x86/topology: Fix function name in documentation
[cris-mirror.git] / drivers / mtd / nand / mtk_nand.c
blob6977da3a26aaf272fad4a1b93fd88401e703669f
1 /*
2 * MTK NAND Flash controller driver.
3 * Copyright (C) 2016 MediaTek Inc.
4 * Authors: Xiaolei Li <xiaolei.li@mediatek.com>
5 * Jorge Ramirez-Ortiz <jorge.ramirez-ortiz@linaro.org>
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
17 #include <linux/platform_device.h>
18 #include <linux/dma-mapping.h>
19 #include <linux/interrupt.h>
20 #include <linux/delay.h>
21 #include <linux/clk.h>
22 #include <linux/mtd/rawnand.h>
23 #include <linux/mtd/mtd.h>
24 #include <linux/module.h>
25 #include <linux/iopoll.h>
26 #include <linux/of.h>
27 #include <linux/of_device.h>
28 #include "mtk_ecc.h"
30 /* NAND controller register definition */
31 #define NFI_CNFG (0x00)
32 #define CNFG_AHB BIT(0)
33 #define CNFG_READ_EN BIT(1)
34 #define CNFG_DMA_BURST_EN BIT(2)
35 #define CNFG_BYTE_RW BIT(6)
36 #define CNFG_HW_ECC_EN BIT(8)
37 #define CNFG_AUTO_FMT_EN BIT(9)
38 #define CNFG_OP_CUST (6 << 12)
39 #define NFI_PAGEFMT (0x04)
40 #define PAGEFMT_FDM_ECC_SHIFT (12)
41 #define PAGEFMT_FDM_SHIFT (8)
42 #define PAGEFMT_SEC_SEL_512 BIT(2)
43 #define PAGEFMT_512_2K (0)
44 #define PAGEFMT_2K_4K (1)
45 #define PAGEFMT_4K_8K (2)
46 #define PAGEFMT_8K_16K (3)
47 /* NFI control */
48 #define NFI_CON (0x08)
49 #define CON_FIFO_FLUSH BIT(0)
50 #define CON_NFI_RST BIT(1)
51 #define CON_BRD BIT(8) /* burst read */
52 #define CON_BWR BIT(9) /* burst write */
53 #define CON_SEC_SHIFT (12)
54 /* Timming control register */
55 #define NFI_ACCCON (0x0C)
56 #define NFI_INTR_EN (0x10)
57 #define INTR_AHB_DONE_EN BIT(6)
58 #define NFI_INTR_STA (0x14)
59 #define NFI_CMD (0x20)
60 #define NFI_ADDRNOB (0x30)
61 #define NFI_COLADDR (0x34)
62 #define NFI_ROWADDR (0x38)
63 #define NFI_STRDATA (0x40)
64 #define STAR_EN (1)
65 #define STAR_DE (0)
66 #define NFI_CNRNB (0x44)
67 #define NFI_DATAW (0x50)
68 #define NFI_DATAR (0x54)
69 #define NFI_PIO_DIRDY (0x58)
70 #define PIO_DI_RDY (0x01)
71 #define NFI_STA (0x60)
72 #define STA_CMD BIT(0)
73 #define STA_ADDR BIT(1)
74 #define STA_BUSY BIT(8)
75 #define STA_EMP_PAGE BIT(12)
76 #define NFI_FSM_CUSTDATA (0xe << 16)
77 #define NFI_FSM_MASK (0xf << 16)
78 #define NFI_ADDRCNTR (0x70)
79 #define CNTR_MASK GENMASK(16, 12)
80 #define ADDRCNTR_SEC_SHIFT (12)
81 #define ADDRCNTR_SEC(val) \
82 (((val) & CNTR_MASK) >> ADDRCNTR_SEC_SHIFT)
83 #define NFI_STRADDR (0x80)
84 #define NFI_BYTELEN (0x84)
85 #define NFI_CSEL (0x90)
86 #define NFI_FDML(x) (0xA0 + (x) * sizeof(u32) * 2)
87 #define NFI_FDMM(x) (0xA4 + (x) * sizeof(u32) * 2)
88 #define NFI_FDM_MAX_SIZE (8)
89 #define NFI_FDM_MIN_SIZE (1)
90 #define NFI_MASTER_STA (0x224)
91 #define MASTER_STA_MASK (0x0FFF)
92 #define NFI_EMPTY_THRESH (0x23C)
94 #define MTK_NAME "mtk-nand"
95 #define KB(x) ((x) * 1024UL)
96 #define MB(x) (KB(x) * 1024UL)
98 #define MTK_TIMEOUT (500000)
99 #define MTK_RESET_TIMEOUT (1000000)
100 #define MTK_NAND_MAX_NSELS (2)
101 #define MTK_NFC_MIN_SPARE (16)
102 #define ACCTIMING(tpoecs, tprecs, tc2r, tw2r, twh, twst, trlt) \
103 ((tpoecs) << 28 | (tprecs) << 22 | (tc2r) << 16 | \
104 (tw2r) << 12 | (twh) << 8 | (twst) << 4 | (trlt))
106 struct mtk_nfc_caps {
107 const u8 *spare_size;
108 u8 num_spare_size;
109 u8 pageformat_spare_shift;
110 u8 nfi_clk_div;
111 u8 max_sector;
112 u32 max_sector_size;
115 struct mtk_nfc_bad_mark_ctl {
116 void (*bm_swap)(struct mtd_info *, u8 *buf, int raw);
117 u32 sec;
118 u32 pos;
122 * FDM: region used to store free OOB data
124 struct mtk_nfc_fdm {
125 u32 reg_size;
126 u32 ecc_size;
129 struct mtk_nfc_nand_chip {
130 struct list_head node;
131 struct nand_chip nand;
133 struct mtk_nfc_bad_mark_ctl bad_mark;
134 struct mtk_nfc_fdm fdm;
135 u32 spare_per_sector;
137 int nsels;
138 u8 sels[0];
139 /* nothing after this field */
142 struct mtk_nfc_clk {
143 struct clk *nfi_clk;
144 struct clk *pad_clk;
147 struct mtk_nfc {
148 struct nand_hw_control controller;
149 struct mtk_ecc_config ecc_cfg;
150 struct mtk_nfc_clk clk;
151 struct mtk_ecc *ecc;
153 struct device *dev;
154 const struct mtk_nfc_caps *caps;
155 void __iomem *regs;
157 struct completion done;
158 struct list_head chips;
160 u8 *buffer;
164 * supported spare size of each IP.
165 * order should be the same with the spare size bitfiled defination of
166 * register NFI_PAGEFMT.
168 static const u8 spare_size_mt2701[] = {
169 16, 26, 27, 28, 32, 36, 40, 44, 48, 49, 50, 51, 52, 62, 63, 64
172 static const u8 spare_size_mt2712[] = {
173 16, 26, 27, 28, 32, 36, 40, 44, 48, 49, 50, 51, 52, 62, 61, 63, 64, 67,
177 static const u8 spare_size_mt7622[] = {
178 16, 26, 27, 28
181 static inline struct mtk_nfc_nand_chip *to_mtk_nand(struct nand_chip *nand)
183 return container_of(nand, struct mtk_nfc_nand_chip, nand);
186 static inline u8 *data_ptr(struct nand_chip *chip, const u8 *p, int i)
188 return (u8 *)p + i * chip->ecc.size;
191 static inline u8 *oob_ptr(struct nand_chip *chip, int i)
193 struct mtk_nfc_nand_chip *mtk_nand = to_mtk_nand(chip);
194 u8 *poi;
196 /* map the sector's FDM data to free oob:
197 * the beginning of the oob area stores the FDM data of bad mark sectors
200 if (i < mtk_nand->bad_mark.sec)
201 poi = chip->oob_poi + (i + 1) * mtk_nand->fdm.reg_size;
202 else if (i == mtk_nand->bad_mark.sec)
203 poi = chip->oob_poi;
204 else
205 poi = chip->oob_poi + i * mtk_nand->fdm.reg_size;
207 return poi;
210 static inline int mtk_data_len(struct nand_chip *chip)
212 struct mtk_nfc_nand_chip *mtk_nand = to_mtk_nand(chip);
214 return chip->ecc.size + mtk_nand->spare_per_sector;
217 static inline u8 *mtk_data_ptr(struct nand_chip *chip, int i)
219 struct mtk_nfc *nfc = nand_get_controller_data(chip);
221 return nfc->buffer + i * mtk_data_len(chip);
224 static inline u8 *mtk_oob_ptr(struct nand_chip *chip, int i)
226 struct mtk_nfc *nfc = nand_get_controller_data(chip);
228 return nfc->buffer + i * mtk_data_len(chip) + chip->ecc.size;
231 static inline void nfi_writel(struct mtk_nfc *nfc, u32 val, u32 reg)
233 writel(val, nfc->regs + reg);
236 static inline void nfi_writew(struct mtk_nfc *nfc, u16 val, u32 reg)
238 writew(val, nfc->regs + reg);
241 static inline void nfi_writeb(struct mtk_nfc *nfc, u8 val, u32 reg)
243 writeb(val, nfc->regs + reg);
246 static inline u32 nfi_readl(struct mtk_nfc *nfc, u32 reg)
248 return readl_relaxed(nfc->regs + reg);
251 static inline u16 nfi_readw(struct mtk_nfc *nfc, u32 reg)
253 return readw_relaxed(nfc->regs + reg);
256 static inline u8 nfi_readb(struct mtk_nfc *nfc, u32 reg)
258 return readb_relaxed(nfc->regs + reg);
261 static void mtk_nfc_hw_reset(struct mtk_nfc *nfc)
263 struct device *dev = nfc->dev;
264 u32 val;
265 int ret;
267 /* reset all registers and force the NFI master to terminate */
268 nfi_writel(nfc, CON_FIFO_FLUSH | CON_NFI_RST, NFI_CON);
270 /* wait for the master to finish the last transaction */
271 ret = readl_poll_timeout(nfc->regs + NFI_MASTER_STA, val,
272 !(val & MASTER_STA_MASK), 50,
273 MTK_RESET_TIMEOUT);
274 if (ret)
275 dev_warn(dev, "master active in reset [0x%x] = 0x%x\n",
276 NFI_MASTER_STA, val);
278 /* ensure any status register affected by the NFI master is reset */
279 nfi_writel(nfc, CON_FIFO_FLUSH | CON_NFI_RST, NFI_CON);
280 nfi_writew(nfc, STAR_DE, NFI_STRDATA);
283 static int mtk_nfc_send_command(struct mtk_nfc *nfc, u8 command)
285 struct device *dev = nfc->dev;
286 u32 val;
287 int ret;
289 nfi_writel(nfc, command, NFI_CMD);
291 ret = readl_poll_timeout_atomic(nfc->regs + NFI_STA, val,
292 !(val & STA_CMD), 10, MTK_TIMEOUT);
293 if (ret) {
294 dev_warn(dev, "nfi core timed out entering command mode\n");
295 return -EIO;
298 return 0;
301 static int mtk_nfc_send_address(struct mtk_nfc *nfc, int addr)
303 struct device *dev = nfc->dev;
304 u32 val;
305 int ret;
307 nfi_writel(nfc, addr, NFI_COLADDR);
308 nfi_writel(nfc, 0, NFI_ROWADDR);
309 nfi_writew(nfc, 1, NFI_ADDRNOB);
311 ret = readl_poll_timeout_atomic(nfc->regs + NFI_STA, val,
312 !(val & STA_ADDR), 10, MTK_TIMEOUT);
313 if (ret) {
314 dev_warn(dev, "nfi core timed out entering address mode\n");
315 return -EIO;
318 return 0;
321 static int mtk_nfc_hw_runtime_config(struct mtd_info *mtd)
323 struct nand_chip *chip = mtd_to_nand(mtd);
324 struct mtk_nfc_nand_chip *mtk_nand = to_mtk_nand(chip);
325 struct mtk_nfc *nfc = nand_get_controller_data(chip);
326 u32 fmt, spare, i;
328 if (!mtd->writesize)
329 return 0;
331 spare = mtk_nand->spare_per_sector;
333 switch (mtd->writesize) {
334 case 512:
335 fmt = PAGEFMT_512_2K | PAGEFMT_SEC_SEL_512;
336 break;
337 case KB(2):
338 if (chip->ecc.size == 512)
339 fmt = PAGEFMT_2K_4K | PAGEFMT_SEC_SEL_512;
340 else
341 fmt = PAGEFMT_512_2K;
342 break;
343 case KB(4):
344 if (chip->ecc.size == 512)
345 fmt = PAGEFMT_4K_8K | PAGEFMT_SEC_SEL_512;
346 else
347 fmt = PAGEFMT_2K_4K;
348 break;
349 case KB(8):
350 if (chip->ecc.size == 512)
351 fmt = PAGEFMT_8K_16K | PAGEFMT_SEC_SEL_512;
352 else
353 fmt = PAGEFMT_4K_8K;
354 break;
355 case KB(16):
356 fmt = PAGEFMT_8K_16K;
357 break;
358 default:
359 dev_err(nfc->dev, "invalid page len: %d\n", mtd->writesize);
360 return -EINVAL;
364 * the hardware will double the value for this eccsize, so we need to
365 * halve it
367 if (chip->ecc.size == 1024)
368 spare >>= 1;
370 for (i = 0; i < nfc->caps->num_spare_size; i++) {
371 if (nfc->caps->spare_size[i] == spare)
372 break;
375 if (i == nfc->caps->num_spare_size) {
376 dev_err(nfc->dev, "invalid spare size %d\n", spare);
377 return -EINVAL;
380 fmt |= i << nfc->caps->pageformat_spare_shift;
382 fmt |= mtk_nand->fdm.reg_size << PAGEFMT_FDM_SHIFT;
383 fmt |= mtk_nand->fdm.ecc_size << PAGEFMT_FDM_ECC_SHIFT;
384 nfi_writel(nfc, fmt, NFI_PAGEFMT);
386 nfc->ecc_cfg.strength = chip->ecc.strength;
387 nfc->ecc_cfg.len = chip->ecc.size + mtk_nand->fdm.ecc_size;
389 return 0;
392 static void mtk_nfc_select_chip(struct mtd_info *mtd, int chip)
394 struct nand_chip *nand = mtd_to_nand(mtd);
395 struct mtk_nfc *nfc = nand_get_controller_data(nand);
396 struct mtk_nfc_nand_chip *mtk_nand = to_mtk_nand(nand);
398 if (chip < 0)
399 return;
401 mtk_nfc_hw_runtime_config(mtd);
403 nfi_writel(nfc, mtk_nand->sels[chip], NFI_CSEL);
406 static int mtk_nfc_dev_ready(struct mtd_info *mtd)
408 struct mtk_nfc *nfc = nand_get_controller_data(mtd_to_nand(mtd));
410 if (nfi_readl(nfc, NFI_STA) & STA_BUSY)
411 return 0;
413 return 1;
416 static void mtk_nfc_cmd_ctrl(struct mtd_info *mtd, int dat, unsigned int ctrl)
418 struct mtk_nfc *nfc = nand_get_controller_data(mtd_to_nand(mtd));
420 if (ctrl & NAND_ALE) {
421 mtk_nfc_send_address(nfc, dat);
422 } else if (ctrl & NAND_CLE) {
423 mtk_nfc_hw_reset(nfc);
425 nfi_writew(nfc, CNFG_OP_CUST, NFI_CNFG);
426 mtk_nfc_send_command(nfc, dat);
430 static inline void mtk_nfc_wait_ioready(struct mtk_nfc *nfc)
432 int rc;
433 u8 val;
435 rc = readb_poll_timeout_atomic(nfc->regs + NFI_PIO_DIRDY, val,
436 val & PIO_DI_RDY, 10, MTK_TIMEOUT);
437 if (rc < 0)
438 dev_err(nfc->dev, "data not ready\n");
441 static inline u8 mtk_nfc_read_byte(struct mtd_info *mtd)
443 struct nand_chip *chip = mtd_to_nand(mtd);
444 struct mtk_nfc *nfc = nand_get_controller_data(chip);
445 u32 reg;
447 /* after each byte read, the NFI_STA reg is reset by the hardware */
448 reg = nfi_readl(nfc, NFI_STA) & NFI_FSM_MASK;
449 if (reg != NFI_FSM_CUSTDATA) {
450 reg = nfi_readw(nfc, NFI_CNFG);
451 reg |= CNFG_BYTE_RW | CNFG_READ_EN;
452 nfi_writew(nfc, reg, NFI_CNFG);
455 * set to max sector to allow the HW to continue reading over
456 * unaligned accesses
458 reg = (nfc->caps->max_sector << CON_SEC_SHIFT) | CON_BRD;
459 nfi_writel(nfc, reg, NFI_CON);
461 /* trigger to fetch data */
462 nfi_writew(nfc, STAR_EN, NFI_STRDATA);
465 mtk_nfc_wait_ioready(nfc);
467 return nfi_readb(nfc, NFI_DATAR);
470 static void mtk_nfc_read_buf(struct mtd_info *mtd, u8 *buf, int len)
472 int i;
474 for (i = 0; i < len; i++)
475 buf[i] = mtk_nfc_read_byte(mtd);
478 static void mtk_nfc_write_byte(struct mtd_info *mtd, u8 byte)
480 struct mtk_nfc *nfc = nand_get_controller_data(mtd_to_nand(mtd));
481 u32 reg;
483 reg = nfi_readl(nfc, NFI_STA) & NFI_FSM_MASK;
485 if (reg != NFI_FSM_CUSTDATA) {
486 reg = nfi_readw(nfc, NFI_CNFG) | CNFG_BYTE_RW;
487 nfi_writew(nfc, reg, NFI_CNFG);
489 reg = nfc->caps->max_sector << CON_SEC_SHIFT | CON_BWR;
490 nfi_writel(nfc, reg, NFI_CON);
492 nfi_writew(nfc, STAR_EN, NFI_STRDATA);
495 mtk_nfc_wait_ioready(nfc);
496 nfi_writeb(nfc, byte, NFI_DATAW);
499 static void mtk_nfc_write_buf(struct mtd_info *mtd, const u8 *buf, int len)
501 int i;
503 for (i = 0; i < len; i++)
504 mtk_nfc_write_byte(mtd, buf[i]);
507 static int mtk_nfc_setup_data_interface(struct mtd_info *mtd, int csline,
508 const struct nand_data_interface *conf)
510 struct mtk_nfc *nfc = nand_get_controller_data(mtd_to_nand(mtd));
511 const struct nand_sdr_timings *timings;
512 u32 rate, tpoecs, tprecs, tc2r, tw2r, twh, twst, trlt;
514 timings = nand_get_sdr_timings(conf);
515 if (IS_ERR(timings))
516 return -ENOTSUPP;
518 if (csline == NAND_DATA_IFACE_CHECK_ONLY)
519 return 0;
521 rate = clk_get_rate(nfc->clk.nfi_clk);
522 /* There is a frequency divider in some IPs */
523 rate /= nfc->caps->nfi_clk_div;
525 /* turn clock rate into KHZ */
526 rate /= 1000;
528 tpoecs = max(timings->tALH_min, timings->tCLH_min) / 1000;
529 tpoecs = DIV_ROUND_UP(tpoecs * rate, 1000000);
530 tpoecs &= 0xf;
532 tprecs = max(timings->tCLS_min, timings->tALS_min) / 1000;
533 tprecs = DIV_ROUND_UP(tprecs * rate, 1000000);
534 tprecs &= 0x3f;
536 /* sdr interface has no tCR which means CE# low to RE# low */
537 tc2r = 0;
539 tw2r = timings->tWHR_min / 1000;
540 tw2r = DIV_ROUND_UP(tw2r * rate, 1000000);
541 tw2r = DIV_ROUND_UP(tw2r - 1, 2);
542 tw2r &= 0xf;
544 twh = max(timings->tREH_min, timings->tWH_min) / 1000;
545 twh = DIV_ROUND_UP(twh * rate, 1000000) - 1;
546 twh &= 0xf;
548 twst = timings->tWP_min / 1000;
549 twst = DIV_ROUND_UP(twst * rate, 1000000) - 1;
550 twst &= 0xf;
552 trlt = max(timings->tREA_max, timings->tRP_min) / 1000;
553 trlt = DIV_ROUND_UP(trlt * rate, 1000000) - 1;
554 trlt &= 0xf;
557 * ACCON: access timing control register
558 * -------------------------------------
559 * 31:28: tpoecs, minimum required time for CS post pulling down after
560 * accessing the device
561 * 27:22: tprecs, minimum required time for CS pre pulling down before
562 * accessing the device
563 * 21:16: tc2r, minimum required time from NCEB low to NREB low
564 * 15:12: tw2r, minimum required time from NWEB high to NREB low.
565 * 11:08: twh, write enable hold time
566 * 07:04: twst, write wait states
567 * 03:00: trlt, read wait states
569 trlt = ACCTIMING(tpoecs, tprecs, tc2r, tw2r, twh, twst, trlt);
570 nfi_writel(nfc, trlt, NFI_ACCCON);
572 return 0;
575 static int mtk_nfc_sector_encode(struct nand_chip *chip, u8 *data)
577 struct mtk_nfc *nfc = nand_get_controller_data(chip);
578 struct mtk_nfc_nand_chip *mtk_nand = to_mtk_nand(chip);
579 int size = chip->ecc.size + mtk_nand->fdm.reg_size;
581 nfc->ecc_cfg.mode = ECC_DMA_MODE;
582 nfc->ecc_cfg.op = ECC_ENCODE;
584 return mtk_ecc_encode(nfc->ecc, &nfc->ecc_cfg, data, size);
587 static void mtk_nfc_no_bad_mark_swap(struct mtd_info *a, u8 *b, int c)
589 /* nop */
592 static void mtk_nfc_bad_mark_swap(struct mtd_info *mtd, u8 *buf, int raw)
594 struct nand_chip *chip = mtd_to_nand(mtd);
595 struct mtk_nfc_nand_chip *nand = to_mtk_nand(chip);
596 u32 bad_pos = nand->bad_mark.pos;
598 if (raw)
599 bad_pos += nand->bad_mark.sec * mtk_data_len(chip);
600 else
601 bad_pos += nand->bad_mark.sec * chip->ecc.size;
603 swap(chip->oob_poi[0], buf[bad_pos]);
606 static int mtk_nfc_format_subpage(struct mtd_info *mtd, u32 offset,
607 u32 len, const u8 *buf)
609 struct nand_chip *chip = mtd_to_nand(mtd);
610 struct mtk_nfc_nand_chip *mtk_nand = to_mtk_nand(chip);
611 struct mtk_nfc *nfc = nand_get_controller_data(chip);
612 struct mtk_nfc_fdm *fdm = &mtk_nand->fdm;
613 u32 start, end;
614 int i, ret;
616 start = offset / chip->ecc.size;
617 end = DIV_ROUND_UP(offset + len, chip->ecc.size);
619 memset(nfc->buffer, 0xff, mtd->writesize + mtd->oobsize);
620 for (i = 0; i < chip->ecc.steps; i++) {
621 memcpy(mtk_data_ptr(chip, i), data_ptr(chip, buf, i),
622 chip->ecc.size);
624 if (start > i || i >= end)
625 continue;
627 if (i == mtk_nand->bad_mark.sec)
628 mtk_nand->bad_mark.bm_swap(mtd, nfc->buffer, 1);
630 memcpy(mtk_oob_ptr(chip, i), oob_ptr(chip, i), fdm->reg_size);
632 /* program the CRC back to the OOB */
633 ret = mtk_nfc_sector_encode(chip, mtk_data_ptr(chip, i));
634 if (ret < 0)
635 return ret;
638 return 0;
641 static void mtk_nfc_format_page(struct mtd_info *mtd, const u8 *buf)
643 struct nand_chip *chip = mtd_to_nand(mtd);
644 struct mtk_nfc_nand_chip *mtk_nand = to_mtk_nand(chip);
645 struct mtk_nfc *nfc = nand_get_controller_data(chip);
646 struct mtk_nfc_fdm *fdm = &mtk_nand->fdm;
647 u32 i;
649 memset(nfc->buffer, 0xff, mtd->writesize + mtd->oobsize);
650 for (i = 0; i < chip->ecc.steps; i++) {
651 if (buf)
652 memcpy(mtk_data_ptr(chip, i), data_ptr(chip, buf, i),
653 chip->ecc.size);
655 if (i == mtk_nand->bad_mark.sec)
656 mtk_nand->bad_mark.bm_swap(mtd, nfc->buffer, 1);
658 memcpy(mtk_oob_ptr(chip, i), oob_ptr(chip, i), fdm->reg_size);
662 static inline void mtk_nfc_read_fdm(struct nand_chip *chip, u32 start,
663 u32 sectors)
665 struct mtk_nfc *nfc = nand_get_controller_data(chip);
666 struct mtk_nfc_nand_chip *mtk_nand = to_mtk_nand(chip);
667 struct mtk_nfc_fdm *fdm = &mtk_nand->fdm;
668 u32 vall, valm;
669 u8 *oobptr;
670 int i, j;
672 for (i = 0; i < sectors; i++) {
673 oobptr = oob_ptr(chip, start + i);
674 vall = nfi_readl(nfc, NFI_FDML(i));
675 valm = nfi_readl(nfc, NFI_FDMM(i));
677 for (j = 0; j < fdm->reg_size; j++)
678 oobptr[j] = (j >= 4 ? valm : vall) >> ((j % 4) * 8);
682 static inline void mtk_nfc_write_fdm(struct nand_chip *chip)
684 struct mtk_nfc *nfc = nand_get_controller_data(chip);
685 struct mtk_nfc_nand_chip *mtk_nand = to_mtk_nand(chip);
686 struct mtk_nfc_fdm *fdm = &mtk_nand->fdm;
687 u32 vall, valm;
688 u8 *oobptr;
689 int i, j;
691 for (i = 0; i < chip->ecc.steps; i++) {
692 oobptr = oob_ptr(chip, i);
693 vall = 0;
694 valm = 0;
695 for (j = 0; j < 8; j++) {
696 if (j < 4)
697 vall |= (j < fdm->reg_size ? oobptr[j] : 0xff)
698 << (j * 8);
699 else
700 valm |= (j < fdm->reg_size ? oobptr[j] : 0xff)
701 << ((j - 4) * 8);
703 nfi_writel(nfc, vall, NFI_FDML(i));
704 nfi_writel(nfc, valm, NFI_FDMM(i));
708 static int mtk_nfc_do_write_page(struct mtd_info *mtd, struct nand_chip *chip,
709 const u8 *buf, int page, int len)
711 struct mtk_nfc *nfc = nand_get_controller_data(chip);
712 struct device *dev = nfc->dev;
713 dma_addr_t addr;
714 u32 reg;
715 int ret;
717 addr = dma_map_single(dev, (void *)buf, len, DMA_TO_DEVICE);
718 ret = dma_mapping_error(nfc->dev, addr);
719 if (ret) {
720 dev_err(nfc->dev, "dma mapping error\n");
721 return -EINVAL;
724 reg = nfi_readw(nfc, NFI_CNFG) | CNFG_AHB | CNFG_DMA_BURST_EN;
725 nfi_writew(nfc, reg, NFI_CNFG);
727 nfi_writel(nfc, chip->ecc.steps << CON_SEC_SHIFT, NFI_CON);
728 nfi_writel(nfc, lower_32_bits(addr), NFI_STRADDR);
729 nfi_writew(nfc, INTR_AHB_DONE_EN, NFI_INTR_EN);
731 init_completion(&nfc->done);
733 reg = nfi_readl(nfc, NFI_CON) | CON_BWR;
734 nfi_writel(nfc, reg, NFI_CON);
735 nfi_writew(nfc, STAR_EN, NFI_STRDATA);
737 ret = wait_for_completion_timeout(&nfc->done, msecs_to_jiffies(500));
738 if (!ret) {
739 dev_err(dev, "program ahb done timeout\n");
740 nfi_writew(nfc, 0, NFI_INTR_EN);
741 ret = -ETIMEDOUT;
742 goto timeout;
745 ret = readl_poll_timeout_atomic(nfc->regs + NFI_ADDRCNTR, reg,
746 ADDRCNTR_SEC(reg) >= chip->ecc.steps,
747 10, MTK_TIMEOUT);
748 if (ret)
749 dev_err(dev, "hwecc write timeout\n");
751 timeout:
753 dma_unmap_single(nfc->dev, addr, len, DMA_TO_DEVICE);
754 nfi_writel(nfc, 0, NFI_CON);
756 return ret;
759 static int mtk_nfc_write_page(struct mtd_info *mtd, struct nand_chip *chip,
760 const u8 *buf, int page, int raw)
762 struct mtk_nfc *nfc = nand_get_controller_data(chip);
763 struct mtk_nfc_nand_chip *mtk_nand = to_mtk_nand(chip);
764 size_t len;
765 const u8 *bufpoi;
766 u32 reg;
767 int ret;
769 nand_prog_page_begin_op(chip, page, 0, NULL, 0);
771 if (!raw) {
772 /* OOB => FDM: from register, ECC: from HW */
773 reg = nfi_readw(nfc, NFI_CNFG) | CNFG_AUTO_FMT_EN;
774 nfi_writew(nfc, reg | CNFG_HW_ECC_EN, NFI_CNFG);
776 nfc->ecc_cfg.op = ECC_ENCODE;
777 nfc->ecc_cfg.mode = ECC_NFI_MODE;
778 ret = mtk_ecc_enable(nfc->ecc, &nfc->ecc_cfg);
779 if (ret) {
780 /* clear NFI config */
781 reg = nfi_readw(nfc, NFI_CNFG);
782 reg &= ~(CNFG_AUTO_FMT_EN | CNFG_HW_ECC_EN);
783 nfi_writew(nfc, reg, NFI_CNFG);
785 return ret;
788 memcpy(nfc->buffer, buf, mtd->writesize);
789 mtk_nand->bad_mark.bm_swap(mtd, nfc->buffer, raw);
790 bufpoi = nfc->buffer;
792 /* write OOB into the FDM registers (OOB area in MTK NAND) */
793 mtk_nfc_write_fdm(chip);
794 } else {
795 bufpoi = buf;
798 len = mtd->writesize + (raw ? mtd->oobsize : 0);
799 ret = mtk_nfc_do_write_page(mtd, chip, bufpoi, page, len);
801 if (!raw)
802 mtk_ecc_disable(nfc->ecc);
804 if (ret)
805 return ret;
807 return nand_prog_page_end_op(chip);
810 static int mtk_nfc_write_page_hwecc(struct mtd_info *mtd,
811 struct nand_chip *chip, const u8 *buf,
812 int oob_on, int page)
814 return mtk_nfc_write_page(mtd, chip, buf, page, 0);
817 static int mtk_nfc_write_page_raw(struct mtd_info *mtd, struct nand_chip *chip,
818 const u8 *buf, int oob_on, int pg)
820 struct mtk_nfc *nfc = nand_get_controller_data(chip);
822 mtk_nfc_format_page(mtd, buf);
823 return mtk_nfc_write_page(mtd, chip, nfc->buffer, pg, 1);
826 static int mtk_nfc_write_subpage_hwecc(struct mtd_info *mtd,
827 struct nand_chip *chip, u32 offset,
828 u32 data_len, const u8 *buf,
829 int oob_on, int page)
831 struct mtk_nfc *nfc = nand_get_controller_data(chip);
832 int ret;
834 ret = mtk_nfc_format_subpage(mtd, offset, data_len, buf);
835 if (ret < 0)
836 return ret;
838 /* use the data in the private buffer (now with FDM and CRC) */
839 return mtk_nfc_write_page(mtd, chip, nfc->buffer, page, 1);
842 static int mtk_nfc_write_oob_std(struct mtd_info *mtd, struct nand_chip *chip,
843 int page)
845 return mtk_nfc_write_page_raw(mtd, chip, NULL, 1, page);
848 static int mtk_nfc_update_ecc_stats(struct mtd_info *mtd, u8 *buf, u32 sectors)
850 struct nand_chip *chip = mtd_to_nand(mtd);
851 struct mtk_nfc *nfc = nand_get_controller_data(chip);
852 struct mtk_nfc_nand_chip *mtk_nand = to_mtk_nand(chip);
853 struct mtk_ecc_stats stats;
854 int rc, i;
856 rc = nfi_readl(nfc, NFI_STA) & STA_EMP_PAGE;
857 if (rc) {
858 memset(buf, 0xff, sectors * chip->ecc.size);
859 for (i = 0; i < sectors; i++)
860 memset(oob_ptr(chip, i), 0xff, mtk_nand->fdm.reg_size);
861 return 0;
864 mtk_ecc_get_stats(nfc->ecc, &stats, sectors);
865 mtd->ecc_stats.corrected += stats.corrected;
866 mtd->ecc_stats.failed += stats.failed;
868 return stats.bitflips;
871 static int mtk_nfc_read_subpage(struct mtd_info *mtd, struct nand_chip *chip,
872 u32 data_offs, u32 readlen,
873 u8 *bufpoi, int page, int raw)
875 struct mtk_nfc *nfc = nand_get_controller_data(chip);
876 struct mtk_nfc_nand_chip *mtk_nand = to_mtk_nand(chip);
877 u32 spare = mtk_nand->spare_per_sector;
878 u32 column, sectors, start, end, reg;
879 dma_addr_t addr;
880 int bitflips;
881 size_t len;
882 u8 *buf;
883 int rc;
885 start = data_offs / chip->ecc.size;
886 end = DIV_ROUND_UP(data_offs + readlen, chip->ecc.size);
888 sectors = end - start;
889 column = start * (chip->ecc.size + spare);
891 len = sectors * chip->ecc.size + (raw ? sectors * spare : 0);
892 buf = bufpoi + start * chip->ecc.size;
894 nand_read_page_op(chip, page, column, NULL, 0);
896 addr = dma_map_single(nfc->dev, buf, len, DMA_FROM_DEVICE);
897 rc = dma_mapping_error(nfc->dev, addr);
898 if (rc) {
899 dev_err(nfc->dev, "dma mapping error\n");
901 return -EINVAL;
904 reg = nfi_readw(nfc, NFI_CNFG);
905 reg |= CNFG_READ_EN | CNFG_DMA_BURST_EN | CNFG_AHB;
906 if (!raw) {
907 reg |= CNFG_AUTO_FMT_EN | CNFG_HW_ECC_EN;
908 nfi_writew(nfc, reg, NFI_CNFG);
910 nfc->ecc_cfg.mode = ECC_NFI_MODE;
911 nfc->ecc_cfg.sectors = sectors;
912 nfc->ecc_cfg.op = ECC_DECODE;
913 rc = mtk_ecc_enable(nfc->ecc, &nfc->ecc_cfg);
914 if (rc) {
915 dev_err(nfc->dev, "ecc enable\n");
916 /* clear NFI_CNFG */
917 reg &= ~(CNFG_DMA_BURST_EN | CNFG_AHB | CNFG_READ_EN |
918 CNFG_AUTO_FMT_EN | CNFG_HW_ECC_EN);
919 nfi_writew(nfc, reg, NFI_CNFG);
920 dma_unmap_single(nfc->dev, addr, len, DMA_FROM_DEVICE);
922 return rc;
924 } else {
925 nfi_writew(nfc, reg, NFI_CNFG);
928 nfi_writel(nfc, sectors << CON_SEC_SHIFT, NFI_CON);
929 nfi_writew(nfc, INTR_AHB_DONE_EN, NFI_INTR_EN);
930 nfi_writel(nfc, lower_32_bits(addr), NFI_STRADDR);
932 init_completion(&nfc->done);
933 reg = nfi_readl(nfc, NFI_CON) | CON_BRD;
934 nfi_writel(nfc, reg, NFI_CON);
935 nfi_writew(nfc, STAR_EN, NFI_STRDATA);
937 rc = wait_for_completion_timeout(&nfc->done, msecs_to_jiffies(500));
938 if (!rc)
939 dev_warn(nfc->dev, "read ahb/dma done timeout\n");
941 rc = readl_poll_timeout_atomic(nfc->regs + NFI_BYTELEN, reg,
942 ADDRCNTR_SEC(reg) >= sectors, 10,
943 MTK_TIMEOUT);
944 if (rc < 0) {
945 dev_err(nfc->dev, "subpage done timeout\n");
946 bitflips = -EIO;
947 } else {
948 bitflips = 0;
949 if (!raw) {
950 rc = mtk_ecc_wait_done(nfc->ecc, ECC_DECODE);
951 bitflips = rc < 0 ? -ETIMEDOUT :
952 mtk_nfc_update_ecc_stats(mtd, buf, sectors);
953 mtk_nfc_read_fdm(chip, start, sectors);
957 dma_unmap_single(nfc->dev, addr, len, DMA_FROM_DEVICE);
959 if (raw)
960 goto done;
962 mtk_ecc_disable(nfc->ecc);
964 if (clamp(mtk_nand->bad_mark.sec, start, end) == mtk_nand->bad_mark.sec)
965 mtk_nand->bad_mark.bm_swap(mtd, bufpoi, raw);
966 done:
967 nfi_writel(nfc, 0, NFI_CON);
969 return bitflips;
972 static int mtk_nfc_read_subpage_hwecc(struct mtd_info *mtd,
973 struct nand_chip *chip, u32 off,
974 u32 len, u8 *p, int pg)
976 return mtk_nfc_read_subpage(mtd, chip, off, len, p, pg, 0);
979 static int mtk_nfc_read_page_hwecc(struct mtd_info *mtd,
980 struct nand_chip *chip, u8 *p,
981 int oob_on, int pg)
983 return mtk_nfc_read_subpage(mtd, chip, 0, mtd->writesize, p, pg, 0);
986 static int mtk_nfc_read_page_raw(struct mtd_info *mtd, struct nand_chip *chip,
987 u8 *buf, int oob_on, int page)
989 struct mtk_nfc_nand_chip *mtk_nand = to_mtk_nand(chip);
990 struct mtk_nfc *nfc = nand_get_controller_data(chip);
991 struct mtk_nfc_fdm *fdm = &mtk_nand->fdm;
992 int i, ret;
994 memset(nfc->buffer, 0xff, mtd->writesize + mtd->oobsize);
995 ret = mtk_nfc_read_subpage(mtd, chip, 0, mtd->writesize, nfc->buffer,
996 page, 1);
997 if (ret < 0)
998 return ret;
1000 for (i = 0; i < chip->ecc.steps; i++) {
1001 memcpy(oob_ptr(chip, i), mtk_oob_ptr(chip, i), fdm->reg_size);
1003 if (i == mtk_nand->bad_mark.sec)
1004 mtk_nand->bad_mark.bm_swap(mtd, nfc->buffer, 1);
1006 if (buf)
1007 memcpy(data_ptr(chip, buf, i), mtk_data_ptr(chip, i),
1008 chip->ecc.size);
1011 return ret;
1014 static int mtk_nfc_read_oob_std(struct mtd_info *mtd, struct nand_chip *chip,
1015 int page)
1017 return mtk_nfc_read_page_raw(mtd, chip, NULL, 1, page);
1020 static inline void mtk_nfc_hw_init(struct mtk_nfc *nfc)
1023 * CNRNB: nand ready/busy register
1024 * -------------------------------
1025 * 7:4: timeout register for polling the NAND busy/ready signal
1026 * 0 : poll the status of the busy/ready signal after [7:4]*16 cycles.
1028 nfi_writew(nfc, 0xf1, NFI_CNRNB);
1029 nfi_writel(nfc, PAGEFMT_8K_16K, NFI_PAGEFMT);
1031 mtk_nfc_hw_reset(nfc);
1033 nfi_readl(nfc, NFI_INTR_STA);
1034 nfi_writel(nfc, 0, NFI_INTR_EN);
1037 static irqreturn_t mtk_nfc_irq(int irq, void *id)
1039 struct mtk_nfc *nfc = id;
1040 u16 sta, ien;
1042 sta = nfi_readw(nfc, NFI_INTR_STA);
1043 ien = nfi_readw(nfc, NFI_INTR_EN);
1045 if (!(sta & ien))
1046 return IRQ_NONE;
1048 nfi_writew(nfc, ~sta & ien, NFI_INTR_EN);
1049 complete(&nfc->done);
1051 return IRQ_HANDLED;
1054 static int mtk_nfc_enable_clk(struct device *dev, struct mtk_nfc_clk *clk)
1056 int ret;
1058 ret = clk_prepare_enable(clk->nfi_clk);
1059 if (ret) {
1060 dev_err(dev, "failed to enable nfi clk\n");
1061 return ret;
1064 ret = clk_prepare_enable(clk->pad_clk);
1065 if (ret) {
1066 dev_err(dev, "failed to enable pad clk\n");
1067 clk_disable_unprepare(clk->nfi_clk);
1068 return ret;
1071 return 0;
1074 static void mtk_nfc_disable_clk(struct mtk_nfc_clk *clk)
1076 clk_disable_unprepare(clk->nfi_clk);
1077 clk_disable_unprepare(clk->pad_clk);
1080 static int mtk_nfc_ooblayout_free(struct mtd_info *mtd, int section,
1081 struct mtd_oob_region *oob_region)
1083 struct nand_chip *chip = mtd_to_nand(mtd);
1084 struct mtk_nfc_nand_chip *mtk_nand = to_mtk_nand(chip);
1085 struct mtk_nfc_fdm *fdm = &mtk_nand->fdm;
1086 u32 eccsteps;
1088 eccsteps = mtd->writesize / chip->ecc.size;
1090 if (section >= eccsteps)
1091 return -ERANGE;
1093 oob_region->length = fdm->reg_size - fdm->ecc_size;
1094 oob_region->offset = section * fdm->reg_size + fdm->ecc_size;
1096 return 0;
1099 static int mtk_nfc_ooblayout_ecc(struct mtd_info *mtd, int section,
1100 struct mtd_oob_region *oob_region)
1102 struct nand_chip *chip = mtd_to_nand(mtd);
1103 struct mtk_nfc_nand_chip *mtk_nand = to_mtk_nand(chip);
1104 u32 eccsteps;
1106 if (section)
1107 return -ERANGE;
1109 eccsteps = mtd->writesize / chip->ecc.size;
1110 oob_region->offset = mtk_nand->fdm.reg_size * eccsteps;
1111 oob_region->length = mtd->oobsize - oob_region->offset;
1113 return 0;
1116 static const struct mtd_ooblayout_ops mtk_nfc_ooblayout_ops = {
1117 .free = mtk_nfc_ooblayout_free,
1118 .ecc = mtk_nfc_ooblayout_ecc,
1121 static void mtk_nfc_set_fdm(struct mtk_nfc_fdm *fdm, struct mtd_info *mtd)
1123 struct nand_chip *nand = mtd_to_nand(mtd);
1124 struct mtk_nfc_nand_chip *chip = to_mtk_nand(nand);
1125 struct mtk_nfc *nfc = nand_get_controller_data(nand);
1126 u32 ecc_bytes;
1128 ecc_bytes = DIV_ROUND_UP(nand->ecc.strength *
1129 mtk_ecc_get_parity_bits(nfc->ecc), 8);
1131 fdm->reg_size = chip->spare_per_sector - ecc_bytes;
1132 if (fdm->reg_size > NFI_FDM_MAX_SIZE)
1133 fdm->reg_size = NFI_FDM_MAX_SIZE;
1135 /* bad block mark storage */
1136 fdm->ecc_size = 1;
1139 static void mtk_nfc_set_bad_mark_ctl(struct mtk_nfc_bad_mark_ctl *bm_ctl,
1140 struct mtd_info *mtd)
1142 struct nand_chip *nand = mtd_to_nand(mtd);
1144 if (mtd->writesize == 512) {
1145 bm_ctl->bm_swap = mtk_nfc_no_bad_mark_swap;
1146 } else {
1147 bm_ctl->bm_swap = mtk_nfc_bad_mark_swap;
1148 bm_ctl->sec = mtd->writesize / mtk_data_len(nand);
1149 bm_ctl->pos = mtd->writesize % mtk_data_len(nand);
1153 static int mtk_nfc_set_spare_per_sector(u32 *sps, struct mtd_info *mtd)
1155 struct nand_chip *nand = mtd_to_nand(mtd);
1156 struct mtk_nfc *nfc = nand_get_controller_data(nand);
1157 const u8 *spare = nfc->caps->spare_size;
1158 u32 eccsteps, i, closest_spare = 0;
1160 eccsteps = mtd->writesize / nand->ecc.size;
1161 *sps = mtd->oobsize / eccsteps;
1163 if (nand->ecc.size == 1024)
1164 *sps >>= 1;
1166 if (*sps < MTK_NFC_MIN_SPARE)
1167 return -EINVAL;
1169 for (i = 0; i < nfc->caps->num_spare_size; i++) {
1170 if (*sps >= spare[i] && spare[i] >= spare[closest_spare]) {
1171 closest_spare = i;
1172 if (*sps == spare[i])
1173 break;
1177 *sps = spare[closest_spare];
1179 if (nand->ecc.size == 1024)
1180 *sps <<= 1;
1182 return 0;
1185 static int mtk_nfc_ecc_init(struct device *dev, struct mtd_info *mtd)
1187 struct nand_chip *nand = mtd_to_nand(mtd);
1188 struct mtk_nfc *nfc = nand_get_controller_data(nand);
1189 u32 spare;
1190 int free, ret;
1192 /* support only ecc hw mode */
1193 if (nand->ecc.mode != NAND_ECC_HW) {
1194 dev_err(dev, "ecc.mode not supported\n");
1195 return -EINVAL;
1198 /* if optional dt settings not present */
1199 if (!nand->ecc.size || !nand->ecc.strength) {
1200 /* use datasheet requirements */
1201 nand->ecc.strength = nand->ecc_strength_ds;
1202 nand->ecc.size = nand->ecc_step_ds;
1205 * align eccstrength and eccsize
1206 * this controller only supports 512 and 1024 sizes
1208 if (nand->ecc.size < 1024) {
1209 if (mtd->writesize > 512 &&
1210 nfc->caps->max_sector_size > 512) {
1211 nand->ecc.size = 1024;
1212 nand->ecc.strength <<= 1;
1213 } else {
1214 nand->ecc.size = 512;
1216 } else {
1217 nand->ecc.size = 1024;
1220 ret = mtk_nfc_set_spare_per_sector(&spare, mtd);
1221 if (ret)
1222 return ret;
1224 /* calculate oob bytes except ecc parity data */
1225 free = (nand->ecc.strength * mtk_ecc_get_parity_bits(nfc->ecc)
1226 + 7) >> 3;
1227 free = spare - free;
1230 * enhance ecc strength if oob left is bigger than max FDM size
1231 * or reduce ecc strength if oob size is not enough for ecc
1232 * parity data.
1234 if (free > NFI_FDM_MAX_SIZE) {
1235 spare -= NFI_FDM_MAX_SIZE;
1236 nand->ecc.strength = (spare << 3) /
1237 mtk_ecc_get_parity_bits(nfc->ecc);
1238 } else if (free < 0) {
1239 spare -= NFI_FDM_MIN_SIZE;
1240 nand->ecc.strength = (spare << 3) /
1241 mtk_ecc_get_parity_bits(nfc->ecc);
1245 mtk_ecc_adjust_strength(nfc->ecc, &nand->ecc.strength);
1247 dev_info(dev, "eccsize %d eccstrength %d\n",
1248 nand->ecc.size, nand->ecc.strength);
1250 return 0;
1253 static int mtk_nfc_nand_chip_init(struct device *dev, struct mtk_nfc *nfc,
1254 struct device_node *np)
1256 struct mtk_nfc_nand_chip *chip;
1257 struct nand_chip *nand;
1258 struct mtd_info *mtd;
1259 int nsels, len;
1260 u32 tmp;
1261 int ret;
1262 int i;
1264 if (!of_get_property(np, "reg", &nsels))
1265 return -ENODEV;
1267 nsels /= sizeof(u32);
1268 if (!nsels || nsels > MTK_NAND_MAX_NSELS) {
1269 dev_err(dev, "invalid reg property size %d\n", nsels);
1270 return -EINVAL;
1273 chip = devm_kzalloc(dev, sizeof(*chip) + nsels * sizeof(u8),
1274 GFP_KERNEL);
1275 if (!chip)
1276 return -ENOMEM;
1278 chip->nsels = nsels;
1279 for (i = 0; i < nsels; i++) {
1280 ret = of_property_read_u32_index(np, "reg", i, &tmp);
1281 if (ret) {
1282 dev_err(dev, "reg property failure : %d\n", ret);
1283 return ret;
1285 chip->sels[i] = tmp;
1288 nand = &chip->nand;
1289 nand->controller = &nfc->controller;
1291 nand_set_flash_node(nand, np);
1292 nand_set_controller_data(nand, nfc);
1294 nand->options |= NAND_USE_BOUNCE_BUFFER | NAND_SUBPAGE_READ;
1295 nand->dev_ready = mtk_nfc_dev_ready;
1296 nand->select_chip = mtk_nfc_select_chip;
1297 nand->write_byte = mtk_nfc_write_byte;
1298 nand->write_buf = mtk_nfc_write_buf;
1299 nand->read_byte = mtk_nfc_read_byte;
1300 nand->read_buf = mtk_nfc_read_buf;
1301 nand->cmd_ctrl = mtk_nfc_cmd_ctrl;
1302 nand->setup_data_interface = mtk_nfc_setup_data_interface;
1304 /* set default mode in case dt entry is missing */
1305 nand->ecc.mode = NAND_ECC_HW;
1307 nand->ecc.write_subpage = mtk_nfc_write_subpage_hwecc;
1308 nand->ecc.write_page_raw = mtk_nfc_write_page_raw;
1309 nand->ecc.write_page = mtk_nfc_write_page_hwecc;
1310 nand->ecc.write_oob_raw = mtk_nfc_write_oob_std;
1311 nand->ecc.write_oob = mtk_nfc_write_oob_std;
1313 nand->ecc.read_subpage = mtk_nfc_read_subpage_hwecc;
1314 nand->ecc.read_page_raw = mtk_nfc_read_page_raw;
1315 nand->ecc.read_page = mtk_nfc_read_page_hwecc;
1316 nand->ecc.read_oob_raw = mtk_nfc_read_oob_std;
1317 nand->ecc.read_oob = mtk_nfc_read_oob_std;
1319 mtd = nand_to_mtd(nand);
1320 mtd->owner = THIS_MODULE;
1321 mtd->dev.parent = dev;
1322 mtd->name = MTK_NAME;
1323 mtd_set_ooblayout(mtd, &mtk_nfc_ooblayout_ops);
1325 mtk_nfc_hw_init(nfc);
1327 ret = nand_scan_ident(mtd, nsels, NULL);
1328 if (ret)
1329 return ret;
1331 /* store bbt magic in page, cause OOB is not protected */
1332 if (nand->bbt_options & NAND_BBT_USE_FLASH)
1333 nand->bbt_options |= NAND_BBT_NO_OOB;
1335 ret = mtk_nfc_ecc_init(dev, mtd);
1336 if (ret)
1337 return -EINVAL;
1339 if (nand->options & NAND_BUSWIDTH_16) {
1340 dev_err(dev, "16bits buswidth not supported");
1341 return -EINVAL;
1344 ret = mtk_nfc_set_spare_per_sector(&chip->spare_per_sector, mtd);
1345 if (ret)
1346 return ret;
1348 mtk_nfc_set_fdm(&chip->fdm, mtd);
1349 mtk_nfc_set_bad_mark_ctl(&chip->bad_mark, mtd);
1351 len = mtd->writesize + mtd->oobsize;
1352 nfc->buffer = devm_kzalloc(dev, len, GFP_KERNEL);
1353 if (!nfc->buffer)
1354 return -ENOMEM;
1356 ret = nand_scan_tail(mtd);
1357 if (ret)
1358 return ret;
1360 ret = mtd_device_parse_register(mtd, NULL, NULL, NULL, 0);
1361 if (ret) {
1362 dev_err(dev, "mtd parse partition error\n");
1363 nand_release(mtd);
1364 return ret;
1367 list_add_tail(&chip->node, &nfc->chips);
1369 return 0;
1372 static int mtk_nfc_nand_chips_init(struct device *dev, struct mtk_nfc *nfc)
1374 struct device_node *np = dev->of_node;
1375 struct device_node *nand_np;
1376 int ret;
1378 for_each_child_of_node(np, nand_np) {
1379 ret = mtk_nfc_nand_chip_init(dev, nfc, nand_np);
1380 if (ret) {
1381 of_node_put(nand_np);
1382 return ret;
1386 return 0;
1389 static const struct mtk_nfc_caps mtk_nfc_caps_mt2701 = {
1390 .spare_size = spare_size_mt2701,
1391 .num_spare_size = 16,
1392 .pageformat_spare_shift = 4,
1393 .nfi_clk_div = 1,
1394 .max_sector = 16,
1395 .max_sector_size = 1024,
1398 static const struct mtk_nfc_caps mtk_nfc_caps_mt2712 = {
1399 .spare_size = spare_size_mt2712,
1400 .num_spare_size = 19,
1401 .pageformat_spare_shift = 16,
1402 .nfi_clk_div = 2,
1403 .max_sector = 16,
1404 .max_sector_size = 1024,
1407 static const struct mtk_nfc_caps mtk_nfc_caps_mt7622 = {
1408 .spare_size = spare_size_mt7622,
1409 .num_spare_size = 4,
1410 .pageformat_spare_shift = 4,
1411 .nfi_clk_div = 1,
1412 .max_sector = 8,
1413 .max_sector_size = 512,
1416 static const struct of_device_id mtk_nfc_id_table[] = {
1418 .compatible = "mediatek,mt2701-nfc",
1419 .data = &mtk_nfc_caps_mt2701,
1420 }, {
1421 .compatible = "mediatek,mt2712-nfc",
1422 .data = &mtk_nfc_caps_mt2712,
1423 }, {
1424 .compatible = "mediatek,mt7622-nfc",
1425 .data = &mtk_nfc_caps_mt7622,
1429 MODULE_DEVICE_TABLE(of, mtk_nfc_id_table);
1431 static int mtk_nfc_probe(struct platform_device *pdev)
1433 struct device *dev = &pdev->dev;
1434 struct device_node *np = dev->of_node;
1435 struct mtk_nfc *nfc;
1436 struct resource *res;
1437 const struct of_device_id *of_nfc_id = NULL;
1438 int ret, irq;
1440 nfc = devm_kzalloc(dev, sizeof(*nfc), GFP_KERNEL);
1441 if (!nfc)
1442 return -ENOMEM;
1444 spin_lock_init(&nfc->controller.lock);
1445 init_waitqueue_head(&nfc->controller.wq);
1446 INIT_LIST_HEAD(&nfc->chips);
1448 /* probe defer if not ready */
1449 nfc->ecc = of_mtk_ecc_get(np);
1450 if (IS_ERR(nfc->ecc))
1451 return PTR_ERR(nfc->ecc);
1452 else if (!nfc->ecc)
1453 return -ENODEV;
1455 nfc->dev = dev;
1457 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1458 nfc->regs = devm_ioremap_resource(dev, res);
1459 if (IS_ERR(nfc->regs)) {
1460 ret = PTR_ERR(nfc->regs);
1461 goto release_ecc;
1464 nfc->clk.nfi_clk = devm_clk_get(dev, "nfi_clk");
1465 if (IS_ERR(nfc->clk.nfi_clk)) {
1466 dev_err(dev, "no clk\n");
1467 ret = PTR_ERR(nfc->clk.nfi_clk);
1468 goto release_ecc;
1471 nfc->clk.pad_clk = devm_clk_get(dev, "pad_clk");
1472 if (IS_ERR(nfc->clk.pad_clk)) {
1473 dev_err(dev, "no pad clk\n");
1474 ret = PTR_ERR(nfc->clk.pad_clk);
1475 goto release_ecc;
1478 ret = mtk_nfc_enable_clk(dev, &nfc->clk);
1479 if (ret)
1480 goto release_ecc;
1482 irq = platform_get_irq(pdev, 0);
1483 if (irq < 0) {
1484 dev_err(dev, "no nfi irq resource\n");
1485 ret = -EINVAL;
1486 goto clk_disable;
1489 ret = devm_request_irq(dev, irq, mtk_nfc_irq, 0x0, "mtk-nand", nfc);
1490 if (ret) {
1491 dev_err(dev, "failed to request nfi irq\n");
1492 goto clk_disable;
1495 ret = dma_set_mask(dev, DMA_BIT_MASK(32));
1496 if (ret) {
1497 dev_err(dev, "failed to set dma mask\n");
1498 goto clk_disable;
1501 of_nfc_id = of_match_device(mtk_nfc_id_table, &pdev->dev);
1502 if (!of_nfc_id) {
1503 ret = -ENODEV;
1504 goto clk_disable;
1507 nfc->caps = of_nfc_id->data;
1509 platform_set_drvdata(pdev, nfc);
1511 ret = mtk_nfc_nand_chips_init(dev, nfc);
1512 if (ret) {
1513 dev_err(dev, "failed to init nand chips\n");
1514 goto clk_disable;
1517 return 0;
1519 clk_disable:
1520 mtk_nfc_disable_clk(&nfc->clk);
1522 release_ecc:
1523 mtk_ecc_release(nfc->ecc);
1525 return ret;
1528 static int mtk_nfc_remove(struct platform_device *pdev)
1530 struct mtk_nfc *nfc = platform_get_drvdata(pdev);
1531 struct mtk_nfc_nand_chip *chip;
1533 while (!list_empty(&nfc->chips)) {
1534 chip = list_first_entry(&nfc->chips, struct mtk_nfc_nand_chip,
1535 node);
1536 nand_release(nand_to_mtd(&chip->nand));
1537 list_del(&chip->node);
1540 mtk_ecc_release(nfc->ecc);
1541 mtk_nfc_disable_clk(&nfc->clk);
1543 return 0;
1546 #ifdef CONFIG_PM_SLEEP
1547 static int mtk_nfc_suspend(struct device *dev)
1549 struct mtk_nfc *nfc = dev_get_drvdata(dev);
1551 mtk_nfc_disable_clk(&nfc->clk);
1553 return 0;
1556 static int mtk_nfc_resume(struct device *dev)
1558 struct mtk_nfc *nfc = dev_get_drvdata(dev);
1559 struct mtk_nfc_nand_chip *chip;
1560 struct nand_chip *nand;
1561 int ret;
1562 u32 i;
1564 udelay(200);
1566 ret = mtk_nfc_enable_clk(dev, &nfc->clk);
1567 if (ret)
1568 return ret;
1570 /* reset NAND chip if VCC was powered off */
1571 list_for_each_entry(chip, &nfc->chips, node) {
1572 nand = &chip->nand;
1573 for (i = 0; i < chip->nsels; i++)
1574 nand_reset(nand, i);
1577 return 0;
1580 static SIMPLE_DEV_PM_OPS(mtk_nfc_pm_ops, mtk_nfc_suspend, mtk_nfc_resume);
1581 #endif
1583 static struct platform_driver mtk_nfc_driver = {
1584 .probe = mtk_nfc_probe,
1585 .remove = mtk_nfc_remove,
1586 .driver = {
1587 .name = MTK_NAME,
1588 .of_match_table = mtk_nfc_id_table,
1589 #ifdef CONFIG_PM_SLEEP
1590 .pm = &mtk_nfc_pm_ops,
1591 #endif
1595 module_platform_driver(mtk_nfc_driver);
1597 MODULE_LICENSE("GPL");
1598 MODULE_AUTHOR("Xiaolei Li <xiaolei.li@mediatek.com>");
1599 MODULE_DESCRIPTION("MTK Nand Flash Controller Driver");