1 /* D-Link DL2000-based Gigabit Ethernet Adapter Linux driver */
3 Copyright (c) 2001, 2002 by D-Link Corporation
4 Written by Edward Peng.<edward_peng@dlink.com.tw>
5 Created 03-May-2001, base on Linux' sundance.c.
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
13 #define DRV_NAME "DL2000/TC902x-based linux driver"
14 #define DRV_VERSION "v1.19"
15 #define DRV_RELDATE "2007/08/12"
17 #include <linux/dma-mapping.h>
19 #define dw32(reg, val) iowrite32(val, ioaddr + (reg))
20 #define dw16(reg, val) iowrite16(val, ioaddr + (reg))
21 #define dw8(reg, val) iowrite8(val, ioaddr + (reg))
22 #define dr32(reg) ioread32(ioaddr + (reg))
23 #define dr16(reg) ioread16(ioaddr + (reg))
24 #define dr8(reg) ioread8(ioaddr + (reg))
26 static char version
[] =
27 KERN_INFO DRV_NAME
" " DRV_VERSION
" " DRV_RELDATE
"\n";
29 static int mtu
[MAX_UNITS
];
30 static int vlan
[MAX_UNITS
];
31 static int jumbo
[MAX_UNITS
];
32 static char *media
[MAX_UNITS
];
33 static int tx_flow
=-1;
34 static int rx_flow
=-1;
35 static int copy_thresh
;
36 static int rx_coalesce
=10; /* Rx frame count each interrupt */
37 static int rx_timeout
=200; /* Rx DMA wait time in 640ns increments */
38 static int tx_coalesce
=16; /* HW xmit count each TxDMAComplete */
41 MODULE_AUTHOR ("Edward Peng");
42 MODULE_DESCRIPTION ("D-Link DL2000-based Gigabit Ethernet Adapter");
43 MODULE_LICENSE("GPL");
44 module_param_array(mtu
, int, NULL
, 0);
45 module_param_array(media
, charp
, NULL
, 0);
46 module_param_array(vlan
, int, NULL
, 0);
47 module_param_array(jumbo
, int, NULL
, 0);
48 module_param(tx_flow
, int, 0);
49 module_param(rx_flow
, int, 0);
50 module_param(copy_thresh
, int, 0);
51 module_param(rx_coalesce
, int, 0); /* Rx frame count each interrupt */
52 module_param(rx_timeout
, int, 0); /* Rx DMA wait time in 64ns increments */
53 module_param(tx_coalesce
, int, 0); /* HW xmit count each TxDMAComplete */
56 /* Enable the default interrupts */
57 #define DEFAULT_INTR (RxDMAComplete | HostError | IntRequested | TxDMAComplete| \
58 UpdateStats | LinkEvent)
60 static void dl2k_enable_int(struct netdev_private
*np
)
62 void __iomem
*ioaddr
= np
->ioaddr
;
64 dw16(IntEnable
, DEFAULT_INTR
);
67 static const int max_intrloop
= 50;
68 static const int multicast_filter_limit
= 0x40;
70 static int rio_open (struct net_device
*dev
);
71 static void rio_timer (struct timer_list
*t
);
72 static void rio_tx_timeout (struct net_device
*dev
);
73 static netdev_tx_t
start_xmit (struct sk_buff
*skb
, struct net_device
*dev
);
74 static irqreturn_t
rio_interrupt (int irq
, void *dev_instance
);
75 static void rio_free_tx (struct net_device
*dev
, int irq
);
76 static void tx_error (struct net_device
*dev
, int tx_status
);
77 static int receive_packet (struct net_device
*dev
);
78 static void rio_error (struct net_device
*dev
, int int_status
);
79 static void set_multicast (struct net_device
*dev
);
80 static struct net_device_stats
*get_stats (struct net_device
*dev
);
81 static int clear_stats (struct net_device
*dev
);
82 static int rio_ioctl (struct net_device
*dev
, struct ifreq
*rq
, int cmd
);
83 static int rio_close (struct net_device
*dev
);
84 static int find_miiphy (struct net_device
*dev
);
85 static int parse_eeprom (struct net_device
*dev
);
86 static int read_eeprom (struct netdev_private
*, int eep_addr
);
87 static int mii_wait_link (struct net_device
*dev
, int wait
);
88 static int mii_set_media (struct net_device
*dev
);
89 static int mii_get_media (struct net_device
*dev
);
90 static int mii_set_media_pcs (struct net_device
*dev
);
91 static int mii_get_media_pcs (struct net_device
*dev
);
92 static int mii_read (struct net_device
*dev
, int phy_addr
, int reg_num
);
93 static int mii_write (struct net_device
*dev
, int phy_addr
, int reg_num
,
96 static const struct ethtool_ops ethtool_ops
;
98 static const struct net_device_ops netdev_ops
= {
100 .ndo_start_xmit
= start_xmit
,
101 .ndo_stop
= rio_close
,
102 .ndo_get_stats
= get_stats
,
103 .ndo_validate_addr
= eth_validate_addr
,
104 .ndo_set_mac_address
= eth_mac_addr
,
105 .ndo_set_rx_mode
= set_multicast
,
106 .ndo_do_ioctl
= rio_ioctl
,
107 .ndo_tx_timeout
= rio_tx_timeout
,
111 rio_probe1 (struct pci_dev
*pdev
, const struct pci_device_id
*ent
)
113 struct net_device
*dev
;
114 struct netdev_private
*np
;
116 int chip_idx
= ent
->driver_data
;
118 void __iomem
*ioaddr
;
119 static int version_printed
;
123 if (!version_printed
++)
124 printk ("%s", version
);
126 err
= pci_enable_device (pdev
);
131 err
= pci_request_regions (pdev
, "dl2k");
133 goto err_out_disable
;
135 pci_set_master (pdev
);
139 dev
= alloc_etherdev (sizeof (*np
));
142 SET_NETDEV_DEV(dev
, &pdev
->dev
);
144 np
= netdev_priv(dev
);
146 /* IO registers range. */
147 ioaddr
= pci_iomap(pdev
, 0, 0);
150 np
->eeprom_addr
= ioaddr
;
153 /* MM registers range. */
154 ioaddr
= pci_iomap(pdev
, 1, 0);
156 goto err_out_iounmap
;
159 np
->chip_id
= chip_idx
;
161 spin_lock_init (&np
->tx_lock
);
162 spin_lock_init (&np
->rx_lock
);
164 /* Parse manual configuration */
167 if (card_idx
< MAX_UNITS
) {
168 if (media
[card_idx
] != NULL
) {
170 if (strcmp (media
[card_idx
], "auto") == 0 ||
171 strcmp (media
[card_idx
], "autosense") == 0 ||
172 strcmp (media
[card_idx
], "0") == 0 ) {
174 } else if (strcmp (media
[card_idx
], "100mbps_fd") == 0 ||
175 strcmp (media
[card_idx
], "4") == 0) {
178 } else if (strcmp (media
[card_idx
], "100mbps_hd") == 0 ||
179 strcmp (media
[card_idx
], "3") == 0) {
182 } else if (strcmp (media
[card_idx
], "10mbps_fd") == 0 ||
183 strcmp (media
[card_idx
], "2") == 0) {
186 } else if (strcmp (media
[card_idx
], "10mbps_hd") == 0 ||
187 strcmp (media
[card_idx
], "1") == 0) {
190 } else if (strcmp (media
[card_idx
], "1000mbps_fd") == 0 ||
191 strcmp (media
[card_idx
], "6") == 0) {
194 } else if (strcmp (media
[card_idx
], "1000mbps_hd") == 0 ||
195 strcmp (media
[card_idx
], "5") == 0) {
202 if (jumbo
[card_idx
] != 0) {
204 dev
->mtu
= MAX_JUMBO
;
207 if (mtu
[card_idx
] > 0 && mtu
[card_idx
] < PACKET_SIZE
)
208 dev
->mtu
= mtu
[card_idx
];
210 np
->vlan
= (vlan
[card_idx
] > 0 && vlan
[card_idx
] < 4096) ?
212 if (rx_coalesce
> 0 && rx_timeout
> 0) {
213 np
->rx_coalesce
= rx_coalesce
;
214 np
->rx_timeout
= rx_timeout
;
217 np
->tx_flow
= (tx_flow
== 0) ? 0 : 1;
218 np
->rx_flow
= (rx_flow
== 0) ? 0 : 1;
222 else if (tx_coalesce
> TX_RING_SIZE
-1)
223 tx_coalesce
= TX_RING_SIZE
- 1;
225 dev
->netdev_ops
= &netdev_ops
;
226 dev
->watchdog_timeo
= TX_TIMEOUT
;
227 dev
->ethtool_ops
= ðtool_ops
;
229 dev
->features
= NETIF_F_IP_CSUM
;
231 /* MTU range: 68 - 1536 or 8000 */
232 dev
->min_mtu
= ETH_MIN_MTU
;
233 dev
->max_mtu
= np
->jumbo
? MAX_JUMBO
: PACKET_SIZE
;
235 pci_set_drvdata (pdev
, dev
);
237 ring_space
= pci_alloc_consistent (pdev
, TX_TOTAL_SIZE
, &ring_dma
);
239 goto err_out_iounmap
;
240 np
->tx_ring
= ring_space
;
241 np
->tx_ring_dma
= ring_dma
;
243 ring_space
= pci_alloc_consistent (pdev
, RX_TOTAL_SIZE
, &ring_dma
);
245 goto err_out_unmap_tx
;
246 np
->rx_ring
= ring_space
;
247 np
->rx_ring_dma
= ring_dma
;
249 /* Parse eeprom data */
252 /* Find PHY address */
253 err
= find_miiphy (dev
);
255 goto err_out_unmap_rx
;
258 np
->phy_media
= (dr16(ASICCtrl
) & PhyMedia
) ? 1 : 0;
260 /* Set media and reset PHY */
262 /* default Auto-Negotiation for fiber deivices */
263 if (np
->an_enable
== 2) {
267 /* Auto-Negotiation is mandatory for 1000BASE-T,
268 IEEE 802.3ab Annex 28D page 14 */
269 if (np
->speed
== 1000)
273 err
= register_netdev (dev
);
275 goto err_out_unmap_rx
;
279 printk (KERN_INFO
"%s: %s, %pM, IRQ %d\n",
280 dev
->name
, np
->name
, dev
->dev_addr
, irq
);
282 printk(KERN_INFO
"tx_coalesce:\t%d packets\n",
286 "rx_coalesce:\t%d packets\n"
287 "rx_timeout: \t%d ns\n",
288 np
->rx_coalesce
, np
->rx_timeout
*640);
290 printk(KERN_INFO
"vlan(id):\t%d\n", np
->vlan
);
294 pci_free_consistent (pdev
, RX_TOTAL_SIZE
, np
->rx_ring
, np
->rx_ring_dma
);
296 pci_free_consistent (pdev
, TX_TOTAL_SIZE
, np
->tx_ring
, np
->tx_ring_dma
);
299 pci_iounmap(pdev
, np
->ioaddr
);
301 pci_iounmap(pdev
, np
->eeprom_addr
);
305 pci_release_regions (pdev
);
307 pci_disable_device (pdev
);
312 find_miiphy (struct net_device
*dev
)
314 struct netdev_private
*np
= netdev_priv(dev
);
315 int i
, phy_found
= 0;
319 for (i
= 31; i
>= 0; i
--) {
320 int mii_status
= mii_read (dev
, i
, 1);
321 if (mii_status
!= 0xffff && mii_status
!= 0x0000) {
327 printk (KERN_ERR
"%s: No MII PHY found!\n", dev
->name
);
334 parse_eeprom (struct net_device
*dev
)
336 struct netdev_private
*np
= netdev_priv(dev
);
337 void __iomem
*ioaddr
= np
->ioaddr
;
342 PSROM_t psrom
= (PSROM_t
) sromdata
;
346 for (i
= 0; i
< 128; i
++)
347 ((__le16
*) sromdata
)[i
] = cpu_to_le16(read_eeprom(np
, i
));
349 if (np
->pdev
->vendor
== PCI_VENDOR_ID_DLINK
) { /* D-Link Only */
351 crc
= ~ether_crc_le (256 - 4, sromdata
);
352 if (psrom
->crc
!= cpu_to_le32(crc
)) {
353 printk (KERN_ERR
"%s: EEPROM data CRC error.\n",
359 /* Set MAC address */
360 for (i
= 0; i
< 6; i
++)
361 dev
->dev_addr
[i
] = psrom
->mac_addr
[i
];
363 if (np
->chip_id
== CHIP_IP1000A
) {
364 np
->led_mode
= psrom
->led_mode
;
368 if (np
->pdev
->vendor
!= PCI_VENDOR_ID_DLINK
) {
372 /* Parse Software Information Block */
374 psib
= (u8
*) sromdata
;
378 if ((cid
== 0 && next
== 0) || (cid
== 0xff && next
== 0xff)) {
379 printk (KERN_ERR
"Cell data error\n");
383 case 0: /* Format version */
385 case 1: /* End of cell */
387 case 2: /* Duplex Polarity */
388 np
->duplex_polarity
= psib
[i
];
389 dw8(PhyCtrl
, dr8(PhyCtrl
) | psib
[i
]);
391 case 3: /* Wake Polarity */
392 np
->wake_polarity
= psib
[i
];
394 case 9: /* Adapter description */
395 j
= (next
- i
> 255) ? 255 : next
- i
;
396 memcpy (np
->name
, &(psib
[i
]), j
);
402 case 8: /* Reversed */
404 default: /* Unknown cell */
413 static void rio_set_led_mode(struct net_device
*dev
)
415 struct netdev_private
*np
= netdev_priv(dev
);
416 void __iomem
*ioaddr
= np
->ioaddr
;
419 if (np
->chip_id
!= CHIP_IP1000A
)
422 mode
= dr32(ASICCtrl
);
423 mode
&= ~(IPG_AC_LED_MODE_BIT_1
| IPG_AC_LED_MODE
| IPG_AC_LED_SPEED
);
425 if (np
->led_mode
& 0x01)
426 mode
|= IPG_AC_LED_MODE
;
427 if (np
->led_mode
& 0x02)
428 mode
|= IPG_AC_LED_MODE_BIT_1
;
429 if (np
->led_mode
& 0x08)
430 mode
|= IPG_AC_LED_SPEED
;
432 dw32(ASICCtrl
, mode
);
435 static inline dma_addr_t
desc_to_dma(struct netdev_desc
*desc
)
437 return le64_to_cpu(desc
->fraginfo
) & DMA_BIT_MASK(48);
440 static void free_list(struct net_device
*dev
)
442 struct netdev_private
*np
= netdev_priv(dev
);
446 /* Free all the skbuffs in the queue. */
447 for (i
= 0; i
< RX_RING_SIZE
; i
++) {
448 skb
= np
->rx_skbuff
[i
];
450 pci_unmap_single(np
->pdev
, desc_to_dma(&np
->rx_ring
[i
]),
451 skb
->len
, PCI_DMA_FROMDEVICE
);
453 np
->rx_skbuff
[i
] = NULL
;
455 np
->rx_ring
[i
].status
= 0;
456 np
->rx_ring
[i
].fraginfo
= 0;
458 for (i
= 0; i
< TX_RING_SIZE
; i
++) {
459 skb
= np
->tx_skbuff
[i
];
461 pci_unmap_single(np
->pdev
, desc_to_dma(&np
->tx_ring
[i
]),
462 skb
->len
, PCI_DMA_TODEVICE
);
464 np
->tx_skbuff
[i
] = NULL
;
469 static void rio_reset_ring(struct netdev_private
*np
)
478 for (i
= 0; i
< TX_RING_SIZE
; i
++)
479 np
->tx_ring
[i
].status
= cpu_to_le64(TFDDone
);
481 for (i
= 0; i
< RX_RING_SIZE
; i
++)
482 np
->rx_ring
[i
].status
= 0;
485 /* allocate and initialize Tx and Rx descriptors */
486 static int alloc_list(struct net_device
*dev
)
488 struct netdev_private
*np
= netdev_priv(dev
);
492 np
->rx_buf_sz
= (dev
->mtu
<= 1500 ? PACKET_SIZE
: dev
->mtu
+ 32);
494 /* Initialize Tx descriptors, TFDListPtr leaves in start_xmit(). */
495 for (i
= 0; i
< TX_RING_SIZE
; i
++) {
496 np
->tx_skbuff
[i
] = NULL
;
497 np
->tx_ring
[i
].next_desc
= cpu_to_le64(np
->tx_ring_dma
+
498 ((i
+ 1) % TX_RING_SIZE
) *
499 sizeof(struct netdev_desc
));
502 /* Initialize Rx descriptors & allocate buffers */
503 for (i
= 0; i
< RX_RING_SIZE
; i
++) {
504 /* Allocated fixed size of skbuff */
507 skb
= netdev_alloc_skb_ip_align(dev
, np
->rx_buf_sz
);
508 np
->rx_skbuff
[i
] = skb
;
514 np
->rx_ring
[i
].next_desc
= cpu_to_le64(np
->rx_ring_dma
+
515 ((i
+ 1) % RX_RING_SIZE
) *
516 sizeof(struct netdev_desc
));
517 /* Rubicon now supports 40 bits of addressing space. */
518 np
->rx_ring
[i
].fraginfo
=
519 cpu_to_le64(pci_map_single(
520 np
->pdev
, skb
->data
, np
->rx_buf_sz
,
521 PCI_DMA_FROMDEVICE
));
522 np
->rx_ring
[i
].fraginfo
|= cpu_to_le64((u64
)np
->rx_buf_sz
<< 48);
528 static void rio_hw_init(struct net_device
*dev
)
530 struct netdev_private
*np
= netdev_priv(dev
);
531 void __iomem
*ioaddr
= np
->ioaddr
;
535 /* Reset all logic functions */
537 GlobalReset
| DMAReset
| FIFOReset
| NetworkReset
| HostReset
);
540 rio_set_led_mode(dev
);
542 /* DebugCtrl bit 4, 5, 9 must set */
543 dw32(DebugCtrl
, dr32(DebugCtrl
) | 0x0230);
545 if (np
->chip_id
== CHIP_IP1000A
&&
546 (np
->pdev
->revision
== 0x40 || np
->pdev
->revision
== 0x41)) {
547 /* PHY magic taken from ipg driver, undocumented registers */
548 mii_write(dev
, np
->phy_addr
, 31, 0x0001);
549 mii_write(dev
, np
->phy_addr
, 27, 0x01e0);
550 mii_write(dev
, np
->phy_addr
, 31, 0x0002);
551 mii_write(dev
, np
->phy_addr
, 27, 0xeb8e);
552 mii_write(dev
, np
->phy_addr
, 31, 0x0000);
553 mii_write(dev
, np
->phy_addr
, 30, 0x005e);
554 /* advertise 1000BASE-T half & full duplex, prefer MASTER */
555 mii_write(dev
, np
->phy_addr
, MII_CTRL1000
, 0x0700);
559 mii_set_media_pcs(dev
);
565 dw16(MaxFrameSize
, MAX_JUMBO
+14);
568 dw32(RFDListPtr0
, np
->rx_ring_dma
);
569 dw32(RFDListPtr1
, 0);
571 /* Set station address */
572 /* 16 or 32-bit access is required by TC9020 datasheet but 8-bit works
573 * too. However, it doesn't work on IP1000A so we use 16-bit access.
575 for (i
= 0; i
< 3; i
++)
576 dw16(StationAddr0
+ 2 * i
,
577 cpu_to_le16(((u16
*)dev
->dev_addr
)[i
]));
581 dw32(RxDMAIntCtrl
, np
->rx_coalesce
| np
->rx_timeout
<< 16);
583 /* Set RIO to poll every N*320nsec. */
584 dw8(RxDMAPollPeriod
, 0x20);
585 dw8(TxDMAPollPeriod
, 0xff);
586 dw8(RxDMABurstThresh
, 0x30);
587 dw8(RxDMAUrgentThresh
, 0x30);
588 dw32(RmonStatMask
, 0x0007ffff);
589 /* clear statistics */
594 /* priority field in RxDMAIntCtrl */
595 dw32(RxDMAIntCtrl
, dr32(RxDMAIntCtrl
) | 0x7 << 10);
597 dw16(VLANId
, np
->vlan
);
598 /* Length/Type should be 0x8100 */
599 dw32(VLANTag
, 0x8100 << 16 | np
->vlan
);
600 /* Enable AutoVLANuntagging, but disable AutoVLANtagging.
601 VLAN information tagged by TFC' VID, CFI fields. */
602 dw32(MACCtrl
, dr32(MACCtrl
) | AutoVLANuntagging
);
606 dw32(MACCtrl
, dr32(MACCtrl
) | StatsEnable
| RxEnable
| TxEnable
);
609 macctrl
|= (np
->vlan
) ? AutoVLANuntagging
: 0;
610 macctrl
|= (np
->full_duplex
) ? DuplexSelect
: 0;
611 macctrl
|= (np
->tx_flow
) ? TxFlowControlEnable
: 0;
612 macctrl
|= (np
->rx_flow
) ? RxFlowControlEnable
: 0;
613 dw16(MACCtrl
, macctrl
);
616 static void rio_hw_stop(struct net_device
*dev
)
618 struct netdev_private
*np
= netdev_priv(dev
);
619 void __iomem
*ioaddr
= np
->ioaddr
;
621 /* Disable interrupts */
624 /* Stop Tx and Rx logics */
625 dw32(MACCtrl
, TxDisable
| RxDisable
| StatsDisable
);
628 static int rio_open(struct net_device
*dev
)
630 struct netdev_private
*np
= netdev_priv(dev
);
631 const int irq
= np
->pdev
->irq
;
640 i
= request_irq(irq
, rio_interrupt
, IRQF_SHARED
, dev
->name
, dev
);
647 timer_setup(&np
->timer
, rio_timer
, 0);
648 np
->timer
.expires
= jiffies
+ 1 * HZ
;
649 add_timer(&np
->timer
);
651 netif_start_queue (dev
);
658 rio_timer (struct timer_list
*t
)
660 struct netdev_private
*np
= from_timer(np
, t
, timer
);
661 struct net_device
*dev
= pci_get_drvdata(np
->pdev
);
663 int next_tick
= 1*HZ
;
666 spin_lock_irqsave(&np
->rx_lock
, flags
);
667 /* Recover rx ring exhausted error */
668 if (np
->cur_rx
- np
->old_rx
>= RX_RING_SIZE
) {
669 printk(KERN_INFO
"Try to recover rx ring exhausted...\n");
670 /* Re-allocate skbuffs to fill the descriptor ring */
671 for (; np
->cur_rx
- np
->old_rx
> 0; np
->old_rx
++) {
673 entry
= np
->old_rx
% RX_RING_SIZE
;
674 /* Dropped packets don't need to re-allocate */
675 if (np
->rx_skbuff
[entry
] == NULL
) {
676 skb
= netdev_alloc_skb_ip_align(dev
,
679 np
->rx_ring
[entry
].fraginfo
= 0;
681 "%s: Still unable to re-allocate Rx skbuff.#%d\n",
685 np
->rx_skbuff
[entry
] = skb
;
686 np
->rx_ring
[entry
].fraginfo
=
687 cpu_to_le64 (pci_map_single
688 (np
->pdev
, skb
->data
, np
->rx_buf_sz
,
689 PCI_DMA_FROMDEVICE
));
691 np
->rx_ring
[entry
].fraginfo
|=
692 cpu_to_le64((u64
)np
->rx_buf_sz
<< 48);
693 np
->rx_ring
[entry
].status
= 0;
696 spin_unlock_irqrestore (&np
->rx_lock
, flags
);
697 np
->timer
.expires
= jiffies
+ next_tick
;
698 add_timer(&np
->timer
);
702 rio_tx_timeout (struct net_device
*dev
)
704 struct netdev_private
*np
= netdev_priv(dev
);
705 void __iomem
*ioaddr
= np
->ioaddr
;
707 printk (KERN_INFO
"%s: Tx timed out (%4.4x), is buffer full?\n",
708 dev
->name
, dr32(TxStatus
));
711 netif_trans_update(dev
); /* prevent tx timeout */
715 start_xmit (struct sk_buff
*skb
, struct net_device
*dev
)
717 struct netdev_private
*np
= netdev_priv(dev
);
718 void __iomem
*ioaddr
= np
->ioaddr
;
719 struct netdev_desc
*txdesc
;
721 u64 tfc_vlan_tag
= 0;
723 if (np
->link_status
== 0) { /* Link Down */
727 entry
= np
->cur_tx
% TX_RING_SIZE
;
728 np
->tx_skbuff
[entry
] = skb
;
729 txdesc
= &np
->tx_ring
[entry
];
732 if (skb
->ip_summed
== CHECKSUM_PARTIAL
) {
734 cpu_to_le64 (TCPChecksumEnable
| UDPChecksumEnable
|
739 tfc_vlan_tag
= VLANTagInsert
|
740 ((u64
)np
->vlan
<< 32) |
741 ((u64
)skb
->priority
<< 45);
743 txdesc
->fraginfo
= cpu_to_le64 (pci_map_single (np
->pdev
, skb
->data
,
746 txdesc
->fraginfo
|= cpu_to_le64((u64
)skb
->len
<< 48);
748 /* DL2K bug: DMA fails to get next descriptor ptr in 10Mbps mode
749 * Work around: Always use 1 descriptor in 10Mbps mode */
750 if (entry
% np
->tx_coalesce
== 0 || np
->speed
== 10)
751 txdesc
->status
= cpu_to_le64 (entry
| tfc_vlan_tag
|
754 (1 << FragCountShift
));
756 txdesc
->status
= cpu_to_le64 (entry
| tfc_vlan_tag
|
758 (1 << FragCountShift
));
761 dw32(DMACtrl
, dr32(DMACtrl
) | 0x00001000);
763 dw32(CountDown
, 10000);
764 np
->cur_tx
= (np
->cur_tx
+ 1) % TX_RING_SIZE
;
765 if ((np
->cur_tx
- np
->old_tx
+ TX_RING_SIZE
) % TX_RING_SIZE
766 < TX_QUEUE_LEN
- 1 && np
->speed
!= 10) {
768 } else if (!netif_queue_stopped(dev
)) {
769 netif_stop_queue (dev
);
772 /* The first TFDListPtr */
773 if (!dr32(TFDListPtr0
)) {
774 dw32(TFDListPtr0
, np
->tx_ring_dma
+
775 entry
* sizeof (struct netdev_desc
));
776 dw32(TFDListPtr1
, 0);
783 rio_interrupt (int irq
, void *dev_instance
)
785 struct net_device
*dev
= dev_instance
;
786 struct netdev_private
*np
= netdev_priv(dev
);
787 void __iomem
*ioaddr
= np
->ioaddr
;
789 int cnt
= max_intrloop
;
793 int_status
= dr16(IntStatus
);
794 dw16(IntStatus
, int_status
);
795 int_status
&= DEFAULT_INTR
;
796 if (int_status
== 0 || --cnt
< 0)
799 /* Processing received packets */
800 if (int_status
& RxDMAComplete
)
801 receive_packet (dev
);
802 /* TxDMAComplete interrupt */
803 if ((int_status
& (TxDMAComplete
|IntRequested
))) {
805 tx_status
= dr32(TxStatus
);
806 if (tx_status
& 0x01)
807 tx_error (dev
, tx_status
);
808 /* Free used tx skbuffs */
809 rio_free_tx (dev
, 1);
812 /* Handle uncommon events */
814 (HostError
| LinkEvent
| UpdateStats
))
815 rio_error (dev
, int_status
);
817 if (np
->cur_tx
!= np
->old_tx
)
818 dw32(CountDown
, 100);
819 return IRQ_RETVAL(handled
);
823 rio_free_tx (struct net_device
*dev
, int irq
)
825 struct netdev_private
*np
= netdev_priv(dev
);
826 int entry
= np
->old_tx
% TX_RING_SIZE
;
828 unsigned long flag
= 0;
831 spin_lock(&np
->tx_lock
);
833 spin_lock_irqsave(&np
->tx_lock
, flag
);
835 /* Free used tx skbuffs */
836 while (entry
!= np
->cur_tx
) {
839 if (!(np
->tx_ring
[entry
].status
& cpu_to_le64(TFDDone
)))
841 skb
= np
->tx_skbuff
[entry
];
842 pci_unmap_single (np
->pdev
,
843 desc_to_dma(&np
->tx_ring
[entry
]),
844 skb
->len
, PCI_DMA_TODEVICE
);
846 dev_kfree_skb_irq (skb
);
850 np
->tx_skbuff
[entry
] = NULL
;
851 entry
= (entry
+ 1) % TX_RING_SIZE
;
855 spin_unlock(&np
->tx_lock
);
857 spin_unlock_irqrestore(&np
->tx_lock
, flag
);
860 /* If the ring is no longer full, clear tx_full and
861 call netif_wake_queue() */
863 if (netif_queue_stopped(dev
) &&
864 ((np
->cur_tx
- np
->old_tx
+ TX_RING_SIZE
) % TX_RING_SIZE
865 < TX_QUEUE_LEN
- 1 || np
->speed
== 10)) {
866 netif_wake_queue (dev
);
871 tx_error (struct net_device
*dev
, int tx_status
)
873 struct netdev_private
*np
= netdev_priv(dev
);
874 void __iomem
*ioaddr
= np
->ioaddr
;
878 frame_id
= (tx_status
& 0xffff0000);
879 printk (KERN_ERR
"%s: Transmit error, TxStatus %4.4x, FrameId %d.\n",
880 dev
->name
, tx_status
, frame_id
);
881 dev
->stats
.tx_errors
++;
882 /* Ttransmit Underrun */
883 if (tx_status
& 0x10) {
884 dev
->stats
.tx_fifo_errors
++;
885 dw16(TxStartThresh
, dr16(TxStartThresh
) + 0x10);
886 /* Transmit Underrun need to set TxReset, DMARest, FIFOReset */
888 TxReset
| DMAReset
| FIFOReset
| NetworkReset
);
889 /* Wait for ResetBusy bit clear */
890 for (i
= 50; i
> 0; i
--) {
891 if (!(dr16(ASICCtrl
+ 2) & ResetBusy
))
895 rio_set_led_mode(dev
);
896 rio_free_tx (dev
, 1);
897 /* Reset TFDListPtr */
898 dw32(TFDListPtr0
, np
->tx_ring_dma
+
899 np
->old_tx
* sizeof (struct netdev_desc
));
900 dw32(TFDListPtr1
, 0);
902 /* Let TxStartThresh stay default value */
905 if (tx_status
& 0x04) {
906 dev
->stats
.tx_fifo_errors
++;
907 /* TxReset and clear FIFO */
908 dw16(ASICCtrl
+ 2, TxReset
| FIFOReset
);
909 /* Wait reset done */
910 for (i
= 50; i
> 0; i
--) {
911 if (!(dr16(ASICCtrl
+ 2) & ResetBusy
))
915 rio_set_led_mode(dev
);
916 /* Let TxStartThresh stay default value */
918 /* Maximum Collisions */
919 if (tx_status
& 0x08)
920 dev
->stats
.collisions
++;
922 dw32(MACCtrl
, dr16(MACCtrl
) | TxEnable
);
926 receive_packet (struct net_device
*dev
)
928 struct netdev_private
*np
= netdev_priv(dev
);
929 int entry
= np
->cur_rx
% RX_RING_SIZE
;
932 /* If RFDDone, FrameStart and FrameEnd set, there is a new packet in. */
934 struct netdev_desc
*desc
= &np
->rx_ring
[entry
];
938 if (!(desc
->status
& cpu_to_le64(RFDDone
)) ||
939 !(desc
->status
& cpu_to_le64(FrameStart
)) ||
940 !(desc
->status
& cpu_to_le64(FrameEnd
)))
943 /* Chip omits the CRC. */
944 frame_status
= le64_to_cpu(desc
->status
);
945 pkt_len
= frame_status
& 0xffff;
948 /* Update rx error statistics, drop packet. */
949 if (frame_status
& RFS_Errors
) {
950 dev
->stats
.rx_errors
++;
951 if (frame_status
& (RxRuntFrame
| RxLengthError
))
952 dev
->stats
.rx_length_errors
++;
953 if (frame_status
& RxFCSError
)
954 dev
->stats
.rx_crc_errors
++;
955 if (frame_status
& RxAlignmentError
&& np
->speed
!= 1000)
956 dev
->stats
.rx_frame_errors
++;
957 if (frame_status
& RxFIFOOverrun
)
958 dev
->stats
.rx_fifo_errors
++;
962 /* Small skbuffs for short packets */
963 if (pkt_len
> copy_thresh
) {
964 pci_unmap_single (np
->pdev
,
968 skb_put (skb
= np
->rx_skbuff
[entry
], pkt_len
);
969 np
->rx_skbuff
[entry
] = NULL
;
970 } else if ((skb
= netdev_alloc_skb_ip_align(dev
, pkt_len
))) {
971 pci_dma_sync_single_for_cpu(np
->pdev
,
975 skb_copy_to_linear_data (skb
,
976 np
->rx_skbuff
[entry
]->data
,
978 skb_put (skb
, pkt_len
);
979 pci_dma_sync_single_for_device(np
->pdev
,
984 skb
->protocol
= eth_type_trans (skb
, dev
);
986 /* Checksum done by hw, but csum value unavailable. */
987 if (np
->pdev
->pci_rev_id
>= 0x0c &&
988 !(frame_status
& (TCPError
| UDPError
| IPError
))) {
989 skb
->ip_summed
= CHECKSUM_UNNECESSARY
;
994 entry
= (entry
+ 1) % RX_RING_SIZE
;
996 spin_lock(&np
->rx_lock
);
998 /* Re-allocate skbuffs to fill the descriptor ring */
1000 while (entry
!= np
->cur_rx
) {
1001 struct sk_buff
*skb
;
1002 /* Dropped packets don't need to re-allocate */
1003 if (np
->rx_skbuff
[entry
] == NULL
) {
1004 skb
= netdev_alloc_skb_ip_align(dev
, np
->rx_buf_sz
);
1006 np
->rx_ring
[entry
].fraginfo
= 0;
1008 "%s: receive_packet: "
1009 "Unable to re-allocate Rx skbuff.#%d\n",
1013 np
->rx_skbuff
[entry
] = skb
;
1014 np
->rx_ring
[entry
].fraginfo
=
1015 cpu_to_le64 (pci_map_single
1016 (np
->pdev
, skb
->data
, np
->rx_buf_sz
,
1017 PCI_DMA_FROMDEVICE
));
1019 np
->rx_ring
[entry
].fraginfo
|=
1020 cpu_to_le64((u64
)np
->rx_buf_sz
<< 48);
1021 np
->rx_ring
[entry
].status
= 0;
1022 entry
= (entry
+ 1) % RX_RING_SIZE
;
1025 spin_unlock(&np
->rx_lock
);
1030 rio_error (struct net_device
*dev
, int int_status
)
1032 struct netdev_private
*np
= netdev_priv(dev
);
1033 void __iomem
*ioaddr
= np
->ioaddr
;
1036 /* Link change event */
1037 if (int_status
& LinkEvent
) {
1038 if (mii_wait_link (dev
, 10) == 0) {
1039 printk (KERN_INFO
"%s: Link up\n", dev
->name
);
1041 mii_get_media_pcs (dev
);
1043 mii_get_media (dev
);
1044 if (np
->speed
== 1000)
1045 np
->tx_coalesce
= tx_coalesce
;
1047 np
->tx_coalesce
= 1;
1049 macctrl
|= (np
->vlan
) ? AutoVLANuntagging
: 0;
1050 macctrl
|= (np
->full_duplex
) ? DuplexSelect
: 0;
1051 macctrl
|= (np
->tx_flow
) ?
1052 TxFlowControlEnable
: 0;
1053 macctrl
|= (np
->rx_flow
) ?
1054 RxFlowControlEnable
: 0;
1055 dw16(MACCtrl
, macctrl
);
1056 np
->link_status
= 1;
1057 netif_carrier_on(dev
);
1059 printk (KERN_INFO
"%s: Link off\n", dev
->name
);
1060 np
->link_status
= 0;
1061 netif_carrier_off(dev
);
1065 /* UpdateStats statistics registers */
1066 if (int_status
& UpdateStats
) {
1070 /* PCI Error, a catastronphic error related to the bus interface
1071 occurs, set GlobalReset and HostReset to reset. */
1072 if (int_status
& HostError
) {
1073 printk (KERN_ERR
"%s: HostError! IntStatus %4.4x.\n",
1074 dev
->name
, int_status
);
1075 dw16(ASICCtrl
+ 2, GlobalReset
| HostReset
);
1077 rio_set_led_mode(dev
);
1081 static struct net_device_stats
*
1082 get_stats (struct net_device
*dev
)
1084 struct netdev_private
*np
= netdev_priv(dev
);
1085 void __iomem
*ioaddr
= np
->ioaddr
;
1089 unsigned int stat_reg
;
1091 /* All statistics registers need to be acknowledged,
1092 else statistic overflow could cause problems */
1094 dev
->stats
.rx_packets
+= dr32(FramesRcvOk
);
1095 dev
->stats
.tx_packets
+= dr32(FramesXmtOk
);
1096 dev
->stats
.rx_bytes
+= dr32(OctetRcvOk
);
1097 dev
->stats
.tx_bytes
+= dr32(OctetXmtOk
);
1099 dev
->stats
.multicast
= dr32(McstFramesRcvdOk
);
1100 dev
->stats
.collisions
+= dr32(SingleColFrames
)
1101 + dr32(MultiColFrames
);
1103 /* detailed tx errors */
1104 stat_reg
= dr16(FramesAbortXSColls
);
1105 dev
->stats
.tx_aborted_errors
+= stat_reg
;
1106 dev
->stats
.tx_errors
+= stat_reg
;
1108 stat_reg
= dr16(CarrierSenseErrors
);
1109 dev
->stats
.tx_carrier_errors
+= stat_reg
;
1110 dev
->stats
.tx_errors
+= stat_reg
;
1112 /* Clear all other statistic register. */
1113 dr32(McstOctetXmtOk
);
1114 dr16(BcstFramesXmtdOk
);
1115 dr32(McstFramesXmtdOk
);
1116 dr16(BcstFramesRcvdOk
);
1117 dr16(MacControlFramesRcvd
);
1118 dr16(FrameTooLongErrors
);
1119 dr16(InRangeLengthErrors
);
1120 dr16(FramesCheckSeqErrors
);
1121 dr16(FramesLostRxErrors
);
1122 dr32(McstOctetXmtOk
);
1123 dr32(BcstOctetXmtOk
);
1124 dr32(McstFramesXmtdOk
);
1125 dr32(FramesWDeferredXmt
);
1126 dr32(LateCollisions
);
1127 dr16(BcstFramesXmtdOk
);
1128 dr16(MacControlFramesXmtd
);
1129 dr16(FramesWEXDeferal
);
1132 for (i
= 0x100; i
<= 0x150; i
+= 4)
1135 dr16(TxJumboFrames
);
1136 dr16(RxJumboFrames
);
1137 dr16(TCPCheckSumErrors
);
1138 dr16(UDPCheckSumErrors
);
1139 dr16(IPCheckSumErrors
);
1144 clear_stats (struct net_device
*dev
)
1146 struct netdev_private
*np
= netdev_priv(dev
);
1147 void __iomem
*ioaddr
= np
->ioaddr
;
1152 /* All statistics registers need to be acknowledged,
1153 else statistic overflow could cause problems */
1159 dr32(McstFramesRcvdOk
);
1160 dr32(SingleColFrames
);
1161 dr32(MultiColFrames
);
1162 dr32(LateCollisions
);
1163 /* detailed rx errors */
1164 dr16(FrameTooLongErrors
);
1165 dr16(InRangeLengthErrors
);
1166 dr16(FramesCheckSeqErrors
);
1167 dr16(FramesLostRxErrors
);
1169 /* detailed tx errors */
1170 dr16(FramesAbortXSColls
);
1171 dr16(CarrierSenseErrors
);
1173 /* Clear all other statistic register. */
1174 dr32(McstOctetXmtOk
);
1175 dr16(BcstFramesXmtdOk
);
1176 dr32(McstFramesXmtdOk
);
1177 dr16(BcstFramesRcvdOk
);
1178 dr16(MacControlFramesRcvd
);
1179 dr32(McstOctetXmtOk
);
1180 dr32(BcstOctetXmtOk
);
1181 dr32(McstFramesXmtdOk
);
1182 dr32(FramesWDeferredXmt
);
1183 dr16(BcstFramesXmtdOk
);
1184 dr16(MacControlFramesXmtd
);
1185 dr16(FramesWEXDeferal
);
1187 for (i
= 0x100; i
<= 0x150; i
+= 4)
1190 dr16(TxJumboFrames
);
1191 dr16(RxJumboFrames
);
1192 dr16(TCPCheckSumErrors
);
1193 dr16(UDPCheckSumErrors
);
1194 dr16(IPCheckSumErrors
);
1199 set_multicast (struct net_device
*dev
)
1201 struct netdev_private
*np
= netdev_priv(dev
);
1202 void __iomem
*ioaddr
= np
->ioaddr
;
1206 hash_table
[0] = hash_table
[1] = 0;
1207 /* RxFlowcontrol DA: 01-80-C2-00-00-01. Hash index=0x39 */
1208 hash_table
[1] |= 0x02000000;
1209 if (dev
->flags
& IFF_PROMISC
) {
1210 /* Receive all frames promiscuously. */
1211 rx_mode
= ReceiveAllFrames
;
1212 } else if ((dev
->flags
& IFF_ALLMULTI
) ||
1213 (netdev_mc_count(dev
) > multicast_filter_limit
)) {
1214 /* Receive broadcast and multicast frames */
1215 rx_mode
= ReceiveBroadcast
| ReceiveMulticast
| ReceiveUnicast
;
1216 } else if (!netdev_mc_empty(dev
)) {
1217 struct netdev_hw_addr
*ha
;
1218 /* Receive broadcast frames and multicast frames filtering
1221 ReceiveBroadcast
| ReceiveMulticastHash
| ReceiveUnicast
;
1222 netdev_for_each_mc_addr(ha
, dev
) {
1224 int crc
= ether_crc_le(ETH_ALEN
, ha
->addr
);
1225 /* The inverted high significant 6 bits of CRC are
1226 used as an index to hashtable */
1227 for (bit
= 0; bit
< 6; bit
++)
1228 if (crc
& (1 << (31 - bit
)))
1229 index
|= (1 << bit
);
1230 hash_table
[index
/ 32] |= (1 << (index
% 32));
1233 rx_mode
= ReceiveBroadcast
| ReceiveUnicast
;
1236 /* ReceiveVLANMatch field in ReceiveMode */
1237 rx_mode
|= ReceiveVLANMatch
;
1240 dw32(HashTable0
, hash_table
[0]);
1241 dw32(HashTable1
, hash_table
[1]);
1242 dw16(ReceiveMode
, rx_mode
);
1245 static void rio_get_drvinfo(struct net_device
*dev
, struct ethtool_drvinfo
*info
)
1247 struct netdev_private
*np
= netdev_priv(dev
);
1249 strlcpy(info
->driver
, "dl2k", sizeof(info
->driver
));
1250 strlcpy(info
->version
, DRV_VERSION
, sizeof(info
->version
));
1251 strlcpy(info
->bus_info
, pci_name(np
->pdev
), sizeof(info
->bus_info
));
1254 static int rio_get_link_ksettings(struct net_device
*dev
,
1255 struct ethtool_link_ksettings
*cmd
)
1257 struct netdev_private
*np
= netdev_priv(dev
);
1258 u32 supported
, advertising
;
1260 if (np
->phy_media
) {
1262 supported
= SUPPORTED_Autoneg
| SUPPORTED_FIBRE
;
1263 advertising
= ADVERTISED_Autoneg
| ADVERTISED_FIBRE
;
1264 cmd
->base
.port
= PORT_FIBRE
;
1267 supported
= SUPPORTED_10baseT_Half
|
1268 SUPPORTED_10baseT_Full
| SUPPORTED_100baseT_Half
1269 | SUPPORTED_100baseT_Full
| SUPPORTED_1000baseT_Full
|
1270 SUPPORTED_Autoneg
| SUPPORTED_MII
;
1271 advertising
= ADVERTISED_10baseT_Half
|
1272 ADVERTISED_10baseT_Full
| ADVERTISED_100baseT_Half
|
1273 ADVERTISED_100baseT_Full
| ADVERTISED_1000baseT_Full
|
1274 ADVERTISED_Autoneg
| ADVERTISED_MII
;
1275 cmd
->base
.port
= PORT_MII
;
1277 if (np
->link_status
) {
1278 cmd
->base
.speed
= np
->speed
;
1279 cmd
->base
.duplex
= np
->full_duplex
? DUPLEX_FULL
: DUPLEX_HALF
;
1281 cmd
->base
.speed
= SPEED_UNKNOWN
;
1282 cmd
->base
.duplex
= DUPLEX_UNKNOWN
;
1285 cmd
->base
.autoneg
= AUTONEG_ENABLE
;
1287 cmd
->base
.autoneg
= AUTONEG_DISABLE
;
1289 cmd
->base
.phy_address
= np
->phy_addr
;
1291 ethtool_convert_legacy_u32_to_link_mode(cmd
->link_modes
.supported
,
1293 ethtool_convert_legacy_u32_to_link_mode(cmd
->link_modes
.advertising
,
1299 static int rio_set_link_ksettings(struct net_device
*dev
,
1300 const struct ethtool_link_ksettings
*cmd
)
1302 struct netdev_private
*np
= netdev_priv(dev
);
1303 u32 speed
= cmd
->base
.speed
;
1304 u8 duplex
= cmd
->base
.duplex
;
1306 netif_carrier_off(dev
);
1307 if (cmd
->base
.autoneg
== AUTONEG_ENABLE
) {
1308 if (np
->an_enable
) {
1317 if (np
->speed
== 1000) {
1319 duplex
= DUPLEX_FULL
;
1320 printk("Warning!! Can't disable Auto negotiation in 1000Mbps, change to Manual 100Mbps, Full duplex.\n");
1325 np
->full_duplex
= (duplex
== DUPLEX_FULL
);
1329 np
->full_duplex
= (duplex
== DUPLEX_FULL
);
1331 case SPEED_1000
: /* not supported */
1340 static u32
rio_get_link(struct net_device
*dev
)
1342 struct netdev_private
*np
= netdev_priv(dev
);
1343 return np
->link_status
;
1346 static const struct ethtool_ops ethtool_ops
= {
1347 .get_drvinfo
= rio_get_drvinfo
,
1348 .get_link
= rio_get_link
,
1349 .get_link_ksettings
= rio_get_link_ksettings
,
1350 .set_link_ksettings
= rio_set_link_ksettings
,
1354 rio_ioctl (struct net_device
*dev
, struct ifreq
*rq
, int cmd
)
1357 struct netdev_private
*np
= netdev_priv(dev
);
1358 struct mii_ioctl_data
*miidata
= if_mii(rq
);
1360 phy_addr
= np
->phy_addr
;
1363 miidata
->phy_id
= phy_addr
;
1366 miidata
->val_out
= mii_read (dev
, phy_addr
, miidata
->reg_num
);
1369 if (!capable(CAP_NET_ADMIN
))
1371 mii_write (dev
, phy_addr
, miidata
->reg_num
, miidata
->val_in
);
1379 #define EEP_READ 0x0200
1380 #define EEP_BUSY 0x8000
1381 /* Read the EEPROM word */
1382 /* We use I/O instruction to read/write eeprom to avoid fail on some machines */
1383 static int read_eeprom(struct netdev_private
*np
, int eep_addr
)
1385 void __iomem
*ioaddr
= np
->eeprom_addr
;
1388 dw16(EepromCtrl
, EEP_READ
| (eep_addr
& 0xff));
1390 if (!(dr16(EepromCtrl
) & EEP_BUSY
))
1391 return dr16(EepromData
);
1396 enum phy_ctrl_bits
{
1397 MII_READ
= 0x00, MII_CLK
= 0x01, MII_DATA1
= 0x02, MII_WRITE
= 0x04,
1401 #define mii_delay() dr8(PhyCtrl)
1403 mii_sendbit (struct net_device
*dev
, u32 data
)
1405 struct netdev_private
*np
= netdev_priv(dev
);
1406 void __iomem
*ioaddr
= np
->ioaddr
;
1408 data
= ((data
) ? MII_DATA1
: 0) | (dr8(PhyCtrl
) & 0xf8) | MII_WRITE
;
1411 dw8(PhyCtrl
, data
| MII_CLK
);
1416 mii_getbit (struct net_device
*dev
)
1418 struct netdev_private
*np
= netdev_priv(dev
);
1419 void __iomem
*ioaddr
= np
->ioaddr
;
1422 data
= (dr8(PhyCtrl
) & 0xf8) | MII_READ
;
1425 dw8(PhyCtrl
, data
| MII_CLK
);
1427 return (dr8(PhyCtrl
) >> 1) & 1;
1431 mii_send_bits (struct net_device
*dev
, u32 data
, int len
)
1435 for (i
= len
- 1; i
>= 0; i
--) {
1436 mii_sendbit (dev
, data
& (1 << i
));
1441 mii_read (struct net_device
*dev
, int phy_addr
, int reg_num
)
1448 mii_send_bits (dev
, 0xffffffff, 32);
1449 /* ST(2), OP(2), ADDR(5), REG#(5), TA(2), Data(16) total 32 bits */
1450 /* ST,OP = 0110'b for read operation */
1451 cmd
= (0x06 << 10 | phy_addr
<< 5 | reg_num
);
1452 mii_send_bits (dev
, cmd
, 14);
1454 if (mii_getbit (dev
))
1457 for (i
= 0; i
< 16; i
++) {
1458 retval
|= mii_getbit (dev
);
1463 return (retval
>> 1) & 0xffff;
1469 mii_write (struct net_device
*dev
, int phy_addr
, int reg_num
, u16 data
)
1474 mii_send_bits (dev
, 0xffffffff, 32);
1475 /* ST(2), OP(2), ADDR(5), REG#(5), TA(2), Data(16) total 32 bits */
1476 /* ST,OP,AAAAA,RRRRR,TA = 0101xxxxxxxxxx10'b = 0x5002 for write */
1477 cmd
= (0x5002 << 16) | (phy_addr
<< 23) | (reg_num
<< 18) | data
;
1478 mii_send_bits (dev
, cmd
, 32);
1484 mii_wait_link (struct net_device
*dev
, int wait
)
1488 struct netdev_private
*np
;
1490 np
= netdev_priv(dev
);
1491 phy_addr
= np
->phy_addr
;
1494 bmsr
= mii_read (dev
, phy_addr
, MII_BMSR
);
1495 if (bmsr
& BMSR_LSTATUS
)
1498 } while (--wait
> 0);
1502 mii_get_media (struct net_device
*dev
)
1509 struct netdev_private
*np
;
1511 np
= netdev_priv(dev
);
1512 phy_addr
= np
->phy_addr
;
1514 bmsr
= mii_read (dev
, phy_addr
, MII_BMSR
);
1515 if (np
->an_enable
) {
1516 if (!(bmsr
& BMSR_ANEGCOMPLETE
)) {
1517 /* Auto-Negotiation not completed */
1520 negotiate
= mii_read (dev
, phy_addr
, MII_ADVERTISE
) &
1521 mii_read (dev
, phy_addr
, MII_LPA
);
1522 mscr
= mii_read (dev
, phy_addr
, MII_CTRL1000
);
1523 mssr
= mii_read (dev
, phy_addr
, MII_STAT1000
);
1524 if (mscr
& ADVERTISE_1000FULL
&& mssr
& LPA_1000FULL
) {
1526 np
->full_duplex
= 1;
1527 printk (KERN_INFO
"Auto 1000 Mbps, Full duplex\n");
1528 } else if (mscr
& ADVERTISE_1000HALF
&& mssr
& LPA_1000HALF
) {
1530 np
->full_duplex
= 0;
1531 printk (KERN_INFO
"Auto 1000 Mbps, Half duplex\n");
1532 } else if (negotiate
& ADVERTISE_100FULL
) {
1534 np
->full_duplex
= 1;
1535 printk (KERN_INFO
"Auto 100 Mbps, Full duplex\n");
1536 } else if (negotiate
& ADVERTISE_100HALF
) {
1538 np
->full_duplex
= 0;
1539 printk (KERN_INFO
"Auto 100 Mbps, Half duplex\n");
1540 } else if (negotiate
& ADVERTISE_10FULL
) {
1542 np
->full_duplex
= 1;
1543 printk (KERN_INFO
"Auto 10 Mbps, Full duplex\n");
1544 } else if (negotiate
& ADVERTISE_10HALF
) {
1546 np
->full_duplex
= 0;
1547 printk (KERN_INFO
"Auto 10 Mbps, Half duplex\n");
1549 if (negotiate
& ADVERTISE_PAUSE_CAP
) {
1552 } else if (negotiate
& ADVERTISE_PAUSE_ASYM
) {
1556 /* else tx_flow, rx_flow = user select */
1558 __u16 bmcr
= mii_read (dev
, phy_addr
, MII_BMCR
);
1559 switch (bmcr
& (BMCR_SPEED100
| BMCR_SPEED1000
)) {
1560 case BMCR_SPEED1000
:
1561 printk (KERN_INFO
"Operating at 1000 Mbps, ");
1564 printk (KERN_INFO
"Operating at 100 Mbps, ");
1567 printk (KERN_INFO
"Operating at 10 Mbps, ");
1569 if (bmcr
& BMCR_FULLDPLX
) {
1570 printk (KERN_CONT
"Full duplex\n");
1572 printk (KERN_CONT
"Half duplex\n");
1576 printk(KERN_INFO
"Enable Tx Flow Control\n");
1578 printk(KERN_INFO
"Disable Tx Flow Control\n");
1580 printk(KERN_INFO
"Enable Rx Flow Control\n");
1582 printk(KERN_INFO
"Disable Rx Flow Control\n");
1588 mii_set_media (struct net_device
*dev
)
1595 struct netdev_private
*np
;
1596 np
= netdev_priv(dev
);
1597 phy_addr
= np
->phy_addr
;
1599 /* Does user set speed? */
1600 if (np
->an_enable
) {
1601 /* Advertise capabilities */
1602 bmsr
= mii_read (dev
, phy_addr
, MII_BMSR
);
1603 anar
= mii_read (dev
, phy_addr
, MII_ADVERTISE
) &
1604 ~(ADVERTISE_100FULL
| ADVERTISE_10FULL
|
1605 ADVERTISE_100HALF
| ADVERTISE_10HALF
|
1606 ADVERTISE_100BASE4
);
1607 if (bmsr
& BMSR_100FULL
)
1608 anar
|= ADVERTISE_100FULL
;
1609 if (bmsr
& BMSR_100HALF
)
1610 anar
|= ADVERTISE_100HALF
;
1611 if (bmsr
& BMSR_100BASE4
)
1612 anar
|= ADVERTISE_100BASE4
;
1613 if (bmsr
& BMSR_10FULL
)
1614 anar
|= ADVERTISE_10FULL
;
1615 if (bmsr
& BMSR_10HALF
)
1616 anar
|= ADVERTISE_10HALF
;
1617 anar
|= ADVERTISE_PAUSE_CAP
| ADVERTISE_PAUSE_ASYM
;
1618 mii_write (dev
, phy_addr
, MII_ADVERTISE
, anar
);
1620 /* Enable Auto crossover */
1621 pscr
= mii_read (dev
, phy_addr
, MII_PHY_SCR
);
1622 pscr
|= 3 << 5; /* 11'b */
1623 mii_write (dev
, phy_addr
, MII_PHY_SCR
, pscr
);
1625 /* Soft reset PHY */
1626 mii_write (dev
, phy_addr
, MII_BMCR
, BMCR_RESET
);
1627 bmcr
= BMCR_ANENABLE
| BMCR_ANRESTART
| BMCR_RESET
;
1628 mii_write (dev
, phy_addr
, MII_BMCR
, bmcr
);
1631 /* Force speed setting */
1632 /* 1) Disable Auto crossover */
1633 pscr
= mii_read (dev
, phy_addr
, MII_PHY_SCR
);
1635 mii_write (dev
, phy_addr
, MII_PHY_SCR
, pscr
);
1638 bmcr
= mii_read (dev
, phy_addr
, MII_BMCR
);
1640 mii_write (dev
, phy_addr
, MII_BMCR
, bmcr
);
1643 bmcr
= 0x1940; /* must be 0x1940 */
1644 mii_write (dev
, phy_addr
, MII_BMCR
, bmcr
);
1645 mdelay (100); /* wait a certain time */
1647 /* 4) Advertise nothing */
1648 mii_write (dev
, phy_addr
, MII_ADVERTISE
, 0);
1650 /* 5) Set media and Power Up */
1652 if (np
->speed
== 100) {
1653 bmcr
|= BMCR_SPEED100
;
1654 printk (KERN_INFO
"Manual 100 Mbps, ");
1655 } else if (np
->speed
== 10) {
1656 printk (KERN_INFO
"Manual 10 Mbps, ");
1658 if (np
->full_duplex
) {
1659 bmcr
|= BMCR_FULLDPLX
;
1660 printk (KERN_CONT
"Full duplex\n");
1662 printk (KERN_CONT
"Half duplex\n");
1665 /* Set 1000BaseT Master/Slave setting */
1666 mscr
= mii_read (dev
, phy_addr
, MII_CTRL1000
);
1667 mscr
|= MII_MSCR_CFG_ENABLE
;
1668 mscr
&= ~MII_MSCR_CFG_VALUE
= 0;
1670 mii_write (dev
, phy_addr
, MII_BMCR
, bmcr
);
1677 mii_get_media_pcs (struct net_device
*dev
)
1682 struct netdev_private
*np
;
1684 np
= netdev_priv(dev
);
1685 phy_addr
= np
->phy_addr
;
1687 bmsr
= mii_read (dev
, phy_addr
, PCS_BMSR
);
1688 if (np
->an_enable
) {
1689 if (!(bmsr
& BMSR_ANEGCOMPLETE
)) {
1690 /* Auto-Negotiation not completed */
1693 negotiate
= mii_read (dev
, phy_addr
, PCS_ANAR
) &
1694 mii_read (dev
, phy_addr
, PCS_ANLPAR
);
1696 if (negotiate
& PCS_ANAR_FULL_DUPLEX
) {
1697 printk (KERN_INFO
"Auto 1000 Mbps, Full duplex\n");
1698 np
->full_duplex
= 1;
1700 printk (KERN_INFO
"Auto 1000 Mbps, half duplex\n");
1701 np
->full_duplex
= 0;
1703 if (negotiate
& PCS_ANAR_PAUSE
) {
1706 } else if (negotiate
& PCS_ANAR_ASYMMETRIC
) {
1710 /* else tx_flow, rx_flow = user select */
1712 __u16 bmcr
= mii_read (dev
, phy_addr
, PCS_BMCR
);
1713 printk (KERN_INFO
"Operating at 1000 Mbps, ");
1714 if (bmcr
& BMCR_FULLDPLX
) {
1715 printk (KERN_CONT
"Full duplex\n");
1717 printk (KERN_CONT
"Half duplex\n");
1721 printk(KERN_INFO
"Enable Tx Flow Control\n");
1723 printk(KERN_INFO
"Disable Tx Flow Control\n");
1725 printk(KERN_INFO
"Enable Rx Flow Control\n");
1727 printk(KERN_INFO
"Disable Rx Flow Control\n");
1733 mii_set_media_pcs (struct net_device
*dev
)
1739 struct netdev_private
*np
;
1740 np
= netdev_priv(dev
);
1741 phy_addr
= np
->phy_addr
;
1743 /* Auto-Negotiation? */
1744 if (np
->an_enable
) {
1745 /* Advertise capabilities */
1746 esr
= mii_read (dev
, phy_addr
, PCS_ESR
);
1747 anar
= mii_read (dev
, phy_addr
, MII_ADVERTISE
) &
1748 ~PCS_ANAR_HALF_DUPLEX
&
1749 ~PCS_ANAR_FULL_DUPLEX
;
1750 if (esr
& (MII_ESR_1000BT_HD
| MII_ESR_1000BX_HD
))
1751 anar
|= PCS_ANAR_HALF_DUPLEX
;
1752 if (esr
& (MII_ESR_1000BT_FD
| MII_ESR_1000BX_FD
))
1753 anar
|= PCS_ANAR_FULL_DUPLEX
;
1754 anar
|= PCS_ANAR_PAUSE
| PCS_ANAR_ASYMMETRIC
;
1755 mii_write (dev
, phy_addr
, MII_ADVERTISE
, anar
);
1757 /* Soft reset PHY */
1758 mii_write (dev
, phy_addr
, MII_BMCR
, BMCR_RESET
);
1759 bmcr
= BMCR_ANENABLE
| BMCR_ANRESTART
| BMCR_RESET
;
1760 mii_write (dev
, phy_addr
, MII_BMCR
, bmcr
);
1763 /* Force speed setting */
1766 mii_write (dev
, phy_addr
, MII_BMCR
, bmcr
);
1768 if (np
->full_duplex
) {
1769 bmcr
= BMCR_FULLDPLX
;
1770 printk (KERN_INFO
"Manual full duplex\n");
1773 printk (KERN_INFO
"Manual half duplex\n");
1775 mii_write (dev
, phy_addr
, MII_BMCR
, bmcr
);
1778 /* Advertise nothing */
1779 mii_write (dev
, phy_addr
, MII_ADVERTISE
, 0);
1786 rio_close (struct net_device
*dev
)
1788 struct netdev_private
*np
= netdev_priv(dev
);
1789 struct pci_dev
*pdev
= np
->pdev
;
1791 netif_stop_queue (dev
);
1795 free_irq(pdev
->irq
, dev
);
1796 del_timer_sync (&np
->timer
);
1804 rio_remove1 (struct pci_dev
*pdev
)
1806 struct net_device
*dev
= pci_get_drvdata (pdev
);
1809 struct netdev_private
*np
= netdev_priv(dev
);
1811 unregister_netdev (dev
);
1812 pci_free_consistent (pdev
, RX_TOTAL_SIZE
, np
->rx_ring
,
1814 pci_free_consistent (pdev
, TX_TOTAL_SIZE
, np
->tx_ring
,
1817 pci_iounmap(pdev
, np
->ioaddr
);
1819 pci_iounmap(pdev
, np
->eeprom_addr
);
1821 pci_release_regions (pdev
);
1822 pci_disable_device (pdev
);
1826 #ifdef CONFIG_PM_SLEEP
1827 static int rio_suspend(struct device
*device
)
1829 struct net_device
*dev
= dev_get_drvdata(device
);
1830 struct netdev_private
*np
= netdev_priv(dev
);
1832 if (!netif_running(dev
))
1835 netif_device_detach(dev
);
1836 del_timer_sync(&np
->timer
);
1842 static int rio_resume(struct device
*device
)
1844 struct net_device
*dev
= dev_get_drvdata(device
);
1845 struct netdev_private
*np
= netdev_priv(dev
);
1847 if (!netif_running(dev
))
1852 np
->timer
.expires
= jiffies
+ 1 * HZ
;
1853 add_timer(&np
->timer
);
1854 netif_device_attach(dev
);
1855 dl2k_enable_int(np
);
1860 static SIMPLE_DEV_PM_OPS(rio_pm_ops
, rio_suspend
, rio_resume
);
1861 #define RIO_PM_OPS (&rio_pm_ops)
1865 #define RIO_PM_OPS NULL
1867 #endif /* CONFIG_PM_SLEEP */
1869 static struct pci_driver rio_driver
= {
1871 .id_table
= rio_pci_tbl
,
1872 .probe
= rio_probe1
,
1873 .remove
= rio_remove1
,
1874 .driver
.pm
= RIO_PM_OPS
,
1877 module_pci_driver(rio_driver
);
1882 gcc -D__KERNEL__ -DMODULE -I/usr/src/linux/include -Wall -Wstrict-prototypes -O2 -c dl2k.c
1884 Read Documentation/networking/dl2k.txt for details.