34, 0x05}, /* enable Audio Suspend mode */
174 {0xe7, 0x2e}, /* this solves failure of "SuspendResumeTest" */
175 {0x31, 0xf9}, /* enable 1.8V Suspend */
176 {0x35, 0x02}, /* turn on JPEG */
177 {0xd9, 0x10},
178 {0x25, 0x42}, /* GPIO[8]:Input */
179 {0x94, 0x11}, /* If the default setting is loaded when
180 * system boots up, this flag is closed here */
182 static const u8 sensor_init_767x[][2] = {
183 {0x12, 0x80},
184 {0x11, 0x03},
185 {0x3a, 0x04},
186 {0x12, 0x00},
187 {0x17, 0x13},
188 {0x18, 0x01},
189 {0x32, 0xb6},
190 {0x19, 0x02},
191 {0x1a, 0x7a},
192 {0x03, 0x0a},
193 {0x0c, 0x00},
194 {0x3e, 0x00},
195 {0x70, 0x3a},
196 {0x71, 0x35},
197 {0x72, 0x11},
198 {0x73, 0xf0},
199 {0xa2, 0x02},
200 {0x7a, 0x2a}, /* set Gamma=1.6 below */
201 {0x7b, 0x12},
202 {0x7c, 0x1d},
203 {0x7d, 0x2d},
204 {0x7e, 0x45},
205 {0x7f, 0x50},
206 {0x80, 0x59},
207 {0x81, 0x62},
208 {0x82, 0x6b},
209 {0x83, 0x73},
210 {0x84, 0x7b},
211 {0x85, 0x8a},
212 {0x86, 0x98},
213 {0x87, 0xb2},
214 {0x88, 0xca},
215 {0x89, 0xe0},
216 {0x13, 0xe0},
217 {0x00, 0x00},
218 {0x10, 0x00},
219 {0x0d, 0x40},
220 {0x14, 0x38}, /* gain max 16x */
221 {0xa5, 0x05},
222 {0xab, 0x07},
223 {0x24, 0x95},
224 {0x25, 0x33},
225 {0x26, 0xe3},
226 {0x9f, 0x78},
227 {0xa0, 0x68},
228 {0xa1, 0x03},
229 {0xa6, 0xd8},
230 {0xa7, 0xd8},
231 {0xa8, 0xf0},
232 {0xa9, 0x90},
233 {0xaa, 0x94},
234 {0x13, 0xe5},
235 {0x0e, 0x61},
236 {0x0f, 0x4b},
237 {0x16, 0x02},
238 {0x21, 0x02},
239 {0x22, 0x91},
240 {0x29, 0x07},
241 {0x33, 0x0b},
242 {0x35, 0x0b},
243 {0x37, 0x1d},
244 {0x38, 0x71},
245 {0x39, 0x2a},
246 {0x3c, 0x78},
247 {0x4d, 0x40},
248 {0x4e, 0x20},
249 {0x69, 0x00},
250 {0x6b, 0x4a},
251 {0x74, 0x10},
252 {0x8d, 0x4f},
253 {0x8e, 0x00},
254 {0x8f, 0x00},
255 {0x90, 0x00},
256 {0x91, 0x00},
257 {0x96, 0x00},
258 {0x9a, 0x80},
259 {0xb0, 0x84},
260 {0xb1, 0x0c},
261 {0xb2, 0x0e},
262 {0xb3, 0x82},
263 {0xb8, 0x0a},
264 {0x43, 0x0a},
265 {0x44, 0xf0},
266 {0x45, 0x34},
267 {0x46, 0x58},
268 {0x47, 0x28},
269 {0x48, 0x3a},
270 {0x59, 0x88},
271 {0x5a, 0x88},
272 {0x5b, 0x44},
273 {0x5c, 0x67},
274 {0x5d, 0x49},
275 {0x5e, 0x0e},
276 {0x6c, 0x0a},
277 {0x6d, 0x55},
278 {0x6e, 0x11},
279 {0x6f, 0x9f},
280 {0x6a, 0x40},
281 {0x01, 0x40},
282 {0x02, 0x40},
283 {0x13, 0xe7},
284 {0x4f, 0x80},
285 {0x50, 0x80},
286 {0x51, 0x00},
287 {0x52, 0x22},
288 {0x53, 0x5e},
289 {0x54, 0x80},
290 {0x58, 0x9e},
291 {0x41, 0x08},
292 {0x3f, 0x00},
293 {0x75, 0x04},
294 {0x76, 0xe1},
295 {0x4c, 0x00},
296 {0x77, 0x01},
297 {0x3d, 0xc2},
298 {0x4b, 0x09},
299 {0xc9, 0x60},
300 {0x41, 0x38}, /* jfm: auto sharpness + auto de-noise */
301 {0x56, 0x40},
302 {0x34, 0x11},
303 {0x3b, 0xc2},
304 {0xa4, 0x8a}, /* Night mode trigger point */
305 {0x96, 0x00},
306 {0x97, 0x30},
307 {0x98, 0x20},
308 {0x99, 0x20},
309 {0x9a, 0x84},
310 {0x9b, 0x29},
311 {0x9c, 0x03},
312 {0x9d, 0x4c},
313 {0x9e, 0x3f},
314 {0x78, 0x04},
315 {0x79, 0x01},
316 {0xc8, 0xf0},
317 {0x79, 0x0f},
318 {0xc8, 0x00},
319 {0x79, 0x10},
320 {0xc8, 0x7e},
321 {0x79, 0x0a},
322 {0xc8, 0x80},
323 {0x79, 0x0b},
324 {0xc8, 0x01},
325 {0x79, 0x0c},
326 {0xc8, 0x0f},
327 {0x79, 0x0d},
328 {0xc8, 0x20},
329 {0x79, 0x09},
330 {0xc8, 0x80},
331 {0x79, 0x02},
332 {0xc8, 0xc0},
333 {0x79, 0x03},
334 {0xc8, 0x20},
335 {0x79, 0x26},
337 static const u8 bridge_start_vga_767x[][2] = {
338 /* str59 JPG */
339 {0x94, 0xaa},
340 {0xf1, 0x42},
341 {0xe5, 0x04},
342 {0xc0, 0x50},
343 {0xc1, 0x3c},
344 {0xc2, 0x0c},
345 {0x35, 0x02}, /* turn on JPEG */
346 {0xd9, 0x10},
347 {0xda, 0x00}, /* for higher clock rate(30fps) */
348 {0x34, 0x05}, /* enable Audio Suspend mode */
349 {0xc3, 0xf9}, /* enable PRE */
350 {0x8c, 0x00}, /* CIF VSize LSB[2:0] */
351 {0x8d, 0x1c}, /* output YUV */
352 /* {0x34, 0x05}, * enable Audio Suspend mode (?) */
353 {0x50, 0x00}, /* H/V divider=0 */
354 {0x51, 0xa0}, /* input H=640/4 */
355 {0x52, 0x3c}, /* input V=480/4 */
356 {0x53, 0x00}, /* offset X=0 */
357 {0x54, 0x00}, /* offset Y=0 */
358 {0x55, 0x00}, /* H/V size[8]=0 */
359 {0x57, 0x00}, /* H-size[9]=0 */
360 {0x5c, 0x00}, /* output size[9:8]=0 */
361 {0x5a, 0xa0}, /* output H=640/4 */
362 {0x5b, 0x78}, /* output V=480/4 */
363 {0x1c, 0x0a},
364 {0x1d, 0x0a},
365 {0x94, 0x11},
367 static const u8 sensor_start_vga_767x[][2] = {
368 {0x11, 0x01},
369 {0x1e, 0x04},
370 {0x19, 0x02},
371 {0x1a, 0x7a},
373 static const u8 bridge_start_qvga_767x[][2] = {
374 /* str86 JPG */
375 {0x94, 0xaa},
376 {0xf1, 0x42},
377 {0xe5, 0x04},
378 {0xc0, 0x80},
379 {0xc1, 0x60},
380 {0xc2, 0x0c},
381 {0x35, 0x02}, /* turn on JPEG */
382 {0xd9, 0x10},
383 {0xc0, 0x50}, /* CIF HSize 640 */
384 {0xc1, 0x3c}, /* CIF VSize 480 */
385 {0x8c, 0x00}, /* CIF VSize LSB[2:0] */
386 {0x8d, 0x1c}, /* output YUV */
387 {0x34, 0x05}, /* enable Audio Suspend mode */
388 {0xc2, 0x4c}, /* output YUV and Enable DCW */
389 {0xc3, 0xf9}, /* enable PRE */
390 {0x1c, 0x00}, /* indirect addressing */
391 {0x1d, 0x48}, /* output YUV422 */
392 {0x50, 0x89}, /* H/V divider=/2; plus DCW AVG */
393 {0x51, 0xa0}, /* DCW input H=640/4 */
394 {0x52, 0x78}, /* DCW input V=480/4 */
395 {0x53, 0x00}, /* offset X=0 */
396 {0x54, 0x00}, /* offset Y=0 */
397 {0x55, 0x00}, /* H/V size[8]=0 */
398 {0x57, 0x00}, /* H-size[9]=0 */
399 {0x5c, 0x00}, /* DCW output size[9:8]=0 */
400 {0x5a, 0x50}, /* DCW output H=320/4 */
401 {0x5b, 0x3c}, /* DCW output V=240/4 */
402 {0x1c, 0x0a},
403 {0x1d, 0x0a},
404 {0x94, 0x11},
406 static const u8 sensor_start_qvga_767x[][2] = {
407 {0x11, 0x01},
408 {0x1e, 0x04},
409 {0x19, 0x02},
410 {0x1a, 0x7a},
413 static const u8 bridge_init_772x[][2] = {
414 { 0xc2, 0x0c },
415 { 0x88, 0xf8 },
416 { 0xc3, 0x69 },
417 { 0x89, 0xff },
418 { 0x76, 0x03 },
419 { 0x92, 0x01 },
420 { 0x93, 0x18 },
421 { 0x94, 0x10 },
422 { 0x95, 0x10 },
423 { 0xe2, 0x00 },
424 { 0xe7, 0x3e },
426 { 0x96, 0x00 },
428 { 0x97, 0x20 },
429 { 0x97, 0x20 },
430 { 0x97, 0x20 },
431 { 0x97, 0x0a },
432 { 0x97, 0x3f },
433 { 0x97, 0x4a },
434 { 0x97, 0x20 },
435 { 0x97, 0x15 },
436 { 0x97, 0x0b },
438 { 0x8e, 0x40 },
439 { 0x1f, 0x81 },
440 { 0x34, 0x05 },
441 { 0xe3, 0x04 },
442 { 0x88, 0x00 },
443 { 0x89, 0x00 },
444 { 0x76, 0x00 },
445 { 0xe7, 0x2e },
446 { 0x31, 0xf9 },
447 { 0x25, 0x42 },
448 { 0x21, 0xf0 },
450 { 0x1c, 0x00 },
451 { 0x1d, 0x40 },
452 { 0x1d, 0x02 }, /* payload size 0x0200 * 4 = 2048 bytes */
453 { 0x1d, 0x00 }, /* payload size */
455 { 0x1d, 0x02 }, /* frame size 0x025800 * 4 = 614400 */
456 { 0x1d, 0x58 }, /* frame size */
457 { 0x1d, 0x00 }, /* frame size */
459 { 0x1c, 0x0a },
460 { 0x1d, 0x08 }, /* turn on UVC header */
461 { 0x1d, 0x0e }, /* .. */
463 { 0x8d, 0x1c },
464 { 0x8e, 0x80 },
465 { 0xe5, 0x04 },
467 { 0xc0, 0x50 },
468 { 0xc1, 0x3c },
469 { 0xc2, 0x0c },
471 static const u8 sensor_init_772x[][2] = {
472 { 0x12, 0x80 },
473 { 0x11, 0x01 },
474 /*fixme: better have a delay?*/
475 { 0x11, 0x01 },
476 { 0x11, 0x01 },
477 { 0x11, 0x01 },
478 { 0x11, 0x01 },
479 { 0x11, 0x01 },
480 { 0x11, 0x01 },
481 { 0x11, 0x01 },
482 { 0x11, 0x01 },
483 { 0x11, 0x01 },
484 { 0x11, 0x01 },
486 { 0x3d, 0x03 },
487 { 0x17, 0x26 },
488 { 0x18, 0xa0 },
489 { 0x19, 0x07 },
490 { 0x1a, 0xf0 },
491 { 0x32, 0x00 },
492 { 0x29, 0xa0 },
493 { 0x2c, 0xf0 },
494 { 0x65, 0x20 },
495 { 0x11, 0x01 },
496 { 0x42, 0x7f },
497 { 0x63, 0xaa }, /* AWB - was e0 */
498 { 0x64, 0xff },
499 { 0x66, 0x00 },
500 { 0x13, 0xf0 }, /* com8 */
501 { 0x0d, 0x41 },
502 { 0x0f, 0xc5 },
503 { 0x14, 0x11 },
505 { 0x22, 0x7f },
506 { 0x23, 0x03 },
507 { 0x24, 0x40 },
508 { 0x25, 0x30 },
509 { 0x26, 0xa1 },
510 { 0x2a, 0x00 },
511 { 0x2b, 0x00 },
512 { 0x6b, 0xaa },
513 { 0x13, 0xff }, /* AWB */
515 { 0x90, 0x05 },
516 { 0x91, 0x01 },
517 { 0x92, 0x03 },
518 { 0x93, 0x00 },
519 { 0x94, 0x60 },
520 { 0x95, 0x3c },
521 { 0x96, 0x24 },
522 { 0x97, 0x1e },
523 { 0x98, 0x62 },
524 { 0x99, 0x80 },
525 { 0x9a, 0x1e },
526 { 0x9b, 0x08 },
527 { 0x9c, 0x20 },
528 { 0x9e, 0x81 },
530 { 0xa6, 0x07 },
531 { 0x7e, 0x0c },
532 { 0x7f, 0x16 },
533 { 0x80, 0x2a },
534 { 0x81, 0x4e },
535 { 0x82, 0x61 },
536 { 0x83, 0x6f },
537 { 0x84, 0x7b },
538 { 0x85, 0x86 },
539 { 0x86, 0x8e },
540 { 0x87, 0x97 },
541 { 0x88, 0xa4 },
542 { 0x89, 0xaf },
543 { 0x8a, 0xc5 },
544 { 0x8b, 0xd7 },
545 { 0x8c, 0xe8 },
546 { 0x8d, 0x20 },
548 { 0x0c, 0x90 },
550 { 0x2b, 0x00 },
551 { 0x22, 0x7f },
552 { 0x23, 0x03 },
553 { 0x11, 0x01 },
554 { 0x0c, 0xd0 },
555 { 0x64, 0xff },
556 { 0x0d, 0x41 },
558 { 0x14, 0x41 },
559 { 0x0e, 0xcd },
560 { 0xac, 0xbf },
561 { 0x8e, 0x00 }, /* De-noise threshold */
562 { 0x0c, 0xd0 }
564 static const u8 bridge_start_vga_772x[][2] = {
565 {0x1c, 0x00},
566 {0x1d, 0x40},
567 {0x1d, 0x02},
568 {0x1d, 0x00},
569 {0x1d, 0x02},
570 {0x1d, 0x58},
571 {0x1d, 0x00},
572 {0xc0, 0x50},
573 {0xc1, 0x3c},
575 static const u8 sensor_start_vga_772x[][2] = {
576 {0x12, 0x00},
577 {0x17, 0x26},
578 {0x18, 0xa0},
579 {0x19, 0x07},
580 {0x1a, 0xf0},
581 {0x29, 0xa0},
582 {0x2c, 0xf0},
583 {0x65, 0x20},
585 static const u8 bridge_start_qvga_772x[][2] = {
586 {0x1c, 0x00},
587 {0x1d, 0x40},
588 {0x1d, 0x02},
589 {0x1d, 0x00},
590 {0x1d, 0x01},
591 {0x1d, 0x4b},
592 {0x1d, 0x00},
593 {0xc0, 0x28},
594 {0xc1, 0x1e},
596 static const u8 sensor_start_qvga_772x[][2] = {
597 {0x12, 0x40},
598 {0x17, 0x3f},
599 {0x18, 0x50},
600 {0x19, 0x03},
601 {0x1a, 0x78},
602 {0x29, 0x50},
603 {0x2c, 0x78},
604 {0x65, 0x2f},
607 static void ov534_reg_write(struct gspca_dev *gspca_dev, u16 reg, u8 val)
609 struct usb_device *udev = gspca_dev->dev;
610 int ret;
612 if (gspca_dev->usb_err < 0)
613 return;
615 gspca_dbg(gspca_dev, D_USBO, "SET 01 0000 %04x %02x\n", reg, val);
616 gspca_dev->usb_buf[0] = val;
617 ret = usb_control_msg(udev,
618 usb_sndctrlpipe(udev, 0),
619 0x01,
620 USB_DIR_OUT | USB_TYPE_VENDOR | USB_RECIP_DEVICE,
621 0x00, reg, gspca_dev->usb_buf, 1, CTRL_TIMEOUT);
622 if (ret < 0) {
623 pr_err("write failed %d\n", ret);
624 gspca_dev->usb_err = ret;
628 static u8 ov534_reg_read(struct gspca_dev *gspca_dev, u16 reg)
630 struct usb_device *udev = gspca_dev->dev;
631 int ret;
633 if (gspca_dev->usb_err < 0)
634 return 0;
635 ret = usb_control_msg(udev,
636 usb_rcvctrlpipe(udev, 0),
637 0x01,
638 USB_DIR_IN | USB_TYPE_VENDOR | USB_RECIP_DEVICE,
639 0x00, reg, gspca_dev->usb_buf, 1, CTRL_TIMEOUT);
640 gspca_dbg(gspca_dev, D_USBI, "GET 01 0000 %04x %02x\n",
641 reg, gspca_dev->usb_buf[0]);
642 if (ret < 0) {
643 pr_err("read failed %d\n", ret);
644 gspca_dev->usb_err = ret;
646 return gspca_dev->usb_buf[0];
649 /* Two bits control LED: 0x21 bit 7 and 0x23 bit 7.
650 * (direction and output)? */
651 static void ov534_set_led(struct gspca_dev *gspca_dev, int status)
653 u8 data;
655 gspca_dbg(gspca_dev, D_CONF, "led status: %d\n", status);
657 data = ov534_reg_read(gspca_dev, 0x21);
658 data |= 0x80;
659 ov534_reg_write(gspca_dev, 0x21, data);
661 data = ov534_reg_read(gspca_dev, 0x23);
662 if (status)
663 data |= 0x80;
664 else
665 data &= ~0x80;
667 ov534_reg_write(gspca_dev, 0x23, data);
669 if (!status) {
670 data = ov534_reg_read(gspca_dev, 0x21);
671 data &= ~0x80;
672 ov534_reg_write(gspca_dev, 0x21, data);
676 static int sccb_check_status(struct gspca_dev *gspca_dev)
678 u8 data;
679 int i;
681 for (i = 0; i < 5; i++) {
682 msleep(10);
683 data = ov534_reg_read(gspca_dev, OV534_REG_STATUS);
685 switch (data) {
686 case 0x00:
687 return 1;
688 case 0x04:
689 return 0;
690 case 0x03:
691 break;
692 default:
693 gspca_err(gspca_dev, "sccb status 0x%02x, attempt %d/5\n",
694 data, i + 1);
697 return 0;
700 static void sccb_reg_write(struct gspca_dev *gspca_dev, u8 reg, u8 val)
702 gspca_dbg(gspca_dev, D_USBO, "sccb write: %02x %02x\n", reg, val);
703 ov534_reg_write(gspca_dev, OV534_REG_SUBADDR, reg);
704 ov534_reg_write(gspca_dev, OV534_REG_WRITE, val);
705 ov534_reg_write(gspca_dev, OV534_REG_OPERATION, OV534_OP_WRITE_3);
707 if (!sccb_check_status(gspca_dev)) {
708 pr_err("sccb_reg_write failed\n");
709 gspca_dev->usb_err = -EIO;
713 static u8 sccb_reg_read(struct gspca_dev *gspca_dev, u16 reg)
715 ov534_reg_write(gspca_dev, OV534_REG_SUBADDR, reg);
716 ov534_reg_write(gspca_dev, OV534_REG_OPERATION, OV534_OP_WRITE_2);
717 if (!sccb_check_status(gspca_dev))
718 pr_err("sccb_reg_read failed 1\n");
720 ov534_reg_write(gspca_dev, OV534_REG_OPERATION, OV534_OP_READ_2);
721 if (!sccb_check_status(gspca_dev))
722 pr_err("sccb_reg_read failed 2\n");
724 return ov534_reg_read(gspca_dev, OV534_REG_READ);
727 /* output a bridge sequence (reg - val) */
728 static void reg_w_array(struct gspca_dev *gspca_dev,
729 const u8 (*data)[2], int len)
731 while (--len >= 0) {
732 ov534_reg_write(gspca_dev, (*data)[0], (*data)[1]);
733 data++;
737 /* output a sensor sequence (reg - val) */
738 static void sccb_w_array(struct gspca_dev *gspca_dev,
739 const u8 (*data)[2], int len)
741 while (--len >= 0) {
742 if ((*data)[0] != 0xff) {
743 sccb_reg_write(gspca_dev, (*data)[0], (*data)[1]);
744 } else {
745 sccb_reg_read(gspca_dev, (*data)[1]);
746 sccb_reg_write(gspca_dev, 0xff, 0x00);
748 data++;
752 /* ov772x specific controls */
753 static void set_frame_rate(struct gspca_dev *gspca_dev)
755 struct sd *sd = (struct sd *) gspca_dev;
756 int i;
757 struct rate_s {
758 u8 fps;
759 u8 r11;
760 u8 r0d;
761 u8 re5;
763 const struct rate_s *r;
764 static const struct rate_s rate_0[] = { /* 640x480 */
765 {60, 0x01, 0xc1, 0x04},
766 {50, 0x01, 0x41, 0x02},
767 {40, 0x02, 0xc1, 0x04},
768 {30, 0x04, 0x81, 0x02},
769 {15, 0x03, 0x41, 0x04},
771 static const struct rate_s rate_1[] = { /* 320x240 */
772 /* {205, 0x01, 0xc1, 0x02}, * 205 FPS: video is partly corrupt */
773 {187, 0x01, 0x81, 0x02}, /* 187 FPS or below: video is valid */
774 {150, 0x01, 0xc1, 0x04},
775 {137, 0x02, 0xc1, 0x02},
776 {125, 0x02, 0x81, 0x02},
777 {100, 0x02, 0xc1, 0x04},
778 {75, 0x03, 0xc1, 0x04},
779 {60, 0x04, 0xc1, 0x04},
780 {50, 0x02, 0x41, 0x04},
781 {37, 0x03, 0x41, 0x04},
782 {30, 0x04, 0x41, 0x04},
785 if (sd->sensor != SENSOR_OV772x)
786 return;
787 if (gspca_dev->cam.cam_mode[gspca_dev->curr_mode].priv == 0) {
788 r = rate_0;
789 i = ARRAY_SIZE(rate_0);
790 } else {
791 r = rate_1;
792 i = ARRAY_SIZE(rate_1);
794 while (--i > 0) {
795 if (sd->frame_rate >= r->fps)
796 break;
797 r++;
800 sccb_reg_write(gspca_dev, 0x11, r->r11);
801 sccb_reg_write(gspca_dev, 0x0d, r->r0d);
802 ov534_reg_write(gspca_dev, 0xe5, r->re5);
804 gspca_dbg(gspca_dev, D_PROBE, "frame_rate: %d\n", r->fps);
807 static void sethue(struct gspca_dev *gspca_dev, s32 val)
809 struct sd *sd = (struct sd *) gspca_dev;
811 if (sd->sensor == SENSOR_OV767x) {
812 /* TBD */
813 } else {
814 s16 huesin;
815 s16 huecos;
817 /* According to the datasheet the registers expect HUESIN and
818 * HUECOS to be the result of the trigonometric functions,
819 * scaled by 0x80.
821 * The 0x7fff here represents the maximum absolute value
822 * returned byt fixp_sin and fixp_cos, so the scaling will
823 * consider the result like in the interval [-1.0, 1.0].
825 huesin = fixp_sin16(val) * 0x80 / 0x7fff;
826 huecos = fixp_cos16(val) * 0x80 / 0x7fff;
828 if (huesin < 0) {
829 sccb_reg_write(gspca_dev, 0xab,
830 sccb_reg_read(gspca_dev, 0xab) | 0x2);
831 huesin = -huesin;
832 } else {
833 sccb_reg_write(gspca_dev, 0xab,
834 sccb_reg_read(gspca_dev, 0xab) & ~0x2);
837 sccb_reg_write(gspca_dev, 0xa9, (u8)huecos);
838 sccb_reg_write(gspca_dev, 0xaa, (u8)huesin);
842 static void setsaturation(struct gspca_dev *gspca_dev, s32 val)
844 struct sd *sd = (struct sd *) gspca_dev;
846 if (sd->sensor == SENSOR_OV767x) {
847 int i;
848 static u8 color_tb[][6] = {
849 {0x42, 0x42, 0x00, 0x11, 0x30, 0x41},
850 {0x52, 0x52, 0x00, 0x16, 0x3c, 0x52},
851 {0x66, 0x66, 0x00, 0x1b, 0x4b, 0x66},
852 {0x80, 0x80, 0x00, 0x22, 0x5e, 0x80},
853 {0x9a, 0x9a, 0x00, 0x29, 0x71, 0x9a},
854 {0xb8, 0xb8, 0x00, 0x31, 0x87, 0xb8},
855 {0xdd, 0xdd, 0x00, 0x3b, 0xa2, 0xdd},
858 for (i = 0; i < ARRAY_SIZE(color_tb[0]); i++)
859 sccb_reg_write(gspca_dev, 0x4f + i, color_tb[val][i]);
860 } else {
861 sccb_reg_write(gspca_dev, 0xa7, val); /* U saturation */
862 sccb_reg_write(gspca_dev, 0xa8, val); /* V saturation */
866 static void setbrightness(struct gspca_dev *gspca_dev, s32 val)
868 struct sd *sd = (struct sd *) gspca_dev;
870 if (sd->sensor == SENSOR_OV767x) {
871 if (val < 0)
872 val = 0x80 - val;
873 sccb_reg_write(gspca_dev, 0x55, val); /* bright */
874 } else {
875 sccb_reg_write(gspca_dev, 0x9b, val);
879 static void setcontrast(struct gspca_dev *gspca_dev, s32 val)
881 struct sd *sd = (struct sd *) gspca_dev;
883 if (sd->sensor == SENSOR_OV767x)
884 sccb_reg_write(gspca_dev, 0x56, val); /* contras */
885 else
886 sccb_reg_write(gspca_dev, 0x9c, val);
889 static void setgain(struct gspca_dev *gspca_dev, s32 val)
891 switch (val & 0x30) {
892 case 0x00:
893 val &= 0x0f;
894 break;
895 case 0x10:
896 val &= 0x0f;
897 val |= 0x30;
898 break;
899 case 0x20:
900 val &= 0x0f;
901 val |= 0x70;
902 break;
903 default:
904 /* case 0x30: */
905 val &= 0x0f;
906 val |= 0xf0;
907 break;
909 sccb_reg_write(gspca_dev, 0x00, val);
912 static s32 getgain(struct gspca_dev *gspca_dev)
914 return sccb_reg_read(gspca_dev, 0x00);
917 static void setexposure(struct gspca_dev *gspca_dev, s32 val)
919 struct sd *sd = (struct sd *) gspca_dev;
921 if (sd->sensor == SENSOR_OV767x) {
923 /* set only aec[9:2] */
924 sccb_reg_write(gspca_dev, 0x10, val); /* aech */
925 } else {
927 /* 'val' is one byte and represents half of the exposure value
928 * we are going to set into registers, a two bytes value:
930 * MSB: ((u16) val << 1) >> 8 == val >> 7
931 * LSB: ((u16) val << 1) & 0xff == val << 1
933 sccb_reg_write(gspca_dev, 0x08, val >> 7);
934 sccb_reg_write(gspca_dev, 0x10, val << 1);
938 static s32 getexposure(struct gspca_dev *gspca_dev)
940 struct sd *sd = (struct sd *) gspca_dev;
942 if (sd->sensor == SENSOR_OV767x) {
943 /* get only aec[9:2] */
944 return sccb_reg_read(gspca_dev, 0x10); /* aech */
945 } else {
946 u8 hi = sccb_reg_read(gspca_dev, 0x08);
947 u8 lo = sccb_reg_read(gspca_dev, 0x10);
948 return (hi << 8 | lo) >> 1;
952 static void setagc(struct gspca_dev *gspca_dev, s32 val)
954 if (val) {
955 sccb_reg_write(gspca_dev, 0x13,
956 sccb_reg_read(gspca_dev, 0x13) | 0x04);
957 sccb_reg_write(gspca_dev, 0x64,
958 sccb_reg_read(gspca_dev, 0x64) | 0x03);
959 } else {
960 sccb_reg_write(gspca_dev, 0x13,
961 sccb_reg_read(gspca_dev, 0x13) & ~0x04);
962 sccb_reg_write(gspca_dev, 0x64,
963 sccb_reg_read(gspca_dev, 0x64) & ~0x03);
967 static void setawb(struct gspca_dev *gspca_dev, s32 val)
969 struct sd *sd = (struct sd *) gspca_dev;
971 if (val) {
972 sccb_reg_write(gspca_dev, 0x13,
973 sccb_reg_read(gspca_dev, 0x13) | 0x02);
974 if (sd->sensor == SENSOR_OV772x)
975 sccb_reg_write(gspca_dev, 0x63,
976 sccb_reg_read(gspca_dev, 0x63) | 0xc0);
977 } else {
978 sccb_reg_write(gspca_dev, 0x13,
979 sccb_reg_read(gspca_dev, 0x13) & ~0x02);
980 if (sd->sensor == SENSOR_OV772x)
981 sccb_reg_write(gspca_dev, 0x63,
982 sccb_reg_read(gspca_dev, 0x63) & ~0xc0);
986 static void setaec(struct gspca_dev *gspca_dev, s32 val)
988 struct sd *sd = (struct sd *) gspca_dev;
989 u8 data;
991 data = sd->sensor == SENSOR_OV767x ?
992 0x05 : /* agc + aec */
993 0x01; /* agc */
994 switch (val) {
995 case V4L2_EXPOSURE_AUTO:
996 sccb_reg_write(gspca_dev, 0x13,
997 sccb_reg_read(gspca_dev, 0x13) | data);
998 break;
999 case V4L2_EXPOSURE_MANUAL:
1000 sccb_reg_write(gspca_dev, 0x13,
1001 sccb_reg_read(gspca_dev, 0x13) & ~data);
1002 break;
1006 static void setsharpness(struct gspca_dev *gspca_dev, s32 val)
1008 sccb_reg_write(gspca_dev, 0x91, val); /* Auto de-noise threshold */
1009 sccb_reg_write(gspca_dev, 0x8e, val); /* De-noise threshold */
1012 static void sethvflip(struct gspca_dev *gspca_dev, s32 hflip, s32 vflip)
1014 struct sd *sd = (struct sd *) gspca_dev;
1015 u8 val;
1017 if (sd->sensor == SENSOR_OV767x) {
1018 val = sccb_reg_read(gspca_dev, 0x1e); /* mvfp */
1019 val &= ~0x30;
1020 if (hflip)
1021 val |= 0x20;
1022 if (vflip)
1023 val |= 0x10;
1024 sccb_reg_write(gspca_dev, 0x1e, val);
1025 } else {
1026 val = sccb_reg_read(gspca_dev, 0x0c);
1027 val &= ~0xc0;
1028 if (hflip == 0)
1029 val |= 0x40;
1030 if (vflip == 0)
1031 val |= 0x80;
1032 sccb_reg_write(gspca_dev, 0x0c, val);
1036 static void setlightfreq(struct gspca_dev *gspca_dev, s32 val)
1038 struct sd *sd = (struct sd *) gspca_dev;
1040 val = val ? 0x9e : 0x00;
1041 if (sd->sensor == SENSOR_OV767x) {
1042 sccb_reg_write(gspca_dev, 0x2a, 0x00);
1043 if (val)
1044 val = 0x9d; /* insert dummy to 25fps for 50Hz */
1046 sccb_reg_write(gspca_dev, 0x2b, val);
1050 /* this function is called at probe time */
1051 static int sd_config(struct gspca_dev *gspca_dev,
1052 const struct usb_device_id *id)
1054 struct sd *sd = (struct sd *) gspca_dev;
1055 struct cam *cam;
1057 cam = &gspca_dev->cam;
1059 cam->cam_mode = ov772x_mode;
1060 cam->nmodes = ARRAY_SIZE(ov772x_mode);
1062 sd->frame_rate = DEFAULT_FRAME_RATE;
1064 return 0;
1067 static int ov534_g_volatile_ctrl(struct v4l2_ctrl *ctrl)
1069 struct sd *sd = container_of(ctrl->handler, struct sd, ctrl_handler);
1070 struct gspca_dev *gspca_dev = &sd->gspca_dev;
1072 switch (ctrl->id) {
1073 case V4L2_CID_AUTOGAIN:
1074 gspca_dev->usb_err = 0;
1075 if (ctrl->val && sd->gain && gspca_dev->streaming)
1076 sd->gain->val = getgain(gspca_dev);
1077 return gspca_dev->usb_err;
1079 case V4L2_CID_EXPOSURE_AUTO:
1080 gspca_dev->usb_err = 0;
1081 if (ctrl->val == V4L2_EXPOSURE_AUTO && sd->exposure &&
1082 gspca_dev->streaming)
1083 sd->exposure->val = getexposure(gspca_dev);
1084 return gspca_dev->usb_err;
1086 return -EINVAL;
1089 static int ov534_s_ctrl(struct v4l2_ctrl *ctrl)
1091 struct sd *sd = container_of(ctrl->handler, struct sd, ctrl_handler);
1092 struct gspca_dev *gspca_dev = &sd->gspca_dev;
1094 gspca_dev->usb_err = 0;
1095 if (!gspca_dev->streaming)
1096 return 0;
1098 switch (ctrl->id) {
1099 case V4L2_CID_HUE:
1100 sethue(gspca_dev, ctrl->val);
1101 break;
1102 case V4L2_CID_SATURATION:
1103 setsaturation(gspca_dev, ctrl->val);
1104 break;
1105 case V4L2_CID_BRIGHTNESS:
1106 setbrightness(gspca_dev, ctrl->val);
1107 break;
1108 case V4L2_CID_CONTRAST:
1109 setcontrast(gspca_dev, ctrl->val);
1110 break;
1111 case V4L2_CID_AUTOGAIN:
1112 /* case V4L2_CID_GAIN: */
1113 setagc(gspca_dev, ctrl->val);
1114 if (!gspca_dev->usb_err && !ctrl->val && sd->gain)
1115 setgain(gspca_dev, sd->gain->val);
1116 break;
1117 case V4L2_CID_AUTO_WHITE_BALANCE:
1118 setawb(gspca_dev, ctrl->val);
1119 break;
1120 case V4L2_CID_EXPOSURE_AUTO:
1121 /* case V4L2_CID_EXPOSURE: */
1122 setaec(gspca_dev, ctrl->val);
1123 if (!gspca_dev->usb_err && ctrl->val == V4L2_EXPOSURE_MANUAL &&
1124 sd->exposure)
1125 setexposure(gspca_dev, sd->exposure->val);
1126 break;
1127 case V4L2_CID_SHARPNESS:
1128 setsharpness(gspca_dev, ctrl->val);
1129 break;
1130 case V4L2_CID_HFLIP:
1131 sethvflip(gspca_dev, ctrl->val, sd->vflip->val);
1132 break;
1133 case V4L2_CID_VFLIP:
1134 sethvflip(gspca_dev, sd->hflip->val, ctrl->val);
1135 break;
1136 case V4L2_CID_POWER_LINE_FREQUENCY:
1137 setlightfreq(gspca_dev, ctrl->val);
1138 break;
1140 return gspca_dev->usb_err;
1143 static const struct v4l2_ctrl_ops ov534_ctrl_ops = {
1144 .g_volatile_ctrl = ov534_g_volatile_ctrl,
1145 .s_ctrl = ov534_s_ctrl,
1148 static int sd_init_controls(struct gspca_dev *gspca_dev)
1150 struct sd *sd = (struct sd *) gspca_dev;
1151 struct v4l2_ctrl_handler *hdl = &sd->ctrl_handler;
1152 /* parameters with different values between the supported sensors */
1153 int saturation_min;
1154 int saturation_max;
1155 int saturation_def;
1156 int brightness_min;
1157 int brightness_max;
1158 int brightness_def;
1159 int contrast_max;
1160 int contrast_def;
1161 int exposure_min;
1162 int exposure_max;
1163 int exposure_def;
1164 int hflip_def;
1166 if (sd->sensor == SENSOR_OV767x) {
1167 saturation_min = 0,
1168 saturation_max = 6,
1169 saturation_def = 3,
1170 brightness_min = -127;
1171 brightness_max = 127;
1172 brightness_def = 0;
1173 contrast_max = 0x80;
1174 contrast_def = 0x40;
1175 exposure_min = 0x08;
1176 exposure_max = 0x60;
1177 exposure_def = 0x13;
1178 hflip_def = 1;
1179 } else {
1180 saturation_min = 0,
1181 saturation_max = 255,
1182 saturation_def = 64,
1183 brightness_min = 0;
1184 brightness_max = 255;
1185 brightness_def = 0;
1186 contrast_max = 255;
1187 contrast_def = 32;
1188 exposure_min = 0;
1189 exposure_max = 255;
1190 exposure_def = 120;
1191 hflip_def = 0;
1194 gspca_dev->vdev.ctrl_handler = hdl;
1196 v4l2_ctrl_handler_init(hdl, 13);
1198 if (sd->sensor == SENSOR_OV772x)
1199 sd->hue = v4l2_ctrl_new_std(hdl, &ov534_ctrl_ops,
1200 V4L2_CID_HUE, -90, 90, 1, 0);
1202 sd->saturation = v4l2_ctrl_new_std(hdl, &ov534_ctrl_ops,
1203 V4L2_CID_SATURATION, saturation_min, saturation_max, 1,
1204 saturation_def);
1205 sd->brightness = v4l2_ctrl_new_std(hdl, &ov534_ctrl_ops,
1206 V4L2_CID_BRIGHTNESS, brightness_min, brightness_max, 1,
1207 brightness_def);
1208 sd->contrast = v4l2_ctrl_new_std(hdl, &ov534_ctrl_ops,
1209 V4L2_CID_CONTRAST, 0, contrast_max, 1, contrast_def);
1211 if (sd->sensor == SENSOR_OV772x) {
1212 sd->autogain = v4l2_ctrl_new_std(hdl, &ov534_ctrl_ops,
1213 V4L2_CID_AUTOGAIN, 0, 1, 1, 1);
1214 sd->gain = v4l2_ctrl_new_std(hdl, &ov534_ctrl_ops,
1215 V4L2_CID_GAIN, 0, 63, 1, 20);
1218 sd->autoexposure = v4l2_ctrl_new_std_menu(hdl, &ov534_ctrl_ops,
1219 V4L2_CID_EXPOSURE_AUTO,
1220 V4L2_EXPOSURE_MANUAL, 0,
1221 V4L2_EXPOSURE_AUTO);
1222 sd->exposure = v4l2_ctrl_new_std(hdl, &ov534_ctrl_ops,
1223 V4L2_CID_EXPOSURE, exposure_min, exposure_max, 1,
1224 exposure_def);
1226 sd->autowhitebalance = v4l2_ctrl_new_std(hdl, &ov534_ctrl_ops,
1227 V4L2_CID_AUTO_WHITE_BALANCE, 0, 1, 1, 1);
1229 if (sd->sensor == SENSOR_OV772x)
1230 sd->sharpness = v4l2_ctrl_new_std(hdl, &ov534_ctrl_ops,
1231 V4L2_CID_SHARPNESS, 0, 63, 1, 0);
1233 sd->hflip = v4l2_ctrl_new_std(hdl, &ov534_ctrl_ops,
1234 V4L2_CID_HFLIP, 0, 1, 1, hflip_def);
1235 sd->vflip = v4l2_ctrl_new_std(hdl, &ov534_ctrl_ops,
1236 V4L2_CID_VFLIP, 0, 1, 1, 0);
1237 sd->plfreq = v4l2_ctrl_new_std_menu(hdl, &ov534_ctrl_ops,
1238 V4L2_CID_POWER_LINE_FREQUENCY,
1239 V4L2_CID_POWER_LINE_FREQUENCY_50HZ, 0,
1240 V4L2_CID_POWER_LINE_FREQUENCY_DISABLED);
1242 if (hdl->error) {
1243 pr_err("Could not initialize controls\n");
1244 return hdl->error;
1247 if (sd->sensor == SENSOR_OV772x)
1248 v4l2_ctrl_auto_cluster(2, &sd->autogain, 0, true);
1250 v4l2_ctrl_auto_cluster(2, &sd->autoexposure, V4L2_EXPOSURE_MANUAL,
1251 true);
1253 return 0;
1256 /* this function is called at probe and resume time */
1257 static int sd_init(struct gspca_dev *gspca_dev)
1259 struct sd *sd = (struct sd *) gspca_dev;
1260 u16 sensor_id;
1261 static const struct reg_array bridge_init[NSENSORS] = {
1262 [SENSOR_OV767x] = {bridge_init_767x, ARRAY_SIZE(bridge_init_767x)},
1263 [SENSOR_OV772x] = {bridge_init_772x, ARRAY_SIZE(bridge_init_772x)},
1265 static const struct reg_array sensor_init[NSENSORS] = {
1266 [SENSOR_OV767x] = {sensor_init_767x, ARRAY_SIZE(sensor_init_767x)},
1267 [SENSOR_OV772x] = {sensor_init_772x, ARRAY_SIZE(sensor_init_772x)},
1270 /* reset bridge */
1271 ov534_reg_write(gspca_dev, 0xe7, 0x3a);
1272 ov534_reg_write(gspca_dev, 0xe0, 0x08);
1273 msleep(100);
1275 /* initialize the sensor address */
1276 ov534_reg_write(gspca_dev, OV534_REG_ADDRESS, 0x42);
1278 /* reset sensor */
1279 sccb_reg_write(gspca_dev, 0x12, 0x80);
1280 msleep(10);
1282 /* probe the sensor */
1283 sccb_reg_read(gspca_dev, 0x0a);
1284 sensor_id = sccb_reg_read(gspca_dev, 0x0a) << 8;
1285 sccb_reg_read(gspca_dev, 0x0b);
1286 sensor_id |= sccb_reg_read(gspca_dev, 0x0b);
1287 gspca_dbg(gspca_dev, D_PROBE, "Sensor ID: %04x\n", sensor_id);
1289 if ((sensor_id & 0xfff0) == 0x7670) {
1290 sd->sensor = SENSOR_OV767x;
1291 gspca_dev->cam.cam_mode = ov767x_mode;
1292 gspca_dev->cam.nmodes = ARRAY_SIZE(ov767x_mode);
1293 } else {
1294 sd->sensor = SENSOR_OV772x;
1295 gspca_dev->cam.bulk = 1;
1296 gspca_dev->cam.bulk_size = 16384;
1297 gspca_dev->cam.bulk_nurbs = 2;
1298 gspca_dev->cam.mode_framerates = ov772x_framerates;
1301 /* initialize */
1302 reg_w_array(gspca_dev, bridge_init[sd->sensor].val,
1303 bridge_init[sd->sensor].len);
1304 ov534_set_led(gspca_dev, 1);
1305 sccb_w_array(gspca_dev, sensor_init[sd->sensor].val,
1306 sensor_init[sd->sensor].len);
1308 sd_stopN(gspca_dev);
1309 /* set_frame_rate(gspca_dev); */
1311 return gspca_dev->usb_err;
1314 static int sd_start(struct gspca_dev *gspca_dev)
1316 struct sd *sd = (struct sd *) gspca_dev;
1317 int mode;
1318 static const struct reg_array bridge_start[NSENSORS][2] = {
1319 [SENSOR_OV767x] = {{bridge_start_qvga_767x,
1320 ARRAY_SIZE(bridge_start_qvga_767x)},
1321 {bridge_start_vga_767x,
1322 ARRAY_SIZE(bridge_start_vga_767x)}},
1323 [SENSOR_OV772x] = {{bridge_start_qvga_772x,
1324 ARRAY_SIZE(bridge_start_qvga_772x)},
1325 {bridge_start_vga_772x,
1326 ARRAY_SIZE(bridge_start_vga_772x)}},
1328 static const struct reg_array sensor_start[NSENSORS][2] = {
1329 [SENSOR_OV767x] = {{sensor_start_qvga_767x,
1330 ARRAY_SIZE(sensor_start_qvga_767x)},
1331 {sensor_start_vga_767x,
1332 ARRAY_SIZE(sensor_start_vga_767x)}},
1333 [SENSOR_OV772x] = {{sensor_start_qvga_772x,
1334 ARRAY_SIZE(sensor_start_qvga_772x)},
1335 {sensor_start_vga_772x,
1336 ARRAY_SIZE(sensor_start_vga_772x)}},
1339 /* (from ms-win trace) */
1340 if (sd->sensor == SENSOR_OV767x)
1341 sccb_reg_write(gspca_dev, 0x1e, 0x04);
1342 /* black sun enable ? */
1344 mode = gspca_dev->curr_mode; /* 0: 320x240, 1: 640x480 */
1345 reg_w_array(gspca_dev, bridge_start[sd->sensor][mode].val,
1346 bridge_start[sd->sensor][mode].len);
1347 sccb_w_array(gspca_dev, sensor_start[sd->sensor][mode].val,
1348 sensor_start[sd->sensor][mode].len);
1350 set_frame_rate(gspca_dev);
1352 if (sd->hue)
1353 sethue(gspca_dev, v4l2_ctrl_g_ctrl(sd->hue));
1354 setsaturation(gspca_dev, v4l2_ctrl_g_ctrl(sd->saturation));
1355 if (sd->autogain)
1356 setagc(gspca_dev, v4l2_ctrl_g_ctrl(sd->autogain));
1357 setawb(gspca_dev, v4l2_ctrl_g_ctrl(sd->autowhitebalance));
1358 setaec(gspca_dev, v4l2_ctrl_g_ctrl(sd->autoexposure));
1359 if (sd->gain)
1360 setgain(gspca_dev, v4l2_ctrl_g_ctrl(sd->gain));
1361 setexposure(gspca_dev, v4l2_ctrl_g_ctrl(sd->exposure));
1362 setbrightness(gspca_dev, v4l2_ctrl_g_ctrl(sd->brightness));
1363 setcontrast(gspca_dev, v4l2_ctrl_g_ctrl(sd->contrast));
1364 if (sd->sharpness)
1365 setsharpness(gspca_dev, v4l2_ctrl_g_ctrl(sd->sharpness));
1366 sethvflip(gspca_dev, v4l2_ctrl_g_ctrl(sd->hflip),
1367 v4l2_ctrl_g_ctrl(sd->vflip));
1368 setlightfreq(gspca_dev, v4l2_ctrl_g_ctrl(sd->plfreq));
1370 ov534_set_led(gspca_dev, 1);
1371 ov534_reg_write(gspca_dev, 0xe0, 0x00);
1372 return gspca_dev->usb_err;
1375 static void sd_stopN(struct gspca_dev *gspca_dev)
1377 ov534_reg_write(gspca_dev, 0xe0, 0x09);
1378 ov534_set_led(gspca_dev, 0);
1381 /* Values for bmHeaderInfo (Video and Still Image Payload Headers, 2.4.3.3) */
1382 #define UVC_STREAM_EOH (1 << 7)
1383 #define UVC_STREAM_ERR (1 << 6)
1384 #define UVC_STREAM_STI (1 << 5)
1385 #define UVC_STREAM_RES (1 << 4)
1386 #define UVC_STREAM_SCR (1 << 3)
1387 #define UVC_STREAM_PTS (1 << 2)
1388 #define UVC_STREAM_EOF (1 << 1)
1389 #define UVC_STREAM_FID (1 << 0)
1391 static void sd_pkt_scan(struct gspca_dev *gspca_dev,
1392 u8 *data, int len)
1394 struct sd *sd = (struct sd *) gspca_dev;
1395 __u32 this_pts;
1396 u16 this_fid;
1397 int remaining_len = len;
1398 int payload_len;
1400 payload_len = gspca_dev->cam.bulk ? 2048 : 2040;
1401 do {
1402 len = min(remaining_len, payload_len);
1404 /* Payloads are prefixed with a UVC-style header. We
1405 consider a frame to start when the FID toggles, or the PTS
1406 changes. A frame ends when EOF is set, and we've received
1407 the correct number of bytes. */
1409 /* Verify UVC header. Header length is always 12 */
1410 if (data[0] != 12 || len < 12) {
1411 gspca_dbg(gspca_dev, D_PACK, "bad header\n");
1412 goto discard;
1415 /* Check errors */
1416 if (data[1] & UVC_STREAM_ERR) {
1417 gspca_dbg(gspca_dev, D_PACK, "payload error\n");
1418 goto discard;
1421 /* Extract PTS and FID */
1422 if (!(data[1] & UVC_STREAM_PTS)) {
1423 gspca_dbg(gspca_dev, D_PACK, "PTS not present\n");
1424 goto discard;
1426 this_pts = (data[5] << 24) | (data[4] << 16)
1427 | (data[3] << 8) | data[2];
1428 this_fid = (data[1] & UVC_STREAM_FID) ? 1 : 0;
1430 /* If PTS or FID has changed, start a new frame. */
1431 if (this_pts != sd->last_pts || this_fid != sd->last_fid) {
1432 if (gspca_dev->last_packet_type == INTER_PACKET)
1433 gspca_frame_add(gspca_dev, LAST_PACKET,
1434 NULL, 0);
1435 sd->last_pts = this_pts;
1436 sd->last_fid = this_fid;
1437 gspca_frame_add(gspca_dev, FIRST_PACKET,
1438 data + 12, len - 12);
1439 /* If this packet is marked as EOF, end the frame */
1440 } else if (data[1] & UVC_STREAM_EOF) {
1441 sd->last_pts = 0;
1442 if (gspca_dev->pixfmt.pixelformat == V4L2_PIX_FMT_YUYV
1443 && gspca_dev->image_len + len - 12 !=
1444 gspca_dev->pixfmt.width *
1445 gspca_dev->pixfmt.height * 2) {
1446 gspca_dbg(gspca_dev, D_PACK, "wrong sized frame\n");
1447 goto discard;
1449 gspca_frame_add(gspca_dev, LAST_PACKET,
1450 data + 12, len - 12);
1451 } else {
1453 /* Add the data from this payload */
1454 gspca_frame_add(gspca_dev, INTER_PACKET,
1455 data + 12, len - 12);
1458 /* Done this payload */
1459 goto scan_next;
1461 discard:
1462 /* Discard data until a new frame starts. */
1463 gspca_dev->last_packet_type = DISCARD_PACKET;
1465 scan_next:
1466 remaining_len -= len;
1467 data += len;
1468 } while (remaining_len > 0);
1471 /* get stream parameters (framerate) */
1472 static void sd_get_streamparm(struct gspca_dev *gspca_dev,
1473 struct v4l2_streamparm *parm)
1475 struct v4l2_captureparm *cp = &parm->parm.capture;
1476 struct v4l2_fract *tpf = &cp->timeperframe;
1477 struct sd *sd = (struct sd *) gspca_dev;
1479 cp->capability |= V4L2_CAP_TIMEPERFRAME;
1480 tpf->numerator = 1;
1481 tpf->denominator = sd->frame_rate;
1484 /* set stream parameters (framerate) */
1485 static void sd_set_streamparm(struct gspca_dev *gspca_dev,
1486 struct v4l2_streamparm *parm)
1488 struct v4l2_captureparm *cp = &parm->parm.capture;
1489 struct v4l2_fract *tpf = &cp->timeperframe;
1490 struct sd *sd = (struct sd *) gspca_dev;
1492 if (tpf->numerator == 0 || tpf->denominator == 0)
1493 sd->frame_rate = DEFAULT_FRAME_RATE;
1494 else
1495 sd->frame_rate = tpf->denominator / tpf->numerator;
1497 if (gspca_dev->streaming)
1498 set_frame_rate(gspca_dev);
1500 /* Return the actual framerate */
1501 tpf->numerator = 1;
1502 tpf->denominator = sd->frame_rate;
1505 /* sub-driver description */
1506 static const struct sd_desc sd_desc = {
1507 .name = MODULE_NAME,
1508 .config = sd_config,
1509 .init = sd_init,
1510 .init_controls = sd_init_controls,
1511 .start = sd_start,
1512 .stopN = sd_stopN,
1513 .pkt_scan = sd_pkt_scan,
1514 .get_streamparm = sd_get_streamparm,
1515 .set_streamparm = sd_set_streamparm,
1518 /* -- module initialisation -- */
1519 static const struct usb_device_id device_table[] = {
1520 {USB_DEVICE(0x1415, 0x2000)},
1521 {USB_DEVICE(0x06f8, 0x3002)},
1525 MODULE_DEVICE_TABLE(usb, device_table);
1527 /* -- device connect -- */
1528 static int sd_probe(struct usb_interface *intf, const struct usb_device_id *id)
1530 return gspca_dev_probe(intf, id, &sd_desc, sizeof(struct sd),
1531 THIS_MODULE);
1534 static struct usb_driver sd_driver = {
1535 .name = MODULE_NAME,
1536 .id_table = device_table,
1537 .probe = sd_probe,
1538 .disconnect = gspca_disconnect,
1539 #ifdef CONFIG_PM
1540 .suspend = gspca_suspend,
1541 .resume = gspca_resume,
1542 .reset_resume = gspca_resume,
1543 #endif
1546 module_usb_driver(sd_driver);