1 /*******************************************************************************
3 Intel 10 Gigabit PCI Express Linux driver
4 Copyright(c) 1999 - 2016 Intel Corporation.
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
23 Linux NICS <linux.nics@intel.com>
24 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
27 *******************************************************************************/
29 #include <linux/pci.h>
30 #include <linux/delay.h>
31 #include <linux/sched.h>
32 #include <linux/netdevice.h>
35 #include "ixgbe_common.h"
36 #include "ixgbe_phy.h"
38 static s32
ixgbe_acquire_eeprom(struct ixgbe_hw
*hw
);
39 static s32
ixgbe_get_eeprom_semaphore(struct ixgbe_hw
*hw
);
40 static void ixgbe_release_eeprom_semaphore(struct ixgbe_hw
*hw
);
41 static s32
ixgbe_ready_eeprom(struct ixgbe_hw
*hw
);
42 static void ixgbe_standby_eeprom(struct ixgbe_hw
*hw
);
43 static void ixgbe_shift_out_eeprom_bits(struct ixgbe_hw
*hw
, u16 data
,
45 static u16
ixgbe_shift_in_eeprom_bits(struct ixgbe_hw
*hw
, u16 count
);
46 static void ixgbe_raise_eeprom_clk(struct ixgbe_hw
*hw
, u32
*eec
);
47 static void ixgbe_lower_eeprom_clk(struct ixgbe_hw
*hw
, u32
*eec
);
48 static void ixgbe_release_eeprom(struct ixgbe_hw
*hw
);
50 static s32
ixgbe_mta_vector(struct ixgbe_hw
*hw
, u8
*mc_addr
);
51 static s32
ixgbe_poll_eerd_eewr_done(struct ixgbe_hw
*hw
, u32 ee_reg
);
52 static s32
ixgbe_read_eeprom_buffer_bit_bang(struct ixgbe_hw
*hw
, u16 offset
,
53 u16 words
, u16
*data
);
54 static s32
ixgbe_write_eeprom_buffer_bit_bang(struct ixgbe_hw
*hw
, u16 offset
,
55 u16 words
, u16
*data
);
56 static s32
ixgbe_detect_eeprom_page_size_generic(struct ixgbe_hw
*hw
,
58 static s32
ixgbe_disable_pcie_master(struct ixgbe_hw
*hw
);
60 /* Base table for registers values that change by MAC */
61 const u32 ixgbe_mvals_8259X
[IXGBE_MVALS_IDX_LIMIT
] = {
62 IXGBE_MVALS_INIT(8259X
)
66 * ixgbe_device_supports_autoneg_fc - Check if phy supports autoneg flow
68 * @hw: pointer to hardware structure
70 * There are several phys that do not support autoneg flow control. This
71 * function check the device id to see if the associated phy supports
72 * autoneg flow control.
74 bool ixgbe_device_supports_autoneg_fc(struct ixgbe_hw
*hw
)
76 bool supported
= false;
77 ixgbe_link_speed speed
;
80 switch (hw
->phy
.media_type
) {
81 case ixgbe_media_type_fiber
:
82 /* flow control autoneg black list */
83 switch (hw
->device_id
) {
84 case IXGBE_DEV_ID_X550EM_A_SFP
:
85 case IXGBE_DEV_ID_X550EM_A_SFP_N
:
89 hw
->mac
.ops
.check_link(hw
, &speed
, &link_up
, false);
90 /* if link is down, assume supported */
92 supported
= speed
== IXGBE_LINK_SPEED_1GB_FULL
?
99 case ixgbe_media_type_backplane
:
100 if (hw
->device_id
== IXGBE_DEV_ID_X550EM_X_XFI
)
105 case ixgbe_media_type_copper
:
106 /* only some copper devices support flow control autoneg */
107 switch (hw
->device_id
) {
108 case IXGBE_DEV_ID_82599_T3_LOM
:
109 case IXGBE_DEV_ID_X540T
:
110 case IXGBE_DEV_ID_X540T1
:
111 case IXGBE_DEV_ID_X550T
:
112 case IXGBE_DEV_ID_X550T1
:
113 case IXGBE_DEV_ID_X550EM_X_10G_T
:
114 case IXGBE_DEV_ID_X550EM_A_10G_T
:
115 case IXGBE_DEV_ID_X550EM_A_1G_T
:
116 case IXGBE_DEV_ID_X550EM_A_1G_T_L
:
127 hw_dbg(hw
, "Device %x does not support flow control autoneg\n",
134 * ixgbe_setup_fc_generic - Set up flow control
135 * @hw: pointer to hardware structure
137 * Called at init time to set up flow control.
139 s32
ixgbe_setup_fc_generic(struct ixgbe_hw
*hw
)
142 u32 reg
= 0, reg_bp
= 0;
147 * Validate the requested mode. Strict IEEE mode does not allow
148 * ixgbe_fc_rx_pause because it will cause us to fail at UNH.
150 if (hw
->fc
.strict_ieee
&& hw
->fc
.requested_mode
== ixgbe_fc_rx_pause
) {
151 hw_dbg(hw
, "ixgbe_fc_rx_pause not valid in strict IEEE mode\n");
152 return IXGBE_ERR_INVALID_LINK_SETTINGS
;
156 * 10gig parts do not have a word in the EEPROM to determine the
157 * default flow control setting, so we explicitly set it to full.
159 if (hw
->fc
.requested_mode
== ixgbe_fc_default
)
160 hw
->fc
.requested_mode
= ixgbe_fc_full
;
163 * Set up the 1G and 10G flow control advertisement registers so the
164 * HW will be able to do fc autoneg once the cable is plugged in. If
165 * we link at 10G, the 1G advertisement is harmless and vice versa.
167 switch (hw
->phy
.media_type
) {
168 case ixgbe_media_type_backplane
:
169 /* some MAC's need RMW protection on AUTOC */
170 ret_val
= hw
->mac
.ops
.prot_autoc_read(hw
, &locked
, ®_bp
);
174 /* fall through - only backplane uses autoc */
175 case ixgbe_media_type_fiber
:
176 reg
= IXGBE_READ_REG(hw
, IXGBE_PCS1GANA
);
179 case ixgbe_media_type_copper
:
180 hw
->phy
.ops
.read_reg(hw
, MDIO_AN_ADVERTISE
,
181 MDIO_MMD_AN
, ®_cu
);
188 * The possible values of fc.requested_mode are:
189 * 0: Flow control is completely disabled
190 * 1: Rx flow control is enabled (we can receive pause frames,
191 * but not send pause frames).
192 * 2: Tx flow control is enabled (we can send pause frames but
193 * we do not support receiving pause frames).
194 * 3: Both Rx and Tx flow control (symmetric) are enabled.
197 switch (hw
->fc
.requested_mode
) {
199 /* Flow control completely disabled by software override. */
200 reg
&= ~(IXGBE_PCS1GANA_SYM_PAUSE
| IXGBE_PCS1GANA_ASM_PAUSE
);
201 if (hw
->phy
.media_type
== ixgbe_media_type_backplane
)
202 reg_bp
&= ~(IXGBE_AUTOC_SYM_PAUSE
|
203 IXGBE_AUTOC_ASM_PAUSE
);
204 else if (hw
->phy
.media_type
== ixgbe_media_type_copper
)
205 reg_cu
&= ~(IXGBE_TAF_SYM_PAUSE
| IXGBE_TAF_ASM_PAUSE
);
207 case ixgbe_fc_tx_pause
:
209 * Tx Flow control is enabled, and Rx Flow control is
210 * disabled by software override.
212 reg
|= IXGBE_PCS1GANA_ASM_PAUSE
;
213 reg
&= ~IXGBE_PCS1GANA_SYM_PAUSE
;
214 if (hw
->phy
.media_type
== ixgbe_media_type_backplane
) {
215 reg_bp
|= IXGBE_AUTOC_ASM_PAUSE
;
216 reg_bp
&= ~IXGBE_AUTOC_SYM_PAUSE
;
217 } else if (hw
->phy
.media_type
== ixgbe_media_type_copper
) {
218 reg_cu
|= IXGBE_TAF_ASM_PAUSE
;
219 reg_cu
&= ~IXGBE_TAF_SYM_PAUSE
;
222 case ixgbe_fc_rx_pause
:
224 * Rx Flow control is enabled and Tx Flow control is
225 * disabled by software override. Since there really
226 * isn't a way to advertise that we are capable of RX
227 * Pause ONLY, we will advertise that we support both
228 * symmetric and asymmetric Rx PAUSE, as such we fall
229 * through to the fc_full statement. Later, we will
230 * disable the adapter's ability to send PAUSE frames.
233 /* Flow control (both Rx and Tx) is enabled by SW override. */
234 reg
|= IXGBE_PCS1GANA_SYM_PAUSE
| IXGBE_PCS1GANA_ASM_PAUSE
;
235 if (hw
->phy
.media_type
== ixgbe_media_type_backplane
)
236 reg_bp
|= IXGBE_AUTOC_SYM_PAUSE
|
237 IXGBE_AUTOC_ASM_PAUSE
;
238 else if (hw
->phy
.media_type
== ixgbe_media_type_copper
)
239 reg_cu
|= IXGBE_TAF_SYM_PAUSE
| IXGBE_TAF_ASM_PAUSE
;
242 hw_dbg(hw
, "Flow control param set incorrectly\n");
243 return IXGBE_ERR_CONFIG
;
246 if (hw
->mac
.type
!= ixgbe_mac_X540
) {
248 * Enable auto-negotiation between the MAC & PHY;
249 * the MAC will advertise clause 37 flow control.
251 IXGBE_WRITE_REG(hw
, IXGBE_PCS1GANA
, reg
);
252 reg
= IXGBE_READ_REG(hw
, IXGBE_PCS1GLCTL
);
254 /* Disable AN timeout */
255 if (hw
->fc
.strict_ieee
)
256 reg
&= ~IXGBE_PCS1GLCTL_AN_1G_TIMEOUT_EN
;
258 IXGBE_WRITE_REG(hw
, IXGBE_PCS1GLCTL
, reg
);
259 hw_dbg(hw
, "Set up FC; PCS1GLCTL = 0x%08X\n", reg
);
263 * AUTOC restart handles negotiation of 1G and 10G on backplane
264 * and copper. There is no need to set the PCS1GCTL register.
267 if (hw
->phy
.media_type
== ixgbe_media_type_backplane
) {
268 /* Need the SW/FW semaphore around AUTOC writes if 82599 and
269 * LESM is on, likewise reset_pipeline requries the lock as
270 * it also writes AUTOC.
272 ret_val
= hw
->mac
.ops
.prot_autoc_write(hw
, reg_bp
, locked
);
276 } else if ((hw
->phy
.media_type
== ixgbe_media_type_copper
) &&
277 ixgbe_device_supports_autoneg_fc(hw
)) {
278 hw
->phy
.ops
.write_reg(hw
, MDIO_AN_ADVERTISE
,
279 MDIO_MMD_AN
, reg_cu
);
282 hw_dbg(hw
, "Set up FC; IXGBE_AUTOC = 0x%08X\n", reg
);
287 * ixgbe_start_hw_generic - Prepare hardware for Tx/Rx
288 * @hw: pointer to hardware structure
290 * Starts the hardware by filling the bus info structure and media type, clears
291 * all on chip counters, initializes receive address registers, multicast
292 * table, VLAN filter table, calls routine to set up link and flow control
293 * settings, and leaves transmit and receive units disabled and uninitialized
295 s32
ixgbe_start_hw_generic(struct ixgbe_hw
*hw
)
301 /* Set the media type */
302 hw
->phy
.media_type
= hw
->mac
.ops
.get_media_type(hw
);
304 /* Identify the PHY */
305 hw
->phy
.ops
.identify(hw
);
307 /* Clear the VLAN filter table */
308 hw
->mac
.ops
.clear_vfta(hw
);
310 /* Clear statistics registers */
311 hw
->mac
.ops
.clear_hw_cntrs(hw
);
313 /* Set No Snoop Disable */
314 ctrl_ext
= IXGBE_READ_REG(hw
, IXGBE_CTRL_EXT
);
315 ctrl_ext
|= IXGBE_CTRL_EXT_NS_DIS
;
316 IXGBE_WRITE_REG(hw
, IXGBE_CTRL_EXT
, ctrl_ext
);
317 IXGBE_WRITE_FLUSH(hw
);
319 /* Setup flow control if method for doing so */
320 if (hw
->mac
.ops
.setup_fc
) {
321 ret_val
= hw
->mac
.ops
.setup_fc(hw
);
326 /* Cashe bit indicating need for crosstalk fix */
327 switch (hw
->mac
.type
) {
328 case ixgbe_mac_82599EB
:
329 case ixgbe_mac_X550EM_x
:
330 case ixgbe_mac_x550em_a
:
331 hw
->mac
.ops
.get_device_caps(hw
, &device_caps
);
332 if (device_caps
& IXGBE_DEVICE_CAPS_NO_CROSSTALK_WR
)
333 hw
->need_crosstalk_fix
= false;
335 hw
->need_crosstalk_fix
= true;
338 hw
->need_crosstalk_fix
= false;
342 /* Clear adapter stopped flag */
343 hw
->adapter_stopped
= false;
349 * ixgbe_start_hw_gen2 - Init sequence for common device family
350 * @hw: pointer to hw structure
352 * Performs the init sequence common to the second generation
354 * Devices in the second generation:
358 s32
ixgbe_start_hw_gen2(struct ixgbe_hw
*hw
)
362 /* Clear the rate limiters */
363 for (i
= 0; i
< hw
->mac
.max_tx_queues
; i
++) {
364 IXGBE_WRITE_REG(hw
, IXGBE_RTTDQSEL
, i
);
365 IXGBE_WRITE_REG(hw
, IXGBE_RTTBCNRC
, 0);
367 IXGBE_WRITE_FLUSH(hw
);
373 * ixgbe_init_hw_generic - Generic hardware initialization
374 * @hw: pointer to hardware structure
376 * Initialize the hardware by resetting the hardware, filling the bus info
377 * structure and media type, clears all on chip counters, initializes receive
378 * address registers, multicast table, VLAN filter table, calls routine to set
379 * up link and flow control settings, and leaves transmit and receive units
380 * disabled and uninitialized
382 s32
ixgbe_init_hw_generic(struct ixgbe_hw
*hw
)
386 /* Reset the hardware */
387 status
= hw
->mac
.ops
.reset_hw(hw
);
391 status
= hw
->mac
.ops
.start_hw(hw
);
394 /* Initialize the LED link active for LED blink support */
395 if (hw
->mac
.ops
.init_led_link_act
)
396 hw
->mac
.ops
.init_led_link_act(hw
);
402 * ixgbe_clear_hw_cntrs_generic - Generic clear hardware counters
403 * @hw: pointer to hardware structure
405 * Clears all hardware statistics counters by reading them from the hardware
406 * Statistics counters are clear on read.
408 s32
ixgbe_clear_hw_cntrs_generic(struct ixgbe_hw
*hw
)
412 IXGBE_READ_REG(hw
, IXGBE_CRCERRS
);
413 IXGBE_READ_REG(hw
, IXGBE_ILLERRC
);
414 IXGBE_READ_REG(hw
, IXGBE_ERRBC
);
415 IXGBE_READ_REG(hw
, IXGBE_MSPDC
);
416 for (i
= 0; i
< 8; i
++)
417 IXGBE_READ_REG(hw
, IXGBE_MPC(i
));
419 IXGBE_READ_REG(hw
, IXGBE_MLFC
);
420 IXGBE_READ_REG(hw
, IXGBE_MRFC
);
421 IXGBE_READ_REG(hw
, IXGBE_RLEC
);
422 IXGBE_READ_REG(hw
, IXGBE_LXONTXC
);
423 IXGBE_READ_REG(hw
, IXGBE_LXOFFTXC
);
424 if (hw
->mac
.type
>= ixgbe_mac_82599EB
) {
425 IXGBE_READ_REG(hw
, IXGBE_LXONRXCNT
);
426 IXGBE_READ_REG(hw
, IXGBE_LXOFFRXCNT
);
428 IXGBE_READ_REG(hw
, IXGBE_LXONRXC
);
429 IXGBE_READ_REG(hw
, IXGBE_LXOFFRXC
);
432 for (i
= 0; i
< 8; i
++) {
433 IXGBE_READ_REG(hw
, IXGBE_PXONTXC(i
));
434 IXGBE_READ_REG(hw
, IXGBE_PXOFFTXC(i
));
435 if (hw
->mac
.type
>= ixgbe_mac_82599EB
) {
436 IXGBE_READ_REG(hw
, IXGBE_PXONRXCNT(i
));
437 IXGBE_READ_REG(hw
, IXGBE_PXOFFRXCNT(i
));
439 IXGBE_READ_REG(hw
, IXGBE_PXONRXC(i
));
440 IXGBE_READ_REG(hw
, IXGBE_PXOFFRXC(i
));
443 if (hw
->mac
.type
>= ixgbe_mac_82599EB
)
444 for (i
= 0; i
< 8; i
++)
445 IXGBE_READ_REG(hw
, IXGBE_PXON2OFFCNT(i
));
446 IXGBE_READ_REG(hw
, IXGBE_PRC64
);
447 IXGBE_READ_REG(hw
, IXGBE_PRC127
);
448 IXGBE_READ_REG(hw
, IXGBE_PRC255
);
449 IXGBE_READ_REG(hw
, IXGBE_PRC511
);
450 IXGBE_READ_REG(hw
, IXGBE_PRC1023
);
451 IXGBE_READ_REG(hw
, IXGBE_PRC1522
);
452 IXGBE_READ_REG(hw
, IXGBE_GPRC
);
453 IXGBE_READ_REG(hw
, IXGBE_BPRC
);
454 IXGBE_READ_REG(hw
, IXGBE_MPRC
);
455 IXGBE_READ_REG(hw
, IXGBE_GPTC
);
456 IXGBE_READ_REG(hw
, IXGBE_GORCL
);
457 IXGBE_READ_REG(hw
, IXGBE_GORCH
);
458 IXGBE_READ_REG(hw
, IXGBE_GOTCL
);
459 IXGBE_READ_REG(hw
, IXGBE_GOTCH
);
460 if (hw
->mac
.type
== ixgbe_mac_82598EB
)
461 for (i
= 0; i
< 8; i
++)
462 IXGBE_READ_REG(hw
, IXGBE_RNBC(i
));
463 IXGBE_READ_REG(hw
, IXGBE_RUC
);
464 IXGBE_READ_REG(hw
, IXGBE_RFC
);
465 IXGBE_READ_REG(hw
, IXGBE_ROC
);
466 IXGBE_READ_REG(hw
, IXGBE_RJC
);
467 IXGBE_READ_REG(hw
, IXGBE_MNGPRC
);
468 IXGBE_READ_REG(hw
, IXGBE_MNGPDC
);
469 IXGBE_READ_REG(hw
, IXGBE_MNGPTC
);
470 IXGBE_READ_REG(hw
, IXGBE_TORL
);
471 IXGBE_READ_REG(hw
, IXGBE_TORH
);
472 IXGBE_READ_REG(hw
, IXGBE_TPR
);
473 IXGBE_READ_REG(hw
, IXGBE_TPT
);
474 IXGBE_READ_REG(hw
, IXGBE_PTC64
);
475 IXGBE_READ_REG(hw
, IXGBE_PTC127
);
476 IXGBE_READ_REG(hw
, IXGBE_PTC255
);
477 IXGBE_READ_REG(hw
, IXGBE_PTC511
);
478 IXGBE_READ_REG(hw
, IXGBE_PTC1023
);
479 IXGBE_READ_REG(hw
, IXGBE_PTC1522
);
480 IXGBE_READ_REG(hw
, IXGBE_MPTC
);
481 IXGBE_READ_REG(hw
, IXGBE_BPTC
);
482 for (i
= 0; i
< 16; i
++) {
483 IXGBE_READ_REG(hw
, IXGBE_QPRC(i
));
484 IXGBE_READ_REG(hw
, IXGBE_QPTC(i
));
485 if (hw
->mac
.type
>= ixgbe_mac_82599EB
) {
486 IXGBE_READ_REG(hw
, IXGBE_QBRC_L(i
));
487 IXGBE_READ_REG(hw
, IXGBE_QBRC_H(i
));
488 IXGBE_READ_REG(hw
, IXGBE_QBTC_L(i
));
489 IXGBE_READ_REG(hw
, IXGBE_QBTC_H(i
));
490 IXGBE_READ_REG(hw
, IXGBE_QPRDC(i
));
492 IXGBE_READ_REG(hw
, IXGBE_QBRC(i
));
493 IXGBE_READ_REG(hw
, IXGBE_QBTC(i
));
497 if (hw
->mac
.type
== ixgbe_mac_X550
|| hw
->mac
.type
== ixgbe_mac_X540
) {
499 hw
->phy
.ops
.identify(hw
);
500 hw
->phy
.ops
.read_reg(hw
, IXGBE_PCRC8ECL
, MDIO_MMD_PCS
, &i
);
501 hw
->phy
.ops
.read_reg(hw
, IXGBE_PCRC8ECH
, MDIO_MMD_PCS
, &i
);
502 hw
->phy
.ops
.read_reg(hw
, IXGBE_LDPCECL
, MDIO_MMD_PCS
, &i
);
503 hw
->phy
.ops
.read_reg(hw
, IXGBE_LDPCECH
, MDIO_MMD_PCS
, &i
);
510 * ixgbe_read_pba_string_generic - Reads part number string from EEPROM
511 * @hw: pointer to hardware structure
512 * @pba_num: stores the part number string from the EEPROM
513 * @pba_num_size: part number string buffer length
515 * Reads the part number string from the EEPROM.
517 s32
ixgbe_read_pba_string_generic(struct ixgbe_hw
*hw
, u8
*pba_num
,
526 if (pba_num
== NULL
) {
527 hw_dbg(hw
, "PBA string buffer was null\n");
528 return IXGBE_ERR_INVALID_ARGUMENT
;
531 ret_val
= hw
->eeprom
.ops
.read(hw
, IXGBE_PBANUM0_PTR
, &data
);
533 hw_dbg(hw
, "NVM Read Error\n");
537 ret_val
= hw
->eeprom
.ops
.read(hw
, IXGBE_PBANUM1_PTR
, &pba_ptr
);
539 hw_dbg(hw
, "NVM Read Error\n");
544 * if data is not ptr guard the PBA must be in legacy format which
545 * means pba_ptr is actually our second data word for the PBA number
546 * and we can decode it into an ascii string
548 if (data
!= IXGBE_PBANUM_PTR_GUARD
) {
549 hw_dbg(hw
, "NVM PBA number is not stored as string\n");
551 /* we will need 11 characters to store the PBA */
552 if (pba_num_size
< 11) {
553 hw_dbg(hw
, "PBA string buffer too small\n");
554 return IXGBE_ERR_NO_SPACE
;
557 /* extract hex string from data and pba_ptr */
558 pba_num
[0] = (data
>> 12) & 0xF;
559 pba_num
[1] = (data
>> 8) & 0xF;
560 pba_num
[2] = (data
>> 4) & 0xF;
561 pba_num
[3] = data
& 0xF;
562 pba_num
[4] = (pba_ptr
>> 12) & 0xF;
563 pba_num
[5] = (pba_ptr
>> 8) & 0xF;
566 pba_num
[8] = (pba_ptr
>> 4) & 0xF;
567 pba_num
[9] = pba_ptr
& 0xF;
569 /* put a null character on the end of our string */
572 /* switch all the data but the '-' to hex char */
573 for (offset
= 0; offset
< 10; offset
++) {
574 if (pba_num
[offset
] < 0xA)
575 pba_num
[offset
] += '0';
576 else if (pba_num
[offset
] < 0x10)
577 pba_num
[offset
] += 'A' - 0xA;
583 ret_val
= hw
->eeprom
.ops
.read(hw
, pba_ptr
, &length
);
585 hw_dbg(hw
, "NVM Read Error\n");
589 if (length
== 0xFFFF || length
== 0) {
590 hw_dbg(hw
, "NVM PBA number section invalid length\n");
591 return IXGBE_ERR_PBA_SECTION
;
594 /* check if pba_num buffer is big enough */
595 if (pba_num_size
< (((u32
)length
* 2) - 1)) {
596 hw_dbg(hw
, "PBA string buffer too small\n");
597 return IXGBE_ERR_NO_SPACE
;
600 /* trim pba length from start of string */
604 for (offset
= 0; offset
< length
; offset
++) {
605 ret_val
= hw
->eeprom
.ops
.read(hw
, pba_ptr
+ offset
, &data
);
607 hw_dbg(hw
, "NVM Read Error\n");
610 pba_num
[offset
* 2] = (u8
)(data
>> 8);
611 pba_num
[(offset
* 2) + 1] = (u8
)(data
& 0xFF);
613 pba_num
[offset
* 2] = '\0';
619 * ixgbe_get_mac_addr_generic - Generic get MAC address
620 * @hw: pointer to hardware structure
621 * @mac_addr: Adapter MAC address
623 * Reads the adapter's MAC address from first Receive Address Register (RAR0)
624 * A reset of the adapter must be performed prior to calling this function
625 * in order for the MAC address to have been loaded from the EEPROM into RAR0
627 s32
ixgbe_get_mac_addr_generic(struct ixgbe_hw
*hw
, u8
*mac_addr
)
633 rar_high
= IXGBE_READ_REG(hw
, IXGBE_RAH(0));
634 rar_low
= IXGBE_READ_REG(hw
, IXGBE_RAL(0));
636 for (i
= 0; i
< 4; i
++)
637 mac_addr
[i
] = (u8
)(rar_low
>> (i
*8));
639 for (i
= 0; i
< 2; i
++)
640 mac_addr
[i
+4] = (u8
)(rar_high
>> (i
*8));
645 enum ixgbe_bus_width
ixgbe_convert_bus_width(u16 link_status
)
647 switch (link_status
& IXGBE_PCI_LINK_WIDTH
) {
648 case IXGBE_PCI_LINK_WIDTH_1
:
649 return ixgbe_bus_width_pcie_x1
;
650 case IXGBE_PCI_LINK_WIDTH_2
:
651 return ixgbe_bus_width_pcie_x2
;
652 case IXGBE_PCI_LINK_WIDTH_4
:
653 return ixgbe_bus_width_pcie_x4
;
654 case IXGBE_PCI_LINK_WIDTH_8
:
655 return ixgbe_bus_width_pcie_x8
;
657 return ixgbe_bus_width_unknown
;
661 enum ixgbe_bus_speed
ixgbe_convert_bus_speed(u16 link_status
)
663 switch (link_status
& IXGBE_PCI_LINK_SPEED
) {
664 case IXGBE_PCI_LINK_SPEED_2500
:
665 return ixgbe_bus_speed_2500
;
666 case IXGBE_PCI_LINK_SPEED_5000
:
667 return ixgbe_bus_speed_5000
;
668 case IXGBE_PCI_LINK_SPEED_8000
:
669 return ixgbe_bus_speed_8000
;
671 return ixgbe_bus_speed_unknown
;
676 * ixgbe_get_bus_info_generic - Generic set PCI bus info
677 * @hw: pointer to hardware structure
679 * Sets the PCI bus info (speed, width, type) within the ixgbe_hw structure
681 s32
ixgbe_get_bus_info_generic(struct ixgbe_hw
*hw
)
685 hw
->bus
.type
= ixgbe_bus_type_pci_express
;
687 /* Get the negotiated link width and speed from PCI config space */
688 link_status
= ixgbe_read_pci_cfg_word(hw
, IXGBE_PCI_LINK_STATUS
);
690 hw
->bus
.width
= ixgbe_convert_bus_width(link_status
);
691 hw
->bus
.speed
= ixgbe_convert_bus_speed(link_status
);
693 hw
->mac
.ops
.set_lan_id(hw
);
699 * ixgbe_set_lan_id_multi_port_pcie - Set LAN id for PCIe multiple port devices
700 * @hw: pointer to the HW structure
702 * Determines the LAN function id by reading memory-mapped registers
703 * and swaps the port value if requested.
705 void ixgbe_set_lan_id_multi_port_pcie(struct ixgbe_hw
*hw
)
707 struct ixgbe_bus_info
*bus
= &hw
->bus
;
711 reg
= IXGBE_READ_REG(hw
, IXGBE_STATUS
);
712 bus
->func
= (reg
& IXGBE_STATUS_LAN_ID
) >> IXGBE_STATUS_LAN_ID_SHIFT
;
713 bus
->lan_id
= bus
->func
;
715 /* check for a port swap */
716 reg
= IXGBE_READ_REG(hw
, IXGBE_FACTPS(hw
));
717 if (reg
& IXGBE_FACTPS_LFS
)
720 /* Get MAC instance from EEPROM for configuring CS4227 */
721 if (hw
->device_id
== IXGBE_DEV_ID_X550EM_A_SFP
) {
722 hw
->eeprom
.ops
.read(hw
, IXGBE_EEPROM_CTRL_4
, &ee_ctrl_4
);
723 bus
->instance_id
= (ee_ctrl_4
& IXGBE_EE_CTRL_4_INST_ID
) >>
724 IXGBE_EE_CTRL_4_INST_ID_SHIFT
;
729 * ixgbe_stop_adapter_generic - Generic stop Tx/Rx units
730 * @hw: pointer to hardware structure
732 * Sets the adapter_stopped flag within ixgbe_hw struct. Clears interrupts,
733 * disables transmit and receive units. The adapter_stopped flag is used by
734 * the shared code and drivers to determine if the adapter is in a stopped
735 * state and should not touch the hardware.
737 s32
ixgbe_stop_adapter_generic(struct ixgbe_hw
*hw
)
743 * Set the adapter_stopped flag so other driver functions stop touching
746 hw
->adapter_stopped
= true;
748 /* Disable the receive unit */
749 hw
->mac
.ops
.disable_rx(hw
);
751 /* Clear interrupt mask to stop interrupts from being generated */
752 IXGBE_WRITE_REG(hw
, IXGBE_EIMC
, IXGBE_IRQ_CLEAR_MASK
);
754 /* Clear any pending interrupts, flush previous writes */
755 IXGBE_READ_REG(hw
, IXGBE_EICR
);
757 /* Disable the transmit unit. Each queue must be disabled. */
758 for (i
= 0; i
< hw
->mac
.max_tx_queues
; i
++)
759 IXGBE_WRITE_REG(hw
, IXGBE_TXDCTL(i
), IXGBE_TXDCTL_SWFLSH
);
761 /* Disable the receive unit by stopping each queue */
762 for (i
= 0; i
< hw
->mac
.max_rx_queues
; i
++) {
763 reg_val
= IXGBE_READ_REG(hw
, IXGBE_RXDCTL(i
));
764 reg_val
&= ~IXGBE_RXDCTL_ENABLE
;
765 reg_val
|= IXGBE_RXDCTL_SWFLSH
;
766 IXGBE_WRITE_REG(hw
, IXGBE_RXDCTL(i
), reg_val
);
769 /* flush all queues disables */
770 IXGBE_WRITE_FLUSH(hw
);
771 usleep_range(1000, 2000);
774 * Prevent the PCI-E bus from from hanging by disabling PCI-E master
775 * access and verify no pending requests
777 return ixgbe_disable_pcie_master(hw
);
781 * ixgbe_init_led_link_act_generic - Store the LED index link/activity.
782 * @hw: pointer to hardware structure
784 * Store the index for the link active LED. This will be used to support
787 s32
ixgbe_init_led_link_act_generic(struct ixgbe_hw
*hw
)
789 struct ixgbe_mac_info
*mac
= &hw
->mac
;
790 u32 led_reg
, led_mode
;
793 led_reg
= IXGBE_READ_REG(hw
, IXGBE_LEDCTL
);
795 /* Get LED link active from the LEDCTL register */
796 for (i
= 0; i
< 4; i
++) {
797 led_mode
= led_reg
>> IXGBE_LED_MODE_SHIFT(i
);
799 if ((led_mode
& IXGBE_LED_MODE_MASK_BASE
) ==
800 IXGBE_LED_LINK_ACTIVE
) {
801 mac
->led_link_act
= i
;
806 /* If LEDCTL register does not have the LED link active set, then use
807 * known MAC defaults.
809 switch (hw
->mac
.type
) {
810 case ixgbe_mac_x550em_a
:
811 mac
->led_link_act
= 0;
813 case ixgbe_mac_X550EM_x
:
814 mac
->led_link_act
= 1;
817 mac
->led_link_act
= 2;
824 * ixgbe_led_on_generic - Turns on the software controllable LEDs.
825 * @hw: pointer to hardware structure
826 * @index: led number to turn on
828 s32
ixgbe_led_on_generic(struct ixgbe_hw
*hw
, u32 index
)
830 u32 led_reg
= IXGBE_READ_REG(hw
, IXGBE_LEDCTL
);
833 return IXGBE_ERR_PARAM
;
835 /* To turn on the LED, set mode to ON. */
836 led_reg
&= ~IXGBE_LED_MODE_MASK(index
);
837 led_reg
|= IXGBE_LED_ON
<< IXGBE_LED_MODE_SHIFT(index
);
838 IXGBE_WRITE_REG(hw
, IXGBE_LEDCTL
, led_reg
);
839 IXGBE_WRITE_FLUSH(hw
);
845 * ixgbe_led_off_generic - Turns off the software controllable LEDs.
846 * @hw: pointer to hardware structure
847 * @index: led number to turn off
849 s32
ixgbe_led_off_generic(struct ixgbe_hw
*hw
, u32 index
)
851 u32 led_reg
= IXGBE_READ_REG(hw
, IXGBE_LEDCTL
);
854 return IXGBE_ERR_PARAM
;
856 /* To turn off the LED, set mode to OFF. */
857 led_reg
&= ~IXGBE_LED_MODE_MASK(index
);
858 led_reg
|= IXGBE_LED_OFF
<< IXGBE_LED_MODE_SHIFT(index
);
859 IXGBE_WRITE_REG(hw
, IXGBE_LEDCTL
, led_reg
);
860 IXGBE_WRITE_FLUSH(hw
);
866 * ixgbe_init_eeprom_params_generic - Initialize EEPROM params
867 * @hw: pointer to hardware structure
869 * Initializes the EEPROM parameters ixgbe_eeprom_info within the
870 * ixgbe_hw struct in order to set up EEPROM access.
872 s32
ixgbe_init_eeprom_params_generic(struct ixgbe_hw
*hw
)
874 struct ixgbe_eeprom_info
*eeprom
= &hw
->eeprom
;
878 if (eeprom
->type
== ixgbe_eeprom_uninitialized
) {
879 eeprom
->type
= ixgbe_eeprom_none
;
880 /* Set default semaphore delay to 10ms which is a well
882 eeprom
->semaphore_delay
= 10;
883 /* Clear EEPROM page size, it will be initialized as needed */
884 eeprom
->word_page_size
= 0;
887 * Check for EEPROM present first.
888 * If not present leave as none
890 eec
= IXGBE_READ_REG(hw
, IXGBE_EEC(hw
));
891 if (eec
& IXGBE_EEC_PRES
) {
892 eeprom
->type
= ixgbe_eeprom_spi
;
895 * SPI EEPROM is assumed here. This code would need to
896 * change if a future EEPROM is not SPI.
898 eeprom_size
= (u16
)((eec
& IXGBE_EEC_SIZE
) >>
899 IXGBE_EEC_SIZE_SHIFT
);
900 eeprom
->word_size
= BIT(eeprom_size
+
901 IXGBE_EEPROM_WORD_SIZE_SHIFT
);
904 if (eec
& IXGBE_EEC_ADDR_SIZE
)
905 eeprom
->address_bits
= 16;
907 eeprom
->address_bits
= 8;
908 hw_dbg(hw
, "Eeprom params: type = %d, size = %d, address bits: %d\n",
909 eeprom
->type
, eeprom
->word_size
, eeprom
->address_bits
);
916 * ixgbe_write_eeprom_buffer_bit_bang_generic - Write EEPROM using bit-bang
917 * @hw: pointer to hardware structure
918 * @offset: offset within the EEPROM to write
919 * @words: number of words
920 * @data: 16 bit word(s) to write to EEPROM
922 * Reads 16 bit word(s) from EEPROM through bit-bang method
924 s32
ixgbe_write_eeprom_buffer_bit_bang_generic(struct ixgbe_hw
*hw
, u16 offset
,
925 u16 words
, u16
*data
)
930 hw
->eeprom
.ops
.init_params(hw
);
933 return IXGBE_ERR_INVALID_ARGUMENT
;
935 if (offset
+ words
> hw
->eeprom
.word_size
)
936 return IXGBE_ERR_EEPROM
;
939 * The EEPROM page size cannot be queried from the chip. We do lazy
940 * initialization. It is worth to do that when we write large buffer.
942 if ((hw
->eeprom
.word_page_size
== 0) &&
943 (words
> IXGBE_EEPROM_PAGE_SIZE_MAX
))
944 ixgbe_detect_eeprom_page_size_generic(hw
, offset
);
947 * We cannot hold synchronization semaphores for too long
948 * to avoid other entity starvation. However it is more efficient
949 * to read in bursts than synchronizing access for each word.
951 for (i
= 0; i
< words
; i
+= IXGBE_EEPROM_RD_BUFFER_MAX_COUNT
) {
952 count
= (words
- i
) / IXGBE_EEPROM_RD_BUFFER_MAX_COUNT
> 0 ?
953 IXGBE_EEPROM_RD_BUFFER_MAX_COUNT
: (words
- i
);
954 status
= ixgbe_write_eeprom_buffer_bit_bang(hw
, offset
+ i
,
965 * ixgbe_write_eeprom_buffer_bit_bang - Writes 16 bit word(s) to EEPROM
966 * @hw: pointer to hardware structure
967 * @offset: offset within the EEPROM to be written to
968 * @words: number of word(s)
969 * @data: 16 bit word(s) to be written to the EEPROM
971 * If ixgbe_eeprom_update_checksum is not called after this function, the
972 * EEPROM will most likely contain an invalid checksum.
974 static s32
ixgbe_write_eeprom_buffer_bit_bang(struct ixgbe_hw
*hw
, u16 offset
,
975 u16 words
, u16
*data
)
981 u8 write_opcode
= IXGBE_EEPROM_WRITE_OPCODE_SPI
;
983 /* Prepare the EEPROM for writing */
984 status
= ixgbe_acquire_eeprom(hw
);
988 if (ixgbe_ready_eeprom(hw
) != 0) {
989 ixgbe_release_eeprom(hw
);
990 return IXGBE_ERR_EEPROM
;
993 for (i
= 0; i
< words
; i
++) {
994 ixgbe_standby_eeprom(hw
);
996 /* Send the WRITE ENABLE command (8 bit opcode) */
997 ixgbe_shift_out_eeprom_bits(hw
,
998 IXGBE_EEPROM_WREN_OPCODE_SPI
,
999 IXGBE_EEPROM_OPCODE_BITS
);
1001 ixgbe_standby_eeprom(hw
);
1003 /* Some SPI eeproms use the 8th address bit embedded
1006 if ((hw
->eeprom
.address_bits
== 8) &&
1007 ((offset
+ i
) >= 128))
1008 write_opcode
|= IXGBE_EEPROM_A8_OPCODE_SPI
;
1010 /* Send the Write command (8-bit opcode + addr) */
1011 ixgbe_shift_out_eeprom_bits(hw
, write_opcode
,
1012 IXGBE_EEPROM_OPCODE_BITS
);
1013 ixgbe_shift_out_eeprom_bits(hw
, (u16
)((offset
+ i
) * 2),
1014 hw
->eeprom
.address_bits
);
1016 page_size
= hw
->eeprom
.word_page_size
;
1018 /* Send the data in burst via SPI */
1021 word
= (word
>> 8) | (word
<< 8);
1022 ixgbe_shift_out_eeprom_bits(hw
, word
, 16);
1027 /* do not wrap around page */
1028 if (((offset
+ i
) & (page_size
- 1)) ==
1031 } while (++i
< words
);
1033 ixgbe_standby_eeprom(hw
);
1034 usleep_range(10000, 20000);
1036 /* Done with writing - release the EEPROM */
1037 ixgbe_release_eeprom(hw
);
1043 * ixgbe_write_eeprom_generic - Writes 16 bit value to EEPROM
1044 * @hw: pointer to hardware structure
1045 * @offset: offset within the EEPROM to be written to
1046 * @data: 16 bit word to be written to the EEPROM
1048 * If ixgbe_eeprom_update_checksum is not called after this function, the
1049 * EEPROM will most likely contain an invalid checksum.
1051 s32
ixgbe_write_eeprom_generic(struct ixgbe_hw
*hw
, u16 offset
, u16 data
)
1053 hw
->eeprom
.ops
.init_params(hw
);
1055 if (offset
>= hw
->eeprom
.word_size
)
1056 return IXGBE_ERR_EEPROM
;
1058 return ixgbe_write_eeprom_buffer_bit_bang(hw
, offset
, 1, &data
);
1062 * ixgbe_read_eeprom_buffer_bit_bang_generic - Read EEPROM using bit-bang
1063 * @hw: pointer to hardware structure
1064 * @offset: offset within the EEPROM to be read
1065 * @words: number of word(s)
1066 * @data: read 16 bit words(s) from EEPROM
1068 * Reads 16 bit word(s) from EEPROM through bit-bang method
1070 s32
ixgbe_read_eeprom_buffer_bit_bang_generic(struct ixgbe_hw
*hw
, u16 offset
,
1071 u16 words
, u16
*data
)
1076 hw
->eeprom
.ops
.init_params(hw
);
1079 return IXGBE_ERR_INVALID_ARGUMENT
;
1081 if (offset
+ words
> hw
->eeprom
.word_size
)
1082 return IXGBE_ERR_EEPROM
;
1085 * We cannot hold synchronization semaphores for too long
1086 * to avoid other entity starvation. However it is more efficient
1087 * to read in bursts than synchronizing access for each word.
1089 for (i
= 0; i
< words
; i
+= IXGBE_EEPROM_RD_BUFFER_MAX_COUNT
) {
1090 count
= (words
- i
) / IXGBE_EEPROM_RD_BUFFER_MAX_COUNT
> 0 ?
1091 IXGBE_EEPROM_RD_BUFFER_MAX_COUNT
: (words
- i
);
1093 status
= ixgbe_read_eeprom_buffer_bit_bang(hw
, offset
+ i
,
1104 * ixgbe_read_eeprom_buffer_bit_bang - Read EEPROM using bit-bang
1105 * @hw: pointer to hardware structure
1106 * @offset: offset within the EEPROM to be read
1107 * @words: number of word(s)
1108 * @data: read 16 bit word(s) from EEPROM
1110 * Reads 16 bit word(s) from EEPROM through bit-bang method
1112 static s32
ixgbe_read_eeprom_buffer_bit_bang(struct ixgbe_hw
*hw
, u16 offset
,
1113 u16 words
, u16
*data
)
1117 u8 read_opcode
= IXGBE_EEPROM_READ_OPCODE_SPI
;
1120 /* Prepare the EEPROM for reading */
1121 status
= ixgbe_acquire_eeprom(hw
);
1125 if (ixgbe_ready_eeprom(hw
) != 0) {
1126 ixgbe_release_eeprom(hw
);
1127 return IXGBE_ERR_EEPROM
;
1130 for (i
= 0; i
< words
; i
++) {
1131 ixgbe_standby_eeprom(hw
);
1132 /* Some SPI eeproms use the 8th address bit embedded
1135 if ((hw
->eeprom
.address_bits
== 8) &&
1136 ((offset
+ i
) >= 128))
1137 read_opcode
|= IXGBE_EEPROM_A8_OPCODE_SPI
;
1139 /* Send the READ command (opcode + addr) */
1140 ixgbe_shift_out_eeprom_bits(hw
, read_opcode
,
1141 IXGBE_EEPROM_OPCODE_BITS
);
1142 ixgbe_shift_out_eeprom_bits(hw
, (u16
)((offset
+ i
) * 2),
1143 hw
->eeprom
.address_bits
);
1145 /* Read the data. */
1146 word_in
= ixgbe_shift_in_eeprom_bits(hw
, 16);
1147 data
[i
] = (word_in
>> 8) | (word_in
<< 8);
1150 /* End this read operation */
1151 ixgbe_release_eeprom(hw
);
1157 * ixgbe_read_eeprom_bit_bang_generic - Read EEPROM word using bit-bang
1158 * @hw: pointer to hardware structure
1159 * @offset: offset within the EEPROM to be read
1160 * @data: read 16 bit value from EEPROM
1162 * Reads 16 bit value from EEPROM through bit-bang method
1164 s32
ixgbe_read_eeprom_bit_bang_generic(struct ixgbe_hw
*hw
, u16 offset
,
1167 hw
->eeprom
.ops
.init_params(hw
);
1169 if (offset
>= hw
->eeprom
.word_size
)
1170 return IXGBE_ERR_EEPROM
;
1172 return ixgbe_read_eeprom_buffer_bit_bang(hw
, offset
, 1, data
);
1176 * ixgbe_read_eerd_buffer_generic - Read EEPROM word(s) using EERD
1177 * @hw: pointer to hardware structure
1178 * @offset: offset of word in the EEPROM to read
1179 * @words: number of word(s)
1180 * @data: 16 bit word(s) from the EEPROM
1182 * Reads a 16 bit word(s) from the EEPROM using the EERD register.
1184 s32
ixgbe_read_eerd_buffer_generic(struct ixgbe_hw
*hw
, u16 offset
,
1185 u16 words
, u16
*data
)
1191 hw
->eeprom
.ops
.init_params(hw
);
1194 return IXGBE_ERR_INVALID_ARGUMENT
;
1196 if (offset
>= hw
->eeprom
.word_size
)
1197 return IXGBE_ERR_EEPROM
;
1199 for (i
= 0; i
< words
; i
++) {
1200 eerd
= ((offset
+ i
) << IXGBE_EEPROM_RW_ADDR_SHIFT
) |
1201 IXGBE_EEPROM_RW_REG_START
;
1203 IXGBE_WRITE_REG(hw
, IXGBE_EERD
, eerd
);
1204 status
= ixgbe_poll_eerd_eewr_done(hw
, IXGBE_NVM_POLL_READ
);
1207 data
[i
] = (IXGBE_READ_REG(hw
, IXGBE_EERD
) >>
1208 IXGBE_EEPROM_RW_REG_DATA
);
1210 hw_dbg(hw
, "Eeprom read timed out\n");
1219 * ixgbe_detect_eeprom_page_size_generic - Detect EEPROM page size
1220 * @hw: pointer to hardware structure
1221 * @offset: offset within the EEPROM to be used as a scratch pad
1223 * Discover EEPROM page size by writing marching data at given offset.
1224 * This function is called only when we are writing a new large buffer
1225 * at given offset so the data would be overwritten anyway.
1227 static s32
ixgbe_detect_eeprom_page_size_generic(struct ixgbe_hw
*hw
,
1230 u16 data
[IXGBE_EEPROM_PAGE_SIZE_MAX
];
1234 for (i
= 0; i
< IXGBE_EEPROM_PAGE_SIZE_MAX
; i
++)
1237 hw
->eeprom
.word_page_size
= IXGBE_EEPROM_PAGE_SIZE_MAX
;
1238 status
= ixgbe_write_eeprom_buffer_bit_bang(hw
, offset
,
1239 IXGBE_EEPROM_PAGE_SIZE_MAX
, data
);
1240 hw
->eeprom
.word_page_size
= 0;
1244 status
= ixgbe_read_eeprom_buffer_bit_bang(hw
, offset
, 1, data
);
1249 * When writing in burst more than the actual page size
1250 * EEPROM address wraps around current page.
1252 hw
->eeprom
.word_page_size
= IXGBE_EEPROM_PAGE_SIZE_MAX
- data
[0];
1254 hw_dbg(hw
, "Detected EEPROM page size = %d words.\n",
1255 hw
->eeprom
.word_page_size
);
1260 * ixgbe_read_eerd_generic - Read EEPROM word using EERD
1261 * @hw: pointer to hardware structure
1262 * @offset: offset of word in the EEPROM to read
1263 * @data: word read from the EEPROM
1265 * Reads a 16 bit word from the EEPROM using the EERD register.
1267 s32
ixgbe_read_eerd_generic(struct ixgbe_hw
*hw
, u16 offset
, u16
*data
)
1269 return ixgbe_read_eerd_buffer_generic(hw
, offset
, 1, data
);
1273 * ixgbe_write_eewr_buffer_generic - Write EEPROM word(s) using EEWR
1274 * @hw: pointer to hardware structure
1275 * @offset: offset of word in the EEPROM to write
1276 * @words: number of words
1277 * @data: word(s) write to the EEPROM
1279 * Write a 16 bit word(s) to the EEPROM using the EEWR register.
1281 s32
ixgbe_write_eewr_buffer_generic(struct ixgbe_hw
*hw
, u16 offset
,
1282 u16 words
, u16
*data
)
1288 hw
->eeprom
.ops
.init_params(hw
);
1291 return IXGBE_ERR_INVALID_ARGUMENT
;
1293 if (offset
>= hw
->eeprom
.word_size
)
1294 return IXGBE_ERR_EEPROM
;
1296 for (i
= 0; i
< words
; i
++) {
1297 eewr
= ((offset
+ i
) << IXGBE_EEPROM_RW_ADDR_SHIFT
) |
1298 (data
[i
] << IXGBE_EEPROM_RW_REG_DATA
) |
1299 IXGBE_EEPROM_RW_REG_START
;
1301 status
= ixgbe_poll_eerd_eewr_done(hw
, IXGBE_NVM_POLL_WRITE
);
1303 hw_dbg(hw
, "Eeprom write EEWR timed out\n");
1307 IXGBE_WRITE_REG(hw
, IXGBE_EEWR
, eewr
);
1309 status
= ixgbe_poll_eerd_eewr_done(hw
, IXGBE_NVM_POLL_WRITE
);
1311 hw_dbg(hw
, "Eeprom write EEWR timed out\n");
1320 * ixgbe_write_eewr_generic - Write EEPROM word using EEWR
1321 * @hw: pointer to hardware structure
1322 * @offset: offset of word in the EEPROM to write
1323 * @data: word write to the EEPROM
1325 * Write a 16 bit word to the EEPROM using the EEWR register.
1327 s32
ixgbe_write_eewr_generic(struct ixgbe_hw
*hw
, u16 offset
, u16 data
)
1329 return ixgbe_write_eewr_buffer_generic(hw
, offset
, 1, &data
);
1333 * ixgbe_poll_eerd_eewr_done - Poll EERD read or EEWR write status
1334 * @hw: pointer to hardware structure
1335 * @ee_reg: EEPROM flag for polling
1337 * Polls the status bit (bit 1) of the EERD or EEWR to determine when the
1338 * read or write is done respectively.
1340 static s32
ixgbe_poll_eerd_eewr_done(struct ixgbe_hw
*hw
, u32 ee_reg
)
1345 for (i
= 0; i
< IXGBE_EERD_EEWR_ATTEMPTS
; i
++) {
1346 if (ee_reg
== IXGBE_NVM_POLL_READ
)
1347 reg
= IXGBE_READ_REG(hw
, IXGBE_EERD
);
1349 reg
= IXGBE_READ_REG(hw
, IXGBE_EEWR
);
1351 if (reg
& IXGBE_EEPROM_RW_REG_DONE
) {
1356 return IXGBE_ERR_EEPROM
;
1360 * ixgbe_acquire_eeprom - Acquire EEPROM using bit-bang
1361 * @hw: pointer to hardware structure
1363 * Prepares EEPROM for access using bit-bang method. This function should
1364 * be called before issuing a command to the EEPROM.
1366 static s32
ixgbe_acquire_eeprom(struct ixgbe_hw
*hw
)
1371 if (hw
->mac
.ops
.acquire_swfw_sync(hw
, IXGBE_GSSR_EEP_SM
) != 0)
1372 return IXGBE_ERR_SWFW_SYNC
;
1374 eec
= IXGBE_READ_REG(hw
, IXGBE_EEC(hw
));
1376 /* Request EEPROM Access */
1377 eec
|= IXGBE_EEC_REQ
;
1378 IXGBE_WRITE_REG(hw
, IXGBE_EEC(hw
), eec
);
1380 for (i
= 0; i
< IXGBE_EEPROM_GRANT_ATTEMPTS
; i
++) {
1381 eec
= IXGBE_READ_REG(hw
, IXGBE_EEC(hw
));
1382 if (eec
& IXGBE_EEC_GNT
)
1387 /* Release if grant not acquired */
1388 if (!(eec
& IXGBE_EEC_GNT
)) {
1389 eec
&= ~IXGBE_EEC_REQ
;
1390 IXGBE_WRITE_REG(hw
, IXGBE_EEC(hw
), eec
);
1391 hw_dbg(hw
, "Could not acquire EEPROM grant\n");
1393 hw
->mac
.ops
.release_swfw_sync(hw
, IXGBE_GSSR_EEP_SM
);
1394 return IXGBE_ERR_EEPROM
;
1397 /* Setup EEPROM for Read/Write */
1398 /* Clear CS and SK */
1399 eec
&= ~(IXGBE_EEC_CS
| IXGBE_EEC_SK
);
1400 IXGBE_WRITE_REG(hw
, IXGBE_EEC(hw
), eec
);
1401 IXGBE_WRITE_FLUSH(hw
);
1407 * ixgbe_get_eeprom_semaphore - Get hardware semaphore
1408 * @hw: pointer to hardware structure
1410 * Sets the hardware semaphores so EEPROM access can occur for bit-bang method
1412 static s32
ixgbe_get_eeprom_semaphore(struct ixgbe_hw
*hw
)
1418 /* Get SMBI software semaphore between device drivers first */
1419 for (i
= 0; i
< timeout
; i
++) {
1421 * If the SMBI bit is 0 when we read it, then the bit will be
1422 * set and we have the semaphore
1424 swsm
= IXGBE_READ_REG(hw
, IXGBE_SWSM(hw
));
1425 if (!(swsm
& IXGBE_SWSM_SMBI
))
1427 usleep_range(50, 100);
1431 hw_dbg(hw
, "Driver can't access the Eeprom - SMBI Semaphore not granted.\n");
1432 /* this release is particularly important because our attempts
1433 * above to get the semaphore may have succeeded, and if there
1434 * was a timeout, we should unconditionally clear the semaphore
1435 * bits to free the driver to make progress
1437 ixgbe_release_eeprom_semaphore(hw
);
1439 usleep_range(50, 100);
1441 * If the SMBI bit is 0 when we read it, then the bit will be
1442 * set and we have the semaphore
1444 swsm
= IXGBE_READ_REG(hw
, IXGBE_SWSM(hw
));
1445 if (swsm
& IXGBE_SWSM_SMBI
) {
1446 hw_dbg(hw
, "Software semaphore SMBI between device drivers not granted.\n");
1447 return IXGBE_ERR_EEPROM
;
1451 /* Now get the semaphore between SW/FW through the SWESMBI bit */
1452 for (i
= 0; i
< timeout
; i
++) {
1453 swsm
= IXGBE_READ_REG(hw
, IXGBE_SWSM(hw
));
1455 /* Set the SW EEPROM semaphore bit to request access */
1456 swsm
|= IXGBE_SWSM_SWESMBI
;
1457 IXGBE_WRITE_REG(hw
, IXGBE_SWSM(hw
), swsm
);
1459 /* If we set the bit successfully then we got the
1462 swsm
= IXGBE_READ_REG(hw
, IXGBE_SWSM(hw
));
1463 if (swsm
& IXGBE_SWSM_SWESMBI
)
1466 usleep_range(50, 100);
1469 /* Release semaphores and return error if SW EEPROM semaphore
1470 * was not granted because we don't have access to the EEPROM
1473 hw_dbg(hw
, "SWESMBI Software EEPROM semaphore not granted.\n");
1474 ixgbe_release_eeprom_semaphore(hw
);
1475 return IXGBE_ERR_EEPROM
;
1482 * ixgbe_release_eeprom_semaphore - Release hardware semaphore
1483 * @hw: pointer to hardware structure
1485 * This function clears hardware semaphore bits.
1487 static void ixgbe_release_eeprom_semaphore(struct ixgbe_hw
*hw
)
1491 swsm
= IXGBE_READ_REG(hw
, IXGBE_SWSM(hw
));
1493 /* Release both semaphores by writing 0 to the bits SWESMBI and SMBI */
1494 swsm
&= ~(IXGBE_SWSM_SWESMBI
| IXGBE_SWSM_SMBI
);
1495 IXGBE_WRITE_REG(hw
, IXGBE_SWSM(hw
), swsm
);
1496 IXGBE_WRITE_FLUSH(hw
);
1500 * ixgbe_ready_eeprom - Polls for EEPROM ready
1501 * @hw: pointer to hardware structure
1503 static s32
ixgbe_ready_eeprom(struct ixgbe_hw
*hw
)
1509 * Read "Status Register" repeatedly until the LSB is cleared. The
1510 * EEPROM will signal that the command has been completed by clearing
1511 * bit 0 of the internal status register. If it's not cleared within
1512 * 5 milliseconds, then error out.
1514 for (i
= 0; i
< IXGBE_EEPROM_MAX_RETRY_SPI
; i
+= 5) {
1515 ixgbe_shift_out_eeprom_bits(hw
, IXGBE_EEPROM_RDSR_OPCODE_SPI
,
1516 IXGBE_EEPROM_OPCODE_BITS
);
1517 spi_stat_reg
= (u8
)ixgbe_shift_in_eeprom_bits(hw
, 8);
1518 if (!(spi_stat_reg
& IXGBE_EEPROM_STATUS_RDY_SPI
))
1522 ixgbe_standby_eeprom(hw
);
1526 * On some parts, SPI write time could vary from 0-20mSec on 3.3V
1527 * devices (and only 0-5mSec on 5V devices)
1529 if (i
>= IXGBE_EEPROM_MAX_RETRY_SPI
) {
1530 hw_dbg(hw
, "SPI EEPROM Status error\n");
1531 return IXGBE_ERR_EEPROM
;
1538 * ixgbe_standby_eeprom - Returns EEPROM to a "standby" state
1539 * @hw: pointer to hardware structure
1541 static void ixgbe_standby_eeprom(struct ixgbe_hw
*hw
)
1545 eec
= IXGBE_READ_REG(hw
, IXGBE_EEC(hw
));
1547 /* Toggle CS to flush commands */
1548 eec
|= IXGBE_EEC_CS
;
1549 IXGBE_WRITE_REG(hw
, IXGBE_EEC(hw
), eec
);
1550 IXGBE_WRITE_FLUSH(hw
);
1552 eec
&= ~IXGBE_EEC_CS
;
1553 IXGBE_WRITE_REG(hw
, IXGBE_EEC(hw
), eec
);
1554 IXGBE_WRITE_FLUSH(hw
);
1559 * ixgbe_shift_out_eeprom_bits - Shift data bits out to the EEPROM.
1560 * @hw: pointer to hardware structure
1561 * @data: data to send to the EEPROM
1562 * @count: number of bits to shift out
1564 static void ixgbe_shift_out_eeprom_bits(struct ixgbe_hw
*hw
, u16 data
,
1571 eec
= IXGBE_READ_REG(hw
, IXGBE_EEC(hw
));
1574 * Mask is used to shift "count" bits of "data" out to the EEPROM
1575 * one bit at a time. Determine the starting bit based on count
1577 mask
= BIT(count
- 1);
1579 for (i
= 0; i
< count
; i
++) {
1581 * A "1" is shifted out to the EEPROM by setting bit "DI" to a
1582 * "1", and then raising and then lowering the clock (the SK
1583 * bit controls the clock input to the EEPROM). A "0" is
1584 * shifted out to the EEPROM by setting "DI" to "0" and then
1585 * raising and then lowering the clock.
1588 eec
|= IXGBE_EEC_DI
;
1590 eec
&= ~IXGBE_EEC_DI
;
1592 IXGBE_WRITE_REG(hw
, IXGBE_EEC(hw
), eec
);
1593 IXGBE_WRITE_FLUSH(hw
);
1597 ixgbe_raise_eeprom_clk(hw
, &eec
);
1598 ixgbe_lower_eeprom_clk(hw
, &eec
);
1601 * Shift mask to signify next bit of data to shift in to the
1607 /* We leave the "DI" bit set to "0" when we leave this routine. */
1608 eec
&= ~IXGBE_EEC_DI
;
1609 IXGBE_WRITE_REG(hw
, IXGBE_EEC(hw
), eec
);
1610 IXGBE_WRITE_FLUSH(hw
);
1614 * ixgbe_shift_in_eeprom_bits - Shift data bits in from the EEPROM
1615 * @hw: pointer to hardware structure
1616 * @count: number of bits to shift
1618 static u16
ixgbe_shift_in_eeprom_bits(struct ixgbe_hw
*hw
, u16 count
)
1625 * In order to read a register from the EEPROM, we need to shift
1626 * 'count' bits in from the EEPROM. Bits are "shifted in" by raising
1627 * the clock input to the EEPROM (setting the SK bit), and then reading
1628 * the value of the "DO" bit. During this "shifting in" process the
1629 * "DI" bit should always be clear.
1631 eec
= IXGBE_READ_REG(hw
, IXGBE_EEC(hw
));
1633 eec
&= ~(IXGBE_EEC_DO
| IXGBE_EEC_DI
);
1635 for (i
= 0; i
< count
; i
++) {
1637 ixgbe_raise_eeprom_clk(hw
, &eec
);
1639 eec
= IXGBE_READ_REG(hw
, IXGBE_EEC(hw
));
1641 eec
&= ~(IXGBE_EEC_DI
);
1642 if (eec
& IXGBE_EEC_DO
)
1645 ixgbe_lower_eeprom_clk(hw
, &eec
);
1652 * ixgbe_raise_eeprom_clk - Raises the EEPROM's clock input.
1653 * @hw: pointer to hardware structure
1654 * @eec: EEC register's current value
1656 static void ixgbe_raise_eeprom_clk(struct ixgbe_hw
*hw
, u32
*eec
)
1659 * Raise the clock input to the EEPROM
1660 * (setting the SK bit), then delay
1662 *eec
= *eec
| IXGBE_EEC_SK
;
1663 IXGBE_WRITE_REG(hw
, IXGBE_EEC(hw
), *eec
);
1664 IXGBE_WRITE_FLUSH(hw
);
1669 * ixgbe_lower_eeprom_clk - Lowers the EEPROM's clock input.
1670 * @hw: pointer to hardware structure
1671 * @eec: EEC's current value
1673 static void ixgbe_lower_eeprom_clk(struct ixgbe_hw
*hw
, u32
*eec
)
1676 * Lower the clock input to the EEPROM (clearing the SK bit), then
1679 *eec
= *eec
& ~IXGBE_EEC_SK
;
1680 IXGBE_WRITE_REG(hw
, IXGBE_EEC(hw
), *eec
);
1681 IXGBE_WRITE_FLUSH(hw
);
1686 * ixgbe_release_eeprom - Release EEPROM, release semaphores
1687 * @hw: pointer to hardware structure
1689 static void ixgbe_release_eeprom(struct ixgbe_hw
*hw
)
1693 eec
= IXGBE_READ_REG(hw
, IXGBE_EEC(hw
));
1695 eec
|= IXGBE_EEC_CS
; /* Pull CS high */
1696 eec
&= ~IXGBE_EEC_SK
; /* Lower SCK */
1698 IXGBE_WRITE_REG(hw
, IXGBE_EEC(hw
), eec
);
1699 IXGBE_WRITE_FLUSH(hw
);
1703 /* Stop requesting EEPROM access */
1704 eec
&= ~IXGBE_EEC_REQ
;
1705 IXGBE_WRITE_REG(hw
, IXGBE_EEC(hw
), eec
);
1707 hw
->mac
.ops
.release_swfw_sync(hw
, IXGBE_GSSR_EEP_SM
);
1710 * Delay before attempt to obtain semaphore again to allow FW
1711 * access. semaphore_delay is in ms we need us for usleep_range
1713 usleep_range(hw
->eeprom
.semaphore_delay
* 1000,
1714 hw
->eeprom
.semaphore_delay
* 2000);
1718 * ixgbe_calc_eeprom_checksum_generic - Calculates and returns the checksum
1719 * @hw: pointer to hardware structure
1721 s32
ixgbe_calc_eeprom_checksum_generic(struct ixgbe_hw
*hw
)
1730 /* Include 0x0-0x3F in the checksum */
1731 for (i
= 0; i
< IXGBE_EEPROM_CHECKSUM
; i
++) {
1732 if (hw
->eeprom
.ops
.read(hw
, i
, &word
)) {
1733 hw_dbg(hw
, "EEPROM read failed\n");
1739 /* Include all data from pointers except for the fw pointer */
1740 for (i
= IXGBE_PCIE_ANALOG_PTR
; i
< IXGBE_FW_PTR
; i
++) {
1741 if (hw
->eeprom
.ops
.read(hw
, i
, &pointer
)) {
1742 hw_dbg(hw
, "EEPROM read failed\n");
1743 return IXGBE_ERR_EEPROM
;
1746 /* If the pointer seems invalid */
1747 if (pointer
== 0xFFFF || pointer
== 0)
1750 if (hw
->eeprom
.ops
.read(hw
, pointer
, &length
)) {
1751 hw_dbg(hw
, "EEPROM read failed\n");
1752 return IXGBE_ERR_EEPROM
;
1755 if (length
== 0xFFFF || length
== 0)
1758 for (j
= pointer
+ 1; j
<= pointer
+ length
; j
++) {
1759 if (hw
->eeprom
.ops
.read(hw
, j
, &word
)) {
1760 hw_dbg(hw
, "EEPROM read failed\n");
1761 return IXGBE_ERR_EEPROM
;
1767 checksum
= (u16
)IXGBE_EEPROM_SUM
- checksum
;
1769 return (s32
)checksum
;
1773 * ixgbe_validate_eeprom_checksum_generic - Validate EEPROM checksum
1774 * @hw: pointer to hardware structure
1775 * @checksum_val: calculated checksum
1777 * Performs checksum calculation and validates the EEPROM checksum. If the
1778 * caller does not need checksum_val, the value can be NULL.
1780 s32
ixgbe_validate_eeprom_checksum_generic(struct ixgbe_hw
*hw
,
1785 u16 read_checksum
= 0;
1788 * Read the first word from the EEPROM. If this times out or fails, do
1789 * not continue or we could be in for a very long wait while every
1792 status
= hw
->eeprom
.ops
.read(hw
, 0, &checksum
);
1794 hw_dbg(hw
, "EEPROM read failed\n");
1798 status
= hw
->eeprom
.ops
.calc_checksum(hw
);
1802 checksum
= (u16
)(status
& 0xffff);
1804 status
= hw
->eeprom
.ops
.read(hw
, IXGBE_EEPROM_CHECKSUM
, &read_checksum
);
1806 hw_dbg(hw
, "EEPROM read failed\n");
1810 /* Verify read checksum from EEPROM is the same as
1811 * calculated checksum
1813 if (read_checksum
!= checksum
)
1814 status
= IXGBE_ERR_EEPROM_CHECKSUM
;
1816 /* If the user cares, return the calculated checksum */
1818 *checksum_val
= checksum
;
1824 * ixgbe_update_eeprom_checksum_generic - Updates the EEPROM checksum
1825 * @hw: pointer to hardware structure
1827 s32
ixgbe_update_eeprom_checksum_generic(struct ixgbe_hw
*hw
)
1833 * Read the first word from the EEPROM. If this times out or fails, do
1834 * not continue or we could be in for a very long wait while every
1837 status
= hw
->eeprom
.ops
.read(hw
, 0, &checksum
);
1839 hw_dbg(hw
, "EEPROM read failed\n");
1843 status
= hw
->eeprom
.ops
.calc_checksum(hw
);
1847 checksum
= (u16
)(status
& 0xffff);
1849 status
= hw
->eeprom
.ops
.write(hw
, IXGBE_EEPROM_CHECKSUM
, checksum
);
1855 * ixgbe_set_rar_generic - Set Rx address register
1856 * @hw: pointer to hardware structure
1857 * @index: Receive address register to write
1858 * @addr: Address to put into receive address register
1859 * @vmdq: VMDq "set" or "pool" index
1860 * @enable_addr: set flag that address is active
1862 * Puts an ethernet address into a receive address register.
1864 s32
ixgbe_set_rar_generic(struct ixgbe_hw
*hw
, u32 index
, u8
*addr
, u32 vmdq
,
1867 u32 rar_low
, rar_high
;
1868 u32 rar_entries
= hw
->mac
.num_rar_entries
;
1870 /* Make sure we are using a valid rar index range */
1871 if (index
>= rar_entries
) {
1872 hw_dbg(hw
, "RAR index %d is out of range.\n", index
);
1873 return IXGBE_ERR_INVALID_ARGUMENT
;
1876 /* setup VMDq pool selection before this RAR gets enabled */
1877 hw
->mac
.ops
.set_vmdq(hw
, index
, vmdq
);
1880 * HW expects these in little endian so we reverse the byte
1881 * order from network order (big endian) to little endian
1883 rar_low
= ((u32
)addr
[0] |
1884 ((u32
)addr
[1] << 8) |
1885 ((u32
)addr
[2] << 16) |
1886 ((u32
)addr
[3] << 24));
1888 * Some parts put the VMDq setting in the extra RAH bits,
1889 * so save everything except the lower 16 bits that hold part
1890 * of the address and the address valid bit.
1892 rar_high
= IXGBE_READ_REG(hw
, IXGBE_RAH(index
));
1893 rar_high
&= ~(0x0000FFFF | IXGBE_RAH_AV
);
1894 rar_high
|= ((u32
)addr
[4] | ((u32
)addr
[5] << 8));
1896 if (enable_addr
!= 0)
1897 rar_high
|= IXGBE_RAH_AV
;
1899 IXGBE_WRITE_REG(hw
, IXGBE_RAL(index
), rar_low
);
1900 IXGBE_WRITE_REG(hw
, IXGBE_RAH(index
), rar_high
);
1906 * ixgbe_clear_rar_generic - Remove Rx address register
1907 * @hw: pointer to hardware structure
1908 * @index: Receive address register to write
1910 * Clears an ethernet address from a receive address register.
1912 s32
ixgbe_clear_rar_generic(struct ixgbe_hw
*hw
, u32 index
)
1915 u32 rar_entries
= hw
->mac
.num_rar_entries
;
1917 /* Make sure we are using a valid rar index range */
1918 if (index
>= rar_entries
) {
1919 hw_dbg(hw
, "RAR index %d is out of range.\n", index
);
1920 return IXGBE_ERR_INVALID_ARGUMENT
;
1924 * Some parts put the VMDq setting in the extra RAH bits,
1925 * so save everything except the lower 16 bits that hold part
1926 * of the address and the address valid bit.
1928 rar_high
= IXGBE_READ_REG(hw
, IXGBE_RAH(index
));
1929 rar_high
&= ~(0x0000FFFF | IXGBE_RAH_AV
);
1931 IXGBE_WRITE_REG(hw
, IXGBE_RAL(index
), 0);
1932 IXGBE_WRITE_REG(hw
, IXGBE_RAH(index
), rar_high
);
1934 /* clear VMDq pool/queue selection for this RAR */
1935 hw
->mac
.ops
.clear_vmdq(hw
, index
, IXGBE_CLEAR_VMDQ_ALL
);
1941 * ixgbe_init_rx_addrs_generic - Initializes receive address filters.
1942 * @hw: pointer to hardware structure
1944 * Places the MAC address in receive address register 0 and clears the rest
1945 * of the receive address registers. Clears the multicast table. Assumes
1946 * the receiver is in reset when the routine is called.
1948 s32
ixgbe_init_rx_addrs_generic(struct ixgbe_hw
*hw
)
1951 u32 rar_entries
= hw
->mac
.num_rar_entries
;
1954 * If the current mac address is valid, assume it is a software override
1955 * to the permanent address.
1956 * Otherwise, use the permanent address from the eeprom.
1958 if (!is_valid_ether_addr(hw
->mac
.addr
)) {
1959 /* Get the MAC address from the RAR0 for later reference */
1960 hw
->mac
.ops
.get_mac_addr(hw
, hw
->mac
.addr
);
1962 hw_dbg(hw
, " Keeping Current RAR0 Addr =%pM\n", hw
->mac
.addr
);
1964 /* Setup the receive address. */
1965 hw_dbg(hw
, "Overriding MAC Address in RAR[0]\n");
1966 hw_dbg(hw
, " New MAC Addr =%pM\n", hw
->mac
.addr
);
1968 hw
->mac
.ops
.set_rar(hw
, 0, hw
->mac
.addr
, 0, IXGBE_RAH_AV
);
1971 /* clear VMDq pool/queue selection for RAR 0 */
1972 hw
->mac
.ops
.clear_vmdq(hw
, 0, IXGBE_CLEAR_VMDQ_ALL
);
1974 hw
->addr_ctrl
.overflow_promisc
= 0;
1976 hw
->addr_ctrl
.rar_used_count
= 1;
1978 /* Zero out the other receive addresses. */
1979 hw_dbg(hw
, "Clearing RAR[1-%d]\n", rar_entries
- 1);
1980 for (i
= 1; i
< rar_entries
; i
++) {
1981 IXGBE_WRITE_REG(hw
, IXGBE_RAL(i
), 0);
1982 IXGBE_WRITE_REG(hw
, IXGBE_RAH(i
), 0);
1986 hw
->addr_ctrl
.mta_in_use
= 0;
1987 IXGBE_WRITE_REG(hw
, IXGBE_MCSTCTRL
, hw
->mac
.mc_filter_type
);
1989 hw_dbg(hw
, " Clearing MTA\n");
1990 for (i
= 0; i
< hw
->mac
.mcft_size
; i
++)
1991 IXGBE_WRITE_REG(hw
, IXGBE_MTA(i
), 0);
1993 if (hw
->mac
.ops
.init_uta_tables
)
1994 hw
->mac
.ops
.init_uta_tables(hw
);
2000 * ixgbe_mta_vector - Determines bit-vector in multicast table to set
2001 * @hw: pointer to hardware structure
2002 * @mc_addr: the multicast address
2004 * Extracts the 12 bits, from a multicast address, to determine which
2005 * bit-vector to set in the multicast table. The hardware uses 12 bits, from
2006 * incoming rx multicast addresses, to determine the bit-vector to check in
2007 * the MTA. Which of the 4 combination, of 12-bits, the hardware uses is set
2008 * by the MO field of the MCSTCTRL. The MO field is set during initialization
2009 * to mc_filter_type.
2011 static s32
ixgbe_mta_vector(struct ixgbe_hw
*hw
, u8
*mc_addr
)
2015 switch (hw
->mac
.mc_filter_type
) {
2016 case 0: /* use bits [47:36] of the address */
2017 vector
= ((mc_addr
[4] >> 4) | (((u16
)mc_addr
[5]) << 4));
2019 case 1: /* use bits [46:35] of the address */
2020 vector
= ((mc_addr
[4] >> 3) | (((u16
)mc_addr
[5]) << 5));
2022 case 2: /* use bits [45:34] of the address */
2023 vector
= ((mc_addr
[4] >> 2) | (((u16
)mc_addr
[5]) << 6));
2025 case 3: /* use bits [43:32] of the address */
2026 vector
= ((mc_addr
[4]) | (((u16
)mc_addr
[5]) << 8));
2028 default: /* Invalid mc_filter_type */
2029 hw_dbg(hw
, "MC filter type param set incorrectly\n");
2033 /* vector can only be 12-bits or boundary will be exceeded */
2039 * ixgbe_set_mta - Set bit-vector in multicast table
2040 * @hw: pointer to hardware structure
2041 * @mc_addr: Multicast address
2043 * Sets the bit-vector in the multicast table.
2045 static void ixgbe_set_mta(struct ixgbe_hw
*hw
, u8
*mc_addr
)
2051 hw
->addr_ctrl
.mta_in_use
++;
2053 vector
= ixgbe_mta_vector(hw
, mc_addr
);
2054 hw_dbg(hw
, " bit-vector = 0x%03X\n", vector
);
2057 * The MTA is a register array of 128 32-bit registers. It is treated
2058 * like an array of 4096 bits. We want to set bit
2059 * BitArray[vector_value]. So we figure out what register the bit is
2060 * in, read it, OR in the new bit, then write back the new value. The
2061 * register is determined by the upper 7 bits of the vector value and
2062 * the bit within that register are determined by the lower 5 bits of
2065 vector_reg
= (vector
>> 5) & 0x7F;
2066 vector_bit
= vector
& 0x1F;
2067 hw
->mac
.mta_shadow
[vector_reg
] |= BIT(vector_bit
);
2071 * ixgbe_update_mc_addr_list_generic - Updates MAC list of multicast addresses
2072 * @hw: pointer to hardware structure
2073 * @netdev: pointer to net device structure
2075 * The given list replaces any existing list. Clears the MC addrs from receive
2076 * address registers and the multicast table. Uses unused receive address
2077 * registers for the first multicast addresses, and hashes the rest into the
2080 s32
ixgbe_update_mc_addr_list_generic(struct ixgbe_hw
*hw
,
2081 struct net_device
*netdev
)
2083 struct netdev_hw_addr
*ha
;
2087 * Set the new number of MC addresses that we are being requested to
2090 hw
->addr_ctrl
.num_mc_addrs
= netdev_mc_count(netdev
);
2091 hw
->addr_ctrl
.mta_in_use
= 0;
2093 /* Clear mta_shadow */
2094 hw_dbg(hw
, " Clearing MTA\n");
2095 memset(&hw
->mac
.mta_shadow
, 0, sizeof(hw
->mac
.mta_shadow
));
2097 /* Update mta shadow */
2098 netdev_for_each_mc_addr(ha
, netdev
) {
2099 hw_dbg(hw
, " Adding the multicast addresses:\n");
2100 ixgbe_set_mta(hw
, ha
->addr
);
2104 for (i
= 0; i
< hw
->mac
.mcft_size
; i
++)
2105 IXGBE_WRITE_REG_ARRAY(hw
, IXGBE_MTA(0), i
,
2106 hw
->mac
.mta_shadow
[i
]);
2108 if (hw
->addr_ctrl
.mta_in_use
> 0)
2109 IXGBE_WRITE_REG(hw
, IXGBE_MCSTCTRL
,
2110 IXGBE_MCSTCTRL_MFE
| hw
->mac
.mc_filter_type
);
2112 hw_dbg(hw
, "ixgbe_update_mc_addr_list_generic Complete\n");
2117 * ixgbe_enable_mc_generic - Enable multicast address in RAR
2118 * @hw: pointer to hardware structure
2120 * Enables multicast address in RAR and the use of the multicast hash table.
2122 s32
ixgbe_enable_mc_generic(struct ixgbe_hw
*hw
)
2124 struct ixgbe_addr_filter_info
*a
= &hw
->addr_ctrl
;
2126 if (a
->mta_in_use
> 0)
2127 IXGBE_WRITE_REG(hw
, IXGBE_MCSTCTRL
, IXGBE_MCSTCTRL_MFE
|
2128 hw
->mac
.mc_filter_type
);
2134 * ixgbe_disable_mc_generic - Disable multicast address in RAR
2135 * @hw: pointer to hardware structure
2137 * Disables multicast address in RAR and the use of the multicast hash table.
2139 s32
ixgbe_disable_mc_generic(struct ixgbe_hw
*hw
)
2141 struct ixgbe_addr_filter_info
*a
= &hw
->addr_ctrl
;
2143 if (a
->mta_in_use
> 0)
2144 IXGBE_WRITE_REG(hw
, IXGBE_MCSTCTRL
, hw
->mac
.mc_filter_type
);
2150 * ixgbe_fc_enable_generic - Enable flow control
2151 * @hw: pointer to hardware structure
2153 * Enable flow control according to the current settings.
2155 s32
ixgbe_fc_enable_generic(struct ixgbe_hw
*hw
)
2157 u32 mflcn_reg
, fccfg_reg
;
2162 /* Validate the water mark configuration. */
2163 if (!hw
->fc
.pause_time
)
2164 return IXGBE_ERR_INVALID_LINK_SETTINGS
;
2166 /* Low water mark of zero causes XOFF floods */
2167 for (i
= 0; i
< MAX_TRAFFIC_CLASS
; i
++) {
2168 if ((hw
->fc
.current_mode
& ixgbe_fc_tx_pause
) &&
2169 hw
->fc
.high_water
[i
]) {
2170 if (!hw
->fc
.low_water
[i
] ||
2171 hw
->fc
.low_water
[i
] >= hw
->fc
.high_water
[i
]) {
2172 hw_dbg(hw
, "Invalid water mark configuration\n");
2173 return IXGBE_ERR_INVALID_LINK_SETTINGS
;
2178 /* Negotiate the fc mode to use */
2179 hw
->mac
.ops
.fc_autoneg(hw
);
2181 /* Disable any previous flow control settings */
2182 mflcn_reg
= IXGBE_READ_REG(hw
, IXGBE_MFLCN
);
2183 mflcn_reg
&= ~(IXGBE_MFLCN_RPFCE_MASK
| IXGBE_MFLCN_RFCE
);
2185 fccfg_reg
= IXGBE_READ_REG(hw
, IXGBE_FCCFG
);
2186 fccfg_reg
&= ~(IXGBE_FCCFG_TFCE_802_3X
| IXGBE_FCCFG_TFCE_PRIORITY
);
2189 * The possible values of fc.current_mode are:
2190 * 0: Flow control is completely disabled
2191 * 1: Rx flow control is enabled (we can receive pause frames,
2192 * but not send pause frames).
2193 * 2: Tx flow control is enabled (we can send pause frames but
2194 * we do not support receiving pause frames).
2195 * 3: Both Rx and Tx flow control (symmetric) are enabled.
2198 switch (hw
->fc
.current_mode
) {
2201 * Flow control is disabled by software override or autoneg.
2202 * The code below will actually disable it in the HW.
2205 case ixgbe_fc_rx_pause
:
2207 * Rx Flow control is enabled and Tx Flow control is
2208 * disabled by software override. Since there really
2209 * isn't a way to advertise that we are capable of RX
2210 * Pause ONLY, we will advertise that we support both
2211 * symmetric and asymmetric Rx PAUSE. Later, we will
2212 * disable the adapter's ability to send PAUSE frames.
2214 mflcn_reg
|= IXGBE_MFLCN_RFCE
;
2216 case ixgbe_fc_tx_pause
:
2218 * Tx Flow control is enabled, and Rx Flow control is
2219 * disabled by software override.
2221 fccfg_reg
|= IXGBE_FCCFG_TFCE_802_3X
;
2224 /* Flow control (both Rx and Tx) is enabled by SW override. */
2225 mflcn_reg
|= IXGBE_MFLCN_RFCE
;
2226 fccfg_reg
|= IXGBE_FCCFG_TFCE_802_3X
;
2229 hw_dbg(hw
, "Flow control param set incorrectly\n");
2230 return IXGBE_ERR_CONFIG
;
2233 /* Set 802.3x based flow control settings. */
2234 mflcn_reg
|= IXGBE_MFLCN_DPF
;
2235 IXGBE_WRITE_REG(hw
, IXGBE_MFLCN
, mflcn_reg
);
2236 IXGBE_WRITE_REG(hw
, IXGBE_FCCFG
, fccfg_reg
);
2238 /* Set up and enable Rx high/low water mark thresholds, enable XON. */
2239 for (i
= 0; i
< MAX_TRAFFIC_CLASS
; i
++) {
2240 if ((hw
->fc
.current_mode
& ixgbe_fc_tx_pause
) &&
2241 hw
->fc
.high_water
[i
]) {
2242 fcrtl
= (hw
->fc
.low_water
[i
] << 10) | IXGBE_FCRTL_XONE
;
2243 IXGBE_WRITE_REG(hw
, IXGBE_FCRTL_82599(i
), fcrtl
);
2244 fcrth
= (hw
->fc
.high_water
[i
] << 10) | IXGBE_FCRTH_FCEN
;
2246 IXGBE_WRITE_REG(hw
, IXGBE_FCRTL_82599(i
), 0);
2248 * In order to prevent Tx hangs when the internal Tx
2249 * switch is enabled we must set the high water mark
2250 * to the Rx packet buffer size - 24KB. This allows
2251 * the Tx switch to function even under heavy Rx
2254 fcrth
= IXGBE_READ_REG(hw
, IXGBE_RXPBSIZE(i
)) - 24576;
2257 IXGBE_WRITE_REG(hw
, IXGBE_FCRTH_82599(i
), fcrth
);
2260 /* Configure pause time (2 TCs per register) */
2261 reg
= hw
->fc
.pause_time
* 0x00010001;
2262 for (i
= 0; i
< (MAX_TRAFFIC_CLASS
/ 2); i
++)
2263 IXGBE_WRITE_REG(hw
, IXGBE_FCTTV(i
), reg
);
2265 IXGBE_WRITE_REG(hw
, IXGBE_FCRTV
, hw
->fc
.pause_time
/ 2);
2271 * ixgbe_negotiate_fc - Negotiate flow control
2272 * @hw: pointer to hardware structure
2273 * @adv_reg: flow control advertised settings
2274 * @lp_reg: link partner's flow control settings
2275 * @adv_sym: symmetric pause bit in advertisement
2276 * @adv_asm: asymmetric pause bit in advertisement
2277 * @lp_sym: symmetric pause bit in link partner advertisement
2278 * @lp_asm: asymmetric pause bit in link partner advertisement
2280 * Find the intersection between advertised settings and link partner's
2281 * advertised settings
2283 s32
ixgbe_negotiate_fc(struct ixgbe_hw
*hw
, u32 adv_reg
, u32 lp_reg
,
2284 u32 adv_sym
, u32 adv_asm
, u32 lp_sym
, u32 lp_asm
)
2286 if ((!(adv_reg
)) || (!(lp_reg
)))
2287 return IXGBE_ERR_FC_NOT_NEGOTIATED
;
2289 if ((adv_reg
& adv_sym
) && (lp_reg
& lp_sym
)) {
2291 * Now we need to check if the user selected Rx ONLY
2292 * of pause frames. In this case, we had to advertise
2293 * FULL flow control because we could not advertise RX
2294 * ONLY. Hence, we must now check to see if we need to
2295 * turn OFF the TRANSMISSION of PAUSE frames.
2297 if (hw
->fc
.requested_mode
== ixgbe_fc_full
) {
2298 hw
->fc
.current_mode
= ixgbe_fc_full
;
2299 hw_dbg(hw
, "Flow Control = FULL.\n");
2301 hw
->fc
.current_mode
= ixgbe_fc_rx_pause
;
2302 hw_dbg(hw
, "Flow Control=RX PAUSE frames only\n");
2304 } else if (!(adv_reg
& adv_sym
) && (adv_reg
& adv_asm
) &&
2305 (lp_reg
& lp_sym
) && (lp_reg
& lp_asm
)) {
2306 hw
->fc
.current_mode
= ixgbe_fc_tx_pause
;
2307 hw_dbg(hw
, "Flow Control = TX PAUSE frames only.\n");
2308 } else if ((adv_reg
& adv_sym
) && (adv_reg
& adv_asm
) &&
2309 !(lp_reg
& lp_sym
) && (lp_reg
& lp_asm
)) {
2310 hw
->fc
.current_mode
= ixgbe_fc_rx_pause
;
2311 hw_dbg(hw
, "Flow Control = RX PAUSE frames only.\n");
2313 hw
->fc
.current_mode
= ixgbe_fc_none
;
2314 hw_dbg(hw
, "Flow Control = NONE.\n");
2320 * ixgbe_fc_autoneg_fiber - Enable flow control on 1 gig fiber
2321 * @hw: pointer to hardware structure
2323 * Enable flow control according on 1 gig fiber.
2325 static s32
ixgbe_fc_autoneg_fiber(struct ixgbe_hw
*hw
)
2327 u32 pcs_anadv_reg
, pcs_lpab_reg
, linkstat
;
2331 * On multispeed fiber at 1g, bail out if
2332 * - link is up but AN did not complete, or if
2333 * - link is up and AN completed but timed out
2336 linkstat
= IXGBE_READ_REG(hw
, IXGBE_PCS1GLSTA
);
2337 if ((!!(linkstat
& IXGBE_PCS1GLSTA_AN_COMPLETE
) == 0) ||
2338 (!!(linkstat
& IXGBE_PCS1GLSTA_AN_TIMED_OUT
) == 1))
2339 return IXGBE_ERR_FC_NOT_NEGOTIATED
;
2341 pcs_anadv_reg
= IXGBE_READ_REG(hw
, IXGBE_PCS1GANA
);
2342 pcs_lpab_reg
= IXGBE_READ_REG(hw
, IXGBE_PCS1GANLP
);
2344 ret_val
= ixgbe_negotiate_fc(hw
, pcs_anadv_reg
,
2345 pcs_lpab_reg
, IXGBE_PCS1GANA_SYM_PAUSE
,
2346 IXGBE_PCS1GANA_ASM_PAUSE
,
2347 IXGBE_PCS1GANA_SYM_PAUSE
,
2348 IXGBE_PCS1GANA_ASM_PAUSE
);
2354 * ixgbe_fc_autoneg_backplane - Enable flow control IEEE clause 37
2355 * @hw: pointer to hardware structure
2357 * Enable flow control according to IEEE clause 37.
2359 static s32
ixgbe_fc_autoneg_backplane(struct ixgbe_hw
*hw
)
2361 u32 links2
, anlp1_reg
, autoc_reg
, links
;
2365 * On backplane, bail out if
2366 * - backplane autoneg was not completed, or if
2367 * - we are 82599 and link partner is not AN enabled
2369 links
= IXGBE_READ_REG(hw
, IXGBE_LINKS
);
2370 if ((links
& IXGBE_LINKS_KX_AN_COMP
) == 0)
2371 return IXGBE_ERR_FC_NOT_NEGOTIATED
;
2373 if (hw
->mac
.type
== ixgbe_mac_82599EB
) {
2374 links2
= IXGBE_READ_REG(hw
, IXGBE_LINKS2
);
2375 if ((links2
& IXGBE_LINKS2_AN_SUPPORTED
) == 0)
2376 return IXGBE_ERR_FC_NOT_NEGOTIATED
;
2379 * Read the 10g AN autoc and LP ability registers and resolve
2380 * local flow control settings accordingly
2382 autoc_reg
= IXGBE_READ_REG(hw
, IXGBE_AUTOC
);
2383 anlp1_reg
= IXGBE_READ_REG(hw
, IXGBE_ANLP1
);
2385 ret_val
= ixgbe_negotiate_fc(hw
, autoc_reg
,
2386 anlp1_reg
, IXGBE_AUTOC_SYM_PAUSE
, IXGBE_AUTOC_ASM_PAUSE
,
2387 IXGBE_ANLP1_SYM_PAUSE
, IXGBE_ANLP1_ASM_PAUSE
);
2393 * ixgbe_fc_autoneg_copper - Enable flow control IEEE clause 37
2394 * @hw: pointer to hardware structure
2396 * Enable flow control according to IEEE clause 37.
2398 static s32
ixgbe_fc_autoneg_copper(struct ixgbe_hw
*hw
)
2400 u16 technology_ability_reg
= 0;
2401 u16 lp_technology_ability_reg
= 0;
2403 hw
->phy
.ops
.read_reg(hw
, MDIO_AN_ADVERTISE
,
2405 &technology_ability_reg
);
2406 hw
->phy
.ops
.read_reg(hw
, MDIO_AN_LPA
,
2408 &lp_technology_ability_reg
);
2410 return ixgbe_negotiate_fc(hw
, (u32
)technology_ability_reg
,
2411 (u32
)lp_technology_ability_reg
,
2412 IXGBE_TAF_SYM_PAUSE
, IXGBE_TAF_ASM_PAUSE
,
2413 IXGBE_TAF_SYM_PAUSE
, IXGBE_TAF_ASM_PAUSE
);
2417 * ixgbe_fc_autoneg - Configure flow control
2418 * @hw: pointer to hardware structure
2420 * Compares our advertised flow control capabilities to those advertised by
2421 * our link partner, and determines the proper flow control mode to use.
2423 void ixgbe_fc_autoneg(struct ixgbe_hw
*hw
)
2425 s32 ret_val
= IXGBE_ERR_FC_NOT_NEGOTIATED
;
2426 ixgbe_link_speed speed
;
2430 * AN should have completed when the cable was plugged in.
2431 * Look for reasons to bail out. Bail out if:
2432 * - FC autoneg is disabled, or if
2435 * Since we're being called from an LSC, link is already known to be up.
2436 * So use link_up_wait_to_complete=false.
2438 if (hw
->fc
.disable_fc_autoneg
)
2441 hw
->mac
.ops
.check_link(hw
, &speed
, &link_up
, false);
2445 switch (hw
->phy
.media_type
) {
2446 /* Autoneg flow control on fiber adapters */
2447 case ixgbe_media_type_fiber
:
2448 if (speed
== IXGBE_LINK_SPEED_1GB_FULL
)
2449 ret_val
= ixgbe_fc_autoneg_fiber(hw
);
2452 /* Autoneg flow control on backplane adapters */
2453 case ixgbe_media_type_backplane
:
2454 ret_val
= ixgbe_fc_autoneg_backplane(hw
);
2457 /* Autoneg flow control on copper adapters */
2458 case ixgbe_media_type_copper
:
2459 if (ixgbe_device_supports_autoneg_fc(hw
))
2460 ret_val
= ixgbe_fc_autoneg_copper(hw
);
2469 hw
->fc
.fc_was_autonegged
= true;
2471 hw
->fc
.fc_was_autonegged
= false;
2472 hw
->fc
.current_mode
= hw
->fc
.requested_mode
;
2477 * ixgbe_pcie_timeout_poll - Return number of times to poll for completion
2478 * @hw: pointer to hardware structure
2480 * System-wide timeout range is encoded in PCIe Device Control2 register.
2482 * Add 10% to specified maximum and return the number of times to poll for
2483 * completion timeout, in units of 100 microsec. Never return less than
2484 * 800 = 80 millisec.
2486 static u32
ixgbe_pcie_timeout_poll(struct ixgbe_hw
*hw
)
2491 devctl2
= ixgbe_read_pci_cfg_word(hw
, IXGBE_PCI_DEVICE_CONTROL2
);
2492 devctl2
&= IXGBE_PCIDEVCTRL2_TIMEO_MASK
;
2495 case IXGBE_PCIDEVCTRL2_65_130ms
:
2496 pollcnt
= 1300; /* 130 millisec */
2498 case IXGBE_PCIDEVCTRL2_260_520ms
:
2499 pollcnt
= 5200; /* 520 millisec */
2501 case IXGBE_PCIDEVCTRL2_1_2s
:
2502 pollcnt
= 20000; /* 2 sec */
2504 case IXGBE_PCIDEVCTRL2_4_8s
:
2505 pollcnt
= 80000; /* 8 sec */
2507 case IXGBE_PCIDEVCTRL2_17_34s
:
2508 pollcnt
= 34000; /* 34 sec */
2510 case IXGBE_PCIDEVCTRL2_50_100us
: /* 100 microsecs */
2511 case IXGBE_PCIDEVCTRL2_1_2ms
: /* 2 millisecs */
2512 case IXGBE_PCIDEVCTRL2_16_32ms
: /* 32 millisec */
2513 case IXGBE_PCIDEVCTRL2_16_32ms_def
: /* 32 millisec default */
2515 pollcnt
= 800; /* 80 millisec minimum */
2519 /* add 10% to spec maximum */
2520 return (pollcnt
* 11) / 10;
2524 * ixgbe_disable_pcie_master - Disable PCI-express master access
2525 * @hw: pointer to hardware structure
2527 * Disables PCI-Express master access and verifies there are no pending
2528 * requests. IXGBE_ERR_MASTER_REQUESTS_PENDING is returned if master disable
2529 * bit hasn't caused the master requests to be disabled, else 0
2530 * is returned signifying master requests disabled.
2532 static s32
ixgbe_disable_pcie_master(struct ixgbe_hw
*hw
)
2537 /* Always set this bit to ensure any future transactions are blocked */
2538 IXGBE_WRITE_REG(hw
, IXGBE_CTRL
, IXGBE_CTRL_GIO_DIS
);
2540 /* Poll for bit to read as set */
2541 for (i
= 0; i
< IXGBE_PCI_MASTER_DISABLE_TIMEOUT
; i
++) {
2542 if (IXGBE_READ_REG(hw
, IXGBE_CTRL
) & IXGBE_CTRL_GIO_DIS
)
2544 usleep_range(100, 120);
2546 if (i
>= IXGBE_PCI_MASTER_DISABLE_TIMEOUT
) {
2547 hw_dbg(hw
, "GIO disable did not set - requesting resets\n");
2548 goto gio_disable_fail
;
2551 /* Exit if master requests are blocked */
2552 if (!(IXGBE_READ_REG(hw
, IXGBE_STATUS
) & IXGBE_STATUS_GIO
) ||
2553 ixgbe_removed(hw
->hw_addr
))
2556 /* Poll for master request bit to clear */
2557 for (i
= 0; i
< IXGBE_PCI_MASTER_DISABLE_TIMEOUT
; i
++) {
2559 if (!(IXGBE_READ_REG(hw
, IXGBE_STATUS
) & IXGBE_STATUS_GIO
))
2564 * Two consecutive resets are required via CTRL.RST per datasheet
2565 * 5.2.5.3.2 Master Disable. We set a flag to inform the reset routine
2566 * of this need. The first reset prevents new master requests from
2567 * being issued by our device. We then must wait 1usec or more for any
2568 * remaining completions from the PCIe bus to trickle in, and then reset
2569 * again to clear out any effects they may have had on our device.
2571 hw_dbg(hw
, "GIO Master Disable bit didn't clear - requesting resets\n");
2573 hw
->mac
.flags
|= IXGBE_FLAGS_DOUBLE_RESET_REQUIRED
;
2575 if (hw
->mac
.type
>= ixgbe_mac_X550
)
2579 * Before proceeding, make sure that the PCIe block does not have
2580 * transactions pending.
2582 poll
= ixgbe_pcie_timeout_poll(hw
);
2583 for (i
= 0; i
< poll
; i
++) {
2585 value
= ixgbe_read_pci_cfg_word(hw
, IXGBE_PCI_DEVICE_STATUS
);
2586 if (ixgbe_removed(hw
->hw_addr
))
2588 if (!(value
& IXGBE_PCI_DEVICE_STATUS_TRANSACTION_PENDING
))
2592 hw_dbg(hw
, "PCIe transaction pending bit also did not clear.\n");
2593 return IXGBE_ERR_MASTER_REQUESTS_PENDING
;
2597 * ixgbe_acquire_swfw_sync - Acquire SWFW semaphore
2598 * @hw: pointer to hardware structure
2599 * @mask: Mask to specify which semaphore to acquire
2601 * Acquires the SWFW semaphore through the GSSR register for the specified
2602 * function (CSR, PHY0, PHY1, EEPROM, Flash)
2604 s32
ixgbe_acquire_swfw_sync(struct ixgbe_hw
*hw
, u32 mask
)
2608 u32 fwmask
= mask
<< 5;
2612 for (i
= 0; i
< timeout
; i
++) {
2614 * SW NVM semaphore bit is used for access to all
2615 * SW_FW_SYNC bits (not just NVM)
2617 if (ixgbe_get_eeprom_semaphore(hw
))
2618 return IXGBE_ERR_SWFW_SYNC
;
2620 gssr
= IXGBE_READ_REG(hw
, IXGBE_GSSR
);
2621 if (!(gssr
& (fwmask
| swmask
))) {
2623 IXGBE_WRITE_REG(hw
, IXGBE_GSSR
, gssr
);
2624 ixgbe_release_eeprom_semaphore(hw
);
2627 /* Resource is currently in use by FW or SW */
2628 ixgbe_release_eeprom_semaphore(hw
);
2629 usleep_range(5000, 10000);
2633 /* If time expired clear the bits holding the lock and retry */
2634 if (gssr
& (fwmask
| swmask
))
2635 ixgbe_release_swfw_sync(hw
, gssr
& (fwmask
| swmask
));
2637 usleep_range(5000, 10000);
2638 return IXGBE_ERR_SWFW_SYNC
;
2642 * ixgbe_release_swfw_sync - Release SWFW semaphore
2643 * @hw: pointer to hardware structure
2644 * @mask: Mask to specify which semaphore to release
2646 * Releases the SWFW semaphore through the GSSR register for the specified
2647 * function (CSR, PHY0, PHY1, EEPROM, Flash)
2649 void ixgbe_release_swfw_sync(struct ixgbe_hw
*hw
, u32 mask
)
2654 ixgbe_get_eeprom_semaphore(hw
);
2656 gssr
= IXGBE_READ_REG(hw
, IXGBE_GSSR
);
2658 IXGBE_WRITE_REG(hw
, IXGBE_GSSR
, gssr
);
2660 ixgbe_release_eeprom_semaphore(hw
);
2664 * prot_autoc_read_generic - Hides MAC differences needed for AUTOC read
2665 * @hw: pointer to hardware structure
2666 * @reg_val: Value we read from AUTOC
2667 * @locked: bool to indicate whether the SW/FW lock should be taken. Never
2668 * true in this the generic case.
2670 * The default case requires no protection so just to the register read.
2672 s32
prot_autoc_read_generic(struct ixgbe_hw
*hw
, bool *locked
, u32
*reg_val
)
2675 *reg_val
= IXGBE_READ_REG(hw
, IXGBE_AUTOC
);
2680 * prot_autoc_write_generic - Hides MAC differences needed for AUTOC write
2681 * @hw: pointer to hardware structure
2682 * @reg_val: value to write to AUTOC
2683 * @locked: bool to indicate whether the SW/FW lock was already taken by
2686 s32
prot_autoc_write_generic(struct ixgbe_hw
*hw
, u32 reg_val
, bool locked
)
2688 IXGBE_WRITE_REG(hw
, IXGBE_AUTOC
, reg_val
);
2693 * ixgbe_disable_rx_buff_generic - Stops the receive data path
2694 * @hw: pointer to hardware structure
2696 * Stops the receive data path and waits for the HW to internally
2697 * empty the Rx security block.
2699 s32
ixgbe_disable_rx_buff_generic(struct ixgbe_hw
*hw
)
2701 #define IXGBE_MAX_SECRX_POLL 40
2705 secrxreg
= IXGBE_READ_REG(hw
, IXGBE_SECRXCTRL
);
2706 secrxreg
|= IXGBE_SECRXCTRL_RX_DIS
;
2707 IXGBE_WRITE_REG(hw
, IXGBE_SECRXCTRL
, secrxreg
);
2708 for (i
= 0; i
< IXGBE_MAX_SECRX_POLL
; i
++) {
2709 secrxreg
= IXGBE_READ_REG(hw
, IXGBE_SECRXSTAT
);
2710 if (secrxreg
& IXGBE_SECRXSTAT_SECRX_RDY
)
2713 /* Use interrupt-safe sleep just in case */
2717 /* For informational purposes only */
2718 if (i
>= IXGBE_MAX_SECRX_POLL
)
2719 hw_dbg(hw
, "Rx unit being enabled before security path fully disabled. Continuing with init.\n");
2726 * ixgbe_enable_rx_buff - Enables the receive data path
2727 * @hw: pointer to hardware structure
2729 * Enables the receive data path
2731 s32
ixgbe_enable_rx_buff_generic(struct ixgbe_hw
*hw
)
2735 secrxreg
= IXGBE_READ_REG(hw
, IXGBE_SECRXCTRL
);
2736 secrxreg
&= ~IXGBE_SECRXCTRL_RX_DIS
;
2737 IXGBE_WRITE_REG(hw
, IXGBE_SECRXCTRL
, secrxreg
);
2738 IXGBE_WRITE_FLUSH(hw
);
2744 * ixgbe_enable_rx_dma_generic - Enable the Rx DMA unit
2745 * @hw: pointer to hardware structure
2746 * @regval: register value to write to RXCTRL
2748 * Enables the Rx DMA unit
2750 s32
ixgbe_enable_rx_dma_generic(struct ixgbe_hw
*hw
, u32 regval
)
2752 if (regval
& IXGBE_RXCTRL_RXEN
)
2753 hw
->mac
.ops
.enable_rx(hw
);
2755 hw
->mac
.ops
.disable_rx(hw
);
2761 * ixgbe_blink_led_start_generic - Blink LED based on index.
2762 * @hw: pointer to hardware structure
2763 * @index: led number to blink
2765 s32
ixgbe_blink_led_start_generic(struct ixgbe_hw
*hw
, u32 index
)
2767 ixgbe_link_speed speed
= 0;
2768 bool link_up
= false;
2769 u32 autoc_reg
= IXGBE_READ_REG(hw
, IXGBE_AUTOC
);
2770 u32 led_reg
= IXGBE_READ_REG(hw
, IXGBE_LEDCTL
);
2771 bool locked
= false;
2775 return IXGBE_ERR_PARAM
;
2778 * Link must be up to auto-blink the LEDs;
2779 * Force it if link is down.
2781 hw
->mac
.ops
.check_link(hw
, &speed
, &link_up
, false);
2784 ret_val
= hw
->mac
.ops
.prot_autoc_read(hw
, &locked
, &autoc_reg
);
2788 autoc_reg
|= IXGBE_AUTOC_AN_RESTART
;
2789 autoc_reg
|= IXGBE_AUTOC_FLU
;
2791 ret_val
= hw
->mac
.ops
.prot_autoc_write(hw
, autoc_reg
, locked
);
2795 IXGBE_WRITE_FLUSH(hw
);
2797 usleep_range(10000, 20000);
2800 led_reg
&= ~IXGBE_LED_MODE_MASK(index
);
2801 led_reg
|= IXGBE_LED_BLINK(index
);
2802 IXGBE_WRITE_REG(hw
, IXGBE_LEDCTL
, led_reg
);
2803 IXGBE_WRITE_FLUSH(hw
);
2809 * ixgbe_blink_led_stop_generic - Stop blinking LED based on index.
2810 * @hw: pointer to hardware structure
2811 * @index: led number to stop blinking
2813 s32
ixgbe_blink_led_stop_generic(struct ixgbe_hw
*hw
, u32 index
)
2816 u32 led_reg
= IXGBE_READ_REG(hw
, IXGBE_LEDCTL
);
2817 bool locked
= false;
2821 return IXGBE_ERR_PARAM
;
2823 ret_val
= hw
->mac
.ops
.prot_autoc_read(hw
, &locked
, &autoc_reg
);
2827 autoc_reg
&= ~IXGBE_AUTOC_FLU
;
2828 autoc_reg
|= IXGBE_AUTOC_AN_RESTART
;
2830 ret_val
= hw
->mac
.ops
.prot_autoc_write(hw
, autoc_reg
, locked
);
2834 led_reg
&= ~IXGBE_LED_MODE_MASK(index
);
2835 led_reg
&= ~IXGBE_LED_BLINK(index
);
2836 led_reg
|= IXGBE_LED_LINK_ACTIVE
<< IXGBE_LED_MODE_SHIFT(index
);
2837 IXGBE_WRITE_REG(hw
, IXGBE_LEDCTL
, led_reg
);
2838 IXGBE_WRITE_FLUSH(hw
);
2844 * ixgbe_get_san_mac_addr_offset - Get SAN MAC address offset from the EEPROM
2845 * @hw: pointer to hardware structure
2846 * @san_mac_offset: SAN MAC address offset
2848 * This function will read the EEPROM location for the SAN MAC address
2849 * pointer, and returns the value at that location. This is used in both
2850 * get and set mac_addr routines.
2852 static s32
ixgbe_get_san_mac_addr_offset(struct ixgbe_hw
*hw
,
2853 u16
*san_mac_offset
)
2858 * First read the EEPROM pointer to see if the MAC addresses are
2861 ret_val
= hw
->eeprom
.ops
.read(hw
, IXGBE_SAN_MAC_ADDR_PTR
,
2864 hw_err(hw
, "eeprom read at offset %d failed\n",
2865 IXGBE_SAN_MAC_ADDR_PTR
);
2871 * ixgbe_get_san_mac_addr_generic - SAN MAC address retrieval from the EEPROM
2872 * @hw: pointer to hardware structure
2873 * @san_mac_addr: SAN MAC address
2875 * Reads the SAN MAC address from the EEPROM, if it's available. This is
2876 * per-port, so set_lan_id() must be called before reading the addresses.
2877 * set_lan_id() is called by identify_sfp(), but this cannot be relied
2878 * upon for non-SFP connections, so we must call it here.
2880 s32
ixgbe_get_san_mac_addr_generic(struct ixgbe_hw
*hw
, u8
*san_mac_addr
)
2882 u16 san_mac_data
, san_mac_offset
;
2887 * First read the EEPROM pointer to see if the MAC addresses are
2888 * available. If they're not, no point in calling set_lan_id() here.
2890 ret_val
= ixgbe_get_san_mac_addr_offset(hw
, &san_mac_offset
);
2891 if (ret_val
|| san_mac_offset
== 0 || san_mac_offset
== 0xFFFF)
2893 goto san_mac_addr_clr
;
2895 /* make sure we know which port we need to program */
2896 hw
->mac
.ops
.set_lan_id(hw
);
2897 /* apply the port offset to the address offset */
2898 (hw
->bus
.func
) ? (san_mac_offset
+= IXGBE_SAN_MAC_ADDR_PORT1_OFFSET
) :
2899 (san_mac_offset
+= IXGBE_SAN_MAC_ADDR_PORT0_OFFSET
);
2900 for (i
= 0; i
< 3; i
++) {
2901 ret_val
= hw
->eeprom
.ops
.read(hw
, san_mac_offset
,
2904 hw_err(hw
, "eeprom read at offset %d failed\n",
2906 goto san_mac_addr_clr
;
2908 san_mac_addr
[i
* 2] = (u8
)(san_mac_data
);
2909 san_mac_addr
[i
* 2 + 1] = (u8
)(san_mac_data
>> 8);
2915 /* No addresses available in this EEPROM. It's not necessarily an
2916 * error though, so just wipe the local address and return.
2918 for (i
= 0; i
< 6; i
++)
2919 san_mac_addr
[i
] = 0xFF;
2924 * ixgbe_get_pcie_msix_count_generic - Gets MSI-X vector count
2925 * @hw: pointer to hardware structure
2927 * Read PCIe configuration space, and get the MSI-X vector count from
2928 * the capabilities table.
2930 u16
ixgbe_get_pcie_msix_count_generic(struct ixgbe_hw
*hw
)
2936 switch (hw
->mac
.type
) {
2937 case ixgbe_mac_82598EB
:
2938 pcie_offset
= IXGBE_PCIE_MSIX_82598_CAPS
;
2939 max_msix_count
= IXGBE_MAX_MSIX_VECTORS_82598
;
2941 case ixgbe_mac_82599EB
:
2942 case ixgbe_mac_X540
:
2943 case ixgbe_mac_X550
:
2944 case ixgbe_mac_X550EM_x
:
2945 case ixgbe_mac_x550em_a
:
2946 pcie_offset
= IXGBE_PCIE_MSIX_82599_CAPS
;
2947 max_msix_count
= IXGBE_MAX_MSIX_VECTORS_82599
;
2953 msix_count
= ixgbe_read_pci_cfg_word(hw
, pcie_offset
);
2954 if (ixgbe_removed(hw
->hw_addr
))
2956 msix_count
&= IXGBE_PCIE_MSIX_TBL_SZ_MASK
;
2958 /* MSI-X count is zero-based in HW */
2961 if (msix_count
> max_msix_count
)
2962 msix_count
= max_msix_count
;
2968 * ixgbe_clear_vmdq_generic - Disassociate a VMDq pool index from a rx address
2969 * @hw: pointer to hardware struct
2970 * @rar: receive address register index to disassociate
2971 * @vmdq: VMDq pool index to remove from the rar
2973 s32
ixgbe_clear_vmdq_generic(struct ixgbe_hw
*hw
, u32 rar
, u32 vmdq
)
2975 u32 mpsar_lo
, mpsar_hi
;
2976 u32 rar_entries
= hw
->mac
.num_rar_entries
;
2978 /* Make sure we are using a valid rar index range */
2979 if (rar
>= rar_entries
) {
2980 hw_dbg(hw
, "RAR index %d is out of range.\n", rar
);
2981 return IXGBE_ERR_INVALID_ARGUMENT
;
2984 mpsar_lo
= IXGBE_READ_REG(hw
, IXGBE_MPSAR_LO(rar
));
2985 mpsar_hi
= IXGBE_READ_REG(hw
, IXGBE_MPSAR_HI(rar
));
2987 if (ixgbe_removed(hw
->hw_addr
))
2990 if (!mpsar_lo
&& !mpsar_hi
)
2993 if (vmdq
== IXGBE_CLEAR_VMDQ_ALL
) {
2995 IXGBE_WRITE_REG(hw
, IXGBE_MPSAR_LO(rar
), 0);
2999 IXGBE_WRITE_REG(hw
, IXGBE_MPSAR_HI(rar
), 0);
3002 } else if (vmdq
< 32) {
3003 mpsar_lo
&= ~BIT(vmdq
);
3004 IXGBE_WRITE_REG(hw
, IXGBE_MPSAR_LO(rar
), mpsar_lo
);
3006 mpsar_hi
&= ~BIT(vmdq
- 32);
3007 IXGBE_WRITE_REG(hw
, IXGBE_MPSAR_HI(rar
), mpsar_hi
);
3010 /* was that the last pool using this rar? */
3011 if (mpsar_lo
== 0 && mpsar_hi
== 0 &&
3012 rar
!= 0 && rar
!= hw
->mac
.san_mac_rar_index
)
3013 hw
->mac
.ops
.clear_rar(hw
, rar
);
3019 * ixgbe_set_vmdq_generic - Associate a VMDq pool index with a rx address
3020 * @hw: pointer to hardware struct
3021 * @rar: receive address register index to associate with a VMDq index
3022 * @vmdq: VMDq pool index
3024 s32
ixgbe_set_vmdq_generic(struct ixgbe_hw
*hw
, u32 rar
, u32 vmdq
)
3027 u32 rar_entries
= hw
->mac
.num_rar_entries
;
3029 /* Make sure we are using a valid rar index range */
3030 if (rar
>= rar_entries
) {
3031 hw_dbg(hw
, "RAR index %d is out of range.\n", rar
);
3032 return IXGBE_ERR_INVALID_ARGUMENT
;
3036 mpsar
= IXGBE_READ_REG(hw
, IXGBE_MPSAR_LO(rar
));
3038 IXGBE_WRITE_REG(hw
, IXGBE_MPSAR_LO(rar
), mpsar
);
3040 mpsar
= IXGBE_READ_REG(hw
, IXGBE_MPSAR_HI(rar
));
3041 mpsar
|= BIT(vmdq
- 32);
3042 IXGBE_WRITE_REG(hw
, IXGBE_MPSAR_HI(rar
), mpsar
);
3048 * This function should only be involved in the IOV mode.
3049 * In IOV mode, Default pool is next pool after the number of
3050 * VFs advertized and not 0.
3051 * MPSAR table needs to be updated for SAN_MAC RAR [hw->mac.san_mac_rar_index]
3053 * ixgbe_set_vmdq_san_mac - Associate default VMDq pool index with a rx address
3054 * @hw: pointer to hardware struct
3055 * @vmdq: VMDq pool index
3057 s32
ixgbe_set_vmdq_san_mac_generic(struct ixgbe_hw
*hw
, u32 vmdq
)
3059 u32 rar
= hw
->mac
.san_mac_rar_index
;
3062 IXGBE_WRITE_REG(hw
, IXGBE_MPSAR_LO(rar
), BIT(vmdq
));
3063 IXGBE_WRITE_REG(hw
, IXGBE_MPSAR_HI(rar
), 0);
3065 IXGBE_WRITE_REG(hw
, IXGBE_MPSAR_LO(rar
), 0);
3066 IXGBE_WRITE_REG(hw
, IXGBE_MPSAR_HI(rar
), BIT(vmdq
- 32));
3073 * ixgbe_init_uta_tables_generic - Initialize the Unicast Table Array
3074 * @hw: pointer to hardware structure
3076 s32
ixgbe_init_uta_tables_generic(struct ixgbe_hw
*hw
)
3080 for (i
= 0; i
< 128; i
++)
3081 IXGBE_WRITE_REG(hw
, IXGBE_UTA(i
), 0);
3087 * ixgbe_find_vlvf_slot - find the vlanid or the first empty slot
3088 * @hw: pointer to hardware structure
3089 * @vlan: VLAN id to write to VLAN filter
3090 * @vlvf_bypass: true to find vlanid only, false returns first empty slot if
3093 * return the VLVF index where this VLAN id should be placed
3096 static s32
ixgbe_find_vlvf_slot(struct ixgbe_hw
*hw
, u32 vlan
, bool vlvf_bypass
)
3098 s32 regindex
, first_empty_slot
;
3101 /* short cut the special case */
3105 /* if vlvf_bypass is set we don't want to use an empty slot, we
3106 * will simply bypass the VLVF if there are no entries present in the
3107 * VLVF that contain our VLAN
3109 first_empty_slot
= vlvf_bypass
? IXGBE_ERR_NO_SPACE
: 0;
3111 /* add VLAN enable bit for comparison */
3112 vlan
|= IXGBE_VLVF_VIEN
;
3114 /* Search for the vlan id in the VLVF entries. Save off the first empty
3115 * slot found along the way.
3117 * pre-decrement loop covering (IXGBE_VLVF_ENTRIES - 1) .. 1
3119 for (regindex
= IXGBE_VLVF_ENTRIES
; --regindex
;) {
3120 bits
= IXGBE_READ_REG(hw
, IXGBE_VLVF(regindex
));
3123 if (!first_empty_slot
&& !bits
)
3124 first_empty_slot
= regindex
;
3127 /* If we are here then we didn't find the VLAN. Return first empty
3128 * slot we found during our search, else error.
3130 if (!first_empty_slot
)
3131 hw_dbg(hw
, "No space in VLVF.\n");
3133 return first_empty_slot
? : IXGBE_ERR_NO_SPACE
;
3137 * ixgbe_set_vfta_generic - Set VLAN filter table
3138 * @hw: pointer to hardware structure
3139 * @vlan: VLAN id to write to VLAN filter
3140 * @vind: VMDq output index that maps queue to VLAN id in VFVFB
3141 * @vlan_on: boolean flag to turn on/off VLAN in VFVF
3142 * @vlvf_bypass: boolean flag indicating updating default pool is okay
3144 * Turn on/off specified VLAN in the VLAN filter table.
3146 s32
ixgbe_set_vfta_generic(struct ixgbe_hw
*hw
, u32 vlan
, u32 vind
,
3147 bool vlan_on
, bool vlvf_bypass
)
3149 u32 regidx
, vfta_delta
, vfta
, bits
;
3152 if ((vlan
> 4095) || (vind
> 63))
3153 return IXGBE_ERR_PARAM
;
3156 * this is a 2 part operation - first the VFTA, then the
3157 * VLVF and VLVFB if VT Mode is set
3158 * We don't write the VFTA until we know the VLVF part succeeded.
3162 * The VFTA is a bitstring made up of 128 32-bit registers
3163 * that enable the particular VLAN id, much like the MTA:
3164 * bits[11-5]: which register
3165 * bits[4-0]: which bit in the register
3168 vfta_delta
= BIT(vlan
% 32);
3169 vfta
= IXGBE_READ_REG(hw
, IXGBE_VFTA(regidx
));
3171 /* vfta_delta represents the difference between the current value
3172 * of vfta and the value we want in the register. Since the diff
3173 * is an XOR mask we can just update vfta using an XOR.
3175 vfta_delta
&= vlan_on
? ~vfta
: vfta
;
3181 * make sure the vlan is in VLVF
3182 * set the vind bit in the matching VLVFB
3184 * clear the pool bit and possibly the vind
3186 if (!(IXGBE_READ_REG(hw
, IXGBE_VT_CTL
) & IXGBE_VT_CTL_VT_ENABLE
))
3189 vlvf_index
= ixgbe_find_vlvf_slot(hw
, vlan
, vlvf_bypass
);
3190 if (vlvf_index
< 0) {
3196 bits
= IXGBE_READ_REG(hw
, IXGBE_VLVFB(vlvf_index
* 2 + vind
/ 32));
3198 /* set the pool bit */
3199 bits
|= BIT(vind
% 32);
3203 /* clear the pool bit */
3204 bits
^= BIT(vind
% 32);
3207 !IXGBE_READ_REG(hw
, IXGBE_VLVFB(vlvf_index
* 2 + 1 - vind
/ 32))) {
3208 /* Clear VFTA first, then disable VLVF. Otherwise
3209 * we run the risk of stray packets leaking into
3210 * the PF via the default pool
3213 IXGBE_WRITE_REG(hw
, IXGBE_VFTA(regidx
), vfta
);
3215 /* disable VLVF and clear remaining bit from pool */
3216 IXGBE_WRITE_REG(hw
, IXGBE_VLVF(vlvf_index
), 0);
3217 IXGBE_WRITE_REG(hw
, IXGBE_VLVFB(vlvf_index
* 2 + vind
/ 32), 0);
3222 /* If there are still bits set in the VLVFB registers
3223 * for the VLAN ID indicated we need to see if the
3224 * caller is requesting that we clear the VFTA entry bit.
3225 * If the caller has requested that we clear the VFTA
3226 * entry bit but there are still pools/VFs using this VLAN
3227 * ID entry then ignore the request. We're not worried
3228 * about the case where we're turning the VFTA VLAN ID
3229 * entry bit on, only when requested to turn it off as
3230 * there may be multiple pools and/or VFs using the
3231 * VLAN ID entry. In that case we cannot clear the
3232 * VFTA bit until all pools/VFs using that VLAN ID have also
3233 * been cleared. This will be indicated by "bits" being
3239 /* record pool change and enable VLAN ID if not already enabled */
3240 IXGBE_WRITE_REG(hw
, IXGBE_VLVFB(vlvf_index
* 2 + vind
/ 32), bits
);
3241 IXGBE_WRITE_REG(hw
, IXGBE_VLVF(vlvf_index
), IXGBE_VLVF_VIEN
| vlan
);
3244 /* Update VFTA now that we are ready for traffic */
3246 IXGBE_WRITE_REG(hw
, IXGBE_VFTA(regidx
), vfta
);
3252 * ixgbe_clear_vfta_generic - Clear VLAN filter table
3253 * @hw: pointer to hardware structure
3255 * Clears the VLAN filer table, and the VMDq index associated with the filter
3257 s32
ixgbe_clear_vfta_generic(struct ixgbe_hw
*hw
)
3261 for (offset
= 0; offset
< hw
->mac
.vft_size
; offset
++)
3262 IXGBE_WRITE_REG(hw
, IXGBE_VFTA(offset
), 0);
3264 for (offset
= 0; offset
< IXGBE_VLVF_ENTRIES
; offset
++) {
3265 IXGBE_WRITE_REG(hw
, IXGBE_VLVF(offset
), 0);
3266 IXGBE_WRITE_REG(hw
, IXGBE_VLVFB(offset
* 2), 0);
3267 IXGBE_WRITE_REG(hw
, IXGBE_VLVFB(offset
* 2 + 1), 0);
3274 * ixgbe_need_crosstalk_fix - Determine if we need to do cross talk fix
3275 * @hw: pointer to hardware structure
3277 * Contains the logic to identify if we need to verify link for the
3280 static bool ixgbe_need_crosstalk_fix(struct ixgbe_hw
*hw
)
3282 /* Does FW say we need the fix */
3283 if (!hw
->need_crosstalk_fix
)
3286 /* Only consider SFP+ PHYs i.e. media type fiber */
3287 switch (hw
->mac
.ops
.get_media_type(hw
)) {
3288 case ixgbe_media_type_fiber
:
3289 case ixgbe_media_type_fiber_qsfp
:
3299 * ixgbe_check_mac_link_generic - Determine link and speed status
3300 * @hw: pointer to hardware structure
3301 * @speed: pointer to link speed
3302 * @link_up: true when link is up
3303 * @link_up_wait_to_complete: bool used to wait for link up or not
3305 * Reads the links register to determine if link is up and the current speed
3307 s32
ixgbe_check_mac_link_generic(struct ixgbe_hw
*hw
, ixgbe_link_speed
*speed
,
3308 bool *link_up
, bool link_up_wait_to_complete
)
3310 u32 links_reg
, links_orig
;
3313 /* If Crosstalk fix enabled do the sanity check of making sure
3314 * the SFP+ cage is full.
3316 if (ixgbe_need_crosstalk_fix(hw
)) {
3319 switch (hw
->mac
.type
) {
3320 case ixgbe_mac_82599EB
:
3321 sfp_cage_full
= IXGBE_READ_REG(hw
, IXGBE_ESDP
) &
3324 case ixgbe_mac_X550EM_x
:
3325 case ixgbe_mac_x550em_a
:
3326 sfp_cage_full
= IXGBE_READ_REG(hw
, IXGBE_ESDP
) &
3330 /* sanity check - No SFP+ devices here */
3331 sfp_cage_full
= false;
3335 if (!sfp_cage_full
) {
3337 *speed
= IXGBE_LINK_SPEED_UNKNOWN
;
3342 /* clear the old state */
3343 links_orig
= IXGBE_READ_REG(hw
, IXGBE_LINKS
);
3345 links_reg
= IXGBE_READ_REG(hw
, IXGBE_LINKS
);
3347 if (links_orig
!= links_reg
) {
3348 hw_dbg(hw
, "LINKS changed from %08X to %08X\n",
3349 links_orig
, links_reg
);
3352 if (link_up_wait_to_complete
) {
3353 for (i
= 0; i
< IXGBE_LINK_UP_TIME
; i
++) {
3354 if (links_reg
& IXGBE_LINKS_UP
) {
3361 links_reg
= IXGBE_READ_REG(hw
, IXGBE_LINKS
);
3364 if (links_reg
& IXGBE_LINKS_UP
)
3370 switch (links_reg
& IXGBE_LINKS_SPEED_82599
) {
3371 case IXGBE_LINKS_SPEED_10G_82599
:
3372 if ((hw
->mac
.type
>= ixgbe_mac_X550
) &&
3373 (links_reg
& IXGBE_LINKS_SPEED_NON_STD
))
3374 *speed
= IXGBE_LINK_SPEED_2_5GB_FULL
;
3376 *speed
= IXGBE_LINK_SPEED_10GB_FULL
;
3378 case IXGBE_LINKS_SPEED_1G_82599
:
3379 *speed
= IXGBE_LINK_SPEED_1GB_FULL
;
3381 case IXGBE_LINKS_SPEED_100_82599
:
3382 if ((hw
->mac
.type
>= ixgbe_mac_X550
) &&
3383 (links_reg
& IXGBE_LINKS_SPEED_NON_STD
))
3384 *speed
= IXGBE_LINK_SPEED_5GB_FULL
;
3386 *speed
= IXGBE_LINK_SPEED_100_FULL
;
3388 case IXGBE_LINKS_SPEED_10_X550EM_A
:
3389 *speed
= IXGBE_LINK_SPEED_UNKNOWN
;
3390 if (hw
->device_id
== IXGBE_DEV_ID_X550EM_A_1G_T
||
3391 hw
->device_id
== IXGBE_DEV_ID_X550EM_A_1G_T_L
) {
3392 *speed
= IXGBE_LINK_SPEED_10_FULL
;
3396 *speed
= IXGBE_LINK_SPEED_UNKNOWN
;
3403 * ixgbe_get_wwn_prefix_generic - Get alternative WWNN/WWPN prefix from
3405 * @hw: pointer to hardware structure
3406 * @wwnn_prefix: the alternative WWNN prefix
3407 * @wwpn_prefix: the alternative WWPN prefix
3409 * This function will read the EEPROM from the alternative SAN MAC address
3410 * block to check the support for the alternative WWNN/WWPN prefix support.
3412 s32
ixgbe_get_wwn_prefix_generic(struct ixgbe_hw
*hw
, u16
*wwnn_prefix
,
3416 u16 alt_san_mac_blk_offset
;
3418 /* clear output first */
3419 *wwnn_prefix
= 0xFFFF;
3420 *wwpn_prefix
= 0xFFFF;
3422 /* check if alternative SAN MAC is supported */
3423 offset
= IXGBE_ALT_SAN_MAC_ADDR_BLK_PTR
;
3424 if (hw
->eeprom
.ops
.read(hw
, offset
, &alt_san_mac_blk_offset
))
3425 goto wwn_prefix_err
;
3427 if ((alt_san_mac_blk_offset
== 0) ||
3428 (alt_san_mac_blk_offset
== 0xFFFF))
3431 /* check capability in alternative san mac address block */
3432 offset
= alt_san_mac_blk_offset
+ IXGBE_ALT_SAN_MAC_ADDR_CAPS_OFFSET
;
3433 if (hw
->eeprom
.ops
.read(hw
, offset
, &caps
))
3434 goto wwn_prefix_err
;
3435 if (!(caps
& IXGBE_ALT_SAN_MAC_ADDR_CAPS_ALTWWN
))
3438 /* get the corresponding prefix for WWNN/WWPN */
3439 offset
= alt_san_mac_blk_offset
+ IXGBE_ALT_SAN_MAC_ADDR_WWNN_OFFSET
;
3440 if (hw
->eeprom
.ops
.read(hw
, offset
, wwnn_prefix
))
3441 hw_err(hw
, "eeprom read at offset %d failed\n", offset
);
3443 offset
= alt_san_mac_blk_offset
+ IXGBE_ALT_SAN_MAC_ADDR_WWPN_OFFSET
;
3444 if (hw
->eeprom
.ops
.read(hw
, offset
, wwpn_prefix
))
3445 goto wwn_prefix_err
;
3450 hw_err(hw
, "eeprom read at offset %d failed\n", offset
);
3455 * ixgbe_set_mac_anti_spoofing - Enable/Disable MAC anti-spoofing
3456 * @hw: pointer to hardware structure
3457 * @enable: enable or disable switch for MAC anti-spoofing
3458 * @vf: Virtual Function pool - VF Pool to set for MAC anti-spoofing
3461 void ixgbe_set_mac_anti_spoofing(struct ixgbe_hw
*hw
, bool enable
, int vf
)
3463 int vf_target_reg
= vf
>> 3;
3464 int vf_target_shift
= vf
% 8;
3467 if (hw
->mac
.type
== ixgbe_mac_82598EB
)
3470 pfvfspoof
= IXGBE_READ_REG(hw
, IXGBE_PFVFSPOOF(vf_target_reg
));
3472 pfvfspoof
|= BIT(vf_target_shift
);
3474 pfvfspoof
&= ~BIT(vf_target_shift
);
3475 IXGBE_WRITE_REG(hw
, IXGBE_PFVFSPOOF(vf_target_reg
), pfvfspoof
);
3479 * ixgbe_set_vlan_anti_spoofing - Enable/Disable VLAN anti-spoofing
3480 * @hw: pointer to hardware structure
3481 * @enable: enable or disable switch for VLAN anti-spoofing
3482 * @vf: Virtual Function pool - VF Pool to set for VLAN anti-spoofing
3485 void ixgbe_set_vlan_anti_spoofing(struct ixgbe_hw
*hw
, bool enable
, int vf
)
3487 int vf_target_reg
= vf
>> 3;
3488 int vf_target_shift
= vf
% 8 + IXGBE_SPOOF_VLANAS_SHIFT
;
3491 if (hw
->mac
.type
== ixgbe_mac_82598EB
)
3494 pfvfspoof
= IXGBE_READ_REG(hw
, IXGBE_PFVFSPOOF(vf_target_reg
));
3496 pfvfspoof
|= BIT(vf_target_shift
);
3498 pfvfspoof
&= ~BIT(vf_target_shift
);
3499 IXGBE_WRITE_REG(hw
, IXGBE_PFVFSPOOF(vf_target_reg
), pfvfspoof
);
3503 * ixgbe_get_device_caps_generic - Get additional device capabilities
3504 * @hw: pointer to hardware structure
3505 * @device_caps: the EEPROM word with the extra device capabilities
3507 * This function will read the EEPROM location for the device capabilities,
3508 * and return the word through device_caps.
3510 s32
ixgbe_get_device_caps_generic(struct ixgbe_hw
*hw
, u16
*device_caps
)
3512 hw
->eeprom
.ops
.read(hw
, IXGBE_DEVICE_CAPS
, device_caps
);
3518 * ixgbe_set_rxpba_generic - Initialize RX packet buffer
3519 * @hw: pointer to hardware structure
3520 * @num_pb: number of packet buffers to allocate
3521 * @headroom: reserve n KB of headroom
3522 * @strategy: packet buffer allocation strategy
3524 void ixgbe_set_rxpba_generic(struct ixgbe_hw
*hw
,
3529 u32 pbsize
= hw
->mac
.rx_pb_size
;
3531 u32 rxpktsize
, txpktsize
, txpbthresh
;
3533 /* Reserve headroom */
3539 /* Divide remaining packet buffer space amongst the number
3540 * of packet buffers requested using supplied strategy.
3543 case (PBA_STRATEGY_WEIGHTED
):
3544 /* pba_80_48 strategy weight first half of packet buffer with
3545 * 5/8 of the packet buffer space.
3547 rxpktsize
= ((pbsize
* 5 * 2) / (num_pb
* 8));
3548 pbsize
-= rxpktsize
* (num_pb
/ 2);
3549 rxpktsize
<<= IXGBE_RXPBSIZE_SHIFT
;
3550 for (; i
< (num_pb
/ 2); i
++)
3551 IXGBE_WRITE_REG(hw
, IXGBE_RXPBSIZE(i
), rxpktsize
);
3552 /* fall through - configure remaining packet buffers */
3553 case (PBA_STRATEGY_EQUAL
):
3554 /* Divide the remaining Rx packet buffer evenly among the TCs */
3555 rxpktsize
= (pbsize
/ (num_pb
- i
)) << IXGBE_RXPBSIZE_SHIFT
;
3556 for (; i
< num_pb
; i
++)
3557 IXGBE_WRITE_REG(hw
, IXGBE_RXPBSIZE(i
), rxpktsize
);
3564 * Setup Tx packet buffer and threshold equally for all TCs
3565 * TXPBTHRESH register is set in K so divide by 1024 and subtract
3566 * 10 since the largest packet we support is just over 9K.
3568 txpktsize
= IXGBE_TXPBSIZE_MAX
/ num_pb
;
3569 txpbthresh
= (txpktsize
/ 1024) - IXGBE_TXPKT_SIZE_MAX
;
3570 for (i
= 0; i
< num_pb
; i
++) {
3571 IXGBE_WRITE_REG(hw
, IXGBE_TXPBSIZE(i
), txpktsize
);
3572 IXGBE_WRITE_REG(hw
, IXGBE_TXPBTHRESH(i
), txpbthresh
);
3575 /* Clear unused TCs, if any, to zero buffer size*/
3576 for (; i
< IXGBE_MAX_PB
; i
++) {
3577 IXGBE_WRITE_REG(hw
, IXGBE_RXPBSIZE(i
), 0);
3578 IXGBE_WRITE_REG(hw
, IXGBE_TXPBSIZE(i
), 0);
3579 IXGBE_WRITE_REG(hw
, IXGBE_TXPBTHRESH(i
), 0);
3584 * ixgbe_calculate_checksum - Calculate checksum for buffer
3585 * @buffer: pointer to EEPROM
3586 * @length: size of EEPROM to calculate a checksum for
3588 * Calculates the checksum for some buffer on a specified length. The
3589 * checksum calculated is returned.
3591 u8
ixgbe_calculate_checksum(u8
*buffer
, u32 length
)
3599 for (i
= 0; i
< length
; i
++)
3602 return (u8
) (0 - sum
);
3606 * ixgbe_hic_unlocked - Issue command to manageability block unlocked
3607 * @hw: pointer to the HW structure
3608 * @buffer: command to write and where the return status will be placed
3609 * @length: length of buffer, must be multiple of 4 bytes
3610 * @timeout: time in ms to wait for command completion
3612 * Communicates with the manageability block. On success return 0
3613 * else returns semaphore error when encountering an error acquiring
3614 * semaphore or IXGBE_ERR_HOST_INTERFACE_COMMAND when command fails.
3616 * This function assumes that the IXGBE_GSSR_SW_MNG_SM semaphore is held
3619 s32
ixgbe_hic_unlocked(struct ixgbe_hw
*hw
, u32
*buffer
, u32 length
,
3625 if (!length
|| length
> IXGBE_HI_MAX_BLOCK_BYTE_LENGTH
) {
3626 hw_dbg(hw
, "Buffer length failure buffersize-%d.\n", length
);
3627 return IXGBE_ERR_HOST_INTERFACE_COMMAND
;
3630 /* Set bit 9 of FWSTS clearing FW reset indication */
3631 fwsts
= IXGBE_READ_REG(hw
, IXGBE_FWSTS
);
3632 IXGBE_WRITE_REG(hw
, IXGBE_FWSTS
, fwsts
| IXGBE_FWSTS_FWRI
);
3634 /* Check that the host interface is enabled. */
3635 hicr
= IXGBE_READ_REG(hw
, IXGBE_HICR
);
3636 if (!(hicr
& IXGBE_HICR_EN
)) {
3637 hw_dbg(hw
, "IXGBE_HOST_EN bit disabled.\n");
3638 return IXGBE_ERR_HOST_INTERFACE_COMMAND
;
3641 /* Calculate length in DWORDs. We must be DWORD aligned */
3642 if (length
% sizeof(u32
)) {
3643 hw_dbg(hw
, "Buffer length failure, not aligned to dword");
3644 return IXGBE_ERR_INVALID_ARGUMENT
;
3647 dword_len
= length
>> 2;
3649 /* The device driver writes the relevant command block
3650 * into the ram area.
3652 for (i
= 0; i
< dword_len
; i
++)
3653 IXGBE_WRITE_REG_ARRAY(hw
, IXGBE_FLEX_MNG
,
3654 i
, cpu_to_le32(buffer
[i
]));
3656 /* Setting this bit tells the ARC that a new command is pending. */
3657 IXGBE_WRITE_REG(hw
, IXGBE_HICR
, hicr
| IXGBE_HICR_C
);
3659 for (i
= 0; i
< timeout
; i
++) {
3660 hicr
= IXGBE_READ_REG(hw
, IXGBE_HICR
);
3661 if (!(hicr
& IXGBE_HICR_C
))
3663 usleep_range(1000, 2000);
3666 /* Check command successful completion. */
3667 if ((timeout
&& i
== timeout
) ||
3668 !(IXGBE_READ_REG(hw
, IXGBE_HICR
) & IXGBE_HICR_SV
))
3669 return IXGBE_ERR_HOST_INTERFACE_COMMAND
;
3675 * ixgbe_host_interface_command - Issue command to manageability block
3676 * @hw: pointer to the HW structure
3677 * @buffer: contains the command to write and where the return status will
3679 * @length: length of buffer, must be multiple of 4 bytes
3680 * @timeout: time in ms to wait for command completion
3681 * @return_data: read and return data from the buffer (true) or not (false)
3682 * Needed because FW structures are big endian and decoding of
3683 * these fields can be 8 bit or 16 bit based on command. Decoding
3684 * is not easily understood without making a table of commands.
3685 * So we will leave this up to the caller to read back the data
3688 * Communicates with the manageability block. On success return 0
3689 * else return IXGBE_ERR_HOST_INTERFACE_COMMAND.
3691 s32
ixgbe_host_interface_command(struct ixgbe_hw
*hw
, void *buffer
,
3692 u32 length
, u32 timeout
,
3695 u32 hdr_size
= sizeof(struct ixgbe_hic_hdr
);
3697 struct ixgbe_hic_hdr hdr
;
3700 u16 buf_len
, dword_len
;
3704 if (!length
|| length
> IXGBE_HI_MAX_BLOCK_BYTE_LENGTH
) {
3705 hw_dbg(hw
, "Buffer length failure buffersize-%d.\n", length
);
3706 return IXGBE_ERR_HOST_INTERFACE_COMMAND
;
3708 /* Take management host interface semaphore */
3709 status
= hw
->mac
.ops
.acquire_swfw_sync(hw
, IXGBE_GSSR_SW_MNG_SM
);
3713 status
= ixgbe_hic_unlocked(hw
, buffer
, length
, timeout
);
3720 /* Calculate length in DWORDs */
3721 dword_len
= hdr_size
>> 2;
3723 /* first pull in the header so we know the buffer length */
3724 for (bi
= 0; bi
< dword_len
; bi
++) {
3725 bp
->u32arr
[bi
] = IXGBE_READ_REG_ARRAY(hw
, IXGBE_FLEX_MNG
, bi
);
3726 le32_to_cpus(&bp
->u32arr
[bi
]);
3729 /* If there is any thing in data position pull it in */
3730 buf_len
= bp
->hdr
.buf_len
;
3734 if (length
< round_up(buf_len
, 4) + hdr_size
) {
3735 hw_dbg(hw
, "Buffer not large enough for reply message.\n");
3736 status
= IXGBE_ERR_HOST_INTERFACE_COMMAND
;
3740 /* Calculate length in DWORDs, add 3 for odd lengths */
3741 dword_len
= (buf_len
+ 3) >> 2;
3743 /* Pull in the rest of the buffer (bi is where we left off) */
3744 for (; bi
<= dword_len
; bi
++) {
3745 bp
->u32arr
[bi
] = IXGBE_READ_REG_ARRAY(hw
, IXGBE_FLEX_MNG
, bi
);
3746 le32_to_cpus(&bp
->u32arr
[bi
]);
3750 hw
->mac
.ops
.release_swfw_sync(hw
, IXGBE_GSSR_SW_MNG_SM
);
3756 * ixgbe_set_fw_drv_ver_generic - Sends driver version to firmware
3757 * @hw: pointer to the HW structure
3758 * @maj: driver version major number
3759 * @min: driver version minor number
3760 * @build: driver version build number
3761 * @sub: driver version sub build number
3762 * @len: length of driver_ver string
3763 * @driver_ver: driver string
3765 * Sends driver version number to firmware through the manageability
3766 * block. On success return 0
3767 * else returns IXGBE_ERR_SWFW_SYNC when encountering an error acquiring
3768 * semaphore or IXGBE_ERR_HOST_INTERFACE_COMMAND when command fails.
3770 s32
ixgbe_set_fw_drv_ver_generic(struct ixgbe_hw
*hw
, u8 maj
, u8 min
,
3771 u8 build
, u8 sub
, __always_unused u16 len
,
3772 __always_unused
const char *driver_ver
)
3774 struct ixgbe_hic_drv_info fw_cmd
;
3778 fw_cmd
.hdr
.cmd
= FW_CEM_CMD_DRIVER_INFO
;
3779 fw_cmd
.hdr
.buf_len
= FW_CEM_CMD_DRIVER_INFO_LEN
;
3780 fw_cmd
.hdr
.cmd_or_resp
.cmd_resv
= FW_CEM_CMD_RESERVED
;
3781 fw_cmd
.port_num
= hw
->bus
.func
;
3782 fw_cmd
.ver_maj
= maj
;
3783 fw_cmd
.ver_min
= min
;
3784 fw_cmd
.ver_build
= build
;
3785 fw_cmd
.ver_sub
= sub
;
3786 fw_cmd
.hdr
.checksum
= 0;
3789 fw_cmd
.hdr
.checksum
= ixgbe_calculate_checksum((u8
*)&fw_cmd
,
3790 (FW_CEM_HDR_LEN
+ fw_cmd
.hdr
.buf_len
));
3792 for (i
= 0; i
<= FW_CEM_MAX_RETRIES
; i
++) {
3793 ret_val
= ixgbe_host_interface_command(hw
, &fw_cmd
,
3795 IXGBE_HI_COMMAND_TIMEOUT
,
3800 if (fw_cmd
.hdr
.cmd_or_resp
.ret_status
==
3801 FW_CEM_RESP_STATUS_SUCCESS
)
3804 ret_val
= IXGBE_ERR_HOST_INTERFACE_COMMAND
;
3813 * ixgbe_clear_tx_pending - Clear pending TX work from the PCIe fifo
3814 * @hw: pointer to the hardware structure
3816 * The 82599 and x540 MACs can experience issues if TX work is still pending
3817 * when a reset occurs. This function prevents this by flushing the PCIe
3818 * buffers on the system.
3820 void ixgbe_clear_tx_pending(struct ixgbe_hw
*hw
)
3822 u32 gcr_ext
, hlreg0
, i
, poll
;
3826 * If double reset is not requested then all transactions should
3827 * already be clear and as such there is no work to do
3829 if (!(hw
->mac
.flags
& IXGBE_FLAGS_DOUBLE_RESET_REQUIRED
))
3833 * Set loopback enable to prevent any transmits from being sent
3834 * should the link come up. This assumes that the RXCTRL.RXEN bit
3835 * has already been cleared.
3837 hlreg0
= IXGBE_READ_REG(hw
, IXGBE_HLREG0
);
3838 IXGBE_WRITE_REG(hw
, IXGBE_HLREG0
, hlreg0
| IXGBE_HLREG0_LPBK
);
3840 /* wait for a last completion before clearing buffers */
3841 IXGBE_WRITE_FLUSH(hw
);
3842 usleep_range(3000, 6000);
3844 /* Before proceeding, make sure that the PCIe block does not have
3845 * transactions pending.
3847 poll
= ixgbe_pcie_timeout_poll(hw
);
3848 for (i
= 0; i
< poll
; i
++) {
3849 usleep_range(100, 200);
3850 value
= ixgbe_read_pci_cfg_word(hw
, IXGBE_PCI_DEVICE_STATUS
);
3851 if (ixgbe_removed(hw
->hw_addr
))
3853 if (!(value
& IXGBE_PCI_DEVICE_STATUS_TRANSACTION_PENDING
))
3857 /* initiate cleaning flow for buffers in the PCIe transaction layer */
3858 gcr_ext
= IXGBE_READ_REG(hw
, IXGBE_GCR_EXT
);
3859 IXGBE_WRITE_REG(hw
, IXGBE_GCR_EXT
,
3860 gcr_ext
| IXGBE_GCR_EXT_BUFFERS_CLEAR
);
3862 /* Flush all writes and allow 20usec for all transactions to clear */
3863 IXGBE_WRITE_FLUSH(hw
);
3866 /* restore previous register values */
3867 IXGBE_WRITE_REG(hw
, IXGBE_GCR_EXT
, gcr_ext
);
3868 IXGBE_WRITE_REG(hw
, IXGBE_HLREG0
, hlreg0
);
3871 static const u8 ixgbe_emc_temp_data
[4] = {
3872 IXGBE_EMC_INTERNAL_DATA
,
3873 IXGBE_EMC_DIODE1_DATA
,
3874 IXGBE_EMC_DIODE2_DATA
,
3875 IXGBE_EMC_DIODE3_DATA
3877 static const u8 ixgbe_emc_therm_limit
[4] = {
3878 IXGBE_EMC_INTERNAL_THERM_LIMIT
,
3879 IXGBE_EMC_DIODE1_THERM_LIMIT
,
3880 IXGBE_EMC_DIODE2_THERM_LIMIT
,
3881 IXGBE_EMC_DIODE3_THERM_LIMIT
3885 * ixgbe_get_ets_data - Extracts the ETS bit data
3886 * @hw: pointer to hardware structure
3887 * @ets_cfg: extected ETS data
3888 * @ets_offset: offset of ETS data
3890 * Returns error code.
3892 static s32
ixgbe_get_ets_data(struct ixgbe_hw
*hw
, u16
*ets_cfg
,
3897 status
= hw
->eeprom
.ops
.read(hw
, IXGBE_ETS_CFG
, ets_offset
);
3901 if ((*ets_offset
== 0x0000) || (*ets_offset
== 0xFFFF))
3902 return IXGBE_NOT_IMPLEMENTED
;
3904 status
= hw
->eeprom
.ops
.read(hw
, *ets_offset
, ets_cfg
);
3908 if ((*ets_cfg
& IXGBE_ETS_TYPE_MASK
) != IXGBE_ETS_TYPE_EMC_SHIFTED
)
3909 return IXGBE_NOT_IMPLEMENTED
;
3915 * ixgbe_get_thermal_sensor_data - Gathers thermal sensor data
3916 * @hw: pointer to hardware structure
3918 * Returns the thermal sensor data structure
3920 s32
ixgbe_get_thermal_sensor_data_generic(struct ixgbe_hw
*hw
)
3928 struct ixgbe_thermal_sensor_data
*data
= &hw
->mac
.thermal_sensor_data
;
3930 /* Only support thermal sensors attached to physical port 0 */
3931 if ((IXGBE_READ_REG(hw
, IXGBE_STATUS
) & IXGBE_STATUS_LAN_ID_1
))
3932 return IXGBE_NOT_IMPLEMENTED
;
3934 status
= ixgbe_get_ets_data(hw
, &ets_cfg
, &ets_offset
);
3938 num_sensors
= (ets_cfg
& IXGBE_ETS_NUM_SENSORS_MASK
);
3939 if (num_sensors
> IXGBE_MAX_SENSORS
)
3940 num_sensors
= IXGBE_MAX_SENSORS
;
3942 for (i
= 0; i
< num_sensors
; i
++) {
3946 status
= hw
->eeprom
.ops
.read(hw
, (ets_offset
+ 1 + i
),
3951 sensor_index
= ((ets_sensor
& IXGBE_ETS_DATA_INDEX_MASK
) >>
3952 IXGBE_ETS_DATA_INDEX_SHIFT
);
3953 sensor_location
= ((ets_sensor
& IXGBE_ETS_DATA_LOC_MASK
) >>
3954 IXGBE_ETS_DATA_LOC_SHIFT
);
3956 if (sensor_location
!= 0) {
3957 status
= hw
->phy
.ops
.read_i2c_byte(hw
,
3958 ixgbe_emc_temp_data
[sensor_index
],
3959 IXGBE_I2C_THERMAL_SENSOR_ADDR
,
3960 &data
->sensor
[i
].temp
);
3970 * ixgbe_init_thermal_sensor_thresh_generic - Inits thermal sensor thresholds
3971 * @hw: pointer to hardware structure
3973 * Inits the thermal sensor thresholds according to the NVM map
3974 * and save off the threshold and location values into mac.thermal_sensor_data
3976 s32
ixgbe_init_thermal_sensor_thresh_generic(struct ixgbe_hw
*hw
)
3982 u8 low_thresh_delta
;
3986 struct ixgbe_thermal_sensor_data
*data
= &hw
->mac
.thermal_sensor_data
;
3988 memset(data
, 0, sizeof(struct ixgbe_thermal_sensor_data
));
3990 /* Only support thermal sensors attached to physical port 0 */
3991 if ((IXGBE_READ_REG(hw
, IXGBE_STATUS
) & IXGBE_STATUS_LAN_ID_1
))
3992 return IXGBE_NOT_IMPLEMENTED
;
3994 status
= ixgbe_get_ets_data(hw
, &ets_cfg
, &ets_offset
);
3998 low_thresh_delta
= ((ets_cfg
& IXGBE_ETS_LTHRES_DELTA_MASK
) >>
3999 IXGBE_ETS_LTHRES_DELTA_SHIFT
);
4000 num_sensors
= (ets_cfg
& IXGBE_ETS_NUM_SENSORS_MASK
);
4001 if (num_sensors
> IXGBE_MAX_SENSORS
)
4002 num_sensors
= IXGBE_MAX_SENSORS
;
4004 for (i
= 0; i
< num_sensors
; i
++) {
4008 if (hw
->eeprom
.ops
.read(hw
, ets_offset
+ 1 + i
, &ets_sensor
)) {
4009 hw_err(hw
, "eeprom read at offset %d failed\n",
4010 ets_offset
+ 1 + i
);
4013 sensor_index
= ((ets_sensor
& IXGBE_ETS_DATA_INDEX_MASK
) >>
4014 IXGBE_ETS_DATA_INDEX_SHIFT
);
4015 sensor_location
= ((ets_sensor
& IXGBE_ETS_DATA_LOC_MASK
) >>
4016 IXGBE_ETS_DATA_LOC_SHIFT
);
4017 therm_limit
= ets_sensor
& IXGBE_ETS_DATA_HTHRESH_MASK
;
4019 hw
->phy
.ops
.write_i2c_byte(hw
,
4020 ixgbe_emc_therm_limit
[sensor_index
],
4021 IXGBE_I2C_THERMAL_SENSOR_ADDR
, therm_limit
);
4023 if (sensor_location
== 0)
4026 data
->sensor
[i
].location
= sensor_location
;
4027 data
->sensor
[i
].caution_thresh
= therm_limit
;
4028 data
->sensor
[i
].max_op_thresh
= therm_limit
- low_thresh_delta
;
4035 * ixgbe_get_orom_version - Return option ROM from EEPROM
4037 * @hw: pointer to hardware structure
4038 * @nvm_ver: pointer to output structure
4040 * if valid option ROM version, nvm_ver->or_valid set to true
4041 * else nvm_ver->or_valid is false.
4043 void ixgbe_get_orom_version(struct ixgbe_hw
*hw
,
4044 struct ixgbe_nvm_version
*nvm_ver
)
4046 u16 offset
, eeprom_cfg_blkh
, eeprom_cfg_blkl
;
4048 nvm_ver
->or_valid
= false;
4049 /* Option Rom may or may not be present. Start with pointer */
4050 hw
->eeprom
.ops
.read(hw
, NVM_OROM_OFFSET
, &offset
);
4052 /* make sure offset is valid */
4053 if (offset
== 0x0 || offset
== NVM_INVALID_PTR
)
4056 hw
->eeprom
.ops
.read(hw
, offset
+ NVM_OROM_BLK_HI
, &eeprom_cfg_blkh
);
4057 hw
->eeprom
.ops
.read(hw
, offset
+ NVM_OROM_BLK_LOW
, &eeprom_cfg_blkl
);
4059 /* option rom exists and is valid */
4060 if ((eeprom_cfg_blkl
| eeprom_cfg_blkh
) == 0x0 ||
4061 eeprom_cfg_blkl
== NVM_VER_INVALID
||
4062 eeprom_cfg_blkh
== NVM_VER_INVALID
)
4065 nvm_ver
->or_valid
= true;
4066 nvm_ver
->or_major
= eeprom_cfg_blkl
>> NVM_OROM_SHIFT
;
4067 nvm_ver
->or_build
= (eeprom_cfg_blkl
<< NVM_OROM_SHIFT
) |
4068 (eeprom_cfg_blkh
>> NVM_OROM_SHIFT
);
4069 nvm_ver
->or_patch
= eeprom_cfg_blkh
& NVM_OROM_PATCH_MASK
;
4073 * ixgbe_get_oem_prod_version Etrack ID from EEPROM
4075 * @hw: pointer to hardware structure
4076 * @nvm_ver: pointer to output structure
4078 * if valid OEM product version, nvm_ver->oem_valid set to true
4079 * else nvm_ver->oem_valid is false.
4081 void ixgbe_get_oem_prod_version(struct ixgbe_hw
*hw
,
4082 struct ixgbe_nvm_version
*nvm_ver
)
4084 u16 rel_num
, prod_ver
, mod_len
, cap
, offset
;
4086 nvm_ver
->oem_valid
= false;
4087 hw
->eeprom
.ops
.read(hw
, NVM_OEM_PROD_VER_PTR
, &offset
);
4089 /* Return is offset to OEM Product Version block is invalid */
4090 if (offset
== 0x0 || offset
== NVM_INVALID_PTR
)
4093 /* Read product version block */
4094 hw
->eeprom
.ops
.read(hw
, offset
, &mod_len
);
4095 hw
->eeprom
.ops
.read(hw
, offset
+ NVM_OEM_PROD_VER_CAP_OFF
, &cap
);
4097 /* Return if OEM product version block is invalid */
4098 if (mod_len
!= NVM_OEM_PROD_VER_MOD_LEN
||
4099 (cap
& NVM_OEM_PROD_VER_CAP_MASK
) != 0x0)
4102 hw
->eeprom
.ops
.read(hw
, offset
+ NVM_OEM_PROD_VER_OFF_L
, &prod_ver
);
4103 hw
->eeprom
.ops
.read(hw
, offset
+ NVM_OEM_PROD_VER_OFF_H
, &rel_num
);
4105 /* Return if version is invalid */
4106 if ((rel_num
| prod_ver
) == 0x0 ||
4107 rel_num
== NVM_VER_INVALID
|| prod_ver
== NVM_VER_INVALID
)
4110 nvm_ver
->oem_major
= prod_ver
>> NVM_VER_SHIFT
;
4111 nvm_ver
->oem_minor
= prod_ver
& NVM_VER_MASK
;
4112 nvm_ver
->oem_release
= rel_num
;
4113 nvm_ver
->oem_valid
= true;
4117 * ixgbe_get_etk_id - Return Etrack ID from EEPROM
4119 * @hw: pointer to hardware structure
4120 * @nvm_ver: pointer to output structure
4122 * word read errors will return 0xFFFF
4124 void ixgbe_get_etk_id(struct ixgbe_hw
*hw
,
4125 struct ixgbe_nvm_version
*nvm_ver
)
4127 u16 etk_id_l
, etk_id_h
;
4129 if (hw
->eeprom
.ops
.read(hw
, NVM_ETK_OFF_LOW
, &etk_id_l
))
4130 etk_id_l
= NVM_VER_INVALID
;
4131 if (hw
->eeprom
.ops
.read(hw
, NVM_ETK_OFF_HI
, &etk_id_h
))
4132 etk_id_h
= NVM_VER_INVALID
;
4134 /* The word order for the version format is determined by high order
4137 if ((etk_id_h
& NVM_ETK_VALID
) == 0) {
4138 nvm_ver
->etk_id
= etk_id_h
;
4139 nvm_ver
->etk_id
|= (etk_id_l
<< NVM_ETK_SHIFT
);
4141 nvm_ver
->etk_id
= etk_id_l
;
4142 nvm_ver
->etk_id
|= (etk_id_h
<< NVM_ETK_SHIFT
);
4146 void ixgbe_disable_rx_generic(struct ixgbe_hw
*hw
)
4150 rxctrl
= IXGBE_READ_REG(hw
, IXGBE_RXCTRL
);
4151 if (rxctrl
& IXGBE_RXCTRL_RXEN
) {
4152 if (hw
->mac
.type
!= ixgbe_mac_82598EB
) {
4155 pfdtxgswc
= IXGBE_READ_REG(hw
, IXGBE_PFDTXGSWC
);
4156 if (pfdtxgswc
& IXGBE_PFDTXGSWC_VT_LBEN
) {
4157 pfdtxgswc
&= ~IXGBE_PFDTXGSWC_VT_LBEN
;
4158 IXGBE_WRITE_REG(hw
, IXGBE_PFDTXGSWC
, pfdtxgswc
);
4159 hw
->mac
.set_lben
= true;
4161 hw
->mac
.set_lben
= false;
4164 rxctrl
&= ~IXGBE_RXCTRL_RXEN
;
4165 IXGBE_WRITE_REG(hw
, IXGBE_RXCTRL
, rxctrl
);
4169 void ixgbe_enable_rx_generic(struct ixgbe_hw
*hw
)
4173 rxctrl
= IXGBE_READ_REG(hw
, IXGBE_RXCTRL
);
4174 IXGBE_WRITE_REG(hw
, IXGBE_RXCTRL
, (rxctrl
| IXGBE_RXCTRL_RXEN
));
4176 if (hw
->mac
.type
!= ixgbe_mac_82598EB
) {
4177 if (hw
->mac
.set_lben
) {
4180 pfdtxgswc
= IXGBE_READ_REG(hw
, IXGBE_PFDTXGSWC
);
4181 pfdtxgswc
|= IXGBE_PFDTXGSWC_VT_LBEN
;
4182 IXGBE_WRITE_REG(hw
, IXGBE_PFDTXGSWC
, pfdtxgswc
);
4183 hw
->mac
.set_lben
= false;
4188 /** ixgbe_mng_present - returns true when management capability is present
4189 * @hw: pointer to hardware structure
4191 bool ixgbe_mng_present(struct ixgbe_hw
*hw
)
4195 if (hw
->mac
.type
< ixgbe_mac_82599EB
)
4198 fwsm
= IXGBE_READ_REG(hw
, IXGBE_FWSM(hw
));
4200 return !!(fwsm
& IXGBE_FWSM_FW_MODE_PT
);
4204 * ixgbe_setup_mac_link_multispeed_fiber - Set MAC link speed
4205 * @hw: pointer to hardware structure
4206 * @speed: new link speed
4207 * @autoneg_wait_to_complete: true when waiting for completion is needed
4209 * Set the link speed in the MAC and/or PHY register and restarts link.
4211 s32
ixgbe_setup_mac_link_multispeed_fiber(struct ixgbe_hw
*hw
,
4212 ixgbe_link_speed speed
,
4213 bool autoneg_wait_to_complete
)
4215 ixgbe_link_speed link_speed
= IXGBE_LINK_SPEED_UNKNOWN
;
4216 ixgbe_link_speed highest_link_speed
= IXGBE_LINK_SPEED_UNKNOWN
;
4220 bool autoneg
, link_up
= false;
4222 /* Mask off requested but non-supported speeds */
4223 status
= hw
->mac
.ops
.get_link_capabilities(hw
, &link_speed
, &autoneg
);
4227 speed
&= link_speed
;
4229 /* Try each speed one by one, highest priority first. We do this in
4230 * software because 10Gb fiber doesn't support speed autonegotiation.
4232 if (speed
& IXGBE_LINK_SPEED_10GB_FULL
) {
4234 highest_link_speed
= IXGBE_LINK_SPEED_10GB_FULL
;
4236 /* Set the module link speed */
4237 switch (hw
->phy
.media_type
) {
4238 case ixgbe_media_type_fiber
:
4239 hw
->mac
.ops
.set_rate_select_speed(hw
,
4240 IXGBE_LINK_SPEED_10GB_FULL
);
4242 case ixgbe_media_type_fiber_qsfp
:
4243 /* QSFP module automatically detects MAC link speed */
4246 hw_dbg(hw
, "Unexpected media type\n");
4250 /* Allow module to change analog characteristics (1G->10G) */
4253 status
= hw
->mac
.ops
.setup_mac_link(hw
,
4254 IXGBE_LINK_SPEED_10GB_FULL
,
4255 autoneg_wait_to_complete
);
4259 /* Flap the Tx laser if it has not already been done */
4260 if (hw
->mac
.ops
.flap_tx_laser
)
4261 hw
->mac
.ops
.flap_tx_laser(hw
);
4263 /* Wait for the controller to acquire link. Per IEEE 802.3ap,
4264 * Section 73.10.2, we may have to wait up to 500ms if KR is
4265 * attempted. 82599 uses the same timing for 10g SFI.
4267 for (i
= 0; i
< 5; i
++) {
4268 /* Wait for the link partner to also set speed */
4271 /* If we have link, just jump out */
4272 status
= hw
->mac
.ops
.check_link(hw
, &link_speed
,
4282 if (speed
& IXGBE_LINK_SPEED_1GB_FULL
) {
4284 if (highest_link_speed
== IXGBE_LINK_SPEED_UNKNOWN
)
4285 highest_link_speed
= IXGBE_LINK_SPEED_1GB_FULL
;
4287 /* Set the module link speed */
4288 switch (hw
->phy
.media_type
) {
4289 case ixgbe_media_type_fiber
:
4290 hw
->mac
.ops
.set_rate_select_speed(hw
,
4291 IXGBE_LINK_SPEED_1GB_FULL
);
4293 case ixgbe_media_type_fiber_qsfp
:
4294 /* QSFP module automatically detects link speed */
4297 hw_dbg(hw
, "Unexpected media type\n");
4301 /* Allow module to change analog characteristics (10G->1G) */
4304 status
= hw
->mac
.ops
.setup_mac_link(hw
,
4305 IXGBE_LINK_SPEED_1GB_FULL
,
4306 autoneg_wait_to_complete
);
4310 /* Flap the Tx laser if it has not already been done */
4311 if (hw
->mac
.ops
.flap_tx_laser
)
4312 hw
->mac
.ops
.flap_tx_laser(hw
);
4314 /* Wait for the link partner to also set speed */
4317 /* If we have link, just jump out */
4318 status
= hw
->mac
.ops
.check_link(hw
, &link_speed
, &link_up
,
4327 /* We didn't get link. Configure back to the highest speed we tried,
4328 * (if there was more than one). We call ourselves back with just the
4329 * single highest speed that the user requested.
4332 status
= ixgbe_setup_mac_link_multispeed_fiber(hw
,
4334 autoneg_wait_to_complete
);
4337 /* Set autoneg_advertised value based on input link speed */
4338 hw
->phy
.autoneg_advertised
= 0;
4340 if (speed
& IXGBE_LINK_SPEED_10GB_FULL
)
4341 hw
->phy
.autoneg_advertised
|= IXGBE_LINK_SPEED_10GB_FULL
;
4343 if (speed
& IXGBE_LINK_SPEED_1GB_FULL
)
4344 hw
->phy
.autoneg_advertised
|= IXGBE_LINK_SPEED_1GB_FULL
;
4350 * ixgbe_set_soft_rate_select_speed - Set module link speed
4351 * @hw: pointer to hardware structure
4352 * @speed: link speed to set
4354 * Set module link speed via the soft rate select.
4356 void ixgbe_set_soft_rate_select_speed(struct ixgbe_hw
*hw
,
4357 ixgbe_link_speed speed
)
4363 case IXGBE_LINK_SPEED_10GB_FULL
:
4364 /* one bit mask same as setting on */
4365 rs
= IXGBE_SFF_SOFT_RS_SELECT_10G
;
4367 case IXGBE_LINK_SPEED_1GB_FULL
:
4368 rs
= IXGBE_SFF_SOFT_RS_SELECT_1G
;
4371 hw_dbg(hw
, "Invalid fixed module speed\n");
4376 status
= hw
->phy
.ops
.read_i2c_byte(hw
, IXGBE_SFF_SFF_8472_OSCB
,
4377 IXGBE_I2C_EEPROM_DEV_ADDR2
,
4380 hw_dbg(hw
, "Failed to read Rx Rate Select RS0\n");
4384 eeprom_data
= (eeprom_data
& ~IXGBE_SFF_SOFT_RS_SELECT_MASK
) | rs
;
4386 status
= hw
->phy
.ops
.write_i2c_byte(hw
, IXGBE_SFF_SFF_8472_OSCB
,
4387 IXGBE_I2C_EEPROM_DEV_ADDR2
,
4390 hw_dbg(hw
, "Failed to write Rx Rate Select RS0\n");
4395 status
= hw
->phy
.ops
.read_i2c_byte(hw
, IXGBE_SFF_SFF_8472_ESCB
,
4396 IXGBE_I2C_EEPROM_DEV_ADDR2
,
4399 hw_dbg(hw
, "Failed to read Rx Rate Select RS1\n");
4403 eeprom_data
= (eeprom_data
& ~IXGBE_SFF_SOFT_RS_SELECT_MASK
) | rs
;
4405 status
= hw
->phy
.ops
.write_i2c_byte(hw
, IXGBE_SFF_SFF_8472_ESCB
,
4406 IXGBE_I2C_EEPROM_DEV_ADDR2
,
4409 hw_dbg(hw
, "Failed to write Rx Rate Select RS1\n");