x86/topology: Fix function name in documentation
[cris-mirror.git] / drivers / mmc / core / block.c
blob20135a5de748846ec9101b5b88860d6da3c3850e
1 /*
2 * Block driver for media (i.e., flash cards)
4 * Copyright 2002 Hewlett-Packard Company
5 * Copyright 2005-2008 Pierre Ossman
7 * Use consistent with the GNU GPL is permitted,
8 * provided that this copyright notice is
9 * preserved in its entirety in all copies and derived works.
11 * HEWLETT-PACKARD COMPANY MAKES NO WARRANTIES, EXPRESSED OR IMPLIED,
12 * AS TO THE USEFULNESS OR CORRECTNESS OF THIS CODE OR ITS
13 * FITNESS FOR ANY PARTICULAR PURPOSE.
15 * Many thanks to Alessandro Rubini and Jonathan Corbet!
17 * Author: Andrew Christian
18 * 28 May 2002
20 #include <linux/moduleparam.h>
21 #include <linux/module.h>
22 #include <linux/init.h>
24 #include <linux/kernel.h>
25 #include <linux/fs.h>
26 #include <linux/slab.h>
27 #include <linux/errno.h>
28 #include <linux/hdreg.h>
29 #include <linux/kdev_t.h>
30 #include <linux/blkdev.h>
31 #include <linux/cdev.h>
32 #include <linux/mutex.h>
33 #include <linux/scatterlist.h>
34 #include <linux/string_helpers.h>
35 #include <linux/delay.h>
36 #include <linux/capability.h>
37 #include <linux/compat.h>
38 #include <linux/pm_runtime.h>
39 #include <linux/idr.h>
40 #include <linux/debugfs.h>
42 #include <linux/mmc/ioctl.h>
43 #include <linux/mmc/card.h>
44 #include <linux/mmc/host.h>
45 #include <linux/mmc/mmc.h>
46 #include <linux/mmc/sd.h>
48 #include <linux/uaccess.h>
50 #include "queue.h"
51 #include "block.h"
52 #include "core.h"
53 #include "card.h"
54 #include "host.h"
55 #include "bus.h"
56 #include "mmc_ops.h"
57 #include "quirks.h"
58 #include "sd_ops.h"
60 MODULE_ALIAS("mmc:block");
61 #ifdef MODULE_PARAM_PREFIX
62 #undef MODULE_PARAM_PREFIX
63 #endif
64 #define MODULE_PARAM_PREFIX "mmcblk."
67 * Set a 10 second timeout for polling write request busy state. Note, mmc core
68 * is setting a 3 second timeout for SD cards, and SDHCI has long had a 10
69 * second software timer to timeout the whole request, so 10 seconds should be
70 * ample.
72 #define MMC_BLK_TIMEOUT_MS (10 * 1000)
73 #define MMC_SANITIZE_REQ_TIMEOUT 240000
74 #define MMC_EXTRACT_INDEX_FROM_ARG(x) ((x & 0x00FF0000) >> 16)
76 #define mmc_req_rel_wr(req) ((req->cmd_flags & REQ_FUA) && \
77 (rq_data_dir(req) == WRITE))
78 static DEFINE_MUTEX(block_mutex);
81 * The defaults come from config options but can be overriden by module
82 * or bootarg options.
84 static int perdev_minors = CONFIG_MMC_BLOCK_MINORS;
87 * We've only got one major, so number of mmcblk devices is
88 * limited to (1 << 20) / number of minors per device. It is also
89 * limited by the MAX_DEVICES below.
91 static int max_devices;
93 #define MAX_DEVICES 256
95 static DEFINE_IDA(mmc_blk_ida);
96 static DEFINE_IDA(mmc_rpmb_ida);
99 * There is one mmc_blk_data per slot.
101 struct mmc_blk_data {
102 spinlock_t lock;
103 struct device *parent;
104 struct gendisk *disk;
105 struct mmc_queue queue;
106 struct list_head part;
107 struct list_head rpmbs;
109 unsigned int flags;
110 #define MMC_BLK_CMD23 (1 << 0) /* Can do SET_BLOCK_COUNT for multiblock */
111 #define MMC_BLK_REL_WR (1 << 1) /* MMC Reliable write support */
113 unsigned int usage;
114 unsigned int read_only;
115 unsigned int part_type;
116 unsigned int reset_done;
117 #define MMC_BLK_READ BIT(0)
118 #define MMC_BLK_WRITE BIT(1)
119 #define MMC_BLK_DISCARD BIT(2)
120 #define MMC_BLK_SECDISCARD BIT(3)
121 #define MMC_BLK_CQE_RECOVERY BIT(4)
124 * Only set in main mmc_blk_data associated
125 * with mmc_card with dev_set_drvdata, and keeps
126 * track of the current selected device partition.
128 unsigned int part_curr;
129 struct device_attribute force_ro;
130 struct device_attribute power_ro_lock;
131 int area_type;
133 /* debugfs files (only in main mmc_blk_data) */
134 struct dentry *status_dentry;
135 struct dentry *ext_csd_dentry;
138 /* Device type for RPMB character devices */
139 static dev_t mmc_rpmb_devt;
141 /* Bus type for RPMB character devices */
142 static struct bus_type mmc_rpmb_bus_type = {
143 .name = "mmc_rpmb",
147 * struct mmc_rpmb_data - special RPMB device type for these areas
148 * @dev: the device for the RPMB area
149 * @chrdev: character device for the RPMB area
150 * @id: unique device ID number
151 * @part_index: partition index (0 on first)
152 * @md: parent MMC block device
153 * @node: list item, so we can put this device on a list
155 struct mmc_rpmb_data {
156 struct device dev;
157 struct cdev chrdev;
158 int id;
159 unsigned int part_index;
160 struct mmc_blk_data *md;
161 struct list_head node;
164 static DEFINE_MUTEX(open_lock);
166 module_param(perdev_minors, int, 0444);
167 MODULE_PARM_DESC(perdev_minors, "Minors numbers to allocate per device");
169 static inline int mmc_blk_part_switch(struct mmc_card *card,
170 unsigned int part_type);
172 static struct mmc_blk_data *mmc_blk_get(struct gendisk *disk)
174 struct mmc_blk_data *md;
176 mutex_lock(&open_lock);
177 md = disk->private_data;
178 if (md && md->usage == 0)
179 md = NULL;
180 if (md)
181 md->usage++;
182 mutex_unlock(&open_lock);
184 return md;
187 static inline int mmc_get_devidx(struct gendisk *disk)
189 int devidx = disk->first_minor / perdev_minors;
190 return devidx;
193 static void mmc_blk_put(struct mmc_blk_data *md)
195 mutex_lock(&open_lock);
196 md->usage--;
197 if (md->usage == 0) {
198 int devidx = mmc_get_devidx(md->disk);
199 blk_put_queue(md->queue.queue);
200 ida_simple_remove(&mmc_blk_ida, devidx);
201 put_disk(md->disk);
202 kfree(md);
204 mutex_unlock(&open_lock);
207 static ssize_t power_ro_lock_show(struct device *dev,
208 struct device_attribute *attr, char *buf)
210 int ret;
211 struct mmc_blk_data *md = mmc_blk_get(dev_to_disk(dev));
212 struct mmc_card *card = md->queue.card;
213 int locked = 0;
215 if (card->ext_csd.boot_ro_lock & EXT_CSD_BOOT_WP_B_PERM_WP_EN)
216 locked = 2;
217 else if (card->ext_csd.boot_ro_lock & EXT_CSD_BOOT_WP_B_PWR_WP_EN)
218 locked = 1;
220 ret = snprintf(buf, PAGE_SIZE, "%d\n", locked);
222 mmc_blk_put(md);
224 return ret;
227 static ssize_t power_ro_lock_store(struct device *dev,
228 struct device_attribute *attr, const char *buf, size_t count)
230 int ret;
231 struct mmc_blk_data *md, *part_md;
232 struct mmc_queue *mq;
233 struct request *req;
234 unsigned long set;
236 if (kstrtoul(buf, 0, &set))
237 return -EINVAL;
239 if (set != 1)
240 return count;
242 md = mmc_blk_get(dev_to_disk(dev));
243 mq = &md->queue;
245 /* Dispatch locking to the block layer */
246 req = blk_get_request(mq->queue, REQ_OP_DRV_OUT, __GFP_RECLAIM);
247 if (IS_ERR(req)) {
248 count = PTR_ERR(req);
249 goto out_put;
251 req_to_mmc_queue_req(req)->drv_op = MMC_DRV_OP_BOOT_WP;
252 blk_execute_rq(mq->queue, NULL, req, 0);
253 ret = req_to_mmc_queue_req(req)->drv_op_result;
254 blk_put_request(req);
256 if (!ret) {
257 pr_info("%s: Locking boot partition ro until next power on\n",
258 md->disk->disk_name);
259 set_disk_ro(md->disk, 1);
261 list_for_each_entry(part_md, &md->part, part)
262 if (part_md->area_type == MMC_BLK_DATA_AREA_BOOT) {
263 pr_info("%s: Locking boot partition ro until next power on\n", part_md->disk->disk_name);
264 set_disk_ro(part_md->disk, 1);
267 out_put:
268 mmc_blk_put(md);
269 return count;
272 static ssize_t force_ro_show(struct device *dev, struct device_attribute *attr,
273 char *buf)
275 int ret;
276 struct mmc_blk_data *md = mmc_blk_get(dev_to_disk(dev));
278 ret = snprintf(buf, PAGE_SIZE, "%d\n",
279 get_disk_ro(dev_to_disk(dev)) ^
280 md->read_only);
281 mmc_blk_put(md);
282 return ret;
285 static ssize_t force_ro_store(struct device *dev, struct device_attribute *attr,
286 const char *buf, size_t count)
288 int ret;
289 char *end;
290 struct mmc_blk_data *md = mmc_blk_get(dev_to_disk(dev));
291 unsigned long set = simple_strtoul(buf, &end, 0);
292 if (end == buf) {
293 ret = -EINVAL;
294 goto out;
297 set_disk_ro(dev_to_disk(dev), set || md->read_only);
298 ret = count;
299 out:
300 mmc_blk_put(md);
301 return ret;
304 static int mmc_blk_open(struct block_device *bdev, fmode_t mode)
306 struct mmc_blk_data *md = mmc_blk_get(bdev->bd_disk);
307 int ret = -ENXIO;
309 mutex_lock(&block_mutex);
310 if (md) {
311 if (md->usage == 2)
312 check_disk_change(bdev);
313 ret = 0;
315 if ((mode & FMODE_WRITE) && md->read_only) {
316 mmc_blk_put(md);
317 ret = -EROFS;
320 mutex_unlock(&block_mutex);
322 return ret;
325 static void mmc_blk_release(struct gendisk *disk, fmode_t mode)
327 struct mmc_blk_data *md = disk->private_data;
329 mutex_lock(&block_mutex);
330 mmc_blk_put(md);
331 mutex_unlock(&block_mutex);
334 static int
335 mmc_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo)
337 geo->cylinders = get_capacity(bdev->bd_disk) / (4 * 16);
338 geo->heads = 4;
339 geo->sectors = 16;
340 return 0;
343 struct mmc_blk_ioc_data {
344 struct mmc_ioc_cmd ic;
345 unsigned char *buf;
346 u64 buf_bytes;
347 struct mmc_rpmb_data *rpmb;
350 static struct mmc_blk_ioc_data *mmc_blk_ioctl_copy_from_user(
351 struct mmc_ioc_cmd __user *user)
353 struct mmc_blk_ioc_data *idata;
354 int err;
356 idata = kmalloc(sizeof(*idata), GFP_KERNEL);
357 if (!idata) {
358 err = -ENOMEM;
359 goto out;
362 if (copy_from_user(&idata->ic, user, sizeof(idata->ic))) {
363 err = -EFAULT;
364 goto idata_err;
367 idata->buf_bytes = (u64) idata->ic.blksz * idata->ic.blocks;
368 if (idata->buf_bytes > MMC_IOC_MAX_BYTES) {
369 err = -EOVERFLOW;
370 goto idata_err;
373 if (!idata->buf_bytes) {
374 idata->buf = NULL;
375 return idata;
378 idata->buf = kmalloc(idata->buf_bytes, GFP_KERNEL);
379 if (!idata->buf) {
380 err = -ENOMEM;
381 goto idata_err;
384 if (copy_from_user(idata->buf, (void __user *)(unsigned long)
385 idata->ic.data_ptr, idata->buf_bytes)) {
386 err = -EFAULT;
387 goto copy_err;
390 return idata;
392 copy_err:
393 kfree(idata->buf);
394 idata_err:
395 kfree(idata);
396 out:
397 return ERR_PTR(err);
400 static int mmc_blk_ioctl_copy_to_user(struct mmc_ioc_cmd __user *ic_ptr,
401 struct mmc_blk_ioc_data *idata)
403 struct mmc_ioc_cmd *ic = &idata->ic;
405 if (copy_to_user(&(ic_ptr->response), ic->response,
406 sizeof(ic->response)))
407 return -EFAULT;
409 if (!idata->ic.write_flag) {
410 if (copy_to_user((void __user *)(unsigned long)ic->data_ptr,
411 idata->buf, idata->buf_bytes))
412 return -EFAULT;
415 return 0;
418 static int ioctl_rpmb_card_status_poll(struct mmc_card *card, u32 *status,
419 u32 retries_max)
421 int err;
422 u32 retry_count = 0;
424 if (!status || !retries_max)
425 return -EINVAL;
427 do {
428 err = __mmc_send_status(card, status, 5);
429 if (err)
430 break;
432 if (!R1_STATUS(*status) &&
433 (R1_CURRENT_STATE(*status) != R1_STATE_PRG))
434 break; /* RPMB programming operation complete */
437 * Rechedule to give the MMC device a chance to continue
438 * processing the previous command without being polled too
439 * frequently.
441 usleep_range(1000, 5000);
442 } while (++retry_count < retries_max);
444 if (retry_count == retries_max)
445 err = -EPERM;
447 return err;
450 static int ioctl_do_sanitize(struct mmc_card *card)
452 int err;
454 if (!mmc_can_sanitize(card)) {
455 pr_warn("%s: %s - SANITIZE is not supported\n",
456 mmc_hostname(card->host), __func__);
457 err = -EOPNOTSUPP;
458 goto out;
461 pr_debug("%s: %s - SANITIZE IN PROGRESS...\n",
462 mmc_hostname(card->host), __func__);
464 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
465 EXT_CSD_SANITIZE_START, 1,
466 MMC_SANITIZE_REQ_TIMEOUT);
468 if (err)
469 pr_err("%s: %s - EXT_CSD_SANITIZE_START failed. err=%d\n",
470 mmc_hostname(card->host), __func__, err);
472 pr_debug("%s: %s - SANITIZE COMPLETED\n", mmc_hostname(card->host),
473 __func__);
474 out:
475 return err;
478 static int __mmc_blk_ioctl_cmd(struct mmc_card *card, struct mmc_blk_data *md,
479 struct mmc_blk_ioc_data *idata)
481 struct mmc_command cmd = {};
482 struct mmc_data data = {};
483 struct mmc_request mrq = {};
484 struct scatterlist sg;
485 int err;
486 unsigned int target_part;
487 u32 status = 0;
489 if (!card || !md || !idata)
490 return -EINVAL;
493 * The RPMB accesses comes in from the character device, so we
494 * need to target these explicitly. Else we just target the
495 * partition type for the block device the ioctl() was issued
496 * on.
498 if (idata->rpmb) {
499 /* Support multiple RPMB partitions */
500 target_part = idata->rpmb->part_index;
501 target_part |= EXT_CSD_PART_CONFIG_ACC_RPMB;
502 } else {
503 target_part = md->part_type;
506 cmd.opcode = idata->ic.opcode;
507 cmd.arg = idata->ic.arg;
508 cmd.flags = idata->ic.flags;
510 if (idata->buf_bytes) {
511 data.sg = &sg;
512 data.sg_len = 1;
513 data.blksz = idata->ic.blksz;
514 data.blocks = idata->ic.blocks;
516 sg_init_one(data.sg, idata->buf, idata->buf_bytes);
518 if (idata->ic.write_flag)
519 data.flags = MMC_DATA_WRITE;
520 else
521 data.flags = MMC_DATA_READ;
523 /* data.flags must already be set before doing this. */
524 mmc_set_data_timeout(&data, card);
526 /* Allow overriding the timeout_ns for empirical tuning. */
527 if (idata->ic.data_timeout_ns)
528 data.timeout_ns = idata->ic.data_timeout_ns;
530 if ((cmd.flags & MMC_RSP_R1B) == MMC_RSP_R1B) {
532 * Pretend this is a data transfer and rely on the
533 * host driver to compute timeout. When all host
534 * drivers support cmd.cmd_timeout for R1B, this
535 * can be changed to:
537 * mrq.data = NULL;
538 * cmd.cmd_timeout = idata->ic.cmd_timeout_ms;
540 data.timeout_ns = idata->ic.cmd_timeout_ms * 1000000;
543 mrq.data = &data;
546 mrq.cmd = &cmd;
548 err = mmc_blk_part_switch(card, target_part);
549 if (err)
550 return err;
552 if (idata->ic.is_acmd) {
553 err = mmc_app_cmd(card->host, card);
554 if (err)
555 return err;
558 if (idata->rpmb) {
559 err = mmc_set_blockcount(card, data.blocks,
560 idata->ic.write_flag & (1 << 31));
561 if (err)
562 return err;
565 if ((MMC_EXTRACT_INDEX_FROM_ARG(cmd.arg) == EXT_CSD_SANITIZE_START) &&
566 (cmd.opcode == MMC_SWITCH)) {
567 err = ioctl_do_sanitize(card);
569 if (err)
570 pr_err("%s: ioctl_do_sanitize() failed. err = %d",
571 __func__, err);
573 return err;
576 mmc_wait_for_req(card->host, &mrq);
578 if (cmd.error) {
579 dev_err(mmc_dev(card->host), "%s: cmd error %d\n",
580 __func__, cmd.error);
581 return cmd.error;
583 if (data.error) {
584 dev_err(mmc_dev(card->host), "%s: data error %d\n",
585 __func__, data.error);
586 return data.error;
590 * According to the SD specs, some commands require a delay after
591 * issuing the command.
593 if (idata->ic.postsleep_min_us)
594 usleep_range(idata->ic.postsleep_min_us, idata->ic.postsleep_max_us);
596 memcpy(&(idata->ic.response), cmd.resp, sizeof(cmd.resp));
598 if (idata->rpmb) {
600 * Ensure RPMB command has completed by polling CMD13
601 * "Send Status".
603 err = ioctl_rpmb_card_status_poll(card, &status, 5);
604 if (err)
605 dev_err(mmc_dev(card->host),
606 "%s: Card Status=0x%08X, error %d\n",
607 __func__, status, err);
610 return err;
613 static int mmc_blk_ioctl_cmd(struct mmc_blk_data *md,
614 struct mmc_ioc_cmd __user *ic_ptr,
615 struct mmc_rpmb_data *rpmb)
617 struct mmc_blk_ioc_data *idata;
618 struct mmc_blk_ioc_data *idatas[1];
619 struct mmc_queue *mq;
620 struct mmc_card *card;
621 int err = 0, ioc_err = 0;
622 struct request *req;
624 idata = mmc_blk_ioctl_copy_from_user(ic_ptr);
625 if (IS_ERR(idata))
626 return PTR_ERR(idata);
627 /* This will be NULL on non-RPMB ioctl():s */
628 idata->rpmb = rpmb;
630 card = md->queue.card;
631 if (IS_ERR(card)) {
632 err = PTR_ERR(card);
633 goto cmd_done;
637 * Dispatch the ioctl() into the block request queue.
639 mq = &md->queue;
640 req = blk_get_request(mq->queue,
641 idata->ic.write_flag ? REQ_OP_DRV_OUT : REQ_OP_DRV_IN,
642 __GFP_RECLAIM);
643 if (IS_ERR(req)) {
644 err = PTR_ERR(req);
645 goto cmd_done;
647 idatas[0] = idata;
648 req_to_mmc_queue_req(req)->drv_op =
649 rpmb ? MMC_DRV_OP_IOCTL_RPMB : MMC_DRV_OP_IOCTL;
650 req_to_mmc_queue_req(req)->drv_op_data = idatas;
651 req_to_mmc_queue_req(req)->ioc_count = 1;
652 blk_execute_rq(mq->queue, NULL, req, 0);
653 ioc_err = req_to_mmc_queue_req(req)->drv_op_result;
654 err = mmc_blk_ioctl_copy_to_user(ic_ptr, idata);
655 blk_put_request(req);
657 cmd_done:
658 kfree(idata->buf);
659 kfree(idata);
660 return ioc_err ? ioc_err : err;
663 static int mmc_blk_ioctl_multi_cmd(struct mmc_blk_data *md,
664 struct mmc_ioc_multi_cmd __user *user,
665 struct mmc_rpmb_data *rpmb)
667 struct mmc_blk_ioc_data **idata = NULL;
668 struct mmc_ioc_cmd __user *cmds = user->cmds;
669 struct mmc_card *card;
670 struct mmc_queue *mq;
671 int i, err = 0, ioc_err = 0;
672 __u64 num_of_cmds;
673 struct request *req;
675 if (copy_from_user(&num_of_cmds, &user->num_of_cmds,
676 sizeof(num_of_cmds)))
677 return -EFAULT;
679 if (!num_of_cmds)
680 return 0;
682 if (num_of_cmds > MMC_IOC_MAX_CMDS)
683 return -EINVAL;
685 idata = kcalloc(num_of_cmds, sizeof(*idata), GFP_KERNEL);
686 if (!idata)
687 return -ENOMEM;
689 for (i = 0; i < num_of_cmds; i++) {
690 idata[i] = mmc_blk_ioctl_copy_from_user(&cmds[i]);
691 if (IS_ERR(idata[i])) {
692 err = PTR_ERR(idata[i]);
693 num_of_cmds = i;
694 goto cmd_err;
696 /* This will be NULL on non-RPMB ioctl():s */
697 idata[i]->rpmb = rpmb;
700 card = md->queue.card;
701 if (IS_ERR(card)) {
702 err = PTR_ERR(card);
703 goto cmd_err;
708 * Dispatch the ioctl()s into the block request queue.
710 mq = &md->queue;
711 req = blk_get_request(mq->queue,
712 idata[0]->ic.write_flag ? REQ_OP_DRV_OUT : REQ_OP_DRV_IN,
713 __GFP_RECLAIM);
714 if (IS_ERR(req)) {
715 err = PTR_ERR(req);
716 goto cmd_err;
718 req_to_mmc_queue_req(req)->drv_op =
719 rpmb ? MMC_DRV_OP_IOCTL_RPMB : MMC_DRV_OP_IOCTL;
720 req_to_mmc_queue_req(req)->drv_op_data = idata;
721 req_to_mmc_queue_req(req)->ioc_count = num_of_cmds;
722 blk_execute_rq(mq->queue, NULL, req, 0);
723 ioc_err = req_to_mmc_queue_req(req)->drv_op_result;
725 /* copy to user if data and response */
726 for (i = 0; i < num_of_cmds && !err; i++)
727 err = mmc_blk_ioctl_copy_to_user(&cmds[i], idata[i]);
729 blk_put_request(req);
731 cmd_err:
732 for (i = 0; i < num_of_cmds; i++) {
733 kfree(idata[i]->buf);
734 kfree(idata[i]);
736 kfree(idata);
737 return ioc_err ? ioc_err : err;
740 static int mmc_blk_check_blkdev(struct block_device *bdev)
743 * The caller must have CAP_SYS_RAWIO, and must be calling this on the
744 * whole block device, not on a partition. This prevents overspray
745 * between sibling partitions.
747 if ((!capable(CAP_SYS_RAWIO)) || (bdev != bdev->bd_contains))
748 return -EPERM;
749 return 0;
752 static int mmc_blk_ioctl(struct block_device *bdev, fmode_t mode,
753 unsigned int cmd, unsigned long arg)
755 struct mmc_blk_data *md;
756 int ret;
758 switch (cmd) {
759 case MMC_IOC_CMD:
760 ret = mmc_blk_check_blkdev(bdev);
761 if (ret)
762 return ret;
763 md = mmc_blk_get(bdev->bd_disk);
764 if (!md)
765 return -EINVAL;
766 ret = mmc_blk_ioctl_cmd(md,
767 (struct mmc_ioc_cmd __user *)arg,
768 NULL);
769 mmc_blk_put(md);
770 return ret;
771 case MMC_IOC_MULTI_CMD:
772 ret = mmc_blk_check_blkdev(bdev);
773 if (ret)
774 return ret;
775 md = mmc_blk_get(bdev->bd_disk);
776 if (!md)
777 return -EINVAL;
778 ret = mmc_blk_ioctl_multi_cmd(md,
779 (struct mmc_ioc_multi_cmd __user *)arg,
780 NULL);
781 mmc_blk_put(md);
782 return ret;
783 default:
784 return -EINVAL;
788 #ifdef CONFIG_COMPAT
789 static int mmc_blk_compat_ioctl(struct block_device *bdev, fmode_t mode,
790 unsigned int cmd, unsigned long arg)
792 return mmc_blk_ioctl(bdev, mode, cmd, (unsigned long) compat_ptr(arg));
794 #endif
796 static const struct block_device_operations mmc_bdops = {
797 .open = mmc_blk_open,
798 .release = mmc_blk_release,
799 .getgeo = mmc_blk_getgeo,
800 .owner = THIS_MODULE,
801 .ioctl = mmc_blk_ioctl,
802 #ifdef CONFIG_COMPAT
803 .compat_ioctl = mmc_blk_compat_ioctl,
804 #endif
807 static int mmc_blk_part_switch_pre(struct mmc_card *card,
808 unsigned int part_type)
810 int ret = 0;
812 if (part_type == EXT_CSD_PART_CONFIG_ACC_RPMB) {
813 if (card->ext_csd.cmdq_en) {
814 ret = mmc_cmdq_disable(card);
815 if (ret)
816 return ret;
818 mmc_retune_pause(card->host);
821 return ret;
824 static int mmc_blk_part_switch_post(struct mmc_card *card,
825 unsigned int part_type)
827 int ret = 0;
829 if (part_type == EXT_CSD_PART_CONFIG_ACC_RPMB) {
830 mmc_retune_unpause(card->host);
831 if (card->reenable_cmdq && !card->ext_csd.cmdq_en)
832 ret = mmc_cmdq_enable(card);
835 return ret;
838 static inline int mmc_blk_part_switch(struct mmc_card *card,
839 unsigned int part_type)
841 int ret = 0;
842 struct mmc_blk_data *main_md = dev_get_drvdata(&card->dev);
844 if (main_md->part_curr == part_type)
845 return 0;
847 if (mmc_card_mmc(card)) {
848 u8 part_config = card->ext_csd.part_config;
850 ret = mmc_blk_part_switch_pre(card, part_type);
851 if (ret)
852 return ret;
854 part_config &= ~EXT_CSD_PART_CONFIG_ACC_MASK;
855 part_config |= part_type;
857 ret = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
858 EXT_CSD_PART_CONFIG, part_config,
859 card->ext_csd.part_time);
860 if (ret) {
861 mmc_blk_part_switch_post(card, part_type);
862 return ret;
865 card->ext_csd.part_config = part_config;
867 ret = mmc_blk_part_switch_post(card, main_md->part_curr);
870 main_md->part_curr = part_type;
871 return ret;
874 static int mmc_sd_num_wr_blocks(struct mmc_card *card, u32 *written_blocks)
876 int err;
877 u32 result;
878 __be32 *blocks;
880 struct mmc_request mrq = {};
881 struct mmc_command cmd = {};
882 struct mmc_data data = {};
884 struct scatterlist sg;
886 cmd.opcode = MMC_APP_CMD;
887 cmd.arg = card->rca << 16;
888 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
890 err = mmc_wait_for_cmd(card->host, &cmd, 0);
891 if (err)
892 return err;
893 if (!mmc_host_is_spi(card->host) && !(cmd.resp[0] & R1_APP_CMD))
894 return -EIO;
896 memset(&cmd, 0, sizeof(struct mmc_command));
898 cmd.opcode = SD_APP_SEND_NUM_WR_BLKS;
899 cmd.arg = 0;
900 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_ADTC;
902 data.blksz = 4;
903 data.blocks = 1;
904 data.flags = MMC_DATA_READ;
905 data.sg = &sg;
906 data.sg_len = 1;
907 mmc_set_data_timeout(&data, card);
909 mrq.cmd = &cmd;
910 mrq.data = &data;
912 blocks = kmalloc(4, GFP_KERNEL);
913 if (!blocks)
914 return -ENOMEM;
916 sg_init_one(&sg, blocks, 4);
918 mmc_wait_for_req(card->host, &mrq);
920 result = ntohl(*blocks);
921 kfree(blocks);
923 if (cmd.error || data.error)
924 return -EIO;
926 *written_blocks = result;
928 return 0;
931 static unsigned int mmc_blk_clock_khz(struct mmc_host *host)
933 if (host->actual_clock)
934 return host->actual_clock / 1000;
936 /* Clock may be subject to a divisor, fudge it by a factor of 2. */
937 if (host->ios.clock)
938 return host->ios.clock / 2000;
940 /* How can there be no clock */
941 WARN_ON_ONCE(1);
942 return 100; /* 100 kHz is minimum possible value */
945 static unsigned int mmc_blk_data_timeout_ms(struct mmc_host *host,
946 struct mmc_data *data)
948 unsigned int ms = DIV_ROUND_UP(data->timeout_ns, 1000000);
949 unsigned int khz;
951 if (data->timeout_clks) {
952 khz = mmc_blk_clock_khz(host);
953 ms += DIV_ROUND_UP(data->timeout_clks, khz);
956 return ms;
959 static inline bool mmc_blk_in_tran_state(u32 status)
962 * Some cards mishandle the status bits, so make sure to check both the
963 * busy indication and the card state.
965 return status & R1_READY_FOR_DATA &&
966 (R1_CURRENT_STATE(status) == R1_STATE_TRAN);
969 static int card_busy_detect(struct mmc_card *card, unsigned int timeout_ms,
970 struct request *req, u32 *resp_errs)
972 unsigned long timeout = jiffies + msecs_to_jiffies(timeout_ms);
973 int err = 0;
974 u32 status;
976 do {
977 bool done = time_after(jiffies, timeout);
979 err = __mmc_send_status(card, &status, 5);
980 if (err) {
981 pr_err("%s: error %d requesting status\n",
982 req->rq_disk->disk_name, err);
983 return err;
986 /* Accumulate any response error bits seen */
987 if (resp_errs)
988 *resp_errs |= status;
991 * Timeout if the device never becomes ready for data and never
992 * leaves the program state.
994 if (done) {
995 pr_err("%s: Card stuck in wrong state! %s %s status: %#x\n",
996 mmc_hostname(card->host),
997 req->rq_disk->disk_name, __func__, status);
998 return -ETIMEDOUT;
1002 * Some cards mishandle the status bits,
1003 * so make sure to check both the busy
1004 * indication and the card state.
1006 } while (!mmc_blk_in_tran_state(status));
1008 return err;
1011 static int mmc_blk_reset(struct mmc_blk_data *md, struct mmc_host *host,
1012 int type)
1014 int err;
1016 if (md->reset_done & type)
1017 return -EEXIST;
1019 md->reset_done |= type;
1020 err = mmc_hw_reset(host);
1021 /* Ensure we switch back to the correct partition */
1022 if (err != -EOPNOTSUPP) {
1023 struct mmc_blk_data *main_md =
1024 dev_get_drvdata(&host->card->dev);
1025 int part_err;
1027 main_md->part_curr = main_md->part_type;
1028 part_err = mmc_blk_part_switch(host->card, md->part_type);
1029 if (part_err) {
1031 * We have failed to get back into the correct
1032 * partition, so we need to abort the whole request.
1034 return -ENODEV;
1037 return err;
1040 static inline void mmc_blk_reset_success(struct mmc_blk_data *md, int type)
1042 md->reset_done &= ~type;
1046 * The non-block commands come back from the block layer after it queued it and
1047 * processed it with all other requests and then they get issued in this
1048 * function.
1050 static void mmc_blk_issue_drv_op(struct mmc_queue *mq, struct request *req)
1052 struct mmc_queue_req *mq_rq;
1053 struct mmc_card *card = mq->card;
1054 struct mmc_blk_data *md = mq->blkdata;
1055 struct mmc_blk_ioc_data **idata;
1056 bool rpmb_ioctl;
1057 u8 **ext_csd;
1058 u32 status;
1059 int ret;
1060 int i;
1062 mq_rq = req_to_mmc_queue_req(req);
1063 rpmb_ioctl = (mq_rq->drv_op == MMC_DRV_OP_IOCTL_RPMB);
1065 switch (mq_rq->drv_op) {
1066 case MMC_DRV_OP_IOCTL:
1067 case MMC_DRV_OP_IOCTL_RPMB:
1068 idata = mq_rq->drv_op_data;
1069 for (i = 0, ret = 0; i < mq_rq->ioc_count; i++) {
1070 ret = __mmc_blk_ioctl_cmd(card, md, idata[i]);
1071 if (ret)
1072 break;
1074 /* Always switch back to main area after RPMB access */
1075 if (rpmb_ioctl)
1076 mmc_blk_part_switch(card, 0);
1077 break;
1078 case MMC_DRV_OP_BOOT_WP:
1079 ret = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_BOOT_WP,
1080 card->ext_csd.boot_ro_lock |
1081 EXT_CSD_BOOT_WP_B_PWR_WP_EN,
1082 card->ext_csd.part_time);
1083 if (ret)
1084 pr_err("%s: Locking boot partition ro until next power on failed: %d\n",
1085 md->disk->disk_name, ret);
1086 else
1087 card->ext_csd.boot_ro_lock |=
1088 EXT_CSD_BOOT_WP_B_PWR_WP_EN;
1089 break;
1090 case MMC_DRV_OP_GET_CARD_STATUS:
1091 ret = mmc_send_status(card, &status);
1092 if (!ret)
1093 ret = status;
1094 break;
1095 case MMC_DRV_OP_GET_EXT_CSD:
1096 ext_csd = mq_rq->drv_op_data;
1097 ret = mmc_get_ext_csd(card, ext_csd);
1098 break;
1099 default:
1100 pr_err("%s: unknown driver specific operation\n",
1101 md->disk->disk_name);
1102 ret = -EINVAL;
1103 break;
1105 mq_rq->drv_op_result = ret;
1106 blk_mq_end_request(req, ret ? BLK_STS_IOERR : BLK_STS_OK);
1109 static void mmc_blk_issue_discard_rq(struct mmc_queue *mq, struct request *req)
1111 struct mmc_blk_data *md = mq->blkdata;
1112 struct mmc_card *card = md->queue.card;
1113 unsigned int from, nr, arg;
1114 int err = 0, type = MMC_BLK_DISCARD;
1115 blk_status_t status = BLK_STS_OK;
1117 if (!mmc_can_erase(card)) {
1118 status = BLK_STS_NOTSUPP;
1119 goto fail;
1122 from = blk_rq_pos(req);
1123 nr = blk_rq_sectors(req);
1125 if (mmc_can_discard(card))
1126 arg = MMC_DISCARD_ARG;
1127 else if (mmc_can_trim(card))
1128 arg = MMC_TRIM_ARG;
1129 else
1130 arg = MMC_ERASE_ARG;
1131 do {
1132 err = 0;
1133 if (card->quirks & MMC_QUIRK_INAND_CMD38) {
1134 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1135 INAND_CMD38_ARG_EXT_CSD,
1136 arg == MMC_TRIM_ARG ?
1137 INAND_CMD38_ARG_TRIM :
1138 INAND_CMD38_ARG_ERASE,
1141 if (!err)
1142 err = mmc_erase(card, from, nr, arg);
1143 } while (err == -EIO && !mmc_blk_reset(md, card->host, type));
1144 if (err)
1145 status = BLK_STS_IOERR;
1146 else
1147 mmc_blk_reset_success(md, type);
1148 fail:
1149 blk_mq_end_request(req, status);
1152 static void mmc_blk_issue_secdiscard_rq(struct mmc_queue *mq,
1153 struct request *req)
1155 struct mmc_blk_data *md = mq->blkdata;
1156 struct mmc_card *card = md->queue.card;
1157 unsigned int from, nr, arg;
1158 int err = 0, type = MMC_BLK_SECDISCARD;
1159 blk_status_t status = BLK_STS_OK;
1161 if (!(mmc_can_secure_erase_trim(card))) {
1162 status = BLK_STS_NOTSUPP;
1163 goto out;
1166 from = blk_rq_pos(req);
1167 nr = blk_rq_sectors(req);
1169 if (mmc_can_trim(card) && !mmc_erase_group_aligned(card, from, nr))
1170 arg = MMC_SECURE_TRIM1_ARG;
1171 else
1172 arg = MMC_SECURE_ERASE_ARG;
1174 retry:
1175 if (card->quirks & MMC_QUIRK_INAND_CMD38) {
1176 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1177 INAND_CMD38_ARG_EXT_CSD,
1178 arg == MMC_SECURE_TRIM1_ARG ?
1179 INAND_CMD38_ARG_SECTRIM1 :
1180 INAND_CMD38_ARG_SECERASE,
1182 if (err)
1183 goto out_retry;
1186 err = mmc_erase(card, from, nr, arg);
1187 if (err == -EIO)
1188 goto out_retry;
1189 if (err) {
1190 status = BLK_STS_IOERR;
1191 goto out;
1194 if (arg == MMC_SECURE_TRIM1_ARG) {
1195 if (card->quirks & MMC_QUIRK_INAND_CMD38) {
1196 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1197 INAND_CMD38_ARG_EXT_CSD,
1198 INAND_CMD38_ARG_SECTRIM2,
1200 if (err)
1201 goto out_retry;
1204 err = mmc_erase(card, from, nr, MMC_SECURE_TRIM2_ARG);
1205 if (err == -EIO)
1206 goto out_retry;
1207 if (err) {
1208 status = BLK_STS_IOERR;
1209 goto out;
1213 out_retry:
1214 if (err && !mmc_blk_reset(md, card->host, type))
1215 goto retry;
1216 if (!err)
1217 mmc_blk_reset_success(md, type);
1218 out:
1219 blk_mq_end_request(req, status);
1222 static void mmc_blk_issue_flush(struct mmc_queue *mq, struct request *req)
1224 struct mmc_blk_data *md = mq->blkdata;
1225 struct mmc_card *card = md->queue.card;
1226 int ret = 0;
1228 ret = mmc_flush_cache(card);
1229 blk_mq_end_request(req, ret ? BLK_STS_IOERR : BLK_STS_OK);
1233 * Reformat current write as a reliable write, supporting
1234 * both legacy and the enhanced reliable write MMC cards.
1235 * In each transfer we'll handle only as much as a single
1236 * reliable write can handle, thus finish the request in
1237 * partial completions.
1239 static inline void mmc_apply_rel_rw(struct mmc_blk_request *brq,
1240 struct mmc_card *card,
1241 struct request *req)
1243 if (!(card->ext_csd.rel_param & EXT_CSD_WR_REL_PARAM_EN)) {
1244 /* Legacy mode imposes restrictions on transfers. */
1245 if (!IS_ALIGNED(blk_rq_pos(req), card->ext_csd.rel_sectors))
1246 brq->data.blocks = 1;
1248 if (brq->data.blocks > card->ext_csd.rel_sectors)
1249 brq->data.blocks = card->ext_csd.rel_sectors;
1250 else if (brq->data.blocks < card->ext_csd.rel_sectors)
1251 brq->data.blocks = 1;
1255 #define CMD_ERRORS_EXCL_OOR \
1256 (R1_ADDRESS_ERROR | /* Misaligned address */ \
1257 R1_BLOCK_LEN_ERROR | /* Transferred block length incorrect */\
1258 R1_WP_VIOLATION | /* Tried to write to protected block */ \
1259 R1_CARD_ECC_FAILED | /* Card ECC failed */ \
1260 R1_CC_ERROR | /* Card controller error */ \
1261 R1_ERROR) /* General/unknown error */
1263 #define CMD_ERRORS \
1264 (CMD_ERRORS_EXCL_OOR | \
1265 R1_OUT_OF_RANGE) /* Command argument out of range */ \
1267 static void mmc_blk_eval_resp_error(struct mmc_blk_request *brq)
1269 u32 val;
1272 * Per the SD specification(physical layer version 4.10)[1],
1273 * section 4.3.3, it explicitly states that "When the last
1274 * block of user area is read using CMD18, the host should
1275 * ignore OUT_OF_RANGE error that may occur even the sequence
1276 * is correct". And JESD84-B51 for eMMC also has a similar
1277 * statement on section 6.8.3.
1279 * Multiple block read/write could be done by either predefined
1280 * method, namely CMD23, or open-ending mode. For open-ending mode,
1281 * we should ignore the OUT_OF_RANGE error as it's normal behaviour.
1283 * However the spec[1] doesn't tell us whether we should also
1284 * ignore that for predefined method. But per the spec[1], section
1285 * 4.15 Set Block Count Command, it says"If illegal block count
1286 * is set, out of range error will be indicated during read/write
1287 * operation (For example, data transfer is stopped at user area
1288 * boundary)." In another word, we could expect a out of range error
1289 * in the response for the following CMD18/25. And if argument of
1290 * CMD23 + the argument of CMD18/25 exceed the max number of blocks,
1291 * we could also expect to get a -ETIMEDOUT or any error number from
1292 * the host drivers due to missing data response(for write)/data(for
1293 * read), as the cards will stop the data transfer by itself per the
1294 * spec. So we only need to check R1_OUT_OF_RANGE for open-ending mode.
1297 if (!brq->stop.error) {
1298 bool oor_with_open_end;
1299 /* If there is no error yet, check R1 response */
1301 val = brq->stop.resp[0] & CMD_ERRORS;
1302 oor_with_open_end = val & R1_OUT_OF_RANGE && !brq->mrq.sbc;
1304 if (val && !oor_with_open_end)
1305 brq->stop.error = -EIO;
1309 static void mmc_blk_data_prep(struct mmc_queue *mq, struct mmc_queue_req *mqrq,
1310 int disable_multi, bool *do_rel_wr_p,
1311 bool *do_data_tag_p)
1313 struct mmc_blk_data *md = mq->blkdata;
1314 struct mmc_card *card = md->queue.card;
1315 struct mmc_blk_request *brq = &mqrq->brq;
1316 struct request *req = mmc_queue_req_to_req(mqrq);
1317 bool do_rel_wr, do_data_tag;
1320 * Reliable writes are used to implement Forced Unit Access and
1321 * are supported only on MMCs.
1323 do_rel_wr = (req->cmd_flags & REQ_FUA) &&
1324 rq_data_dir(req) == WRITE &&
1325 (md->flags & MMC_BLK_REL_WR);
1327 memset(brq, 0, sizeof(struct mmc_blk_request));
1329 brq->mrq.data = &brq->data;
1330 brq->mrq.tag = req->tag;
1332 brq->stop.opcode = MMC_STOP_TRANSMISSION;
1333 brq->stop.arg = 0;
1335 if (rq_data_dir(req) == READ) {
1336 brq->data.flags = MMC_DATA_READ;
1337 brq->stop.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
1338 } else {
1339 brq->data.flags = MMC_DATA_WRITE;
1340 brq->stop.flags = MMC_RSP_SPI_R1B | MMC_RSP_R1B | MMC_CMD_AC;
1343 brq->data.blksz = 512;
1344 brq->data.blocks = blk_rq_sectors(req);
1345 brq->data.blk_addr = blk_rq_pos(req);
1348 * The command queue supports 2 priorities: "high" (1) and "simple" (0).
1349 * The eMMC will give "high" priority tasks priority over "simple"
1350 * priority tasks. Here we always set "simple" priority by not setting
1351 * MMC_DATA_PRIO.
1355 * The block layer doesn't support all sector count
1356 * restrictions, so we need to be prepared for too big
1357 * requests.
1359 if (brq->data.blocks > card->host->max_blk_count)
1360 brq->data.blocks = card->host->max_blk_count;
1362 if (brq->data.blocks > 1) {
1364 * After a read error, we redo the request one sector
1365 * at a time in order to accurately determine which
1366 * sectors can be read successfully.
1368 if (disable_multi)
1369 brq->data.blocks = 1;
1372 * Some controllers have HW issues while operating
1373 * in multiple I/O mode
1375 if (card->host->ops->multi_io_quirk)
1376 brq->data.blocks = card->host->ops->multi_io_quirk(card,
1377 (rq_data_dir(req) == READ) ?
1378 MMC_DATA_READ : MMC_DATA_WRITE,
1379 brq->data.blocks);
1382 if (do_rel_wr) {
1383 mmc_apply_rel_rw(brq, card, req);
1384 brq->data.flags |= MMC_DATA_REL_WR;
1388 * Data tag is used only during writing meta data to speed
1389 * up write and any subsequent read of this meta data
1391 do_data_tag = card->ext_csd.data_tag_unit_size &&
1392 (req->cmd_flags & REQ_META) &&
1393 (rq_data_dir(req) == WRITE) &&
1394 ((brq->data.blocks * brq->data.blksz) >=
1395 card->ext_csd.data_tag_unit_size);
1397 if (do_data_tag)
1398 brq->data.flags |= MMC_DATA_DAT_TAG;
1400 mmc_set_data_timeout(&brq->data, card);
1402 brq->data.sg = mqrq->sg;
1403 brq->data.sg_len = mmc_queue_map_sg(mq, mqrq);
1406 * Adjust the sg list so it is the same size as the
1407 * request.
1409 if (brq->data.blocks != blk_rq_sectors(req)) {
1410 int i, data_size = brq->data.blocks << 9;
1411 struct scatterlist *sg;
1413 for_each_sg(brq->data.sg, sg, brq->data.sg_len, i) {
1414 data_size -= sg->length;
1415 if (data_size <= 0) {
1416 sg->length += data_size;
1417 i++;
1418 break;
1421 brq->data.sg_len = i;
1424 if (do_rel_wr_p)
1425 *do_rel_wr_p = do_rel_wr;
1427 if (do_data_tag_p)
1428 *do_data_tag_p = do_data_tag;
1431 #define MMC_CQE_RETRIES 2
1433 static void mmc_blk_cqe_complete_rq(struct mmc_queue *mq, struct request *req)
1435 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1436 struct mmc_request *mrq = &mqrq->brq.mrq;
1437 struct request_queue *q = req->q;
1438 struct mmc_host *host = mq->card->host;
1439 unsigned long flags;
1440 bool put_card;
1441 int err;
1443 mmc_cqe_post_req(host, mrq);
1445 if (mrq->cmd && mrq->cmd->error)
1446 err = mrq->cmd->error;
1447 else if (mrq->data && mrq->data->error)
1448 err = mrq->data->error;
1449 else
1450 err = 0;
1452 if (err) {
1453 if (mqrq->retries++ < MMC_CQE_RETRIES)
1454 blk_mq_requeue_request(req, true);
1455 else
1456 blk_mq_end_request(req, BLK_STS_IOERR);
1457 } else if (mrq->data) {
1458 if (blk_update_request(req, BLK_STS_OK, mrq->data->bytes_xfered))
1459 blk_mq_requeue_request(req, true);
1460 else
1461 __blk_mq_end_request(req, BLK_STS_OK);
1462 } else {
1463 blk_mq_end_request(req, BLK_STS_OK);
1466 spin_lock_irqsave(q->queue_lock, flags);
1468 mq->in_flight[mmc_issue_type(mq, req)] -= 1;
1470 put_card = (mmc_tot_in_flight(mq) == 0);
1472 mmc_cqe_check_busy(mq);
1474 spin_unlock_irqrestore(q->queue_lock, flags);
1476 if (!mq->cqe_busy)
1477 blk_mq_run_hw_queues(q, true);
1479 if (put_card)
1480 mmc_put_card(mq->card, &mq->ctx);
1483 void mmc_blk_cqe_recovery(struct mmc_queue *mq)
1485 struct mmc_card *card = mq->card;
1486 struct mmc_host *host = card->host;
1487 int err;
1489 pr_debug("%s: CQE recovery start\n", mmc_hostname(host));
1491 err = mmc_cqe_recovery(host);
1492 if (err)
1493 mmc_blk_reset(mq->blkdata, host, MMC_BLK_CQE_RECOVERY);
1494 else
1495 mmc_blk_reset_success(mq->blkdata, MMC_BLK_CQE_RECOVERY);
1497 pr_debug("%s: CQE recovery done\n", mmc_hostname(host));
1500 static void mmc_blk_cqe_req_done(struct mmc_request *mrq)
1502 struct mmc_queue_req *mqrq = container_of(mrq, struct mmc_queue_req,
1503 brq.mrq);
1504 struct request *req = mmc_queue_req_to_req(mqrq);
1505 struct request_queue *q = req->q;
1506 struct mmc_queue *mq = q->queuedata;
1509 * Block layer timeouts race with completions which means the normal
1510 * completion path cannot be used during recovery.
1512 if (mq->in_recovery)
1513 mmc_blk_cqe_complete_rq(mq, req);
1514 else
1515 blk_mq_complete_request(req);
1518 static int mmc_blk_cqe_start_req(struct mmc_host *host, struct mmc_request *mrq)
1520 mrq->done = mmc_blk_cqe_req_done;
1521 mrq->recovery_notifier = mmc_cqe_recovery_notifier;
1523 return mmc_cqe_start_req(host, mrq);
1526 static struct mmc_request *mmc_blk_cqe_prep_dcmd(struct mmc_queue_req *mqrq,
1527 struct request *req)
1529 struct mmc_blk_request *brq = &mqrq->brq;
1531 memset(brq, 0, sizeof(*brq));
1533 brq->mrq.cmd = &brq->cmd;
1534 brq->mrq.tag = req->tag;
1536 return &brq->mrq;
1539 static int mmc_blk_cqe_issue_flush(struct mmc_queue *mq, struct request *req)
1541 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1542 struct mmc_request *mrq = mmc_blk_cqe_prep_dcmd(mqrq, req);
1544 mrq->cmd->opcode = MMC_SWITCH;
1545 mrq->cmd->arg = (MMC_SWITCH_MODE_WRITE_BYTE << 24) |
1546 (EXT_CSD_FLUSH_CACHE << 16) |
1547 (1 << 8) |
1548 EXT_CSD_CMD_SET_NORMAL;
1549 mrq->cmd->flags = MMC_CMD_AC | MMC_RSP_R1B;
1551 return mmc_blk_cqe_start_req(mq->card->host, mrq);
1554 static int mmc_blk_cqe_issue_rw_rq(struct mmc_queue *mq, struct request *req)
1556 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1558 mmc_blk_data_prep(mq, mqrq, 0, NULL, NULL);
1560 return mmc_blk_cqe_start_req(mq->card->host, &mqrq->brq.mrq);
1563 static void mmc_blk_rw_rq_prep(struct mmc_queue_req *mqrq,
1564 struct mmc_card *card,
1565 int disable_multi,
1566 struct mmc_queue *mq)
1568 u32 readcmd, writecmd;
1569 struct mmc_blk_request *brq = &mqrq->brq;
1570 struct request *req = mmc_queue_req_to_req(mqrq);
1571 struct mmc_blk_data *md = mq->blkdata;
1572 bool do_rel_wr, do_data_tag;
1574 mmc_blk_data_prep(mq, mqrq, disable_multi, &do_rel_wr, &do_data_tag);
1576 brq->mrq.cmd = &brq->cmd;
1578 brq->cmd.arg = blk_rq_pos(req);
1579 if (!mmc_card_blockaddr(card))
1580 brq->cmd.arg <<= 9;
1581 brq->cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_ADTC;
1583 if (brq->data.blocks > 1 || do_rel_wr) {
1584 /* SPI multiblock writes terminate using a special
1585 * token, not a STOP_TRANSMISSION request.
1587 if (!mmc_host_is_spi(card->host) ||
1588 rq_data_dir(req) == READ)
1589 brq->mrq.stop = &brq->stop;
1590 readcmd = MMC_READ_MULTIPLE_BLOCK;
1591 writecmd = MMC_WRITE_MULTIPLE_BLOCK;
1592 } else {
1593 brq->mrq.stop = NULL;
1594 readcmd = MMC_READ_SINGLE_BLOCK;
1595 writecmd = MMC_WRITE_BLOCK;
1597 brq->cmd.opcode = rq_data_dir(req) == READ ? readcmd : writecmd;
1600 * Pre-defined multi-block transfers are preferable to
1601 * open ended-ones (and necessary for reliable writes).
1602 * However, it is not sufficient to just send CMD23,
1603 * and avoid the final CMD12, as on an error condition
1604 * CMD12 (stop) needs to be sent anyway. This, coupled
1605 * with Auto-CMD23 enhancements provided by some
1606 * hosts, means that the complexity of dealing
1607 * with this is best left to the host. If CMD23 is
1608 * supported by card and host, we'll fill sbc in and let
1609 * the host deal with handling it correctly. This means
1610 * that for hosts that don't expose MMC_CAP_CMD23, no
1611 * change of behavior will be observed.
1613 * N.B: Some MMC cards experience perf degradation.
1614 * We'll avoid using CMD23-bounded multiblock writes for
1615 * these, while retaining features like reliable writes.
1617 if ((md->flags & MMC_BLK_CMD23) && mmc_op_multi(brq->cmd.opcode) &&
1618 (do_rel_wr || !(card->quirks & MMC_QUIRK_BLK_NO_CMD23) ||
1619 do_data_tag)) {
1620 brq->sbc.opcode = MMC_SET_BLOCK_COUNT;
1621 brq->sbc.arg = brq->data.blocks |
1622 (do_rel_wr ? (1 << 31) : 0) |
1623 (do_data_tag ? (1 << 29) : 0);
1624 brq->sbc.flags = MMC_RSP_R1 | MMC_CMD_AC;
1625 brq->mrq.sbc = &brq->sbc;
1629 #define MMC_MAX_RETRIES 5
1630 #define MMC_DATA_RETRIES 2
1631 #define MMC_NO_RETRIES (MMC_MAX_RETRIES + 1)
1633 static int mmc_blk_send_stop(struct mmc_card *card, unsigned int timeout)
1635 struct mmc_command cmd = {
1636 .opcode = MMC_STOP_TRANSMISSION,
1637 .flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC,
1638 /* Some hosts wait for busy anyway, so provide a busy timeout */
1639 .busy_timeout = timeout,
1642 return mmc_wait_for_cmd(card->host, &cmd, 5);
1645 static int mmc_blk_fix_state(struct mmc_card *card, struct request *req)
1647 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1648 struct mmc_blk_request *brq = &mqrq->brq;
1649 unsigned int timeout = mmc_blk_data_timeout_ms(card->host, &brq->data);
1650 int err;
1652 mmc_retune_hold_now(card->host);
1654 mmc_blk_send_stop(card, timeout);
1656 err = card_busy_detect(card, timeout, req, NULL);
1658 mmc_retune_release(card->host);
1660 return err;
1663 #define MMC_READ_SINGLE_RETRIES 2
1665 /* Single sector read during recovery */
1666 static void mmc_blk_read_single(struct mmc_queue *mq, struct request *req)
1668 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1669 struct mmc_request *mrq = &mqrq->brq.mrq;
1670 struct mmc_card *card = mq->card;
1671 struct mmc_host *host = card->host;
1672 blk_status_t error = BLK_STS_OK;
1673 int retries = 0;
1675 do {
1676 u32 status;
1677 int err;
1679 mmc_blk_rw_rq_prep(mqrq, card, 1, mq);
1681 mmc_wait_for_req(host, mrq);
1683 err = mmc_send_status(card, &status);
1684 if (err)
1685 goto error_exit;
1687 if (!mmc_host_is_spi(host) &&
1688 !mmc_blk_in_tran_state(status)) {
1689 err = mmc_blk_fix_state(card, req);
1690 if (err)
1691 goto error_exit;
1694 if (mrq->cmd->error && retries++ < MMC_READ_SINGLE_RETRIES)
1695 continue;
1697 retries = 0;
1699 if (mrq->cmd->error ||
1700 mrq->data->error ||
1701 (!mmc_host_is_spi(host) &&
1702 (mrq->cmd->resp[0] & CMD_ERRORS || status & CMD_ERRORS)))
1703 error = BLK_STS_IOERR;
1704 else
1705 error = BLK_STS_OK;
1707 } while (blk_update_request(req, error, 512));
1709 return;
1711 error_exit:
1712 mrq->data->bytes_xfered = 0;
1713 blk_update_request(req, BLK_STS_IOERR, 512);
1714 /* Let it try the remaining request again */
1715 if (mqrq->retries > MMC_MAX_RETRIES - 1)
1716 mqrq->retries = MMC_MAX_RETRIES - 1;
1719 static inline bool mmc_blk_oor_valid(struct mmc_blk_request *brq)
1721 return !!brq->mrq.sbc;
1724 static inline u32 mmc_blk_stop_err_bits(struct mmc_blk_request *brq)
1726 return mmc_blk_oor_valid(brq) ? CMD_ERRORS : CMD_ERRORS_EXCL_OOR;
1730 * Check for errors the host controller driver might not have seen such as
1731 * response mode errors or invalid card state.
1733 static bool mmc_blk_status_error(struct request *req, u32 status)
1735 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1736 struct mmc_blk_request *brq = &mqrq->brq;
1737 struct mmc_queue *mq = req->q->queuedata;
1738 u32 stop_err_bits;
1740 if (mmc_host_is_spi(mq->card->host))
1741 return false;
1743 stop_err_bits = mmc_blk_stop_err_bits(brq);
1745 return brq->cmd.resp[0] & CMD_ERRORS ||
1746 brq->stop.resp[0] & stop_err_bits ||
1747 status & stop_err_bits ||
1748 (rq_data_dir(req) == WRITE && !mmc_blk_in_tran_state(status));
1751 static inline bool mmc_blk_cmd_started(struct mmc_blk_request *brq)
1753 return !brq->sbc.error && !brq->cmd.error &&
1754 !(brq->cmd.resp[0] & CMD_ERRORS);
1758 * Requests are completed by mmc_blk_mq_complete_rq() which sets simple
1759 * policy:
1760 * 1. A request that has transferred at least some data is considered
1761 * successful and will be requeued if there is remaining data to
1762 * transfer.
1763 * 2. Otherwise the number of retries is incremented and the request
1764 * will be requeued if there are remaining retries.
1765 * 3. Otherwise the request will be errored out.
1766 * That means mmc_blk_mq_complete_rq() is controlled by bytes_xfered and
1767 * mqrq->retries. So there are only 4 possible actions here:
1768 * 1. do not accept the bytes_xfered value i.e. set it to zero
1769 * 2. change mqrq->retries to determine the number of retries
1770 * 3. try to reset the card
1771 * 4. read one sector at a time
1773 static void mmc_blk_mq_rw_recovery(struct mmc_queue *mq, struct request *req)
1775 int type = rq_data_dir(req) == READ ? MMC_BLK_READ : MMC_BLK_WRITE;
1776 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1777 struct mmc_blk_request *brq = &mqrq->brq;
1778 struct mmc_blk_data *md = mq->blkdata;
1779 struct mmc_card *card = mq->card;
1780 u32 status;
1781 u32 blocks;
1782 int err;
1785 * Some errors the host driver might not have seen. Set the number of
1786 * bytes transferred to zero in that case.
1788 err = __mmc_send_status(card, &status, 0);
1789 if (err || mmc_blk_status_error(req, status))
1790 brq->data.bytes_xfered = 0;
1792 mmc_retune_release(card->host);
1795 * Try again to get the status. This also provides an opportunity for
1796 * re-tuning.
1798 if (err)
1799 err = __mmc_send_status(card, &status, 0);
1802 * Nothing more to do after the number of bytes transferred has been
1803 * updated and there is no card.
1805 if (err && mmc_detect_card_removed(card->host))
1806 return;
1808 /* Try to get back to "tran" state */
1809 if (!mmc_host_is_spi(mq->card->host) &&
1810 (err || !mmc_blk_in_tran_state(status)))
1811 err = mmc_blk_fix_state(mq->card, req);
1814 * Special case for SD cards where the card might record the number of
1815 * blocks written.
1817 if (!err && mmc_blk_cmd_started(brq) && mmc_card_sd(card) &&
1818 rq_data_dir(req) == WRITE) {
1819 if (mmc_sd_num_wr_blocks(card, &blocks))
1820 brq->data.bytes_xfered = 0;
1821 else
1822 brq->data.bytes_xfered = blocks << 9;
1825 /* Reset if the card is in a bad state */
1826 if (!mmc_host_is_spi(mq->card->host) &&
1827 err && mmc_blk_reset(md, card->host, type)) {
1828 pr_err("%s: recovery failed!\n", req->rq_disk->disk_name);
1829 mqrq->retries = MMC_NO_RETRIES;
1830 return;
1834 * If anything was done, just return and if there is anything remaining
1835 * on the request it will get requeued.
1837 if (brq->data.bytes_xfered)
1838 return;
1840 /* Reset before last retry */
1841 if (mqrq->retries + 1 == MMC_MAX_RETRIES)
1842 mmc_blk_reset(md, card->host, type);
1844 /* Command errors fail fast, so use all MMC_MAX_RETRIES */
1845 if (brq->sbc.error || brq->cmd.error)
1846 return;
1848 /* Reduce the remaining retries for data errors */
1849 if (mqrq->retries < MMC_MAX_RETRIES - MMC_DATA_RETRIES) {
1850 mqrq->retries = MMC_MAX_RETRIES - MMC_DATA_RETRIES;
1851 return;
1854 /* FIXME: Missing single sector read for large sector size */
1855 if (!mmc_large_sector(card) && rq_data_dir(req) == READ &&
1856 brq->data.blocks > 1) {
1857 /* Read one sector at a time */
1858 mmc_blk_read_single(mq, req);
1859 return;
1863 static inline bool mmc_blk_rq_error(struct mmc_blk_request *brq)
1865 mmc_blk_eval_resp_error(brq);
1867 return brq->sbc.error || brq->cmd.error || brq->stop.error ||
1868 brq->data.error || brq->cmd.resp[0] & CMD_ERRORS;
1871 static int mmc_blk_card_busy(struct mmc_card *card, struct request *req)
1873 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1874 u32 status = 0;
1875 int err;
1877 if (mmc_host_is_spi(card->host) || rq_data_dir(req) == READ)
1878 return 0;
1880 err = card_busy_detect(card, MMC_BLK_TIMEOUT_MS, req, &status);
1883 * Do not assume data transferred correctly if there are any error bits
1884 * set.
1886 if (status & mmc_blk_stop_err_bits(&mqrq->brq)) {
1887 mqrq->brq.data.bytes_xfered = 0;
1888 err = err ? err : -EIO;
1891 /* Copy the exception bit so it will be seen later on */
1892 if (mmc_card_mmc(card) && status & R1_EXCEPTION_EVENT)
1893 mqrq->brq.cmd.resp[0] |= R1_EXCEPTION_EVENT;
1895 return err;
1898 static inline void mmc_blk_rw_reset_success(struct mmc_queue *mq,
1899 struct request *req)
1901 int type = rq_data_dir(req) == READ ? MMC_BLK_READ : MMC_BLK_WRITE;
1903 mmc_blk_reset_success(mq->blkdata, type);
1906 static void mmc_blk_mq_complete_rq(struct mmc_queue *mq, struct request *req)
1908 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1909 unsigned int nr_bytes = mqrq->brq.data.bytes_xfered;
1911 if (nr_bytes) {
1912 if (blk_update_request(req, BLK_STS_OK, nr_bytes))
1913 blk_mq_requeue_request(req, true);
1914 else
1915 __blk_mq_end_request(req, BLK_STS_OK);
1916 } else if (!blk_rq_bytes(req)) {
1917 __blk_mq_end_request(req, BLK_STS_IOERR);
1918 } else if (mqrq->retries++ < MMC_MAX_RETRIES) {
1919 blk_mq_requeue_request(req, true);
1920 } else {
1921 if (mmc_card_removed(mq->card))
1922 req->rq_flags |= RQF_QUIET;
1923 blk_mq_end_request(req, BLK_STS_IOERR);
1927 static bool mmc_blk_urgent_bkops_needed(struct mmc_queue *mq,
1928 struct mmc_queue_req *mqrq)
1930 return mmc_card_mmc(mq->card) && !mmc_host_is_spi(mq->card->host) &&
1931 (mqrq->brq.cmd.resp[0] & R1_EXCEPTION_EVENT ||
1932 mqrq->brq.stop.resp[0] & R1_EXCEPTION_EVENT);
1935 static void mmc_blk_urgent_bkops(struct mmc_queue *mq,
1936 struct mmc_queue_req *mqrq)
1938 if (mmc_blk_urgent_bkops_needed(mq, mqrq))
1939 mmc_start_bkops(mq->card, true);
1942 void mmc_blk_mq_complete(struct request *req)
1944 struct mmc_queue *mq = req->q->queuedata;
1946 if (mq->use_cqe)
1947 mmc_blk_cqe_complete_rq(mq, req);
1948 else
1949 mmc_blk_mq_complete_rq(mq, req);
1952 static void mmc_blk_mq_poll_completion(struct mmc_queue *mq,
1953 struct request *req)
1955 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1956 struct mmc_host *host = mq->card->host;
1958 if (mmc_blk_rq_error(&mqrq->brq) ||
1959 mmc_blk_card_busy(mq->card, req)) {
1960 mmc_blk_mq_rw_recovery(mq, req);
1961 } else {
1962 mmc_blk_rw_reset_success(mq, req);
1963 mmc_retune_release(host);
1966 mmc_blk_urgent_bkops(mq, mqrq);
1969 static void mmc_blk_mq_dec_in_flight(struct mmc_queue *mq, struct request *req)
1971 struct request_queue *q = req->q;
1972 unsigned long flags;
1973 bool put_card;
1975 spin_lock_irqsave(q->queue_lock, flags);
1977 mq->in_flight[mmc_issue_type(mq, req)] -= 1;
1979 put_card = (mmc_tot_in_flight(mq) == 0);
1981 spin_unlock_irqrestore(q->queue_lock, flags);
1983 if (put_card)
1984 mmc_put_card(mq->card, &mq->ctx);
1987 static void mmc_blk_mq_post_req(struct mmc_queue *mq, struct request *req)
1989 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1990 struct mmc_request *mrq = &mqrq->brq.mrq;
1991 struct mmc_host *host = mq->card->host;
1993 mmc_post_req(host, mrq, 0);
1996 * Block layer timeouts race with completions which means the normal
1997 * completion path cannot be used during recovery.
1999 if (mq->in_recovery)
2000 mmc_blk_mq_complete_rq(mq, req);
2001 else
2002 blk_mq_complete_request(req);
2004 mmc_blk_mq_dec_in_flight(mq, req);
2007 void mmc_blk_mq_recovery(struct mmc_queue *mq)
2009 struct request *req = mq->recovery_req;
2010 struct mmc_host *host = mq->card->host;
2011 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
2013 mq->recovery_req = NULL;
2014 mq->rw_wait = false;
2016 if (mmc_blk_rq_error(&mqrq->brq)) {
2017 mmc_retune_hold_now(host);
2018 mmc_blk_mq_rw_recovery(mq, req);
2021 mmc_blk_urgent_bkops(mq, mqrq);
2023 mmc_blk_mq_post_req(mq, req);
2026 static void mmc_blk_mq_complete_prev_req(struct mmc_queue *mq,
2027 struct request **prev_req)
2029 if (mmc_host_done_complete(mq->card->host))
2030 return;
2032 mutex_lock(&mq->complete_lock);
2034 if (!mq->complete_req)
2035 goto out_unlock;
2037 mmc_blk_mq_poll_completion(mq, mq->complete_req);
2039 if (prev_req)
2040 *prev_req = mq->complete_req;
2041 else
2042 mmc_blk_mq_post_req(mq, mq->complete_req);
2044 mq->complete_req = NULL;
2046 out_unlock:
2047 mutex_unlock(&mq->complete_lock);
2050 void mmc_blk_mq_complete_work(struct work_struct *work)
2052 struct mmc_queue *mq = container_of(work, struct mmc_queue,
2053 complete_work);
2055 mmc_blk_mq_complete_prev_req(mq, NULL);
2058 static void mmc_blk_mq_req_done(struct mmc_request *mrq)
2060 struct mmc_queue_req *mqrq = container_of(mrq, struct mmc_queue_req,
2061 brq.mrq);
2062 struct request *req = mmc_queue_req_to_req(mqrq);
2063 struct request_queue *q = req->q;
2064 struct mmc_queue *mq = q->queuedata;
2065 struct mmc_host *host = mq->card->host;
2066 unsigned long flags;
2068 if (!mmc_host_done_complete(host)) {
2069 bool waiting;
2072 * We cannot complete the request in this context, so record
2073 * that there is a request to complete, and that a following
2074 * request does not need to wait (although it does need to
2075 * complete complete_req first).
2077 spin_lock_irqsave(q->queue_lock, flags);
2078 mq->complete_req = req;
2079 mq->rw_wait = false;
2080 waiting = mq->waiting;
2081 spin_unlock_irqrestore(q->queue_lock, flags);
2084 * If 'waiting' then the waiting task will complete this
2085 * request, otherwise queue a work to do it. Note that
2086 * complete_work may still race with the dispatch of a following
2087 * request.
2089 if (waiting)
2090 wake_up(&mq->wait);
2091 else
2092 kblockd_schedule_work(&mq->complete_work);
2094 return;
2097 /* Take the recovery path for errors or urgent background operations */
2098 if (mmc_blk_rq_error(&mqrq->brq) ||
2099 mmc_blk_urgent_bkops_needed(mq, mqrq)) {
2100 spin_lock_irqsave(q->queue_lock, flags);
2101 mq->recovery_needed = true;
2102 mq->recovery_req = req;
2103 spin_unlock_irqrestore(q->queue_lock, flags);
2104 wake_up(&mq->wait);
2105 schedule_work(&mq->recovery_work);
2106 return;
2109 mmc_blk_rw_reset_success(mq, req);
2111 mq->rw_wait = false;
2112 wake_up(&mq->wait);
2114 mmc_blk_mq_post_req(mq, req);
2117 static bool mmc_blk_rw_wait_cond(struct mmc_queue *mq, int *err)
2119 struct request_queue *q = mq->queue;
2120 unsigned long flags;
2121 bool done;
2124 * Wait while there is another request in progress, but not if recovery
2125 * is needed. Also indicate whether there is a request waiting to start.
2127 spin_lock_irqsave(q->queue_lock, flags);
2128 if (mq->recovery_needed) {
2129 *err = -EBUSY;
2130 done = true;
2131 } else {
2132 done = !mq->rw_wait;
2134 mq->waiting = !done;
2135 spin_unlock_irqrestore(q->queue_lock, flags);
2137 return done;
2140 static int mmc_blk_rw_wait(struct mmc_queue *mq, struct request **prev_req)
2142 int err = 0;
2144 wait_event(mq->wait, mmc_blk_rw_wait_cond(mq, &err));
2146 /* Always complete the previous request if there is one */
2147 mmc_blk_mq_complete_prev_req(mq, prev_req);
2149 return err;
2152 static int mmc_blk_mq_issue_rw_rq(struct mmc_queue *mq,
2153 struct request *req)
2155 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
2156 struct mmc_host *host = mq->card->host;
2157 struct request *prev_req = NULL;
2158 int err = 0;
2160 mmc_blk_rw_rq_prep(mqrq, mq->card, 0, mq);
2162 mqrq->brq.mrq.done = mmc_blk_mq_req_done;
2164 mmc_pre_req(host, &mqrq->brq.mrq);
2166 err = mmc_blk_rw_wait(mq, &prev_req);
2167 if (err)
2168 goto out_post_req;
2170 mq->rw_wait = true;
2172 err = mmc_start_request(host, &mqrq->brq.mrq);
2174 if (prev_req)
2175 mmc_blk_mq_post_req(mq, prev_req);
2177 if (err)
2178 mq->rw_wait = false;
2180 /* Release re-tuning here where there is no synchronization required */
2181 if (err || mmc_host_done_complete(host))
2182 mmc_retune_release(host);
2184 out_post_req:
2185 if (err)
2186 mmc_post_req(host, &mqrq->brq.mrq, err);
2188 return err;
2191 static int mmc_blk_wait_for_idle(struct mmc_queue *mq, struct mmc_host *host)
2193 if (mq->use_cqe)
2194 return host->cqe_ops->cqe_wait_for_idle(host);
2196 return mmc_blk_rw_wait(mq, NULL);
2199 enum mmc_issued mmc_blk_mq_issue_rq(struct mmc_queue *mq, struct request *req)
2201 struct mmc_blk_data *md = mq->blkdata;
2202 struct mmc_card *card = md->queue.card;
2203 struct mmc_host *host = card->host;
2204 int ret;
2206 ret = mmc_blk_part_switch(card, md->part_type);
2207 if (ret)
2208 return MMC_REQ_FAILED_TO_START;
2210 switch (mmc_issue_type(mq, req)) {
2211 case MMC_ISSUE_SYNC:
2212 ret = mmc_blk_wait_for_idle(mq, host);
2213 if (ret)
2214 return MMC_REQ_BUSY;
2215 switch (req_op(req)) {
2216 case REQ_OP_DRV_IN:
2217 case REQ_OP_DRV_OUT:
2218 mmc_blk_issue_drv_op(mq, req);
2219 break;
2220 case REQ_OP_DISCARD:
2221 mmc_blk_issue_discard_rq(mq, req);
2222 break;
2223 case REQ_OP_SECURE_ERASE:
2224 mmc_blk_issue_secdiscard_rq(mq, req);
2225 break;
2226 case REQ_OP_FLUSH:
2227 mmc_blk_issue_flush(mq, req);
2228 break;
2229 default:
2230 WARN_ON_ONCE(1);
2231 return MMC_REQ_FAILED_TO_START;
2233 return MMC_REQ_FINISHED;
2234 case MMC_ISSUE_DCMD:
2235 case MMC_ISSUE_ASYNC:
2236 switch (req_op(req)) {
2237 case REQ_OP_FLUSH:
2238 ret = mmc_blk_cqe_issue_flush(mq, req);
2239 break;
2240 case REQ_OP_READ:
2241 case REQ_OP_WRITE:
2242 if (mq->use_cqe)
2243 ret = mmc_blk_cqe_issue_rw_rq(mq, req);
2244 else
2245 ret = mmc_blk_mq_issue_rw_rq(mq, req);
2246 break;
2247 default:
2248 WARN_ON_ONCE(1);
2249 ret = -EINVAL;
2251 if (!ret)
2252 return MMC_REQ_STARTED;
2253 return ret == -EBUSY ? MMC_REQ_BUSY : MMC_REQ_FAILED_TO_START;
2254 default:
2255 WARN_ON_ONCE(1);
2256 return MMC_REQ_FAILED_TO_START;
2260 static inline int mmc_blk_readonly(struct mmc_card *card)
2262 return mmc_card_readonly(card) ||
2263 !(card->csd.cmdclass & CCC_BLOCK_WRITE);
2266 static struct mmc_blk_data *mmc_blk_alloc_req(struct mmc_card *card,
2267 struct device *parent,
2268 sector_t size,
2269 bool default_ro,
2270 const char *subname,
2271 int area_type)
2273 struct mmc_blk_data *md;
2274 int devidx, ret;
2276 devidx = ida_simple_get(&mmc_blk_ida, 0, max_devices, GFP_KERNEL);
2277 if (devidx < 0) {
2279 * We get -ENOSPC because there are no more any available
2280 * devidx. The reason may be that, either userspace haven't yet
2281 * unmounted the partitions, which postpones mmc_blk_release()
2282 * from being called, or the device has more partitions than
2283 * what we support.
2285 if (devidx == -ENOSPC)
2286 dev_err(mmc_dev(card->host),
2287 "no more device IDs available\n");
2289 return ERR_PTR(devidx);
2292 md = kzalloc(sizeof(struct mmc_blk_data), GFP_KERNEL);
2293 if (!md) {
2294 ret = -ENOMEM;
2295 goto out;
2298 md->area_type = area_type;
2301 * Set the read-only status based on the supported commands
2302 * and the write protect switch.
2304 md->read_only = mmc_blk_readonly(card);
2306 md->disk = alloc_disk(perdev_minors);
2307 if (md->disk == NULL) {
2308 ret = -ENOMEM;
2309 goto err_kfree;
2312 spin_lock_init(&md->lock);
2313 INIT_LIST_HEAD(&md->part);
2314 INIT_LIST_HEAD(&md->rpmbs);
2315 md->usage = 1;
2317 ret = mmc_init_queue(&md->queue, card, &md->lock, subname);
2318 if (ret)
2319 goto err_putdisk;
2321 md->queue.blkdata = md;
2324 * Keep an extra reference to the queue so that we can shutdown the
2325 * queue (i.e. call blk_cleanup_queue()) while there are still
2326 * references to the 'md'. The corresponding blk_put_queue() is in
2327 * mmc_blk_put().
2329 if (!blk_get_queue(md->queue.queue)) {
2330 mmc_cleanup_queue(&md->queue);
2331 ret = -ENODEV;
2332 goto err_putdisk;
2335 md->disk->major = MMC_BLOCK_MAJOR;
2336 md->disk->first_minor = devidx * perdev_minors;
2337 md->disk->fops = &mmc_bdops;
2338 md->disk->private_data = md;
2339 md->disk->queue = md->queue.queue;
2340 md->parent = parent;
2341 set_disk_ro(md->disk, md->read_only || default_ro);
2342 md->disk->flags = GENHD_FL_EXT_DEVT;
2343 if (area_type & (MMC_BLK_DATA_AREA_RPMB | MMC_BLK_DATA_AREA_BOOT))
2344 md->disk->flags |= GENHD_FL_NO_PART_SCAN;
2347 * As discussed on lkml, GENHD_FL_REMOVABLE should:
2349 * - be set for removable media with permanent block devices
2350 * - be unset for removable block devices with permanent media
2352 * Since MMC block devices clearly fall under the second
2353 * case, we do not set GENHD_FL_REMOVABLE. Userspace
2354 * should use the block device creation/destruction hotplug
2355 * messages to tell when the card is present.
2358 snprintf(md->disk->disk_name, sizeof(md->disk->disk_name),
2359 "mmcblk%u%s", card->host->index, subname ? subname : "");
2361 if (mmc_card_mmc(card))
2362 blk_queue_logical_block_size(md->queue.queue,
2363 card->ext_csd.data_sector_size);
2364 else
2365 blk_queue_logical_block_size(md->queue.queue, 512);
2367 set_capacity(md->disk, size);
2369 if (mmc_host_cmd23(card->host)) {
2370 if ((mmc_card_mmc(card) &&
2371 card->csd.mmca_vsn >= CSD_SPEC_VER_3) ||
2372 (mmc_card_sd(card) &&
2373 card->scr.cmds & SD_SCR_CMD23_SUPPORT))
2374 md->flags |= MMC_BLK_CMD23;
2377 if (mmc_card_mmc(card) &&
2378 md->flags & MMC_BLK_CMD23 &&
2379 ((card->ext_csd.rel_param & EXT_CSD_WR_REL_PARAM_EN) ||
2380 card->ext_csd.rel_sectors)) {
2381 md->flags |= MMC_BLK_REL_WR;
2382 blk_queue_write_cache(md->queue.queue, true, true);
2385 return md;
2387 err_putdisk:
2388 put_disk(md->disk);
2389 err_kfree:
2390 kfree(md);
2391 out:
2392 ida_simple_remove(&mmc_blk_ida, devidx);
2393 return ERR_PTR(ret);
2396 static struct mmc_blk_data *mmc_blk_alloc(struct mmc_card *card)
2398 sector_t size;
2400 if (!mmc_card_sd(card) && mmc_card_blockaddr(card)) {
2402 * The EXT_CSD sector count is in number or 512 byte
2403 * sectors.
2405 size = card->ext_csd.sectors;
2406 } else {
2408 * The CSD capacity field is in units of read_blkbits.
2409 * set_capacity takes units of 512 bytes.
2411 size = (typeof(sector_t))card->csd.capacity
2412 << (card->csd.read_blkbits - 9);
2415 return mmc_blk_alloc_req(card, &card->dev, size, false, NULL,
2416 MMC_BLK_DATA_AREA_MAIN);
2419 static int mmc_blk_alloc_part(struct mmc_card *card,
2420 struct mmc_blk_data *md,
2421 unsigned int part_type,
2422 sector_t size,
2423 bool default_ro,
2424 const char *subname,
2425 int area_type)
2427 char cap_str[10];
2428 struct mmc_blk_data *part_md;
2430 part_md = mmc_blk_alloc_req(card, disk_to_dev(md->disk), size, default_ro,
2431 subname, area_type);
2432 if (IS_ERR(part_md))
2433 return PTR_ERR(part_md);
2434 part_md->part_type = part_type;
2435 list_add(&part_md->part, &md->part);
2437 string_get_size((u64)get_capacity(part_md->disk), 512, STRING_UNITS_2,
2438 cap_str, sizeof(cap_str));
2439 pr_info("%s: %s %s partition %u %s\n",
2440 part_md->disk->disk_name, mmc_card_id(card),
2441 mmc_card_name(card), part_md->part_type, cap_str);
2442 return 0;
2446 * mmc_rpmb_ioctl() - ioctl handler for the RPMB chardev
2447 * @filp: the character device file
2448 * @cmd: the ioctl() command
2449 * @arg: the argument from userspace
2451 * This will essentially just redirect the ioctl()s coming in over to
2452 * the main block device spawning the RPMB character device.
2454 static long mmc_rpmb_ioctl(struct file *filp, unsigned int cmd,
2455 unsigned long arg)
2457 struct mmc_rpmb_data *rpmb = filp->private_data;
2458 int ret;
2460 switch (cmd) {
2461 case MMC_IOC_CMD:
2462 ret = mmc_blk_ioctl_cmd(rpmb->md,
2463 (struct mmc_ioc_cmd __user *)arg,
2464 rpmb);
2465 break;
2466 case MMC_IOC_MULTI_CMD:
2467 ret = mmc_blk_ioctl_multi_cmd(rpmb->md,
2468 (struct mmc_ioc_multi_cmd __user *)arg,
2469 rpmb);
2470 break;
2471 default:
2472 ret = -EINVAL;
2473 break;
2476 return 0;
2479 #ifdef CONFIG_COMPAT
2480 static long mmc_rpmb_ioctl_compat(struct file *filp, unsigned int cmd,
2481 unsigned long arg)
2483 return mmc_rpmb_ioctl(filp, cmd, (unsigned long)compat_ptr(arg));
2485 #endif
2487 static int mmc_rpmb_chrdev_open(struct inode *inode, struct file *filp)
2489 struct mmc_rpmb_data *rpmb = container_of(inode->i_cdev,
2490 struct mmc_rpmb_data, chrdev);
2492 get_device(&rpmb->dev);
2493 filp->private_data = rpmb;
2494 mmc_blk_get(rpmb->md->disk);
2496 return nonseekable_open(inode, filp);
2499 static int mmc_rpmb_chrdev_release(struct inode *inode, struct file *filp)
2501 struct mmc_rpmb_data *rpmb = container_of(inode->i_cdev,
2502 struct mmc_rpmb_data, chrdev);
2504 put_device(&rpmb->dev);
2505 mmc_blk_put(rpmb->md);
2507 return 0;
2510 static const struct file_operations mmc_rpmb_fileops = {
2511 .release = mmc_rpmb_chrdev_release,
2512 .open = mmc_rpmb_chrdev_open,
2513 .owner = THIS_MODULE,
2514 .llseek = no_llseek,
2515 .unlocked_ioctl = mmc_rpmb_ioctl,
2516 #ifdef CONFIG_COMPAT
2517 .compat_ioctl = mmc_rpmb_ioctl_compat,
2518 #endif
2521 static void mmc_blk_rpmb_device_release(struct device *dev)
2523 struct mmc_rpmb_data *rpmb = dev_get_drvdata(dev);
2525 ida_simple_remove(&mmc_rpmb_ida, rpmb->id);
2526 kfree(rpmb);
2529 static int mmc_blk_alloc_rpmb_part(struct mmc_card *card,
2530 struct mmc_blk_data *md,
2531 unsigned int part_index,
2532 sector_t size,
2533 const char *subname)
2535 int devidx, ret;
2536 char rpmb_name[DISK_NAME_LEN];
2537 char cap_str[10];
2538 struct mmc_rpmb_data *rpmb;
2540 /* This creates the minor number for the RPMB char device */
2541 devidx = ida_simple_get(&mmc_rpmb_ida, 0, max_devices, GFP_KERNEL);
2542 if (devidx < 0)
2543 return devidx;
2545 rpmb = kzalloc(sizeof(*rpmb), GFP_KERNEL);
2546 if (!rpmb) {
2547 ida_simple_remove(&mmc_rpmb_ida, devidx);
2548 return -ENOMEM;
2551 snprintf(rpmb_name, sizeof(rpmb_name),
2552 "mmcblk%u%s", card->host->index, subname ? subname : "");
2554 rpmb->id = devidx;
2555 rpmb->part_index = part_index;
2556 rpmb->dev.init_name = rpmb_name;
2557 rpmb->dev.bus = &mmc_rpmb_bus_type;
2558 rpmb->dev.devt = MKDEV(MAJOR(mmc_rpmb_devt), rpmb->id);
2559 rpmb->dev.parent = &card->dev;
2560 rpmb->dev.release = mmc_blk_rpmb_device_release;
2561 device_initialize(&rpmb->dev);
2562 dev_set_drvdata(&rpmb->dev, rpmb);
2563 rpmb->md = md;
2565 cdev_init(&rpmb->chrdev, &mmc_rpmb_fileops);
2566 rpmb->chrdev.owner = THIS_MODULE;
2567 ret = cdev_device_add(&rpmb->chrdev, &rpmb->dev);
2568 if (ret) {
2569 pr_err("%s: could not add character device\n", rpmb_name);
2570 goto out_put_device;
2573 list_add(&rpmb->node, &md->rpmbs);
2575 string_get_size((u64)size, 512, STRING_UNITS_2,
2576 cap_str, sizeof(cap_str));
2578 pr_info("%s: %s %s partition %u %s, chardev (%d:%d)\n",
2579 rpmb_name, mmc_card_id(card),
2580 mmc_card_name(card), EXT_CSD_PART_CONFIG_ACC_RPMB, cap_str,
2581 MAJOR(mmc_rpmb_devt), rpmb->id);
2583 return 0;
2585 out_put_device:
2586 put_device(&rpmb->dev);
2587 return ret;
2590 static void mmc_blk_remove_rpmb_part(struct mmc_rpmb_data *rpmb)
2593 cdev_device_del(&rpmb->chrdev, &rpmb->dev);
2594 put_device(&rpmb->dev);
2597 /* MMC Physical partitions consist of two boot partitions and
2598 * up to four general purpose partitions.
2599 * For each partition enabled in EXT_CSD a block device will be allocatedi
2600 * to provide access to the partition.
2603 static int mmc_blk_alloc_parts(struct mmc_card *card, struct mmc_blk_data *md)
2605 int idx, ret;
2607 if (!mmc_card_mmc(card))
2608 return 0;
2610 for (idx = 0; idx < card->nr_parts; idx++) {
2611 if (card->part[idx].area_type & MMC_BLK_DATA_AREA_RPMB) {
2613 * RPMB partitions does not provide block access, they
2614 * are only accessed using ioctl():s. Thus create
2615 * special RPMB block devices that do not have a
2616 * backing block queue for these.
2618 ret = mmc_blk_alloc_rpmb_part(card, md,
2619 card->part[idx].part_cfg,
2620 card->part[idx].size >> 9,
2621 card->part[idx].name);
2622 if (ret)
2623 return ret;
2624 } else if (card->part[idx].size) {
2625 ret = mmc_blk_alloc_part(card, md,
2626 card->part[idx].part_cfg,
2627 card->part[idx].size >> 9,
2628 card->part[idx].force_ro,
2629 card->part[idx].name,
2630 card->part[idx].area_type);
2631 if (ret)
2632 return ret;
2636 return 0;
2639 static void mmc_blk_remove_req(struct mmc_blk_data *md)
2641 struct mmc_card *card;
2643 if (md) {
2645 * Flush remaining requests and free queues. It
2646 * is freeing the queue that stops new requests
2647 * from being accepted.
2649 card = md->queue.card;
2650 mmc_cleanup_queue(&md->queue);
2651 if (md->disk->flags & GENHD_FL_UP) {
2652 device_remove_file(disk_to_dev(md->disk), &md->force_ro);
2653 if ((md->area_type & MMC_BLK_DATA_AREA_BOOT) &&
2654 card->ext_csd.boot_ro_lockable)
2655 device_remove_file(disk_to_dev(md->disk),
2656 &md->power_ro_lock);
2658 del_gendisk(md->disk);
2660 mmc_blk_put(md);
2664 static void mmc_blk_remove_parts(struct mmc_card *card,
2665 struct mmc_blk_data *md)
2667 struct list_head *pos, *q;
2668 struct mmc_blk_data *part_md;
2669 struct mmc_rpmb_data *rpmb;
2671 /* Remove RPMB partitions */
2672 list_for_each_safe(pos, q, &md->rpmbs) {
2673 rpmb = list_entry(pos, struct mmc_rpmb_data, node);
2674 list_del(pos);
2675 mmc_blk_remove_rpmb_part(rpmb);
2677 /* Remove block partitions */
2678 list_for_each_safe(pos, q, &md->part) {
2679 part_md = list_entry(pos, struct mmc_blk_data, part);
2680 list_del(pos);
2681 mmc_blk_remove_req(part_md);
2685 static int mmc_add_disk(struct mmc_blk_data *md)
2687 int ret;
2688 struct mmc_card *card = md->queue.card;
2690 device_add_disk(md->parent, md->disk);
2691 md->force_ro.show = force_ro_show;
2692 md->force_ro.store = force_ro_store;
2693 sysfs_attr_init(&md->force_ro.attr);
2694 md->force_ro.attr.name = "force_ro";
2695 md->force_ro.attr.mode = S_IRUGO | S_IWUSR;
2696 ret = device_create_file(disk_to_dev(md->disk), &md->force_ro);
2697 if (ret)
2698 goto force_ro_fail;
2700 if ((md->area_type & MMC_BLK_DATA_AREA_BOOT) &&
2701 card->ext_csd.boot_ro_lockable) {
2702 umode_t mode;
2704 if (card->ext_csd.boot_ro_lock & EXT_CSD_BOOT_WP_B_PWR_WP_DIS)
2705 mode = S_IRUGO;
2706 else
2707 mode = S_IRUGO | S_IWUSR;
2709 md->power_ro_lock.show = power_ro_lock_show;
2710 md->power_ro_lock.store = power_ro_lock_store;
2711 sysfs_attr_init(&md->power_ro_lock.attr);
2712 md->power_ro_lock.attr.mode = mode;
2713 md->power_ro_lock.attr.name =
2714 "ro_lock_until_next_power_on";
2715 ret = device_create_file(disk_to_dev(md->disk),
2716 &md->power_ro_lock);
2717 if (ret)
2718 goto power_ro_lock_fail;
2720 return ret;
2722 power_ro_lock_fail:
2723 device_remove_file(disk_to_dev(md->disk), &md->force_ro);
2724 force_ro_fail:
2725 del_gendisk(md->disk);
2727 return ret;
2730 #ifdef CONFIG_DEBUG_FS
2732 static int mmc_dbg_card_status_get(void *data, u64 *val)
2734 struct mmc_card *card = data;
2735 struct mmc_blk_data *md = dev_get_drvdata(&card->dev);
2736 struct mmc_queue *mq = &md->queue;
2737 struct request *req;
2738 int ret;
2740 /* Ask the block layer about the card status */
2741 req = blk_get_request(mq->queue, REQ_OP_DRV_IN, __GFP_RECLAIM);
2742 if (IS_ERR(req))
2743 return PTR_ERR(req);
2744 req_to_mmc_queue_req(req)->drv_op = MMC_DRV_OP_GET_CARD_STATUS;
2745 blk_execute_rq(mq->queue, NULL, req, 0);
2746 ret = req_to_mmc_queue_req(req)->drv_op_result;
2747 if (ret >= 0) {
2748 *val = ret;
2749 ret = 0;
2751 blk_put_request(req);
2753 return ret;
2755 DEFINE_SIMPLE_ATTRIBUTE(mmc_dbg_card_status_fops, mmc_dbg_card_status_get,
2756 NULL, "%08llx\n");
2758 /* That is two digits * 512 + 1 for newline */
2759 #define EXT_CSD_STR_LEN 1025
2761 static int mmc_ext_csd_open(struct inode *inode, struct file *filp)
2763 struct mmc_card *card = inode->i_private;
2764 struct mmc_blk_data *md = dev_get_drvdata(&card->dev);
2765 struct mmc_queue *mq = &md->queue;
2766 struct request *req;
2767 char *buf;
2768 ssize_t n = 0;
2769 u8 *ext_csd;
2770 int err, i;
2772 buf = kmalloc(EXT_CSD_STR_LEN + 1, GFP_KERNEL);
2773 if (!buf)
2774 return -ENOMEM;
2776 /* Ask the block layer for the EXT CSD */
2777 req = blk_get_request(mq->queue, REQ_OP_DRV_IN, __GFP_RECLAIM);
2778 if (IS_ERR(req)) {
2779 err = PTR_ERR(req);
2780 goto out_free;
2782 req_to_mmc_queue_req(req)->drv_op = MMC_DRV_OP_GET_EXT_CSD;
2783 req_to_mmc_queue_req(req)->drv_op_data = &ext_csd;
2784 blk_execute_rq(mq->queue, NULL, req, 0);
2785 err = req_to_mmc_queue_req(req)->drv_op_result;
2786 blk_put_request(req);
2787 if (err) {
2788 pr_err("FAILED %d\n", err);
2789 goto out_free;
2792 for (i = 0; i < 512; i++)
2793 n += sprintf(buf + n, "%02x", ext_csd[i]);
2794 n += sprintf(buf + n, "\n");
2796 if (n != EXT_CSD_STR_LEN) {
2797 err = -EINVAL;
2798 kfree(ext_csd);
2799 goto out_free;
2802 filp->private_data = buf;
2803 kfree(ext_csd);
2804 return 0;
2806 out_free:
2807 kfree(buf);
2808 return err;
2811 static ssize_t mmc_ext_csd_read(struct file *filp, char __user *ubuf,
2812 size_t cnt, loff_t *ppos)
2814 char *buf = filp->private_data;
2816 return simple_read_from_buffer(ubuf, cnt, ppos,
2817 buf, EXT_CSD_STR_LEN);
2820 static int mmc_ext_csd_release(struct inode *inode, struct file *file)
2822 kfree(file->private_data);
2823 return 0;
2826 static const struct file_operations mmc_dbg_ext_csd_fops = {
2827 .open = mmc_ext_csd_open,
2828 .read = mmc_ext_csd_read,
2829 .release = mmc_ext_csd_release,
2830 .llseek = default_llseek,
2833 static int mmc_blk_add_debugfs(struct mmc_card *card, struct mmc_blk_data *md)
2835 struct dentry *root;
2837 if (!card->debugfs_root)
2838 return 0;
2840 root = card->debugfs_root;
2842 if (mmc_card_mmc(card) || mmc_card_sd(card)) {
2843 md->status_dentry =
2844 debugfs_create_file("status", S_IRUSR, root, card,
2845 &mmc_dbg_card_status_fops);
2846 if (!md->status_dentry)
2847 return -EIO;
2850 if (mmc_card_mmc(card)) {
2851 md->ext_csd_dentry =
2852 debugfs_create_file("ext_csd", S_IRUSR, root, card,
2853 &mmc_dbg_ext_csd_fops);
2854 if (!md->ext_csd_dentry)
2855 return -EIO;
2858 return 0;
2861 static void mmc_blk_remove_debugfs(struct mmc_card *card,
2862 struct mmc_blk_data *md)
2864 if (!card->debugfs_root)
2865 return;
2867 if (!IS_ERR_OR_NULL(md->status_dentry)) {
2868 debugfs_remove(md->status_dentry);
2869 md->status_dentry = NULL;
2872 if (!IS_ERR_OR_NULL(md->ext_csd_dentry)) {
2873 debugfs_remove(md->ext_csd_dentry);
2874 md->ext_csd_dentry = NULL;
2878 #else
2880 static int mmc_blk_add_debugfs(struct mmc_card *card, struct mmc_blk_data *md)
2882 return 0;
2885 static void mmc_blk_remove_debugfs(struct mmc_card *card,
2886 struct mmc_blk_data *md)
2890 #endif /* CONFIG_DEBUG_FS */
2892 static int mmc_blk_probe(struct mmc_card *card)
2894 struct mmc_blk_data *md, *part_md;
2895 char cap_str[10];
2898 * Check that the card supports the command class(es) we need.
2900 if (!(card->csd.cmdclass & CCC_BLOCK_READ))
2901 return -ENODEV;
2903 mmc_fixup_device(card, mmc_blk_fixups);
2905 md = mmc_blk_alloc(card);
2906 if (IS_ERR(md))
2907 return PTR_ERR(md);
2909 string_get_size((u64)get_capacity(md->disk), 512, STRING_UNITS_2,
2910 cap_str, sizeof(cap_str));
2911 pr_info("%s: %s %s %s %s\n",
2912 md->disk->disk_name, mmc_card_id(card), mmc_card_name(card),
2913 cap_str, md->read_only ? "(ro)" : "");
2915 if (mmc_blk_alloc_parts(card, md))
2916 goto out;
2918 dev_set_drvdata(&card->dev, md);
2920 if (mmc_add_disk(md))
2921 goto out;
2923 list_for_each_entry(part_md, &md->part, part) {
2924 if (mmc_add_disk(part_md))
2925 goto out;
2928 /* Add two debugfs entries */
2929 mmc_blk_add_debugfs(card, md);
2931 pm_runtime_set_autosuspend_delay(&card->dev, 3000);
2932 pm_runtime_use_autosuspend(&card->dev);
2935 * Don't enable runtime PM for SD-combo cards here. Leave that
2936 * decision to be taken during the SDIO init sequence instead.
2938 if (card->type != MMC_TYPE_SD_COMBO) {
2939 pm_runtime_set_active(&card->dev);
2940 pm_runtime_enable(&card->dev);
2943 return 0;
2945 out:
2946 mmc_blk_remove_parts(card, md);
2947 mmc_blk_remove_req(md);
2948 return 0;
2951 static void mmc_blk_remove(struct mmc_card *card)
2953 struct mmc_blk_data *md = dev_get_drvdata(&card->dev);
2955 mmc_blk_remove_debugfs(card, md);
2956 mmc_blk_remove_parts(card, md);
2957 pm_runtime_get_sync(&card->dev);
2958 mmc_claim_host(card->host);
2959 mmc_blk_part_switch(card, md->part_type);
2960 mmc_release_host(card->host);
2961 if (card->type != MMC_TYPE_SD_COMBO)
2962 pm_runtime_disable(&card->dev);
2963 pm_runtime_put_noidle(&card->dev);
2964 mmc_blk_remove_req(md);
2965 dev_set_drvdata(&card->dev, NULL);
2968 static int _mmc_blk_suspend(struct mmc_card *card)
2970 struct mmc_blk_data *part_md;
2971 struct mmc_blk_data *md = dev_get_drvdata(&card->dev);
2973 if (md) {
2974 mmc_queue_suspend(&md->queue);
2975 list_for_each_entry(part_md, &md->part, part) {
2976 mmc_queue_suspend(&part_md->queue);
2979 return 0;
2982 static void mmc_blk_shutdown(struct mmc_card *card)
2984 _mmc_blk_suspend(card);
2987 #ifdef CONFIG_PM_SLEEP
2988 static int mmc_blk_suspend(struct device *dev)
2990 struct mmc_card *card = mmc_dev_to_card(dev);
2992 return _mmc_blk_suspend(card);
2995 static int mmc_blk_resume(struct device *dev)
2997 struct mmc_blk_data *part_md;
2998 struct mmc_blk_data *md = dev_get_drvdata(dev);
3000 if (md) {
3002 * Resume involves the card going into idle state,
3003 * so current partition is always the main one.
3005 md->part_curr = md->part_type;
3006 mmc_queue_resume(&md->queue);
3007 list_for_each_entry(part_md, &md->part, part) {
3008 mmc_queue_resume(&part_md->queue);
3011 return 0;
3013 #endif
3015 static SIMPLE_DEV_PM_OPS(mmc_blk_pm_ops, mmc_blk_suspend, mmc_blk_resume);
3017 static struct mmc_driver mmc_driver = {
3018 .drv = {
3019 .name = "mmcblk",
3020 .pm = &mmc_blk_pm_ops,
3022 .probe = mmc_blk_probe,
3023 .remove = mmc_blk_remove,
3024 .shutdown = mmc_blk_shutdown,
3027 static int __init mmc_blk_init(void)
3029 int res;
3031 res = bus_register(&mmc_rpmb_bus_type);
3032 if (res < 0) {
3033 pr_err("mmcblk: could not register RPMB bus type\n");
3034 return res;
3036 res = alloc_chrdev_region(&mmc_rpmb_devt, 0, MAX_DEVICES, "rpmb");
3037 if (res < 0) {
3038 pr_err("mmcblk: failed to allocate rpmb chrdev region\n");
3039 goto out_bus_unreg;
3042 if (perdev_minors != CONFIG_MMC_BLOCK_MINORS)
3043 pr_info("mmcblk: using %d minors per device\n", perdev_minors);
3045 max_devices = min(MAX_DEVICES, (1 << MINORBITS) / perdev_minors);
3047 res = register_blkdev(MMC_BLOCK_MAJOR, "mmc");
3048 if (res)
3049 goto out_chrdev_unreg;
3051 res = mmc_register_driver(&mmc_driver);
3052 if (res)
3053 goto out_blkdev_unreg;
3055 return 0;
3057 out_blkdev_unreg:
3058 unregister_blkdev(MMC_BLOCK_MAJOR, "mmc");
3059 out_chrdev_unreg:
3060 unregister_chrdev_region(mmc_rpmb_devt, MAX_DEVICES);
3061 out_bus_unreg:
3062 bus_unregister(&mmc_rpmb_bus_type);
3063 return res;
3066 static void __exit mmc_blk_exit(void)
3068 mmc_unregister_driver(&mmc_driver);
3069 unregister_blkdev(MMC_BLOCK_MAJOR, "mmc");
3070 unregister_chrdev_region(mmc_rpmb_devt, MAX_DEVICES);
3073 module_init(mmc_blk_init);
3074 module_exit(mmc_blk_exit);
3076 MODULE_LICENSE("GPL");
3077 MODULE_DESCRIPTION("Multimedia Card (MMC) block device driver");