x86/topology: Fix function name in documentation
[cris-mirror.git] / drivers / mtd / devices / st_spi_fsm.c
blob7bc29d7252005506c2c81f03d39815d3567e342c
1 /*
2 * st_spi_fsm.c - ST Fast Sequence Mode (FSM) Serial Flash Controller
4 * Author: Angus Clark <angus.clark@st.com>
6 * Copyright (C) 2010-2014 STMicroelectronics Limited
8 * JEDEC probe based on drivers/mtd/devices/m25p80.c
10 * This code is free software; you can redistribute it and/or modify
11 * it under the terms of the GNU General Public License version 2 as
12 * published by the Free Software Foundation.
15 #include <linux/kernel.h>
16 #include <linux/module.h>
17 #include <linux/regmap.h>
18 #include <linux/platform_device.h>
19 #include <linux/mfd/syscon.h>
20 #include <linux/mtd/mtd.h>
21 #include <linux/mtd/partitions.h>
22 #include <linux/mtd/spi-nor.h>
23 #include <linux/sched.h>
24 #include <linux/delay.h>
25 #include <linux/io.h>
26 #include <linux/of.h>
27 #include <linux/clk.h>
29 #include "serial_flash_cmds.h"
32 * FSM SPI Controller Registers
34 #define SPI_CLOCKDIV 0x0010
35 #define SPI_MODESELECT 0x0018
36 #define SPI_CONFIGDATA 0x0020
37 #define SPI_STA_MODE_CHANGE 0x0028
38 #define SPI_FAST_SEQ_TRANSFER_SIZE 0x0100
39 #define SPI_FAST_SEQ_ADD1 0x0104
40 #define SPI_FAST_SEQ_ADD2 0x0108
41 #define SPI_FAST_SEQ_ADD_CFG 0x010c
42 #define SPI_FAST_SEQ_OPC1 0x0110
43 #define SPI_FAST_SEQ_OPC2 0x0114
44 #define SPI_FAST_SEQ_OPC3 0x0118
45 #define SPI_FAST_SEQ_OPC4 0x011c
46 #define SPI_FAST_SEQ_OPC5 0x0120
47 #define SPI_MODE_BITS 0x0124
48 #define SPI_DUMMY_BITS 0x0128
49 #define SPI_FAST_SEQ_FLASH_STA_DATA 0x012c
50 #define SPI_FAST_SEQ_1 0x0130
51 #define SPI_FAST_SEQ_2 0x0134
52 #define SPI_FAST_SEQ_3 0x0138
53 #define SPI_FAST_SEQ_4 0x013c
54 #define SPI_FAST_SEQ_CFG 0x0140
55 #define SPI_FAST_SEQ_STA 0x0144
56 #define SPI_QUAD_BOOT_SEQ_INIT_1 0x0148
57 #define SPI_QUAD_BOOT_SEQ_INIT_2 0x014c
58 #define SPI_QUAD_BOOT_READ_SEQ_1 0x0150
59 #define SPI_QUAD_BOOT_READ_SEQ_2 0x0154
60 #define SPI_PROGRAM_ERASE_TIME 0x0158
61 #define SPI_MULT_PAGE_REPEAT_SEQ_1 0x015c
62 #define SPI_MULT_PAGE_REPEAT_SEQ_2 0x0160
63 #define SPI_STATUS_WR_TIME_REG 0x0164
64 #define SPI_FAST_SEQ_DATA_REG 0x0300
67 * Register: SPI_MODESELECT
69 #define SPI_MODESELECT_CONTIG 0x01
70 #define SPI_MODESELECT_FASTREAD 0x02
71 #define SPI_MODESELECT_DUALIO 0x04
72 #define SPI_MODESELECT_FSM 0x08
73 #define SPI_MODESELECT_QUADBOOT 0x10
76 * Register: SPI_CONFIGDATA
78 #define SPI_CFG_DEVICE_ST 0x1
79 #define SPI_CFG_DEVICE_ATMEL 0x4
80 #define SPI_CFG_MIN_CS_HIGH(x) (((x) & 0xfff) << 4)
81 #define SPI_CFG_CS_SETUPHOLD(x) (((x) & 0xff) << 16)
82 #define SPI_CFG_DATA_HOLD(x) (((x) & 0xff) << 24)
84 #define SPI_CFG_DEFAULT_MIN_CS_HIGH SPI_CFG_MIN_CS_HIGH(0x0AA)
85 #define SPI_CFG_DEFAULT_CS_SETUPHOLD SPI_CFG_CS_SETUPHOLD(0xA0)
86 #define SPI_CFG_DEFAULT_DATA_HOLD SPI_CFG_DATA_HOLD(0x00)
89 * Register: SPI_FAST_SEQ_TRANSFER_SIZE
91 #define TRANSFER_SIZE(x) ((x) * 8)
94 * Register: SPI_FAST_SEQ_ADD_CFG
96 #define ADR_CFG_CYCLES_ADD1(x) ((x) << 0)
97 #define ADR_CFG_PADS_1_ADD1 (0x0 << 6)
98 #define ADR_CFG_PADS_2_ADD1 (0x1 << 6)
99 #define ADR_CFG_PADS_4_ADD1 (0x3 << 6)
100 #define ADR_CFG_CSDEASSERT_ADD1 (1 << 8)
101 #define ADR_CFG_CYCLES_ADD2(x) ((x) << (0+16))
102 #define ADR_CFG_PADS_1_ADD2 (0x0 << (6+16))
103 #define ADR_CFG_PADS_2_ADD2 (0x1 << (6+16))
104 #define ADR_CFG_PADS_4_ADD2 (0x3 << (6+16))
105 #define ADR_CFG_CSDEASSERT_ADD2 (1 << (8+16))
108 * Register: SPI_FAST_SEQ_n
110 #define SEQ_OPC_OPCODE(x) ((x) << 0)
111 #define SEQ_OPC_CYCLES(x) ((x) << 8)
112 #define SEQ_OPC_PADS_1 (0x0 << 14)
113 #define SEQ_OPC_PADS_2 (0x1 << 14)
114 #define SEQ_OPC_PADS_4 (0x3 << 14)
115 #define SEQ_OPC_CSDEASSERT (1 << 16)
118 * Register: SPI_FAST_SEQ_CFG
120 #define SEQ_CFG_STARTSEQ (1 << 0)
121 #define SEQ_CFG_SWRESET (1 << 5)
122 #define SEQ_CFG_CSDEASSERT (1 << 6)
123 #define SEQ_CFG_READNOTWRITE (1 << 7)
124 #define SEQ_CFG_ERASE (1 << 8)
125 #define SEQ_CFG_PADS_1 (0x0 << 16)
126 #define SEQ_CFG_PADS_2 (0x1 << 16)
127 #define SEQ_CFG_PADS_4 (0x3 << 16)
130 * Register: SPI_MODE_BITS
132 #define MODE_DATA(x) (x & 0xff)
133 #define MODE_CYCLES(x) ((x & 0x3f) << 16)
134 #define MODE_PADS_1 (0x0 << 22)
135 #define MODE_PADS_2 (0x1 << 22)
136 #define MODE_PADS_4 (0x3 << 22)
137 #define DUMMY_CSDEASSERT (1 << 24)
140 * Register: SPI_DUMMY_BITS
142 #define DUMMY_CYCLES(x) ((x & 0x3f) << 16)
143 #define DUMMY_PADS_1 (0x0 << 22)
144 #define DUMMY_PADS_2 (0x1 << 22)
145 #define DUMMY_PADS_4 (0x3 << 22)
146 #define DUMMY_CSDEASSERT (1 << 24)
149 * Register: SPI_FAST_SEQ_FLASH_STA_DATA
151 #define STA_DATA_BYTE1(x) ((x & 0xff) << 0)
152 #define STA_DATA_BYTE2(x) ((x & 0xff) << 8)
153 #define STA_PADS_1 (0x0 << 16)
154 #define STA_PADS_2 (0x1 << 16)
155 #define STA_PADS_4 (0x3 << 16)
156 #define STA_CSDEASSERT (0x1 << 20)
157 #define STA_RDNOTWR (0x1 << 21)
160 * FSM SPI Instruction Opcodes
162 #define STFSM_OPC_CMD 0x1
163 #define STFSM_OPC_ADD 0x2
164 #define STFSM_OPC_STA 0x3
165 #define STFSM_OPC_MODE 0x4
166 #define STFSM_OPC_DUMMY 0x5
167 #define STFSM_OPC_DATA 0x6
168 #define STFSM_OPC_WAIT 0x7
169 #define STFSM_OPC_JUMP 0x8
170 #define STFSM_OPC_GOTO 0x9
171 #define STFSM_OPC_STOP 0xF
174 * FSM SPI Instructions (== opcode + operand).
176 #define STFSM_INSTR(cmd, op) ((cmd) | ((op) << 4))
178 #define STFSM_INST_CMD1 STFSM_INSTR(STFSM_OPC_CMD, 1)
179 #define STFSM_INST_CMD2 STFSM_INSTR(STFSM_OPC_CMD, 2)
180 #define STFSM_INST_CMD3 STFSM_INSTR(STFSM_OPC_CMD, 3)
181 #define STFSM_INST_CMD4 STFSM_INSTR(STFSM_OPC_CMD, 4)
182 #define STFSM_INST_CMD5 STFSM_INSTR(STFSM_OPC_CMD, 5)
183 #define STFSM_INST_ADD1 STFSM_INSTR(STFSM_OPC_ADD, 1)
184 #define STFSM_INST_ADD2 STFSM_INSTR(STFSM_OPC_ADD, 2)
186 #define STFSM_INST_DATA_WRITE STFSM_INSTR(STFSM_OPC_DATA, 1)
187 #define STFSM_INST_DATA_READ STFSM_INSTR(STFSM_OPC_DATA, 2)
189 #define STFSM_INST_STA_RD1 STFSM_INSTR(STFSM_OPC_STA, 0x1)
190 #define STFSM_INST_STA_WR1 STFSM_INSTR(STFSM_OPC_STA, 0x1)
191 #define STFSM_INST_STA_RD2 STFSM_INSTR(STFSM_OPC_STA, 0x2)
192 #define STFSM_INST_STA_WR1_2 STFSM_INSTR(STFSM_OPC_STA, 0x3)
194 #define STFSM_INST_MODE STFSM_INSTR(STFSM_OPC_MODE, 0)
195 #define STFSM_INST_DUMMY STFSM_INSTR(STFSM_OPC_DUMMY, 0)
196 #define STFSM_INST_WAIT STFSM_INSTR(STFSM_OPC_WAIT, 0)
197 #define STFSM_INST_STOP STFSM_INSTR(STFSM_OPC_STOP, 0)
199 #define STFSM_DEFAULT_EMI_FREQ 100000000UL /* 100 MHz */
200 #define STFSM_DEFAULT_WR_TIME (STFSM_DEFAULT_EMI_FREQ * (15/1000)) /* 15ms */
202 #define STFSM_FLASH_SAFE_FREQ 10000000UL /* 10 MHz */
204 #define STFSM_MAX_WAIT_SEQ_MS 1000 /* FSM execution time */
206 /* S25FLxxxS commands */
207 #define S25FL_CMD_WRITE4_1_1_4 0x34
208 #define S25FL_CMD_SE4 0xdc
209 #define S25FL_CMD_CLSR 0x30
210 #define S25FL_CMD_DYBWR 0xe1
211 #define S25FL_CMD_DYBRD 0xe0
212 #define S25FL_CMD_WRITE4 0x12 /* Note, opcode clashes with
213 * 'SPINOR_OP_WRITE_1_4_4'
214 * as found on N25Qxxx devices! */
216 /* Status register */
217 #define FLASH_STATUS_BUSY 0x01
218 #define FLASH_STATUS_WEL 0x02
219 #define FLASH_STATUS_BP0 0x04
220 #define FLASH_STATUS_BP1 0x08
221 #define FLASH_STATUS_BP2 0x10
222 #define FLASH_STATUS_SRWP0 0x80
223 #define FLASH_STATUS_TIMEOUT 0xff
224 /* S25FL Error Flags */
225 #define S25FL_STATUS_E_ERR 0x20
226 #define S25FL_STATUS_P_ERR 0x40
228 #define N25Q_CMD_WRVCR 0x81
229 #define N25Q_CMD_RDVCR 0x85
230 #define N25Q_CMD_RDVECR 0x65
231 #define N25Q_CMD_RDNVCR 0xb5
232 #define N25Q_CMD_WRNVCR 0xb1
234 #define FLASH_PAGESIZE 256 /* In Bytes */
235 #define FLASH_PAGESIZE_32 (FLASH_PAGESIZE / 4) /* In uint32_t */
236 #define FLASH_MAX_BUSY_WAIT (300 * HZ) /* Maximum 'CHIPERASE' time */
239 * Flags to tweak operation of default read/write/erase routines
241 #define CFG_READ_TOGGLE_32BIT_ADDR 0x00000001
242 #define CFG_WRITE_TOGGLE_32BIT_ADDR 0x00000002
243 #define CFG_ERASESEC_TOGGLE_32BIT_ADDR 0x00000008
244 #define CFG_S25FL_CHECK_ERROR_FLAGS 0x00000010
246 struct stfsm_seq {
247 uint32_t data_size;
248 uint32_t addr1;
249 uint32_t addr2;
250 uint32_t addr_cfg;
251 uint32_t seq_opc[5];
252 uint32_t mode;
253 uint32_t dummy;
254 uint32_t status;
255 uint8_t seq[16];
256 uint32_t seq_cfg;
257 } __packed __aligned(4);
259 struct stfsm {
260 struct device *dev;
261 void __iomem *base;
262 struct resource *region;
263 struct mtd_info mtd;
264 struct mutex lock;
265 struct flash_info *info;
266 struct clk *clk;
268 uint32_t configuration;
269 uint32_t fifo_dir_delay;
270 bool booted_from_spi;
271 bool reset_signal;
272 bool reset_por;
274 struct stfsm_seq stfsm_seq_read;
275 struct stfsm_seq stfsm_seq_write;
276 struct stfsm_seq stfsm_seq_en_32bit_addr;
279 /* Parameters to configure a READ or WRITE FSM sequence */
280 struct seq_rw_config {
281 uint32_t flags; /* flags to support config */
282 uint8_t cmd; /* FLASH command */
283 int write; /* Write Sequence */
284 uint8_t addr_pads; /* No. of addr pads (MODE & DUMMY) */
285 uint8_t data_pads; /* No. of data pads */
286 uint8_t mode_data; /* MODE data */
287 uint8_t mode_cycles; /* No. of MODE cycles */
288 uint8_t dummy_cycles; /* No. of DUMMY cycles */
291 /* SPI Flash Device Table */
292 struct flash_info {
293 char *name;
295 * JEDEC id zero means "no ID" (most older chips); otherwise it has
296 * a high byte of zero plus three data bytes: the manufacturer id,
297 * then a two byte device id.
299 u32 jedec_id;
300 u16 ext_id;
302 * The size listed here is what works with SPINOR_OP_SE, which isn't
303 * necessarily called a "sector" by the vendor.
305 unsigned sector_size;
306 u16 n_sectors;
307 u32 flags;
309 * Note, where FAST_READ is supported, freq_max specifies the
310 * FAST_READ frequency, not the READ frequency.
312 u32 max_freq;
313 int (*config)(struct stfsm *);
316 static int stfsm_n25q_config(struct stfsm *fsm);
317 static int stfsm_mx25_config(struct stfsm *fsm);
318 static int stfsm_s25fl_config(struct stfsm *fsm);
319 static int stfsm_w25q_config(struct stfsm *fsm);
321 static struct flash_info flash_types[] = {
323 * ST Microelectronics/Numonyx --
324 * (newer production versions may have feature updates
325 * (eg faster operating frequency)
327 #define M25P_FLAG (FLASH_FLAG_READ_WRITE | FLASH_FLAG_READ_FAST)
328 { "m25p40", 0x202013, 0, 64 * 1024, 8, M25P_FLAG, 25, NULL },
329 { "m25p80", 0x202014, 0, 64 * 1024, 16, M25P_FLAG, 25, NULL },
330 { "m25p16", 0x202015, 0, 64 * 1024, 32, M25P_FLAG, 25, NULL },
331 { "m25p32", 0x202016, 0, 64 * 1024, 64, M25P_FLAG, 50, NULL },
332 { "m25p64", 0x202017, 0, 64 * 1024, 128, M25P_FLAG, 50, NULL },
333 { "m25p128", 0x202018, 0, 256 * 1024, 64, M25P_FLAG, 50, NULL },
335 #define M25PX_FLAG (FLASH_FLAG_READ_WRITE | \
336 FLASH_FLAG_READ_FAST | \
337 FLASH_FLAG_READ_1_1_2 | \
338 FLASH_FLAG_WRITE_1_1_2)
339 { "m25px32", 0x207116, 0, 64 * 1024, 64, M25PX_FLAG, 75, NULL },
340 { "m25px64", 0x207117, 0, 64 * 1024, 128, M25PX_FLAG, 75, NULL },
342 /* Macronix MX25xxx
343 * - Support for 'FLASH_FLAG_WRITE_1_4_4' is omitted for devices
344 * where operating frequency must be reduced.
346 #define MX25_FLAG (FLASH_FLAG_READ_WRITE | \
347 FLASH_FLAG_READ_FAST | \
348 FLASH_FLAG_READ_1_1_2 | \
349 FLASH_FLAG_READ_1_2_2 | \
350 FLASH_FLAG_READ_1_1_4 | \
351 FLASH_FLAG_SE_4K | \
352 FLASH_FLAG_SE_32K)
353 { "mx25l3255e", 0xc29e16, 0, 64 * 1024, 64,
354 (MX25_FLAG | FLASH_FLAG_WRITE_1_4_4), 86,
355 stfsm_mx25_config},
356 { "mx25l25635e", 0xc22019, 0, 64*1024, 512,
357 (MX25_FLAG | FLASH_FLAG_32BIT_ADDR | FLASH_FLAG_RESET), 70,
358 stfsm_mx25_config },
359 { "mx25l25655e", 0xc22619, 0, 64*1024, 512,
360 (MX25_FLAG | FLASH_FLAG_32BIT_ADDR | FLASH_FLAG_RESET), 70,
361 stfsm_mx25_config},
363 #define N25Q_FLAG (FLASH_FLAG_READ_WRITE | \
364 FLASH_FLAG_READ_FAST | \
365 FLASH_FLAG_READ_1_1_2 | \
366 FLASH_FLAG_READ_1_2_2 | \
367 FLASH_FLAG_READ_1_1_4 | \
368 FLASH_FLAG_READ_1_4_4 | \
369 FLASH_FLAG_WRITE_1_1_2 | \
370 FLASH_FLAG_WRITE_1_2_2 | \
371 FLASH_FLAG_WRITE_1_1_4 | \
372 FLASH_FLAG_WRITE_1_4_4)
373 { "n25q128", 0x20ba18, 0, 64 * 1024, 256, N25Q_FLAG, 108,
374 stfsm_n25q_config },
375 { "n25q256", 0x20ba19, 0, 64 * 1024, 512,
376 N25Q_FLAG | FLASH_FLAG_32BIT_ADDR, 108, stfsm_n25q_config },
379 * Spansion S25FLxxxP
380 * - 256KiB and 64KiB sector variants (identified by ext. JEDEC)
382 #define S25FLXXXP_FLAG (FLASH_FLAG_READ_WRITE | \
383 FLASH_FLAG_READ_1_1_2 | \
384 FLASH_FLAG_READ_1_2_2 | \
385 FLASH_FLAG_READ_1_1_4 | \
386 FLASH_FLAG_READ_1_4_4 | \
387 FLASH_FLAG_WRITE_1_1_4 | \
388 FLASH_FLAG_READ_FAST)
389 { "s25fl032p", 0x010215, 0x4d00, 64 * 1024, 64, S25FLXXXP_FLAG, 80,
390 stfsm_s25fl_config},
391 { "s25fl129p0", 0x012018, 0x4d00, 256 * 1024, 64, S25FLXXXP_FLAG, 80,
392 stfsm_s25fl_config },
393 { "s25fl129p1", 0x012018, 0x4d01, 64 * 1024, 256, S25FLXXXP_FLAG, 80,
394 stfsm_s25fl_config },
397 * Spansion S25FLxxxS
398 * - 256KiB and 64KiB sector variants (identified by ext. JEDEC)
399 * - RESET# signal supported by die but not bristled out on all
400 * package types. The package type is a function of board design,
401 * so this information is captured in the board's flags.
402 * - Supports 'DYB' sector protection. Depending on variant, sectors
403 * may default to locked state on power-on.
405 #define S25FLXXXS_FLAG (S25FLXXXP_FLAG | \
406 FLASH_FLAG_RESET | \
407 FLASH_FLAG_DYB_LOCKING)
408 { "s25fl128s0", 0x012018, 0x0300, 256 * 1024, 64, S25FLXXXS_FLAG, 80,
409 stfsm_s25fl_config },
410 { "s25fl128s1", 0x012018, 0x0301, 64 * 1024, 256, S25FLXXXS_FLAG, 80,
411 stfsm_s25fl_config },
412 { "s25fl256s0", 0x010219, 0x4d00, 256 * 1024, 128,
413 S25FLXXXS_FLAG | FLASH_FLAG_32BIT_ADDR, 80, stfsm_s25fl_config },
414 { "s25fl256s1", 0x010219, 0x4d01, 64 * 1024, 512,
415 S25FLXXXS_FLAG | FLASH_FLAG_32BIT_ADDR, 80, stfsm_s25fl_config },
417 /* Winbond -- w25x "blocks" are 64K, "sectors" are 4KiB */
418 #define W25X_FLAG (FLASH_FLAG_READ_WRITE | \
419 FLASH_FLAG_READ_FAST | \
420 FLASH_FLAG_READ_1_1_2 | \
421 FLASH_FLAG_WRITE_1_1_2)
422 { "w25x40", 0xef3013, 0, 64 * 1024, 8, W25X_FLAG, 75, NULL },
423 { "w25x80", 0xef3014, 0, 64 * 1024, 16, W25X_FLAG, 75, NULL },
424 { "w25x16", 0xef3015, 0, 64 * 1024, 32, W25X_FLAG, 75, NULL },
425 { "w25x32", 0xef3016, 0, 64 * 1024, 64, W25X_FLAG, 75, NULL },
426 { "w25x64", 0xef3017, 0, 64 * 1024, 128, W25X_FLAG, 75, NULL },
428 /* Winbond -- w25q "blocks" are 64K, "sectors" are 4KiB */
429 #define W25Q_FLAG (FLASH_FLAG_READ_WRITE | \
430 FLASH_FLAG_READ_FAST | \
431 FLASH_FLAG_READ_1_1_2 | \
432 FLASH_FLAG_READ_1_2_2 | \
433 FLASH_FLAG_READ_1_1_4 | \
434 FLASH_FLAG_READ_1_4_4 | \
435 FLASH_FLAG_WRITE_1_1_4)
436 { "w25q80", 0xef4014, 0, 64 * 1024, 16, W25Q_FLAG, 80,
437 stfsm_w25q_config },
438 { "w25q16", 0xef4015, 0, 64 * 1024, 32, W25Q_FLAG, 80,
439 stfsm_w25q_config },
440 { "w25q32", 0xef4016, 0, 64 * 1024, 64, W25Q_FLAG, 80,
441 stfsm_w25q_config },
442 { "w25q64", 0xef4017, 0, 64 * 1024, 128, W25Q_FLAG, 80,
443 stfsm_w25q_config },
445 /* Sentinel */
446 { NULL, 0x000000, 0, 0, 0, 0, 0, NULL },
450 * FSM message sequence configurations:
452 * All configs are presented in order of preference
455 /* Default READ configurations, in order of preference */
456 static struct seq_rw_config default_read_configs[] = {
457 {FLASH_FLAG_READ_1_4_4, SPINOR_OP_READ_1_4_4, 0, 4, 4, 0x00, 2, 4},
458 {FLASH_FLAG_READ_1_1_4, SPINOR_OP_READ_1_1_4, 0, 1, 4, 0x00, 4, 0},
459 {FLASH_FLAG_READ_1_2_2, SPINOR_OP_READ_1_2_2, 0, 2, 2, 0x00, 4, 0},
460 {FLASH_FLAG_READ_1_1_2, SPINOR_OP_READ_1_1_2, 0, 1, 2, 0x00, 0, 8},
461 {FLASH_FLAG_READ_FAST, SPINOR_OP_READ_FAST, 0, 1, 1, 0x00, 0, 8},
462 {FLASH_FLAG_READ_WRITE, SPINOR_OP_READ, 0, 1, 1, 0x00, 0, 0},
463 {0x00, 0, 0, 0, 0, 0x00, 0, 0},
466 /* Default WRITE configurations */
467 static struct seq_rw_config default_write_configs[] = {
468 {FLASH_FLAG_WRITE_1_4_4, SPINOR_OP_WRITE_1_4_4, 1, 4, 4, 0x00, 0, 0},
469 {FLASH_FLAG_WRITE_1_1_4, SPINOR_OP_WRITE_1_1_4, 1, 1, 4, 0x00, 0, 0},
470 {FLASH_FLAG_WRITE_1_2_2, SPINOR_OP_WRITE_1_2_2, 1, 2, 2, 0x00, 0, 0},
471 {FLASH_FLAG_WRITE_1_1_2, SPINOR_OP_WRITE_1_1_2, 1, 1, 2, 0x00, 0, 0},
472 {FLASH_FLAG_READ_WRITE, SPINOR_OP_WRITE, 1, 1, 1, 0x00, 0, 0},
473 {0x00, 0, 0, 0, 0, 0x00, 0, 0},
477 * [N25Qxxx] Configuration
479 #define N25Q_VCR_DUMMY_CYCLES(x) (((x) & 0xf) << 4)
480 #define N25Q_VCR_XIP_DISABLED ((uint8_t)0x1 << 3)
481 #define N25Q_VCR_WRAP_CONT 0x3
483 /* N25Q 3-byte Address READ configurations
484 * - 'FAST' variants configured for 8 dummy cycles.
486 * Note, the number of dummy cycles used for 'FAST' READ operations is
487 * configurable and would normally be tuned according to the READ command and
488 * operating frequency. However, this applies universally to all 'FAST' READ
489 * commands, including those used by the SPIBoot controller, and remains in
490 * force until the device is power-cycled. Since the SPIBoot controller is
491 * hard-wired to use 8 dummy cycles, we must configure the device to also use 8
492 * cycles.
494 static struct seq_rw_config n25q_read3_configs[] = {
495 {FLASH_FLAG_READ_1_4_4, SPINOR_OP_READ_1_4_4, 0, 4, 4, 0x00, 0, 8},
496 {FLASH_FLAG_READ_1_1_4, SPINOR_OP_READ_1_1_4, 0, 1, 4, 0x00, 0, 8},
497 {FLASH_FLAG_READ_1_2_2, SPINOR_OP_READ_1_2_2, 0, 2, 2, 0x00, 0, 8},
498 {FLASH_FLAG_READ_1_1_2, SPINOR_OP_READ_1_1_2, 0, 1, 2, 0x00, 0, 8},
499 {FLASH_FLAG_READ_FAST, SPINOR_OP_READ_FAST, 0, 1, 1, 0x00, 0, 8},
500 {FLASH_FLAG_READ_WRITE, SPINOR_OP_READ, 0, 1, 1, 0x00, 0, 0},
501 {0x00, 0, 0, 0, 0, 0x00, 0, 0},
504 /* N25Q 4-byte Address READ configurations
505 * - use special 4-byte address READ commands (reduces overheads, and
506 * reduces risk of hitting watchdog reset issues).
507 * - 'FAST' variants configured for 8 dummy cycles (see note above.)
509 static struct seq_rw_config n25q_read4_configs[] = {
510 {FLASH_FLAG_READ_1_4_4, SPINOR_OP_READ_1_4_4_4B, 0, 4, 4, 0x00, 0, 8},
511 {FLASH_FLAG_READ_1_1_4, SPINOR_OP_READ_1_1_4_4B, 0, 1, 4, 0x00, 0, 8},
512 {FLASH_FLAG_READ_1_2_2, SPINOR_OP_READ_1_2_2_4B, 0, 2, 2, 0x00, 0, 8},
513 {FLASH_FLAG_READ_1_1_2, SPINOR_OP_READ_1_1_2_4B, 0, 1, 2, 0x00, 0, 8},
514 {FLASH_FLAG_READ_FAST, SPINOR_OP_READ_FAST_4B, 0, 1, 1, 0x00, 0, 8},
515 {FLASH_FLAG_READ_WRITE, SPINOR_OP_READ_4B, 0, 1, 1, 0x00, 0, 0},
516 {0x00, 0, 0, 0, 0, 0x00, 0, 0},
520 * [MX25xxx] Configuration
522 #define MX25_STATUS_QE (0x1 << 6)
524 static int stfsm_mx25_en_32bit_addr_seq(struct stfsm_seq *seq)
526 seq->seq_opc[0] = (SEQ_OPC_PADS_1 |
527 SEQ_OPC_CYCLES(8) |
528 SEQ_OPC_OPCODE(SPINOR_OP_EN4B) |
529 SEQ_OPC_CSDEASSERT);
531 seq->seq[0] = STFSM_INST_CMD1;
532 seq->seq[1] = STFSM_INST_WAIT;
533 seq->seq[2] = STFSM_INST_STOP;
535 seq->seq_cfg = (SEQ_CFG_PADS_1 |
536 SEQ_CFG_ERASE |
537 SEQ_CFG_READNOTWRITE |
538 SEQ_CFG_CSDEASSERT |
539 SEQ_CFG_STARTSEQ);
541 return 0;
545 * [S25FLxxx] Configuration
547 #define STFSM_S25FL_CONFIG_QE (0x1 << 1)
550 * S25FLxxxS devices provide three ways of supporting 32-bit addressing: Bank
551 * Register, Extended Address Modes, and a 32-bit address command set. The
552 * 32-bit address command set is used here, since it avoids any problems with
553 * entering a state that is incompatible with the SPIBoot Controller.
555 static struct seq_rw_config stfsm_s25fl_read4_configs[] = {
556 {FLASH_FLAG_READ_1_4_4, SPINOR_OP_READ_1_4_4_4B, 0, 4, 4, 0x00, 2, 4},
557 {FLASH_FLAG_READ_1_1_4, SPINOR_OP_READ_1_1_4_4B, 0, 1, 4, 0x00, 0, 8},
558 {FLASH_FLAG_READ_1_2_2, SPINOR_OP_READ_1_2_2_4B, 0, 2, 2, 0x00, 4, 0},
559 {FLASH_FLAG_READ_1_1_2, SPINOR_OP_READ_1_1_2_4B, 0, 1, 2, 0x00, 0, 8},
560 {FLASH_FLAG_READ_FAST, SPINOR_OP_READ_FAST_4B, 0, 1, 1, 0x00, 0, 8},
561 {FLASH_FLAG_READ_WRITE, SPINOR_OP_READ_4B, 0, 1, 1, 0x00, 0, 0},
562 {0x00, 0, 0, 0, 0, 0x00, 0, 0},
565 static struct seq_rw_config stfsm_s25fl_write4_configs[] = {
566 {FLASH_FLAG_WRITE_1_1_4, S25FL_CMD_WRITE4_1_1_4, 1, 1, 4, 0x00, 0, 0},
567 {FLASH_FLAG_READ_WRITE, S25FL_CMD_WRITE4, 1, 1, 1, 0x00, 0, 0},
568 {0x00, 0, 0, 0, 0, 0x00, 0, 0},
572 * [W25Qxxx] Configuration
574 #define W25Q_STATUS_QE (0x1 << 1)
576 static struct stfsm_seq stfsm_seq_read_jedec = {
577 .data_size = TRANSFER_SIZE(8),
578 .seq_opc[0] = (SEQ_OPC_PADS_1 |
579 SEQ_OPC_CYCLES(8) |
580 SEQ_OPC_OPCODE(SPINOR_OP_RDID)),
581 .seq = {
582 STFSM_INST_CMD1,
583 STFSM_INST_DATA_READ,
584 STFSM_INST_STOP,
586 .seq_cfg = (SEQ_CFG_PADS_1 |
587 SEQ_CFG_READNOTWRITE |
588 SEQ_CFG_CSDEASSERT |
589 SEQ_CFG_STARTSEQ),
592 static struct stfsm_seq stfsm_seq_read_status_fifo = {
593 .data_size = TRANSFER_SIZE(4),
594 .seq_opc[0] = (SEQ_OPC_PADS_1 |
595 SEQ_OPC_CYCLES(8) |
596 SEQ_OPC_OPCODE(SPINOR_OP_RDSR)),
597 .seq = {
598 STFSM_INST_CMD1,
599 STFSM_INST_DATA_READ,
600 STFSM_INST_STOP,
602 .seq_cfg = (SEQ_CFG_PADS_1 |
603 SEQ_CFG_READNOTWRITE |
604 SEQ_CFG_CSDEASSERT |
605 SEQ_CFG_STARTSEQ),
608 static struct stfsm_seq stfsm_seq_erase_sector = {
609 /* 'addr_cfg' configured during initialisation */
610 .seq_opc = {
611 (SEQ_OPC_PADS_1 | SEQ_OPC_CYCLES(8) |
612 SEQ_OPC_OPCODE(SPINOR_OP_WREN) | SEQ_OPC_CSDEASSERT),
614 (SEQ_OPC_PADS_1 | SEQ_OPC_CYCLES(8) |
615 SEQ_OPC_OPCODE(SPINOR_OP_SE)),
617 .seq = {
618 STFSM_INST_CMD1,
619 STFSM_INST_CMD2,
620 STFSM_INST_ADD1,
621 STFSM_INST_ADD2,
622 STFSM_INST_STOP,
624 .seq_cfg = (SEQ_CFG_PADS_1 |
625 SEQ_CFG_READNOTWRITE |
626 SEQ_CFG_CSDEASSERT |
627 SEQ_CFG_STARTSEQ),
630 static struct stfsm_seq stfsm_seq_erase_chip = {
631 .seq_opc = {
632 (SEQ_OPC_PADS_1 | SEQ_OPC_CYCLES(8) |
633 SEQ_OPC_OPCODE(SPINOR_OP_WREN) | SEQ_OPC_CSDEASSERT),
635 (SEQ_OPC_PADS_1 | SEQ_OPC_CYCLES(8) |
636 SEQ_OPC_OPCODE(SPINOR_OP_CHIP_ERASE) | SEQ_OPC_CSDEASSERT),
638 .seq = {
639 STFSM_INST_CMD1,
640 STFSM_INST_CMD2,
641 STFSM_INST_WAIT,
642 STFSM_INST_STOP,
644 .seq_cfg = (SEQ_CFG_PADS_1 |
645 SEQ_CFG_ERASE |
646 SEQ_CFG_READNOTWRITE |
647 SEQ_CFG_CSDEASSERT |
648 SEQ_CFG_STARTSEQ),
651 static struct stfsm_seq stfsm_seq_write_status = {
652 .seq_opc[0] = (SEQ_OPC_PADS_1 | SEQ_OPC_CYCLES(8) |
653 SEQ_OPC_OPCODE(SPINOR_OP_WREN) | SEQ_OPC_CSDEASSERT),
654 .seq_opc[1] = (SEQ_OPC_PADS_1 | SEQ_OPC_CYCLES(8) |
655 SEQ_OPC_OPCODE(SPINOR_OP_WRSR)),
656 .seq = {
657 STFSM_INST_CMD1,
658 STFSM_INST_CMD2,
659 STFSM_INST_STA_WR1,
660 STFSM_INST_STOP,
662 .seq_cfg = (SEQ_CFG_PADS_1 |
663 SEQ_CFG_READNOTWRITE |
664 SEQ_CFG_CSDEASSERT |
665 SEQ_CFG_STARTSEQ),
668 /* Dummy sequence to read one byte of data from flash into the FIFO */
669 static const struct stfsm_seq stfsm_seq_load_fifo_byte = {
670 .data_size = TRANSFER_SIZE(1),
671 .seq_opc[0] = (SEQ_OPC_PADS_1 |
672 SEQ_OPC_CYCLES(8) |
673 SEQ_OPC_OPCODE(SPINOR_OP_RDID)),
674 .seq = {
675 STFSM_INST_CMD1,
676 STFSM_INST_DATA_READ,
677 STFSM_INST_STOP,
679 .seq_cfg = (SEQ_CFG_PADS_1 |
680 SEQ_CFG_READNOTWRITE |
681 SEQ_CFG_CSDEASSERT |
682 SEQ_CFG_STARTSEQ),
685 static int stfsm_n25q_en_32bit_addr_seq(struct stfsm_seq *seq)
687 seq->seq_opc[0] = (SEQ_OPC_PADS_1 | SEQ_OPC_CYCLES(8) |
688 SEQ_OPC_OPCODE(SPINOR_OP_EN4B));
689 seq->seq_opc[1] = (SEQ_OPC_PADS_1 | SEQ_OPC_CYCLES(8) |
690 SEQ_OPC_OPCODE(SPINOR_OP_WREN) |
691 SEQ_OPC_CSDEASSERT);
693 seq->seq[0] = STFSM_INST_CMD2;
694 seq->seq[1] = STFSM_INST_CMD1;
695 seq->seq[2] = STFSM_INST_WAIT;
696 seq->seq[3] = STFSM_INST_STOP;
698 seq->seq_cfg = (SEQ_CFG_PADS_1 |
699 SEQ_CFG_ERASE |
700 SEQ_CFG_READNOTWRITE |
701 SEQ_CFG_CSDEASSERT |
702 SEQ_CFG_STARTSEQ);
704 return 0;
707 static inline int stfsm_is_idle(struct stfsm *fsm)
709 return readl(fsm->base + SPI_FAST_SEQ_STA) & 0x10;
712 static inline uint32_t stfsm_fifo_available(struct stfsm *fsm)
714 return (readl(fsm->base + SPI_FAST_SEQ_STA) >> 5) & 0x7f;
717 static inline void stfsm_load_seq(struct stfsm *fsm,
718 const struct stfsm_seq *seq)
720 void __iomem *dst = fsm->base + SPI_FAST_SEQ_TRANSFER_SIZE;
721 const uint32_t *src = (const uint32_t *)seq;
722 int words = sizeof(*seq) / sizeof(*src);
724 BUG_ON(!stfsm_is_idle(fsm));
726 while (words--) {
727 writel(*src, dst);
728 src++;
729 dst += 4;
733 static void stfsm_wait_seq(struct stfsm *fsm)
735 unsigned long deadline;
736 int timeout = 0;
738 deadline = jiffies + msecs_to_jiffies(STFSM_MAX_WAIT_SEQ_MS);
740 while (!timeout) {
741 if (time_after_eq(jiffies, deadline))
742 timeout = 1;
744 if (stfsm_is_idle(fsm))
745 return;
747 cond_resched();
750 dev_err(fsm->dev, "timeout on sequence completion\n");
753 static void stfsm_read_fifo(struct stfsm *fsm, uint32_t *buf, uint32_t size)
755 uint32_t remaining = size >> 2;
756 uint32_t avail;
757 uint32_t words;
759 dev_dbg(fsm->dev, "Reading %d bytes from FIFO\n", size);
761 BUG_ON((((uintptr_t)buf) & 0x3) || (size & 0x3));
763 while (remaining) {
764 for (;;) {
765 avail = stfsm_fifo_available(fsm);
766 if (avail)
767 break;
768 udelay(1);
770 words = min(avail, remaining);
771 remaining -= words;
773 readsl(fsm->base + SPI_FAST_SEQ_DATA_REG, buf, words);
774 buf += words;
779 * Clear the data FIFO
781 * Typically, this is only required during driver initialisation, where no
782 * assumptions can be made regarding the state of the FIFO.
784 * The process of clearing the FIFO is complicated by fact that while it is
785 * possible for the FIFO to contain an arbitrary number of bytes [1], the
786 * SPI_FAST_SEQ_STA register only reports the number of complete 32-bit words
787 * present. Furthermore, data can only be drained from the FIFO by reading
788 * complete 32-bit words.
790 * With this in mind, a two stage process is used to the clear the FIFO:
792 * 1. Read any complete 32-bit words from the FIFO, as reported by the
793 * SPI_FAST_SEQ_STA register.
795 * 2. Mop up any remaining bytes. At this point, it is not known if there
796 * are 0, 1, 2, or 3 bytes in the FIFO. To handle all cases, a dummy FSM
797 * sequence is used to load one byte at a time, until a complete 32-bit
798 * word is formed; at most, 4 bytes will need to be loaded.
800 * [1] It is theoretically possible for the FIFO to contain an arbitrary number
801 * of bits. However, since there are no known use-cases that leave
802 * incomplete bytes in the FIFO, only words and bytes are considered here.
804 static void stfsm_clear_fifo(struct stfsm *fsm)
806 const struct stfsm_seq *seq = &stfsm_seq_load_fifo_byte;
807 uint32_t words, i;
809 /* 1. Clear any 32-bit words */
810 words = stfsm_fifo_available(fsm);
811 if (words) {
812 for (i = 0; i < words; i++)
813 readl(fsm->base + SPI_FAST_SEQ_DATA_REG);
814 dev_dbg(fsm->dev, "cleared %d words from FIFO\n", words);
818 * 2. Clear any remaining bytes
819 * - Load the FIFO, one byte at a time, until a complete 32-bit word
820 * is available.
822 for (i = 0, words = 0; i < 4 && !words; i++) {
823 stfsm_load_seq(fsm, seq);
824 stfsm_wait_seq(fsm);
825 words = stfsm_fifo_available(fsm);
828 /* - A single word must be available now */
829 if (words != 1) {
830 dev_err(fsm->dev, "failed to clear bytes from the data FIFO\n");
831 return;
834 /* - Read the 32-bit word */
835 readl(fsm->base + SPI_FAST_SEQ_DATA_REG);
837 dev_dbg(fsm->dev, "cleared %d byte(s) from the data FIFO\n", 4 - i);
840 static int stfsm_write_fifo(struct stfsm *fsm, const uint32_t *buf,
841 uint32_t size)
843 uint32_t words = size >> 2;
845 dev_dbg(fsm->dev, "writing %d bytes to FIFO\n", size);
847 BUG_ON((((uintptr_t)buf) & 0x3) || (size & 0x3));
849 writesl(fsm->base + SPI_FAST_SEQ_DATA_REG, buf, words);
851 return size;
854 static int stfsm_enter_32bit_addr(struct stfsm *fsm, int enter)
856 struct stfsm_seq *seq = &fsm->stfsm_seq_en_32bit_addr;
857 uint32_t cmd = enter ? SPINOR_OP_EN4B : SPINOR_OP_EX4B;
859 seq->seq_opc[0] = (SEQ_OPC_PADS_1 |
860 SEQ_OPC_CYCLES(8) |
861 SEQ_OPC_OPCODE(cmd) |
862 SEQ_OPC_CSDEASSERT);
864 stfsm_load_seq(fsm, seq);
866 stfsm_wait_seq(fsm);
868 return 0;
871 static uint8_t stfsm_wait_busy(struct stfsm *fsm)
873 struct stfsm_seq *seq = &stfsm_seq_read_status_fifo;
874 unsigned long deadline;
875 uint32_t status;
876 int timeout = 0;
878 /* Use RDRS1 */
879 seq->seq_opc[0] = (SEQ_OPC_PADS_1 |
880 SEQ_OPC_CYCLES(8) |
881 SEQ_OPC_OPCODE(SPINOR_OP_RDSR));
883 /* Load read_status sequence */
884 stfsm_load_seq(fsm, seq);
887 * Repeat until busy bit is deasserted, or timeout, or error (S25FLxxxS)
889 deadline = jiffies + FLASH_MAX_BUSY_WAIT;
890 while (!timeout) {
891 if (time_after_eq(jiffies, deadline))
892 timeout = 1;
894 stfsm_wait_seq(fsm);
896 stfsm_read_fifo(fsm, &status, 4);
898 if ((status & FLASH_STATUS_BUSY) == 0)
899 return 0;
901 if ((fsm->configuration & CFG_S25FL_CHECK_ERROR_FLAGS) &&
902 ((status & S25FL_STATUS_P_ERR) ||
903 (status & S25FL_STATUS_E_ERR)))
904 return (uint8_t)(status & 0xff);
906 if (!timeout)
907 /* Restart */
908 writel(seq->seq_cfg, fsm->base + SPI_FAST_SEQ_CFG);
910 cond_resched();
913 dev_err(fsm->dev, "timeout on wait_busy\n");
915 return FLASH_STATUS_TIMEOUT;
918 static int stfsm_read_status(struct stfsm *fsm, uint8_t cmd,
919 uint8_t *data, int bytes)
921 struct stfsm_seq *seq = &stfsm_seq_read_status_fifo;
922 uint32_t tmp;
923 uint8_t *t = (uint8_t *)&tmp;
924 int i;
926 dev_dbg(fsm->dev, "read 'status' register [0x%02x], %d byte(s)\n",
927 cmd, bytes);
929 BUG_ON(bytes != 1 && bytes != 2);
931 seq->seq_opc[0] = (SEQ_OPC_PADS_1 | SEQ_OPC_CYCLES(8) |
932 SEQ_OPC_OPCODE(cmd)),
934 stfsm_load_seq(fsm, seq);
936 stfsm_read_fifo(fsm, &tmp, 4);
938 for (i = 0; i < bytes; i++)
939 data[i] = t[i];
941 stfsm_wait_seq(fsm);
943 return 0;
946 static int stfsm_write_status(struct stfsm *fsm, uint8_t cmd,
947 uint16_t data, int bytes, int wait_busy)
949 struct stfsm_seq *seq = &stfsm_seq_write_status;
951 dev_dbg(fsm->dev,
952 "write 'status' register [0x%02x], %d byte(s), 0x%04x\n"
953 " %s wait-busy\n", cmd, bytes, data, wait_busy ? "with" : "no");
955 BUG_ON(bytes != 1 && bytes != 2);
957 seq->seq_opc[1] = (SEQ_OPC_PADS_1 | SEQ_OPC_CYCLES(8) |
958 SEQ_OPC_OPCODE(cmd));
960 seq->status = (uint32_t)data | STA_PADS_1 | STA_CSDEASSERT;
961 seq->seq[2] = (bytes == 1) ? STFSM_INST_STA_WR1 : STFSM_INST_STA_WR1_2;
963 stfsm_load_seq(fsm, seq);
965 stfsm_wait_seq(fsm);
967 if (wait_busy)
968 stfsm_wait_busy(fsm);
970 return 0;
974 * SoC reset on 'boot-from-spi' systems
976 * Certain modes of operation cause the Flash device to enter a particular state
977 * for a period of time (e.g. 'Erase Sector', 'Quad Enable', and 'Enter 32-bit
978 * Addr' commands). On boot-from-spi systems, it is important to consider what
979 * happens if a warm reset occurs during this period. The SPIBoot controller
980 * assumes that Flash device is in its default reset state, 24-bit address mode,
981 * and ready to accept commands. This can be achieved using some form of
982 * on-board logic/controller to force a device POR in response to a SoC-level
983 * reset or by making use of the device reset signal if available (limited
984 * number of devices only).
986 * Failure to take such precautions can cause problems following a warm reset.
987 * For some operations (e.g. ERASE), there is little that can be done. For
988 * other modes of operation (e.g. 32-bit addressing), options are often
989 * available that can help minimise the window in which a reset could cause a
990 * problem.
993 static bool stfsm_can_handle_soc_reset(struct stfsm *fsm)
995 /* Reset signal is available on the board and supported by the device */
996 if (fsm->reset_signal && fsm->info->flags & FLASH_FLAG_RESET)
997 return true;
999 /* Board-level logic forces a power-on-reset */
1000 if (fsm->reset_por)
1001 return true;
1003 /* Reset is not properly handled and may result in failure to reboot */
1004 return false;
1007 /* Configure 'addr_cfg' according to addressing mode */
1008 static void stfsm_prepare_erasesec_seq(struct stfsm *fsm,
1009 struct stfsm_seq *seq)
1011 int addr1_cycles = fsm->info->flags & FLASH_FLAG_32BIT_ADDR ? 16 : 8;
1013 seq->addr_cfg = (ADR_CFG_CYCLES_ADD1(addr1_cycles) |
1014 ADR_CFG_PADS_1_ADD1 |
1015 ADR_CFG_CYCLES_ADD2(16) |
1016 ADR_CFG_PADS_1_ADD2 |
1017 ADR_CFG_CSDEASSERT_ADD2);
1020 /* Search for preferred configuration based on available flags */
1021 static struct seq_rw_config *
1022 stfsm_search_seq_rw_configs(struct stfsm *fsm,
1023 struct seq_rw_config cfgs[])
1025 struct seq_rw_config *config;
1026 int flags = fsm->info->flags;
1028 for (config = cfgs; config->cmd != 0; config++)
1029 if ((config->flags & flags) == config->flags)
1030 return config;
1032 return NULL;
1035 /* Prepare a READ/WRITE sequence according to configuration parameters */
1036 static void stfsm_prepare_rw_seq(struct stfsm *fsm,
1037 struct stfsm_seq *seq,
1038 struct seq_rw_config *cfg)
1040 int addr1_cycles, addr2_cycles;
1041 int i = 0;
1043 memset(seq, 0, sizeof(*seq));
1045 /* Add READ/WRITE OPC */
1046 seq->seq_opc[i++] = (SEQ_OPC_PADS_1 |
1047 SEQ_OPC_CYCLES(8) |
1048 SEQ_OPC_OPCODE(cfg->cmd));
1050 /* Add WREN OPC for a WRITE sequence */
1051 if (cfg->write)
1052 seq->seq_opc[i++] = (SEQ_OPC_PADS_1 |
1053 SEQ_OPC_CYCLES(8) |
1054 SEQ_OPC_OPCODE(SPINOR_OP_WREN) |
1055 SEQ_OPC_CSDEASSERT);
1057 /* Address configuration (24 or 32-bit addresses) */
1058 addr1_cycles = (fsm->info->flags & FLASH_FLAG_32BIT_ADDR) ? 16 : 8;
1059 addr1_cycles /= cfg->addr_pads;
1060 addr2_cycles = 16 / cfg->addr_pads;
1061 seq->addr_cfg = ((addr1_cycles & 0x3f) << 0 | /* ADD1 cycles */
1062 (cfg->addr_pads - 1) << 6 | /* ADD1 pads */
1063 (addr2_cycles & 0x3f) << 16 | /* ADD2 cycles */
1064 ((cfg->addr_pads - 1) << 22)); /* ADD2 pads */
1066 /* Data/Sequence configuration */
1067 seq->seq_cfg = ((cfg->data_pads - 1) << 16 |
1068 SEQ_CFG_STARTSEQ |
1069 SEQ_CFG_CSDEASSERT);
1070 if (!cfg->write)
1071 seq->seq_cfg |= SEQ_CFG_READNOTWRITE;
1073 /* Mode configuration (no. of pads taken from addr cfg) */
1074 seq->mode = ((cfg->mode_data & 0xff) << 0 | /* data */
1075 (cfg->mode_cycles & 0x3f) << 16 | /* cycles */
1076 (cfg->addr_pads - 1) << 22); /* pads */
1078 /* Dummy configuration (no. of pads taken from addr cfg) */
1079 seq->dummy = ((cfg->dummy_cycles & 0x3f) << 16 | /* cycles */
1080 (cfg->addr_pads - 1) << 22); /* pads */
1083 /* Instruction sequence */
1084 i = 0;
1085 if (cfg->write)
1086 seq->seq[i++] = STFSM_INST_CMD2;
1088 seq->seq[i++] = STFSM_INST_CMD1;
1090 seq->seq[i++] = STFSM_INST_ADD1;
1091 seq->seq[i++] = STFSM_INST_ADD2;
1093 if (cfg->mode_cycles)
1094 seq->seq[i++] = STFSM_INST_MODE;
1096 if (cfg->dummy_cycles)
1097 seq->seq[i++] = STFSM_INST_DUMMY;
1099 seq->seq[i++] =
1100 cfg->write ? STFSM_INST_DATA_WRITE : STFSM_INST_DATA_READ;
1101 seq->seq[i++] = STFSM_INST_STOP;
1104 static int stfsm_search_prepare_rw_seq(struct stfsm *fsm,
1105 struct stfsm_seq *seq,
1106 struct seq_rw_config *cfgs)
1108 struct seq_rw_config *config;
1110 config = stfsm_search_seq_rw_configs(fsm, cfgs);
1111 if (!config) {
1112 dev_err(fsm->dev, "failed to find suitable config\n");
1113 return -EINVAL;
1116 stfsm_prepare_rw_seq(fsm, seq, config);
1118 return 0;
1121 /* Prepare a READ/WRITE/ERASE 'default' sequences */
1122 static int stfsm_prepare_rwe_seqs_default(struct stfsm *fsm)
1124 uint32_t flags = fsm->info->flags;
1125 int ret;
1127 /* Configure 'READ' sequence */
1128 ret = stfsm_search_prepare_rw_seq(fsm, &fsm->stfsm_seq_read,
1129 default_read_configs);
1130 if (ret) {
1131 dev_err(fsm->dev,
1132 "failed to prep READ sequence with flags [0x%08x]\n",
1133 flags);
1134 return ret;
1137 /* Configure 'WRITE' sequence */
1138 ret = stfsm_search_prepare_rw_seq(fsm, &fsm->stfsm_seq_write,
1139 default_write_configs);
1140 if (ret) {
1141 dev_err(fsm->dev,
1142 "failed to prep WRITE sequence with flags [0x%08x]\n",
1143 flags);
1144 return ret;
1147 /* Configure 'ERASE_SECTOR' sequence */
1148 stfsm_prepare_erasesec_seq(fsm, &stfsm_seq_erase_sector);
1150 return 0;
1153 static int stfsm_mx25_config(struct stfsm *fsm)
1155 uint32_t flags = fsm->info->flags;
1156 uint32_t data_pads;
1157 uint8_t sta;
1158 int ret;
1159 bool soc_reset;
1162 * Use default READ/WRITE sequences
1164 ret = stfsm_prepare_rwe_seqs_default(fsm);
1165 if (ret)
1166 return ret;
1169 * Configure 32-bit Address Support
1171 if (flags & FLASH_FLAG_32BIT_ADDR) {
1172 /* Configure 'enter_32bitaddr' FSM sequence */
1173 stfsm_mx25_en_32bit_addr_seq(&fsm->stfsm_seq_en_32bit_addr);
1175 soc_reset = stfsm_can_handle_soc_reset(fsm);
1176 if (soc_reset || !fsm->booted_from_spi)
1177 /* If we can handle SoC resets, we enable 32-bit address
1178 * mode pervasively */
1179 stfsm_enter_32bit_addr(fsm, 1);
1181 else
1182 /* Else, enable/disable 32-bit addressing before/after
1183 * each operation */
1184 fsm->configuration = (CFG_READ_TOGGLE_32BIT_ADDR |
1185 CFG_WRITE_TOGGLE_32BIT_ADDR |
1186 CFG_ERASESEC_TOGGLE_32BIT_ADDR);
1189 /* Check status of 'QE' bit, update if required. */
1190 stfsm_read_status(fsm, SPINOR_OP_RDSR, &sta, 1);
1191 data_pads = ((fsm->stfsm_seq_read.seq_cfg >> 16) & 0x3) + 1;
1192 if (data_pads == 4) {
1193 if (!(sta & MX25_STATUS_QE)) {
1194 /* Set 'QE' */
1195 sta |= MX25_STATUS_QE;
1197 stfsm_write_status(fsm, SPINOR_OP_WRSR, sta, 1, 1);
1199 } else {
1200 if (sta & MX25_STATUS_QE) {
1201 /* Clear 'QE' */
1202 sta &= ~MX25_STATUS_QE;
1204 stfsm_write_status(fsm, SPINOR_OP_WRSR, sta, 1, 1);
1208 return 0;
1211 static int stfsm_n25q_config(struct stfsm *fsm)
1213 uint32_t flags = fsm->info->flags;
1214 uint8_t vcr;
1215 int ret = 0;
1216 bool soc_reset;
1218 /* Configure 'READ' sequence */
1219 if (flags & FLASH_FLAG_32BIT_ADDR)
1220 ret = stfsm_search_prepare_rw_seq(fsm, &fsm->stfsm_seq_read,
1221 n25q_read4_configs);
1222 else
1223 ret = stfsm_search_prepare_rw_seq(fsm, &fsm->stfsm_seq_read,
1224 n25q_read3_configs);
1225 if (ret) {
1226 dev_err(fsm->dev,
1227 "failed to prepare READ sequence with flags [0x%08x]\n",
1228 flags);
1229 return ret;
1232 /* Configure 'WRITE' sequence (default configs) */
1233 ret = stfsm_search_prepare_rw_seq(fsm, &fsm->stfsm_seq_write,
1234 default_write_configs);
1235 if (ret) {
1236 dev_err(fsm->dev,
1237 "preparing WRITE sequence using flags [0x%08x] failed\n",
1238 flags);
1239 return ret;
1242 /* * Configure 'ERASE_SECTOR' sequence */
1243 stfsm_prepare_erasesec_seq(fsm, &stfsm_seq_erase_sector);
1245 /* Configure 32-bit address support */
1246 if (flags & FLASH_FLAG_32BIT_ADDR) {
1247 stfsm_n25q_en_32bit_addr_seq(&fsm->stfsm_seq_en_32bit_addr);
1249 soc_reset = stfsm_can_handle_soc_reset(fsm);
1250 if (soc_reset || !fsm->booted_from_spi) {
1252 * If we can handle SoC resets, we enable 32-bit
1253 * address mode pervasively
1255 stfsm_enter_32bit_addr(fsm, 1);
1256 } else {
1258 * If not, enable/disable for WRITE and ERASE
1259 * operations (READ uses special commands)
1261 fsm->configuration = (CFG_WRITE_TOGGLE_32BIT_ADDR |
1262 CFG_ERASESEC_TOGGLE_32BIT_ADDR);
1267 * Configure device to use 8 dummy cycles
1269 vcr = (N25Q_VCR_DUMMY_CYCLES(8) | N25Q_VCR_XIP_DISABLED |
1270 N25Q_VCR_WRAP_CONT);
1271 stfsm_write_status(fsm, N25Q_CMD_WRVCR, vcr, 1, 0);
1273 return 0;
1276 static void stfsm_s25fl_prepare_erasesec_seq_32(struct stfsm_seq *seq)
1278 seq->seq_opc[1] = (SEQ_OPC_PADS_1 |
1279 SEQ_OPC_CYCLES(8) |
1280 SEQ_OPC_OPCODE(S25FL_CMD_SE4));
1282 seq->addr_cfg = (ADR_CFG_CYCLES_ADD1(16) |
1283 ADR_CFG_PADS_1_ADD1 |
1284 ADR_CFG_CYCLES_ADD2(16) |
1285 ADR_CFG_PADS_1_ADD2 |
1286 ADR_CFG_CSDEASSERT_ADD2);
1289 static void stfsm_s25fl_read_dyb(struct stfsm *fsm, uint32_t offs, uint8_t *dby)
1291 uint32_t tmp;
1292 struct stfsm_seq seq = {
1293 .data_size = TRANSFER_SIZE(4),
1294 .seq_opc[0] = (SEQ_OPC_PADS_1 |
1295 SEQ_OPC_CYCLES(8) |
1296 SEQ_OPC_OPCODE(S25FL_CMD_DYBRD)),
1297 .addr_cfg = (ADR_CFG_CYCLES_ADD1(16) |
1298 ADR_CFG_PADS_1_ADD1 |
1299 ADR_CFG_CYCLES_ADD2(16) |
1300 ADR_CFG_PADS_1_ADD2),
1301 .addr1 = (offs >> 16) & 0xffff,
1302 .addr2 = offs & 0xffff,
1303 .seq = {
1304 STFSM_INST_CMD1,
1305 STFSM_INST_ADD1,
1306 STFSM_INST_ADD2,
1307 STFSM_INST_DATA_READ,
1308 STFSM_INST_STOP,
1310 .seq_cfg = (SEQ_CFG_PADS_1 |
1311 SEQ_CFG_READNOTWRITE |
1312 SEQ_CFG_CSDEASSERT |
1313 SEQ_CFG_STARTSEQ),
1316 stfsm_load_seq(fsm, &seq);
1318 stfsm_read_fifo(fsm, &tmp, 4);
1320 *dby = (uint8_t)(tmp >> 24);
1322 stfsm_wait_seq(fsm);
1325 static void stfsm_s25fl_write_dyb(struct stfsm *fsm, uint32_t offs, uint8_t dby)
1327 struct stfsm_seq seq = {
1328 .seq_opc[0] = (SEQ_OPC_PADS_1 | SEQ_OPC_CYCLES(8) |
1329 SEQ_OPC_OPCODE(SPINOR_OP_WREN) |
1330 SEQ_OPC_CSDEASSERT),
1331 .seq_opc[1] = (SEQ_OPC_PADS_1 | SEQ_OPC_CYCLES(8) |
1332 SEQ_OPC_OPCODE(S25FL_CMD_DYBWR)),
1333 .addr_cfg = (ADR_CFG_CYCLES_ADD1(16) |
1334 ADR_CFG_PADS_1_ADD1 |
1335 ADR_CFG_CYCLES_ADD2(16) |
1336 ADR_CFG_PADS_1_ADD2),
1337 .status = (uint32_t)dby | STA_PADS_1 | STA_CSDEASSERT,
1338 .addr1 = (offs >> 16) & 0xffff,
1339 .addr2 = offs & 0xffff,
1340 .seq = {
1341 STFSM_INST_CMD1,
1342 STFSM_INST_CMD2,
1343 STFSM_INST_ADD1,
1344 STFSM_INST_ADD2,
1345 STFSM_INST_STA_WR1,
1346 STFSM_INST_STOP,
1348 .seq_cfg = (SEQ_CFG_PADS_1 |
1349 SEQ_CFG_READNOTWRITE |
1350 SEQ_CFG_CSDEASSERT |
1351 SEQ_CFG_STARTSEQ),
1354 stfsm_load_seq(fsm, &seq);
1355 stfsm_wait_seq(fsm);
1357 stfsm_wait_busy(fsm);
1360 static int stfsm_s25fl_clear_status_reg(struct stfsm *fsm)
1362 struct stfsm_seq seq = {
1363 .seq_opc[0] = (SEQ_OPC_PADS_1 |
1364 SEQ_OPC_CYCLES(8) |
1365 SEQ_OPC_OPCODE(S25FL_CMD_CLSR) |
1366 SEQ_OPC_CSDEASSERT),
1367 .seq_opc[1] = (SEQ_OPC_PADS_1 |
1368 SEQ_OPC_CYCLES(8) |
1369 SEQ_OPC_OPCODE(SPINOR_OP_WRDI) |
1370 SEQ_OPC_CSDEASSERT),
1371 .seq = {
1372 STFSM_INST_CMD1,
1373 STFSM_INST_CMD2,
1374 STFSM_INST_WAIT,
1375 STFSM_INST_STOP,
1377 .seq_cfg = (SEQ_CFG_PADS_1 |
1378 SEQ_CFG_ERASE |
1379 SEQ_CFG_READNOTWRITE |
1380 SEQ_CFG_CSDEASSERT |
1381 SEQ_CFG_STARTSEQ),
1384 stfsm_load_seq(fsm, &seq);
1386 stfsm_wait_seq(fsm);
1388 return 0;
1391 static int stfsm_s25fl_config(struct stfsm *fsm)
1393 struct flash_info *info = fsm->info;
1394 uint32_t flags = info->flags;
1395 uint32_t data_pads;
1396 uint32_t offs;
1397 uint16_t sta_wr;
1398 uint8_t sr1, cr1, dyb;
1399 int update_sr = 0;
1400 int ret;
1402 if (flags & FLASH_FLAG_32BIT_ADDR) {
1404 * Prepare Read/Write/Erase sequences according to S25FLxxx
1405 * 32-bit address command set
1407 ret = stfsm_search_prepare_rw_seq(fsm, &fsm->stfsm_seq_read,
1408 stfsm_s25fl_read4_configs);
1409 if (ret)
1410 return ret;
1412 ret = stfsm_search_prepare_rw_seq(fsm, &fsm->stfsm_seq_write,
1413 stfsm_s25fl_write4_configs);
1414 if (ret)
1415 return ret;
1417 stfsm_s25fl_prepare_erasesec_seq_32(&stfsm_seq_erase_sector);
1419 } else {
1420 /* Use default configurations for 24-bit addressing */
1421 ret = stfsm_prepare_rwe_seqs_default(fsm);
1422 if (ret)
1423 return ret;
1427 * For devices that support 'DYB' sector locking, check lock status and
1428 * unlock sectors if necessary (some variants power-on with sectors
1429 * locked by default)
1431 if (flags & FLASH_FLAG_DYB_LOCKING) {
1432 offs = 0;
1433 for (offs = 0; offs < info->sector_size * info->n_sectors;) {
1434 stfsm_s25fl_read_dyb(fsm, offs, &dyb);
1435 if (dyb == 0x00)
1436 stfsm_s25fl_write_dyb(fsm, offs, 0xff);
1438 /* Handle bottom/top 4KiB parameter sectors */
1439 if ((offs < info->sector_size * 2) ||
1440 (offs >= (info->sector_size - info->n_sectors * 4)))
1441 offs += 0x1000;
1442 else
1443 offs += 0x10000;
1447 /* Check status of 'QE' bit, update if required. */
1448 stfsm_read_status(fsm, SPINOR_OP_RDCR, &cr1, 1);
1449 data_pads = ((fsm->stfsm_seq_read.seq_cfg >> 16) & 0x3) + 1;
1450 if (data_pads == 4) {
1451 if (!(cr1 & STFSM_S25FL_CONFIG_QE)) {
1452 /* Set 'QE' */
1453 cr1 |= STFSM_S25FL_CONFIG_QE;
1455 update_sr = 1;
1457 } else {
1458 if (cr1 & STFSM_S25FL_CONFIG_QE) {
1459 /* Clear 'QE' */
1460 cr1 &= ~STFSM_S25FL_CONFIG_QE;
1462 update_sr = 1;
1465 if (update_sr) {
1466 stfsm_read_status(fsm, SPINOR_OP_RDSR, &sr1, 1);
1467 sta_wr = ((uint16_t)cr1 << 8) | sr1;
1468 stfsm_write_status(fsm, SPINOR_OP_WRSR, sta_wr, 2, 1);
1472 * S25FLxxx devices support Program and Error error flags.
1473 * Configure driver to check flags and clear if necessary.
1475 fsm->configuration |= CFG_S25FL_CHECK_ERROR_FLAGS;
1477 return 0;
1480 static int stfsm_w25q_config(struct stfsm *fsm)
1482 uint32_t data_pads;
1483 uint8_t sr1, sr2;
1484 uint16_t sr_wr;
1485 int update_sr = 0;
1486 int ret;
1488 ret = stfsm_prepare_rwe_seqs_default(fsm);
1489 if (ret)
1490 return ret;
1492 /* Check status of 'QE' bit, update if required. */
1493 stfsm_read_status(fsm, SPINOR_OP_RDCR, &sr2, 1);
1494 data_pads = ((fsm->stfsm_seq_read.seq_cfg >> 16) & 0x3) + 1;
1495 if (data_pads == 4) {
1496 if (!(sr2 & W25Q_STATUS_QE)) {
1497 /* Set 'QE' */
1498 sr2 |= W25Q_STATUS_QE;
1499 update_sr = 1;
1501 } else {
1502 if (sr2 & W25Q_STATUS_QE) {
1503 /* Clear 'QE' */
1504 sr2 &= ~W25Q_STATUS_QE;
1505 update_sr = 1;
1508 if (update_sr) {
1509 /* Write status register */
1510 stfsm_read_status(fsm, SPINOR_OP_RDSR, &sr1, 1);
1511 sr_wr = ((uint16_t)sr2 << 8) | sr1;
1512 stfsm_write_status(fsm, SPINOR_OP_WRSR, sr_wr, 2, 1);
1515 return 0;
1518 static int stfsm_read(struct stfsm *fsm, uint8_t *buf, uint32_t size,
1519 uint32_t offset)
1521 struct stfsm_seq *seq = &fsm->stfsm_seq_read;
1522 uint32_t data_pads;
1523 uint32_t read_mask;
1524 uint32_t size_ub;
1525 uint32_t size_lb;
1526 uint32_t size_mop;
1527 uint32_t tmp[4];
1528 uint32_t page_buf[FLASH_PAGESIZE_32];
1529 uint8_t *p;
1531 dev_dbg(fsm->dev, "reading %d bytes from 0x%08x\n", size, offset);
1533 /* Enter 32-bit address mode, if required */
1534 if (fsm->configuration & CFG_READ_TOGGLE_32BIT_ADDR)
1535 stfsm_enter_32bit_addr(fsm, 1);
1537 /* Must read in multiples of 32 cycles (or 32*pads/8 Bytes) */
1538 data_pads = ((seq->seq_cfg >> 16) & 0x3) + 1;
1539 read_mask = (data_pads << 2) - 1;
1541 /* Handle non-aligned buf */
1542 p = ((uintptr_t)buf & 0x3) ? (uint8_t *)page_buf : buf;
1544 /* Handle non-aligned size */
1545 size_ub = (size + read_mask) & ~read_mask;
1546 size_lb = size & ~read_mask;
1547 size_mop = size & read_mask;
1549 seq->data_size = TRANSFER_SIZE(size_ub);
1550 seq->addr1 = (offset >> 16) & 0xffff;
1551 seq->addr2 = offset & 0xffff;
1553 stfsm_load_seq(fsm, seq);
1555 if (size_lb)
1556 stfsm_read_fifo(fsm, (uint32_t *)p, size_lb);
1558 if (size_mop) {
1559 stfsm_read_fifo(fsm, tmp, read_mask + 1);
1560 memcpy(p + size_lb, &tmp, size_mop);
1563 /* Handle non-aligned buf */
1564 if ((uintptr_t)buf & 0x3)
1565 memcpy(buf, page_buf, size);
1567 /* Wait for sequence to finish */
1568 stfsm_wait_seq(fsm);
1570 stfsm_clear_fifo(fsm);
1572 /* Exit 32-bit address mode, if required */
1573 if (fsm->configuration & CFG_READ_TOGGLE_32BIT_ADDR)
1574 stfsm_enter_32bit_addr(fsm, 0);
1576 return 0;
1579 static int stfsm_write(struct stfsm *fsm, const uint8_t *buf,
1580 uint32_t size, uint32_t offset)
1582 struct stfsm_seq *seq = &fsm->stfsm_seq_write;
1583 uint32_t data_pads;
1584 uint32_t write_mask;
1585 uint32_t size_ub;
1586 uint32_t size_lb;
1587 uint32_t size_mop;
1588 uint32_t tmp[4];
1589 uint32_t i;
1590 uint32_t page_buf[FLASH_PAGESIZE_32];
1591 uint8_t *t = (uint8_t *)&tmp;
1592 const uint8_t *p;
1593 int ret;
1595 dev_dbg(fsm->dev, "writing %d bytes to 0x%08x\n", size, offset);
1597 /* Enter 32-bit address mode, if required */
1598 if (fsm->configuration & CFG_WRITE_TOGGLE_32BIT_ADDR)
1599 stfsm_enter_32bit_addr(fsm, 1);
1601 /* Must write in multiples of 32 cycles (or 32*pads/8 bytes) */
1602 data_pads = ((seq->seq_cfg >> 16) & 0x3) + 1;
1603 write_mask = (data_pads << 2) - 1;
1605 /* Handle non-aligned buf */
1606 if ((uintptr_t)buf & 0x3) {
1607 memcpy(page_buf, buf, size);
1608 p = (uint8_t *)page_buf;
1609 } else {
1610 p = buf;
1613 /* Handle non-aligned size */
1614 size_ub = (size + write_mask) & ~write_mask;
1615 size_lb = size & ~write_mask;
1616 size_mop = size & write_mask;
1618 seq->data_size = TRANSFER_SIZE(size_ub);
1619 seq->addr1 = (offset >> 16) & 0xffff;
1620 seq->addr2 = offset & 0xffff;
1622 /* Need to set FIFO to write mode, before writing data to FIFO (see
1623 * GNBvb79594)
1625 writel(0x00040000, fsm->base + SPI_FAST_SEQ_CFG);
1628 * Before writing data to the FIFO, apply a small delay to allow a
1629 * potential change of FIFO direction to complete.
1631 if (fsm->fifo_dir_delay == 0)
1632 readl(fsm->base + SPI_FAST_SEQ_CFG);
1633 else
1634 udelay(fsm->fifo_dir_delay);
1637 /* Write data to FIFO, before starting sequence (see GNBvd79593) */
1638 if (size_lb) {
1639 stfsm_write_fifo(fsm, (uint32_t *)p, size_lb);
1640 p += size_lb;
1643 /* Handle non-aligned size */
1644 if (size_mop) {
1645 memset(t, 0xff, write_mask + 1); /* fill with 0xff's */
1646 for (i = 0; i < size_mop; i++)
1647 t[i] = *p++;
1649 stfsm_write_fifo(fsm, tmp, write_mask + 1);
1652 /* Start sequence */
1653 stfsm_load_seq(fsm, seq);
1655 /* Wait for sequence to finish */
1656 stfsm_wait_seq(fsm);
1658 /* Wait for completion */
1659 ret = stfsm_wait_busy(fsm);
1660 if (ret && fsm->configuration & CFG_S25FL_CHECK_ERROR_FLAGS)
1661 stfsm_s25fl_clear_status_reg(fsm);
1663 /* Exit 32-bit address mode, if required */
1664 if (fsm->configuration & CFG_WRITE_TOGGLE_32BIT_ADDR)
1665 stfsm_enter_32bit_addr(fsm, 0);
1667 return 0;
1671 * Read an address range from the flash chip. The address range
1672 * may be any size provided it is within the physical boundaries.
1674 static int stfsm_mtd_read(struct mtd_info *mtd, loff_t from, size_t len,
1675 size_t *retlen, u_char *buf)
1677 struct stfsm *fsm = dev_get_drvdata(mtd->dev.parent);
1678 uint32_t bytes;
1680 dev_dbg(fsm->dev, "%s from 0x%08x, len %zd\n",
1681 __func__, (u32)from, len);
1683 mutex_lock(&fsm->lock);
1685 while (len > 0) {
1686 bytes = min_t(size_t, len, FLASH_PAGESIZE);
1688 stfsm_read(fsm, buf, bytes, from);
1690 buf += bytes;
1691 from += bytes;
1692 len -= bytes;
1694 *retlen += bytes;
1697 mutex_unlock(&fsm->lock);
1699 return 0;
1702 static int stfsm_erase_sector(struct stfsm *fsm, uint32_t offset)
1704 struct stfsm_seq *seq = &stfsm_seq_erase_sector;
1705 int ret;
1707 dev_dbg(fsm->dev, "erasing sector at 0x%08x\n", offset);
1709 /* Enter 32-bit address mode, if required */
1710 if (fsm->configuration & CFG_ERASESEC_TOGGLE_32BIT_ADDR)
1711 stfsm_enter_32bit_addr(fsm, 1);
1713 seq->addr1 = (offset >> 16) & 0xffff;
1714 seq->addr2 = offset & 0xffff;
1716 stfsm_load_seq(fsm, seq);
1718 stfsm_wait_seq(fsm);
1720 /* Wait for completion */
1721 ret = stfsm_wait_busy(fsm);
1722 if (ret && fsm->configuration & CFG_S25FL_CHECK_ERROR_FLAGS)
1723 stfsm_s25fl_clear_status_reg(fsm);
1725 /* Exit 32-bit address mode, if required */
1726 if (fsm->configuration & CFG_ERASESEC_TOGGLE_32BIT_ADDR)
1727 stfsm_enter_32bit_addr(fsm, 0);
1729 return ret;
1732 static int stfsm_erase_chip(struct stfsm *fsm)
1734 const struct stfsm_seq *seq = &stfsm_seq_erase_chip;
1736 dev_dbg(fsm->dev, "erasing chip\n");
1738 stfsm_load_seq(fsm, seq);
1740 stfsm_wait_seq(fsm);
1742 return stfsm_wait_busy(fsm);
1746 * Write an address range to the flash chip. Data must be written in
1747 * FLASH_PAGESIZE chunks. The address range may be any size provided
1748 * it is within the physical boundaries.
1750 static int stfsm_mtd_write(struct mtd_info *mtd, loff_t to, size_t len,
1751 size_t *retlen, const u_char *buf)
1753 struct stfsm *fsm = dev_get_drvdata(mtd->dev.parent);
1755 u32 page_offs;
1756 u32 bytes;
1757 uint8_t *b = (uint8_t *)buf;
1758 int ret = 0;
1760 dev_dbg(fsm->dev, "%s to 0x%08x, len %zd\n", __func__, (u32)to, len);
1762 /* Offset within page */
1763 page_offs = to % FLASH_PAGESIZE;
1765 mutex_lock(&fsm->lock);
1767 while (len) {
1768 /* Write up to page boundary */
1769 bytes = min_t(size_t, FLASH_PAGESIZE - page_offs, len);
1771 ret = stfsm_write(fsm, b, bytes, to);
1772 if (ret)
1773 goto out1;
1775 b += bytes;
1776 len -= bytes;
1777 to += bytes;
1779 /* We are now page-aligned */
1780 page_offs = 0;
1782 *retlen += bytes;
1786 out1:
1787 mutex_unlock(&fsm->lock);
1789 return ret;
1793 * Erase an address range on the flash chip. The address range may extend
1794 * one or more erase sectors. Return an error is there is a problem erasing.
1796 static int stfsm_mtd_erase(struct mtd_info *mtd, struct erase_info *instr)
1798 struct stfsm *fsm = dev_get_drvdata(mtd->dev.parent);
1799 u32 addr, len;
1800 int ret;
1802 dev_dbg(fsm->dev, "%s at 0x%llx, len %lld\n", __func__,
1803 (long long)instr->addr, (long long)instr->len);
1805 addr = instr->addr;
1806 len = instr->len;
1808 mutex_lock(&fsm->lock);
1810 /* Whole-chip erase? */
1811 if (len == mtd->size) {
1812 ret = stfsm_erase_chip(fsm);
1813 if (ret)
1814 goto out1;
1815 } else {
1816 while (len) {
1817 ret = stfsm_erase_sector(fsm, addr);
1818 if (ret)
1819 goto out1;
1821 addr += mtd->erasesize;
1822 len -= mtd->erasesize;
1826 mutex_unlock(&fsm->lock);
1828 instr->state = MTD_ERASE_DONE;
1829 mtd_erase_callback(instr);
1831 return 0;
1833 out1:
1834 instr->state = MTD_ERASE_FAILED;
1835 mutex_unlock(&fsm->lock);
1837 return ret;
1840 static void stfsm_read_jedec(struct stfsm *fsm, uint8_t *jedec)
1842 const struct stfsm_seq *seq = &stfsm_seq_read_jedec;
1843 uint32_t tmp[2];
1845 stfsm_load_seq(fsm, seq);
1847 stfsm_read_fifo(fsm, tmp, 8);
1849 memcpy(jedec, tmp, 5);
1851 stfsm_wait_seq(fsm);
1854 static struct flash_info *stfsm_jedec_probe(struct stfsm *fsm)
1856 struct flash_info *info;
1857 u16 ext_jedec;
1858 u32 jedec;
1859 u8 id[5];
1861 stfsm_read_jedec(fsm, id);
1863 jedec = id[0] << 16 | id[1] << 8 | id[2];
1865 * JEDEC also defines an optional "extended device information"
1866 * string for after vendor-specific data, after the three bytes
1867 * we use here. Supporting some chips might require using it.
1869 ext_jedec = id[3] << 8 | id[4];
1871 dev_dbg(fsm->dev, "JEDEC = 0x%08x [%02x %02x %02x %02x %02x]\n",
1872 jedec, id[0], id[1], id[2], id[3], id[4]);
1874 for (info = flash_types; info->name; info++) {
1875 if (info->jedec_id == jedec) {
1876 if (info->ext_id && info->ext_id != ext_jedec)
1877 continue;
1878 return info;
1881 dev_err(fsm->dev, "Unrecognized JEDEC id %06x\n", jedec);
1883 return NULL;
1886 static int stfsm_set_mode(struct stfsm *fsm, uint32_t mode)
1888 int ret, timeout = 10;
1890 /* Wait for controller to accept mode change */
1891 while (--timeout) {
1892 ret = readl(fsm->base + SPI_STA_MODE_CHANGE);
1893 if (ret & 0x1)
1894 break;
1895 udelay(1);
1898 if (!timeout)
1899 return -EBUSY;
1901 writel(mode, fsm->base + SPI_MODESELECT);
1903 return 0;
1906 static void stfsm_set_freq(struct stfsm *fsm, uint32_t spi_freq)
1908 uint32_t emi_freq;
1909 uint32_t clk_div;
1911 emi_freq = clk_get_rate(fsm->clk);
1914 * Calculate clk_div - values between 2 and 128
1915 * Multiple of 2, rounded up
1917 clk_div = 2 * DIV_ROUND_UP(emi_freq, 2 * spi_freq);
1918 if (clk_div < 2)
1919 clk_div = 2;
1920 else if (clk_div > 128)
1921 clk_div = 128;
1924 * Determine a suitable delay for the IP to complete a change of
1925 * direction of the FIFO. The required delay is related to the clock
1926 * divider used. The following heuristics are based on empirical tests,
1927 * using a 100MHz EMI clock.
1929 if (clk_div <= 4)
1930 fsm->fifo_dir_delay = 0;
1931 else if (clk_div <= 10)
1932 fsm->fifo_dir_delay = 1;
1933 else
1934 fsm->fifo_dir_delay = DIV_ROUND_UP(clk_div, 10);
1936 dev_dbg(fsm->dev, "emi_clk = %uHZ, spi_freq = %uHZ, clk_div = %u\n",
1937 emi_freq, spi_freq, clk_div);
1939 writel(clk_div, fsm->base + SPI_CLOCKDIV);
1942 static int stfsm_init(struct stfsm *fsm)
1944 int ret;
1946 /* Perform a soft reset of the FSM controller */
1947 writel(SEQ_CFG_SWRESET, fsm->base + SPI_FAST_SEQ_CFG);
1948 udelay(1);
1949 writel(0, fsm->base + SPI_FAST_SEQ_CFG);
1951 /* Set clock to 'safe' frequency initially */
1952 stfsm_set_freq(fsm, STFSM_FLASH_SAFE_FREQ);
1954 /* Switch to FSM */
1955 ret = stfsm_set_mode(fsm, SPI_MODESELECT_FSM);
1956 if (ret)
1957 return ret;
1959 /* Set timing parameters */
1960 writel(SPI_CFG_DEVICE_ST |
1961 SPI_CFG_DEFAULT_MIN_CS_HIGH |
1962 SPI_CFG_DEFAULT_CS_SETUPHOLD |
1963 SPI_CFG_DEFAULT_DATA_HOLD,
1964 fsm->base + SPI_CONFIGDATA);
1965 writel(STFSM_DEFAULT_WR_TIME, fsm->base + SPI_STATUS_WR_TIME_REG);
1968 * Set the FSM 'WAIT' delay to the minimum workable value. Note, for
1969 * our purposes, the WAIT instruction is used purely to achieve
1970 * "sequence validity" rather than actually implement a delay.
1972 writel(0x00000001, fsm->base + SPI_PROGRAM_ERASE_TIME);
1974 /* Clear FIFO, just in case */
1975 stfsm_clear_fifo(fsm);
1977 return 0;
1980 static void stfsm_fetch_platform_configs(struct platform_device *pdev)
1982 struct stfsm *fsm = platform_get_drvdata(pdev);
1983 struct device_node *np = pdev->dev.of_node;
1984 struct regmap *regmap;
1985 uint32_t boot_device_reg;
1986 uint32_t boot_device_spi;
1987 uint32_t boot_device; /* Value we read from *boot_device_reg */
1988 int ret;
1990 /* Booting from SPI NOR Flash is the default */
1991 fsm->booted_from_spi = true;
1993 regmap = syscon_regmap_lookup_by_phandle(np, "st,syscfg");
1994 if (IS_ERR(regmap))
1995 goto boot_device_fail;
1997 fsm->reset_signal = of_property_read_bool(np, "st,reset-signal");
1999 fsm->reset_por = of_property_read_bool(np, "st,reset-por");
2001 /* Where in the syscon the boot device information lives */
2002 ret = of_property_read_u32(np, "st,boot-device-reg", &boot_device_reg);
2003 if (ret)
2004 goto boot_device_fail;
2006 /* Boot device value when booted from SPI NOR */
2007 ret = of_property_read_u32(np, "st,boot-device-spi", &boot_device_spi);
2008 if (ret)
2009 goto boot_device_fail;
2011 ret = regmap_read(regmap, boot_device_reg, &boot_device);
2012 if (ret)
2013 goto boot_device_fail;
2015 if (boot_device != boot_device_spi)
2016 fsm->booted_from_spi = false;
2018 return;
2020 boot_device_fail:
2021 dev_warn(&pdev->dev,
2022 "failed to fetch boot device, assuming boot from SPI\n");
2025 static int stfsm_probe(struct platform_device *pdev)
2027 struct device_node *np = pdev->dev.of_node;
2028 struct flash_info *info;
2029 struct resource *res;
2030 struct stfsm *fsm;
2031 int ret;
2033 if (!np) {
2034 dev_err(&pdev->dev, "No DT found\n");
2035 return -EINVAL;
2038 fsm = devm_kzalloc(&pdev->dev, sizeof(*fsm), GFP_KERNEL);
2039 if (!fsm)
2040 return -ENOMEM;
2042 fsm->dev = &pdev->dev;
2044 platform_set_drvdata(pdev, fsm);
2046 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2047 if (!res) {
2048 dev_err(&pdev->dev, "Resource not found\n");
2049 return -ENODEV;
2052 fsm->base = devm_ioremap_resource(&pdev->dev, res);
2053 if (IS_ERR(fsm->base)) {
2054 dev_err(&pdev->dev,
2055 "Failed to reserve memory region %pR\n", res);
2056 return PTR_ERR(fsm->base);
2059 fsm->clk = devm_clk_get(&pdev->dev, NULL);
2060 if (IS_ERR(fsm->clk)) {
2061 dev_err(fsm->dev, "Couldn't find EMI clock.\n");
2062 return PTR_ERR(fsm->clk);
2065 ret = clk_prepare_enable(fsm->clk);
2066 if (ret) {
2067 dev_err(fsm->dev, "Failed to enable EMI clock.\n");
2068 return ret;
2071 mutex_init(&fsm->lock);
2073 ret = stfsm_init(fsm);
2074 if (ret) {
2075 dev_err(&pdev->dev, "Failed to initialise FSM Controller\n");
2076 goto err_clk_unprepare;
2079 stfsm_fetch_platform_configs(pdev);
2081 /* Detect SPI FLASH device */
2082 info = stfsm_jedec_probe(fsm);
2083 if (!info) {
2084 ret = -ENODEV;
2085 goto err_clk_unprepare;
2087 fsm->info = info;
2089 /* Use device size to determine address width */
2090 if (info->sector_size * info->n_sectors > 0x1000000)
2091 info->flags |= FLASH_FLAG_32BIT_ADDR;
2094 * Configure READ/WRITE/ERASE sequences according to platform and
2095 * device flags.
2097 if (info->config) {
2098 ret = info->config(fsm);
2099 if (ret)
2100 goto err_clk_unprepare;
2101 } else {
2102 ret = stfsm_prepare_rwe_seqs_default(fsm);
2103 if (ret)
2104 goto err_clk_unprepare;
2107 fsm->mtd.name = info->name;
2108 fsm->mtd.dev.parent = &pdev->dev;
2109 mtd_set_of_node(&fsm->mtd, np);
2110 fsm->mtd.type = MTD_NORFLASH;
2111 fsm->mtd.writesize = 4;
2112 fsm->mtd.writebufsize = fsm->mtd.writesize;
2113 fsm->mtd.flags = MTD_CAP_NORFLASH;
2114 fsm->mtd.size = info->sector_size * info->n_sectors;
2115 fsm->mtd.erasesize = info->sector_size;
2117 fsm->mtd._read = stfsm_mtd_read;
2118 fsm->mtd._write = stfsm_mtd_write;
2119 fsm->mtd._erase = stfsm_mtd_erase;
2121 dev_info(&pdev->dev,
2122 "Found serial flash device: %s\n"
2123 " size = %llx (%lldMiB) erasesize = 0x%08x (%uKiB)\n",
2124 info->name,
2125 (long long)fsm->mtd.size, (long long)(fsm->mtd.size >> 20),
2126 fsm->mtd.erasesize, (fsm->mtd.erasesize >> 10));
2128 return mtd_device_register(&fsm->mtd, NULL, 0);
2130 err_clk_unprepare:
2131 clk_disable_unprepare(fsm->clk);
2132 return ret;
2135 static int stfsm_remove(struct platform_device *pdev)
2137 struct stfsm *fsm = platform_get_drvdata(pdev);
2139 return mtd_device_unregister(&fsm->mtd);
2142 #ifdef CONFIG_PM_SLEEP
2143 static int stfsmfsm_suspend(struct device *dev)
2145 struct stfsm *fsm = dev_get_drvdata(dev);
2147 clk_disable_unprepare(fsm->clk);
2149 return 0;
2152 static int stfsmfsm_resume(struct device *dev)
2154 struct stfsm *fsm = dev_get_drvdata(dev);
2156 return clk_prepare_enable(fsm->clk);
2158 #endif
2160 static SIMPLE_DEV_PM_OPS(stfsm_pm_ops, stfsmfsm_suspend, stfsmfsm_resume);
2162 static const struct of_device_id stfsm_match[] = {
2163 { .compatible = "st,spi-fsm", },
2166 MODULE_DEVICE_TABLE(of, stfsm_match);
2168 static struct platform_driver stfsm_driver = {
2169 .probe = stfsm_probe,
2170 .remove = stfsm_remove,
2171 .driver = {
2172 .name = "st-spi-fsm",
2173 .of_match_table = stfsm_match,
2174 .pm = &stfsm_pm_ops,
2177 module_platform_driver(stfsm_driver);
2179 MODULE_AUTHOR("Angus Clark <angus.clark@st.com>");
2180 MODULE_DESCRIPTION("ST SPI FSM driver");
2181 MODULE_LICENSE("GPL");