x86/topology: Fix function name in documentation
[cris-mirror.git] / drivers / mtd / nand / mxc_nand.c
blobf3be0b2a88692b96589023b825fe6a1a1b9b566e
1 /*
2 * Copyright 2004-2007 Freescale Semiconductor, Inc. All Rights Reserved.
3 * Copyright 2008 Sascha Hauer, kernel@pengutronix.de
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License
7 * as published by the Free Software Foundation; either version 2
8 * of the License, or (at your option) any later version.
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston,
17 * MA 02110-1301, USA.
20 #include <linux/delay.h>
21 #include <linux/slab.h>
22 #include <linux/init.h>
23 #include <linux/module.h>
24 #include <linux/mtd/mtd.h>
25 #include <linux/mtd/rawnand.h>
26 #include <linux/mtd/partitions.h>
27 #include <linux/interrupt.h>
28 #include <linux/device.h>
29 #include <linux/platform_device.h>
30 #include <linux/clk.h>
31 #include <linux/err.h>
32 #include <linux/io.h>
33 #include <linux/irq.h>
34 #include <linux/completion.h>
35 #include <linux/of.h>
36 #include <linux/of_device.h>
38 #include <asm/mach/flash.h>
39 #include <linux/platform_data/mtd-mxc_nand.h>
41 #define DRIVER_NAME "mxc_nand"
43 /* Addresses for NFC registers */
44 #define NFC_V1_V2_BUF_SIZE (host->regs + 0x00)
45 #define NFC_V1_V2_BUF_ADDR (host->regs + 0x04)
46 #define NFC_V1_V2_FLASH_ADDR (host->regs + 0x06)
47 #define NFC_V1_V2_FLASH_CMD (host->regs + 0x08)
48 #define NFC_V1_V2_CONFIG (host->regs + 0x0a)
49 #define NFC_V1_V2_ECC_STATUS_RESULT (host->regs + 0x0c)
50 #define NFC_V1_V2_RSLTMAIN_AREA (host->regs + 0x0e)
51 #define NFC_V1_V2_RSLTSPARE_AREA (host->regs + 0x10)
52 #define NFC_V1_V2_WRPROT (host->regs + 0x12)
53 #define NFC_V1_UNLOCKSTART_BLKADDR (host->regs + 0x14)
54 #define NFC_V1_UNLOCKEND_BLKADDR (host->regs + 0x16)
55 #define NFC_V21_UNLOCKSTART_BLKADDR0 (host->regs + 0x20)
56 #define NFC_V21_UNLOCKSTART_BLKADDR1 (host->regs + 0x24)
57 #define NFC_V21_UNLOCKSTART_BLKADDR2 (host->regs + 0x28)
58 #define NFC_V21_UNLOCKSTART_BLKADDR3 (host->regs + 0x2c)
59 #define NFC_V21_UNLOCKEND_BLKADDR0 (host->regs + 0x22)
60 #define NFC_V21_UNLOCKEND_BLKADDR1 (host->regs + 0x26)
61 #define NFC_V21_UNLOCKEND_BLKADDR2 (host->regs + 0x2a)
62 #define NFC_V21_UNLOCKEND_BLKADDR3 (host->regs + 0x2e)
63 #define NFC_V1_V2_NF_WRPRST (host->regs + 0x18)
64 #define NFC_V1_V2_CONFIG1 (host->regs + 0x1a)
65 #define NFC_V1_V2_CONFIG2 (host->regs + 0x1c)
67 #define NFC_V2_CONFIG1_ECC_MODE_4 (1 << 0)
68 #define NFC_V1_V2_CONFIG1_SP_EN (1 << 2)
69 #define NFC_V1_V2_CONFIG1_ECC_EN (1 << 3)
70 #define NFC_V1_V2_CONFIG1_INT_MSK (1 << 4)
71 #define NFC_V1_V2_CONFIG1_BIG (1 << 5)
72 #define NFC_V1_V2_CONFIG1_RST (1 << 6)
73 #define NFC_V1_V2_CONFIG1_CE (1 << 7)
74 #define NFC_V2_CONFIG1_ONE_CYCLE (1 << 8)
75 #define NFC_V2_CONFIG1_PPB(x) (((x) & 0x3) << 9)
76 #define NFC_V2_CONFIG1_FP_INT (1 << 11)
78 #define NFC_V1_V2_CONFIG2_INT (1 << 15)
81 * Operation modes for the NFC. Valid for v1, v2 and v3
82 * type controllers.
84 #define NFC_CMD (1 << 0)
85 #define NFC_ADDR (1 << 1)
86 #define NFC_INPUT (1 << 2)
87 #define NFC_OUTPUT (1 << 3)
88 #define NFC_ID (1 << 4)
89 #define NFC_STATUS (1 << 5)
91 #define NFC_V3_FLASH_CMD (host->regs_axi + 0x00)
92 #define NFC_V3_FLASH_ADDR0 (host->regs_axi + 0x04)
94 #define NFC_V3_CONFIG1 (host->regs_axi + 0x34)
95 #define NFC_V3_CONFIG1_SP_EN (1 << 0)
96 #define NFC_V3_CONFIG1_RBA(x) (((x) & 0x7 ) << 4)
98 #define NFC_V3_ECC_STATUS_RESULT (host->regs_axi + 0x38)
100 #define NFC_V3_LAUNCH (host->regs_axi + 0x40)
102 #define NFC_V3_WRPROT (host->regs_ip + 0x0)
103 #define NFC_V3_WRPROT_LOCK_TIGHT (1 << 0)
104 #define NFC_V3_WRPROT_LOCK (1 << 1)
105 #define NFC_V3_WRPROT_UNLOCK (1 << 2)
106 #define NFC_V3_WRPROT_BLS_UNLOCK (2 << 6)
108 #define NFC_V3_WRPROT_UNLOCK_BLK_ADD0 (host->regs_ip + 0x04)
110 #define NFC_V3_CONFIG2 (host->regs_ip + 0x24)
111 #define NFC_V3_CONFIG2_PS_512 (0 << 0)
112 #define NFC_V3_CONFIG2_PS_2048 (1 << 0)
113 #define NFC_V3_CONFIG2_PS_4096 (2 << 0)
114 #define NFC_V3_CONFIG2_ONE_CYCLE (1 << 2)
115 #define NFC_V3_CONFIG2_ECC_EN (1 << 3)
116 #define NFC_V3_CONFIG2_2CMD_PHASES (1 << 4)
117 #define NFC_V3_CONFIG2_NUM_ADDR_PHASE0 (1 << 5)
118 #define NFC_V3_CONFIG2_ECC_MODE_8 (1 << 6)
119 #define NFC_V3_CONFIG2_PPB(x, shift) (((x) & 0x3) << shift)
120 #define NFC_V3_CONFIG2_NUM_ADDR_PHASE1(x) (((x) & 0x3) << 12)
121 #define NFC_V3_CONFIG2_INT_MSK (1 << 15)
122 #define NFC_V3_CONFIG2_ST_CMD(x) (((x) & 0xff) << 24)
123 #define NFC_V3_CONFIG2_SPAS(x) (((x) & 0xff) << 16)
125 #define NFC_V3_CONFIG3 (host->regs_ip + 0x28)
126 #define NFC_V3_CONFIG3_ADD_OP(x) (((x) & 0x3) << 0)
127 #define NFC_V3_CONFIG3_FW8 (1 << 3)
128 #define NFC_V3_CONFIG3_SBB(x) (((x) & 0x7) << 8)
129 #define NFC_V3_CONFIG3_NUM_OF_DEVICES(x) (((x) & 0x7) << 12)
130 #define NFC_V3_CONFIG3_RBB_MODE (1 << 15)
131 #define NFC_V3_CONFIG3_NO_SDMA (1 << 20)
133 #define NFC_V3_IPC (host->regs_ip + 0x2C)
134 #define NFC_V3_IPC_CREQ (1 << 0)
135 #define NFC_V3_IPC_INT (1 << 31)
137 #define NFC_V3_DELAY_LINE (host->regs_ip + 0x34)
139 struct mxc_nand_host;
141 struct mxc_nand_devtype_data {
142 void (*preset)(struct mtd_info *);
143 void (*send_cmd)(struct mxc_nand_host *, uint16_t, int);
144 void (*send_addr)(struct mxc_nand_host *, uint16_t, int);
145 void (*send_page)(struct mtd_info *, unsigned int);
146 void (*send_read_id)(struct mxc_nand_host *);
147 uint16_t (*get_dev_status)(struct mxc_nand_host *);
148 int (*check_int)(struct mxc_nand_host *);
149 void (*irq_control)(struct mxc_nand_host *, int);
150 u32 (*get_ecc_status)(struct mxc_nand_host *);
151 const struct mtd_ooblayout_ops *ooblayout;
152 void (*select_chip)(struct mtd_info *mtd, int chip);
153 int (*correct_data)(struct mtd_info *mtd, u_char *dat,
154 u_char *read_ecc, u_char *calc_ecc);
155 int (*setup_data_interface)(struct mtd_info *mtd, int csline,
156 const struct nand_data_interface *conf);
159 * On i.MX21 the CONFIG2:INT bit cannot be read if interrupts are masked
160 * (CONFIG1:INT_MSK is set). To handle this the driver uses
161 * enable_irq/disable_irq_nosync instead of CONFIG1:INT_MSK
163 int irqpending_quirk;
164 int needs_ip;
166 size_t regs_offset;
167 size_t spare0_offset;
168 size_t axi_offset;
170 int spare_len;
171 int eccbytes;
172 int eccsize;
173 int ppb_shift;
176 struct mxc_nand_host {
177 struct nand_chip nand;
178 struct device *dev;
180 void __iomem *spare0;
181 void __iomem *main_area0;
183 void __iomem *base;
184 void __iomem *regs;
185 void __iomem *regs_axi;
186 void __iomem *regs_ip;
187 int status_request;
188 struct clk *clk;
189 int clk_act;
190 int irq;
191 int eccsize;
192 int used_oobsize;
193 int active_cs;
195 struct completion op_completion;
197 uint8_t *data_buf;
198 unsigned int buf_start;
200 const struct mxc_nand_devtype_data *devtype_data;
201 struct mxc_nand_platform_data pdata;
204 static const char * const part_probes[] = {
205 "cmdlinepart", "RedBoot", "ofpart", NULL };
207 static void memcpy32_fromio(void *trg, const void __iomem *src, size_t size)
209 int i;
210 u32 *t = trg;
211 const __iomem u32 *s = src;
213 for (i = 0; i < (size >> 2); i++)
214 *t++ = __raw_readl(s++);
217 static void memcpy16_fromio(void *trg, const void __iomem *src, size_t size)
219 int i;
220 u16 *t = trg;
221 const __iomem u16 *s = src;
223 /* We assume that src (IO) is always 32bit aligned */
224 if (PTR_ALIGN(trg, 4) == trg && IS_ALIGNED(size, 4)) {
225 memcpy32_fromio(trg, src, size);
226 return;
229 for (i = 0; i < (size >> 1); i++)
230 *t++ = __raw_readw(s++);
233 static inline void memcpy32_toio(void __iomem *trg, const void *src, int size)
235 /* __iowrite32_copy use 32bit size values so divide by 4 */
236 __iowrite32_copy(trg, src, size / 4);
239 static void memcpy16_toio(void __iomem *trg, const void *src, int size)
241 int i;
242 __iomem u16 *t = trg;
243 const u16 *s = src;
245 /* We assume that trg (IO) is always 32bit aligned */
246 if (PTR_ALIGN(src, 4) == src && IS_ALIGNED(size, 4)) {
247 memcpy32_toio(trg, src, size);
248 return;
251 for (i = 0; i < (size >> 1); i++)
252 __raw_writew(*s++, t++);
255 static int check_int_v3(struct mxc_nand_host *host)
257 uint32_t tmp;
259 tmp = readl(NFC_V3_IPC);
260 if (!(tmp & NFC_V3_IPC_INT))
261 return 0;
263 tmp &= ~NFC_V3_IPC_INT;
264 writel(tmp, NFC_V3_IPC);
266 return 1;
269 static int check_int_v1_v2(struct mxc_nand_host *host)
271 uint32_t tmp;
273 tmp = readw(NFC_V1_V2_CONFIG2);
274 if (!(tmp & NFC_V1_V2_CONFIG2_INT))
275 return 0;
277 if (!host->devtype_data->irqpending_quirk)
278 writew(tmp & ~NFC_V1_V2_CONFIG2_INT, NFC_V1_V2_CONFIG2);
280 return 1;
283 static void irq_control_v1_v2(struct mxc_nand_host *host, int activate)
285 uint16_t tmp;
287 tmp = readw(NFC_V1_V2_CONFIG1);
289 if (activate)
290 tmp &= ~NFC_V1_V2_CONFIG1_INT_MSK;
291 else
292 tmp |= NFC_V1_V2_CONFIG1_INT_MSK;
294 writew(tmp, NFC_V1_V2_CONFIG1);
297 static void irq_control_v3(struct mxc_nand_host *host, int activate)
299 uint32_t tmp;
301 tmp = readl(NFC_V3_CONFIG2);
303 if (activate)
304 tmp &= ~NFC_V3_CONFIG2_INT_MSK;
305 else
306 tmp |= NFC_V3_CONFIG2_INT_MSK;
308 writel(tmp, NFC_V3_CONFIG2);
311 static void irq_control(struct mxc_nand_host *host, int activate)
313 if (host->devtype_data->irqpending_quirk) {
314 if (activate)
315 enable_irq(host->irq);
316 else
317 disable_irq_nosync(host->irq);
318 } else {
319 host->devtype_data->irq_control(host, activate);
323 static u32 get_ecc_status_v1(struct mxc_nand_host *host)
325 return readw(NFC_V1_V2_ECC_STATUS_RESULT);
328 static u32 get_ecc_status_v2(struct mxc_nand_host *host)
330 return readl(NFC_V1_V2_ECC_STATUS_RESULT);
333 static u32 get_ecc_status_v3(struct mxc_nand_host *host)
335 return readl(NFC_V3_ECC_STATUS_RESULT);
338 static irqreturn_t mxc_nfc_irq(int irq, void *dev_id)
340 struct mxc_nand_host *host = dev_id;
342 if (!host->devtype_data->check_int(host))
343 return IRQ_NONE;
345 irq_control(host, 0);
347 complete(&host->op_completion);
349 return IRQ_HANDLED;
352 /* This function polls the NANDFC to wait for the basic operation to
353 * complete by checking the INT bit of config2 register.
355 static int wait_op_done(struct mxc_nand_host *host, int useirq)
357 int ret = 0;
360 * If operation is already complete, don't bother to setup an irq or a
361 * loop.
363 if (host->devtype_data->check_int(host))
364 return 0;
366 if (useirq) {
367 unsigned long timeout;
369 reinit_completion(&host->op_completion);
371 irq_control(host, 1);
373 timeout = wait_for_completion_timeout(&host->op_completion, HZ);
374 if (!timeout && !host->devtype_data->check_int(host)) {
375 dev_dbg(host->dev, "timeout waiting for irq\n");
376 ret = -ETIMEDOUT;
378 } else {
379 int max_retries = 8000;
380 int done;
382 do {
383 udelay(1);
385 done = host->devtype_data->check_int(host);
386 if (done)
387 break;
389 } while (--max_retries);
391 if (!done) {
392 dev_dbg(host->dev, "timeout polling for completion\n");
393 ret = -ETIMEDOUT;
397 WARN_ONCE(ret < 0, "timeout! useirq=%d\n", useirq);
399 return ret;
402 static void send_cmd_v3(struct mxc_nand_host *host, uint16_t cmd, int useirq)
404 /* fill command */
405 writel(cmd, NFC_V3_FLASH_CMD);
407 /* send out command */
408 writel(NFC_CMD, NFC_V3_LAUNCH);
410 /* Wait for operation to complete */
411 wait_op_done(host, useirq);
414 /* This function issues the specified command to the NAND device and
415 * waits for completion. */
416 static void send_cmd_v1_v2(struct mxc_nand_host *host, uint16_t cmd, int useirq)
418 dev_dbg(host->dev, "send_cmd(host, 0x%x, %d)\n", cmd, useirq);
420 writew(cmd, NFC_V1_V2_FLASH_CMD);
421 writew(NFC_CMD, NFC_V1_V2_CONFIG2);
423 if (host->devtype_data->irqpending_quirk && (cmd == NAND_CMD_RESET)) {
424 int max_retries = 100;
425 /* Reset completion is indicated by NFC_CONFIG2 */
426 /* being set to 0 */
427 while (max_retries-- > 0) {
428 if (readw(NFC_V1_V2_CONFIG2) == 0) {
429 break;
431 udelay(1);
433 if (max_retries < 0)
434 dev_dbg(host->dev, "%s: RESET failed\n", __func__);
435 } else {
436 /* Wait for operation to complete */
437 wait_op_done(host, useirq);
441 static void send_addr_v3(struct mxc_nand_host *host, uint16_t addr, int islast)
443 /* fill address */
444 writel(addr, NFC_V3_FLASH_ADDR0);
446 /* send out address */
447 writel(NFC_ADDR, NFC_V3_LAUNCH);
449 wait_op_done(host, 0);
452 /* This function sends an address (or partial address) to the
453 * NAND device. The address is used to select the source/destination for
454 * a NAND command. */
455 static void send_addr_v1_v2(struct mxc_nand_host *host, uint16_t addr, int islast)
457 dev_dbg(host->dev, "send_addr(host, 0x%x %d)\n", addr, islast);
459 writew(addr, NFC_V1_V2_FLASH_ADDR);
460 writew(NFC_ADDR, NFC_V1_V2_CONFIG2);
462 /* Wait for operation to complete */
463 wait_op_done(host, islast);
466 static void send_page_v3(struct mtd_info *mtd, unsigned int ops)
468 struct nand_chip *nand_chip = mtd_to_nand(mtd);
469 struct mxc_nand_host *host = nand_get_controller_data(nand_chip);
470 uint32_t tmp;
472 tmp = readl(NFC_V3_CONFIG1);
473 tmp &= ~(7 << 4);
474 writel(tmp, NFC_V3_CONFIG1);
476 /* transfer data from NFC ram to nand */
477 writel(ops, NFC_V3_LAUNCH);
479 wait_op_done(host, false);
482 static void send_page_v2(struct mtd_info *mtd, unsigned int ops)
484 struct nand_chip *nand_chip = mtd_to_nand(mtd);
485 struct mxc_nand_host *host = nand_get_controller_data(nand_chip);
487 /* NANDFC buffer 0 is used for page read/write */
488 writew(host->active_cs << 4, NFC_V1_V2_BUF_ADDR);
490 writew(ops, NFC_V1_V2_CONFIG2);
492 /* Wait for operation to complete */
493 wait_op_done(host, true);
496 static void send_page_v1(struct mtd_info *mtd, unsigned int ops)
498 struct nand_chip *nand_chip = mtd_to_nand(mtd);
499 struct mxc_nand_host *host = nand_get_controller_data(nand_chip);
500 int bufs, i;
502 if (mtd->writesize > 512)
503 bufs = 4;
504 else
505 bufs = 1;
507 for (i = 0; i < bufs; i++) {
509 /* NANDFC buffer 0 is used for page read/write */
510 writew((host->active_cs << 4) | i, NFC_V1_V2_BUF_ADDR);
512 writew(ops, NFC_V1_V2_CONFIG2);
514 /* Wait for operation to complete */
515 wait_op_done(host, true);
519 static void send_read_id_v3(struct mxc_nand_host *host)
521 /* Read ID into main buffer */
522 writel(NFC_ID, NFC_V3_LAUNCH);
524 wait_op_done(host, true);
526 memcpy32_fromio(host->data_buf, host->main_area0, 16);
529 /* Request the NANDFC to perform a read of the NAND device ID. */
530 static void send_read_id_v1_v2(struct mxc_nand_host *host)
532 /* NANDFC buffer 0 is used for device ID output */
533 writew(host->active_cs << 4, NFC_V1_V2_BUF_ADDR);
535 writew(NFC_ID, NFC_V1_V2_CONFIG2);
537 /* Wait for operation to complete */
538 wait_op_done(host, true);
540 memcpy32_fromio(host->data_buf, host->main_area0, 16);
543 static uint16_t get_dev_status_v3(struct mxc_nand_host *host)
545 writew(NFC_STATUS, NFC_V3_LAUNCH);
546 wait_op_done(host, true);
548 return readl(NFC_V3_CONFIG1) >> 16;
551 /* This function requests the NANDFC to perform a read of the
552 * NAND device status and returns the current status. */
553 static uint16_t get_dev_status_v1_v2(struct mxc_nand_host *host)
555 void __iomem *main_buf = host->main_area0;
556 uint32_t store;
557 uint16_t ret;
559 writew(host->active_cs << 4, NFC_V1_V2_BUF_ADDR);
562 * The device status is stored in main_area0. To
563 * prevent corruption of the buffer save the value
564 * and restore it afterwards.
566 store = readl(main_buf);
568 writew(NFC_STATUS, NFC_V1_V2_CONFIG2);
569 wait_op_done(host, true);
571 ret = readw(main_buf);
573 writel(store, main_buf);
575 return ret;
578 /* This functions is used by upper layer to checks if device is ready */
579 static int mxc_nand_dev_ready(struct mtd_info *mtd)
582 * NFC handles R/B internally. Therefore, this function
583 * always returns status as ready.
585 return 1;
588 static void mxc_nand_enable_hwecc(struct mtd_info *mtd, int mode)
591 * If HW ECC is enabled, we turn it on during init. There is
592 * no need to enable again here.
596 static int mxc_nand_correct_data_v1(struct mtd_info *mtd, u_char *dat,
597 u_char *read_ecc, u_char *calc_ecc)
599 struct nand_chip *nand_chip = mtd_to_nand(mtd);
600 struct mxc_nand_host *host = nand_get_controller_data(nand_chip);
603 * 1-Bit errors are automatically corrected in HW. No need for
604 * additional correction. 2-Bit errors cannot be corrected by
605 * HW ECC, so we need to return failure
607 uint16_t ecc_status = get_ecc_status_v1(host);
609 if (((ecc_status & 0x3) == 2) || ((ecc_status >> 2) == 2)) {
610 dev_dbg(host->dev, "HWECC uncorrectable 2-bit ECC error\n");
611 return -EBADMSG;
614 return 0;
617 static int mxc_nand_correct_data_v2_v3(struct mtd_info *mtd, u_char *dat,
618 u_char *read_ecc, u_char *calc_ecc)
620 struct nand_chip *nand_chip = mtd_to_nand(mtd);
621 struct mxc_nand_host *host = nand_get_controller_data(nand_chip);
622 u32 ecc_stat, err;
623 int no_subpages = 1;
624 int ret = 0;
625 u8 ecc_bit_mask, err_limit;
627 ecc_bit_mask = (host->eccsize == 4) ? 0x7 : 0xf;
628 err_limit = (host->eccsize == 4) ? 0x4 : 0x8;
630 no_subpages = mtd->writesize >> 9;
632 ecc_stat = host->devtype_data->get_ecc_status(host);
634 do {
635 err = ecc_stat & ecc_bit_mask;
636 if (err > err_limit) {
637 dev_dbg(host->dev, "UnCorrectable RS-ECC Error\n");
638 return -EBADMSG;
639 } else {
640 ret += err;
642 ecc_stat >>= 4;
643 } while (--no_subpages);
645 dev_dbg(host->dev, "%d Symbol Correctable RS-ECC Error\n", ret);
647 return ret;
650 static int mxc_nand_calculate_ecc(struct mtd_info *mtd, const u_char *dat,
651 u_char *ecc_code)
653 return 0;
656 static u_char mxc_nand_read_byte(struct mtd_info *mtd)
658 struct nand_chip *nand_chip = mtd_to_nand(mtd);
659 struct mxc_nand_host *host = nand_get_controller_data(nand_chip);
660 uint8_t ret;
662 /* Check for status request */
663 if (host->status_request)
664 return host->devtype_data->get_dev_status(host) & 0xFF;
666 if (nand_chip->options & NAND_BUSWIDTH_16) {
667 /* only take the lower byte of each word */
668 ret = *(uint16_t *)(host->data_buf + host->buf_start);
670 host->buf_start += 2;
671 } else {
672 ret = *(uint8_t *)(host->data_buf + host->buf_start);
673 host->buf_start++;
676 dev_dbg(host->dev, "%s: ret=0x%hhx (start=%u)\n", __func__, ret, host->buf_start);
677 return ret;
680 static uint16_t mxc_nand_read_word(struct mtd_info *mtd)
682 struct nand_chip *nand_chip = mtd_to_nand(mtd);
683 struct mxc_nand_host *host = nand_get_controller_data(nand_chip);
684 uint16_t ret;
686 ret = *(uint16_t *)(host->data_buf + host->buf_start);
687 host->buf_start += 2;
689 return ret;
692 /* Write data of length len to buffer buf. The data to be
693 * written on NAND Flash is first copied to RAMbuffer. After the Data Input
694 * Operation by the NFC, the data is written to NAND Flash */
695 static void mxc_nand_write_buf(struct mtd_info *mtd,
696 const u_char *buf, int len)
698 struct nand_chip *nand_chip = mtd_to_nand(mtd);
699 struct mxc_nand_host *host = nand_get_controller_data(nand_chip);
700 u16 col = host->buf_start;
701 int n = mtd->oobsize + mtd->writesize - col;
703 n = min(n, len);
705 memcpy(host->data_buf + col, buf, n);
707 host->buf_start += n;
710 /* Read the data buffer from the NAND Flash. To read the data from NAND
711 * Flash first the data output cycle is initiated by the NFC, which copies
712 * the data to RAMbuffer. This data of length len is then copied to buffer buf.
714 static void mxc_nand_read_buf(struct mtd_info *mtd, u_char *buf, int len)
716 struct nand_chip *nand_chip = mtd_to_nand(mtd);
717 struct mxc_nand_host *host = nand_get_controller_data(nand_chip);
718 u16 col = host->buf_start;
719 int n = mtd->oobsize + mtd->writesize - col;
721 n = min(n, len);
723 memcpy(buf, host->data_buf + col, n);
725 host->buf_start += n;
728 /* This function is used by upper layer for select and
729 * deselect of the NAND chip */
730 static void mxc_nand_select_chip_v1_v3(struct mtd_info *mtd, int chip)
732 struct nand_chip *nand_chip = mtd_to_nand(mtd);
733 struct mxc_nand_host *host = nand_get_controller_data(nand_chip);
735 if (chip == -1) {
736 /* Disable the NFC clock */
737 if (host->clk_act) {
738 clk_disable_unprepare(host->clk);
739 host->clk_act = 0;
741 return;
744 if (!host->clk_act) {
745 /* Enable the NFC clock */
746 clk_prepare_enable(host->clk);
747 host->clk_act = 1;
751 static void mxc_nand_select_chip_v2(struct mtd_info *mtd, int chip)
753 struct nand_chip *nand_chip = mtd_to_nand(mtd);
754 struct mxc_nand_host *host = nand_get_controller_data(nand_chip);
756 if (chip == -1) {
757 /* Disable the NFC clock */
758 if (host->clk_act) {
759 clk_disable_unprepare(host->clk);
760 host->clk_act = 0;
762 return;
765 if (!host->clk_act) {
766 /* Enable the NFC clock */
767 clk_prepare_enable(host->clk);
768 host->clk_act = 1;
771 host->active_cs = chip;
772 writew(host->active_cs << 4, NFC_V1_V2_BUF_ADDR);
776 * The controller splits a page into data chunks of 512 bytes + partial oob.
777 * There are writesize / 512 such chunks, the size of the partial oob parts is
778 * oobsize / #chunks rounded down to a multiple of 2. The last oob chunk then
779 * contains additionally the byte lost by rounding (if any).
780 * This function handles the needed shuffling between host->data_buf (which
781 * holds a page in natural order, i.e. writesize bytes data + oobsize bytes
782 * spare) and the NFC buffer.
784 static void copy_spare(struct mtd_info *mtd, bool bfrom)
786 struct nand_chip *this = mtd_to_nand(mtd);
787 struct mxc_nand_host *host = nand_get_controller_data(this);
788 u16 i, oob_chunk_size;
789 u16 num_chunks = mtd->writesize / 512;
791 u8 *d = host->data_buf + mtd->writesize;
792 u8 __iomem *s = host->spare0;
793 u16 sparebuf_size = host->devtype_data->spare_len;
795 /* size of oob chunk for all but possibly the last one */
796 oob_chunk_size = (host->used_oobsize / num_chunks) & ~1;
798 if (bfrom) {
799 for (i = 0; i < num_chunks - 1; i++)
800 memcpy16_fromio(d + i * oob_chunk_size,
801 s + i * sparebuf_size,
802 oob_chunk_size);
804 /* the last chunk */
805 memcpy16_fromio(d + i * oob_chunk_size,
806 s + i * sparebuf_size,
807 host->used_oobsize - i * oob_chunk_size);
808 } else {
809 for (i = 0; i < num_chunks - 1; i++)
810 memcpy16_toio(&s[i * sparebuf_size],
811 &d[i * oob_chunk_size],
812 oob_chunk_size);
814 /* the last chunk */
815 memcpy16_toio(&s[i * sparebuf_size],
816 &d[i * oob_chunk_size],
817 host->used_oobsize - i * oob_chunk_size);
822 * MXC NANDFC can only perform full page+spare or spare-only read/write. When
823 * the upper layers perform a read/write buf operation, the saved column address
824 * is used to index into the full page. So usually this function is called with
825 * column == 0 (unless no column cycle is needed indicated by column == -1)
827 static void mxc_do_addr_cycle(struct mtd_info *mtd, int column, int page_addr)
829 struct nand_chip *nand_chip = mtd_to_nand(mtd);
830 struct mxc_nand_host *host = nand_get_controller_data(nand_chip);
832 /* Write out column address, if necessary */
833 if (column != -1) {
834 host->devtype_data->send_addr(host, column & 0xff,
835 page_addr == -1);
836 if (mtd->writesize > 512)
837 /* another col addr cycle for 2k page */
838 host->devtype_data->send_addr(host,
839 (column >> 8) & 0xff,
840 false);
843 /* Write out page address, if necessary */
844 if (page_addr != -1) {
845 /* paddr_0 - p_addr_7 */
846 host->devtype_data->send_addr(host, (page_addr & 0xff), false);
848 if (mtd->writesize > 512) {
849 if (mtd->size >= 0x10000000) {
850 /* paddr_8 - paddr_15 */
851 host->devtype_data->send_addr(host,
852 (page_addr >> 8) & 0xff,
853 false);
854 host->devtype_data->send_addr(host,
855 (page_addr >> 16) & 0xff,
856 true);
857 } else
858 /* paddr_8 - paddr_15 */
859 host->devtype_data->send_addr(host,
860 (page_addr >> 8) & 0xff, true);
861 } else {
862 if (nand_chip->options & NAND_ROW_ADDR_3) {
863 /* paddr_8 - paddr_15 */
864 host->devtype_data->send_addr(host,
865 (page_addr >> 8) & 0xff,
866 false);
867 host->devtype_data->send_addr(host,
868 (page_addr >> 16) & 0xff,
869 true);
870 } else
871 /* paddr_8 - paddr_15 */
872 host->devtype_data->send_addr(host,
873 (page_addr >> 8) & 0xff, true);
878 #define MXC_V1_ECCBYTES 5
880 static int mxc_v1_ooblayout_ecc(struct mtd_info *mtd, int section,
881 struct mtd_oob_region *oobregion)
883 struct nand_chip *nand_chip = mtd_to_nand(mtd);
885 if (section >= nand_chip->ecc.steps)
886 return -ERANGE;
888 oobregion->offset = (section * 16) + 6;
889 oobregion->length = MXC_V1_ECCBYTES;
891 return 0;
894 static int mxc_v1_ooblayout_free(struct mtd_info *mtd, int section,
895 struct mtd_oob_region *oobregion)
897 struct nand_chip *nand_chip = mtd_to_nand(mtd);
899 if (section > nand_chip->ecc.steps)
900 return -ERANGE;
902 if (!section) {
903 if (mtd->writesize <= 512) {
904 oobregion->offset = 0;
905 oobregion->length = 5;
906 } else {
907 oobregion->offset = 2;
908 oobregion->length = 4;
910 } else {
911 oobregion->offset = ((section - 1) * 16) + MXC_V1_ECCBYTES + 6;
912 if (section < nand_chip->ecc.steps)
913 oobregion->length = (section * 16) + 6 -
914 oobregion->offset;
915 else
916 oobregion->length = mtd->oobsize - oobregion->offset;
919 return 0;
922 static const struct mtd_ooblayout_ops mxc_v1_ooblayout_ops = {
923 .ecc = mxc_v1_ooblayout_ecc,
924 .free = mxc_v1_ooblayout_free,
927 static int mxc_v2_ooblayout_ecc(struct mtd_info *mtd, int section,
928 struct mtd_oob_region *oobregion)
930 struct nand_chip *nand_chip = mtd_to_nand(mtd);
931 int stepsize = nand_chip->ecc.bytes == 9 ? 16 : 26;
933 if (section >= nand_chip->ecc.steps)
934 return -ERANGE;
936 oobregion->offset = (section * stepsize) + 7;
937 oobregion->length = nand_chip->ecc.bytes;
939 return 0;
942 static int mxc_v2_ooblayout_free(struct mtd_info *mtd, int section,
943 struct mtd_oob_region *oobregion)
945 struct nand_chip *nand_chip = mtd_to_nand(mtd);
946 int stepsize = nand_chip->ecc.bytes == 9 ? 16 : 26;
948 if (section >= nand_chip->ecc.steps)
949 return -ERANGE;
951 if (!section) {
952 if (mtd->writesize <= 512) {
953 oobregion->offset = 0;
954 oobregion->length = 5;
955 } else {
956 oobregion->offset = 2;
957 oobregion->length = 4;
959 } else {
960 oobregion->offset = section * stepsize;
961 oobregion->length = 7;
964 return 0;
967 static const struct mtd_ooblayout_ops mxc_v2_ooblayout_ops = {
968 .ecc = mxc_v2_ooblayout_ecc,
969 .free = mxc_v2_ooblayout_free,
973 * v2 and v3 type controllers can do 4bit or 8bit ecc depending
974 * on how much oob the nand chip has. For 8bit ecc we need at least
975 * 26 bytes of oob data per 512 byte block.
977 static int get_eccsize(struct mtd_info *mtd)
979 int oobbytes_per_512 = 0;
981 oobbytes_per_512 = mtd->oobsize * 512 / mtd->writesize;
983 if (oobbytes_per_512 < 26)
984 return 4;
985 else
986 return 8;
989 static void preset_v1(struct mtd_info *mtd)
991 struct nand_chip *nand_chip = mtd_to_nand(mtd);
992 struct mxc_nand_host *host = nand_get_controller_data(nand_chip);
993 uint16_t config1 = 0;
995 if (nand_chip->ecc.mode == NAND_ECC_HW && mtd->writesize)
996 config1 |= NFC_V1_V2_CONFIG1_ECC_EN;
998 if (!host->devtype_data->irqpending_quirk)
999 config1 |= NFC_V1_V2_CONFIG1_INT_MSK;
1001 host->eccsize = 1;
1003 writew(config1, NFC_V1_V2_CONFIG1);
1004 /* preset operation */
1006 /* Unlock the internal RAM Buffer */
1007 writew(0x2, NFC_V1_V2_CONFIG);
1009 /* Blocks to be unlocked */
1010 writew(0x0, NFC_V1_UNLOCKSTART_BLKADDR);
1011 writew(0xffff, NFC_V1_UNLOCKEND_BLKADDR);
1013 /* Unlock Block Command for given address range */
1014 writew(0x4, NFC_V1_V2_WRPROT);
1017 static int mxc_nand_v2_setup_data_interface(struct mtd_info *mtd, int csline,
1018 const struct nand_data_interface *conf)
1020 struct nand_chip *nand_chip = mtd_to_nand(mtd);
1021 struct mxc_nand_host *host = nand_get_controller_data(nand_chip);
1022 int tRC_min_ns, tRC_ps, ret;
1023 unsigned long rate, rate_round;
1024 const struct nand_sdr_timings *timings;
1025 u16 config1;
1027 timings = nand_get_sdr_timings(conf);
1028 if (IS_ERR(timings))
1029 return -ENOTSUPP;
1031 config1 = readw(NFC_V1_V2_CONFIG1);
1033 tRC_min_ns = timings->tRC_min / 1000;
1034 rate = 1000000000 / tRC_min_ns;
1037 * For tRC < 30ns we have to use EDO mode. In this case the controller
1038 * does one access per clock cycle. Otherwise the controller does one
1039 * access in two clock cycles, thus we have to double the rate to the
1040 * controller.
1042 if (tRC_min_ns < 30) {
1043 rate_round = clk_round_rate(host->clk, rate);
1044 config1 |= NFC_V2_CONFIG1_ONE_CYCLE;
1045 tRC_ps = 1000000000 / (rate_round / 1000);
1046 } else {
1047 rate *= 2;
1048 rate_round = clk_round_rate(host->clk, rate);
1049 config1 &= ~NFC_V2_CONFIG1_ONE_CYCLE;
1050 tRC_ps = 1000000000 / (rate_round / 1000 / 2);
1054 * The timing values compared against are from the i.MX25 Automotive
1055 * datasheet, Table 50. NFC Timing Parameters
1057 if (timings->tCLS_min > tRC_ps - 1000 ||
1058 timings->tCLH_min > tRC_ps - 2000 ||
1059 timings->tCS_min > tRC_ps - 1000 ||
1060 timings->tCH_min > tRC_ps - 2000 ||
1061 timings->tWP_min > tRC_ps - 1500 ||
1062 timings->tALS_min > tRC_ps ||
1063 timings->tALH_min > tRC_ps - 3000 ||
1064 timings->tDS_min > tRC_ps ||
1065 timings->tDH_min > tRC_ps - 5000 ||
1066 timings->tWC_min > 2 * tRC_ps ||
1067 timings->tWH_min > tRC_ps - 2500 ||
1068 timings->tRR_min > 6 * tRC_ps ||
1069 timings->tRP_min > 3 * tRC_ps / 2 ||
1070 timings->tRC_min > 2 * tRC_ps ||
1071 timings->tREH_min > (tRC_ps / 2) - 2500) {
1072 dev_dbg(host->dev, "Timing out of bounds\n");
1073 return -EINVAL;
1076 if (csline == NAND_DATA_IFACE_CHECK_ONLY)
1077 return 0;
1079 ret = clk_set_rate(host->clk, rate);
1080 if (ret)
1081 return ret;
1083 writew(config1, NFC_V1_V2_CONFIG1);
1085 dev_dbg(host->dev, "Setting rate to %ldHz, %s mode\n", rate_round,
1086 config1 & NFC_V2_CONFIG1_ONE_CYCLE ? "One cycle (EDO)" :
1087 "normal");
1089 return 0;
1092 static void preset_v2(struct mtd_info *mtd)
1094 struct nand_chip *nand_chip = mtd_to_nand(mtd);
1095 struct mxc_nand_host *host = nand_get_controller_data(nand_chip);
1096 uint16_t config1 = 0;
1098 config1 |= NFC_V2_CONFIG1_FP_INT;
1100 if (!host->devtype_data->irqpending_quirk)
1101 config1 |= NFC_V1_V2_CONFIG1_INT_MSK;
1103 if (mtd->writesize) {
1104 uint16_t pages_per_block = mtd->erasesize / mtd->writesize;
1106 if (nand_chip->ecc.mode == NAND_ECC_HW)
1107 config1 |= NFC_V1_V2_CONFIG1_ECC_EN;
1109 host->eccsize = get_eccsize(mtd);
1110 if (host->eccsize == 4)
1111 config1 |= NFC_V2_CONFIG1_ECC_MODE_4;
1113 config1 |= NFC_V2_CONFIG1_PPB(ffs(pages_per_block) - 6);
1114 } else {
1115 host->eccsize = 1;
1118 writew(config1, NFC_V1_V2_CONFIG1);
1119 /* preset operation */
1121 /* Unlock the internal RAM Buffer */
1122 writew(0x2, NFC_V1_V2_CONFIG);
1124 /* Blocks to be unlocked */
1125 writew(0x0, NFC_V21_UNLOCKSTART_BLKADDR0);
1126 writew(0x0, NFC_V21_UNLOCKSTART_BLKADDR1);
1127 writew(0x0, NFC_V21_UNLOCKSTART_BLKADDR2);
1128 writew(0x0, NFC_V21_UNLOCKSTART_BLKADDR3);
1129 writew(0xffff, NFC_V21_UNLOCKEND_BLKADDR0);
1130 writew(0xffff, NFC_V21_UNLOCKEND_BLKADDR1);
1131 writew(0xffff, NFC_V21_UNLOCKEND_BLKADDR2);
1132 writew(0xffff, NFC_V21_UNLOCKEND_BLKADDR3);
1134 /* Unlock Block Command for given address range */
1135 writew(0x4, NFC_V1_V2_WRPROT);
1138 static void preset_v3(struct mtd_info *mtd)
1140 struct nand_chip *chip = mtd_to_nand(mtd);
1141 struct mxc_nand_host *host = nand_get_controller_data(chip);
1142 uint32_t config2, config3;
1143 int i, addr_phases;
1145 writel(NFC_V3_CONFIG1_RBA(0), NFC_V3_CONFIG1);
1146 writel(NFC_V3_IPC_CREQ, NFC_V3_IPC);
1148 /* Unlock the internal RAM Buffer */
1149 writel(NFC_V3_WRPROT_BLS_UNLOCK | NFC_V3_WRPROT_UNLOCK,
1150 NFC_V3_WRPROT);
1152 /* Blocks to be unlocked */
1153 for (i = 0; i < NAND_MAX_CHIPS; i++)
1154 writel(0xffff << 16, NFC_V3_WRPROT_UNLOCK_BLK_ADD0 + (i << 2));
1156 writel(0, NFC_V3_IPC);
1158 config2 = NFC_V3_CONFIG2_ONE_CYCLE |
1159 NFC_V3_CONFIG2_2CMD_PHASES |
1160 NFC_V3_CONFIG2_SPAS(mtd->oobsize >> 1) |
1161 NFC_V3_CONFIG2_ST_CMD(0x70) |
1162 NFC_V3_CONFIG2_INT_MSK |
1163 NFC_V3_CONFIG2_NUM_ADDR_PHASE0;
1165 addr_phases = fls(chip->pagemask) >> 3;
1167 if (mtd->writesize == 2048) {
1168 config2 |= NFC_V3_CONFIG2_PS_2048;
1169 config2 |= NFC_V3_CONFIG2_NUM_ADDR_PHASE1(addr_phases);
1170 } else if (mtd->writesize == 4096) {
1171 config2 |= NFC_V3_CONFIG2_PS_4096;
1172 config2 |= NFC_V3_CONFIG2_NUM_ADDR_PHASE1(addr_phases);
1173 } else {
1174 config2 |= NFC_V3_CONFIG2_PS_512;
1175 config2 |= NFC_V3_CONFIG2_NUM_ADDR_PHASE1(addr_phases - 1);
1178 if (mtd->writesize) {
1179 if (chip->ecc.mode == NAND_ECC_HW)
1180 config2 |= NFC_V3_CONFIG2_ECC_EN;
1182 config2 |= NFC_V3_CONFIG2_PPB(
1183 ffs(mtd->erasesize / mtd->writesize) - 6,
1184 host->devtype_data->ppb_shift);
1185 host->eccsize = get_eccsize(mtd);
1186 if (host->eccsize == 8)
1187 config2 |= NFC_V3_CONFIG2_ECC_MODE_8;
1190 writel(config2, NFC_V3_CONFIG2);
1192 config3 = NFC_V3_CONFIG3_NUM_OF_DEVICES(0) |
1193 NFC_V3_CONFIG3_NO_SDMA |
1194 NFC_V3_CONFIG3_RBB_MODE |
1195 NFC_V3_CONFIG3_SBB(6) | /* Reset default */
1196 NFC_V3_CONFIG3_ADD_OP(0);
1198 if (!(chip->options & NAND_BUSWIDTH_16))
1199 config3 |= NFC_V3_CONFIG3_FW8;
1201 writel(config3, NFC_V3_CONFIG3);
1203 writel(0, NFC_V3_DELAY_LINE);
1206 /* Used by the upper layer to write command to NAND Flash for
1207 * different operations to be carried out on NAND Flash */
1208 static void mxc_nand_command(struct mtd_info *mtd, unsigned command,
1209 int column, int page_addr)
1211 struct nand_chip *nand_chip = mtd_to_nand(mtd);
1212 struct mxc_nand_host *host = nand_get_controller_data(nand_chip);
1214 dev_dbg(host->dev, "mxc_nand_command (cmd = 0x%x, col = 0x%x, page = 0x%x)\n",
1215 command, column, page_addr);
1217 /* Reset command state information */
1218 host->status_request = false;
1220 /* Command pre-processing step */
1221 switch (command) {
1222 case NAND_CMD_RESET:
1223 host->devtype_data->preset(mtd);
1224 host->devtype_data->send_cmd(host, command, false);
1225 break;
1227 case NAND_CMD_STATUS:
1228 host->buf_start = 0;
1229 host->status_request = true;
1231 host->devtype_data->send_cmd(host, command, true);
1232 WARN_ONCE(column != -1 || page_addr != -1,
1233 "Unexpected column/row value (cmd=%u, col=%d, row=%d)\n",
1234 command, column, page_addr);
1235 mxc_do_addr_cycle(mtd, column, page_addr);
1236 break;
1238 case NAND_CMD_READ0:
1239 case NAND_CMD_READOOB:
1240 if (command == NAND_CMD_READ0)
1241 host->buf_start = column;
1242 else
1243 host->buf_start = column + mtd->writesize;
1245 command = NAND_CMD_READ0; /* only READ0 is valid */
1247 host->devtype_data->send_cmd(host, command, false);
1248 WARN_ONCE(column < 0,
1249 "Unexpected column/row value (cmd=%u, col=%d, row=%d)\n",
1250 command, column, page_addr);
1251 mxc_do_addr_cycle(mtd, 0, page_addr);
1253 if (mtd->writesize > 512)
1254 host->devtype_data->send_cmd(host,
1255 NAND_CMD_READSTART, true);
1257 host->devtype_data->send_page(mtd, NFC_OUTPUT);
1259 memcpy32_fromio(host->data_buf, host->main_area0,
1260 mtd->writesize);
1261 copy_spare(mtd, true);
1262 break;
1264 case NAND_CMD_SEQIN:
1265 if (column >= mtd->writesize)
1266 /* call ourself to read a page */
1267 mxc_nand_command(mtd, NAND_CMD_READ0, 0, page_addr);
1269 host->buf_start = column;
1271 host->devtype_data->send_cmd(host, command, false);
1272 WARN_ONCE(column < -1,
1273 "Unexpected column/row value (cmd=%u, col=%d, row=%d)\n",
1274 command, column, page_addr);
1275 mxc_do_addr_cycle(mtd, 0, page_addr);
1276 break;
1278 case NAND_CMD_PAGEPROG:
1279 memcpy32_toio(host->main_area0, host->data_buf, mtd->writesize);
1280 copy_spare(mtd, false);
1281 host->devtype_data->send_page(mtd, NFC_INPUT);
1282 host->devtype_data->send_cmd(host, command, true);
1283 WARN_ONCE(column != -1 || page_addr != -1,
1284 "Unexpected column/row value (cmd=%u, col=%d, row=%d)\n",
1285 command, column, page_addr);
1286 mxc_do_addr_cycle(mtd, column, page_addr);
1287 break;
1289 case NAND_CMD_READID:
1290 host->devtype_data->send_cmd(host, command, true);
1291 mxc_do_addr_cycle(mtd, column, page_addr);
1292 host->devtype_data->send_read_id(host);
1293 host->buf_start = 0;
1294 break;
1296 case NAND_CMD_ERASE1:
1297 case NAND_CMD_ERASE2:
1298 host->devtype_data->send_cmd(host, command, false);
1299 WARN_ONCE(column != -1,
1300 "Unexpected column value (cmd=%u, col=%d)\n",
1301 command, column);
1302 mxc_do_addr_cycle(mtd, column, page_addr);
1304 break;
1305 case NAND_CMD_PARAM:
1306 host->devtype_data->send_cmd(host, command, false);
1307 mxc_do_addr_cycle(mtd, column, page_addr);
1308 host->devtype_data->send_page(mtd, NFC_OUTPUT);
1309 memcpy32_fromio(host->data_buf, host->main_area0, 512);
1310 host->buf_start = 0;
1311 break;
1312 default:
1313 WARN_ONCE(1, "Unimplemented command (cmd=%u)\n",
1314 command);
1315 break;
1319 static int mxc_nand_onfi_set_features(struct mtd_info *mtd,
1320 struct nand_chip *chip, int addr,
1321 u8 *subfeature_param)
1323 struct nand_chip *nand_chip = mtd_to_nand(mtd);
1324 struct mxc_nand_host *host = nand_get_controller_data(nand_chip);
1325 int i;
1327 if (!chip->onfi_version ||
1328 !(le16_to_cpu(chip->onfi_params.opt_cmd)
1329 & ONFI_OPT_CMD_SET_GET_FEATURES))
1330 return -EINVAL;
1332 host->buf_start = 0;
1334 for (i = 0; i < ONFI_SUBFEATURE_PARAM_LEN; ++i)
1335 chip->write_byte(mtd, subfeature_param[i]);
1337 memcpy32_toio(host->main_area0, host->data_buf, mtd->writesize);
1338 host->devtype_data->send_cmd(host, NAND_CMD_SET_FEATURES, false);
1339 mxc_do_addr_cycle(mtd, addr, -1);
1340 host->devtype_data->send_page(mtd, NFC_INPUT);
1342 return 0;
1345 static int mxc_nand_onfi_get_features(struct mtd_info *mtd,
1346 struct nand_chip *chip, int addr,
1347 u8 *subfeature_param)
1349 struct nand_chip *nand_chip = mtd_to_nand(mtd);
1350 struct mxc_nand_host *host = nand_get_controller_data(nand_chip);
1351 int i;
1353 if (!chip->onfi_version ||
1354 !(le16_to_cpu(chip->onfi_params.opt_cmd)
1355 & ONFI_OPT_CMD_SET_GET_FEATURES))
1356 return -EINVAL;
1358 host->devtype_data->send_cmd(host, NAND_CMD_GET_FEATURES, false);
1359 mxc_do_addr_cycle(mtd, addr, -1);
1360 host->devtype_data->send_page(mtd, NFC_OUTPUT);
1361 memcpy32_fromio(host->data_buf, host->main_area0, 512);
1362 host->buf_start = 0;
1364 for (i = 0; i < ONFI_SUBFEATURE_PARAM_LEN; ++i)
1365 *subfeature_param++ = chip->read_byte(mtd);
1367 return 0;
1371 * The generic flash bbt decriptors overlap with our ecc
1372 * hardware, so define some i.MX specific ones.
1374 static uint8_t bbt_pattern[] = { 'B', 'b', 't', '0' };
1375 static uint8_t mirror_pattern[] = { '1', 't', 'b', 'B' };
1377 static struct nand_bbt_descr bbt_main_descr = {
1378 .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
1379 | NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP,
1380 .offs = 0,
1381 .len = 4,
1382 .veroffs = 4,
1383 .maxblocks = 4,
1384 .pattern = bbt_pattern,
1387 static struct nand_bbt_descr bbt_mirror_descr = {
1388 .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
1389 | NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP,
1390 .offs = 0,
1391 .len = 4,
1392 .veroffs = 4,
1393 .maxblocks = 4,
1394 .pattern = mirror_pattern,
1397 /* v1 + irqpending_quirk: i.MX21 */
1398 static const struct mxc_nand_devtype_data imx21_nand_devtype_data = {
1399 .preset = preset_v1,
1400 .send_cmd = send_cmd_v1_v2,
1401 .send_addr = send_addr_v1_v2,
1402 .send_page = send_page_v1,
1403 .send_read_id = send_read_id_v1_v2,
1404 .get_dev_status = get_dev_status_v1_v2,
1405 .check_int = check_int_v1_v2,
1406 .irq_control = irq_control_v1_v2,
1407 .get_ecc_status = get_ecc_status_v1,
1408 .ooblayout = &mxc_v1_ooblayout_ops,
1409 .select_chip = mxc_nand_select_chip_v1_v3,
1410 .correct_data = mxc_nand_correct_data_v1,
1411 .irqpending_quirk = 1,
1412 .needs_ip = 0,
1413 .regs_offset = 0xe00,
1414 .spare0_offset = 0x800,
1415 .spare_len = 16,
1416 .eccbytes = 3,
1417 .eccsize = 1,
1420 /* v1 + !irqpending_quirk: i.MX27, i.MX31 */
1421 static const struct mxc_nand_devtype_data imx27_nand_devtype_data = {
1422 .preset = preset_v1,
1423 .send_cmd = send_cmd_v1_v2,
1424 .send_addr = send_addr_v1_v2,
1425 .send_page = send_page_v1,
1426 .send_read_id = send_read_id_v1_v2,
1427 .get_dev_status = get_dev_status_v1_v2,
1428 .check_int = check_int_v1_v2,
1429 .irq_control = irq_control_v1_v2,
1430 .get_ecc_status = get_ecc_status_v1,
1431 .ooblayout = &mxc_v1_ooblayout_ops,
1432 .select_chip = mxc_nand_select_chip_v1_v3,
1433 .correct_data = mxc_nand_correct_data_v1,
1434 .irqpending_quirk = 0,
1435 .needs_ip = 0,
1436 .regs_offset = 0xe00,
1437 .spare0_offset = 0x800,
1438 .axi_offset = 0,
1439 .spare_len = 16,
1440 .eccbytes = 3,
1441 .eccsize = 1,
1444 /* v21: i.MX25, i.MX35 */
1445 static const struct mxc_nand_devtype_data imx25_nand_devtype_data = {
1446 .preset = preset_v2,
1447 .send_cmd = send_cmd_v1_v2,
1448 .send_addr = send_addr_v1_v2,
1449 .send_page = send_page_v2,
1450 .send_read_id = send_read_id_v1_v2,
1451 .get_dev_status = get_dev_status_v1_v2,
1452 .check_int = check_int_v1_v2,
1453 .irq_control = irq_control_v1_v2,
1454 .get_ecc_status = get_ecc_status_v2,
1455 .ooblayout = &mxc_v2_ooblayout_ops,
1456 .select_chip = mxc_nand_select_chip_v2,
1457 .correct_data = mxc_nand_correct_data_v2_v3,
1458 .setup_data_interface = mxc_nand_v2_setup_data_interface,
1459 .irqpending_quirk = 0,
1460 .needs_ip = 0,
1461 .regs_offset = 0x1e00,
1462 .spare0_offset = 0x1000,
1463 .axi_offset = 0,
1464 .spare_len = 64,
1465 .eccbytes = 9,
1466 .eccsize = 0,
1469 /* v3.2a: i.MX51 */
1470 static const struct mxc_nand_devtype_data imx51_nand_devtype_data = {
1471 .preset = preset_v3,
1472 .send_cmd = send_cmd_v3,
1473 .send_addr = send_addr_v3,
1474 .send_page = send_page_v3,
1475 .send_read_id = send_read_id_v3,
1476 .get_dev_status = get_dev_status_v3,
1477 .check_int = check_int_v3,
1478 .irq_control = irq_control_v3,
1479 .get_ecc_status = get_ecc_status_v3,
1480 .ooblayout = &mxc_v2_ooblayout_ops,
1481 .select_chip = mxc_nand_select_chip_v1_v3,
1482 .correct_data = mxc_nand_correct_data_v2_v3,
1483 .irqpending_quirk = 0,
1484 .needs_ip = 1,
1485 .regs_offset = 0,
1486 .spare0_offset = 0x1000,
1487 .axi_offset = 0x1e00,
1488 .spare_len = 64,
1489 .eccbytes = 0,
1490 .eccsize = 0,
1491 .ppb_shift = 7,
1494 /* v3.2b: i.MX53 */
1495 static const struct mxc_nand_devtype_data imx53_nand_devtype_data = {
1496 .preset = preset_v3,
1497 .send_cmd = send_cmd_v3,
1498 .send_addr = send_addr_v3,
1499 .send_page = send_page_v3,
1500 .send_read_id = send_read_id_v3,
1501 .get_dev_status = get_dev_status_v3,
1502 .check_int = check_int_v3,
1503 .irq_control = irq_control_v3,
1504 .get_ecc_status = get_ecc_status_v3,
1505 .ooblayout = &mxc_v2_ooblayout_ops,
1506 .select_chip = mxc_nand_select_chip_v1_v3,
1507 .correct_data = mxc_nand_correct_data_v2_v3,
1508 .irqpending_quirk = 0,
1509 .needs_ip = 1,
1510 .regs_offset = 0,
1511 .spare0_offset = 0x1000,
1512 .axi_offset = 0x1e00,
1513 .spare_len = 64,
1514 .eccbytes = 0,
1515 .eccsize = 0,
1516 .ppb_shift = 8,
1519 static inline int is_imx21_nfc(struct mxc_nand_host *host)
1521 return host->devtype_data == &imx21_nand_devtype_data;
1524 static inline int is_imx27_nfc(struct mxc_nand_host *host)
1526 return host->devtype_data == &imx27_nand_devtype_data;
1529 static inline int is_imx25_nfc(struct mxc_nand_host *host)
1531 return host->devtype_data == &imx25_nand_devtype_data;
1534 static inline int is_imx51_nfc(struct mxc_nand_host *host)
1536 return host->devtype_data == &imx51_nand_devtype_data;
1539 static inline int is_imx53_nfc(struct mxc_nand_host *host)
1541 return host->devtype_data == &imx53_nand_devtype_data;
1544 static const struct platform_device_id mxcnd_devtype[] = {
1546 .name = "imx21-nand",
1547 .driver_data = (kernel_ulong_t) &imx21_nand_devtype_data,
1548 }, {
1549 .name = "imx27-nand",
1550 .driver_data = (kernel_ulong_t) &imx27_nand_devtype_data,
1551 }, {
1552 .name = "imx25-nand",
1553 .driver_data = (kernel_ulong_t) &imx25_nand_devtype_data,
1554 }, {
1555 .name = "imx51-nand",
1556 .driver_data = (kernel_ulong_t) &imx51_nand_devtype_data,
1557 }, {
1558 .name = "imx53-nand",
1559 .driver_data = (kernel_ulong_t) &imx53_nand_devtype_data,
1560 }, {
1561 /* sentinel */
1564 MODULE_DEVICE_TABLE(platform, mxcnd_devtype);
1566 #ifdef CONFIG_OF
1567 static const struct of_device_id mxcnd_dt_ids[] = {
1569 .compatible = "fsl,imx21-nand",
1570 .data = &imx21_nand_devtype_data,
1571 }, {
1572 .compatible = "fsl,imx27-nand",
1573 .data = &imx27_nand_devtype_data,
1574 }, {
1575 .compatible = "fsl,imx25-nand",
1576 .data = &imx25_nand_devtype_data,
1577 }, {
1578 .compatible = "fsl,imx51-nand",
1579 .data = &imx51_nand_devtype_data,
1580 }, {
1581 .compatible = "fsl,imx53-nand",
1582 .data = &imx53_nand_devtype_data,
1584 { /* sentinel */ }
1586 MODULE_DEVICE_TABLE(of, mxcnd_dt_ids);
1588 static int __init mxcnd_probe_dt(struct mxc_nand_host *host)
1590 struct device_node *np = host->dev->of_node;
1591 const struct of_device_id *of_id =
1592 of_match_device(mxcnd_dt_ids, host->dev);
1594 if (!np)
1595 return 1;
1597 host->devtype_data = of_id->data;
1599 return 0;
1601 #else
1602 static int __init mxcnd_probe_dt(struct mxc_nand_host *host)
1604 return 1;
1606 #endif
1608 static int mxcnd_probe(struct platform_device *pdev)
1610 struct nand_chip *this;
1611 struct mtd_info *mtd;
1612 struct mxc_nand_host *host;
1613 struct resource *res;
1614 int err = 0;
1616 /* Allocate memory for MTD device structure and private data */
1617 host = devm_kzalloc(&pdev->dev, sizeof(struct mxc_nand_host),
1618 GFP_KERNEL);
1619 if (!host)
1620 return -ENOMEM;
1622 /* allocate a temporary buffer for the nand_scan_ident() */
1623 host->data_buf = devm_kzalloc(&pdev->dev, PAGE_SIZE, GFP_KERNEL);
1624 if (!host->data_buf)
1625 return -ENOMEM;
1627 host->dev = &pdev->dev;
1628 /* structures must be linked */
1629 this = &host->nand;
1630 mtd = nand_to_mtd(this);
1631 mtd->dev.parent = &pdev->dev;
1632 mtd->name = DRIVER_NAME;
1634 /* 50 us command delay time */
1635 this->chip_delay = 5;
1637 nand_set_controller_data(this, host);
1638 nand_set_flash_node(this, pdev->dev.of_node),
1639 this->dev_ready = mxc_nand_dev_ready;
1640 this->cmdfunc = mxc_nand_command;
1641 this->read_byte = mxc_nand_read_byte;
1642 this->read_word = mxc_nand_read_word;
1643 this->write_buf = mxc_nand_write_buf;
1644 this->read_buf = mxc_nand_read_buf;
1645 this->onfi_set_features = mxc_nand_onfi_set_features;
1646 this->onfi_get_features = mxc_nand_onfi_get_features;
1648 host->clk = devm_clk_get(&pdev->dev, NULL);
1649 if (IS_ERR(host->clk))
1650 return PTR_ERR(host->clk);
1652 err = mxcnd_probe_dt(host);
1653 if (err > 0) {
1654 struct mxc_nand_platform_data *pdata =
1655 dev_get_platdata(&pdev->dev);
1656 if (pdata) {
1657 host->pdata = *pdata;
1658 host->devtype_data = (struct mxc_nand_devtype_data *)
1659 pdev->id_entry->driver_data;
1660 } else {
1661 err = -ENODEV;
1664 if (err < 0)
1665 return err;
1667 this->setup_data_interface = host->devtype_data->setup_data_interface;
1669 if (host->devtype_data->needs_ip) {
1670 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1671 host->regs_ip = devm_ioremap_resource(&pdev->dev, res);
1672 if (IS_ERR(host->regs_ip))
1673 return PTR_ERR(host->regs_ip);
1675 res = platform_get_resource(pdev, IORESOURCE_MEM, 1);
1676 } else {
1677 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1680 host->base = devm_ioremap_resource(&pdev->dev, res);
1681 if (IS_ERR(host->base))
1682 return PTR_ERR(host->base);
1684 host->main_area0 = host->base;
1686 if (host->devtype_data->regs_offset)
1687 host->regs = host->base + host->devtype_data->regs_offset;
1688 host->spare0 = host->base + host->devtype_data->spare0_offset;
1689 if (host->devtype_data->axi_offset)
1690 host->regs_axi = host->base + host->devtype_data->axi_offset;
1692 this->ecc.bytes = host->devtype_data->eccbytes;
1693 host->eccsize = host->devtype_data->eccsize;
1695 this->select_chip = host->devtype_data->select_chip;
1696 this->ecc.size = 512;
1697 mtd_set_ooblayout(mtd, host->devtype_data->ooblayout);
1699 if (host->pdata.hw_ecc) {
1700 this->ecc.mode = NAND_ECC_HW;
1701 } else {
1702 this->ecc.mode = NAND_ECC_SOFT;
1703 this->ecc.algo = NAND_ECC_HAMMING;
1706 /* NAND bus width determines access functions used by upper layer */
1707 if (host->pdata.width == 2)
1708 this->options |= NAND_BUSWIDTH_16;
1710 /* update flash based bbt */
1711 if (host->pdata.flash_bbt)
1712 this->bbt_options |= NAND_BBT_USE_FLASH;
1714 init_completion(&host->op_completion);
1716 host->irq = platform_get_irq(pdev, 0);
1717 if (host->irq < 0)
1718 return host->irq;
1721 * Use host->devtype_data->irq_control() here instead of irq_control()
1722 * because we must not disable_irq_nosync without having requested the
1723 * irq.
1725 host->devtype_data->irq_control(host, 0);
1727 err = devm_request_irq(&pdev->dev, host->irq, mxc_nfc_irq,
1728 0, DRIVER_NAME, host);
1729 if (err)
1730 return err;
1732 err = clk_prepare_enable(host->clk);
1733 if (err)
1734 return err;
1735 host->clk_act = 1;
1738 * Now that we "own" the interrupt make sure the interrupt mask bit is
1739 * cleared on i.MX21. Otherwise we can't read the interrupt status bit
1740 * on this machine.
1742 if (host->devtype_data->irqpending_quirk) {
1743 disable_irq_nosync(host->irq);
1744 host->devtype_data->irq_control(host, 1);
1747 /* first scan to find the device and get the page size */
1748 err = nand_scan_ident(mtd, is_imx25_nfc(host) ? 4 : 1, NULL);
1749 if (err)
1750 goto escan;
1752 switch (this->ecc.mode) {
1753 case NAND_ECC_HW:
1754 this->ecc.calculate = mxc_nand_calculate_ecc;
1755 this->ecc.hwctl = mxc_nand_enable_hwecc;
1756 this->ecc.correct = host->devtype_data->correct_data;
1757 break;
1759 case NAND_ECC_SOFT:
1760 break;
1762 default:
1763 err = -EINVAL;
1764 goto escan;
1767 if (this->bbt_options & NAND_BBT_USE_FLASH) {
1768 this->bbt_td = &bbt_main_descr;
1769 this->bbt_md = &bbt_mirror_descr;
1772 /* allocate the right size buffer now */
1773 devm_kfree(&pdev->dev, (void *)host->data_buf);
1774 host->data_buf = devm_kzalloc(&pdev->dev, mtd->writesize + mtd->oobsize,
1775 GFP_KERNEL);
1776 if (!host->data_buf) {
1777 err = -ENOMEM;
1778 goto escan;
1781 /* Call preset again, with correct writesize this time */
1782 host->devtype_data->preset(mtd);
1784 if (!this->ecc.bytes) {
1785 if (host->eccsize == 8)
1786 this->ecc.bytes = 18;
1787 else if (host->eccsize == 4)
1788 this->ecc.bytes = 9;
1792 * Experimentation shows that i.MX NFC can only handle up to 218 oob
1793 * bytes. Limit used_oobsize to 218 so as to not confuse copy_spare()
1794 * into copying invalid data to/from the spare IO buffer, as this
1795 * might cause ECC data corruption when doing sub-page write to a
1796 * partially written page.
1798 host->used_oobsize = min(mtd->oobsize, 218U);
1800 if (this->ecc.mode == NAND_ECC_HW) {
1801 if (is_imx21_nfc(host) || is_imx27_nfc(host))
1802 this->ecc.strength = 1;
1803 else
1804 this->ecc.strength = (host->eccsize == 4) ? 4 : 8;
1807 /* second phase scan */
1808 err = nand_scan_tail(mtd);
1809 if (err)
1810 goto escan;
1812 /* Register the partitions */
1813 mtd_device_parse_register(mtd, part_probes,
1814 NULL,
1815 host->pdata.parts,
1816 host->pdata.nr_parts);
1818 platform_set_drvdata(pdev, host);
1820 return 0;
1822 escan:
1823 if (host->clk_act)
1824 clk_disable_unprepare(host->clk);
1826 return err;
1829 static int mxcnd_remove(struct platform_device *pdev)
1831 struct mxc_nand_host *host = platform_get_drvdata(pdev);
1833 nand_release(nand_to_mtd(&host->nand));
1834 if (host->clk_act)
1835 clk_disable_unprepare(host->clk);
1837 return 0;
1840 static struct platform_driver mxcnd_driver = {
1841 .driver = {
1842 .name = DRIVER_NAME,
1843 .of_match_table = of_match_ptr(mxcnd_dt_ids),
1845 .id_table = mxcnd_devtype,
1846 .probe = mxcnd_probe,
1847 .remove = mxcnd_remove,
1849 module_platform_driver(mxcnd_driver);
1851 MODULE_AUTHOR("Freescale Semiconductor, Inc.");
1852 MODULE_DESCRIPTION("MXC NAND MTD driver");
1853 MODULE_LICENSE("GPL");