2 * Broadcom GENET (Gigabit Ethernet) controller driver
4 * Copyright (c) 2014-2017 Broadcom
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License version 2 as
8 * published by the Free Software Foundation.
11 #define pr_fmt(fmt) "bcmgenet: " fmt
13 #include <linux/kernel.h>
14 #include <linux/module.h>
15 #include <linux/sched.h>
16 #include <linux/types.h>
17 #include <linux/fcntl.h>
18 #include <linux/interrupt.h>
19 #include <linux/string.h>
20 #include <linux/if_ether.h>
21 #include <linux/init.h>
22 #include <linux/errno.h>
23 #include <linux/delay.h>
24 #include <linux/platform_device.h>
25 #include <linux/dma-mapping.h>
27 #include <linux/clk.h>
29 #include <linux/of_address.h>
30 #include <linux/of_irq.h>
31 #include <linux/of_net.h>
32 #include <linux/of_platform.h>
35 #include <linux/mii.h>
36 #include <linux/ethtool.h>
37 #include <linux/netdevice.h>
38 #include <linux/inetdevice.h>
39 #include <linux/etherdevice.h>
40 #include <linux/skbuff.h>
43 #include <linux/ipv6.h>
44 #include <linux/phy.h>
45 #include <linux/platform_data/bcmgenet.h>
47 #include <asm/unaligned.h>
51 /* Maximum number of hardware queues, downsized if needed */
52 #define GENET_MAX_MQ_CNT 4
54 /* Default highest priority queue for multi queue support */
55 #define GENET_Q0_PRIORITY 0
57 #define GENET_Q16_RX_BD_CNT \
58 (TOTAL_DESC - priv->hw_params->rx_queues * priv->hw_params->rx_bds_per_q)
59 #define GENET_Q16_TX_BD_CNT \
60 (TOTAL_DESC - priv->hw_params->tx_queues * priv->hw_params->tx_bds_per_q)
62 #define RX_BUF_LENGTH 2048
63 #define SKB_ALIGNMENT 32
65 /* Tx/Rx DMA register offset, skip 256 descriptors */
66 #define WORDS_PER_BD(p) (p->hw_params->words_per_bd)
67 #define DMA_DESC_SIZE (WORDS_PER_BD(priv) * sizeof(u32))
69 #define GENET_TDMA_REG_OFF (priv->hw_params->tdma_offset + \
70 TOTAL_DESC * DMA_DESC_SIZE)
72 #define GENET_RDMA_REG_OFF (priv->hw_params->rdma_offset + \
73 TOTAL_DESC * DMA_DESC_SIZE)
75 static inline void bcmgenet_writel(u32 value
, void __iomem
*offset
)
77 /* MIPS chips strapped for BE will automagically configure the
78 * peripheral registers for CPU-native byte order.
80 if (IS_ENABLED(CONFIG_MIPS
) && IS_ENABLED(CONFIG_CPU_BIG_ENDIAN
))
81 __raw_writel(value
, offset
);
83 writel_relaxed(value
, offset
);
86 static inline u32
bcmgenet_readl(void __iomem
*offset
)
88 if (IS_ENABLED(CONFIG_MIPS
) && IS_ENABLED(CONFIG_CPU_BIG_ENDIAN
))
89 return __raw_readl(offset
);
91 return readl_relaxed(offset
);
94 static inline void dmadesc_set_length_status(struct bcmgenet_priv
*priv
,
95 void __iomem
*d
, u32 value
)
97 bcmgenet_writel(value
, d
+ DMA_DESC_LENGTH_STATUS
);
100 static inline u32
dmadesc_get_length_status(struct bcmgenet_priv
*priv
,
103 return bcmgenet_readl(d
+ DMA_DESC_LENGTH_STATUS
);
106 static inline void dmadesc_set_addr(struct bcmgenet_priv
*priv
,
110 bcmgenet_writel(lower_32_bits(addr
), d
+ DMA_DESC_ADDRESS_LO
);
112 /* Register writes to GISB bus can take couple hundred nanoseconds
113 * and are done for each packet, save these expensive writes unless
114 * the platform is explicitly configured for 64-bits/LPAE.
116 #ifdef CONFIG_PHYS_ADDR_T_64BIT
117 if (priv
->hw_params
->flags
& GENET_HAS_40BITS
)
118 bcmgenet_writel(upper_32_bits(addr
), d
+ DMA_DESC_ADDRESS_HI
);
122 /* Combined address + length/status setter */
123 static inline void dmadesc_set(struct bcmgenet_priv
*priv
,
124 void __iomem
*d
, dma_addr_t addr
, u32 val
)
126 dmadesc_set_addr(priv
, d
, addr
);
127 dmadesc_set_length_status(priv
, d
, val
);
130 static inline dma_addr_t
dmadesc_get_addr(struct bcmgenet_priv
*priv
,
135 addr
= bcmgenet_readl(d
+ DMA_DESC_ADDRESS_LO
);
137 /* Register writes to GISB bus can take couple hundred nanoseconds
138 * and are done for each packet, save these expensive writes unless
139 * the platform is explicitly configured for 64-bits/LPAE.
141 #ifdef CONFIG_PHYS_ADDR_T_64BIT
142 if (priv
->hw_params
->flags
& GENET_HAS_40BITS
)
143 addr
|= (u64
)bcmgenet_readl(d
+ DMA_DESC_ADDRESS_HI
) << 32;
148 #define GENET_VER_FMT "%1d.%1d EPHY: 0x%04x"
150 #define GENET_MSG_DEFAULT (NETIF_MSG_DRV | NETIF_MSG_PROBE | \
153 static inline u32
bcmgenet_rbuf_ctrl_get(struct bcmgenet_priv
*priv
)
155 if (GENET_IS_V1(priv
))
156 return bcmgenet_rbuf_readl(priv
, RBUF_FLUSH_CTRL_V1
);
158 return bcmgenet_sys_readl(priv
, SYS_RBUF_FLUSH_CTRL
);
161 static inline void bcmgenet_rbuf_ctrl_set(struct bcmgenet_priv
*priv
, u32 val
)
163 if (GENET_IS_V1(priv
))
164 bcmgenet_rbuf_writel(priv
, val
, RBUF_FLUSH_CTRL_V1
);
166 bcmgenet_sys_writel(priv
, val
, SYS_RBUF_FLUSH_CTRL
);
169 /* These macros are defined to deal with register map change
170 * between GENET1.1 and GENET2. Only those currently being used
171 * by driver are defined.
173 static inline u32
bcmgenet_tbuf_ctrl_get(struct bcmgenet_priv
*priv
)
175 if (GENET_IS_V1(priv
))
176 return bcmgenet_rbuf_readl(priv
, TBUF_CTRL_V1
);
178 return bcmgenet_readl(priv
->base
+
179 priv
->hw_params
->tbuf_offset
+ TBUF_CTRL
);
182 static inline void bcmgenet_tbuf_ctrl_set(struct bcmgenet_priv
*priv
, u32 val
)
184 if (GENET_IS_V1(priv
))
185 bcmgenet_rbuf_writel(priv
, val
, TBUF_CTRL_V1
);
187 bcmgenet_writel(val
, priv
->base
+
188 priv
->hw_params
->tbuf_offset
+ TBUF_CTRL
);
191 static inline u32
bcmgenet_bp_mc_get(struct bcmgenet_priv
*priv
)
193 if (GENET_IS_V1(priv
))
194 return bcmgenet_rbuf_readl(priv
, TBUF_BP_MC_V1
);
196 return bcmgenet_readl(priv
->base
+
197 priv
->hw_params
->tbuf_offset
+ TBUF_BP_MC
);
200 static inline void bcmgenet_bp_mc_set(struct bcmgenet_priv
*priv
, u32 val
)
202 if (GENET_IS_V1(priv
))
203 bcmgenet_rbuf_writel(priv
, val
, TBUF_BP_MC_V1
);
205 bcmgenet_writel(val
, priv
->base
+
206 priv
->hw_params
->tbuf_offset
+ TBUF_BP_MC
);
209 /* RX/TX DMA register accessors */
246 static const u8 bcmgenet_dma_regs_v3plus
[] = {
247 [DMA_RING_CFG
] = 0x00,
250 [DMA_SCB_BURST_SIZE
] = 0x0C,
251 [DMA_ARB_CTRL
] = 0x2C,
252 [DMA_PRIORITY_0
] = 0x30,
253 [DMA_PRIORITY_1
] = 0x34,
254 [DMA_PRIORITY_2
] = 0x38,
255 [DMA_RING0_TIMEOUT
] = 0x2C,
256 [DMA_RING1_TIMEOUT
] = 0x30,
257 [DMA_RING2_TIMEOUT
] = 0x34,
258 [DMA_RING3_TIMEOUT
] = 0x38,
259 [DMA_RING4_TIMEOUT
] = 0x3c,
260 [DMA_RING5_TIMEOUT
] = 0x40,
261 [DMA_RING6_TIMEOUT
] = 0x44,
262 [DMA_RING7_TIMEOUT
] = 0x48,
263 [DMA_RING8_TIMEOUT
] = 0x4c,
264 [DMA_RING9_TIMEOUT
] = 0x50,
265 [DMA_RING10_TIMEOUT
] = 0x54,
266 [DMA_RING11_TIMEOUT
] = 0x58,
267 [DMA_RING12_TIMEOUT
] = 0x5c,
268 [DMA_RING13_TIMEOUT
] = 0x60,
269 [DMA_RING14_TIMEOUT
] = 0x64,
270 [DMA_RING15_TIMEOUT
] = 0x68,
271 [DMA_RING16_TIMEOUT
] = 0x6C,
272 [DMA_INDEX2RING_0
] = 0x70,
273 [DMA_INDEX2RING_1
] = 0x74,
274 [DMA_INDEX2RING_2
] = 0x78,
275 [DMA_INDEX2RING_3
] = 0x7C,
276 [DMA_INDEX2RING_4
] = 0x80,
277 [DMA_INDEX2RING_5
] = 0x84,
278 [DMA_INDEX2RING_6
] = 0x88,
279 [DMA_INDEX2RING_7
] = 0x8C,
282 static const u8 bcmgenet_dma_regs_v2
[] = {
283 [DMA_RING_CFG
] = 0x00,
286 [DMA_SCB_BURST_SIZE
] = 0x0C,
287 [DMA_ARB_CTRL
] = 0x30,
288 [DMA_PRIORITY_0
] = 0x34,
289 [DMA_PRIORITY_1
] = 0x38,
290 [DMA_PRIORITY_2
] = 0x3C,
291 [DMA_RING0_TIMEOUT
] = 0x2C,
292 [DMA_RING1_TIMEOUT
] = 0x30,
293 [DMA_RING2_TIMEOUT
] = 0x34,
294 [DMA_RING3_TIMEOUT
] = 0x38,
295 [DMA_RING4_TIMEOUT
] = 0x3c,
296 [DMA_RING5_TIMEOUT
] = 0x40,
297 [DMA_RING6_TIMEOUT
] = 0x44,
298 [DMA_RING7_TIMEOUT
] = 0x48,
299 [DMA_RING8_TIMEOUT
] = 0x4c,
300 [DMA_RING9_TIMEOUT
] = 0x50,
301 [DMA_RING10_TIMEOUT
] = 0x54,
302 [DMA_RING11_TIMEOUT
] = 0x58,
303 [DMA_RING12_TIMEOUT
] = 0x5c,
304 [DMA_RING13_TIMEOUT
] = 0x60,
305 [DMA_RING14_TIMEOUT
] = 0x64,
306 [DMA_RING15_TIMEOUT
] = 0x68,
307 [DMA_RING16_TIMEOUT
] = 0x6C,
310 static const u8 bcmgenet_dma_regs_v1
[] = {
313 [DMA_SCB_BURST_SIZE
] = 0x0C,
314 [DMA_ARB_CTRL
] = 0x30,
315 [DMA_PRIORITY_0
] = 0x34,
316 [DMA_PRIORITY_1
] = 0x38,
317 [DMA_PRIORITY_2
] = 0x3C,
318 [DMA_RING0_TIMEOUT
] = 0x2C,
319 [DMA_RING1_TIMEOUT
] = 0x30,
320 [DMA_RING2_TIMEOUT
] = 0x34,
321 [DMA_RING3_TIMEOUT
] = 0x38,
322 [DMA_RING4_TIMEOUT
] = 0x3c,
323 [DMA_RING5_TIMEOUT
] = 0x40,
324 [DMA_RING6_TIMEOUT
] = 0x44,
325 [DMA_RING7_TIMEOUT
] = 0x48,
326 [DMA_RING8_TIMEOUT
] = 0x4c,
327 [DMA_RING9_TIMEOUT
] = 0x50,
328 [DMA_RING10_TIMEOUT
] = 0x54,
329 [DMA_RING11_TIMEOUT
] = 0x58,
330 [DMA_RING12_TIMEOUT
] = 0x5c,
331 [DMA_RING13_TIMEOUT
] = 0x60,
332 [DMA_RING14_TIMEOUT
] = 0x64,
333 [DMA_RING15_TIMEOUT
] = 0x68,
334 [DMA_RING16_TIMEOUT
] = 0x6C,
337 /* Set at runtime once bcmgenet version is known */
338 static const u8
*bcmgenet_dma_regs
;
340 static inline struct bcmgenet_priv
*dev_to_priv(struct device
*dev
)
342 return netdev_priv(dev_get_drvdata(dev
));
345 static inline u32
bcmgenet_tdma_readl(struct bcmgenet_priv
*priv
,
348 return bcmgenet_readl(priv
->base
+ GENET_TDMA_REG_OFF
+
349 DMA_RINGS_SIZE
+ bcmgenet_dma_regs
[r
]);
352 static inline void bcmgenet_tdma_writel(struct bcmgenet_priv
*priv
,
353 u32 val
, enum dma_reg r
)
355 bcmgenet_writel(val
, priv
->base
+ GENET_TDMA_REG_OFF
+
356 DMA_RINGS_SIZE
+ bcmgenet_dma_regs
[r
]);
359 static inline u32
bcmgenet_rdma_readl(struct bcmgenet_priv
*priv
,
362 return bcmgenet_readl(priv
->base
+ GENET_RDMA_REG_OFF
+
363 DMA_RINGS_SIZE
+ bcmgenet_dma_regs
[r
]);
366 static inline void bcmgenet_rdma_writel(struct bcmgenet_priv
*priv
,
367 u32 val
, enum dma_reg r
)
369 bcmgenet_writel(val
, priv
->base
+ GENET_RDMA_REG_OFF
+
370 DMA_RINGS_SIZE
+ bcmgenet_dma_regs
[r
]);
373 /* RDMA/TDMA ring registers and accessors
374 * we merge the common fields and just prefix with T/D the registers
375 * having different meaning depending on the direction
379 RDMA_WRITE_PTR
= TDMA_READ_PTR
,
381 RDMA_WRITE_PTR_HI
= TDMA_READ_PTR_HI
,
383 RDMA_PROD_INDEX
= TDMA_CONS_INDEX
,
385 RDMA_CONS_INDEX
= TDMA_PROD_INDEX
,
391 DMA_MBUF_DONE_THRESH
,
393 RDMA_XON_XOFF_THRESH
= TDMA_FLOW_PERIOD
,
395 RDMA_READ_PTR
= TDMA_WRITE_PTR
,
397 RDMA_READ_PTR_HI
= TDMA_WRITE_PTR_HI
400 /* GENET v4 supports 40-bits pointer addressing
401 * for obvious reasons the LO and HI word parts
402 * are contiguous, but this offsets the other
405 static const u8 genet_dma_ring_regs_v4
[] = {
406 [TDMA_READ_PTR
] = 0x00,
407 [TDMA_READ_PTR_HI
] = 0x04,
408 [TDMA_CONS_INDEX
] = 0x08,
409 [TDMA_PROD_INDEX
] = 0x0C,
410 [DMA_RING_BUF_SIZE
] = 0x10,
411 [DMA_START_ADDR
] = 0x14,
412 [DMA_START_ADDR_HI
] = 0x18,
413 [DMA_END_ADDR
] = 0x1C,
414 [DMA_END_ADDR_HI
] = 0x20,
415 [DMA_MBUF_DONE_THRESH
] = 0x24,
416 [TDMA_FLOW_PERIOD
] = 0x28,
417 [TDMA_WRITE_PTR
] = 0x2C,
418 [TDMA_WRITE_PTR_HI
] = 0x30,
421 static const u8 genet_dma_ring_regs_v123
[] = {
422 [TDMA_READ_PTR
] = 0x00,
423 [TDMA_CONS_INDEX
] = 0x04,
424 [TDMA_PROD_INDEX
] = 0x08,
425 [DMA_RING_BUF_SIZE
] = 0x0C,
426 [DMA_START_ADDR
] = 0x10,
427 [DMA_END_ADDR
] = 0x14,
428 [DMA_MBUF_DONE_THRESH
] = 0x18,
429 [TDMA_FLOW_PERIOD
] = 0x1C,
430 [TDMA_WRITE_PTR
] = 0x20,
433 /* Set at runtime once GENET version is known */
434 static const u8
*genet_dma_ring_regs
;
436 static inline u32
bcmgenet_tdma_ring_readl(struct bcmgenet_priv
*priv
,
440 return bcmgenet_readl(priv
->base
+ GENET_TDMA_REG_OFF
+
441 (DMA_RING_SIZE
* ring
) +
442 genet_dma_ring_regs
[r
]);
445 static inline void bcmgenet_tdma_ring_writel(struct bcmgenet_priv
*priv
,
446 unsigned int ring
, u32 val
,
449 bcmgenet_writel(val
, priv
->base
+ GENET_TDMA_REG_OFF
+
450 (DMA_RING_SIZE
* ring
) +
451 genet_dma_ring_regs
[r
]);
454 static inline u32
bcmgenet_rdma_ring_readl(struct bcmgenet_priv
*priv
,
458 return bcmgenet_readl(priv
->base
+ GENET_RDMA_REG_OFF
+
459 (DMA_RING_SIZE
* ring
) +
460 genet_dma_ring_regs
[r
]);
463 static inline void bcmgenet_rdma_ring_writel(struct bcmgenet_priv
*priv
,
464 unsigned int ring
, u32 val
,
467 bcmgenet_writel(val
, priv
->base
+ GENET_RDMA_REG_OFF
+
468 (DMA_RING_SIZE
* ring
) +
469 genet_dma_ring_regs
[r
]);
472 static int bcmgenet_begin(struct net_device
*dev
)
474 struct bcmgenet_priv
*priv
= netdev_priv(dev
);
476 /* Turn on the clock */
477 return clk_prepare_enable(priv
->clk
);
480 static void bcmgenet_complete(struct net_device
*dev
)
482 struct bcmgenet_priv
*priv
= netdev_priv(dev
);
484 /* Turn off the clock */
485 clk_disable_unprepare(priv
->clk
);
488 static int bcmgenet_get_link_ksettings(struct net_device
*dev
,
489 struct ethtool_link_ksettings
*cmd
)
491 if (!netif_running(dev
))
497 phy_ethtool_ksettings_get(dev
->phydev
, cmd
);
502 static int bcmgenet_set_link_ksettings(struct net_device
*dev
,
503 const struct ethtool_link_ksettings
*cmd
)
505 if (!netif_running(dev
))
511 return phy_ethtool_ksettings_set(dev
->phydev
, cmd
);
514 static int bcmgenet_set_rx_csum(struct net_device
*dev
,
515 netdev_features_t wanted
)
517 struct bcmgenet_priv
*priv
= netdev_priv(dev
);
521 rx_csum_en
= !!(wanted
& NETIF_F_RXCSUM
);
523 rbuf_chk_ctrl
= bcmgenet_rbuf_readl(priv
, RBUF_CHK_CTRL
);
525 /* enable rx checksumming */
527 rbuf_chk_ctrl
|= RBUF_RXCHK_EN
;
529 rbuf_chk_ctrl
&= ~RBUF_RXCHK_EN
;
530 priv
->desc_rxchk_en
= rx_csum_en
;
532 /* If UniMAC forwards CRC, we need to skip over it to get
533 * a valid CHK bit to be set in the per-packet status word
535 if (rx_csum_en
&& priv
->crc_fwd_en
)
536 rbuf_chk_ctrl
|= RBUF_SKIP_FCS
;
538 rbuf_chk_ctrl
&= ~RBUF_SKIP_FCS
;
540 bcmgenet_rbuf_writel(priv
, rbuf_chk_ctrl
, RBUF_CHK_CTRL
);
545 static int bcmgenet_set_tx_csum(struct net_device
*dev
,
546 netdev_features_t wanted
)
548 struct bcmgenet_priv
*priv
= netdev_priv(dev
);
550 u32 tbuf_ctrl
, rbuf_ctrl
;
552 tbuf_ctrl
= bcmgenet_tbuf_ctrl_get(priv
);
553 rbuf_ctrl
= bcmgenet_rbuf_readl(priv
, RBUF_CTRL
);
555 desc_64b_en
= !!(wanted
& (NETIF_F_IP_CSUM
| NETIF_F_IPV6_CSUM
));
557 /* enable 64 bytes descriptor in both directions (RBUF and TBUF) */
559 tbuf_ctrl
|= RBUF_64B_EN
;
560 rbuf_ctrl
|= RBUF_64B_EN
;
562 tbuf_ctrl
&= ~RBUF_64B_EN
;
563 rbuf_ctrl
&= ~RBUF_64B_EN
;
565 priv
->desc_64b_en
= desc_64b_en
;
567 bcmgenet_tbuf_ctrl_set(priv
, tbuf_ctrl
);
568 bcmgenet_rbuf_writel(priv
, rbuf_ctrl
, RBUF_CTRL
);
573 static int bcmgenet_set_features(struct net_device
*dev
,
574 netdev_features_t features
)
576 netdev_features_t changed
= features
^ dev
->features
;
577 netdev_features_t wanted
= dev
->wanted_features
;
580 if (changed
& (NETIF_F_IP_CSUM
| NETIF_F_IPV6_CSUM
))
581 ret
= bcmgenet_set_tx_csum(dev
, wanted
);
582 if (changed
& (NETIF_F_RXCSUM
))
583 ret
= bcmgenet_set_rx_csum(dev
, wanted
);
588 static u32
bcmgenet_get_msglevel(struct net_device
*dev
)
590 struct bcmgenet_priv
*priv
= netdev_priv(dev
);
592 return priv
->msg_enable
;
595 static void bcmgenet_set_msglevel(struct net_device
*dev
, u32 level
)
597 struct bcmgenet_priv
*priv
= netdev_priv(dev
);
599 priv
->msg_enable
= level
;
602 static int bcmgenet_get_coalesce(struct net_device
*dev
,
603 struct ethtool_coalesce
*ec
)
605 struct bcmgenet_priv
*priv
= netdev_priv(dev
);
607 ec
->tx_max_coalesced_frames
=
608 bcmgenet_tdma_ring_readl(priv
, DESC_INDEX
,
609 DMA_MBUF_DONE_THRESH
);
610 ec
->rx_max_coalesced_frames
=
611 bcmgenet_rdma_ring_readl(priv
, DESC_INDEX
,
612 DMA_MBUF_DONE_THRESH
);
613 ec
->rx_coalesce_usecs
=
614 bcmgenet_rdma_readl(priv
, DMA_RING16_TIMEOUT
) * 8192 / 1000;
619 static int bcmgenet_set_coalesce(struct net_device
*dev
,
620 struct ethtool_coalesce
*ec
)
622 struct bcmgenet_priv
*priv
= netdev_priv(dev
);
626 /* Base system clock is 125Mhz, DMA timeout is this reference clock
627 * divided by 1024, which yields roughly 8.192us, our maximum value
628 * has to fit in the DMA_TIMEOUT_MASK (16 bits)
630 if (ec
->tx_max_coalesced_frames
> DMA_INTR_THRESHOLD_MASK
||
631 ec
->tx_max_coalesced_frames
== 0 ||
632 ec
->rx_max_coalesced_frames
> DMA_INTR_THRESHOLD_MASK
||
633 ec
->rx_coalesce_usecs
> (DMA_TIMEOUT_MASK
* 8) + 1)
636 if (ec
->rx_coalesce_usecs
== 0 && ec
->rx_max_coalesced_frames
== 0)
639 /* GENET TDMA hardware does not support a configurable timeout, but will
640 * always generate an interrupt either after MBDONE packets have been
641 * transmitted, or when the ring is empty.
643 if (ec
->tx_coalesce_usecs
|| ec
->tx_coalesce_usecs_high
||
644 ec
->tx_coalesce_usecs_irq
|| ec
->tx_coalesce_usecs_low
)
647 /* Program all TX queues with the same values, as there is no
648 * ethtool knob to do coalescing on a per-queue basis
650 for (i
= 0; i
< priv
->hw_params
->tx_queues
; i
++)
651 bcmgenet_tdma_ring_writel(priv
, i
,
652 ec
->tx_max_coalesced_frames
,
653 DMA_MBUF_DONE_THRESH
);
654 bcmgenet_tdma_ring_writel(priv
, DESC_INDEX
,
655 ec
->tx_max_coalesced_frames
,
656 DMA_MBUF_DONE_THRESH
);
658 for (i
= 0; i
< priv
->hw_params
->rx_queues
; i
++) {
659 bcmgenet_rdma_ring_writel(priv
, i
,
660 ec
->rx_max_coalesced_frames
,
661 DMA_MBUF_DONE_THRESH
);
663 reg
= bcmgenet_rdma_readl(priv
, DMA_RING0_TIMEOUT
+ i
);
664 reg
&= ~DMA_TIMEOUT_MASK
;
665 reg
|= DIV_ROUND_UP(ec
->rx_coalesce_usecs
* 1000, 8192);
666 bcmgenet_rdma_writel(priv
, reg
, DMA_RING0_TIMEOUT
+ i
);
669 bcmgenet_rdma_ring_writel(priv
, DESC_INDEX
,
670 ec
->rx_max_coalesced_frames
,
671 DMA_MBUF_DONE_THRESH
);
673 reg
= bcmgenet_rdma_readl(priv
, DMA_RING16_TIMEOUT
);
674 reg
&= ~DMA_TIMEOUT_MASK
;
675 reg
|= DIV_ROUND_UP(ec
->rx_coalesce_usecs
* 1000, 8192);
676 bcmgenet_rdma_writel(priv
, reg
, DMA_RING16_TIMEOUT
);
681 /* standard ethtool support functions. */
682 enum bcmgenet_stat_type
{
683 BCMGENET_STAT_NETDEV
= -1,
684 BCMGENET_STAT_MIB_RX
,
685 BCMGENET_STAT_MIB_TX
,
691 struct bcmgenet_stats
{
692 char stat_string
[ETH_GSTRING_LEN
];
695 enum bcmgenet_stat_type type
;
696 /* reg offset from UMAC base for misc counters */
700 #define STAT_NETDEV(m) { \
701 .stat_string = __stringify(m), \
702 .stat_sizeof = sizeof(((struct net_device_stats *)0)->m), \
703 .stat_offset = offsetof(struct net_device_stats, m), \
704 .type = BCMGENET_STAT_NETDEV, \
707 #define STAT_GENET_MIB(str, m, _type) { \
708 .stat_string = str, \
709 .stat_sizeof = sizeof(((struct bcmgenet_priv *)0)->m), \
710 .stat_offset = offsetof(struct bcmgenet_priv, m), \
714 #define STAT_GENET_MIB_RX(str, m) STAT_GENET_MIB(str, m, BCMGENET_STAT_MIB_RX)
715 #define STAT_GENET_MIB_TX(str, m) STAT_GENET_MIB(str, m, BCMGENET_STAT_MIB_TX)
716 #define STAT_GENET_RUNT(str, m) STAT_GENET_MIB(str, m, BCMGENET_STAT_RUNT)
717 #define STAT_GENET_SOFT_MIB(str, m) STAT_GENET_MIB(str, m, BCMGENET_STAT_SOFT)
719 #define STAT_GENET_MISC(str, m, offset) { \
720 .stat_string = str, \
721 .stat_sizeof = sizeof(((struct bcmgenet_priv *)0)->m), \
722 .stat_offset = offsetof(struct bcmgenet_priv, m), \
723 .type = BCMGENET_STAT_MISC, \
724 .reg_offset = offset, \
727 #define STAT_GENET_Q(num) \
728 STAT_GENET_SOFT_MIB("txq" __stringify(num) "_packets", \
729 tx_rings[num].packets), \
730 STAT_GENET_SOFT_MIB("txq" __stringify(num) "_bytes", \
731 tx_rings[num].bytes), \
732 STAT_GENET_SOFT_MIB("rxq" __stringify(num) "_bytes", \
733 rx_rings[num].bytes), \
734 STAT_GENET_SOFT_MIB("rxq" __stringify(num) "_packets", \
735 rx_rings[num].packets), \
736 STAT_GENET_SOFT_MIB("rxq" __stringify(num) "_errors", \
737 rx_rings[num].errors), \
738 STAT_GENET_SOFT_MIB("rxq" __stringify(num) "_dropped", \
739 rx_rings[num].dropped)
741 /* There is a 0xC gap between the end of RX and beginning of TX stats and then
742 * between the end of TX stats and the beginning of the RX RUNT
744 #define BCMGENET_STAT_OFFSET 0xc
746 /* Hardware counters must be kept in sync because the order/offset
747 * is important here (order in structure declaration = order in hardware)
749 static const struct bcmgenet_stats bcmgenet_gstrings_stats
[] = {
751 STAT_NETDEV(rx_packets
),
752 STAT_NETDEV(tx_packets
),
753 STAT_NETDEV(rx_bytes
),
754 STAT_NETDEV(tx_bytes
),
755 STAT_NETDEV(rx_errors
),
756 STAT_NETDEV(tx_errors
),
757 STAT_NETDEV(rx_dropped
),
758 STAT_NETDEV(tx_dropped
),
759 STAT_NETDEV(multicast
),
760 /* UniMAC RSV counters */
761 STAT_GENET_MIB_RX("rx_64_octets", mib
.rx
.pkt_cnt
.cnt_64
),
762 STAT_GENET_MIB_RX("rx_65_127_oct", mib
.rx
.pkt_cnt
.cnt_127
),
763 STAT_GENET_MIB_RX("rx_128_255_oct", mib
.rx
.pkt_cnt
.cnt_255
),
764 STAT_GENET_MIB_RX("rx_256_511_oct", mib
.rx
.pkt_cnt
.cnt_511
),
765 STAT_GENET_MIB_RX("rx_512_1023_oct", mib
.rx
.pkt_cnt
.cnt_1023
),
766 STAT_GENET_MIB_RX("rx_1024_1518_oct", mib
.rx
.pkt_cnt
.cnt_1518
),
767 STAT_GENET_MIB_RX("rx_vlan_1519_1522_oct", mib
.rx
.pkt_cnt
.cnt_mgv
),
768 STAT_GENET_MIB_RX("rx_1522_2047_oct", mib
.rx
.pkt_cnt
.cnt_2047
),
769 STAT_GENET_MIB_RX("rx_2048_4095_oct", mib
.rx
.pkt_cnt
.cnt_4095
),
770 STAT_GENET_MIB_RX("rx_4096_9216_oct", mib
.rx
.pkt_cnt
.cnt_9216
),
771 STAT_GENET_MIB_RX("rx_pkts", mib
.rx
.pkt
),
772 STAT_GENET_MIB_RX("rx_bytes", mib
.rx
.bytes
),
773 STAT_GENET_MIB_RX("rx_multicast", mib
.rx
.mca
),
774 STAT_GENET_MIB_RX("rx_broadcast", mib
.rx
.bca
),
775 STAT_GENET_MIB_RX("rx_fcs", mib
.rx
.fcs
),
776 STAT_GENET_MIB_RX("rx_control", mib
.rx
.cf
),
777 STAT_GENET_MIB_RX("rx_pause", mib
.rx
.pf
),
778 STAT_GENET_MIB_RX("rx_unknown", mib
.rx
.uo
),
779 STAT_GENET_MIB_RX("rx_align", mib
.rx
.aln
),
780 STAT_GENET_MIB_RX("rx_outrange", mib
.rx
.flr
),
781 STAT_GENET_MIB_RX("rx_code", mib
.rx
.cde
),
782 STAT_GENET_MIB_RX("rx_carrier", mib
.rx
.fcr
),
783 STAT_GENET_MIB_RX("rx_oversize", mib
.rx
.ovr
),
784 STAT_GENET_MIB_RX("rx_jabber", mib
.rx
.jbr
),
785 STAT_GENET_MIB_RX("rx_mtu_err", mib
.rx
.mtue
),
786 STAT_GENET_MIB_RX("rx_good_pkts", mib
.rx
.pok
),
787 STAT_GENET_MIB_RX("rx_unicast", mib
.rx
.uc
),
788 STAT_GENET_MIB_RX("rx_ppp", mib
.rx
.ppp
),
789 STAT_GENET_MIB_RX("rx_crc", mib
.rx
.rcrc
),
790 /* UniMAC TSV counters */
791 STAT_GENET_MIB_TX("tx_64_octets", mib
.tx
.pkt_cnt
.cnt_64
),
792 STAT_GENET_MIB_TX("tx_65_127_oct", mib
.tx
.pkt_cnt
.cnt_127
),
793 STAT_GENET_MIB_TX("tx_128_255_oct", mib
.tx
.pkt_cnt
.cnt_255
),
794 STAT_GENET_MIB_TX("tx_256_511_oct", mib
.tx
.pkt_cnt
.cnt_511
),
795 STAT_GENET_MIB_TX("tx_512_1023_oct", mib
.tx
.pkt_cnt
.cnt_1023
),
796 STAT_GENET_MIB_TX("tx_1024_1518_oct", mib
.tx
.pkt_cnt
.cnt_1518
),
797 STAT_GENET_MIB_TX("tx_vlan_1519_1522_oct", mib
.tx
.pkt_cnt
.cnt_mgv
),
798 STAT_GENET_MIB_TX("tx_1522_2047_oct", mib
.tx
.pkt_cnt
.cnt_2047
),
799 STAT_GENET_MIB_TX("tx_2048_4095_oct", mib
.tx
.pkt_cnt
.cnt_4095
),
800 STAT_GENET_MIB_TX("tx_4096_9216_oct", mib
.tx
.pkt_cnt
.cnt_9216
),
801 STAT_GENET_MIB_TX("tx_pkts", mib
.tx
.pkts
),
802 STAT_GENET_MIB_TX("tx_multicast", mib
.tx
.mca
),
803 STAT_GENET_MIB_TX("tx_broadcast", mib
.tx
.bca
),
804 STAT_GENET_MIB_TX("tx_pause", mib
.tx
.pf
),
805 STAT_GENET_MIB_TX("tx_control", mib
.tx
.cf
),
806 STAT_GENET_MIB_TX("tx_fcs_err", mib
.tx
.fcs
),
807 STAT_GENET_MIB_TX("tx_oversize", mib
.tx
.ovr
),
808 STAT_GENET_MIB_TX("tx_defer", mib
.tx
.drf
),
809 STAT_GENET_MIB_TX("tx_excess_defer", mib
.tx
.edf
),
810 STAT_GENET_MIB_TX("tx_single_col", mib
.tx
.scl
),
811 STAT_GENET_MIB_TX("tx_multi_col", mib
.tx
.mcl
),
812 STAT_GENET_MIB_TX("tx_late_col", mib
.tx
.lcl
),
813 STAT_GENET_MIB_TX("tx_excess_col", mib
.tx
.ecl
),
814 STAT_GENET_MIB_TX("tx_frags", mib
.tx
.frg
),
815 STAT_GENET_MIB_TX("tx_total_col", mib
.tx
.ncl
),
816 STAT_GENET_MIB_TX("tx_jabber", mib
.tx
.jbr
),
817 STAT_GENET_MIB_TX("tx_bytes", mib
.tx
.bytes
),
818 STAT_GENET_MIB_TX("tx_good_pkts", mib
.tx
.pok
),
819 STAT_GENET_MIB_TX("tx_unicast", mib
.tx
.uc
),
820 /* UniMAC RUNT counters */
821 STAT_GENET_RUNT("rx_runt_pkts", mib
.rx_runt_cnt
),
822 STAT_GENET_RUNT("rx_runt_valid_fcs", mib
.rx_runt_fcs
),
823 STAT_GENET_RUNT("rx_runt_inval_fcs_align", mib
.rx_runt_fcs_align
),
824 STAT_GENET_RUNT("rx_runt_bytes", mib
.rx_runt_bytes
),
825 /* Misc UniMAC counters */
826 STAT_GENET_MISC("rbuf_ovflow_cnt", mib
.rbuf_ovflow_cnt
,
827 UMAC_RBUF_OVFL_CNT_V1
),
828 STAT_GENET_MISC("rbuf_err_cnt", mib
.rbuf_err_cnt
,
829 UMAC_RBUF_ERR_CNT_V1
),
830 STAT_GENET_MISC("mdf_err_cnt", mib
.mdf_err_cnt
, UMAC_MDF_ERR_CNT
),
831 STAT_GENET_SOFT_MIB("alloc_rx_buff_failed", mib
.alloc_rx_buff_failed
),
832 STAT_GENET_SOFT_MIB("rx_dma_failed", mib
.rx_dma_failed
),
833 STAT_GENET_SOFT_MIB("tx_dma_failed", mib
.tx_dma_failed
),
842 #define BCMGENET_STATS_LEN ARRAY_SIZE(bcmgenet_gstrings_stats)
844 static void bcmgenet_get_drvinfo(struct net_device
*dev
,
845 struct ethtool_drvinfo
*info
)
847 strlcpy(info
->driver
, "bcmgenet", sizeof(info
->driver
));
848 strlcpy(info
->version
, "v2.0", sizeof(info
->version
));
851 static int bcmgenet_get_sset_count(struct net_device
*dev
, int string_set
)
853 switch (string_set
) {
855 return BCMGENET_STATS_LEN
;
861 static void bcmgenet_get_strings(struct net_device
*dev
, u32 stringset
,
868 for (i
= 0; i
< BCMGENET_STATS_LEN
; i
++) {
869 memcpy(data
+ i
* ETH_GSTRING_LEN
,
870 bcmgenet_gstrings_stats
[i
].stat_string
,
877 static u32
bcmgenet_update_stat_misc(struct bcmgenet_priv
*priv
, u16 offset
)
883 case UMAC_RBUF_OVFL_CNT_V1
:
884 if (GENET_IS_V2(priv
))
885 new_offset
= RBUF_OVFL_CNT_V2
;
887 new_offset
= RBUF_OVFL_CNT_V3PLUS
;
889 val
= bcmgenet_rbuf_readl(priv
, new_offset
);
890 /* clear if overflowed */
892 bcmgenet_rbuf_writel(priv
, 0, new_offset
);
894 case UMAC_RBUF_ERR_CNT_V1
:
895 if (GENET_IS_V2(priv
))
896 new_offset
= RBUF_ERR_CNT_V2
;
898 new_offset
= RBUF_ERR_CNT_V3PLUS
;
900 val
= bcmgenet_rbuf_readl(priv
, new_offset
);
901 /* clear if overflowed */
903 bcmgenet_rbuf_writel(priv
, 0, new_offset
);
906 val
= bcmgenet_umac_readl(priv
, offset
);
907 /* clear if overflowed */
909 bcmgenet_umac_writel(priv
, 0, offset
);
916 static void bcmgenet_update_mib_counters(struct bcmgenet_priv
*priv
)
920 for (i
= 0; i
< BCMGENET_STATS_LEN
; i
++) {
921 const struct bcmgenet_stats
*s
;
926 s
= &bcmgenet_gstrings_stats
[i
];
928 case BCMGENET_STAT_NETDEV
:
929 case BCMGENET_STAT_SOFT
:
931 case BCMGENET_STAT_RUNT
:
932 offset
+= BCMGENET_STAT_OFFSET
;
934 case BCMGENET_STAT_MIB_TX
:
935 offset
+= BCMGENET_STAT_OFFSET
;
937 case BCMGENET_STAT_MIB_RX
:
938 val
= bcmgenet_umac_readl(priv
,
939 UMAC_MIB_START
+ j
+ offset
);
940 offset
= 0; /* Reset Offset */
942 case BCMGENET_STAT_MISC
:
943 if (GENET_IS_V1(priv
)) {
944 val
= bcmgenet_umac_readl(priv
, s
->reg_offset
);
945 /* clear if overflowed */
947 bcmgenet_umac_writel(priv
, 0,
950 val
= bcmgenet_update_stat_misc(priv
,
957 p
= (char *)priv
+ s
->stat_offset
;
962 static void bcmgenet_get_ethtool_stats(struct net_device
*dev
,
963 struct ethtool_stats
*stats
,
966 struct bcmgenet_priv
*priv
= netdev_priv(dev
);
969 if (netif_running(dev
))
970 bcmgenet_update_mib_counters(priv
);
972 for (i
= 0; i
< BCMGENET_STATS_LEN
; i
++) {
973 const struct bcmgenet_stats
*s
;
976 s
= &bcmgenet_gstrings_stats
[i
];
977 if (s
->type
== BCMGENET_STAT_NETDEV
)
978 p
= (char *)&dev
->stats
;
982 if (sizeof(unsigned long) != sizeof(u32
) &&
983 s
->stat_sizeof
== sizeof(unsigned long))
984 data
[i
] = *(unsigned long *)p
;
990 static void bcmgenet_eee_enable_set(struct net_device
*dev
, bool enable
)
992 struct bcmgenet_priv
*priv
= netdev_priv(dev
);
993 u32 off
= priv
->hw_params
->tbuf_offset
+ TBUF_ENERGY_CTRL
;
996 if (enable
&& !priv
->clk_eee_enabled
) {
997 clk_prepare_enable(priv
->clk_eee
);
998 priv
->clk_eee_enabled
= true;
1001 reg
= bcmgenet_umac_readl(priv
, UMAC_EEE_CTRL
);
1006 bcmgenet_umac_writel(priv
, reg
, UMAC_EEE_CTRL
);
1008 /* Enable EEE and switch to a 27Mhz clock automatically */
1009 reg
= bcmgenet_readl(priv
->base
+ off
);
1011 reg
|= TBUF_EEE_EN
| TBUF_PM_EN
;
1013 reg
&= ~(TBUF_EEE_EN
| TBUF_PM_EN
);
1014 bcmgenet_writel(reg
, priv
->base
+ off
);
1016 /* Do the same for thing for RBUF */
1017 reg
= bcmgenet_rbuf_readl(priv
, RBUF_ENERGY_CTRL
);
1019 reg
|= RBUF_EEE_EN
| RBUF_PM_EN
;
1021 reg
&= ~(RBUF_EEE_EN
| RBUF_PM_EN
);
1022 bcmgenet_rbuf_writel(priv
, reg
, RBUF_ENERGY_CTRL
);
1024 if (!enable
&& priv
->clk_eee_enabled
) {
1025 clk_disable_unprepare(priv
->clk_eee
);
1026 priv
->clk_eee_enabled
= false;
1029 priv
->eee
.eee_enabled
= enable
;
1030 priv
->eee
.eee_active
= enable
;
1033 static int bcmgenet_get_eee(struct net_device
*dev
, struct ethtool_eee
*e
)
1035 struct bcmgenet_priv
*priv
= netdev_priv(dev
);
1036 struct ethtool_eee
*p
= &priv
->eee
;
1038 if (GENET_IS_V1(priv
))
1044 e
->eee_enabled
= p
->eee_enabled
;
1045 e
->eee_active
= p
->eee_active
;
1046 e
->tx_lpi_timer
= bcmgenet_umac_readl(priv
, UMAC_EEE_LPI_TIMER
);
1048 return phy_ethtool_get_eee(dev
->phydev
, e
);
1051 static int bcmgenet_set_eee(struct net_device
*dev
, struct ethtool_eee
*e
)
1053 struct bcmgenet_priv
*priv
= netdev_priv(dev
);
1054 struct ethtool_eee
*p
= &priv
->eee
;
1057 if (GENET_IS_V1(priv
))
1063 p
->eee_enabled
= e
->eee_enabled
;
1065 if (!p
->eee_enabled
) {
1066 bcmgenet_eee_enable_set(dev
, false);
1068 ret
= phy_init_eee(dev
->phydev
, 0);
1070 netif_err(priv
, hw
, dev
, "EEE initialization failed\n");
1074 bcmgenet_umac_writel(priv
, e
->tx_lpi_timer
, UMAC_EEE_LPI_TIMER
);
1075 bcmgenet_eee_enable_set(dev
, true);
1078 return phy_ethtool_set_eee(dev
->phydev
, e
);
1081 /* standard ethtool support functions. */
1082 static const struct ethtool_ops bcmgenet_ethtool_ops
= {
1083 .begin
= bcmgenet_begin
,
1084 .complete
= bcmgenet_complete
,
1085 .get_strings
= bcmgenet_get_strings
,
1086 .get_sset_count
= bcmgenet_get_sset_count
,
1087 .get_ethtool_stats
= bcmgenet_get_ethtool_stats
,
1088 .get_drvinfo
= bcmgenet_get_drvinfo
,
1089 .get_link
= ethtool_op_get_link
,
1090 .get_msglevel
= bcmgenet_get_msglevel
,
1091 .set_msglevel
= bcmgenet_set_msglevel
,
1092 .get_wol
= bcmgenet_get_wol
,
1093 .set_wol
= bcmgenet_set_wol
,
1094 .get_eee
= bcmgenet_get_eee
,
1095 .set_eee
= bcmgenet_set_eee
,
1096 .nway_reset
= phy_ethtool_nway_reset
,
1097 .get_coalesce
= bcmgenet_get_coalesce
,
1098 .set_coalesce
= bcmgenet_set_coalesce
,
1099 .get_link_ksettings
= bcmgenet_get_link_ksettings
,
1100 .set_link_ksettings
= bcmgenet_set_link_ksettings
,
1103 /* Power down the unimac, based on mode. */
1104 static int bcmgenet_power_down(struct bcmgenet_priv
*priv
,
1105 enum bcmgenet_power_mode mode
)
1111 case GENET_POWER_CABLE_SENSE
:
1112 phy_detach(priv
->dev
->phydev
);
1115 case GENET_POWER_WOL_MAGIC
:
1116 ret
= bcmgenet_wol_power_down_cfg(priv
, mode
);
1119 case GENET_POWER_PASSIVE
:
1120 /* Power down LED */
1121 if (priv
->hw_params
->flags
& GENET_HAS_EXT
) {
1122 reg
= bcmgenet_ext_readl(priv
, EXT_EXT_PWR_MGMT
);
1123 if (GENET_IS_V5(priv
))
1124 reg
|= EXT_PWR_DOWN_PHY_EN
|
1125 EXT_PWR_DOWN_PHY_RD
|
1126 EXT_PWR_DOWN_PHY_SD
|
1127 EXT_PWR_DOWN_PHY_RX
|
1128 EXT_PWR_DOWN_PHY_TX
|
1131 reg
|= EXT_PWR_DOWN_PHY
;
1133 reg
|= (EXT_PWR_DOWN_DLL
| EXT_PWR_DOWN_BIAS
);
1134 bcmgenet_ext_writel(priv
, reg
, EXT_EXT_PWR_MGMT
);
1136 bcmgenet_phy_power_set(priv
->dev
, false);
1146 static void bcmgenet_power_up(struct bcmgenet_priv
*priv
,
1147 enum bcmgenet_power_mode mode
)
1151 if (!(priv
->hw_params
->flags
& GENET_HAS_EXT
))
1154 reg
= bcmgenet_ext_readl(priv
, EXT_EXT_PWR_MGMT
);
1157 case GENET_POWER_PASSIVE
:
1158 reg
&= ~(EXT_PWR_DOWN_DLL
| EXT_PWR_DOWN_BIAS
);
1159 if (GENET_IS_V5(priv
)) {
1160 reg
&= ~(EXT_PWR_DOWN_PHY_EN
|
1161 EXT_PWR_DOWN_PHY_RD
|
1162 EXT_PWR_DOWN_PHY_SD
|
1163 EXT_PWR_DOWN_PHY_RX
|
1164 EXT_PWR_DOWN_PHY_TX
|
1166 reg
|= EXT_PHY_RESET
;
1167 bcmgenet_ext_writel(priv
, reg
, EXT_EXT_PWR_MGMT
);
1170 reg
&= ~EXT_PHY_RESET
;
1172 reg
&= ~EXT_PWR_DOWN_PHY
;
1173 reg
|= EXT_PWR_DN_EN_LD
;
1175 bcmgenet_ext_writel(priv
, reg
, EXT_EXT_PWR_MGMT
);
1176 bcmgenet_phy_power_set(priv
->dev
, true);
1179 case GENET_POWER_CABLE_SENSE
:
1181 if (!GENET_IS_V5(priv
)) {
1182 reg
|= EXT_PWR_DN_EN_LD
;
1183 bcmgenet_ext_writel(priv
, reg
, EXT_EXT_PWR_MGMT
);
1186 case GENET_POWER_WOL_MAGIC
:
1187 bcmgenet_wol_power_up_cfg(priv
, mode
);
1194 /* ioctl handle special commands that are not present in ethtool. */
1195 static int bcmgenet_ioctl(struct net_device
*dev
, struct ifreq
*rq
, int cmd
)
1197 if (!netif_running(dev
))
1203 return phy_mii_ioctl(dev
->phydev
, rq
, cmd
);
1206 static struct enet_cb
*bcmgenet_get_txcb(struct bcmgenet_priv
*priv
,
1207 struct bcmgenet_tx_ring
*ring
)
1209 struct enet_cb
*tx_cb_ptr
;
1211 tx_cb_ptr
= ring
->cbs
;
1212 tx_cb_ptr
+= ring
->write_ptr
- ring
->cb_ptr
;
1214 /* Advancing local write pointer */
1215 if (ring
->write_ptr
== ring
->end_ptr
)
1216 ring
->write_ptr
= ring
->cb_ptr
;
1223 static struct enet_cb
*bcmgenet_put_txcb(struct bcmgenet_priv
*priv
,
1224 struct bcmgenet_tx_ring
*ring
)
1226 struct enet_cb
*tx_cb_ptr
;
1228 tx_cb_ptr
= ring
->cbs
;
1229 tx_cb_ptr
+= ring
->write_ptr
- ring
->cb_ptr
;
1231 /* Rewinding local write pointer */
1232 if (ring
->write_ptr
== ring
->cb_ptr
)
1233 ring
->write_ptr
= ring
->end_ptr
;
1240 static inline void bcmgenet_rx_ring16_int_disable(struct bcmgenet_rx_ring
*ring
)
1242 bcmgenet_intrl2_0_writel(ring
->priv
, UMAC_IRQ_RXDMA_DONE
,
1243 INTRL2_CPU_MASK_SET
);
1246 static inline void bcmgenet_rx_ring16_int_enable(struct bcmgenet_rx_ring
*ring
)
1248 bcmgenet_intrl2_0_writel(ring
->priv
, UMAC_IRQ_RXDMA_DONE
,
1249 INTRL2_CPU_MASK_CLEAR
);
1252 static inline void bcmgenet_rx_ring_int_disable(struct bcmgenet_rx_ring
*ring
)
1254 bcmgenet_intrl2_1_writel(ring
->priv
,
1255 1 << (UMAC_IRQ1_RX_INTR_SHIFT
+ ring
->index
),
1256 INTRL2_CPU_MASK_SET
);
1259 static inline void bcmgenet_rx_ring_int_enable(struct bcmgenet_rx_ring
*ring
)
1261 bcmgenet_intrl2_1_writel(ring
->priv
,
1262 1 << (UMAC_IRQ1_RX_INTR_SHIFT
+ ring
->index
),
1263 INTRL2_CPU_MASK_CLEAR
);
1266 static inline void bcmgenet_tx_ring16_int_disable(struct bcmgenet_tx_ring
*ring
)
1268 bcmgenet_intrl2_0_writel(ring
->priv
, UMAC_IRQ_TXDMA_DONE
,
1269 INTRL2_CPU_MASK_SET
);
1272 static inline void bcmgenet_tx_ring16_int_enable(struct bcmgenet_tx_ring
*ring
)
1274 bcmgenet_intrl2_0_writel(ring
->priv
, UMAC_IRQ_TXDMA_DONE
,
1275 INTRL2_CPU_MASK_CLEAR
);
1278 static inline void bcmgenet_tx_ring_int_enable(struct bcmgenet_tx_ring
*ring
)
1280 bcmgenet_intrl2_1_writel(ring
->priv
, 1 << ring
->index
,
1281 INTRL2_CPU_MASK_CLEAR
);
1284 static inline void bcmgenet_tx_ring_int_disable(struct bcmgenet_tx_ring
*ring
)
1286 bcmgenet_intrl2_1_writel(ring
->priv
, 1 << ring
->index
,
1287 INTRL2_CPU_MASK_SET
);
1290 /* Simple helper to free a transmit control block's resources
1291 * Returns an skb when the last transmit control block associated with the
1292 * skb is freed. The skb should be freed by the caller if necessary.
1294 static struct sk_buff
*bcmgenet_free_tx_cb(struct device
*dev
,
1297 struct sk_buff
*skb
;
1303 if (cb
== GENET_CB(skb
)->first_cb
)
1304 dma_unmap_single(dev
, dma_unmap_addr(cb
, dma_addr
),
1305 dma_unmap_len(cb
, dma_len
),
1308 dma_unmap_page(dev
, dma_unmap_addr(cb
, dma_addr
),
1309 dma_unmap_len(cb
, dma_len
),
1311 dma_unmap_addr_set(cb
, dma_addr
, 0);
1313 if (cb
== GENET_CB(skb
)->last_cb
)
1316 } else if (dma_unmap_addr(cb
, dma_addr
)) {
1318 dma_unmap_addr(cb
, dma_addr
),
1319 dma_unmap_len(cb
, dma_len
),
1321 dma_unmap_addr_set(cb
, dma_addr
, 0);
1327 /* Simple helper to free a receive control block's resources */
1328 static struct sk_buff
*bcmgenet_free_rx_cb(struct device
*dev
,
1331 struct sk_buff
*skb
;
1336 if (dma_unmap_addr(cb
, dma_addr
)) {
1337 dma_unmap_single(dev
, dma_unmap_addr(cb
, dma_addr
),
1338 dma_unmap_len(cb
, dma_len
), DMA_FROM_DEVICE
);
1339 dma_unmap_addr_set(cb
, dma_addr
, 0);
1345 /* Unlocked version of the reclaim routine */
1346 static unsigned int __bcmgenet_tx_reclaim(struct net_device
*dev
,
1347 struct bcmgenet_tx_ring
*ring
)
1349 struct bcmgenet_priv
*priv
= netdev_priv(dev
);
1350 unsigned int txbds_processed
= 0;
1351 unsigned int bytes_compl
= 0;
1352 unsigned int pkts_compl
= 0;
1353 unsigned int txbds_ready
;
1354 unsigned int c_index
;
1355 struct sk_buff
*skb
;
1357 /* Clear status before servicing to reduce spurious interrupts */
1358 if (ring
->index
== DESC_INDEX
)
1359 bcmgenet_intrl2_0_writel(priv
, UMAC_IRQ_TXDMA_DONE
,
1362 bcmgenet_intrl2_1_writel(priv
, (1 << ring
->index
),
1365 /* Compute how many buffers are transmitted since last xmit call */
1366 c_index
= bcmgenet_tdma_ring_readl(priv
, ring
->index
, TDMA_CONS_INDEX
)
1368 txbds_ready
= (c_index
- ring
->c_index
) & DMA_C_INDEX_MASK
;
1370 netif_dbg(priv
, tx_done
, dev
,
1371 "%s ring=%d old_c_index=%u c_index=%u txbds_ready=%u\n",
1372 __func__
, ring
->index
, ring
->c_index
, c_index
, txbds_ready
);
1374 /* Reclaim transmitted buffers */
1375 while (txbds_processed
< txbds_ready
) {
1376 skb
= bcmgenet_free_tx_cb(&priv
->pdev
->dev
,
1377 &priv
->tx_cbs
[ring
->clean_ptr
]);
1380 bytes_compl
+= GENET_CB(skb
)->bytes_sent
;
1381 dev_consume_skb_any(skb
);
1385 if (likely(ring
->clean_ptr
< ring
->end_ptr
))
1388 ring
->clean_ptr
= ring
->cb_ptr
;
1391 ring
->free_bds
+= txbds_processed
;
1392 ring
->c_index
= c_index
;
1394 ring
->packets
+= pkts_compl
;
1395 ring
->bytes
+= bytes_compl
;
1397 netdev_tx_completed_queue(netdev_get_tx_queue(dev
, ring
->queue
),
1398 pkts_compl
, bytes_compl
);
1400 return txbds_processed
;
1403 static unsigned int bcmgenet_tx_reclaim(struct net_device
*dev
,
1404 struct bcmgenet_tx_ring
*ring
)
1406 unsigned int released
;
1408 spin_lock_bh(&ring
->lock
);
1409 released
= __bcmgenet_tx_reclaim(dev
, ring
);
1410 spin_unlock_bh(&ring
->lock
);
1415 static int bcmgenet_tx_poll(struct napi_struct
*napi
, int budget
)
1417 struct bcmgenet_tx_ring
*ring
=
1418 container_of(napi
, struct bcmgenet_tx_ring
, napi
);
1419 unsigned int work_done
= 0;
1420 struct netdev_queue
*txq
;
1422 spin_lock(&ring
->lock
);
1423 work_done
= __bcmgenet_tx_reclaim(ring
->priv
->dev
, ring
);
1424 if (ring
->free_bds
> (MAX_SKB_FRAGS
+ 1)) {
1425 txq
= netdev_get_tx_queue(ring
->priv
->dev
, ring
->queue
);
1426 netif_tx_wake_queue(txq
);
1428 spin_unlock(&ring
->lock
);
1430 if (work_done
== 0) {
1431 napi_complete(napi
);
1432 ring
->int_enable(ring
);
1440 static void bcmgenet_tx_reclaim_all(struct net_device
*dev
)
1442 struct bcmgenet_priv
*priv
= netdev_priv(dev
);
1445 if (netif_is_multiqueue(dev
)) {
1446 for (i
= 0; i
< priv
->hw_params
->tx_queues
; i
++)
1447 bcmgenet_tx_reclaim(dev
, &priv
->tx_rings
[i
]);
1450 bcmgenet_tx_reclaim(dev
, &priv
->tx_rings
[DESC_INDEX
]);
1453 /* Reallocate the SKB to put enough headroom in front of it and insert
1454 * the transmit checksum offsets in the descriptors
1456 static struct sk_buff
*bcmgenet_put_tx_csum(struct net_device
*dev
,
1457 struct sk_buff
*skb
)
1459 struct status_64
*status
= NULL
;
1460 struct sk_buff
*new_skb
;
1466 if (unlikely(skb_headroom(skb
) < sizeof(*status
))) {
1467 /* If 64 byte status block enabled, must make sure skb has
1468 * enough headroom for us to insert 64B status block.
1470 new_skb
= skb_realloc_headroom(skb
, sizeof(*status
));
1473 dev
->stats
.tx_dropped
++;
1479 skb_push(skb
, sizeof(*status
));
1480 status
= (struct status_64
*)skb
->data
;
1482 if (skb
->ip_summed
== CHECKSUM_PARTIAL
) {
1483 ip_ver
= htons(skb
->protocol
);
1486 ip_proto
= ip_hdr(skb
)->protocol
;
1489 ip_proto
= ipv6_hdr(skb
)->nexthdr
;
1495 offset
= skb_checksum_start_offset(skb
) - sizeof(*status
);
1496 tx_csum_info
= (offset
<< STATUS_TX_CSUM_START_SHIFT
) |
1497 (offset
+ skb
->csum_offset
);
1499 /* Set the length valid bit for TCP and UDP and just set
1500 * the special UDP flag for IPv4, else just set to 0.
1502 if (ip_proto
== IPPROTO_TCP
|| ip_proto
== IPPROTO_UDP
) {
1503 tx_csum_info
|= STATUS_TX_CSUM_LV
;
1504 if (ip_proto
== IPPROTO_UDP
&& ip_ver
== ETH_P_IP
)
1505 tx_csum_info
|= STATUS_TX_CSUM_PROTO_UDP
;
1510 status
->tx_csum_info
= tx_csum_info
;
1516 static netdev_tx_t
bcmgenet_xmit(struct sk_buff
*skb
, struct net_device
*dev
)
1518 struct bcmgenet_priv
*priv
= netdev_priv(dev
);
1519 struct device
*kdev
= &priv
->pdev
->dev
;
1520 struct bcmgenet_tx_ring
*ring
= NULL
;
1521 struct enet_cb
*tx_cb_ptr
;
1522 struct netdev_queue
*txq
;
1523 int nr_frags
, index
;
1531 index
= skb_get_queue_mapping(skb
);
1532 /* Mapping strategy:
1533 * queue_mapping = 0, unclassified, packet xmited through ring16
1534 * queue_mapping = 1, goes to ring 0. (highest priority queue
1535 * queue_mapping = 2, goes to ring 1.
1536 * queue_mapping = 3, goes to ring 2.
1537 * queue_mapping = 4, goes to ring 3.
1544 ring
= &priv
->tx_rings
[index
];
1545 txq
= netdev_get_tx_queue(dev
, ring
->queue
);
1547 nr_frags
= skb_shinfo(skb
)->nr_frags
;
1549 spin_lock(&ring
->lock
);
1550 if (ring
->free_bds
<= (nr_frags
+ 1)) {
1551 if (!netif_tx_queue_stopped(txq
)) {
1552 netif_tx_stop_queue(txq
);
1554 "%s: tx ring %d full when queue %d awake\n",
1555 __func__
, index
, ring
->queue
);
1557 ret
= NETDEV_TX_BUSY
;
1561 if (skb_padto(skb
, ETH_ZLEN
)) {
1566 /* Retain how many bytes will be sent on the wire, without TSB inserted
1567 * by transmit checksum offload
1569 GENET_CB(skb
)->bytes_sent
= skb
->len
;
1571 /* set the SKB transmit checksum */
1572 if (priv
->desc_64b_en
) {
1573 skb
= bcmgenet_put_tx_csum(dev
, skb
);
1580 for (i
= 0; i
<= nr_frags
; i
++) {
1581 tx_cb_ptr
= bcmgenet_get_txcb(priv
, ring
);
1586 /* Transmit single SKB or head of fragment list */
1587 GENET_CB(skb
)->first_cb
= tx_cb_ptr
;
1588 size
= skb_headlen(skb
);
1589 mapping
= dma_map_single(kdev
, skb
->data
, size
,
1593 frag
= &skb_shinfo(skb
)->frags
[i
- 1];
1594 size
= skb_frag_size(frag
);
1595 mapping
= skb_frag_dma_map(kdev
, frag
, 0, size
,
1599 ret
= dma_mapping_error(kdev
, mapping
);
1601 priv
->mib
.tx_dma_failed
++;
1602 netif_err(priv
, tx_err
, dev
, "Tx DMA map failed\n");
1604 goto out_unmap_frags
;
1606 dma_unmap_addr_set(tx_cb_ptr
, dma_addr
, mapping
);
1607 dma_unmap_len_set(tx_cb_ptr
, dma_len
, size
);
1609 tx_cb_ptr
->skb
= skb
;
1611 len_stat
= (size
<< DMA_BUFLENGTH_SHIFT
) |
1612 (priv
->hw_params
->qtag_mask
<< DMA_TX_QTAG_SHIFT
);
1615 len_stat
|= DMA_TX_APPEND_CRC
| DMA_SOP
;
1616 if (skb
->ip_summed
== CHECKSUM_PARTIAL
)
1617 len_stat
|= DMA_TX_DO_CSUM
;
1620 len_stat
|= DMA_EOP
;
1622 dmadesc_set(priv
, tx_cb_ptr
->bd_addr
, mapping
, len_stat
);
1625 GENET_CB(skb
)->last_cb
= tx_cb_ptr
;
1626 skb_tx_timestamp(skb
);
1628 /* Decrement total BD count and advance our write pointer */
1629 ring
->free_bds
-= nr_frags
+ 1;
1630 ring
->prod_index
+= nr_frags
+ 1;
1631 ring
->prod_index
&= DMA_P_INDEX_MASK
;
1633 netdev_tx_sent_queue(txq
, GENET_CB(skb
)->bytes_sent
);
1635 if (ring
->free_bds
<= (MAX_SKB_FRAGS
+ 1))
1636 netif_tx_stop_queue(txq
);
1638 if (!skb
->xmit_more
|| netif_xmit_stopped(txq
))
1639 /* Packets are ready, update producer index */
1640 bcmgenet_tdma_ring_writel(priv
, ring
->index
,
1641 ring
->prod_index
, TDMA_PROD_INDEX
);
1643 spin_unlock(&ring
->lock
);
1648 /* Back up for failed control block mapping */
1649 bcmgenet_put_txcb(priv
, ring
);
1651 /* Unmap successfully mapped control blocks */
1653 tx_cb_ptr
= bcmgenet_put_txcb(priv
, ring
);
1654 bcmgenet_free_tx_cb(kdev
, tx_cb_ptr
);
1661 static struct sk_buff
*bcmgenet_rx_refill(struct bcmgenet_priv
*priv
,
1664 struct device
*kdev
= &priv
->pdev
->dev
;
1665 struct sk_buff
*skb
;
1666 struct sk_buff
*rx_skb
;
1669 /* Allocate a new Rx skb */
1670 skb
= netdev_alloc_skb(priv
->dev
, priv
->rx_buf_len
+ SKB_ALIGNMENT
);
1672 priv
->mib
.alloc_rx_buff_failed
++;
1673 netif_err(priv
, rx_err
, priv
->dev
,
1674 "%s: Rx skb allocation failed\n", __func__
);
1678 /* DMA-map the new Rx skb */
1679 mapping
= dma_map_single(kdev
, skb
->data
, priv
->rx_buf_len
,
1681 if (dma_mapping_error(kdev
, mapping
)) {
1682 priv
->mib
.rx_dma_failed
++;
1683 dev_kfree_skb_any(skb
);
1684 netif_err(priv
, rx_err
, priv
->dev
,
1685 "%s: Rx skb DMA mapping failed\n", __func__
);
1689 /* Grab the current Rx skb from the ring and DMA-unmap it */
1690 rx_skb
= bcmgenet_free_rx_cb(kdev
, cb
);
1692 /* Put the new Rx skb on the ring */
1694 dma_unmap_addr_set(cb
, dma_addr
, mapping
);
1695 dma_unmap_len_set(cb
, dma_len
, priv
->rx_buf_len
);
1696 dmadesc_set_addr(priv
, cb
->bd_addr
, mapping
);
1698 /* Return the current Rx skb to caller */
1702 /* bcmgenet_desc_rx - descriptor based rx process.
1703 * this could be called from bottom half, or from NAPI polling method.
1705 static unsigned int bcmgenet_desc_rx(struct bcmgenet_rx_ring
*ring
,
1706 unsigned int budget
)
1708 struct bcmgenet_priv
*priv
= ring
->priv
;
1709 struct net_device
*dev
= priv
->dev
;
1711 struct sk_buff
*skb
;
1712 u32 dma_length_status
;
1713 unsigned long dma_flag
;
1715 unsigned int rxpktprocessed
= 0, rxpkttoprocess
;
1716 unsigned int p_index
, mask
;
1717 unsigned int discards
;
1718 unsigned int chksum_ok
= 0;
1720 /* Clear status before servicing to reduce spurious interrupts */
1721 if (ring
->index
== DESC_INDEX
) {
1722 bcmgenet_intrl2_0_writel(priv
, UMAC_IRQ_RXDMA_DONE
,
1725 mask
= 1 << (UMAC_IRQ1_RX_INTR_SHIFT
+ ring
->index
);
1726 bcmgenet_intrl2_1_writel(priv
,
1731 p_index
= bcmgenet_rdma_ring_readl(priv
, ring
->index
, RDMA_PROD_INDEX
);
1733 discards
= (p_index
>> DMA_P_INDEX_DISCARD_CNT_SHIFT
) &
1734 DMA_P_INDEX_DISCARD_CNT_MASK
;
1735 if (discards
> ring
->old_discards
) {
1736 discards
= discards
- ring
->old_discards
;
1737 ring
->errors
+= discards
;
1738 ring
->old_discards
+= discards
;
1740 /* Clear HW register when we reach 75% of maximum 0xFFFF */
1741 if (ring
->old_discards
>= 0xC000) {
1742 ring
->old_discards
= 0;
1743 bcmgenet_rdma_ring_writel(priv
, ring
->index
, 0,
1748 p_index
&= DMA_P_INDEX_MASK
;
1749 rxpkttoprocess
= (p_index
- ring
->c_index
) & DMA_C_INDEX_MASK
;
1751 netif_dbg(priv
, rx_status
, dev
,
1752 "RDMA: rxpkttoprocess=%d\n", rxpkttoprocess
);
1754 while ((rxpktprocessed
< rxpkttoprocess
) &&
1755 (rxpktprocessed
< budget
)) {
1756 cb
= &priv
->rx_cbs
[ring
->read_ptr
];
1757 skb
= bcmgenet_rx_refill(priv
, cb
);
1759 if (unlikely(!skb
)) {
1764 if (!priv
->desc_64b_en
) {
1766 dmadesc_get_length_status(priv
, cb
->bd_addr
);
1768 struct status_64
*status
;
1770 status
= (struct status_64
*)skb
->data
;
1771 dma_length_status
= status
->length_status
;
1774 /* DMA flags and length are still valid no matter how
1775 * we got the Receive Status Vector (64B RSB or register)
1777 dma_flag
= dma_length_status
& 0xffff;
1778 len
= dma_length_status
>> DMA_BUFLENGTH_SHIFT
;
1780 netif_dbg(priv
, rx_status
, dev
,
1781 "%s:p_ind=%d c_ind=%d read_ptr=%d len_stat=0x%08x\n",
1782 __func__
, p_index
, ring
->c_index
,
1783 ring
->read_ptr
, dma_length_status
);
1785 if (unlikely(!(dma_flag
& DMA_EOP
) || !(dma_flag
& DMA_SOP
))) {
1786 netif_err(priv
, rx_status
, dev
,
1787 "dropping fragmented packet!\n");
1789 dev_kfree_skb_any(skb
);
1794 if (unlikely(dma_flag
& (DMA_RX_CRC_ERROR
|
1799 netif_err(priv
, rx_status
, dev
, "dma_flag=0x%x\n",
1800 (unsigned int)dma_flag
);
1801 if (dma_flag
& DMA_RX_CRC_ERROR
)
1802 dev
->stats
.rx_crc_errors
++;
1803 if (dma_flag
& DMA_RX_OV
)
1804 dev
->stats
.rx_over_errors
++;
1805 if (dma_flag
& DMA_RX_NO
)
1806 dev
->stats
.rx_frame_errors
++;
1807 if (dma_flag
& DMA_RX_LG
)
1808 dev
->stats
.rx_length_errors
++;
1809 dev
->stats
.rx_errors
++;
1810 dev_kfree_skb_any(skb
);
1812 } /* error packet */
1814 chksum_ok
= (dma_flag
& priv
->dma_rx_chk_bit
) &&
1815 priv
->desc_rxchk_en
;
1818 if (priv
->desc_64b_en
) {
1823 if (likely(chksum_ok
))
1824 skb
->ip_summed
= CHECKSUM_UNNECESSARY
;
1826 /* remove hardware 2bytes added for IP alignment */
1830 if (priv
->crc_fwd_en
) {
1831 skb_trim(skb
, len
- ETH_FCS_LEN
);
1835 /*Finish setting up the received SKB and send it to the kernel*/
1836 skb
->protocol
= eth_type_trans(skb
, priv
->dev
);
1839 if (dma_flag
& DMA_RX_MULT
)
1840 dev
->stats
.multicast
++;
1843 napi_gro_receive(&ring
->napi
, skb
);
1844 netif_dbg(priv
, rx_status
, dev
, "pushed up to kernel\n");
1848 if (likely(ring
->read_ptr
< ring
->end_ptr
))
1851 ring
->read_ptr
= ring
->cb_ptr
;
1853 ring
->c_index
= (ring
->c_index
+ 1) & DMA_C_INDEX_MASK
;
1854 bcmgenet_rdma_ring_writel(priv
, ring
->index
, ring
->c_index
, RDMA_CONS_INDEX
);
1857 return rxpktprocessed
;
1860 /* Rx NAPI polling method */
1861 static int bcmgenet_rx_poll(struct napi_struct
*napi
, int budget
)
1863 struct bcmgenet_rx_ring
*ring
= container_of(napi
,
1864 struct bcmgenet_rx_ring
, napi
);
1865 unsigned int work_done
;
1867 work_done
= bcmgenet_desc_rx(ring
, budget
);
1869 if (work_done
< budget
) {
1870 napi_complete_done(napi
, work_done
);
1871 ring
->int_enable(ring
);
1877 /* Assign skb to RX DMA descriptor. */
1878 static int bcmgenet_alloc_rx_buffers(struct bcmgenet_priv
*priv
,
1879 struct bcmgenet_rx_ring
*ring
)
1882 struct sk_buff
*skb
;
1885 netif_dbg(priv
, hw
, priv
->dev
, "%s\n", __func__
);
1887 /* loop here for each buffer needing assign */
1888 for (i
= 0; i
< ring
->size
; i
++) {
1890 skb
= bcmgenet_rx_refill(priv
, cb
);
1892 dev_consume_skb_any(skb
);
1900 static void bcmgenet_free_rx_buffers(struct bcmgenet_priv
*priv
)
1902 struct sk_buff
*skb
;
1906 for (i
= 0; i
< priv
->num_rx_bds
; i
++) {
1907 cb
= &priv
->rx_cbs
[i
];
1909 skb
= bcmgenet_free_rx_cb(&priv
->pdev
->dev
, cb
);
1911 dev_consume_skb_any(skb
);
1915 static void umac_enable_set(struct bcmgenet_priv
*priv
, u32 mask
, bool enable
)
1919 reg
= bcmgenet_umac_readl(priv
, UMAC_CMD
);
1924 bcmgenet_umac_writel(priv
, reg
, UMAC_CMD
);
1926 /* UniMAC stops on a packet boundary, wait for a full-size packet
1930 usleep_range(1000, 2000);
1933 static void reset_umac(struct bcmgenet_priv
*priv
)
1935 /* 7358a0/7552a0: bad default in RBUF_FLUSH_CTRL.umac_sw_rst */
1936 bcmgenet_rbuf_ctrl_set(priv
, 0);
1939 /* disable MAC while updating its registers */
1940 bcmgenet_umac_writel(priv
, 0, UMAC_CMD
);
1942 /* issue soft reset with (rg)mii loopback to ensure a stable rxclk */
1943 bcmgenet_umac_writel(priv
, CMD_SW_RESET
| CMD_LCL_LOOP_EN
, UMAC_CMD
);
1945 bcmgenet_umac_writel(priv
, 0, UMAC_CMD
);
1948 static void bcmgenet_intr_disable(struct bcmgenet_priv
*priv
)
1950 /* Mask all interrupts.*/
1951 bcmgenet_intrl2_0_writel(priv
, 0xFFFFFFFF, INTRL2_CPU_MASK_SET
);
1952 bcmgenet_intrl2_0_writel(priv
, 0xFFFFFFFF, INTRL2_CPU_CLEAR
);
1953 bcmgenet_intrl2_1_writel(priv
, 0xFFFFFFFF, INTRL2_CPU_MASK_SET
);
1954 bcmgenet_intrl2_1_writel(priv
, 0xFFFFFFFF, INTRL2_CPU_CLEAR
);
1957 static void bcmgenet_link_intr_enable(struct bcmgenet_priv
*priv
)
1959 u32 int0_enable
= 0;
1961 /* Monitor cable plug/unplugged event for internal PHY, external PHY
1964 if (priv
->internal_phy
) {
1965 int0_enable
|= UMAC_IRQ_LINK_EVENT
;
1966 } else if (priv
->ext_phy
) {
1967 int0_enable
|= UMAC_IRQ_LINK_EVENT
;
1968 } else if (priv
->phy_interface
== PHY_INTERFACE_MODE_MOCA
) {
1969 if (priv
->hw_params
->flags
& GENET_HAS_MOCA_LINK_DET
)
1970 int0_enable
|= UMAC_IRQ_LINK_EVENT
;
1972 bcmgenet_intrl2_0_writel(priv
, int0_enable
, INTRL2_CPU_MASK_CLEAR
);
1975 static void init_umac(struct bcmgenet_priv
*priv
)
1977 struct device
*kdev
= &priv
->pdev
->dev
;
1979 u32 int0_enable
= 0;
1981 dev_dbg(&priv
->pdev
->dev
, "bcmgenet: init_umac\n");
1985 /* clear tx/rx counter */
1986 bcmgenet_umac_writel(priv
,
1987 MIB_RESET_RX
| MIB_RESET_TX
| MIB_RESET_RUNT
,
1989 bcmgenet_umac_writel(priv
, 0, UMAC_MIB_CTRL
);
1991 bcmgenet_umac_writel(priv
, ENET_MAX_MTU_SIZE
, UMAC_MAX_FRAME_LEN
);
1993 /* init rx registers, enable ip header optimization */
1994 reg
= bcmgenet_rbuf_readl(priv
, RBUF_CTRL
);
1995 reg
|= RBUF_ALIGN_2B
;
1996 bcmgenet_rbuf_writel(priv
, reg
, RBUF_CTRL
);
1998 if (!GENET_IS_V1(priv
) && !GENET_IS_V2(priv
))
1999 bcmgenet_rbuf_writel(priv
, 1, RBUF_TBUF_SIZE_CTRL
);
2001 bcmgenet_intr_disable(priv
);
2003 /* Configure backpressure vectors for MoCA */
2004 if (priv
->phy_interface
== PHY_INTERFACE_MODE_MOCA
) {
2005 reg
= bcmgenet_bp_mc_get(priv
);
2006 reg
|= BIT(priv
->hw_params
->bp_in_en_shift
);
2008 /* bp_mask: back pressure mask */
2009 if (netif_is_multiqueue(priv
->dev
))
2010 reg
|= priv
->hw_params
->bp_in_mask
;
2012 reg
&= ~priv
->hw_params
->bp_in_mask
;
2013 bcmgenet_bp_mc_set(priv
, reg
);
2016 /* Enable MDIO interrupts on GENET v3+ */
2017 if (priv
->hw_params
->flags
& GENET_HAS_MDIO_INTR
)
2018 int0_enable
|= (UMAC_IRQ_MDIO_DONE
| UMAC_IRQ_MDIO_ERROR
);
2020 bcmgenet_intrl2_0_writel(priv
, int0_enable
, INTRL2_CPU_MASK_CLEAR
);
2022 dev_dbg(kdev
, "done init umac\n");
2025 /* Initialize a Tx ring along with corresponding hardware registers */
2026 static void bcmgenet_init_tx_ring(struct bcmgenet_priv
*priv
,
2027 unsigned int index
, unsigned int size
,
2028 unsigned int start_ptr
, unsigned int end_ptr
)
2030 struct bcmgenet_tx_ring
*ring
= &priv
->tx_rings
[index
];
2031 u32 words_per_bd
= WORDS_PER_BD(priv
);
2032 u32 flow_period_val
= 0;
2034 spin_lock_init(&ring
->lock
);
2036 ring
->index
= index
;
2037 if (index
== DESC_INDEX
) {
2039 ring
->int_enable
= bcmgenet_tx_ring16_int_enable
;
2040 ring
->int_disable
= bcmgenet_tx_ring16_int_disable
;
2042 ring
->queue
= index
+ 1;
2043 ring
->int_enable
= bcmgenet_tx_ring_int_enable
;
2044 ring
->int_disable
= bcmgenet_tx_ring_int_disable
;
2046 ring
->cbs
= priv
->tx_cbs
+ start_ptr
;
2048 ring
->clean_ptr
= start_ptr
;
2050 ring
->free_bds
= size
;
2051 ring
->write_ptr
= start_ptr
;
2052 ring
->cb_ptr
= start_ptr
;
2053 ring
->end_ptr
= end_ptr
- 1;
2054 ring
->prod_index
= 0;
2056 /* Set flow period for ring != 16 */
2057 if (index
!= DESC_INDEX
)
2058 flow_period_val
= ENET_MAX_MTU_SIZE
<< 16;
2060 bcmgenet_tdma_ring_writel(priv
, index
, 0, TDMA_PROD_INDEX
);
2061 bcmgenet_tdma_ring_writel(priv
, index
, 0, TDMA_CONS_INDEX
);
2062 bcmgenet_tdma_ring_writel(priv
, index
, 1, DMA_MBUF_DONE_THRESH
);
2063 /* Disable rate control for now */
2064 bcmgenet_tdma_ring_writel(priv
, index
, flow_period_val
,
2066 bcmgenet_tdma_ring_writel(priv
, index
,
2067 ((size
<< DMA_RING_SIZE_SHIFT
) |
2068 RX_BUF_LENGTH
), DMA_RING_BUF_SIZE
);
2070 /* Set start and end address, read and write pointers */
2071 bcmgenet_tdma_ring_writel(priv
, index
, start_ptr
* words_per_bd
,
2073 bcmgenet_tdma_ring_writel(priv
, index
, start_ptr
* words_per_bd
,
2075 bcmgenet_tdma_ring_writel(priv
, index
, start_ptr
* words_per_bd
,
2077 bcmgenet_tdma_ring_writel(priv
, index
, end_ptr
* words_per_bd
- 1,
2080 /* Initialize Tx NAPI */
2081 netif_napi_add(priv
->dev
, &ring
->napi
, bcmgenet_tx_poll
,
2085 /* Initialize a RDMA ring */
2086 static int bcmgenet_init_rx_ring(struct bcmgenet_priv
*priv
,
2087 unsigned int index
, unsigned int size
,
2088 unsigned int start_ptr
, unsigned int end_ptr
)
2090 struct bcmgenet_rx_ring
*ring
= &priv
->rx_rings
[index
];
2091 u32 words_per_bd
= WORDS_PER_BD(priv
);
2095 ring
->index
= index
;
2096 if (index
== DESC_INDEX
) {
2097 ring
->int_enable
= bcmgenet_rx_ring16_int_enable
;
2098 ring
->int_disable
= bcmgenet_rx_ring16_int_disable
;
2100 ring
->int_enable
= bcmgenet_rx_ring_int_enable
;
2101 ring
->int_disable
= bcmgenet_rx_ring_int_disable
;
2103 ring
->cbs
= priv
->rx_cbs
+ start_ptr
;
2106 ring
->read_ptr
= start_ptr
;
2107 ring
->cb_ptr
= start_ptr
;
2108 ring
->end_ptr
= end_ptr
- 1;
2110 ret
= bcmgenet_alloc_rx_buffers(priv
, ring
);
2114 /* Initialize Rx NAPI */
2115 netif_napi_add(priv
->dev
, &ring
->napi
, bcmgenet_rx_poll
,
2118 bcmgenet_rdma_ring_writel(priv
, index
, 0, RDMA_PROD_INDEX
);
2119 bcmgenet_rdma_ring_writel(priv
, index
, 0, RDMA_CONS_INDEX
);
2120 bcmgenet_rdma_ring_writel(priv
, index
, 1, DMA_MBUF_DONE_THRESH
);
2121 bcmgenet_rdma_ring_writel(priv
, index
,
2122 ((size
<< DMA_RING_SIZE_SHIFT
) |
2123 RX_BUF_LENGTH
), DMA_RING_BUF_SIZE
);
2124 bcmgenet_rdma_ring_writel(priv
, index
,
2125 (DMA_FC_THRESH_LO
<<
2126 DMA_XOFF_THRESHOLD_SHIFT
) |
2127 DMA_FC_THRESH_HI
, RDMA_XON_XOFF_THRESH
);
2129 /* Set start and end address, read and write pointers */
2130 bcmgenet_rdma_ring_writel(priv
, index
, start_ptr
* words_per_bd
,
2132 bcmgenet_rdma_ring_writel(priv
, index
, start_ptr
* words_per_bd
,
2134 bcmgenet_rdma_ring_writel(priv
, index
, start_ptr
* words_per_bd
,
2136 bcmgenet_rdma_ring_writel(priv
, index
, end_ptr
* words_per_bd
- 1,
2142 static void bcmgenet_enable_tx_napi(struct bcmgenet_priv
*priv
)
2145 struct bcmgenet_tx_ring
*ring
;
2147 for (i
= 0; i
< priv
->hw_params
->tx_queues
; ++i
) {
2148 ring
= &priv
->tx_rings
[i
];
2149 napi_enable(&ring
->napi
);
2150 ring
->int_enable(ring
);
2153 ring
= &priv
->tx_rings
[DESC_INDEX
];
2154 napi_enable(&ring
->napi
);
2155 ring
->int_enable(ring
);
2158 static void bcmgenet_disable_tx_napi(struct bcmgenet_priv
*priv
)
2161 struct bcmgenet_tx_ring
*ring
;
2163 for (i
= 0; i
< priv
->hw_params
->tx_queues
; ++i
) {
2164 ring
= &priv
->tx_rings
[i
];
2165 napi_disable(&ring
->napi
);
2168 ring
= &priv
->tx_rings
[DESC_INDEX
];
2169 napi_disable(&ring
->napi
);
2172 static void bcmgenet_fini_tx_napi(struct bcmgenet_priv
*priv
)
2175 struct bcmgenet_tx_ring
*ring
;
2177 for (i
= 0; i
< priv
->hw_params
->tx_queues
; ++i
) {
2178 ring
= &priv
->tx_rings
[i
];
2179 netif_napi_del(&ring
->napi
);
2182 ring
= &priv
->tx_rings
[DESC_INDEX
];
2183 netif_napi_del(&ring
->napi
);
2186 /* Initialize Tx queues
2188 * Queues 0-3 are priority-based, each one has 32 descriptors,
2189 * with queue 0 being the highest priority queue.
2191 * Queue 16 is the default Tx queue with
2192 * GENET_Q16_TX_BD_CNT = 256 - 4 * 32 = 128 descriptors.
2194 * The transmit control block pool is then partitioned as follows:
2195 * - Tx queue 0 uses tx_cbs[0..31]
2196 * - Tx queue 1 uses tx_cbs[32..63]
2197 * - Tx queue 2 uses tx_cbs[64..95]
2198 * - Tx queue 3 uses tx_cbs[96..127]
2199 * - Tx queue 16 uses tx_cbs[128..255]
2201 static void bcmgenet_init_tx_queues(struct net_device
*dev
)
2203 struct bcmgenet_priv
*priv
= netdev_priv(dev
);
2205 u32 dma_ctrl
, ring_cfg
;
2206 u32 dma_priority
[3] = {0, 0, 0};
2208 dma_ctrl
= bcmgenet_tdma_readl(priv
, DMA_CTRL
);
2209 dma_enable
= dma_ctrl
& DMA_EN
;
2210 dma_ctrl
&= ~DMA_EN
;
2211 bcmgenet_tdma_writel(priv
, dma_ctrl
, DMA_CTRL
);
2216 /* Enable strict priority arbiter mode */
2217 bcmgenet_tdma_writel(priv
, DMA_ARBITER_SP
, DMA_ARB_CTRL
);
2219 /* Initialize Tx priority queues */
2220 for (i
= 0; i
< priv
->hw_params
->tx_queues
; i
++) {
2221 bcmgenet_init_tx_ring(priv
, i
, priv
->hw_params
->tx_bds_per_q
,
2222 i
* priv
->hw_params
->tx_bds_per_q
,
2223 (i
+ 1) * priv
->hw_params
->tx_bds_per_q
);
2224 ring_cfg
|= (1 << i
);
2225 dma_ctrl
|= (1 << (i
+ DMA_RING_BUF_EN_SHIFT
));
2226 dma_priority
[DMA_PRIO_REG_INDEX(i
)] |=
2227 ((GENET_Q0_PRIORITY
+ i
) << DMA_PRIO_REG_SHIFT(i
));
2230 /* Initialize Tx default queue 16 */
2231 bcmgenet_init_tx_ring(priv
, DESC_INDEX
, GENET_Q16_TX_BD_CNT
,
2232 priv
->hw_params
->tx_queues
*
2233 priv
->hw_params
->tx_bds_per_q
,
2235 ring_cfg
|= (1 << DESC_INDEX
);
2236 dma_ctrl
|= (1 << (DESC_INDEX
+ DMA_RING_BUF_EN_SHIFT
));
2237 dma_priority
[DMA_PRIO_REG_INDEX(DESC_INDEX
)] |=
2238 ((GENET_Q0_PRIORITY
+ priv
->hw_params
->tx_queues
) <<
2239 DMA_PRIO_REG_SHIFT(DESC_INDEX
));
2241 /* Set Tx queue priorities */
2242 bcmgenet_tdma_writel(priv
, dma_priority
[0], DMA_PRIORITY_0
);
2243 bcmgenet_tdma_writel(priv
, dma_priority
[1], DMA_PRIORITY_1
);
2244 bcmgenet_tdma_writel(priv
, dma_priority
[2], DMA_PRIORITY_2
);
2246 /* Enable Tx queues */
2247 bcmgenet_tdma_writel(priv
, ring_cfg
, DMA_RING_CFG
);
2252 bcmgenet_tdma_writel(priv
, dma_ctrl
, DMA_CTRL
);
2255 static void bcmgenet_enable_rx_napi(struct bcmgenet_priv
*priv
)
2258 struct bcmgenet_rx_ring
*ring
;
2260 for (i
= 0; i
< priv
->hw_params
->rx_queues
; ++i
) {
2261 ring
= &priv
->rx_rings
[i
];
2262 napi_enable(&ring
->napi
);
2263 ring
->int_enable(ring
);
2266 ring
= &priv
->rx_rings
[DESC_INDEX
];
2267 napi_enable(&ring
->napi
);
2268 ring
->int_enable(ring
);
2271 static void bcmgenet_disable_rx_napi(struct bcmgenet_priv
*priv
)
2274 struct bcmgenet_rx_ring
*ring
;
2276 for (i
= 0; i
< priv
->hw_params
->rx_queues
; ++i
) {
2277 ring
= &priv
->rx_rings
[i
];
2278 napi_disable(&ring
->napi
);
2281 ring
= &priv
->rx_rings
[DESC_INDEX
];
2282 napi_disable(&ring
->napi
);
2285 static void bcmgenet_fini_rx_napi(struct bcmgenet_priv
*priv
)
2288 struct bcmgenet_rx_ring
*ring
;
2290 for (i
= 0; i
< priv
->hw_params
->rx_queues
; ++i
) {
2291 ring
= &priv
->rx_rings
[i
];
2292 netif_napi_del(&ring
->napi
);
2295 ring
= &priv
->rx_rings
[DESC_INDEX
];
2296 netif_napi_del(&ring
->napi
);
2299 /* Initialize Rx queues
2301 * Queues 0-15 are priority queues. Hardware Filtering Block (HFB) can be
2302 * used to direct traffic to these queues.
2304 * Queue 16 is the default Rx queue with GENET_Q16_RX_BD_CNT descriptors.
2306 static int bcmgenet_init_rx_queues(struct net_device
*dev
)
2308 struct bcmgenet_priv
*priv
= netdev_priv(dev
);
2315 dma_ctrl
= bcmgenet_rdma_readl(priv
, DMA_CTRL
);
2316 dma_enable
= dma_ctrl
& DMA_EN
;
2317 dma_ctrl
&= ~DMA_EN
;
2318 bcmgenet_rdma_writel(priv
, dma_ctrl
, DMA_CTRL
);
2323 /* Initialize Rx priority queues */
2324 for (i
= 0; i
< priv
->hw_params
->rx_queues
; i
++) {
2325 ret
= bcmgenet_init_rx_ring(priv
, i
,
2326 priv
->hw_params
->rx_bds_per_q
,
2327 i
* priv
->hw_params
->rx_bds_per_q
,
2329 priv
->hw_params
->rx_bds_per_q
);
2333 ring_cfg
|= (1 << i
);
2334 dma_ctrl
|= (1 << (i
+ DMA_RING_BUF_EN_SHIFT
));
2337 /* Initialize Rx default queue 16 */
2338 ret
= bcmgenet_init_rx_ring(priv
, DESC_INDEX
, GENET_Q16_RX_BD_CNT
,
2339 priv
->hw_params
->rx_queues
*
2340 priv
->hw_params
->rx_bds_per_q
,
2345 ring_cfg
|= (1 << DESC_INDEX
);
2346 dma_ctrl
|= (1 << (DESC_INDEX
+ DMA_RING_BUF_EN_SHIFT
));
2349 bcmgenet_rdma_writel(priv
, ring_cfg
, DMA_RING_CFG
);
2351 /* Configure ring as descriptor ring and re-enable DMA if enabled */
2354 bcmgenet_rdma_writel(priv
, dma_ctrl
, DMA_CTRL
);
2359 static int bcmgenet_dma_teardown(struct bcmgenet_priv
*priv
)
2367 /* Disable TDMA to stop add more frames in TX DMA */
2368 reg
= bcmgenet_tdma_readl(priv
, DMA_CTRL
);
2370 bcmgenet_tdma_writel(priv
, reg
, DMA_CTRL
);
2372 /* Check TDMA status register to confirm TDMA is disabled */
2373 while (timeout
++ < DMA_TIMEOUT_VAL
) {
2374 reg
= bcmgenet_tdma_readl(priv
, DMA_STATUS
);
2375 if (reg
& DMA_DISABLED
)
2381 if (timeout
== DMA_TIMEOUT_VAL
) {
2382 netdev_warn(priv
->dev
, "Timed out while disabling TX DMA\n");
2386 /* Wait 10ms for packet drain in both tx and rx dma */
2387 usleep_range(10000, 20000);
2390 reg
= bcmgenet_rdma_readl(priv
, DMA_CTRL
);
2392 bcmgenet_rdma_writel(priv
, reg
, DMA_CTRL
);
2395 /* Check RDMA status register to confirm RDMA is disabled */
2396 while (timeout
++ < DMA_TIMEOUT_VAL
) {
2397 reg
= bcmgenet_rdma_readl(priv
, DMA_STATUS
);
2398 if (reg
& DMA_DISABLED
)
2404 if (timeout
== DMA_TIMEOUT_VAL
) {
2405 netdev_warn(priv
->dev
, "Timed out while disabling RX DMA\n");
2410 for (i
= 0; i
< priv
->hw_params
->rx_queues
; i
++)
2411 dma_ctrl
|= (1 << (i
+ DMA_RING_BUF_EN_SHIFT
));
2412 reg
= bcmgenet_rdma_readl(priv
, DMA_CTRL
);
2414 bcmgenet_rdma_writel(priv
, reg
, DMA_CTRL
);
2417 for (i
= 0; i
< priv
->hw_params
->tx_queues
; i
++)
2418 dma_ctrl
|= (1 << (i
+ DMA_RING_BUF_EN_SHIFT
));
2419 reg
= bcmgenet_tdma_readl(priv
, DMA_CTRL
);
2421 bcmgenet_tdma_writel(priv
, reg
, DMA_CTRL
);
2426 static void bcmgenet_fini_dma(struct bcmgenet_priv
*priv
)
2428 struct netdev_queue
*txq
;
2429 struct sk_buff
*skb
;
2433 bcmgenet_fini_rx_napi(priv
);
2434 bcmgenet_fini_tx_napi(priv
);
2436 for (i
= 0; i
< priv
->num_tx_bds
; i
++) {
2437 cb
= priv
->tx_cbs
+ i
;
2438 skb
= bcmgenet_free_tx_cb(&priv
->pdev
->dev
, cb
);
2443 for (i
= 0; i
< priv
->hw_params
->tx_queues
; i
++) {
2444 txq
= netdev_get_tx_queue(priv
->dev
, priv
->tx_rings
[i
].queue
);
2445 netdev_tx_reset_queue(txq
);
2448 txq
= netdev_get_tx_queue(priv
->dev
, priv
->tx_rings
[DESC_INDEX
].queue
);
2449 netdev_tx_reset_queue(txq
);
2451 bcmgenet_free_rx_buffers(priv
);
2452 kfree(priv
->rx_cbs
);
2453 kfree(priv
->tx_cbs
);
2456 /* init_edma: Initialize DMA control register */
2457 static int bcmgenet_init_dma(struct bcmgenet_priv
*priv
)
2463 netif_dbg(priv
, hw
, priv
->dev
, "%s\n", __func__
);
2465 /* Initialize common Rx ring structures */
2466 priv
->rx_bds
= priv
->base
+ priv
->hw_params
->rdma_offset
;
2467 priv
->num_rx_bds
= TOTAL_DESC
;
2468 priv
->rx_cbs
= kcalloc(priv
->num_rx_bds
, sizeof(struct enet_cb
),
2473 for (i
= 0; i
< priv
->num_rx_bds
; i
++) {
2474 cb
= priv
->rx_cbs
+ i
;
2475 cb
->bd_addr
= priv
->rx_bds
+ i
* DMA_DESC_SIZE
;
2478 /* Initialize common TX ring structures */
2479 priv
->tx_bds
= priv
->base
+ priv
->hw_params
->tdma_offset
;
2480 priv
->num_tx_bds
= TOTAL_DESC
;
2481 priv
->tx_cbs
= kcalloc(priv
->num_tx_bds
, sizeof(struct enet_cb
),
2483 if (!priv
->tx_cbs
) {
2484 kfree(priv
->rx_cbs
);
2488 for (i
= 0; i
< priv
->num_tx_bds
; i
++) {
2489 cb
= priv
->tx_cbs
+ i
;
2490 cb
->bd_addr
= priv
->tx_bds
+ i
* DMA_DESC_SIZE
;
2494 bcmgenet_rdma_writel(priv
, DMA_MAX_BURST_LENGTH
, DMA_SCB_BURST_SIZE
);
2496 /* Initialize Rx queues */
2497 ret
= bcmgenet_init_rx_queues(priv
->dev
);
2499 netdev_err(priv
->dev
, "failed to initialize Rx queues\n");
2500 bcmgenet_free_rx_buffers(priv
);
2501 kfree(priv
->rx_cbs
);
2502 kfree(priv
->tx_cbs
);
2507 bcmgenet_tdma_writel(priv
, DMA_MAX_BURST_LENGTH
, DMA_SCB_BURST_SIZE
);
2509 /* Initialize Tx queues */
2510 bcmgenet_init_tx_queues(priv
->dev
);
2515 /* Interrupt bottom half */
2516 static void bcmgenet_irq_task(struct work_struct
*work
)
2518 unsigned int status
;
2519 struct bcmgenet_priv
*priv
= container_of(
2520 work
, struct bcmgenet_priv
, bcmgenet_irq_work
);
2522 netif_dbg(priv
, intr
, priv
->dev
, "%s\n", __func__
);
2524 spin_lock_irq(&priv
->lock
);
2525 status
= priv
->irq0_stat
;
2526 priv
->irq0_stat
= 0;
2527 spin_unlock_irq(&priv
->lock
);
2529 /* Link UP/DOWN event */
2530 if (status
& UMAC_IRQ_LINK_EVENT
) {
2531 priv
->dev
->phydev
->link
= !!(status
& UMAC_IRQ_LINK_UP
);
2532 phy_mac_interrupt(priv
->dev
->phydev
);
2536 /* bcmgenet_isr1: handle Rx and Tx priority queues */
2537 static irqreturn_t
bcmgenet_isr1(int irq
, void *dev_id
)
2539 struct bcmgenet_priv
*priv
= dev_id
;
2540 struct bcmgenet_rx_ring
*rx_ring
;
2541 struct bcmgenet_tx_ring
*tx_ring
;
2542 unsigned int index
, status
;
2544 /* Read irq status */
2545 status
= bcmgenet_intrl2_1_readl(priv
, INTRL2_CPU_STAT
) &
2546 ~bcmgenet_intrl2_1_readl(priv
, INTRL2_CPU_MASK_STATUS
);
2548 /* clear interrupts */
2549 bcmgenet_intrl2_1_writel(priv
, status
, INTRL2_CPU_CLEAR
);
2551 netif_dbg(priv
, intr
, priv
->dev
,
2552 "%s: IRQ=0x%x\n", __func__
, status
);
2554 /* Check Rx priority queue interrupts */
2555 for (index
= 0; index
< priv
->hw_params
->rx_queues
; index
++) {
2556 if (!(status
& BIT(UMAC_IRQ1_RX_INTR_SHIFT
+ index
)))
2559 rx_ring
= &priv
->rx_rings
[index
];
2561 if (likely(napi_schedule_prep(&rx_ring
->napi
))) {
2562 rx_ring
->int_disable(rx_ring
);
2563 __napi_schedule_irqoff(&rx_ring
->napi
);
2567 /* Check Tx priority queue interrupts */
2568 for (index
= 0; index
< priv
->hw_params
->tx_queues
; index
++) {
2569 if (!(status
& BIT(index
)))
2572 tx_ring
= &priv
->tx_rings
[index
];
2574 if (likely(napi_schedule_prep(&tx_ring
->napi
))) {
2575 tx_ring
->int_disable(tx_ring
);
2576 __napi_schedule_irqoff(&tx_ring
->napi
);
2583 /* bcmgenet_isr0: handle Rx and Tx default queues + other stuff */
2584 static irqreturn_t
bcmgenet_isr0(int irq
, void *dev_id
)
2586 struct bcmgenet_priv
*priv
= dev_id
;
2587 struct bcmgenet_rx_ring
*rx_ring
;
2588 struct bcmgenet_tx_ring
*tx_ring
;
2589 unsigned int status
;
2590 unsigned long flags
;
2592 /* Read irq status */
2593 status
= bcmgenet_intrl2_0_readl(priv
, INTRL2_CPU_STAT
) &
2594 ~bcmgenet_intrl2_0_readl(priv
, INTRL2_CPU_MASK_STATUS
);
2596 /* clear interrupts */
2597 bcmgenet_intrl2_0_writel(priv
, status
, INTRL2_CPU_CLEAR
);
2599 netif_dbg(priv
, intr
, priv
->dev
,
2600 "IRQ=0x%x\n", status
);
2602 if (status
& UMAC_IRQ_RXDMA_DONE
) {
2603 rx_ring
= &priv
->rx_rings
[DESC_INDEX
];
2605 if (likely(napi_schedule_prep(&rx_ring
->napi
))) {
2606 rx_ring
->int_disable(rx_ring
);
2607 __napi_schedule_irqoff(&rx_ring
->napi
);
2611 if (status
& UMAC_IRQ_TXDMA_DONE
) {
2612 tx_ring
= &priv
->tx_rings
[DESC_INDEX
];
2614 if (likely(napi_schedule_prep(&tx_ring
->napi
))) {
2615 tx_ring
->int_disable(tx_ring
);
2616 __napi_schedule_irqoff(&tx_ring
->napi
);
2620 if ((priv
->hw_params
->flags
& GENET_HAS_MDIO_INTR
) &&
2621 status
& (UMAC_IRQ_MDIO_DONE
| UMAC_IRQ_MDIO_ERROR
)) {
2625 /* all other interested interrupts handled in bottom half */
2626 status
&= UMAC_IRQ_LINK_EVENT
;
2628 /* Save irq status for bottom-half processing. */
2629 spin_lock_irqsave(&priv
->lock
, flags
);
2630 priv
->irq0_stat
|= status
;
2631 spin_unlock_irqrestore(&priv
->lock
, flags
);
2633 schedule_work(&priv
->bcmgenet_irq_work
);
2639 static irqreturn_t
bcmgenet_wol_isr(int irq
, void *dev_id
)
2641 struct bcmgenet_priv
*priv
= dev_id
;
2643 pm_wakeup_event(&priv
->pdev
->dev
, 0);
2648 #ifdef CONFIG_NET_POLL_CONTROLLER
2649 static void bcmgenet_poll_controller(struct net_device
*dev
)
2651 struct bcmgenet_priv
*priv
= netdev_priv(dev
);
2653 /* Invoke the main RX/TX interrupt handler */
2654 disable_irq(priv
->irq0
);
2655 bcmgenet_isr0(priv
->irq0
, priv
);
2656 enable_irq(priv
->irq0
);
2658 /* And the interrupt handler for RX/TX priority queues */
2659 disable_irq(priv
->irq1
);
2660 bcmgenet_isr1(priv
->irq1
, priv
);
2661 enable_irq(priv
->irq1
);
2665 static void bcmgenet_umac_reset(struct bcmgenet_priv
*priv
)
2669 reg
= bcmgenet_rbuf_ctrl_get(priv
);
2671 bcmgenet_rbuf_ctrl_set(priv
, reg
);
2675 bcmgenet_rbuf_ctrl_set(priv
, reg
);
2679 static void bcmgenet_set_hw_addr(struct bcmgenet_priv
*priv
,
2680 unsigned char *addr
)
2682 bcmgenet_umac_writel(priv
, (addr
[0] << 24) | (addr
[1] << 16) |
2683 (addr
[2] << 8) | addr
[3], UMAC_MAC0
);
2684 bcmgenet_umac_writel(priv
, (addr
[4] << 8) | addr
[5], UMAC_MAC1
);
2687 /* Returns a reusable dma control register value */
2688 static u32
bcmgenet_dma_disable(struct bcmgenet_priv
*priv
)
2694 dma_ctrl
= 1 << (DESC_INDEX
+ DMA_RING_BUF_EN_SHIFT
) | DMA_EN
;
2695 reg
= bcmgenet_tdma_readl(priv
, DMA_CTRL
);
2697 bcmgenet_tdma_writel(priv
, reg
, DMA_CTRL
);
2699 reg
= bcmgenet_rdma_readl(priv
, DMA_CTRL
);
2701 bcmgenet_rdma_writel(priv
, reg
, DMA_CTRL
);
2703 bcmgenet_umac_writel(priv
, 1, UMAC_TX_FLUSH
);
2705 bcmgenet_umac_writel(priv
, 0, UMAC_TX_FLUSH
);
2710 static void bcmgenet_enable_dma(struct bcmgenet_priv
*priv
, u32 dma_ctrl
)
2714 reg
= bcmgenet_rdma_readl(priv
, DMA_CTRL
);
2716 bcmgenet_rdma_writel(priv
, reg
, DMA_CTRL
);
2718 reg
= bcmgenet_tdma_readl(priv
, DMA_CTRL
);
2720 bcmgenet_tdma_writel(priv
, reg
, DMA_CTRL
);
2723 /* bcmgenet_hfb_clear
2725 * Clear Hardware Filter Block and disable all filtering.
2727 static void bcmgenet_hfb_clear(struct bcmgenet_priv
*priv
)
2731 bcmgenet_hfb_reg_writel(priv
, 0x0, HFB_CTRL
);
2732 bcmgenet_hfb_reg_writel(priv
, 0x0, HFB_FLT_ENABLE_V3PLUS
);
2733 bcmgenet_hfb_reg_writel(priv
, 0x0, HFB_FLT_ENABLE_V3PLUS
+ 4);
2735 for (i
= DMA_INDEX2RING_0
; i
<= DMA_INDEX2RING_7
; i
++)
2736 bcmgenet_rdma_writel(priv
, 0x0, i
);
2738 for (i
= 0; i
< (priv
->hw_params
->hfb_filter_cnt
/ 4); i
++)
2739 bcmgenet_hfb_reg_writel(priv
, 0x0,
2740 HFB_FLT_LEN_V3PLUS
+ i
* sizeof(u32
));
2742 for (i
= 0; i
< priv
->hw_params
->hfb_filter_cnt
*
2743 priv
->hw_params
->hfb_filter_size
; i
++)
2744 bcmgenet_hfb_writel(priv
, 0x0, i
* sizeof(u32
));
2747 static void bcmgenet_hfb_init(struct bcmgenet_priv
*priv
)
2749 if (GENET_IS_V1(priv
) || GENET_IS_V2(priv
))
2752 bcmgenet_hfb_clear(priv
);
2755 static void bcmgenet_netif_start(struct net_device
*dev
)
2757 struct bcmgenet_priv
*priv
= netdev_priv(dev
);
2759 /* Start the network engine */
2760 bcmgenet_enable_rx_napi(priv
);
2762 umac_enable_set(priv
, CMD_TX_EN
| CMD_RX_EN
, true);
2764 netif_tx_start_all_queues(dev
);
2765 bcmgenet_enable_tx_napi(priv
);
2767 /* Monitor link interrupts now */
2768 bcmgenet_link_intr_enable(priv
);
2770 phy_start(dev
->phydev
);
2773 static int bcmgenet_open(struct net_device
*dev
)
2775 struct bcmgenet_priv
*priv
= netdev_priv(dev
);
2776 unsigned long dma_ctrl
;
2780 netif_dbg(priv
, ifup
, dev
, "bcmgenet_open\n");
2782 /* Turn on the clock */
2783 clk_prepare_enable(priv
->clk
);
2785 /* If this is an internal GPHY, power it back on now, before UniMAC is
2786 * brought out of reset as absolutely no UniMAC activity is allowed
2788 if (priv
->internal_phy
)
2789 bcmgenet_power_up(priv
, GENET_POWER_PASSIVE
);
2791 /* take MAC out of reset */
2792 bcmgenet_umac_reset(priv
);
2796 /* Make sure we reflect the value of CRC_CMD_FWD */
2797 reg
= bcmgenet_umac_readl(priv
, UMAC_CMD
);
2798 priv
->crc_fwd_en
= !!(reg
& CMD_CRC_FWD
);
2800 bcmgenet_set_hw_addr(priv
, dev
->dev_addr
);
2802 if (priv
->internal_phy
) {
2803 reg
= bcmgenet_ext_readl(priv
, EXT_EXT_PWR_MGMT
);
2804 reg
|= EXT_ENERGY_DET_MASK
;
2805 bcmgenet_ext_writel(priv
, reg
, EXT_EXT_PWR_MGMT
);
2808 /* Disable RX/TX DMA and flush TX queues */
2809 dma_ctrl
= bcmgenet_dma_disable(priv
);
2811 /* Reinitialize TDMA and RDMA and SW housekeeping */
2812 ret
= bcmgenet_init_dma(priv
);
2814 netdev_err(dev
, "failed to initialize DMA\n");
2815 goto err_clk_disable
;
2818 /* Always enable ring 16 - descriptor ring */
2819 bcmgenet_enable_dma(priv
, dma_ctrl
);
2822 bcmgenet_hfb_init(priv
);
2824 ret
= request_irq(priv
->irq0
, bcmgenet_isr0
, IRQF_SHARED
,
2827 netdev_err(dev
, "can't request IRQ %d\n", priv
->irq0
);
2831 ret
= request_irq(priv
->irq1
, bcmgenet_isr1
, IRQF_SHARED
,
2834 netdev_err(dev
, "can't request IRQ %d\n", priv
->irq1
);
2838 ret
= bcmgenet_mii_probe(dev
);
2840 netdev_err(dev
, "failed to connect to PHY\n");
2844 bcmgenet_netif_start(dev
);
2849 free_irq(priv
->irq1
, priv
);
2851 free_irq(priv
->irq0
, priv
);
2853 bcmgenet_dma_teardown(priv
);
2854 bcmgenet_fini_dma(priv
);
2856 if (priv
->internal_phy
)
2857 bcmgenet_power_down(priv
, GENET_POWER_PASSIVE
);
2858 clk_disable_unprepare(priv
->clk
);
2862 static void bcmgenet_netif_stop(struct net_device
*dev
)
2864 struct bcmgenet_priv
*priv
= netdev_priv(dev
);
2866 bcmgenet_disable_tx_napi(priv
);
2867 netif_tx_stop_all_queues(dev
);
2869 /* Disable MAC receive */
2870 umac_enable_set(priv
, CMD_RX_EN
, false);
2872 bcmgenet_dma_teardown(priv
);
2874 /* Disable MAC transmit. TX DMA disabled must be done before this */
2875 umac_enable_set(priv
, CMD_TX_EN
, false);
2877 phy_stop(dev
->phydev
);
2878 bcmgenet_disable_rx_napi(priv
);
2879 bcmgenet_intr_disable(priv
);
2881 /* Wait for pending work items to complete. Since interrupts are
2882 * disabled no new work will be scheduled.
2884 cancel_work_sync(&priv
->bcmgenet_irq_work
);
2886 priv
->old_link
= -1;
2887 priv
->old_speed
= -1;
2888 priv
->old_duplex
= -1;
2889 priv
->old_pause
= -1;
2892 bcmgenet_tx_reclaim_all(dev
);
2893 bcmgenet_fini_dma(priv
);
2896 static int bcmgenet_close(struct net_device
*dev
)
2898 struct bcmgenet_priv
*priv
= netdev_priv(dev
);
2901 netif_dbg(priv
, ifdown
, dev
, "bcmgenet_close\n");
2903 bcmgenet_netif_stop(dev
);
2905 /* Really kill the PHY state machine and disconnect from it */
2906 phy_disconnect(dev
->phydev
);
2908 free_irq(priv
->irq0
, priv
);
2909 free_irq(priv
->irq1
, priv
);
2911 if (priv
->internal_phy
)
2912 ret
= bcmgenet_power_down(priv
, GENET_POWER_PASSIVE
);
2914 clk_disable_unprepare(priv
->clk
);
2919 static void bcmgenet_dump_tx_queue(struct bcmgenet_tx_ring
*ring
)
2921 struct bcmgenet_priv
*priv
= ring
->priv
;
2922 u32 p_index
, c_index
, intsts
, intmsk
;
2923 struct netdev_queue
*txq
;
2924 unsigned int free_bds
;
2927 if (!netif_msg_tx_err(priv
))
2930 txq
= netdev_get_tx_queue(priv
->dev
, ring
->queue
);
2932 spin_lock(&ring
->lock
);
2933 if (ring
->index
== DESC_INDEX
) {
2934 intsts
= ~bcmgenet_intrl2_0_readl(priv
, INTRL2_CPU_MASK_STATUS
);
2935 intmsk
= UMAC_IRQ_TXDMA_DONE
| UMAC_IRQ_TXDMA_MBDONE
;
2937 intsts
= ~bcmgenet_intrl2_1_readl(priv
, INTRL2_CPU_MASK_STATUS
);
2938 intmsk
= 1 << ring
->index
;
2940 c_index
= bcmgenet_tdma_ring_readl(priv
, ring
->index
, TDMA_CONS_INDEX
);
2941 p_index
= bcmgenet_tdma_ring_readl(priv
, ring
->index
, TDMA_PROD_INDEX
);
2942 txq_stopped
= netif_tx_queue_stopped(txq
);
2943 free_bds
= ring
->free_bds
;
2944 spin_unlock(&ring
->lock
);
2946 netif_err(priv
, tx_err
, priv
->dev
, "Ring %d queue %d status summary\n"
2947 "TX queue status: %s, interrupts: %s\n"
2948 "(sw)free_bds: %d (sw)size: %d\n"
2949 "(sw)p_index: %d (hw)p_index: %d\n"
2950 "(sw)c_index: %d (hw)c_index: %d\n"
2951 "(sw)clean_p: %d (sw)write_p: %d\n"
2952 "(sw)cb_ptr: %d (sw)end_ptr: %d\n",
2953 ring
->index
, ring
->queue
,
2954 txq_stopped
? "stopped" : "active",
2955 intsts
& intmsk
? "enabled" : "disabled",
2956 free_bds
, ring
->size
,
2957 ring
->prod_index
, p_index
& DMA_P_INDEX_MASK
,
2958 ring
->c_index
, c_index
& DMA_C_INDEX_MASK
,
2959 ring
->clean_ptr
, ring
->write_ptr
,
2960 ring
->cb_ptr
, ring
->end_ptr
);
2963 static void bcmgenet_timeout(struct net_device
*dev
)
2965 struct bcmgenet_priv
*priv
= netdev_priv(dev
);
2966 u32 int0_enable
= 0;
2967 u32 int1_enable
= 0;
2970 netif_dbg(priv
, tx_err
, dev
, "bcmgenet_timeout\n");
2972 for (q
= 0; q
< priv
->hw_params
->tx_queues
; q
++)
2973 bcmgenet_dump_tx_queue(&priv
->tx_rings
[q
]);
2974 bcmgenet_dump_tx_queue(&priv
->tx_rings
[DESC_INDEX
]);
2976 bcmgenet_tx_reclaim_all(dev
);
2978 for (q
= 0; q
< priv
->hw_params
->tx_queues
; q
++)
2979 int1_enable
|= (1 << q
);
2981 int0_enable
= UMAC_IRQ_TXDMA_DONE
;
2983 /* Re-enable TX interrupts if disabled */
2984 bcmgenet_intrl2_0_writel(priv
, int0_enable
, INTRL2_CPU_MASK_CLEAR
);
2985 bcmgenet_intrl2_1_writel(priv
, int1_enable
, INTRL2_CPU_MASK_CLEAR
);
2987 netif_trans_update(dev
);
2989 dev
->stats
.tx_errors
++;
2991 netif_tx_wake_all_queues(dev
);
2994 #define MAX_MC_COUNT 16
2996 static inline void bcmgenet_set_mdf_addr(struct bcmgenet_priv
*priv
,
2997 unsigned char *addr
,
3003 bcmgenet_umac_writel(priv
, addr
[0] << 8 | addr
[1],
3004 UMAC_MDF_ADDR
+ (*i
* 4));
3005 bcmgenet_umac_writel(priv
, addr
[2] << 24 | addr
[3] << 16 |
3006 addr
[4] << 8 | addr
[5],
3007 UMAC_MDF_ADDR
+ ((*i
+ 1) * 4));
3008 reg
= bcmgenet_umac_readl(priv
, UMAC_MDF_CTRL
);
3009 reg
|= (1 << (MAX_MC_COUNT
- *mc
));
3010 bcmgenet_umac_writel(priv
, reg
, UMAC_MDF_CTRL
);
3015 static void bcmgenet_set_rx_mode(struct net_device
*dev
)
3017 struct bcmgenet_priv
*priv
= netdev_priv(dev
);
3018 struct netdev_hw_addr
*ha
;
3022 netif_dbg(priv
, hw
, dev
, "%s: %08X\n", __func__
, dev
->flags
);
3024 /* Promiscuous mode */
3025 reg
= bcmgenet_umac_readl(priv
, UMAC_CMD
);
3026 if (dev
->flags
& IFF_PROMISC
) {
3028 bcmgenet_umac_writel(priv
, reg
, UMAC_CMD
);
3029 bcmgenet_umac_writel(priv
, 0, UMAC_MDF_CTRL
);
3032 reg
&= ~CMD_PROMISC
;
3033 bcmgenet_umac_writel(priv
, reg
, UMAC_CMD
);
3036 /* UniMac doesn't support ALLMULTI */
3037 if (dev
->flags
& IFF_ALLMULTI
) {
3038 netdev_warn(dev
, "ALLMULTI is not supported\n");
3042 /* update MDF filter */
3046 bcmgenet_set_mdf_addr(priv
, dev
->broadcast
, &i
, &mc
);
3047 /* my own address.*/
3048 bcmgenet_set_mdf_addr(priv
, dev
->dev_addr
, &i
, &mc
);
3050 if (netdev_uc_count(dev
) > (MAX_MC_COUNT
- mc
))
3053 if (!netdev_uc_empty(dev
))
3054 netdev_for_each_uc_addr(ha
, dev
)
3055 bcmgenet_set_mdf_addr(priv
, ha
->addr
, &i
, &mc
);
3057 if (netdev_mc_empty(dev
) || netdev_mc_count(dev
) >= (MAX_MC_COUNT
- mc
))
3060 netdev_for_each_mc_addr(ha
, dev
)
3061 bcmgenet_set_mdf_addr(priv
, ha
->addr
, &i
, &mc
);
3064 /* Set the hardware MAC address. */
3065 static int bcmgenet_set_mac_addr(struct net_device
*dev
, void *p
)
3067 struct sockaddr
*addr
= p
;
3069 /* Setting the MAC address at the hardware level is not possible
3070 * without disabling the UniMAC RX/TX enable bits.
3072 if (netif_running(dev
))
3075 ether_addr_copy(dev
->dev_addr
, addr
->sa_data
);
3080 static struct net_device_stats
*bcmgenet_get_stats(struct net_device
*dev
)
3082 struct bcmgenet_priv
*priv
= netdev_priv(dev
);
3083 unsigned long tx_bytes
= 0, tx_packets
= 0;
3084 unsigned long rx_bytes
= 0, rx_packets
= 0;
3085 unsigned long rx_errors
= 0, rx_dropped
= 0;
3086 struct bcmgenet_tx_ring
*tx_ring
;
3087 struct bcmgenet_rx_ring
*rx_ring
;
3090 for (q
= 0; q
< priv
->hw_params
->tx_queues
; q
++) {
3091 tx_ring
= &priv
->tx_rings
[q
];
3092 tx_bytes
+= tx_ring
->bytes
;
3093 tx_packets
+= tx_ring
->packets
;
3095 tx_ring
= &priv
->tx_rings
[DESC_INDEX
];
3096 tx_bytes
+= tx_ring
->bytes
;
3097 tx_packets
+= tx_ring
->packets
;
3099 for (q
= 0; q
< priv
->hw_params
->rx_queues
; q
++) {
3100 rx_ring
= &priv
->rx_rings
[q
];
3102 rx_bytes
+= rx_ring
->bytes
;
3103 rx_packets
+= rx_ring
->packets
;
3104 rx_errors
+= rx_ring
->errors
;
3105 rx_dropped
+= rx_ring
->dropped
;
3107 rx_ring
= &priv
->rx_rings
[DESC_INDEX
];
3108 rx_bytes
+= rx_ring
->bytes
;
3109 rx_packets
+= rx_ring
->packets
;
3110 rx_errors
+= rx_ring
->errors
;
3111 rx_dropped
+= rx_ring
->dropped
;
3113 dev
->stats
.tx_bytes
= tx_bytes
;
3114 dev
->stats
.tx_packets
= tx_packets
;
3115 dev
->stats
.rx_bytes
= rx_bytes
;
3116 dev
->stats
.rx_packets
= rx_packets
;
3117 dev
->stats
.rx_errors
= rx_errors
;
3118 dev
->stats
.rx_missed_errors
= rx_errors
;
3122 static const struct net_device_ops bcmgenet_netdev_ops
= {
3123 .ndo_open
= bcmgenet_open
,
3124 .ndo_stop
= bcmgenet_close
,
3125 .ndo_start_xmit
= bcmgenet_xmit
,
3126 .ndo_tx_timeout
= bcmgenet_timeout
,
3127 .ndo_set_rx_mode
= bcmgenet_set_rx_mode
,
3128 .ndo_set_mac_address
= bcmgenet_set_mac_addr
,
3129 .ndo_do_ioctl
= bcmgenet_ioctl
,
3130 .ndo_set_features
= bcmgenet_set_features
,
3131 #ifdef CONFIG_NET_POLL_CONTROLLER
3132 .ndo_poll_controller
= bcmgenet_poll_controller
,
3134 .ndo_get_stats
= bcmgenet_get_stats
,
3137 /* Array of GENET hardware parameters/characteristics */
3138 static struct bcmgenet_hw_params bcmgenet_hw_params
[] = {
3144 .bp_in_en_shift
= 16,
3145 .bp_in_mask
= 0xffff,
3146 .hfb_filter_cnt
= 16,
3148 .hfb_offset
= 0x1000,
3149 .rdma_offset
= 0x2000,
3150 .tdma_offset
= 0x3000,
3158 .bp_in_en_shift
= 16,
3159 .bp_in_mask
= 0xffff,
3160 .hfb_filter_cnt
= 16,
3162 .tbuf_offset
= 0x0600,
3163 .hfb_offset
= 0x1000,
3164 .hfb_reg_offset
= 0x2000,
3165 .rdma_offset
= 0x3000,
3166 .tdma_offset
= 0x4000,
3168 .flags
= GENET_HAS_EXT
,
3175 .bp_in_en_shift
= 17,
3176 .bp_in_mask
= 0x1ffff,
3177 .hfb_filter_cnt
= 48,
3178 .hfb_filter_size
= 128,
3180 .tbuf_offset
= 0x0600,
3181 .hfb_offset
= 0x8000,
3182 .hfb_reg_offset
= 0xfc00,
3183 .rdma_offset
= 0x10000,
3184 .tdma_offset
= 0x11000,
3186 .flags
= GENET_HAS_EXT
| GENET_HAS_MDIO_INTR
|
3187 GENET_HAS_MOCA_LINK_DET
,
3194 .bp_in_en_shift
= 17,
3195 .bp_in_mask
= 0x1ffff,
3196 .hfb_filter_cnt
= 48,
3197 .hfb_filter_size
= 128,
3199 .tbuf_offset
= 0x0600,
3200 .hfb_offset
= 0x8000,
3201 .hfb_reg_offset
= 0xfc00,
3202 .rdma_offset
= 0x2000,
3203 .tdma_offset
= 0x4000,
3205 .flags
= GENET_HAS_40BITS
| GENET_HAS_EXT
|
3206 GENET_HAS_MDIO_INTR
| GENET_HAS_MOCA_LINK_DET
,
3213 .bp_in_en_shift
= 17,
3214 .bp_in_mask
= 0x1ffff,
3215 .hfb_filter_cnt
= 48,
3216 .hfb_filter_size
= 128,
3218 .tbuf_offset
= 0x0600,
3219 .hfb_offset
= 0x8000,
3220 .hfb_reg_offset
= 0xfc00,
3221 .rdma_offset
= 0x2000,
3222 .tdma_offset
= 0x4000,
3224 .flags
= GENET_HAS_40BITS
| GENET_HAS_EXT
|
3225 GENET_HAS_MDIO_INTR
| GENET_HAS_MOCA_LINK_DET
,
3229 /* Infer hardware parameters from the detected GENET version */
3230 static void bcmgenet_set_hw_params(struct bcmgenet_priv
*priv
)
3232 struct bcmgenet_hw_params
*params
;
3237 if (GENET_IS_V5(priv
) || GENET_IS_V4(priv
)) {
3238 bcmgenet_dma_regs
= bcmgenet_dma_regs_v3plus
;
3239 genet_dma_ring_regs
= genet_dma_ring_regs_v4
;
3240 priv
->dma_rx_chk_bit
= DMA_RX_CHK_V3PLUS
;
3241 } else if (GENET_IS_V3(priv
)) {
3242 bcmgenet_dma_regs
= bcmgenet_dma_regs_v3plus
;
3243 genet_dma_ring_regs
= genet_dma_ring_regs_v123
;
3244 priv
->dma_rx_chk_bit
= DMA_RX_CHK_V3PLUS
;
3245 } else if (GENET_IS_V2(priv
)) {
3246 bcmgenet_dma_regs
= bcmgenet_dma_regs_v2
;
3247 genet_dma_ring_regs
= genet_dma_ring_regs_v123
;
3248 priv
->dma_rx_chk_bit
= DMA_RX_CHK_V12
;
3249 } else if (GENET_IS_V1(priv
)) {
3250 bcmgenet_dma_regs
= bcmgenet_dma_regs_v1
;
3251 genet_dma_ring_regs
= genet_dma_ring_regs_v123
;
3252 priv
->dma_rx_chk_bit
= DMA_RX_CHK_V12
;
3255 /* enum genet_version starts at 1 */
3256 priv
->hw_params
= &bcmgenet_hw_params
[priv
->version
];
3257 params
= priv
->hw_params
;
3259 /* Read GENET HW version */
3260 reg
= bcmgenet_sys_readl(priv
, SYS_REV_CTRL
);
3261 major
= (reg
>> 24 & 0x0f);
3264 else if (major
== 5)
3266 else if (major
== 0)
3268 if (major
!= priv
->version
) {
3269 dev_err(&priv
->pdev
->dev
,
3270 "GENET version mismatch, got: %d, configured for: %d\n",
3271 major
, priv
->version
);
3274 /* Print the GENET core version */
3275 dev_info(&priv
->pdev
->dev
, "GENET " GENET_VER_FMT
,
3276 major
, (reg
>> 16) & 0x0f, reg
& 0xffff);
3278 /* Store the integrated PHY revision for the MDIO probing function
3279 * to pass this information to the PHY driver. The PHY driver expects
3280 * to find the PHY major revision in bits 15:8 while the GENET register
3281 * stores that information in bits 7:0, account for that.
3283 * On newer chips, starting with PHY revision G0, a new scheme is
3284 * deployed similar to the Starfighter 2 switch with GPHY major
3285 * revision in bits 15:8 and patch level in bits 7:0. Major revision 0
3286 * is reserved as well as special value 0x01ff, we have a small
3287 * heuristic to check for the new GPHY revision and re-arrange things
3288 * so the GPHY driver is happy.
3290 gphy_rev
= reg
& 0xffff;
3292 if (GENET_IS_V5(priv
)) {
3293 /* The EPHY revision should come from the MDIO registers of
3294 * the PHY not from GENET.
3296 if (gphy_rev
!= 0) {
3297 pr_warn("GENET is reporting EPHY revision: 0x%04x\n",
3300 /* This is reserved so should require special treatment */
3301 } else if (gphy_rev
== 0 || gphy_rev
== 0x01ff) {
3302 pr_warn("Invalid GPHY revision detected: 0x%04x\n", gphy_rev
);
3304 /* This is the good old scheme, just GPHY major, no minor nor patch */
3305 } else if ((gphy_rev
& 0xf0) != 0) {
3306 priv
->gphy_rev
= gphy_rev
<< 8;
3307 /* This is the new scheme, GPHY major rolls over with 0x10 = rev G0 */
3308 } else if ((gphy_rev
& 0xff00) != 0) {
3309 priv
->gphy_rev
= gphy_rev
;
3312 #ifdef CONFIG_PHYS_ADDR_T_64BIT
3313 if (!(params
->flags
& GENET_HAS_40BITS
))
3314 pr_warn("GENET does not support 40-bits PA\n");
3317 pr_debug("Configuration for version: %d\n"
3318 "TXq: %1d, TXqBDs: %1d, RXq: %1d, RXqBDs: %1d\n"
3319 "BP << en: %2d, BP msk: 0x%05x\n"
3320 "HFB count: %2d, QTAQ msk: 0x%05x\n"
3321 "TBUF: 0x%04x, HFB: 0x%04x, HFBreg: 0x%04x\n"
3322 "RDMA: 0x%05x, TDMA: 0x%05x\n"
3325 params
->tx_queues
, params
->tx_bds_per_q
,
3326 params
->rx_queues
, params
->rx_bds_per_q
,
3327 params
->bp_in_en_shift
, params
->bp_in_mask
,
3328 params
->hfb_filter_cnt
, params
->qtag_mask
,
3329 params
->tbuf_offset
, params
->hfb_offset
,
3330 params
->hfb_reg_offset
,
3331 params
->rdma_offset
, params
->tdma_offset
,
3332 params
->words_per_bd
);
3335 static const struct of_device_id bcmgenet_match
[] = {
3336 { .compatible
= "brcm,genet-v1", .data
= (void *)GENET_V1
},
3337 { .compatible
= "brcm,genet-v2", .data
= (void *)GENET_V2
},
3338 { .compatible
= "brcm,genet-v3", .data
= (void *)GENET_V3
},
3339 { .compatible
= "brcm,genet-v4", .data
= (void *)GENET_V4
},
3340 { .compatible
= "brcm,genet-v5", .data
= (void *)GENET_V5
},
3343 MODULE_DEVICE_TABLE(of
, bcmgenet_match
);
3345 static int bcmgenet_probe(struct platform_device
*pdev
)
3347 struct bcmgenet_platform_data
*pd
= pdev
->dev
.platform_data
;
3348 struct device_node
*dn
= pdev
->dev
.of_node
;
3349 const struct of_device_id
*of_id
= NULL
;
3350 struct bcmgenet_priv
*priv
;
3351 struct net_device
*dev
;
3352 const void *macaddr
;
3355 const char *phy_mode_str
;
3357 /* Up to GENET_MAX_MQ_CNT + 1 TX queues and RX queues */
3358 dev
= alloc_etherdev_mqs(sizeof(*priv
), GENET_MAX_MQ_CNT
+ 1,
3359 GENET_MAX_MQ_CNT
+ 1);
3361 dev_err(&pdev
->dev
, "can't allocate net device\n");
3366 of_id
= of_match_node(bcmgenet_match
, dn
);
3371 priv
= netdev_priv(dev
);
3372 priv
->irq0
= platform_get_irq(pdev
, 0);
3373 priv
->irq1
= platform_get_irq(pdev
, 1);
3374 priv
->wol_irq
= platform_get_irq(pdev
, 2);
3375 if (!priv
->irq0
|| !priv
->irq1
) {
3376 dev_err(&pdev
->dev
, "can't find IRQs\n");
3382 macaddr
= of_get_mac_address(dn
);
3384 dev_err(&pdev
->dev
, "can't find MAC address\n");
3389 macaddr
= pd
->mac_address
;
3392 r
= platform_get_resource(pdev
, IORESOURCE_MEM
, 0);
3393 priv
->base
= devm_ioremap_resource(&pdev
->dev
, r
);
3394 if (IS_ERR(priv
->base
)) {
3395 err
= PTR_ERR(priv
->base
);
3399 spin_lock_init(&priv
->lock
);
3401 SET_NETDEV_DEV(dev
, &pdev
->dev
);
3402 dev_set_drvdata(&pdev
->dev
, dev
);
3403 ether_addr_copy(dev
->dev_addr
, macaddr
);
3404 dev
->watchdog_timeo
= 2 * HZ
;
3405 dev
->ethtool_ops
= &bcmgenet_ethtool_ops
;
3406 dev
->netdev_ops
= &bcmgenet_netdev_ops
;
3408 priv
->msg_enable
= netif_msg_init(-1, GENET_MSG_DEFAULT
);
3410 /* Set hardware features */
3411 dev
->hw_features
|= NETIF_F_SG
| NETIF_F_IP_CSUM
|
3412 NETIF_F_IPV6_CSUM
| NETIF_F_RXCSUM
;
3414 /* Request the WOL interrupt and advertise suspend if available */
3415 priv
->wol_irq_disabled
= true;
3416 err
= devm_request_irq(&pdev
->dev
, priv
->wol_irq
, bcmgenet_wol_isr
, 0,
3419 device_set_wakeup_capable(&pdev
->dev
, 1);
3421 /* Set the needed headroom to account for any possible
3422 * features enabling/disabling at runtime
3424 dev
->needed_headroom
+= 64;
3426 netdev_boot_setup_check(dev
);
3431 priv
->version
= (enum bcmgenet_version
)of_id
->data
;
3433 priv
->version
= pd
->genet_version
;
3435 priv
->clk
= devm_clk_get(&priv
->pdev
->dev
, "enet");
3436 if (IS_ERR(priv
->clk
)) {
3437 dev_warn(&priv
->pdev
->dev
, "failed to get enet clock\n");
3441 clk_prepare_enable(priv
->clk
);
3443 bcmgenet_set_hw_params(priv
);
3445 /* Mii wait queue */
3446 init_waitqueue_head(&priv
->wq
);
3447 /* Always use RX_BUF_LENGTH (2KB) buffer for all chips */
3448 priv
->rx_buf_len
= RX_BUF_LENGTH
;
3449 INIT_WORK(&priv
->bcmgenet_irq_work
, bcmgenet_irq_task
);
3451 priv
->clk_wol
= devm_clk_get(&priv
->pdev
->dev
, "enet-wol");
3452 if (IS_ERR(priv
->clk_wol
)) {
3453 dev_warn(&priv
->pdev
->dev
, "failed to get enet-wol clock\n");
3454 priv
->clk_wol
= NULL
;
3457 priv
->clk_eee
= devm_clk_get(&priv
->pdev
->dev
, "enet-eee");
3458 if (IS_ERR(priv
->clk_eee
)) {
3459 dev_warn(&priv
->pdev
->dev
, "failed to get enet-eee clock\n");
3460 priv
->clk_eee
= NULL
;
3463 /* If this is an internal GPHY, power it on now, before UniMAC is
3464 * brought out of reset as absolutely no UniMAC activity is allowed
3466 if (dn
&& !of_property_read_string(dn
, "phy-mode", &phy_mode_str
) &&
3467 !strcasecmp(phy_mode_str
, "internal"))
3468 bcmgenet_power_up(priv
, GENET_POWER_PASSIVE
);
3472 err
= bcmgenet_mii_init(dev
);
3474 goto err_clk_disable
;
3476 /* setup number of real queues + 1 (GENET_V1 has 0 hardware queues
3477 * just the ring 16 descriptor based TX
3479 netif_set_real_num_tx_queues(priv
->dev
, priv
->hw_params
->tx_queues
+ 1);
3480 netif_set_real_num_rx_queues(priv
->dev
, priv
->hw_params
->rx_queues
+ 1);
3482 /* libphy will determine the link state */
3483 netif_carrier_off(dev
);
3485 /* Turn off the main clock, WOL clock is handled separately */
3486 clk_disable_unprepare(priv
->clk
);
3488 err
= register_netdev(dev
);
3495 clk_disable_unprepare(priv
->clk
);
3501 static int bcmgenet_remove(struct platform_device
*pdev
)
3503 struct bcmgenet_priv
*priv
= dev_to_priv(&pdev
->dev
);
3505 dev_set_drvdata(&pdev
->dev
, NULL
);
3506 unregister_netdev(priv
->dev
);
3507 bcmgenet_mii_exit(priv
->dev
);
3508 free_netdev(priv
->dev
);
3513 #ifdef CONFIG_PM_SLEEP
3514 static int bcmgenet_suspend(struct device
*d
)
3516 struct net_device
*dev
= dev_get_drvdata(d
);
3517 struct bcmgenet_priv
*priv
= netdev_priv(dev
);
3520 if (!netif_running(dev
))
3523 bcmgenet_netif_stop(dev
);
3525 if (!device_may_wakeup(d
))
3526 phy_suspend(dev
->phydev
);
3528 netif_device_detach(dev
);
3530 /* Prepare the device for Wake-on-LAN and switch to the slow clock */
3531 if (device_may_wakeup(d
) && priv
->wolopts
) {
3532 ret
= bcmgenet_power_down(priv
, GENET_POWER_WOL_MAGIC
);
3533 clk_prepare_enable(priv
->clk_wol
);
3534 } else if (priv
->internal_phy
) {
3535 ret
= bcmgenet_power_down(priv
, GENET_POWER_PASSIVE
);
3538 /* Turn off the clocks */
3539 clk_disable_unprepare(priv
->clk
);
3544 static int bcmgenet_resume(struct device
*d
)
3546 struct net_device
*dev
= dev_get_drvdata(d
);
3547 struct bcmgenet_priv
*priv
= netdev_priv(dev
);
3548 unsigned long dma_ctrl
;
3552 if (!netif_running(dev
))
3555 /* Turn on the clock */
3556 ret
= clk_prepare_enable(priv
->clk
);
3560 /* If this is an internal GPHY, power it back on now, before UniMAC is
3561 * brought out of reset as absolutely no UniMAC activity is allowed
3563 if (priv
->internal_phy
)
3564 bcmgenet_power_up(priv
, GENET_POWER_PASSIVE
);
3566 bcmgenet_umac_reset(priv
);
3570 /* From WOL-enabled suspend, switch to regular clock */
3572 clk_disable_unprepare(priv
->clk_wol
);
3574 phy_init_hw(dev
->phydev
);
3576 /* Speed settings must be restored */
3577 bcmgenet_mii_config(priv
->dev
, false);
3579 bcmgenet_set_hw_addr(priv
, dev
->dev_addr
);
3581 if (priv
->internal_phy
) {
3582 reg
= bcmgenet_ext_readl(priv
, EXT_EXT_PWR_MGMT
);
3583 reg
|= EXT_ENERGY_DET_MASK
;
3584 bcmgenet_ext_writel(priv
, reg
, EXT_EXT_PWR_MGMT
);
3588 bcmgenet_power_up(priv
, GENET_POWER_WOL_MAGIC
);
3590 /* Disable RX/TX DMA and flush TX queues */
3591 dma_ctrl
= bcmgenet_dma_disable(priv
);
3593 /* Reinitialize TDMA and RDMA and SW housekeeping */
3594 ret
= bcmgenet_init_dma(priv
);
3596 netdev_err(dev
, "failed to initialize DMA\n");
3597 goto out_clk_disable
;
3600 /* Always enable ring 16 - descriptor ring */
3601 bcmgenet_enable_dma(priv
, dma_ctrl
);
3603 netif_device_attach(dev
);
3605 if (!device_may_wakeup(d
))
3606 phy_resume(dev
->phydev
);
3608 if (priv
->eee
.eee_enabled
)
3609 bcmgenet_eee_enable_set(dev
, true);
3611 bcmgenet_netif_start(dev
);
3616 if (priv
->internal_phy
)
3617 bcmgenet_power_down(priv
, GENET_POWER_PASSIVE
);
3618 clk_disable_unprepare(priv
->clk
);
3621 #endif /* CONFIG_PM_SLEEP */
3623 static SIMPLE_DEV_PM_OPS(bcmgenet_pm_ops
, bcmgenet_suspend
, bcmgenet_resume
);
3625 static struct platform_driver bcmgenet_driver
= {
3626 .probe
= bcmgenet_probe
,
3627 .remove
= bcmgenet_remove
,
3630 .of_match_table
= bcmgenet_match
,
3631 .pm
= &bcmgenet_pm_ops
,
3634 module_platform_driver(bcmgenet_driver
);
3636 MODULE_AUTHOR("Broadcom Corporation");
3637 MODULE_DESCRIPTION("Broadcom GENET Ethernet controller driver");
3638 MODULE_ALIAS("platform:bcmgenet");
3639 MODULE_LICENSE("GPL");