2 * Common Flash Interface support:
3 * AMD & Fujitsu Standard Vendor Command Set (ID 0x0002)
5 * Copyright (C) 2000 Crossnet Co. <info@crossnet.co.jp>
6 * Copyright (C) 2004 Arcom Control Systems Ltd <linux@arcom.com>
7 * Copyright (C) 2005 MontaVista Software Inc. <source@mvista.com>
9 * 2_by_8 routines added by Simon Munton
11 * 4_by_16 work by Carolyn J. Smith
13 * XIP support hooks by Vitaly Wool (based on code for Intel flash
16 * 25/09/2008 Christopher Moore: TopBottom fixup for many Macronix with CFI V1.0
18 * Occasionally maintained by Thayne Harbaugh tharbaugh at lnxi dot com
23 #include <linux/module.h>
24 #include <linux/types.h>
25 #include <linux/kernel.h>
26 #include <linux/sched.h>
28 #include <asm/byteorder.h>
30 #include <linux/errno.h>
31 #include <linux/slab.h>
32 #include <linux/delay.h>
33 #include <linux/interrupt.h>
34 #include <linux/reboot.h>
36 #include <linux/of_platform.h>
37 #include <linux/mtd/map.h>
38 #include <linux/mtd/mtd.h>
39 #include <linux/mtd/cfi.h>
40 #include <linux/mtd/xip.h>
42 #define AMD_BOOTLOC_BUG
43 #define FORCE_WORD_WRITE 0
45 #define MAX_WORD_RETRIES 3
47 #define SST49LF004B 0x0060
48 #define SST49LF040B 0x0050
49 #define SST49LF008A 0x005a
50 #define AT49BV6416 0x00d6
52 static int cfi_amdstd_read (struct mtd_info
*, loff_t
, size_t, size_t *, u_char
*);
53 static int cfi_amdstd_write_words(struct mtd_info
*, loff_t
, size_t, size_t *, const u_char
*);
54 static int cfi_amdstd_write_buffers(struct mtd_info
*, loff_t
, size_t, size_t *, const u_char
*);
55 static int cfi_amdstd_erase_chip(struct mtd_info
*, struct erase_info
*);
56 static int cfi_amdstd_erase_varsize(struct mtd_info
*, struct erase_info
*);
57 static void cfi_amdstd_sync (struct mtd_info
*);
58 static int cfi_amdstd_suspend (struct mtd_info
*);
59 static void cfi_amdstd_resume (struct mtd_info
*);
60 static int cfi_amdstd_reboot(struct notifier_block
*, unsigned long, void *);
61 static int cfi_amdstd_get_fact_prot_info(struct mtd_info
*, size_t,
62 size_t *, struct otp_info
*);
63 static int cfi_amdstd_get_user_prot_info(struct mtd_info
*, size_t,
64 size_t *, struct otp_info
*);
65 static int cfi_amdstd_secsi_read (struct mtd_info
*, loff_t
, size_t, size_t *, u_char
*);
66 static int cfi_amdstd_read_fact_prot_reg(struct mtd_info
*, loff_t
, size_t,
68 static int cfi_amdstd_read_user_prot_reg(struct mtd_info
*, loff_t
, size_t,
70 static int cfi_amdstd_write_user_prot_reg(struct mtd_info
*, loff_t
, size_t,
72 static int cfi_amdstd_lock_user_prot_reg(struct mtd_info
*, loff_t
, size_t);
74 static int cfi_amdstd_panic_write(struct mtd_info
*mtd
, loff_t to
, size_t len
,
75 size_t *retlen
, const u_char
*buf
);
77 static void cfi_amdstd_destroy(struct mtd_info
*);
79 struct mtd_info
*cfi_cmdset_0002(struct map_info
*, int);
80 static struct mtd_info
*cfi_amdstd_setup (struct mtd_info
*);
82 static int get_chip(struct map_info
*map
, struct flchip
*chip
, unsigned long adr
, int mode
);
83 static void put_chip(struct map_info
*map
, struct flchip
*chip
, unsigned long adr
);
86 static int cfi_atmel_lock(struct mtd_info
*mtd
, loff_t ofs
, uint64_t len
);
87 static int cfi_atmel_unlock(struct mtd_info
*mtd
, loff_t ofs
, uint64_t len
);
89 static int cfi_ppb_lock(struct mtd_info
*mtd
, loff_t ofs
, uint64_t len
);
90 static int cfi_ppb_unlock(struct mtd_info
*mtd
, loff_t ofs
, uint64_t len
);
91 static int cfi_ppb_is_locked(struct mtd_info
*mtd
, loff_t ofs
, uint64_t len
);
93 static struct mtd_chip_driver cfi_amdstd_chipdrv
= {
94 .probe
= NULL
, /* Not usable directly */
95 .destroy
= cfi_amdstd_destroy
,
96 .name
= "cfi_cmdset_0002",
101 /* #define DEBUG_CFI_FEATURES */
104 #ifdef DEBUG_CFI_FEATURES
105 static void cfi_tell_features(struct cfi_pri_amdstd
*extp
)
107 const char* erase_suspend
[3] = {
108 "Not supported", "Read only", "Read/write"
110 const char* top_bottom
[6] = {
111 "No WP", "8x8KiB sectors at top & bottom, no WP",
112 "Bottom boot", "Top boot",
113 "Uniform, Bottom WP", "Uniform, Top WP"
116 printk(" Silicon revision: %d\n", extp
->SiliconRevision
>> 1);
117 printk(" Address sensitive unlock: %s\n",
118 (extp
->SiliconRevision
& 1) ? "Not required" : "Required");
120 if (extp
->EraseSuspend
< ARRAY_SIZE(erase_suspend
))
121 printk(" Erase Suspend: %s\n", erase_suspend
[extp
->EraseSuspend
]);
123 printk(" Erase Suspend: Unknown value %d\n", extp
->EraseSuspend
);
125 if (extp
->BlkProt
== 0)
126 printk(" Block protection: Not supported\n");
128 printk(" Block protection: %d sectors per group\n", extp
->BlkProt
);
131 printk(" Temporary block unprotect: %s\n",
132 extp
->TmpBlkUnprotect
? "Supported" : "Not supported");
133 printk(" Block protect/unprotect scheme: %d\n", extp
->BlkProtUnprot
);
134 printk(" Number of simultaneous operations: %d\n", extp
->SimultaneousOps
);
135 printk(" Burst mode: %s\n",
136 extp
->BurstMode
? "Supported" : "Not supported");
137 if (extp
->PageMode
== 0)
138 printk(" Page mode: Not supported\n");
140 printk(" Page mode: %d word page\n", extp
->PageMode
<< 2);
142 printk(" Vpp Supply Minimum Program/Erase Voltage: %d.%d V\n",
143 extp
->VppMin
>> 4, extp
->VppMin
& 0xf);
144 printk(" Vpp Supply Maximum Program/Erase Voltage: %d.%d V\n",
145 extp
->VppMax
>> 4, extp
->VppMax
& 0xf);
147 if (extp
->TopBottom
< ARRAY_SIZE(top_bottom
))
148 printk(" Top/Bottom Boot Block: %s\n", top_bottom
[extp
->TopBottom
]);
150 printk(" Top/Bottom Boot Block: Unknown value %d\n", extp
->TopBottom
);
154 #ifdef AMD_BOOTLOC_BUG
155 /* Wheee. Bring me the head of someone at AMD. */
156 static void fixup_amd_bootblock(struct mtd_info
*mtd
)
158 struct map_info
*map
= mtd
->priv
;
159 struct cfi_private
*cfi
= map
->fldrv_priv
;
160 struct cfi_pri_amdstd
*extp
= cfi
->cmdset_priv
;
161 __u8 major
= extp
->MajorVersion
;
162 __u8 minor
= extp
->MinorVersion
;
164 if (((major
<< 8) | minor
) < 0x3131) {
165 /* CFI version 1.0 => don't trust bootloc */
167 pr_debug("%s: JEDEC Vendor ID is 0x%02X Device ID is 0x%02X\n",
168 map
->name
, cfi
->mfr
, cfi
->id
);
170 /* AFAICS all 29LV400 with a bottom boot block have a device ID
171 * of 0x22BA in 16-bit mode and 0xBA in 8-bit mode.
172 * These were badly detected as they have the 0x80 bit set
173 * so treat them as a special case.
175 if (((cfi
->id
== 0xBA) || (cfi
->id
== 0x22BA)) &&
177 /* Macronix added CFI to their 2nd generation
178 * MX29LV400C B/T but AFAICS no other 29LV400 (AMD,
179 * Fujitsu, Spansion, EON, ESI and older Macronix)
182 * Therefore also check the manufacturer.
183 * This reduces the risk of false detection due to
184 * the 8-bit device ID.
186 (cfi
->mfr
== CFI_MFR_MACRONIX
)) {
187 pr_debug("%s: Macronix MX29LV400C with bottom boot block"
188 " detected\n", map
->name
);
189 extp
->TopBottom
= 2; /* bottom boot */
191 if (cfi
->id
& 0x80) {
192 printk(KERN_WARNING
"%s: JEDEC Device ID is 0x%02X. Assuming broken CFI table.\n", map
->name
, cfi
->id
);
193 extp
->TopBottom
= 3; /* top boot */
195 extp
->TopBottom
= 2; /* bottom boot */
198 pr_debug("%s: AMD CFI PRI V%c.%c has no boot block field;"
199 " deduced %s from Device ID\n", map
->name
, major
, minor
,
200 extp
->TopBottom
== 2 ? "bottom" : "top");
205 static void fixup_use_write_buffers(struct mtd_info
*mtd
)
207 struct map_info
*map
= mtd
->priv
;
208 struct cfi_private
*cfi
= map
->fldrv_priv
;
209 if (cfi
->cfiq
->BufWriteTimeoutTyp
) {
210 pr_debug("Using buffer write method\n" );
211 mtd
->_write
= cfi_amdstd_write_buffers
;
215 /* Atmel chips don't use the same PRI format as AMD chips */
216 static void fixup_convert_atmel_pri(struct mtd_info
*mtd
)
218 struct map_info
*map
= mtd
->priv
;
219 struct cfi_private
*cfi
= map
->fldrv_priv
;
220 struct cfi_pri_amdstd
*extp
= cfi
->cmdset_priv
;
221 struct cfi_pri_atmel atmel_pri
;
223 memcpy(&atmel_pri
, extp
, sizeof(atmel_pri
));
224 memset((char *)extp
+ 5, 0, sizeof(*extp
) - 5);
226 if (atmel_pri
.Features
& 0x02)
227 extp
->EraseSuspend
= 2;
229 /* Some chips got it backwards... */
230 if (cfi
->id
== AT49BV6416
) {
231 if (atmel_pri
.BottomBoot
)
236 if (atmel_pri
.BottomBoot
)
242 /* burst write mode not supported */
243 cfi
->cfiq
->BufWriteTimeoutTyp
= 0;
244 cfi
->cfiq
->BufWriteTimeoutMax
= 0;
247 static void fixup_use_secsi(struct mtd_info
*mtd
)
249 /* Setup for chips with a secsi area */
250 mtd
->_read_user_prot_reg
= cfi_amdstd_secsi_read
;
251 mtd
->_read_fact_prot_reg
= cfi_amdstd_secsi_read
;
254 static void fixup_use_erase_chip(struct mtd_info
*mtd
)
256 struct map_info
*map
= mtd
->priv
;
257 struct cfi_private
*cfi
= map
->fldrv_priv
;
258 if ((cfi
->cfiq
->NumEraseRegions
== 1) &&
259 ((cfi
->cfiq
->EraseRegionInfo
[0] & 0xffff) == 0)) {
260 mtd
->_erase
= cfi_amdstd_erase_chip
;
266 * Some Atmel chips (e.g. the AT49BV6416) power-up with all sectors
269 static void fixup_use_atmel_lock(struct mtd_info
*mtd
)
271 mtd
->_lock
= cfi_atmel_lock
;
272 mtd
->_unlock
= cfi_atmel_unlock
;
273 mtd
->flags
|= MTD_POWERUP_LOCK
;
276 static void fixup_old_sst_eraseregion(struct mtd_info
*mtd
)
278 struct map_info
*map
= mtd
->priv
;
279 struct cfi_private
*cfi
= map
->fldrv_priv
;
282 * These flashes report two separate eraseblock regions based on the
283 * sector_erase-size and block_erase-size, although they both operate on the
284 * same memory. This is not allowed according to CFI, so we just pick the
287 cfi
->cfiq
->NumEraseRegions
= 1;
290 static void fixup_sst39vf(struct mtd_info
*mtd
)
292 struct map_info
*map
= mtd
->priv
;
293 struct cfi_private
*cfi
= map
->fldrv_priv
;
295 fixup_old_sst_eraseregion(mtd
);
297 cfi
->addr_unlock1
= 0x5555;
298 cfi
->addr_unlock2
= 0x2AAA;
301 static void fixup_sst39vf_rev_b(struct mtd_info
*mtd
)
303 struct map_info
*map
= mtd
->priv
;
304 struct cfi_private
*cfi
= map
->fldrv_priv
;
306 fixup_old_sst_eraseregion(mtd
);
308 cfi
->addr_unlock1
= 0x555;
309 cfi
->addr_unlock2
= 0x2AA;
311 cfi
->sector_erase_cmd
= CMD(0x50);
314 static void fixup_sst38vf640x_sectorsize(struct mtd_info
*mtd
)
316 struct map_info
*map
= mtd
->priv
;
317 struct cfi_private
*cfi
= map
->fldrv_priv
;
319 fixup_sst39vf_rev_b(mtd
);
322 * CFI reports 1024 sectors (0x03ff+1) of 64KBytes (0x0100*256) where
323 * it should report a size of 8KBytes (0x0020*256).
325 cfi
->cfiq
->EraseRegionInfo
[0] = 0x002003ff;
326 pr_warn("%s: Bad 38VF640x CFI data; adjusting sector size from 64 to 8KiB\n",
330 static void fixup_s29gl064n_sectors(struct mtd_info
*mtd
)
332 struct map_info
*map
= mtd
->priv
;
333 struct cfi_private
*cfi
= map
->fldrv_priv
;
335 if ((cfi
->cfiq
->EraseRegionInfo
[0] & 0xffff) == 0x003f) {
336 cfi
->cfiq
->EraseRegionInfo
[0] |= 0x0040;
337 pr_warn("%s: Bad S29GL064N CFI data; adjust from 64 to 128 sectors\n",
342 static void fixup_s29gl032n_sectors(struct mtd_info
*mtd
)
344 struct map_info
*map
= mtd
->priv
;
345 struct cfi_private
*cfi
= map
->fldrv_priv
;
347 if ((cfi
->cfiq
->EraseRegionInfo
[1] & 0xffff) == 0x007e) {
348 cfi
->cfiq
->EraseRegionInfo
[1] &= ~0x0040;
349 pr_warn("%s: Bad S29GL032N CFI data; adjust from 127 to 63 sectors\n",
354 static void fixup_s29ns512p_sectors(struct mtd_info
*mtd
)
356 struct map_info
*map
= mtd
->priv
;
357 struct cfi_private
*cfi
= map
->fldrv_priv
;
360 * S29NS512P flash uses more than 8bits to report number of sectors,
361 * which is not permitted by CFI.
363 cfi
->cfiq
->EraseRegionInfo
[0] = 0x020001ff;
364 pr_warn("%s: Bad S29NS512P CFI data; adjust to 512 sectors\n",
368 /* Used to fix CFI-Tables of chips without Extended Query Tables */
369 static struct cfi_fixup cfi_nopri_fixup_table
[] = {
370 { CFI_MFR_SST
, 0x234a, fixup_sst39vf
}, /* SST39VF1602 */
371 { CFI_MFR_SST
, 0x234b, fixup_sst39vf
}, /* SST39VF1601 */
372 { CFI_MFR_SST
, 0x235a, fixup_sst39vf
}, /* SST39VF3202 */
373 { CFI_MFR_SST
, 0x235b, fixup_sst39vf
}, /* SST39VF3201 */
374 { CFI_MFR_SST
, 0x235c, fixup_sst39vf_rev_b
}, /* SST39VF3202B */
375 { CFI_MFR_SST
, 0x235d, fixup_sst39vf_rev_b
}, /* SST39VF3201B */
376 { CFI_MFR_SST
, 0x236c, fixup_sst39vf_rev_b
}, /* SST39VF6402B */
377 { CFI_MFR_SST
, 0x236d, fixup_sst39vf_rev_b
}, /* SST39VF6401B */
381 static struct cfi_fixup cfi_fixup_table
[] = {
382 { CFI_MFR_ATMEL
, CFI_ID_ANY
, fixup_convert_atmel_pri
},
383 #ifdef AMD_BOOTLOC_BUG
384 { CFI_MFR_AMD
, CFI_ID_ANY
, fixup_amd_bootblock
},
385 { CFI_MFR_AMIC
, CFI_ID_ANY
, fixup_amd_bootblock
},
386 { CFI_MFR_MACRONIX
, CFI_ID_ANY
, fixup_amd_bootblock
},
388 { CFI_MFR_AMD
, 0x0050, fixup_use_secsi
},
389 { CFI_MFR_AMD
, 0x0053, fixup_use_secsi
},
390 { CFI_MFR_AMD
, 0x0055, fixup_use_secsi
},
391 { CFI_MFR_AMD
, 0x0056, fixup_use_secsi
},
392 { CFI_MFR_AMD
, 0x005C, fixup_use_secsi
},
393 { CFI_MFR_AMD
, 0x005F, fixup_use_secsi
},
394 { CFI_MFR_AMD
, 0x0c01, fixup_s29gl064n_sectors
},
395 { CFI_MFR_AMD
, 0x1301, fixup_s29gl064n_sectors
},
396 { CFI_MFR_AMD
, 0x1a00, fixup_s29gl032n_sectors
},
397 { CFI_MFR_AMD
, 0x1a01, fixup_s29gl032n_sectors
},
398 { CFI_MFR_AMD
, 0x3f00, fixup_s29ns512p_sectors
},
399 { CFI_MFR_SST
, 0x536a, fixup_sst38vf640x_sectorsize
}, /* SST38VF6402 */
400 { CFI_MFR_SST
, 0x536b, fixup_sst38vf640x_sectorsize
}, /* SST38VF6401 */
401 { CFI_MFR_SST
, 0x536c, fixup_sst38vf640x_sectorsize
}, /* SST38VF6404 */
402 { CFI_MFR_SST
, 0x536d, fixup_sst38vf640x_sectorsize
}, /* SST38VF6403 */
403 #if !FORCE_WORD_WRITE
404 { CFI_MFR_ANY
, CFI_ID_ANY
, fixup_use_write_buffers
},
408 static struct cfi_fixup jedec_fixup_table
[] = {
409 { CFI_MFR_SST
, SST49LF004B
, fixup_use_fwh_lock
},
410 { CFI_MFR_SST
, SST49LF040B
, fixup_use_fwh_lock
},
411 { CFI_MFR_SST
, SST49LF008A
, fixup_use_fwh_lock
},
415 static struct cfi_fixup fixup_table
[] = {
416 /* The CFI vendor ids and the JEDEC vendor IDs appear
417 * to be common. It is like the devices id's are as
418 * well. This table is to pick all cases where
419 * we know that is the case.
421 { CFI_MFR_ANY
, CFI_ID_ANY
, fixup_use_erase_chip
},
422 { CFI_MFR_ATMEL
, AT49BV6416
, fixup_use_atmel_lock
},
427 static void cfi_fixup_major_minor(struct cfi_private
*cfi
,
428 struct cfi_pri_amdstd
*extp
)
430 if (cfi
->mfr
== CFI_MFR_SAMSUNG
) {
431 if ((extp
->MajorVersion
== '0' && extp
->MinorVersion
== '0') ||
432 (extp
->MajorVersion
== '3' && extp
->MinorVersion
== '3')) {
434 * Samsung K8P2815UQB and K8D6x16UxM chips
435 * report major=0 / minor=0.
436 * K8D3x16UxC chips report major=3 / minor=3.
438 printk(KERN_NOTICE
" Fixing Samsung's Amd/Fujitsu"
439 " Extended Query version to 1.%c\n",
441 extp
->MajorVersion
= '1';
446 * SST 38VF640x chips report major=0xFF / minor=0xFF.
448 if (cfi
->mfr
== CFI_MFR_SST
&& (cfi
->id
>> 4) == 0x0536) {
449 extp
->MajorVersion
= '1';
450 extp
->MinorVersion
= '0';
454 static int is_m29ew(struct cfi_private
*cfi
)
456 if (cfi
->mfr
== CFI_MFR_INTEL
&&
457 ((cfi
->device_type
== CFI_DEVICETYPE_X8
&& (cfi
->id
& 0xff) == 0x7e) ||
458 (cfi
->device_type
== CFI_DEVICETYPE_X16
&& cfi
->id
== 0x227e)))
464 * From TN-13-07: Patching the Linux Kernel and U-Boot for M29 Flash, page 20:
465 * Some revisions of the M29EW suffer from erase suspend hang ups. In
466 * particular, it can occur when the sequence
467 * Erase Confirm -> Suspend -> Program -> Resume
468 * causes a lockup due to internal timing issues. The consequence is that the
469 * erase cannot be resumed without inserting a dummy command after programming
470 * and prior to resuming. [...] The work-around is to issue a dummy write cycle
471 * that writes an F0 command code before the RESUME command.
473 static void cfi_fixup_m29ew_erase_suspend(struct map_info
*map
,
476 struct cfi_private
*cfi
= map
->fldrv_priv
;
477 /* before resume, insert a dummy 0xF0 cycle for Micron M29EW devices */
479 map_write(map
, CMD(0xF0), adr
);
483 * From TN-13-07: Patching the Linux Kernel and U-Boot for M29 Flash, page 22:
485 * Some revisions of the M29EW (for example, A1 and A2 step revisions)
486 * are affected by a problem that could cause a hang up when an ERASE SUSPEND
487 * command is issued after an ERASE RESUME operation without waiting for a
488 * minimum delay. The result is that once the ERASE seems to be completed
489 * (no bits are toggling), the contents of the Flash memory block on which
490 * the erase was ongoing could be inconsistent with the expected values
491 * (typically, the array value is stuck to the 0xC0, 0xC4, 0x80, or 0x84
492 * values), causing a consequent failure of the ERASE operation.
493 * The occurrence of this issue could be high, especially when file system
494 * operations on the Flash are intensive. As a result, it is recommended
495 * that a patch be applied. Intensive file system operations can cause many
496 * calls to the garbage routine to free Flash space (also by erasing physical
497 * Flash blocks) and as a result, many consecutive SUSPEND and RESUME
498 * commands can occur. The problem disappears when a delay is inserted after
499 * the RESUME command by using the udelay() function available in Linux.
500 * The DELAY value must be tuned based on the customer's platform.
501 * The maximum value that fixes the problem in all cases is 500us.
502 * But, in our experience, a delay of 30 µs to 50 µs is sufficient
504 * We have chosen 500µs because this latency is acceptable.
506 static void cfi_fixup_m29ew_delay_after_resume(struct cfi_private
*cfi
)
509 * Resolving the Delay After Resume Issue see Micron TN-13-07
510 * Worst case delay must be 500µs but 30-50µs should be ok as well
516 struct mtd_info
*cfi_cmdset_0002(struct map_info
*map
, int primary
)
518 struct cfi_private
*cfi
= map
->fldrv_priv
;
519 struct device_node __maybe_unused
*np
= map
->device_node
;
520 struct mtd_info
*mtd
;
523 mtd
= kzalloc(sizeof(*mtd
), GFP_KERNEL
);
527 mtd
->type
= MTD_NORFLASH
;
529 /* Fill in the default mtd operations */
530 mtd
->_erase
= cfi_amdstd_erase_varsize
;
531 mtd
->_write
= cfi_amdstd_write_words
;
532 mtd
->_read
= cfi_amdstd_read
;
533 mtd
->_sync
= cfi_amdstd_sync
;
534 mtd
->_suspend
= cfi_amdstd_suspend
;
535 mtd
->_resume
= cfi_amdstd_resume
;
536 mtd
->_read_user_prot_reg
= cfi_amdstd_read_user_prot_reg
;
537 mtd
->_read_fact_prot_reg
= cfi_amdstd_read_fact_prot_reg
;
538 mtd
->_get_fact_prot_info
= cfi_amdstd_get_fact_prot_info
;
539 mtd
->_get_user_prot_info
= cfi_amdstd_get_user_prot_info
;
540 mtd
->_write_user_prot_reg
= cfi_amdstd_write_user_prot_reg
;
541 mtd
->_lock_user_prot_reg
= cfi_amdstd_lock_user_prot_reg
;
542 mtd
->flags
= MTD_CAP_NORFLASH
;
543 mtd
->name
= map
->name
;
545 mtd
->writebufsize
= cfi_interleave(cfi
) << cfi
->cfiq
->MaxBufWriteSize
;
547 pr_debug("MTD %s(): write buffer size %d\n", __func__
,
550 mtd
->_panic_write
= cfi_amdstd_panic_write
;
551 mtd
->reboot_notifier
.notifier_call
= cfi_amdstd_reboot
;
553 if (cfi
->cfi_mode
==CFI_MODE_CFI
){
554 unsigned char bootloc
;
555 __u16 adr
= primary
?cfi
->cfiq
->P_ADR
:cfi
->cfiq
->A_ADR
;
556 struct cfi_pri_amdstd
*extp
;
558 extp
= (struct cfi_pri_amdstd
*)cfi_read_pri(map
, adr
, sizeof(*extp
), "Amd/Fujitsu");
561 * It's a real CFI chip, not one for which the probe
562 * routine faked a CFI structure.
564 cfi_fixup_major_minor(cfi
, extp
);
567 * Valid primary extension versions are: 1.0, 1.1, 1.2, 1.3, 1.4, 1.5
568 * see: http://cs.ozerki.net/zap/pub/axim-x5/docs/cfi_r20.pdf, page 19
569 * http://www.spansion.com/Support/AppNotes/cfi_100_20011201.pdf
570 * http://www.spansion.com/Support/Datasheets/s29ws-p_00_a12_e.pdf
571 * http://www.spansion.com/Support/Datasheets/S29GL_128S_01GS_00_02_e.pdf
573 if (extp
->MajorVersion
!= '1' ||
574 (extp
->MajorVersion
== '1' && (extp
->MinorVersion
< '0' || extp
->MinorVersion
> '5'))) {
575 printk(KERN_ERR
" Unknown Amd/Fujitsu Extended Query "
576 "version %c.%c (%#02x/%#02x).\n",
577 extp
->MajorVersion
, extp
->MinorVersion
,
578 extp
->MajorVersion
, extp
->MinorVersion
);
584 printk(KERN_INFO
" Amd/Fujitsu Extended Query version %c.%c.\n",
585 extp
->MajorVersion
, extp
->MinorVersion
);
587 /* Install our own private info structure */
588 cfi
->cmdset_priv
= extp
;
590 /* Apply cfi device specific fixups */
591 cfi_fixup(mtd
, cfi_fixup_table
);
593 #ifdef DEBUG_CFI_FEATURES
594 /* Tell the user about it in lots of lovely detail */
595 cfi_tell_features(extp
);
599 if (np
&& of_property_read_bool(
600 np
, "use-advanced-sector-protection")
601 && extp
->BlkProtUnprot
== 8) {
602 printk(KERN_INFO
" Advanced Sector Protection (PPB Locking) supported\n");
603 mtd
->_lock
= cfi_ppb_lock
;
604 mtd
->_unlock
= cfi_ppb_unlock
;
605 mtd
->_is_locked
= cfi_ppb_is_locked
;
609 bootloc
= extp
->TopBottom
;
610 if ((bootloc
< 2) || (bootloc
> 5)) {
611 printk(KERN_WARNING
"%s: CFI contains unrecognised boot "
612 "bank location (%d). Assuming bottom.\n",
617 if (bootloc
== 3 && cfi
->cfiq
->NumEraseRegions
> 1) {
618 printk(KERN_WARNING
"%s: Swapping erase regions for top-boot CFI table.\n", map
->name
);
620 for (i
=0; i
<cfi
->cfiq
->NumEraseRegions
/ 2; i
++) {
621 int j
= (cfi
->cfiq
->NumEraseRegions
-1)-i
;
623 swap(cfi
->cfiq
->EraseRegionInfo
[i
],
624 cfi
->cfiq
->EraseRegionInfo
[j
]);
627 /* Set the default CFI lock/unlock addresses */
628 cfi
->addr_unlock1
= 0x555;
629 cfi
->addr_unlock2
= 0x2aa;
631 cfi_fixup(mtd
, cfi_nopri_fixup_table
);
633 if (!cfi
->addr_unlock1
|| !cfi
->addr_unlock2
) {
639 else if (cfi
->cfi_mode
== CFI_MODE_JEDEC
) {
640 /* Apply jedec specific fixups */
641 cfi_fixup(mtd
, jedec_fixup_table
);
643 /* Apply generic fixups */
644 cfi_fixup(mtd
, fixup_table
);
646 for (i
=0; i
< cfi
->numchips
; i
++) {
647 cfi
->chips
[i
].word_write_time
= 1<<cfi
->cfiq
->WordWriteTimeoutTyp
;
648 cfi
->chips
[i
].buffer_write_time
= 1<<cfi
->cfiq
->BufWriteTimeoutTyp
;
649 cfi
->chips
[i
].erase_time
= 1<<cfi
->cfiq
->BlockEraseTimeoutTyp
;
651 * First calculate the timeout max according to timeout field
652 * of struct cfi_ident that probed from chip's CFI aera, if
653 * available. Specify a minimum of 2000us, in case the CFI data
656 if (cfi
->cfiq
->BufWriteTimeoutTyp
&&
657 cfi
->cfiq
->BufWriteTimeoutMax
)
658 cfi
->chips
[i
].buffer_write_time_max
=
659 1 << (cfi
->cfiq
->BufWriteTimeoutTyp
+
660 cfi
->cfiq
->BufWriteTimeoutMax
);
662 cfi
->chips
[i
].buffer_write_time_max
= 0;
664 cfi
->chips
[i
].buffer_write_time_max
=
665 max(cfi
->chips
[i
].buffer_write_time_max
, 2000);
667 cfi
->chips
[i
].ref_point_counter
= 0;
668 init_waitqueue_head(&(cfi
->chips
[i
].wq
));
671 map
->fldrv
= &cfi_amdstd_chipdrv
;
673 return cfi_amdstd_setup(mtd
);
675 struct mtd_info
*cfi_cmdset_0006(struct map_info
*map
, int primary
) __attribute__((alias("cfi_cmdset_0002")));
676 struct mtd_info
*cfi_cmdset_0701(struct map_info
*map
, int primary
) __attribute__((alias("cfi_cmdset_0002")));
677 EXPORT_SYMBOL_GPL(cfi_cmdset_0002
);
678 EXPORT_SYMBOL_GPL(cfi_cmdset_0006
);
679 EXPORT_SYMBOL_GPL(cfi_cmdset_0701
);
681 static struct mtd_info
*cfi_amdstd_setup(struct mtd_info
*mtd
)
683 struct map_info
*map
= mtd
->priv
;
684 struct cfi_private
*cfi
= map
->fldrv_priv
;
685 unsigned long devsize
= (1<<cfi
->cfiq
->DevSize
) * cfi
->interleave
;
686 unsigned long offset
= 0;
689 printk(KERN_NOTICE
"number of %s chips: %d\n",
690 (cfi
->cfi_mode
== CFI_MODE_CFI
)?"CFI":"JEDEC",cfi
->numchips
);
691 /* Select the correct geometry setup */
692 mtd
->size
= devsize
* cfi
->numchips
;
694 mtd
->numeraseregions
= cfi
->cfiq
->NumEraseRegions
* cfi
->numchips
;
695 mtd
->eraseregions
= kmalloc(sizeof(struct mtd_erase_region_info
)
696 * mtd
->numeraseregions
, GFP_KERNEL
);
697 if (!mtd
->eraseregions
)
700 for (i
=0; i
<cfi
->cfiq
->NumEraseRegions
; i
++) {
701 unsigned long ernum
, ersize
;
702 ersize
= ((cfi
->cfiq
->EraseRegionInfo
[i
] >> 8) & ~0xff) * cfi
->interleave
;
703 ernum
= (cfi
->cfiq
->EraseRegionInfo
[i
] & 0xffff) + 1;
705 if (mtd
->erasesize
< ersize
) {
706 mtd
->erasesize
= ersize
;
708 for (j
=0; j
<cfi
->numchips
; j
++) {
709 mtd
->eraseregions
[(j
*cfi
->cfiq
->NumEraseRegions
)+i
].offset
= (j
*devsize
)+offset
;
710 mtd
->eraseregions
[(j
*cfi
->cfiq
->NumEraseRegions
)+i
].erasesize
= ersize
;
711 mtd
->eraseregions
[(j
*cfi
->cfiq
->NumEraseRegions
)+i
].numblocks
= ernum
;
713 offset
+= (ersize
* ernum
);
715 if (offset
!= devsize
) {
717 printk(KERN_WARNING
"Sum of regions (%lx) != total size of set of interleaved chips (%lx)\n", offset
, devsize
);
721 __module_get(THIS_MODULE
);
722 register_reboot_notifier(&mtd
->reboot_notifier
);
726 kfree(mtd
->eraseregions
);
728 kfree(cfi
->cmdset_priv
);
734 * Return true if the chip is ready.
736 * Ready is one of: read mode, query mode, erase-suspend-read mode (in any
737 * non-suspended sector) and is indicated by no toggle bits toggling.
739 * Note that anything more complicated than checking if no bits are toggling
740 * (including checking DQ5 for an error status) is tricky to get working
741 * correctly and is therefore not done (particularly with interleaved chips
742 * as each chip must be checked independently of the others).
744 static int __xipram
chip_ready(struct map_info
*map
, unsigned long addr
)
748 d
= map_read(map
, addr
);
749 t
= map_read(map
, addr
);
751 return map_word_equal(map
, d
, t
);
755 * Return true if the chip is ready and has the correct value.
757 * Ready is one of: read mode, query mode, erase-suspend-read mode (in any
758 * non-suspended sector) and it is indicated by no bits toggling.
760 * Error are indicated by toggling bits or bits held with the wrong value,
761 * or with bits toggling.
763 * Note that anything more complicated than checking if no bits are toggling
764 * (including checking DQ5 for an error status) is tricky to get working
765 * correctly and is therefore not done (particularly with interleaved chips
766 * as each chip must be checked independently of the others).
769 static int __xipram
chip_good(struct map_info
*map
, unsigned long addr
, map_word expected
)
773 oldd
= map_read(map
, addr
);
774 curd
= map_read(map
, addr
);
776 return map_word_equal(map
, oldd
, curd
) &&
777 map_word_equal(map
, curd
, expected
);
780 static int get_chip(struct map_info
*map
, struct flchip
*chip
, unsigned long adr
, int mode
)
782 DECLARE_WAITQUEUE(wait
, current
);
783 struct cfi_private
*cfi
= map
->fldrv_priv
;
785 struct cfi_pri_amdstd
*cfip
= (struct cfi_pri_amdstd
*)cfi
->cmdset_priv
;
788 timeo
= jiffies
+ HZ
;
790 switch (chip
->state
) {
794 if (chip_ready(map
, adr
))
797 if (time_after(jiffies
, timeo
)) {
798 printk(KERN_ERR
"Waiting for chip to be ready timed out.\n");
801 mutex_unlock(&chip
->mutex
);
803 mutex_lock(&chip
->mutex
);
804 /* Someone else might have been playing with it. */
814 if (!cfip
|| !(cfip
->EraseSuspend
& (0x1|0x2)) ||
815 !(mode
== FL_READY
|| mode
== FL_POINT
||
816 (mode
== FL_WRITING
&& (cfip
->EraseSuspend
& 0x2))))
819 /* We could check to see if we're trying to access the sector
820 * that is currently being erased. However, no user will try
821 * anything like that so we just wait for the timeout. */
824 /* It's harmless to issue the Erase-Suspend and Erase-Resume
825 * commands when the erase algorithm isn't in progress. */
826 map_write(map
, CMD(0xB0), chip
->in_progress_block_addr
);
827 chip
->oldstate
= FL_ERASING
;
828 chip
->state
= FL_ERASE_SUSPENDING
;
829 chip
->erase_suspended
= 1;
831 if (chip_ready(map
, adr
))
834 if (time_after(jiffies
, timeo
)) {
835 /* Should have suspended the erase by now.
836 * Send an Erase-Resume command as either
837 * there was an error (so leave the erase
838 * routine to recover from it) or we trying to
839 * use the erase-in-progress sector. */
840 put_chip(map
, chip
, adr
);
841 printk(KERN_ERR
"MTD %s(): chip not ready after erase suspend\n", __func__
);
845 mutex_unlock(&chip
->mutex
);
847 mutex_lock(&chip
->mutex
);
848 /* Nobody will touch it while it's in state FL_ERASE_SUSPENDING.
849 So we can just loop here. */
851 chip
->state
= FL_READY
;
854 case FL_XIP_WHILE_ERASING
:
855 if (mode
!= FL_READY
&& mode
!= FL_POINT
&&
856 (!cfip
|| !(cfip
->EraseSuspend
&2)))
858 chip
->oldstate
= chip
->state
;
859 chip
->state
= FL_READY
;
863 /* The machine is rebooting */
867 /* Only if there's no operation suspended... */
868 if (mode
== FL_READY
&& chip
->oldstate
== FL_READY
)
873 set_current_state(TASK_UNINTERRUPTIBLE
);
874 add_wait_queue(&chip
->wq
, &wait
);
875 mutex_unlock(&chip
->mutex
);
877 remove_wait_queue(&chip
->wq
, &wait
);
878 mutex_lock(&chip
->mutex
);
884 static void put_chip(struct map_info
*map
, struct flchip
*chip
, unsigned long adr
)
886 struct cfi_private
*cfi
= map
->fldrv_priv
;
888 switch(chip
->oldstate
) {
890 cfi_fixup_m29ew_erase_suspend(map
,
891 chip
->in_progress_block_addr
);
892 map_write(map
, cfi
->sector_erase_cmd
, chip
->in_progress_block_addr
);
893 cfi_fixup_m29ew_delay_after_resume(cfi
);
894 chip
->oldstate
= FL_READY
;
895 chip
->state
= FL_ERASING
;
898 case FL_XIP_WHILE_ERASING
:
899 chip
->state
= chip
->oldstate
;
900 chip
->oldstate
= FL_READY
;
907 printk(KERN_ERR
"MTD: put_chip() called with oldstate %d!!\n", chip
->oldstate
);
912 #ifdef CONFIG_MTD_XIP
915 * No interrupt what so ever can be serviced while the flash isn't in array
916 * mode. This is ensured by the xip_disable() and xip_enable() functions
917 * enclosing any code path where the flash is known not to be in array mode.
918 * And within a XIP disabled code path, only functions marked with __xipram
919 * may be called and nothing else (it's a good thing to inspect generated
920 * assembly to make sure inline functions were actually inlined and that gcc
921 * didn't emit calls to its own support functions). Also configuring MTD CFI
922 * support to a single buswidth and a single interleave is also recommended.
925 static void xip_disable(struct map_info
*map
, struct flchip
*chip
,
928 /* TODO: chips with no XIP use should ignore and return */
929 (void) map_read(map
, adr
); /* ensure mmu mapping is up to date */
933 static void __xipram
xip_enable(struct map_info
*map
, struct flchip
*chip
,
936 struct cfi_private
*cfi
= map
->fldrv_priv
;
938 if (chip
->state
!= FL_POINT
&& chip
->state
!= FL_READY
) {
939 map_write(map
, CMD(0xf0), adr
);
940 chip
->state
= FL_READY
;
942 (void) map_read(map
, adr
);
948 * When a delay is required for the flash operation to complete, the
949 * xip_udelay() function is polling for both the given timeout and pending
950 * (but still masked) hardware interrupts. Whenever there is an interrupt
951 * pending then the flash erase operation is suspended, array mode restored
952 * and interrupts unmasked. Task scheduling might also happen at that
953 * point. The CPU eventually returns from the interrupt or the call to
954 * schedule() and the suspended flash operation is resumed for the remaining
955 * of the delay period.
957 * Warning: this function _will_ fool interrupt latency tracing tools.
960 static void __xipram
xip_udelay(struct map_info
*map
, struct flchip
*chip
,
961 unsigned long adr
, int usec
)
963 struct cfi_private
*cfi
= map
->fldrv_priv
;
964 struct cfi_pri_amdstd
*extp
= cfi
->cmdset_priv
;
965 map_word status
, OK
= CMD(0x80);
966 unsigned long suspended
, start
= xip_currtime();
971 if (xip_irqpending() && extp
&&
972 ((chip
->state
== FL_ERASING
&& (extp
->EraseSuspend
& 2))) &&
973 (cfi_interleave_is_1(cfi
) || chip
->oldstate
== FL_READY
)) {
975 * Let's suspend the erase operation when supported.
976 * Note that we currently don't try to suspend
977 * interleaved chips if there is already another
978 * operation suspended (imagine what happens
979 * when one chip was already done with the current
980 * operation while another chip suspended it, then
981 * we resume the whole thing at once). Yes, it
984 map_write(map
, CMD(0xb0), adr
);
985 usec
-= xip_elapsed_since(start
);
986 suspended
= xip_currtime();
988 if (xip_elapsed_since(suspended
) > 100000) {
990 * The chip doesn't want to suspend
991 * after waiting for 100 msecs.
992 * This is a critical error but there
993 * is not much we can do here.
997 status
= map_read(map
, adr
);
998 } while (!map_word_andequal(map
, status
, OK
, OK
));
1000 /* Suspend succeeded */
1001 oldstate
= chip
->state
;
1002 if (!map_word_bitsset(map
, status
, CMD(0x40)))
1004 chip
->state
= FL_XIP_WHILE_ERASING
;
1005 chip
->erase_suspended
= 1;
1006 map_write(map
, CMD(0xf0), adr
);
1007 (void) map_read(map
, adr
);
1010 mutex_unlock(&chip
->mutex
);
1015 * We're back. However someone else might have
1016 * decided to go write to the chip if we are in
1017 * a suspended erase state. If so let's wait
1020 mutex_lock(&chip
->mutex
);
1021 while (chip
->state
!= FL_XIP_WHILE_ERASING
) {
1022 DECLARE_WAITQUEUE(wait
, current
);
1023 set_current_state(TASK_UNINTERRUPTIBLE
);
1024 add_wait_queue(&chip
->wq
, &wait
);
1025 mutex_unlock(&chip
->mutex
);
1027 remove_wait_queue(&chip
->wq
, &wait
);
1028 mutex_lock(&chip
->mutex
);
1030 /* Disallow XIP again */
1031 local_irq_disable();
1033 /* Correct Erase Suspend Hangups for M29EW */
1034 cfi_fixup_m29ew_erase_suspend(map
, adr
);
1035 /* Resume the write or erase operation */
1036 map_write(map
, cfi
->sector_erase_cmd
, adr
);
1037 chip
->state
= oldstate
;
1038 start
= xip_currtime();
1039 } else if (usec
>= 1000000/HZ
) {
1041 * Try to save on CPU power when waiting delay
1042 * is at least a system timer tick period.
1043 * No need to be extremely accurate here.
1047 status
= map_read(map
, adr
);
1048 } while (!map_word_andequal(map
, status
, OK
, OK
)
1049 && xip_elapsed_since(start
) < usec
);
1052 #define UDELAY(map, chip, adr, usec) xip_udelay(map, chip, adr, usec)
1055 * The INVALIDATE_CACHED_RANGE() macro is normally used in parallel while
1056 * the flash is actively programming or erasing since we have to poll for
1057 * the operation to complete anyway. We can't do that in a generic way with
1058 * a XIP setup so do it before the actual flash operation in this case
1059 * and stub it out from INVALIDATE_CACHE_UDELAY.
1061 #define XIP_INVAL_CACHED_RANGE(map, from, size) \
1062 INVALIDATE_CACHED_RANGE(map, from, size)
1064 #define INVALIDATE_CACHE_UDELAY(map, chip, adr, len, usec) \
1065 UDELAY(map, chip, adr, usec)
1070 * Activating this XIP support changes the way the code works a bit. For
1071 * example the code to suspend the current process when concurrent access
1072 * happens is never executed because xip_udelay() will always return with the
1073 * same chip state as it was entered with. This is why there is no care for
1074 * the presence of add_wait_queue() or schedule() calls from within a couple
1075 * xip_disable()'d areas of code, like in do_erase_oneblock for example.
1076 * The queueing and scheduling are always happening within xip_udelay().
1078 * Similarly, get_chip() and put_chip() just happen to always be executed
1079 * with chip->state set to FL_READY (or FL_XIP_WHILE_*) where flash state
1080 * is in array mode, therefore never executing many cases therein and not
1081 * causing any problem with XIP.
1086 #define xip_disable(map, chip, adr)
1087 #define xip_enable(map, chip, adr)
1088 #define XIP_INVAL_CACHED_RANGE(x...)
1090 #define UDELAY(map, chip, adr, usec) \
1092 mutex_unlock(&chip->mutex); \
1094 mutex_lock(&chip->mutex); \
1097 #define INVALIDATE_CACHE_UDELAY(map, chip, adr, len, usec) \
1099 mutex_unlock(&chip->mutex); \
1100 INVALIDATE_CACHED_RANGE(map, adr, len); \
1102 mutex_lock(&chip->mutex); \
1107 static inline int do_read_onechip(struct map_info
*map
, struct flchip
*chip
, loff_t adr
, size_t len
, u_char
*buf
)
1109 unsigned long cmd_addr
;
1110 struct cfi_private
*cfi
= map
->fldrv_priv
;
1115 /* Ensure cmd read/writes are aligned. */
1116 cmd_addr
= adr
& ~(map_bankwidth(map
)-1);
1118 mutex_lock(&chip
->mutex
);
1119 ret
= get_chip(map
, chip
, cmd_addr
, FL_READY
);
1121 mutex_unlock(&chip
->mutex
);
1125 if (chip
->state
!= FL_POINT
&& chip
->state
!= FL_READY
) {
1126 map_write(map
, CMD(0xf0), cmd_addr
);
1127 chip
->state
= FL_READY
;
1130 map_copy_from(map
, buf
, adr
, len
);
1132 put_chip(map
, chip
, cmd_addr
);
1134 mutex_unlock(&chip
->mutex
);
1139 static int cfi_amdstd_read (struct mtd_info
*mtd
, loff_t from
, size_t len
, size_t *retlen
, u_char
*buf
)
1141 struct map_info
*map
= mtd
->priv
;
1142 struct cfi_private
*cfi
= map
->fldrv_priv
;
1147 /* ofs: offset within the first chip that the first read should start */
1148 chipnum
= (from
>> cfi
->chipshift
);
1149 ofs
= from
- (chipnum
<< cfi
->chipshift
);
1152 unsigned long thislen
;
1154 if (chipnum
>= cfi
->numchips
)
1157 if ((len
+ ofs
-1) >> cfi
->chipshift
)
1158 thislen
= (1<<cfi
->chipshift
) - ofs
;
1162 ret
= do_read_onechip(map
, &cfi
->chips
[chipnum
], ofs
, thislen
, buf
);
1176 typedef int (*otp_op_t
)(struct map_info
*map
, struct flchip
*chip
,
1177 loff_t adr
, size_t len
, u_char
*buf
, size_t grouplen
);
1179 static inline void otp_enter(struct map_info
*map
, struct flchip
*chip
,
1180 loff_t adr
, size_t len
)
1182 struct cfi_private
*cfi
= map
->fldrv_priv
;
1184 cfi_send_gen_cmd(0xAA, cfi
->addr_unlock1
, chip
->start
, map
, cfi
,
1185 cfi
->device_type
, NULL
);
1186 cfi_send_gen_cmd(0x55, cfi
->addr_unlock2
, chip
->start
, map
, cfi
,
1187 cfi
->device_type
, NULL
);
1188 cfi_send_gen_cmd(0x88, cfi
->addr_unlock1
, chip
->start
, map
, cfi
,
1189 cfi
->device_type
, NULL
);
1191 INVALIDATE_CACHED_RANGE(map
, chip
->start
+ adr
, len
);
1194 static inline void otp_exit(struct map_info
*map
, struct flchip
*chip
,
1195 loff_t adr
, size_t len
)
1197 struct cfi_private
*cfi
= map
->fldrv_priv
;
1199 cfi_send_gen_cmd(0xAA, cfi
->addr_unlock1
, chip
->start
, map
, cfi
,
1200 cfi
->device_type
, NULL
);
1201 cfi_send_gen_cmd(0x55, cfi
->addr_unlock2
, chip
->start
, map
, cfi
,
1202 cfi
->device_type
, NULL
);
1203 cfi_send_gen_cmd(0x90, cfi
->addr_unlock1
, chip
->start
, map
, cfi
,
1204 cfi
->device_type
, NULL
);
1205 cfi_send_gen_cmd(0x00, cfi
->addr_unlock1
, chip
->start
, map
, cfi
,
1206 cfi
->device_type
, NULL
);
1208 INVALIDATE_CACHED_RANGE(map
, chip
->start
+ adr
, len
);
1211 static inline int do_read_secsi_onechip(struct map_info
*map
,
1212 struct flchip
*chip
, loff_t adr
,
1213 size_t len
, u_char
*buf
,
1216 DECLARE_WAITQUEUE(wait
, current
);
1217 unsigned long timeo
= jiffies
+ HZ
;
1220 mutex_lock(&chip
->mutex
);
1222 if (chip
->state
!= FL_READY
){
1223 set_current_state(TASK_UNINTERRUPTIBLE
);
1224 add_wait_queue(&chip
->wq
, &wait
);
1226 mutex_unlock(&chip
->mutex
);
1229 remove_wait_queue(&chip
->wq
, &wait
);
1230 timeo
= jiffies
+ HZ
;
1237 chip
->state
= FL_READY
;
1239 otp_enter(map
, chip
, adr
, len
);
1240 map_copy_from(map
, buf
, adr
, len
);
1241 otp_exit(map
, chip
, adr
, len
);
1244 mutex_unlock(&chip
->mutex
);
1249 static int cfi_amdstd_secsi_read (struct mtd_info
*mtd
, loff_t from
, size_t len
, size_t *retlen
, u_char
*buf
)
1251 struct map_info
*map
= mtd
->priv
;
1252 struct cfi_private
*cfi
= map
->fldrv_priv
;
1257 /* ofs: offset within the first chip that the first read should start */
1258 /* 8 secsi bytes per chip */
1263 unsigned long thislen
;
1265 if (chipnum
>= cfi
->numchips
)
1268 if ((len
+ ofs
-1) >> 3)
1269 thislen
= (1<<3) - ofs
;
1273 ret
= do_read_secsi_onechip(map
, &cfi
->chips
[chipnum
], ofs
,
1288 static int __xipram
do_write_oneword(struct map_info
*map
, struct flchip
*chip
,
1289 unsigned long adr
, map_word datum
,
1292 static int do_otp_write(struct map_info
*map
, struct flchip
*chip
, loff_t adr
,
1293 size_t len
, u_char
*buf
, size_t grouplen
)
1297 unsigned long bus_ofs
= adr
& ~(map_bankwidth(map
)-1);
1298 int gap
= adr
- bus_ofs
;
1299 int n
= min_t(int, len
, map_bankwidth(map
) - gap
);
1300 map_word datum
= map_word_ff(map
);
1302 if (n
!= map_bankwidth(map
)) {
1303 /* partial write of a word, load old contents */
1304 otp_enter(map
, chip
, bus_ofs
, map_bankwidth(map
));
1305 datum
= map_read(map
, bus_ofs
);
1306 otp_exit(map
, chip
, bus_ofs
, map_bankwidth(map
));
1309 datum
= map_word_load_partial(map
, datum
, buf
, gap
, n
);
1310 ret
= do_write_oneword(map
, chip
, bus_ofs
, datum
, FL_OTP_WRITE
);
1322 static int do_otp_lock(struct map_info
*map
, struct flchip
*chip
, loff_t adr
,
1323 size_t len
, u_char
*buf
, size_t grouplen
)
1325 struct cfi_private
*cfi
= map
->fldrv_priv
;
1327 unsigned long timeo
;
1330 /* make sure area matches group boundaries */
1331 if ((adr
!= 0) || (len
!= grouplen
))
1334 mutex_lock(&chip
->mutex
);
1335 ret
= get_chip(map
, chip
, chip
->start
, FL_LOCKING
);
1337 mutex_unlock(&chip
->mutex
);
1340 chip
->state
= FL_LOCKING
;
1342 /* Enter lock register command */
1343 cfi_send_gen_cmd(0xAA, cfi
->addr_unlock1
, chip
->start
, map
, cfi
,
1344 cfi
->device_type
, NULL
);
1345 cfi_send_gen_cmd(0x55, cfi
->addr_unlock2
, chip
->start
, map
, cfi
,
1346 cfi
->device_type
, NULL
);
1347 cfi_send_gen_cmd(0x40, cfi
->addr_unlock1
, chip
->start
, map
, cfi
,
1348 cfi
->device_type
, NULL
);
1350 /* read lock register */
1351 lockreg
= cfi_read_query(map
, 0);
1353 /* set bit 0 to protect extended memory block */
1356 /* set bit 0 to protect extended memory block */
1357 /* write lock register */
1358 map_write(map
, CMD(0xA0), chip
->start
);
1359 map_write(map
, CMD(lockreg
), chip
->start
);
1361 /* wait for chip to become ready */
1362 timeo
= jiffies
+ msecs_to_jiffies(2);
1364 if (chip_ready(map
, adr
))
1367 if (time_after(jiffies
, timeo
)) {
1368 pr_err("Waiting for chip to be ready timed out.\n");
1372 UDELAY(map
, chip
, 0, 1);
1375 /* exit protection commands */
1376 map_write(map
, CMD(0x90), chip
->start
);
1377 map_write(map
, CMD(0x00), chip
->start
);
1379 chip
->state
= FL_READY
;
1380 put_chip(map
, chip
, chip
->start
);
1381 mutex_unlock(&chip
->mutex
);
1386 static int cfi_amdstd_otp_walk(struct mtd_info
*mtd
, loff_t from
, size_t len
,
1387 size_t *retlen
, u_char
*buf
,
1388 otp_op_t action
, int user_regs
)
1390 struct map_info
*map
= mtd
->priv
;
1391 struct cfi_private
*cfi
= map
->fldrv_priv
;
1392 int ofs_factor
= cfi
->interleave
* cfi
->device_type
;
1395 struct flchip
*chip
;
1396 uint8_t otp
, lockreg
;
1399 size_t user_size
, factory_size
, otpsize
;
1400 loff_t user_offset
, factory_offset
, otpoffset
;
1401 int user_locked
= 0, otplocked
;
1405 for (chipnum
= 0; chipnum
< cfi
->numchips
; chipnum
++) {
1406 chip
= &cfi
->chips
[chipnum
];
1410 /* Micron M29EW family */
1411 if (is_m29ew(cfi
)) {
1414 /* check whether secsi area is factory locked
1416 mutex_lock(&chip
->mutex
);
1417 ret
= get_chip(map
, chip
, base
, FL_CFI_QUERY
);
1419 mutex_unlock(&chip
->mutex
);
1422 cfi_qry_mode_on(base
, map
, cfi
);
1423 otp
= cfi_read_query(map
, base
+ 0x3 * ofs_factor
);
1424 cfi_qry_mode_off(base
, map
, cfi
);
1425 put_chip(map
, chip
, base
);
1426 mutex_unlock(&chip
->mutex
);
1429 /* factory locked */
1431 factory_size
= 0x100;
1433 /* customer lockable */
1437 mutex_lock(&chip
->mutex
);
1438 ret
= get_chip(map
, chip
, base
, FL_LOCKING
);
1440 mutex_unlock(&chip
->mutex
);
1444 /* Enter lock register command */
1445 cfi_send_gen_cmd(0xAA, cfi
->addr_unlock1
,
1446 chip
->start
, map
, cfi
,
1447 cfi
->device_type
, NULL
);
1448 cfi_send_gen_cmd(0x55, cfi
->addr_unlock2
,
1449 chip
->start
, map
, cfi
,
1450 cfi
->device_type
, NULL
);
1451 cfi_send_gen_cmd(0x40, cfi
->addr_unlock1
,
1452 chip
->start
, map
, cfi
,
1453 cfi
->device_type
, NULL
);
1454 /* read lock register */
1455 lockreg
= cfi_read_query(map
, 0);
1456 /* exit protection commands */
1457 map_write(map
, CMD(0x90), chip
->start
);
1458 map_write(map
, CMD(0x00), chip
->start
);
1459 put_chip(map
, chip
, chip
->start
);
1460 mutex_unlock(&chip
->mutex
);
1462 user_locked
= ((lockreg
& 0x01) == 0x00);
1466 otpsize
= user_regs
? user_size
: factory_size
;
1469 otpoffset
= user_regs
? user_offset
: factory_offset
;
1470 otplocked
= user_regs
? user_locked
: 1;
1473 /* return otpinfo */
1474 struct otp_info
*otpinfo
;
1475 len
-= sizeof(*otpinfo
);
1478 otpinfo
= (struct otp_info
*)buf
;
1479 otpinfo
->start
= from
;
1480 otpinfo
->length
= otpsize
;
1481 otpinfo
->locked
= otplocked
;
1482 buf
+= sizeof(*otpinfo
);
1483 *retlen
+= sizeof(*otpinfo
);
1485 } else if ((from
< otpsize
) && (len
> 0)) {
1487 size
= (len
< otpsize
- from
) ? len
: otpsize
- from
;
1488 ret
= action(map
, chip
, otpoffset
+ from
, size
, buf
,
1504 static int cfi_amdstd_get_fact_prot_info(struct mtd_info
*mtd
, size_t len
,
1505 size_t *retlen
, struct otp_info
*buf
)
1507 return cfi_amdstd_otp_walk(mtd
, 0, len
, retlen
, (u_char
*)buf
,
1511 static int cfi_amdstd_get_user_prot_info(struct mtd_info
*mtd
, size_t len
,
1512 size_t *retlen
, struct otp_info
*buf
)
1514 return cfi_amdstd_otp_walk(mtd
, 0, len
, retlen
, (u_char
*)buf
,
1518 static int cfi_amdstd_read_fact_prot_reg(struct mtd_info
*mtd
, loff_t from
,
1519 size_t len
, size_t *retlen
,
1522 return cfi_amdstd_otp_walk(mtd
, from
, len
, retlen
,
1523 buf
, do_read_secsi_onechip
, 0);
1526 static int cfi_amdstd_read_user_prot_reg(struct mtd_info
*mtd
, loff_t from
,
1527 size_t len
, size_t *retlen
,
1530 return cfi_amdstd_otp_walk(mtd
, from
, len
, retlen
,
1531 buf
, do_read_secsi_onechip
, 1);
1534 static int cfi_amdstd_write_user_prot_reg(struct mtd_info
*mtd
, loff_t from
,
1535 size_t len
, size_t *retlen
,
1538 return cfi_amdstd_otp_walk(mtd
, from
, len
, retlen
, buf
,
1542 static int cfi_amdstd_lock_user_prot_reg(struct mtd_info
*mtd
, loff_t from
,
1546 return cfi_amdstd_otp_walk(mtd
, from
, len
, &retlen
, NULL
,
1550 static int __xipram
do_write_oneword(struct map_info
*map
, struct flchip
*chip
,
1551 unsigned long adr
, map_word datum
,
1554 struct cfi_private
*cfi
= map
->fldrv_priv
;
1555 unsigned long timeo
= jiffies
+ HZ
;
1557 * We use a 1ms + 1 jiffies generic timeout for writes (most devices
1558 * have a max write time of a few hundreds usec). However, we should
1559 * use the maximum timeout value given by the chip at probe time
1560 * instead. Unfortunately, struct flchip does have a field for
1561 * maximum timeout, only for typical which can be far too short
1562 * depending of the conditions. The ' + 1' is to avoid having a
1563 * timeout of 0 jiffies if HZ is smaller than 1000.
1565 unsigned long uWriteTimeout
= ( HZ
/ 1000 ) + 1;
1572 mutex_lock(&chip
->mutex
);
1573 ret
= get_chip(map
, chip
, adr
, mode
);
1575 mutex_unlock(&chip
->mutex
);
1579 pr_debug("MTD %s(): WRITE 0x%.8lx(0x%.8lx)\n",
1580 __func__
, adr
, datum
.x
[0] );
1582 if (mode
== FL_OTP_WRITE
)
1583 otp_enter(map
, chip
, adr
, map_bankwidth(map
));
1586 * Check for a NOP for the case when the datum to write is already
1587 * present - it saves time and works around buggy chips that corrupt
1588 * data at other locations when 0xff is written to a location that
1589 * already contains 0xff.
1591 oldd
= map_read(map
, adr
);
1592 if (map_word_equal(map
, oldd
, datum
)) {
1593 pr_debug("MTD %s(): NOP\n",
1598 XIP_INVAL_CACHED_RANGE(map
, adr
, map_bankwidth(map
));
1600 xip_disable(map
, chip
, adr
);
1603 cfi_send_gen_cmd(0xAA, cfi
->addr_unlock1
, chip
->start
, map
, cfi
, cfi
->device_type
, NULL
);
1604 cfi_send_gen_cmd(0x55, cfi
->addr_unlock2
, chip
->start
, map
, cfi
, cfi
->device_type
, NULL
);
1605 cfi_send_gen_cmd(0xA0, cfi
->addr_unlock1
, chip
->start
, map
, cfi
, cfi
->device_type
, NULL
);
1606 map_write(map
, datum
, adr
);
1609 INVALIDATE_CACHE_UDELAY(map
, chip
,
1610 adr
, map_bankwidth(map
),
1611 chip
->word_write_time
);
1613 /* See comment above for timeout value. */
1614 timeo
= jiffies
+ uWriteTimeout
;
1616 if (chip
->state
!= mode
) {
1617 /* Someone's suspended the write. Sleep */
1618 DECLARE_WAITQUEUE(wait
, current
);
1620 set_current_state(TASK_UNINTERRUPTIBLE
);
1621 add_wait_queue(&chip
->wq
, &wait
);
1622 mutex_unlock(&chip
->mutex
);
1624 remove_wait_queue(&chip
->wq
, &wait
);
1625 timeo
= jiffies
+ (HZ
/ 2); /* FIXME */
1626 mutex_lock(&chip
->mutex
);
1630 if (time_after(jiffies
, timeo
) && !chip_ready(map
, adr
)){
1631 xip_enable(map
, chip
, adr
);
1632 printk(KERN_WARNING
"MTD %s(): software timeout\n", __func__
);
1633 xip_disable(map
, chip
, adr
);
1637 if (chip_ready(map
, adr
))
1640 /* Latency issues. Drop the lock, wait a while and retry */
1641 UDELAY(map
, chip
, adr
, 1);
1643 /* Did we succeed? */
1644 if (!chip_good(map
, adr
, datum
)) {
1645 /* reset on all failures. */
1646 map_write( map
, CMD(0xF0), chip
->start
);
1647 /* FIXME - should have reset delay before continuing */
1649 if (++retry_cnt
<= MAX_WORD_RETRIES
)
1654 xip_enable(map
, chip
, adr
);
1656 if (mode
== FL_OTP_WRITE
)
1657 otp_exit(map
, chip
, adr
, map_bankwidth(map
));
1658 chip
->state
= FL_READY
;
1660 put_chip(map
, chip
, adr
);
1661 mutex_unlock(&chip
->mutex
);
1667 static int cfi_amdstd_write_words(struct mtd_info
*mtd
, loff_t to
, size_t len
,
1668 size_t *retlen
, const u_char
*buf
)
1670 struct map_info
*map
= mtd
->priv
;
1671 struct cfi_private
*cfi
= map
->fldrv_priv
;
1674 unsigned long ofs
, chipstart
;
1675 DECLARE_WAITQUEUE(wait
, current
);
1677 chipnum
= to
>> cfi
->chipshift
;
1678 ofs
= to
- (chipnum
<< cfi
->chipshift
);
1679 chipstart
= cfi
->chips
[chipnum
].start
;
1681 /* If it's not bus-aligned, do the first byte write */
1682 if (ofs
& (map_bankwidth(map
)-1)) {
1683 unsigned long bus_ofs
= ofs
& ~(map_bankwidth(map
)-1);
1684 int i
= ofs
- bus_ofs
;
1689 mutex_lock(&cfi
->chips
[chipnum
].mutex
);
1691 if (cfi
->chips
[chipnum
].state
!= FL_READY
) {
1692 set_current_state(TASK_UNINTERRUPTIBLE
);
1693 add_wait_queue(&cfi
->chips
[chipnum
].wq
, &wait
);
1695 mutex_unlock(&cfi
->chips
[chipnum
].mutex
);
1698 remove_wait_queue(&cfi
->chips
[chipnum
].wq
, &wait
);
1702 /* Load 'tmp_buf' with old contents of flash */
1703 tmp_buf
= map_read(map
, bus_ofs
+chipstart
);
1705 mutex_unlock(&cfi
->chips
[chipnum
].mutex
);
1707 /* Number of bytes to copy from buffer */
1708 n
= min_t(int, len
, map_bankwidth(map
)-i
);
1710 tmp_buf
= map_word_load_partial(map
, tmp_buf
, buf
, i
, n
);
1712 ret
= do_write_oneword(map
, &cfi
->chips
[chipnum
],
1713 bus_ofs
, tmp_buf
, FL_WRITING
);
1722 if (ofs
>> cfi
->chipshift
) {
1725 if (chipnum
== cfi
->numchips
)
1730 /* We are now aligned, write as much as possible */
1731 while(len
>= map_bankwidth(map
)) {
1734 datum
= map_word_load(map
, buf
);
1736 ret
= do_write_oneword(map
, &cfi
->chips
[chipnum
],
1737 ofs
, datum
, FL_WRITING
);
1741 ofs
+= map_bankwidth(map
);
1742 buf
+= map_bankwidth(map
);
1743 (*retlen
) += map_bankwidth(map
);
1744 len
-= map_bankwidth(map
);
1746 if (ofs
>> cfi
->chipshift
) {
1749 if (chipnum
== cfi
->numchips
)
1751 chipstart
= cfi
->chips
[chipnum
].start
;
1755 /* Write the trailing bytes if any */
1756 if (len
& (map_bankwidth(map
)-1)) {
1760 mutex_lock(&cfi
->chips
[chipnum
].mutex
);
1762 if (cfi
->chips
[chipnum
].state
!= FL_READY
) {
1763 set_current_state(TASK_UNINTERRUPTIBLE
);
1764 add_wait_queue(&cfi
->chips
[chipnum
].wq
, &wait
);
1766 mutex_unlock(&cfi
->chips
[chipnum
].mutex
);
1769 remove_wait_queue(&cfi
->chips
[chipnum
].wq
, &wait
);
1773 tmp_buf
= map_read(map
, ofs
+ chipstart
);
1775 mutex_unlock(&cfi
->chips
[chipnum
].mutex
);
1777 tmp_buf
= map_word_load_partial(map
, tmp_buf
, buf
, 0, len
);
1779 ret
= do_write_oneword(map
, &cfi
->chips
[chipnum
],
1780 ofs
, tmp_buf
, FL_WRITING
);
1792 * FIXME: interleaved mode not tested, and probably not supported!
1794 static int __xipram
do_write_buffer(struct map_info
*map
, struct flchip
*chip
,
1795 unsigned long adr
, const u_char
*buf
,
1798 struct cfi_private
*cfi
= map
->fldrv_priv
;
1799 unsigned long timeo
= jiffies
+ HZ
;
1801 * Timeout is calculated according to CFI data, if available.
1802 * See more comments in cfi_cmdset_0002().
1804 unsigned long uWriteTimeout
=
1805 usecs_to_jiffies(chip
->buffer_write_time_max
);
1807 unsigned long cmd_adr
;
1814 mutex_lock(&chip
->mutex
);
1815 ret
= get_chip(map
, chip
, adr
, FL_WRITING
);
1817 mutex_unlock(&chip
->mutex
);
1821 datum
= map_word_load(map
, buf
);
1823 pr_debug("MTD %s(): WRITE 0x%.8lx(0x%.8lx)\n",
1824 __func__
, adr
, datum
.x
[0] );
1826 XIP_INVAL_CACHED_RANGE(map
, adr
, len
);
1828 xip_disable(map
, chip
, cmd_adr
);
1830 cfi_send_gen_cmd(0xAA, cfi
->addr_unlock1
, chip
->start
, map
, cfi
, cfi
->device_type
, NULL
);
1831 cfi_send_gen_cmd(0x55, cfi
->addr_unlock2
, chip
->start
, map
, cfi
, cfi
->device_type
, NULL
);
1833 /* Write Buffer Load */
1834 map_write(map
, CMD(0x25), cmd_adr
);
1836 chip
->state
= FL_WRITING_TO_BUFFER
;
1838 /* Write length of data to come */
1839 words
= len
/ map_bankwidth(map
);
1840 map_write(map
, CMD(words
- 1), cmd_adr
);
1843 while(z
< words
* map_bankwidth(map
)) {
1844 datum
= map_word_load(map
, buf
);
1845 map_write(map
, datum
, adr
+ z
);
1847 z
+= map_bankwidth(map
);
1848 buf
+= map_bankwidth(map
);
1850 z
-= map_bankwidth(map
);
1854 /* Write Buffer Program Confirm: GO GO GO */
1855 map_write(map
, CMD(0x29), cmd_adr
);
1856 chip
->state
= FL_WRITING
;
1858 INVALIDATE_CACHE_UDELAY(map
, chip
,
1859 adr
, map_bankwidth(map
),
1860 chip
->word_write_time
);
1862 timeo
= jiffies
+ uWriteTimeout
;
1865 if (chip
->state
!= FL_WRITING
) {
1866 /* Someone's suspended the write. Sleep */
1867 DECLARE_WAITQUEUE(wait
, current
);
1869 set_current_state(TASK_UNINTERRUPTIBLE
);
1870 add_wait_queue(&chip
->wq
, &wait
);
1871 mutex_unlock(&chip
->mutex
);
1873 remove_wait_queue(&chip
->wq
, &wait
);
1874 timeo
= jiffies
+ (HZ
/ 2); /* FIXME */
1875 mutex_lock(&chip
->mutex
);
1879 if (time_after(jiffies
, timeo
) && !chip_ready(map
, adr
))
1882 if (chip_ready(map
, adr
)) {
1883 xip_enable(map
, chip
, adr
);
1887 /* Latency issues. Drop the lock, wait a while and retry */
1888 UDELAY(map
, chip
, adr
, 1);
1892 * Recovery from write-buffer programming failures requires
1893 * the write-to-buffer-reset sequence. Since the last part
1894 * of the sequence also works as a normal reset, we can run
1895 * the same commands regardless of why we are here.
1897 * http://www.spansion.com/Support/Application%20Notes/MirrorBit_Write_Buffer_Prog_Page_Buffer_Read_AN.pdf
1899 cfi_send_gen_cmd(0xAA, cfi
->addr_unlock1
, chip
->start
, map
, cfi
,
1900 cfi
->device_type
, NULL
);
1901 cfi_send_gen_cmd(0x55, cfi
->addr_unlock2
, chip
->start
, map
, cfi
,
1902 cfi
->device_type
, NULL
);
1903 cfi_send_gen_cmd(0xF0, cfi
->addr_unlock1
, chip
->start
, map
, cfi
,
1904 cfi
->device_type
, NULL
);
1905 xip_enable(map
, chip
, adr
);
1906 /* FIXME - should have reset delay before continuing */
1908 printk(KERN_WARNING
"MTD %s(): software timeout, address:0x%.8lx.\n",
1913 chip
->state
= FL_READY
;
1915 put_chip(map
, chip
, adr
);
1916 mutex_unlock(&chip
->mutex
);
1922 static int cfi_amdstd_write_buffers(struct mtd_info
*mtd
, loff_t to
, size_t len
,
1923 size_t *retlen
, const u_char
*buf
)
1925 struct map_info
*map
= mtd
->priv
;
1926 struct cfi_private
*cfi
= map
->fldrv_priv
;
1927 int wbufsize
= cfi_interleave(cfi
) << cfi
->cfiq
->MaxBufWriteSize
;
1932 chipnum
= to
>> cfi
->chipshift
;
1933 ofs
= to
- (chipnum
<< cfi
->chipshift
);
1935 /* If it's not bus-aligned, do the first word write */
1936 if (ofs
& (map_bankwidth(map
)-1)) {
1937 size_t local_len
= (-ofs
)&(map_bankwidth(map
)-1);
1938 if (local_len
> len
)
1940 ret
= cfi_amdstd_write_words(mtd
, ofs
+ (chipnum
<<cfi
->chipshift
),
1941 local_len
, retlen
, buf
);
1948 if (ofs
>> cfi
->chipshift
) {
1951 if (chipnum
== cfi
->numchips
)
1956 /* Write buffer is worth it only if more than one word to write... */
1957 while (len
>= map_bankwidth(map
) * 2) {
1958 /* We must not cross write block boundaries */
1959 int size
= wbufsize
- (ofs
& (wbufsize
-1));
1963 if (size
% map_bankwidth(map
))
1964 size
-= size
% map_bankwidth(map
);
1966 ret
= do_write_buffer(map
, &cfi
->chips
[chipnum
],
1976 if (ofs
>> cfi
->chipshift
) {
1979 if (chipnum
== cfi
->numchips
)
1985 size_t retlen_dregs
= 0;
1987 ret
= cfi_amdstd_write_words(mtd
, ofs
+ (chipnum
<<cfi
->chipshift
),
1988 len
, &retlen_dregs
, buf
);
1990 *retlen
+= retlen_dregs
;
1998 * Wait for the flash chip to become ready to write data
2000 * This is only called during the panic_write() path. When panic_write()
2001 * is called, the kernel is in the process of a panic, and will soon be
2002 * dead. Therefore we don't take any locks, and attempt to get access
2003 * to the chip as soon as possible.
2005 static int cfi_amdstd_panic_wait(struct map_info
*map
, struct flchip
*chip
,
2008 struct cfi_private
*cfi
= map
->fldrv_priv
;
2013 * If the driver thinks the chip is idle, and no toggle bits
2014 * are changing, then the chip is actually idle for sure.
2016 if (chip
->state
== FL_READY
&& chip_ready(map
, adr
))
2020 * Try several times to reset the chip and then wait for it
2021 * to become idle. The upper limit of a few milliseconds of
2022 * delay isn't a big problem: the kernel is dying anyway. It
2023 * is more important to save the messages.
2025 while (retries
> 0) {
2026 const unsigned long timeo
= (HZ
/ 1000) + 1;
2028 /* send the reset command */
2029 map_write(map
, CMD(0xF0), chip
->start
);
2031 /* wait for the chip to become ready */
2032 for (i
= 0; i
< jiffies_to_usecs(timeo
); i
++) {
2033 if (chip_ready(map
, adr
))
2042 /* the chip never became ready */
2047 * Write out one word of data to a single flash chip during a kernel panic
2049 * This is only called during the panic_write() path. When panic_write()
2050 * is called, the kernel is in the process of a panic, and will soon be
2051 * dead. Therefore we don't take any locks, and attempt to get access
2052 * to the chip as soon as possible.
2054 * The implementation of this routine is intentionally similar to
2055 * do_write_oneword(), in order to ease code maintenance.
2057 static int do_panic_write_oneword(struct map_info
*map
, struct flchip
*chip
,
2058 unsigned long adr
, map_word datum
)
2060 const unsigned long uWriteTimeout
= (HZ
/ 1000) + 1;
2061 struct cfi_private
*cfi
= map
->fldrv_priv
;
2069 ret
= cfi_amdstd_panic_wait(map
, chip
, adr
);
2073 pr_debug("MTD %s(): PANIC WRITE 0x%.8lx(0x%.8lx)\n",
2074 __func__
, adr
, datum
.x
[0]);
2077 * Check for a NOP for the case when the datum to write is already
2078 * present - it saves time and works around buggy chips that corrupt
2079 * data at other locations when 0xff is written to a location that
2080 * already contains 0xff.
2082 oldd
= map_read(map
, adr
);
2083 if (map_word_equal(map
, oldd
, datum
)) {
2084 pr_debug("MTD %s(): NOP\n", __func__
);
2091 cfi_send_gen_cmd(0xAA, cfi
->addr_unlock1
, chip
->start
, map
, cfi
, cfi
->device_type
, NULL
);
2092 cfi_send_gen_cmd(0x55, cfi
->addr_unlock2
, chip
->start
, map
, cfi
, cfi
->device_type
, NULL
);
2093 cfi_send_gen_cmd(0xA0, cfi
->addr_unlock1
, chip
->start
, map
, cfi
, cfi
->device_type
, NULL
);
2094 map_write(map
, datum
, adr
);
2096 for (i
= 0; i
< jiffies_to_usecs(uWriteTimeout
); i
++) {
2097 if (chip_ready(map
, adr
))
2103 if (!chip_good(map
, adr
, datum
)) {
2104 /* reset on all failures. */
2105 map_write(map
, CMD(0xF0), chip
->start
);
2106 /* FIXME - should have reset delay before continuing */
2108 if (++retry_cnt
<= MAX_WORD_RETRIES
)
2120 * Write out some data during a kernel panic
2122 * This is used by the mtdoops driver to save the dying messages from a
2123 * kernel which has panic'd.
2125 * This routine ignores all of the locking used throughout the rest of the
2126 * driver, in order to ensure that the data gets written out no matter what
2127 * state this driver (and the flash chip itself) was in when the kernel crashed.
2129 * The implementation of this routine is intentionally similar to
2130 * cfi_amdstd_write_words(), in order to ease code maintenance.
2132 static int cfi_amdstd_panic_write(struct mtd_info
*mtd
, loff_t to
, size_t len
,
2133 size_t *retlen
, const u_char
*buf
)
2135 struct map_info
*map
= mtd
->priv
;
2136 struct cfi_private
*cfi
= map
->fldrv_priv
;
2137 unsigned long ofs
, chipstart
;
2141 chipnum
= to
>> cfi
->chipshift
;
2142 ofs
= to
- (chipnum
<< cfi
->chipshift
);
2143 chipstart
= cfi
->chips
[chipnum
].start
;
2145 /* If it's not bus aligned, do the first byte write */
2146 if (ofs
& (map_bankwidth(map
) - 1)) {
2147 unsigned long bus_ofs
= ofs
& ~(map_bankwidth(map
) - 1);
2148 int i
= ofs
- bus_ofs
;
2152 ret
= cfi_amdstd_panic_wait(map
, &cfi
->chips
[chipnum
], bus_ofs
);
2156 /* Load 'tmp_buf' with old contents of flash */
2157 tmp_buf
= map_read(map
, bus_ofs
+ chipstart
);
2159 /* Number of bytes to copy from buffer */
2160 n
= min_t(int, len
, map_bankwidth(map
) - i
);
2162 tmp_buf
= map_word_load_partial(map
, tmp_buf
, buf
, i
, n
);
2164 ret
= do_panic_write_oneword(map
, &cfi
->chips
[chipnum
],
2174 if (ofs
>> cfi
->chipshift
) {
2177 if (chipnum
== cfi
->numchips
)
2182 /* We are now aligned, write as much as possible */
2183 while (len
>= map_bankwidth(map
)) {
2186 datum
= map_word_load(map
, buf
);
2188 ret
= do_panic_write_oneword(map
, &cfi
->chips
[chipnum
],
2193 ofs
+= map_bankwidth(map
);
2194 buf
+= map_bankwidth(map
);
2195 (*retlen
) += map_bankwidth(map
);
2196 len
-= map_bankwidth(map
);
2198 if (ofs
>> cfi
->chipshift
) {
2201 if (chipnum
== cfi
->numchips
)
2204 chipstart
= cfi
->chips
[chipnum
].start
;
2208 /* Write the trailing bytes if any */
2209 if (len
& (map_bankwidth(map
) - 1)) {
2212 ret
= cfi_amdstd_panic_wait(map
, &cfi
->chips
[chipnum
], ofs
);
2216 tmp_buf
= map_read(map
, ofs
+ chipstart
);
2218 tmp_buf
= map_word_load_partial(map
, tmp_buf
, buf
, 0, len
);
2220 ret
= do_panic_write_oneword(map
, &cfi
->chips
[chipnum
],
2233 * Handle devices with one erase region, that only implement
2234 * the chip erase command.
2236 static int __xipram
do_erase_chip(struct map_info
*map
, struct flchip
*chip
)
2238 struct cfi_private
*cfi
= map
->fldrv_priv
;
2239 unsigned long timeo
= jiffies
+ HZ
;
2240 unsigned long int adr
;
2241 DECLARE_WAITQUEUE(wait
, current
);
2244 adr
= cfi
->addr_unlock1
;
2246 mutex_lock(&chip
->mutex
);
2247 ret
= get_chip(map
, chip
, adr
, FL_WRITING
);
2249 mutex_unlock(&chip
->mutex
);
2253 pr_debug("MTD %s(): ERASE 0x%.8lx\n",
2254 __func__
, chip
->start
);
2256 XIP_INVAL_CACHED_RANGE(map
, adr
, map
->size
);
2258 xip_disable(map
, chip
, adr
);
2260 cfi_send_gen_cmd(0xAA, cfi
->addr_unlock1
, chip
->start
, map
, cfi
, cfi
->device_type
, NULL
);
2261 cfi_send_gen_cmd(0x55, cfi
->addr_unlock2
, chip
->start
, map
, cfi
, cfi
->device_type
, NULL
);
2262 cfi_send_gen_cmd(0x80, cfi
->addr_unlock1
, chip
->start
, map
, cfi
, cfi
->device_type
, NULL
);
2263 cfi_send_gen_cmd(0xAA, cfi
->addr_unlock1
, chip
->start
, map
, cfi
, cfi
->device_type
, NULL
);
2264 cfi_send_gen_cmd(0x55, cfi
->addr_unlock2
, chip
->start
, map
, cfi
, cfi
->device_type
, NULL
);
2265 cfi_send_gen_cmd(0x10, cfi
->addr_unlock1
, chip
->start
, map
, cfi
, cfi
->device_type
, NULL
);
2267 chip
->state
= FL_ERASING
;
2268 chip
->erase_suspended
= 0;
2269 chip
->in_progress_block_addr
= adr
;
2271 INVALIDATE_CACHE_UDELAY(map
, chip
,
2273 chip
->erase_time
*500);
2275 timeo
= jiffies
+ (HZ
*20);
2278 if (chip
->state
!= FL_ERASING
) {
2279 /* Someone's suspended the erase. Sleep */
2280 set_current_state(TASK_UNINTERRUPTIBLE
);
2281 add_wait_queue(&chip
->wq
, &wait
);
2282 mutex_unlock(&chip
->mutex
);
2284 remove_wait_queue(&chip
->wq
, &wait
);
2285 mutex_lock(&chip
->mutex
);
2288 if (chip
->erase_suspended
) {
2289 /* This erase was suspended and resumed.
2290 Adjust the timeout */
2291 timeo
= jiffies
+ (HZ
*20); /* FIXME */
2292 chip
->erase_suspended
= 0;
2295 if (chip_ready(map
, adr
))
2298 if (time_after(jiffies
, timeo
)) {
2299 printk(KERN_WARNING
"MTD %s(): software timeout\n",
2304 /* Latency issues. Drop the lock, wait a while and retry */
2305 UDELAY(map
, chip
, adr
, 1000000/HZ
);
2307 /* Did we succeed? */
2308 if (!chip_good(map
, adr
, map_word_ff(map
))) {
2309 /* reset on all failures. */
2310 map_write( map
, CMD(0xF0), chip
->start
);
2311 /* FIXME - should have reset delay before continuing */
2316 chip
->state
= FL_READY
;
2317 xip_enable(map
, chip
, adr
);
2319 put_chip(map
, chip
, adr
);
2320 mutex_unlock(&chip
->mutex
);
2326 static int __xipram
do_erase_oneblock(struct map_info
*map
, struct flchip
*chip
, unsigned long adr
, int len
, void *thunk
)
2328 struct cfi_private
*cfi
= map
->fldrv_priv
;
2329 unsigned long timeo
= jiffies
+ HZ
;
2330 DECLARE_WAITQUEUE(wait
, current
);
2335 mutex_lock(&chip
->mutex
);
2336 ret
= get_chip(map
, chip
, adr
, FL_ERASING
);
2338 mutex_unlock(&chip
->mutex
);
2342 pr_debug("MTD %s(): ERASE 0x%.8lx\n",
2345 XIP_INVAL_CACHED_RANGE(map
, adr
, len
);
2347 xip_disable(map
, chip
, adr
);
2349 cfi_send_gen_cmd(0xAA, cfi
->addr_unlock1
, chip
->start
, map
, cfi
, cfi
->device_type
, NULL
);
2350 cfi_send_gen_cmd(0x55, cfi
->addr_unlock2
, chip
->start
, map
, cfi
, cfi
->device_type
, NULL
);
2351 cfi_send_gen_cmd(0x80, cfi
->addr_unlock1
, chip
->start
, map
, cfi
, cfi
->device_type
, NULL
);
2352 cfi_send_gen_cmd(0xAA, cfi
->addr_unlock1
, chip
->start
, map
, cfi
, cfi
->device_type
, NULL
);
2353 cfi_send_gen_cmd(0x55, cfi
->addr_unlock2
, chip
->start
, map
, cfi
, cfi
->device_type
, NULL
);
2354 map_write(map
, cfi
->sector_erase_cmd
, adr
);
2356 chip
->state
= FL_ERASING
;
2357 chip
->erase_suspended
= 0;
2358 chip
->in_progress_block_addr
= adr
;
2360 INVALIDATE_CACHE_UDELAY(map
, chip
,
2362 chip
->erase_time
*500);
2364 timeo
= jiffies
+ (HZ
*20);
2367 if (chip
->state
!= FL_ERASING
) {
2368 /* Someone's suspended the erase. Sleep */
2369 set_current_state(TASK_UNINTERRUPTIBLE
);
2370 add_wait_queue(&chip
->wq
, &wait
);
2371 mutex_unlock(&chip
->mutex
);
2373 remove_wait_queue(&chip
->wq
, &wait
);
2374 mutex_lock(&chip
->mutex
);
2377 if (chip
->erase_suspended
) {
2378 /* This erase was suspended and resumed.
2379 Adjust the timeout */
2380 timeo
= jiffies
+ (HZ
*20); /* FIXME */
2381 chip
->erase_suspended
= 0;
2384 if (chip_ready(map
, adr
)) {
2385 xip_enable(map
, chip
, adr
);
2389 if (time_after(jiffies
, timeo
)) {
2390 xip_enable(map
, chip
, adr
);
2391 printk(KERN_WARNING
"MTD %s(): software timeout\n",
2396 /* Latency issues. Drop the lock, wait a while and retry */
2397 UDELAY(map
, chip
, adr
, 1000000/HZ
);
2399 /* Did we succeed? */
2400 if (!chip_good(map
, adr
, map_word_ff(map
))) {
2401 /* reset on all failures. */
2402 map_write( map
, CMD(0xF0), chip
->start
);
2403 /* FIXME - should have reset delay before continuing */
2408 chip
->state
= FL_READY
;
2410 put_chip(map
, chip
, adr
);
2411 mutex_unlock(&chip
->mutex
);
2416 static int cfi_amdstd_erase_varsize(struct mtd_info
*mtd
, struct erase_info
*instr
)
2418 unsigned long ofs
, len
;
2424 ret
= cfi_varsize_frob(mtd
, do_erase_oneblock
, ofs
, len
, NULL
);
2428 instr
->state
= MTD_ERASE_DONE
;
2429 mtd_erase_callback(instr
);
2435 static int cfi_amdstd_erase_chip(struct mtd_info
*mtd
, struct erase_info
*instr
)
2437 struct map_info
*map
= mtd
->priv
;
2438 struct cfi_private
*cfi
= map
->fldrv_priv
;
2441 if (instr
->addr
!= 0)
2444 if (instr
->len
!= mtd
->size
)
2447 ret
= do_erase_chip(map
, &cfi
->chips
[0]);
2451 instr
->state
= MTD_ERASE_DONE
;
2452 mtd_erase_callback(instr
);
2457 static int do_atmel_lock(struct map_info
*map
, struct flchip
*chip
,
2458 unsigned long adr
, int len
, void *thunk
)
2460 struct cfi_private
*cfi
= map
->fldrv_priv
;
2463 mutex_lock(&chip
->mutex
);
2464 ret
= get_chip(map
, chip
, adr
+ chip
->start
, FL_LOCKING
);
2467 chip
->state
= FL_LOCKING
;
2469 pr_debug("MTD %s(): LOCK 0x%08lx len %d\n", __func__
, adr
, len
);
2471 cfi_send_gen_cmd(0xAA, cfi
->addr_unlock1
, chip
->start
, map
, cfi
,
2472 cfi
->device_type
, NULL
);
2473 cfi_send_gen_cmd(0x55, cfi
->addr_unlock2
, chip
->start
, map
, cfi
,
2474 cfi
->device_type
, NULL
);
2475 cfi_send_gen_cmd(0x80, cfi
->addr_unlock1
, chip
->start
, map
, cfi
,
2476 cfi
->device_type
, NULL
);
2477 cfi_send_gen_cmd(0xAA, cfi
->addr_unlock1
, chip
->start
, map
, cfi
,
2478 cfi
->device_type
, NULL
);
2479 cfi_send_gen_cmd(0x55, cfi
->addr_unlock2
, chip
->start
, map
, cfi
,
2480 cfi
->device_type
, NULL
);
2481 map_write(map
, CMD(0x40), chip
->start
+ adr
);
2483 chip
->state
= FL_READY
;
2484 put_chip(map
, chip
, adr
+ chip
->start
);
2488 mutex_unlock(&chip
->mutex
);
2492 static int do_atmel_unlock(struct map_info
*map
, struct flchip
*chip
,
2493 unsigned long adr
, int len
, void *thunk
)
2495 struct cfi_private
*cfi
= map
->fldrv_priv
;
2498 mutex_lock(&chip
->mutex
);
2499 ret
= get_chip(map
, chip
, adr
+ chip
->start
, FL_UNLOCKING
);
2502 chip
->state
= FL_UNLOCKING
;
2504 pr_debug("MTD %s(): LOCK 0x%08lx len %d\n", __func__
, adr
, len
);
2506 cfi_send_gen_cmd(0xAA, cfi
->addr_unlock1
, chip
->start
, map
, cfi
,
2507 cfi
->device_type
, NULL
);
2508 map_write(map
, CMD(0x70), adr
);
2510 chip
->state
= FL_READY
;
2511 put_chip(map
, chip
, adr
+ chip
->start
);
2515 mutex_unlock(&chip
->mutex
);
2519 static int cfi_atmel_lock(struct mtd_info
*mtd
, loff_t ofs
, uint64_t len
)
2521 return cfi_varsize_frob(mtd
, do_atmel_lock
, ofs
, len
, NULL
);
2524 static int cfi_atmel_unlock(struct mtd_info
*mtd
, loff_t ofs
, uint64_t len
)
2526 return cfi_varsize_frob(mtd
, do_atmel_unlock
, ofs
, len
, NULL
);
2530 * Advanced Sector Protection - PPB (Persistent Protection Bit) locking
2534 struct flchip
*chip
;
2539 #define MAX_SECTORS 512
2541 #define DO_XXLOCK_ONEBLOCK_LOCK ((void *)1)
2542 #define DO_XXLOCK_ONEBLOCK_UNLOCK ((void *)2)
2543 #define DO_XXLOCK_ONEBLOCK_GETLOCK ((void *)3)
2545 static int __maybe_unused
do_ppb_xxlock(struct map_info
*map
,
2546 struct flchip
*chip
,
2547 unsigned long adr
, int len
, void *thunk
)
2549 struct cfi_private
*cfi
= map
->fldrv_priv
;
2550 unsigned long timeo
;
2553 mutex_lock(&chip
->mutex
);
2554 ret
= get_chip(map
, chip
, adr
+ chip
->start
, FL_LOCKING
);
2556 mutex_unlock(&chip
->mutex
);
2560 pr_debug("MTD %s(): XXLOCK 0x%08lx len %d\n", __func__
, adr
, len
);
2562 cfi_send_gen_cmd(0xAA, cfi
->addr_unlock1
, chip
->start
, map
, cfi
,
2563 cfi
->device_type
, NULL
);
2564 cfi_send_gen_cmd(0x55, cfi
->addr_unlock2
, chip
->start
, map
, cfi
,
2565 cfi
->device_type
, NULL
);
2566 /* PPB entry command */
2567 cfi_send_gen_cmd(0xC0, cfi
->addr_unlock1
, chip
->start
, map
, cfi
,
2568 cfi
->device_type
, NULL
);
2570 if (thunk
== DO_XXLOCK_ONEBLOCK_LOCK
) {
2571 chip
->state
= FL_LOCKING
;
2572 map_write(map
, CMD(0xA0), chip
->start
+ adr
);
2573 map_write(map
, CMD(0x00), chip
->start
+ adr
);
2574 } else if (thunk
== DO_XXLOCK_ONEBLOCK_UNLOCK
) {
2576 * Unlocking of one specific sector is not supported, so we
2577 * have to unlock all sectors of this device instead
2579 chip
->state
= FL_UNLOCKING
;
2580 map_write(map
, CMD(0x80), chip
->start
);
2581 map_write(map
, CMD(0x30), chip
->start
);
2582 } else if (thunk
== DO_XXLOCK_ONEBLOCK_GETLOCK
) {
2583 chip
->state
= FL_JEDEC_QUERY
;
2584 /* Return locked status: 0->locked, 1->unlocked */
2585 ret
= !cfi_read_query(map
, adr
);
2590 * Wait for some time as unlocking of all sectors takes quite long
2592 timeo
= jiffies
+ msecs_to_jiffies(2000); /* 2s max (un)locking */
2594 if (chip_ready(map
, adr
))
2597 if (time_after(jiffies
, timeo
)) {
2598 printk(KERN_ERR
"Waiting for chip to be ready timed out.\n");
2603 UDELAY(map
, chip
, adr
, 1);
2606 /* Exit BC commands */
2607 map_write(map
, CMD(0x90), chip
->start
);
2608 map_write(map
, CMD(0x00), chip
->start
);
2610 chip
->state
= FL_READY
;
2611 put_chip(map
, chip
, adr
+ chip
->start
);
2612 mutex_unlock(&chip
->mutex
);
2617 static int __maybe_unused
cfi_ppb_lock(struct mtd_info
*mtd
, loff_t ofs
,
2620 return cfi_varsize_frob(mtd
, do_ppb_xxlock
, ofs
, len
,
2621 DO_XXLOCK_ONEBLOCK_LOCK
);
2624 static int __maybe_unused
cfi_ppb_unlock(struct mtd_info
*mtd
, loff_t ofs
,
2627 struct mtd_erase_region_info
*regions
= mtd
->eraseregions
;
2628 struct map_info
*map
= mtd
->priv
;
2629 struct cfi_private
*cfi
= map
->fldrv_priv
;
2630 struct ppb_lock
*sect
;
2640 * PPB unlocking always unlocks all sectors of the flash chip.
2641 * We need to re-lock all previously locked sectors. So lets
2642 * first check the locking status of all sectors and save
2643 * it for future use.
2645 sect
= kzalloc(MAX_SECTORS
* sizeof(struct ppb_lock
), GFP_KERNEL
);
2650 * This code to walk all sectors is a slightly modified version
2651 * of the cfi_varsize_frob() code.
2661 int size
= regions
[i
].erasesize
;
2664 * Only test sectors that shall not be unlocked. The other
2665 * sectors shall be unlocked, so lets keep their locking
2666 * status at "unlocked" (locked=0) for the final re-locking.
2668 if ((adr
< ofs
) || (adr
>= (ofs
+ len
))) {
2669 sect
[sectors
].chip
= &cfi
->chips
[chipnum
];
2670 sect
[sectors
].offset
= offset
;
2671 sect
[sectors
].locked
= do_ppb_xxlock(
2672 map
, &cfi
->chips
[chipnum
], adr
, 0,
2673 DO_XXLOCK_ONEBLOCK_GETLOCK
);
2680 if (offset
== regions
[i
].offset
+ size
* regions
[i
].numblocks
)
2683 if (adr
>> cfi
->chipshift
) {
2687 if (chipnum
>= cfi
->numchips
)
2692 if (sectors
>= MAX_SECTORS
) {
2693 printk(KERN_ERR
"Only %d sectors for PPB locking supported!\n",
2700 /* Now unlock the whole chip */
2701 ret
= cfi_varsize_frob(mtd
, do_ppb_xxlock
, ofs
, len
,
2702 DO_XXLOCK_ONEBLOCK_UNLOCK
);
2709 * PPB unlocking always unlocks all sectors of the flash chip.
2710 * We need to re-lock all previously locked sectors.
2712 for (i
= 0; i
< sectors
; i
++) {
2714 do_ppb_xxlock(map
, sect
[i
].chip
, sect
[i
].offset
, 0,
2715 DO_XXLOCK_ONEBLOCK_LOCK
);
2722 static int __maybe_unused
cfi_ppb_is_locked(struct mtd_info
*mtd
, loff_t ofs
,
2725 return cfi_varsize_frob(mtd
, do_ppb_xxlock
, ofs
, len
,
2726 DO_XXLOCK_ONEBLOCK_GETLOCK
) ? 1 : 0;
2729 static void cfi_amdstd_sync (struct mtd_info
*mtd
)
2731 struct map_info
*map
= mtd
->priv
;
2732 struct cfi_private
*cfi
= map
->fldrv_priv
;
2734 struct flchip
*chip
;
2736 DECLARE_WAITQUEUE(wait
, current
);
2738 for (i
=0; !ret
&& i
<cfi
->numchips
; i
++) {
2739 chip
= &cfi
->chips
[i
];
2742 mutex_lock(&chip
->mutex
);
2744 switch(chip
->state
) {
2748 case FL_JEDEC_QUERY
:
2749 chip
->oldstate
= chip
->state
;
2750 chip
->state
= FL_SYNCING
;
2751 /* No need to wake_up() on this state change -
2752 * as the whole point is that nobody can do anything
2753 * with the chip now anyway.
2756 mutex_unlock(&chip
->mutex
);
2760 /* Not an idle state */
2761 set_current_state(TASK_UNINTERRUPTIBLE
);
2762 add_wait_queue(&chip
->wq
, &wait
);
2764 mutex_unlock(&chip
->mutex
);
2768 remove_wait_queue(&chip
->wq
, &wait
);
2774 /* Unlock the chips again */
2776 for (i
--; i
>=0; i
--) {
2777 chip
= &cfi
->chips
[i
];
2779 mutex_lock(&chip
->mutex
);
2781 if (chip
->state
== FL_SYNCING
) {
2782 chip
->state
= chip
->oldstate
;
2785 mutex_unlock(&chip
->mutex
);
2790 static int cfi_amdstd_suspend(struct mtd_info
*mtd
)
2792 struct map_info
*map
= mtd
->priv
;
2793 struct cfi_private
*cfi
= map
->fldrv_priv
;
2795 struct flchip
*chip
;
2798 for (i
=0; !ret
&& i
<cfi
->numchips
; i
++) {
2799 chip
= &cfi
->chips
[i
];
2801 mutex_lock(&chip
->mutex
);
2803 switch(chip
->state
) {
2807 case FL_JEDEC_QUERY
:
2808 chip
->oldstate
= chip
->state
;
2809 chip
->state
= FL_PM_SUSPENDED
;
2810 /* No need to wake_up() on this state change -
2811 * as the whole point is that nobody can do anything
2812 * with the chip now anyway.
2814 case FL_PM_SUSPENDED
:
2821 mutex_unlock(&chip
->mutex
);
2824 /* Unlock the chips again */
2827 for (i
--; i
>=0; i
--) {
2828 chip
= &cfi
->chips
[i
];
2830 mutex_lock(&chip
->mutex
);
2832 if (chip
->state
== FL_PM_SUSPENDED
) {
2833 chip
->state
= chip
->oldstate
;
2836 mutex_unlock(&chip
->mutex
);
2844 static void cfi_amdstd_resume(struct mtd_info
*mtd
)
2846 struct map_info
*map
= mtd
->priv
;
2847 struct cfi_private
*cfi
= map
->fldrv_priv
;
2849 struct flchip
*chip
;
2851 for (i
=0; i
<cfi
->numchips
; i
++) {
2853 chip
= &cfi
->chips
[i
];
2855 mutex_lock(&chip
->mutex
);
2857 if (chip
->state
== FL_PM_SUSPENDED
) {
2858 chip
->state
= FL_READY
;
2859 map_write(map
, CMD(0xF0), chip
->start
);
2863 printk(KERN_ERR
"Argh. Chip not in PM_SUSPENDED state upon resume()\n");
2865 mutex_unlock(&chip
->mutex
);
2871 * Ensure that the flash device is put back into read array mode before
2872 * unloading the driver or rebooting. On some systems, rebooting while
2873 * the flash is in query/program/erase mode will prevent the CPU from
2874 * fetching the bootloader code, requiring a hard reset or power cycle.
2876 static int cfi_amdstd_reset(struct mtd_info
*mtd
)
2878 struct map_info
*map
= mtd
->priv
;
2879 struct cfi_private
*cfi
= map
->fldrv_priv
;
2881 struct flchip
*chip
;
2883 for (i
= 0; i
< cfi
->numchips
; i
++) {
2885 chip
= &cfi
->chips
[i
];
2887 mutex_lock(&chip
->mutex
);
2889 ret
= get_chip(map
, chip
, chip
->start
, FL_SHUTDOWN
);
2891 map_write(map
, CMD(0xF0), chip
->start
);
2892 chip
->state
= FL_SHUTDOWN
;
2893 put_chip(map
, chip
, chip
->start
);
2896 mutex_unlock(&chip
->mutex
);
2903 static int cfi_amdstd_reboot(struct notifier_block
*nb
, unsigned long val
,
2906 struct mtd_info
*mtd
;
2908 mtd
= container_of(nb
, struct mtd_info
, reboot_notifier
);
2909 cfi_amdstd_reset(mtd
);
2914 static void cfi_amdstd_destroy(struct mtd_info
*mtd
)
2916 struct map_info
*map
= mtd
->priv
;
2917 struct cfi_private
*cfi
= map
->fldrv_priv
;
2919 cfi_amdstd_reset(mtd
);
2920 unregister_reboot_notifier(&mtd
->reboot_notifier
);
2921 kfree(cfi
->cmdset_priv
);
2924 kfree(mtd
->eraseregions
);
2927 MODULE_LICENSE("GPL");
2928 MODULE_AUTHOR("Crossnet Co. <info@crossnet.co.jp> et al.");
2929 MODULE_DESCRIPTION("MTD chip driver for AMD/Fujitsu flash chips");
2930 MODULE_ALIAS("cfi_cmdset_0006");
2931 MODULE_ALIAS("cfi_cmdset_0701");