x86/topology: Fix function name in documentation
[cris-mirror.git] / drivers / net / ethernet / intel / ixgbe / ixgbe_common.c
blob61188f343955106e96fa0b3af4e3984f9d935e4f
1 /*******************************************************************************
3 Intel 10 Gigabit PCI Express Linux driver
4 Copyright(c) 1999 - 2016 Intel Corporation.
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 more details.
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
22 Contact Information:
23 Linux NICS <linux.nics@intel.com>
24 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
27 *******************************************************************************/
29 #include <linux/pci.h>
30 #include <linux/delay.h>
31 #include <linux/sched.h>
32 #include <linux/netdevice.h>
34 #include "ixgbe.h"
35 #include "ixgbe_common.h"
36 #include "ixgbe_phy.h"
38 static s32 ixgbe_acquire_eeprom(struct ixgbe_hw *hw);
39 static s32 ixgbe_get_eeprom_semaphore(struct ixgbe_hw *hw);
40 static void ixgbe_release_eeprom_semaphore(struct ixgbe_hw *hw);
41 static s32 ixgbe_ready_eeprom(struct ixgbe_hw *hw);
42 static void ixgbe_standby_eeprom(struct ixgbe_hw *hw);
43 static void ixgbe_shift_out_eeprom_bits(struct ixgbe_hw *hw, u16 data,
44 u16 count);
45 static u16 ixgbe_shift_in_eeprom_bits(struct ixgbe_hw *hw, u16 count);
46 static void ixgbe_raise_eeprom_clk(struct ixgbe_hw *hw, u32 *eec);
47 static void ixgbe_lower_eeprom_clk(struct ixgbe_hw *hw, u32 *eec);
48 static void ixgbe_release_eeprom(struct ixgbe_hw *hw);
50 static s32 ixgbe_mta_vector(struct ixgbe_hw *hw, u8 *mc_addr);
51 static s32 ixgbe_poll_eerd_eewr_done(struct ixgbe_hw *hw, u32 ee_reg);
52 static s32 ixgbe_read_eeprom_buffer_bit_bang(struct ixgbe_hw *hw, u16 offset,
53 u16 words, u16 *data);
54 static s32 ixgbe_write_eeprom_buffer_bit_bang(struct ixgbe_hw *hw, u16 offset,
55 u16 words, u16 *data);
56 static s32 ixgbe_detect_eeprom_page_size_generic(struct ixgbe_hw *hw,
57 u16 offset);
58 static s32 ixgbe_disable_pcie_master(struct ixgbe_hw *hw);
60 /* Base table for registers values that change by MAC */
61 const u32 ixgbe_mvals_8259X[IXGBE_MVALS_IDX_LIMIT] = {
62 IXGBE_MVALS_INIT(8259X)
65 /**
66 * ixgbe_device_supports_autoneg_fc - Check if phy supports autoneg flow
67 * control
68 * @hw: pointer to hardware structure
70 * There are several phys that do not support autoneg flow control. This
71 * function check the device id to see if the associated phy supports
72 * autoneg flow control.
73 **/
74 bool ixgbe_device_supports_autoneg_fc(struct ixgbe_hw *hw)
76 bool supported = false;
77 ixgbe_link_speed speed;
78 bool link_up;
80 switch (hw->phy.media_type) {
81 case ixgbe_media_type_fiber:
82 /* flow control autoneg black list */
83 switch (hw->device_id) {
84 case IXGBE_DEV_ID_X550EM_A_SFP:
85 case IXGBE_DEV_ID_X550EM_A_SFP_N:
86 supported = false;
87 break;
88 default:
89 hw->mac.ops.check_link(hw, &speed, &link_up, false);
90 /* if link is down, assume supported */
91 if (link_up)
92 supported = speed == IXGBE_LINK_SPEED_1GB_FULL ?
93 true : false;
94 else
95 supported = true;
98 break;
99 case ixgbe_media_type_backplane:
100 if (hw->device_id == IXGBE_DEV_ID_X550EM_X_XFI)
101 supported = false;
102 else
103 supported = true;
104 break;
105 case ixgbe_media_type_copper:
106 /* only some copper devices support flow control autoneg */
107 switch (hw->device_id) {
108 case IXGBE_DEV_ID_82599_T3_LOM:
109 case IXGBE_DEV_ID_X540T:
110 case IXGBE_DEV_ID_X540T1:
111 case IXGBE_DEV_ID_X550T:
112 case IXGBE_DEV_ID_X550T1:
113 case IXGBE_DEV_ID_X550EM_X_10G_T:
114 case IXGBE_DEV_ID_X550EM_A_10G_T:
115 case IXGBE_DEV_ID_X550EM_A_1G_T:
116 case IXGBE_DEV_ID_X550EM_A_1G_T_L:
117 supported = true;
118 break;
119 default:
120 break;
122 default:
123 break;
126 if (!supported)
127 hw_dbg(hw, "Device %x does not support flow control autoneg\n",
128 hw->device_id);
130 return supported;
134 * ixgbe_setup_fc_generic - Set up flow control
135 * @hw: pointer to hardware structure
137 * Called at init time to set up flow control.
139 s32 ixgbe_setup_fc_generic(struct ixgbe_hw *hw)
141 s32 ret_val = 0;
142 u32 reg = 0, reg_bp = 0;
143 u16 reg_cu = 0;
144 bool locked = false;
147 * Validate the requested mode. Strict IEEE mode does not allow
148 * ixgbe_fc_rx_pause because it will cause us to fail at UNH.
150 if (hw->fc.strict_ieee && hw->fc.requested_mode == ixgbe_fc_rx_pause) {
151 hw_dbg(hw, "ixgbe_fc_rx_pause not valid in strict IEEE mode\n");
152 return IXGBE_ERR_INVALID_LINK_SETTINGS;
156 * 10gig parts do not have a word in the EEPROM to determine the
157 * default flow control setting, so we explicitly set it to full.
159 if (hw->fc.requested_mode == ixgbe_fc_default)
160 hw->fc.requested_mode = ixgbe_fc_full;
163 * Set up the 1G and 10G flow control advertisement registers so the
164 * HW will be able to do fc autoneg once the cable is plugged in. If
165 * we link at 10G, the 1G advertisement is harmless and vice versa.
167 switch (hw->phy.media_type) {
168 case ixgbe_media_type_backplane:
169 /* some MAC's need RMW protection on AUTOC */
170 ret_val = hw->mac.ops.prot_autoc_read(hw, &locked, &reg_bp);
171 if (ret_val)
172 return ret_val;
174 /* fall through - only backplane uses autoc */
175 case ixgbe_media_type_fiber:
176 reg = IXGBE_READ_REG(hw, IXGBE_PCS1GANA);
178 break;
179 case ixgbe_media_type_copper:
180 hw->phy.ops.read_reg(hw, MDIO_AN_ADVERTISE,
181 MDIO_MMD_AN, &reg_cu);
182 break;
183 default:
184 break;
188 * The possible values of fc.requested_mode are:
189 * 0: Flow control is completely disabled
190 * 1: Rx flow control is enabled (we can receive pause frames,
191 * but not send pause frames).
192 * 2: Tx flow control is enabled (we can send pause frames but
193 * we do not support receiving pause frames).
194 * 3: Both Rx and Tx flow control (symmetric) are enabled.
195 * other: Invalid.
197 switch (hw->fc.requested_mode) {
198 case ixgbe_fc_none:
199 /* Flow control completely disabled by software override. */
200 reg &= ~(IXGBE_PCS1GANA_SYM_PAUSE | IXGBE_PCS1GANA_ASM_PAUSE);
201 if (hw->phy.media_type == ixgbe_media_type_backplane)
202 reg_bp &= ~(IXGBE_AUTOC_SYM_PAUSE |
203 IXGBE_AUTOC_ASM_PAUSE);
204 else if (hw->phy.media_type == ixgbe_media_type_copper)
205 reg_cu &= ~(IXGBE_TAF_SYM_PAUSE | IXGBE_TAF_ASM_PAUSE);
206 break;
207 case ixgbe_fc_tx_pause:
209 * Tx Flow control is enabled, and Rx Flow control is
210 * disabled by software override.
212 reg |= IXGBE_PCS1GANA_ASM_PAUSE;
213 reg &= ~IXGBE_PCS1GANA_SYM_PAUSE;
214 if (hw->phy.media_type == ixgbe_media_type_backplane) {
215 reg_bp |= IXGBE_AUTOC_ASM_PAUSE;
216 reg_bp &= ~IXGBE_AUTOC_SYM_PAUSE;
217 } else if (hw->phy.media_type == ixgbe_media_type_copper) {
218 reg_cu |= IXGBE_TAF_ASM_PAUSE;
219 reg_cu &= ~IXGBE_TAF_SYM_PAUSE;
221 break;
222 case ixgbe_fc_rx_pause:
224 * Rx Flow control is enabled and Tx Flow control is
225 * disabled by software override. Since there really
226 * isn't a way to advertise that we are capable of RX
227 * Pause ONLY, we will advertise that we support both
228 * symmetric and asymmetric Rx PAUSE, as such we fall
229 * through to the fc_full statement. Later, we will
230 * disable the adapter's ability to send PAUSE frames.
232 case ixgbe_fc_full:
233 /* Flow control (both Rx and Tx) is enabled by SW override. */
234 reg |= IXGBE_PCS1GANA_SYM_PAUSE | IXGBE_PCS1GANA_ASM_PAUSE;
235 if (hw->phy.media_type == ixgbe_media_type_backplane)
236 reg_bp |= IXGBE_AUTOC_SYM_PAUSE |
237 IXGBE_AUTOC_ASM_PAUSE;
238 else if (hw->phy.media_type == ixgbe_media_type_copper)
239 reg_cu |= IXGBE_TAF_SYM_PAUSE | IXGBE_TAF_ASM_PAUSE;
240 break;
241 default:
242 hw_dbg(hw, "Flow control param set incorrectly\n");
243 return IXGBE_ERR_CONFIG;
246 if (hw->mac.type != ixgbe_mac_X540) {
248 * Enable auto-negotiation between the MAC & PHY;
249 * the MAC will advertise clause 37 flow control.
251 IXGBE_WRITE_REG(hw, IXGBE_PCS1GANA, reg);
252 reg = IXGBE_READ_REG(hw, IXGBE_PCS1GLCTL);
254 /* Disable AN timeout */
255 if (hw->fc.strict_ieee)
256 reg &= ~IXGBE_PCS1GLCTL_AN_1G_TIMEOUT_EN;
258 IXGBE_WRITE_REG(hw, IXGBE_PCS1GLCTL, reg);
259 hw_dbg(hw, "Set up FC; PCS1GLCTL = 0x%08X\n", reg);
263 * AUTOC restart handles negotiation of 1G and 10G on backplane
264 * and copper. There is no need to set the PCS1GCTL register.
267 if (hw->phy.media_type == ixgbe_media_type_backplane) {
268 /* Need the SW/FW semaphore around AUTOC writes if 82599 and
269 * LESM is on, likewise reset_pipeline requries the lock as
270 * it also writes AUTOC.
272 ret_val = hw->mac.ops.prot_autoc_write(hw, reg_bp, locked);
273 if (ret_val)
274 return ret_val;
276 } else if ((hw->phy.media_type == ixgbe_media_type_copper) &&
277 ixgbe_device_supports_autoneg_fc(hw)) {
278 hw->phy.ops.write_reg(hw, MDIO_AN_ADVERTISE,
279 MDIO_MMD_AN, reg_cu);
282 hw_dbg(hw, "Set up FC; IXGBE_AUTOC = 0x%08X\n", reg);
283 return ret_val;
287 * ixgbe_start_hw_generic - Prepare hardware for Tx/Rx
288 * @hw: pointer to hardware structure
290 * Starts the hardware by filling the bus info structure and media type, clears
291 * all on chip counters, initializes receive address registers, multicast
292 * table, VLAN filter table, calls routine to set up link and flow control
293 * settings, and leaves transmit and receive units disabled and uninitialized
295 s32 ixgbe_start_hw_generic(struct ixgbe_hw *hw)
297 s32 ret_val;
298 u32 ctrl_ext;
299 u16 device_caps;
301 /* Set the media type */
302 hw->phy.media_type = hw->mac.ops.get_media_type(hw);
304 /* Identify the PHY */
305 hw->phy.ops.identify(hw);
307 /* Clear the VLAN filter table */
308 hw->mac.ops.clear_vfta(hw);
310 /* Clear statistics registers */
311 hw->mac.ops.clear_hw_cntrs(hw);
313 /* Set No Snoop Disable */
314 ctrl_ext = IXGBE_READ_REG(hw, IXGBE_CTRL_EXT);
315 ctrl_ext |= IXGBE_CTRL_EXT_NS_DIS;
316 IXGBE_WRITE_REG(hw, IXGBE_CTRL_EXT, ctrl_ext);
317 IXGBE_WRITE_FLUSH(hw);
319 /* Setup flow control if method for doing so */
320 if (hw->mac.ops.setup_fc) {
321 ret_val = hw->mac.ops.setup_fc(hw);
322 if (ret_val)
323 return ret_val;
326 /* Cashe bit indicating need for crosstalk fix */
327 switch (hw->mac.type) {
328 case ixgbe_mac_82599EB:
329 case ixgbe_mac_X550EM_x:
330 case ixgbe_mac_x550em_a:
331 hw->mac.ops.get_device_caps(hw, &device_caps);
332 if (device_caps & IXGBE_DEVICE_CAPS_NO_CROSSTALK_WR)
333 hw->need_crosstalk_fix = false;
334 else
335 hw->need_crosstalk_fix = true;
336 break;
337 default:
338 hw->need_crosstalk_fix = false;
339 break;
342 /* Clear adapter stopped flag */
343 hw->adapter_stopped = false;
345 return 0;
349 * ixgbe_start_hw_gen2 - Init sequence for common device family
350 * @hw: pointer to hw structure
352 * Performs the init sequence common to the second generation
353 * of 10 GbE devices.
354 * Devices in the second generation:
355 * 82599
356 * X540
358 s32 ixgbe_start_hw_gen2(struct ixgbe_hw *hw)
360 u32 i;
362 /* Clear the rate limiters */
363 for (i = 0; i < hw->mac.max_tx_queues; i++) {
364 IXGBE_WRITE_REG(hw, IXGBE_RTTDQSEL, i);
365 IXGBE_WRITE_REG(hw, IXGBE_RTTBCNRC, 0);
367 IXGBE_WRITE_FLUSH(hw);
369 return 0;
373 * ixgbe_init_hw_generic - Generic hardware initialization
374 * @hw: pointer to hardware structure
376 * Initialize the hardware by resetting the hardware, filling the bus info
377 * structure and media type, clears all on chip counters, initializes receive
378 * address registers, multicast table, VLAN filter table, calls routine to set
379 * up link and flow control settings, and leaves transmit and receive units
380 * disabled and uninitialized
382 s32 ixgbe_init_hw_generic(struct ixgbe_hw *hw)
384 s32 status;
386 /* Reset the hardware */
387 status = hw->mac.ops.reset_hw(hw);
389 if (status == 0) {
390 /* Start the HW */
391 status = hw->mac.ops.start_hw(hw);
394 /* Initialize the LED link active for LED blink support */
395 if (hw->mac.ops.init_led_link_act)
396 hw->mac.ops.init_led_link_act(hw);
398 return status;
402 * ixgbe_clear_hw_cntrs_generic - Generic clear hardware counters
403 * @hw: pointer to hardware structure
405 * Clears all hardware statistics counters by reading them from the hardware
406 * Statistics counters are clear on read.
408 s32 ixgbe_clear_hw_cntrs_generic(struct ixgbe_hw *hw)
410 u16 i = 0;
412 IXGBE_READ_REG(hw, IXGBE_CRCERRS);
413 IXGBE_READ_REG(hw, IXGBE_ILLERRC);
414 IXGBE_READ_REG(hw, IXGBE_ERRBC);
415 IXGBE_READ_REG(hw, IXGBE_MSPDC);
416 for (i = 0; i < 8; i++)
417 IXGBE_READ_REG(hw, IXGBE_MPC(i));
419 IXGBE_READ_REG(hw, IXGBE_MLFC);
420 IXGBE_READ_REG(hw, IXGBE_MRFC);
421 IXGBE_READ_REG(hw, IXGBE_RLEC);
422 IXGBE_READ_REG(hw, IXGBE_LXONTXC);
423 IXGBE_READ_REG(hw, IXGBE_LXOFFTXC);
424 if (hw->mac.type >= ixgbe_mac_82599EB) {
425 IXGBE_READ_REG(hw, IXGBE_LXONRXCNT);
426 IXGBE_READ_REG(hw, IXGBE_LXOFFRXCNT);
427 } else {
428 IXGBE_READ_REG(hw, IXGBE_LXONRXC);
429 IXGBE_READ_REG(hw, IXGBE_LXOFFRXC);
432 for (i = 0; i < 8; i++) {
433 IXGBE_READ_REG(hw, IXGBE_PXONTXC(i));
434 IXGBE_READ_REG(hw, IXGBE_PXOFFTXC(i));
435 if (hw->mac.type >= ixgbe_mac_82599EB) {
436 IXGBE_READ_REG(hw, IXGBE_PXONRXCNT(i));
437 IXGBE_READ_REG(hw, IXGBE_PXOFFRXCNT(i));
438 } else {
439 IXGBE_READ_REG(hw, IXGBE_PXONRXC(i));
440 IXGBE_READ_REG(hw, IXGBE_PXOFFRXC(i));
443 if (hw->mac.type >= ixgbe_mac_82599EB)
444 for (i = 0; i < 8; i++)
445 IXGBE_READ_REG(hw, IXGBE_PXON2OFFCNT(i));
446 IXGBE_READ_REG(hw, IXGBE_PRC64);
447 IXGBE_READ_REG(hw, IXGBE_PRC127);
448 IXGBE_READ_REG(hw, IXGBE_PRC255);
449 IXGBE_READ_REG(hw, IXGBE_PRC511);
450 IXGBE_READ_REG(hw, IXGBE_PRC1023);
451 IXGBE_READ_REG(hw, IXGBE_PRC1522);
452 IXGBE_READ_REG(hw, IXGBE_GPRC);
453 IXGBE_READ_REG(hw, IXGBE_BPRC);
454 IXGBE_READ_REG(hw, IXGBE_MPRC);
455 IXGBE_READ_REG(hw, IXGBE_GPTC);
456 IXGBE_READ_REG(hw, IXGBE_GORCL);
457 IXGBE_READ_REG(hw, IXGBE_GORCH);
458 IXGBE_READ_REG(hw, IXGBE_GOTCL);
459 IXGBE_READ_REG(hw, IXGBE_GOTCH);
460 if (hw->mac.type == ixgbe_mac_82598EB)
461 for (i = 0; i < 8; i++)
462 IXGBE_READ_REG(hw, IXGBE_RNBC(i));
463 IXGBE_READ_REG(hw, IXGBE_RUC);
464 IXGBE_READ_REG(hw, IXGBE_RFC);
465 IXGBE_READ_REG(hw, IXGBE_ROC);
466 IXGBE_READ_REG(hw, IXGBE_RJC);
467 IXGBE_READ_REG(hw, IXGBE_MNGPRC);
468 IXGBE_READ_REG(hw, IXGBE_MNGPDC);
469 IXGBE_READ_REG(hw, IXGBE_MNGPTC);
470 IXGBE_READ_REG(hw, IXGBE_TORL);
471 IXGBE_READ_REG(hw, IXGBE_TORH);
472 IXGBE_READ_REG(hw, IXGBE_TPR);
473 IXGBE_READ_REG(hw, IXGBE_TPT);
474 IXGBE_READ_REG(hw, IXGBE_PTC64);
475 IXGBE_READ_REG(hw, IXGBE_PTC127);
476 IXGBE_READ_REG(hw, IXGBE_PTC255);
477 IXGBE_READ_REG(hw, IXGBE_PTC511);
478 IXGBE_READ_REG(hw, IXGBE_PTC1023);
479 IXGBE_READ_REG(hw, IXGBE_PTC1522);
480 IXGBE_READ_REG(hw, IXGBE_MPTC);
481 IXGBE_READ_REG(hw, IXGBE_BPTC);
482 for (i = 0; i < 16; i++) {
483 IXGBE_READ_REG(hw, IXGBE_QPRC(i));
484 IXGBE_READ_REG(hw, IXGBE_QPTC(i));
485 if (hw->mac.type >= ixgbe_mac_82599EB) {
486 IXGBE_READ_REG(hw, IXGBE_QBRC_L(i));
487 IXGBE_READ_REG(hw, IXGBE_QBRC_H(i));
488 IXGBE_READ_REG(hw, IXGBE_QBTC_L(i));
489 IXGBE_READ_REG(hw, IXGBE_QBTC_H(i));
490 IXGBE_READ_REG(hw, IXGBE_QPRDC(i));
491 } else {
492 IXGBE_READ_REG(hw, IXGBE_QBRC(i));
493 IXGBE_READ_REG(hw, IXGBE_QBTC(i));
497 if (hw->mac.type == ixgbe_mac_X550 || hw->mac.type == ixgbe_mac_X540) {
498 if (hw->phy.id == 0)
499 hw->phy.ops.identify(hw);
500 hw->phy.ops.read_reg(hw, IXGBE_PCRC8ECL, MDIO_MMD_PCS, &i);
501 hw->phy.ops.read_reg(hw, IXGBE_PCRC8ECH, MDIO_MMD_PCS, &i);
502 hw->phy.ops.read_reg(hw, IXGBE_LDPCECL, MDIO_MMD_PCS, &i);
503 hw->phy.ops.read_reg(hw, IXGBE_LDPCECH, MDIO_MMD_PCS, &i);
506 return 0;
510 * ixgbe_read_pba_string_generic - Reads part number string from EEPROM
511 * @hw: pointer to hardware structure
512 * @pba_num: stores the part number string from the EEPROM
513 * @pba_num_size: part number string buffer length
515 * Reads the part number string from the EEPROM.
517 s32 ixgbe_read_pba_string_generic(struct ixgbe_hw *hw, u8 *pba_num,
518 u32 pba_num_size)
520 s32 ret_val;
521 u16 data;
522 u16 pba_ptr;
523 u16 offset;
524 u16 length;
526 if (pba_num == NULL) {
527 hw_dbg(hw, "PBA string buffer was null\n");
528 return IXGBE_ERR_INVALID_ARGUMENT;
531 ret_val = hw->eeprom.ops.read(hw, IXGBE_PBANUM0_PTR, &data);
532 if (ret_val) {
533 hw_dbg(hw, "NVM Read Error\n");
534 return ret_val;
537 ret_val = hw->eeprom.ops.read(hw, IXGBE_PBANUM1_PTR, &pba_ptr);
538 if (ret_val) {
539 hw_dbg(hw, "NVM Read Error\n");
540 return ret_val;
544 * if data is not ptr guard the PBA must be in legacy format which
545 * means pba_ptr is actually our second data word for the PBA number
546 * and we can decode it into an ascii string
548 if (data != IXGBE_PBANUM_PTR_GUARD) {
549 hw_dbg(hw, "NVM PBA number is not stored as string\n");
551 /* we will need 11 characters to store the PBA */
552 if (pba_num_size < 11) {
553 hw_dbg(hw, "PBA string buffer too small\n");
554 return IXGBE_ERR_NO_SPACE;
557 /* extract hex string from data and pba_ptr */
558 pba_num[0] = (data >> 12) & 0xF;
559 pba_num[1] = (data >> 8) & 0xF;
560 pba_num[2] = (data >> 4) & 0xF;
561 pba_num[3] = data & 0xF;
562 pba_num[4] = (pba_ptr >> 12) & 0xF;
563 pba_num[5] = (pba_ptr >> 8) & 0xF;
564 pba_num[6] = '-';
565 pba_num[7] = 0;
566 pba_num[8] = (pba_ptr >> 4) & 0xF;
567 pba_num[9] = pba_ptr & 0xF;
569 /* put a null character on the end of our string */
570 pba_num[10] = '\0';
572 /* switch all the data but the '-' to hex char */
573 for (offset = 0; offset < 10; offset++) {
574 if (pba_num[offset] < 0xA)
575 pba_num[offset] += '0';
576 else if (pba_num[offset] < 0x10)
577 pba_num[offset] += 'A' - 0xA;
580 return 0;
583 ret_val = hw->eeprom.ops.read(hw, pba_ptr, &length);
584 if (ret_val) {
585 hw_dbg(hw, "NVM Read Error\n");
586 return ret_val;
589 if (length == 0xFFFF || length == 0) {
590 hw_dbg(hw, "NVM PBA number section invalid length\n");
591 return IXGBE_ERR_PBA_SECTION;
594 /* check if pba_num buffer is big enough */
595 if (pba_num_size < (((u32)length * 2) - 1)) {
596 hw_dbg(hw, "PBA string buffer too small\n");
597 return IXGBE_ERR_NO_SPACE;
600 /* trim pba length from start of string */
601 pba_ptr++;
602 length--;
604 for (offset = 0; offset < length; offset++) {
605 ret_val = hw->eeprom.ops.read(hw, pba_ptr + offset, &data);
606 if (ret_val) {
607 hw_dbg(hw, "NVM Read Error\n");
608 return ret_val;
610 pba_num[offset * 2] = (u8)(data >> 8);
611 pba_num[(offset * 2) + 1] = (u8)(data & 0xFF);
613 pba_num[offset * 2] = '\0';
615 return 0;
619 * ixgbe_get_mac_addr_generic - Generic get MAC address
620 * @hw: pointer to hardware structure
621 * @mac_addr: Adapter MAC address
623 * Reads the adapter's MAC address from first Receive Address Register (RAR0)
624 * A reset of the adapter must be performed prior to calling this function
625 * in order for the MAC address to have been loaded from the EEPROM into RAR0
627 s32 ixgbe_get_mac_addr_generic(struct ixgbe_hw *hw, u8 *mac_addr)
629 u32 rar_high;
630 u32 rar_low;
631 u16 i;
633 rar_high = IXGBE_READ_REG(hw, IXGBE_RAH(0));
634 rar_low = IXGBE_READ_REG(hw, IXGBE_RAL(0));
636 for (i = 0; i < 4; i++)
637 mac_addr[i] = (u8)(rar_low >> (i*8));
639 for (i = 0; i < 2; i++)
640 mac_addr[i+4] = (u8)(rar_high >> (i*8));
642 return 0;
645 enum ixgbe_bus_width ixgbe_convert_bus_width(u16 link_status)
647 switch (link_status & IXGBE_PCI_LINK_WIDTH) {
648 case IXGBE_PCI_LINK_WIDTH_1:
649 return ixgbe_bus_width_pcie_x1;
650 case IXGBE_PCI_LINK_WIDTH_2:
651 return ixgbe_bus_width_pcie_x2;
652 case IXGBE_PCI_LINK_WIDTH_4:
653 return ixgbe_bus_width_pcie_x4;
654 case IXGBE_PCI_LINK_WIDTH_8:
655 return ixgbe_bus_width_pcie_x8;
656 default:
657 return ixgbe_bus_width_unknown;
661 enum ixgbe_bus_speed ixgbe_convert_bus_speed(u16 link_status)
663 switch (link_status & IXGBE_PCI_LINK_SPEED) {
664 case IXGBE_PCI_LINK_SPEED_2500:
665 return ixgbe_bus_speed_2500;
666 case IXGBE_PCI_LINK_SPEED_5000:
667 return ixgbe_bus_speed_5000;
668 case IXGBE_PCI_LINK_SPEED_8000:
669 return ixgbe_bus_speed_8000;
670 default:
671 return ixgbe_bus_speed_unknown;
676 * ixgbe_get_bus_info_generic - Generic set PCI bus info
677 * @hw: pointer to hardware structure
679 * Sets the PCI bus info (speed, width, type) within the ixgbe_hw structure
681 s32 ixgbe_get_bus_info_generic(struct ixgbe_hw *hw)
683 u16 link_status;
685 hw->bus.type = ixgbe_bus_type_pci_express;
687 /* Get the negotiated link width and speed from PCI config space */
688 link_status = ixgbe_read_pci_cfg_word(hw, IXGBE_PCI_LINK_STATUS);
690 hw->bus.width = ixgbe_convert_bus_width(link_status);
691 hw->bus.speed = ixgbe_convert_bus_speed(link_status);
693 hw->mac.ops.set_lan_id(hw);
695 return 0;
699 * ixgbe_set_lan_id_multi_port_pcie - Set LAN id for PCIe multiple port devices
700 * @hw: pointer to the HW structure
702 * Determines the LAN function id by reading memory-mapped registers
703 * and swaps the port value if requested.
705 void ixgbe_set_lan_id_multi_port_pcie(struct ixgbe_hw *hw)
707 struct ixgbe_bus_info *bus = &hw->bus;
708 u16 ee_ctrl_4;
709 u32 reg;
711 reg = IXGBE_READ_REG(hw, IXGBE_STATUS);
712 bus->func = (reg & IXGBE_STATUS_LAN_ID) >> IXGBE_STATUS_LAN_ID_SHIFT;
713 bus->lan_id = bus->func;
715 /* check for a port swap */
716 reg = IXGBE_READ_REG(hw, IXGBE_FACTPS(hw));
717 if (reg & IXGBE_FACTPS_LFS)
718 bus->func ^= 0x1;
720 /* Get MAC instance from EEPROM for configuring CS4227 */
721 if (hw->device_id == IXGBE_DEV_ID_X550EM_A_SFP) {
722 hw->eeprom.ops.read(hw, IXGBE_EEPROM_CTRL_4, &ee_ctrl_4);
723 bus->instance_id = (ee_ctrl_4 & IXGBE_EE_CTRL_4_INST_ID) >>
724 IXGBE_EE_CTRL_4_INST_ID_SHIFT;
729 * ixgbe_stop_adapter_generic - Generic stop Tx/Rx units
730 * @hw: pointer to hardware structure
732 * Sets the adapter_stopped flag within ixgbe_hw struct. Clears interrupts,
733 * disables transmit and receive units. The adapter_stopped flag is used by
734 * the shared code and drivers to determine if the adapter is in a stopped
735 * state and should not touch the hardware.
737 s32 ixgbe_stop_adapter_generic(struct ixgbe_hw *hw)
739 u32 reg_val;
740 u16 i;
743 * Set the adapter_stopped flag so other driver functions stop touching
744 * the hardware
746 hw->adapter_stopped = true;
748 /* Disable the receive unit */
749 hw->mac.ops.disable_rx(hw);
751 /* Clear interrupt mask to stop interrupts from being generated */
752 IXGBE_WRITE_REG(hw, IXGBE_EIMC, IXGBE_IRQ_CLEAR_MASK);
754 /* Clear any pending interrupts, flush previous writes */
755 IXGBE_READ_REG(hw, IXGBE_EICR);
757 /* Disable the transmit unit. Each queue must be disabled. */
758 for (i = 0; i < hw->mac.max_tx_queues; i++)
759 IXGBE_WRITE_REG(hw, IXGBE_TXDCTL(i), IXGBE_TXDCTL_SWFLSH);
761 /* Disable the receive unit by stopping each queue */
762 for (i = 0; i < hw->mac.max_rx_queues; i++) {
763 reg_val = IXGBE_READ_REG(hw, IXGBE_RXDCTL(i));
764 reg_val &= ~IXGBE_RXDCTL_ENABLE;
765 reg_val |= IXGBE_RXDCTL_SWFLSH;
766 IXGBE_WRITE_REG(hw, IXGBE_RXDCTL(i), reg_val);
769 /* flush all queues disables */
770 IXGBE_WRITE_FLUSH(hw);
771 usleep_range(1000, 2000);
774 * Prevent the PCI-E bus from from hanging by disabling PCI-E master
775 * access and verify no pending requests
777 return ixgbe_disable_pcie_master(hw);
781 * ixgbe_init_led_link_act_generic - Store the LED index link/activity.
782 * @hw: pointer to hardware structure
784 * Store the index for the link active LED. This will be used to support
785 * blinking the LED.
787 s32 ixgbe_init_led_link_act_generic(struct ixgbe_hw *hw)
789 struct ixgbe_mac_info *mac = &hw->mac;
790 u32 led_reg, led_mode;
791 u16 i;
793 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
795 /* Get LED link active from the LEDCTL register */
796 for (i = 0; i < 4; i++) {
797 led_mode = led_reg >> IXGBE_LED_MODE_SHIFT(i);
799 if ((led_mode & IXGBE_LED_MODE_MASK_BASE) ==
800 IXGBE_LED_LINK_ACTIVE) {
801 mac->led_link_act = i;
802 return 0;
806 /* If LEDCTL register does not have the LED link active set, then use
807 * known MAC defaults.
809 switch (hw->mac.type) {
810 case ixgbe_mac_x550em_a:
811 mac->led_link_act = 0;
812 break;
813 case ixgbe_mac_X550EM_x:
814 mac->led_link_act = 1;
815 break;
816 default:
817 mac->led_link_act = 2;
820 return 0;
824 * ixgbe_led_on_generic - Turns on the software controllable LEDs.
825 * @hw: pointer to hardware structure
826 * @index: led number to turn on
828 s32 ixgbe_led_on_generic(struct ixgbe_hw *hw, u32 index)
830 u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
832 if (index > 3)
833 return IXGBE_ERR_PARAM;
835 /* To turn on the LED, set mode to ON. */
836 led_reg &= ~IXGBE_LED_MODE_MASK(index);
837 led_reg |= IXGBE_LED_ON << IXGBE_LED_MODE_SHIFT(index);
838 IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg);
839 IXGBE_WRITE_FLUSH(hw);
841 return 0;
845 * ixgbe_led_off_generic - Turns off the software controllable LEDs.
846 * @hw: pointer to hardware structure
847 * @index: led number to turn off
849 s32 ixgbe_led_off_generic(struct ixgbe_hw *hw, u32 index)
851 u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
853 if (index > 3)
854 return IXGBE_ERR_PARAM;
856 /* To turn off the LED, set mode to OFF. */
857 led_reg &= ~IXGBE_LED_MODE_MASK(index);
858 led_reg |= IXGBE_LED_OFF << IXGBE_LED_MODE_SHIFT(index);
859 IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg);
860 IXGBE_WRITE_FLUSH(hw);
862 return 0;
866 * ixgbe_init_eeprom_params_generic - Initialize EEPROM params
867 * @hw: pointer to hardware structure
869 * Initializes the EEPROM parameters ixgbe_eeprom_info within the
870 * ixgbe_hw struct in order to set up EEPROM access.
872 s32 ixgbe_init_eeprom_params_generic(struct ixgbe_hw *hw)
874 struct ixgbe_eeprom_info *eeprom = &hw->eeprom;
875 u32 eec;
876 u16 eeprom_size;
878 if (eeprom->type == ixgbe_eeprom_uninitialized) {
879 eeprom->type = ixgbe_eeprom_none;
880 /* Set default semaphore delay to 10ms which is a well
881 * tested value */
882 eeprom->semaphore_delay = 10;
883 /* Clear EEPROM page size, it will be initialized as needed */
884 eeprom->word_page_size = 0;
887 * Check for EEPROM present first.
888 * If not present leave as none
890 eec = IXGBE_READ_REG(hw, IXGBE_EEC(hw));
891 if (eec & IXGBE_EEC_PRES) {
892 eeprom->type = ixgbe_eeprom_spi;
895 * SPI EEPROM is assumed here. This code would need to
896 * change if a future EEPROM is not SPI.
898 eeprom_size = (u16)((eec & IXGBE_EEC_SIZE) >>
899 IXGBE_EEC_SIZE_SHIFT);
900 eeprom->word_size = BIT(eeprom_size +
901 IXGBE_EEPROM_WORD_SIZE_SHIFT);
904 if (eec & IXGBE_EEC_ADDR_SIZE)
905 eeprom->address_bits = 16;
906 else
907 eeprom->address_bits = 8;
908 hw_dbg(hw, "Eeprom params: type = %d, size = %d, address bits: %d\n",
909 eeprom->type, eeprom->word_size, eeprom->address_bits);
912 return 0;
916 * ixgbe_write_eeprom_buffer_bit_bang_generic - Write EEPROM using bit-bang
917 * @hw: pointer to hardware structure
918 * @offset: offset within the EEPROM to write
919 * @words: number of words
920 * @data: 16 bit word(s) to write to EEPROM
922 * Reads 16 bit word(s) from EEPROM through bit-bang method
924 s32 ixgbe_write_eeprom_buffer_bit_bang_generic(struct ixgbe_hw *hw, u16 offset,
925 u16 words, u16 *data)
927 s32 status;
928 u16 i, count;
930 hw->eeprom.ops.init_params(hw);
932 if (words == 0)
933 return IXGBE_ERR_INVALID_ARGUMENT;
935 if (offset + words > hw->eeprom.word_size)
936 return IXGBE_ERR_EEPROM;
939 * The EEPROM page size cannot be queried from the chip. We do lazy
940 * initialization. It is worth to do that when we write large buffer.
942 if ((hw->eeprom.word_page_size == 0) &&
943 (words > IXGBE_EEPROM_PAGE_SIZE_MAX))
944 ixgbe_detect_eeprom_page_size_generic(hw, offset);
947 * We cannot hold synchronization semaphores for too long
948 * to avoid other entity starvation. However it is more efficient
949 * to read in bursts than synchronizing access for each word.
951 for (i = 0; i < words; i += IXGBE_EEPROM_RD_BUFFER_MAX_COUNT) {
952 count = (words - i) / IXGBE_EEPROM_RD_BUFFER_MAX_COUNT > 0 ?
953 IXGBE_EEPROM_RD_BUFFER_MAX_COUNT : (words - i);
954 status = ixgbe_write_eeprom_buffer_bit_bang(hw, offset + i,
955 count, &data[i]);
957 if (status != 0)
958 break;
961 return status;
965 * ixgbe_write_eeprom_buffer_bit_bang - Writes 16 bit word(s) to EEPROM
966 * @hw: pointer to hardware structure
967 * @offset: offset within the EEPROM to be written to
968 * @words: number of word(s)
969 * @data: 16 bit word(s) to be written to the EEPROM
971 * If ixgbe_eeprom_update_checksum is not called after this function, the
972 * EEPROM will most likely contain an invalid checksum.
974 static s32 ixgbe_write_eeprom_buffer_bit_bang(struct ixgbe_hw *hw, u16 offset,
975 u16 words, u16 *data)
977 s32 status;
978 u16 word;
979 u16 page_size;
980 u16 i;
981 u8 write_opcode = IXGBE_EEPROM_WRITE_OPCODE_SPI;
983 /* Prepare the EEPROM for writing */
984 status = ixgbe_acquire_eeprom(hw);
985 if (status)
986 return status;
988 if (ixgbe_ready_eeprom(hw) != 0) {
989 ixgbe_release_eeprom(hw);
990 return IXGBE_ERR_EEPROM;
993 for (i = 0; i < words; i++) {
994 ixgbe_standby_eeprom(hw);
996 /* Send the WRITE ENABLE command (8 bit opcode) */
997 ixgbe_shift_out_eeprom_bits(hw,
998 IXGBE_EEPROM_WREN_OPCODE_SPI,
999 IXGBE_EEPROM_OPCODE_BITS);
1001 ixgbe_standby_eeprom(hw);
1003 /* Some SPI eeproms use the 8th address bit embedded
1004 * in the opcode
1006 if ((hw->eeprom.address_bits == 8) &&
1007 ((offset + i) >= 128))
1008 write_opcode |= IXGBE_EEPROM_A8_OPCODE_SPI;
1010 /* Send the Write command (8-bit opcode + addr) */
1011 ixgbe_shift_out_eeprom_bits(hw, write_opcode,
1012 IXGBE_EEPROM_OPCODE_BITS);
1013 ixgbe_shift_out_eeprom_bits(hw, (u16)((offset + i) * 2),
1014 hw->eeprom.address_bits);
1016 page_size = hw->eeprom.word_page_size;
1018 /* Send the data in burst via SPI */
1019 do {
1020 word = data[i];
1021 word = (word >> 8) | (word << 8);
1022 ixgbe_shift_out_eeprom_bits(hw, word, 16);
1024 if (page_size == 0)
1025 break;
1027 /* do not wrap around page */
1028 if (((offset + i) & (page_size - 1)) ==
1029 (page_size - 1))
1030 break;
1031 } while (++i < words);
1033 ixgbe_standby_eeprom(hw);
1034 usleep_range(10000, 20000);
1036 /* Done with writing - release the EEPROM */
1037 ixgbe_release_eeprom(hw);
1039 return 0;
1043 * ixgbe_write_eeprom_generic - Writes 16 bit value to EEPROM
1044 * @hw: pointer to hardware structure
1045 * @offset: offset within the EEPROM to be written to
1046 * @data: 16 bit word to be written to the EEPROM
1048 * If ixgbe_eeprom_update_checksum is not called after this function, the
1049 * EEPROM will most likely contain an invalid checksum.
1051 s32 ixgbe_write_eeprom_generic(struct ixgbe_hw *hw, u16 offset, u16 data)
1053 hw->eeprom.ops.init_params(hw);
1055 if (offset >= hw->eeprom.word_size)
1056 return IXGBE_ERR_EEPROM;
1058 return ixgbe_write_eeprom_buffer_bit_bang(hw, offset, 1, &data);
1062 * ixgbe_read_eeprom_buffer_bit_bang_generic - Read EEPROM using bit-bang
1063 * @hw: pointer to hardware structure
1064 * @offset: offset within the EEPROM to be read
1065 * @words: number of word(s)
1066 * @data: read 16 bit words(s) from EEPROM
1068 * Reads 16 bit word(s) from EEPROM through bit-bang method
1070 s32 ixgbe_read_eeprom_buffer_bit_bang_generic(struct ixgbe_hw *hw, u16 offset,
1071 u16 words, u16 *data)
1073 s32 status;
1074 u16 i, count;
1076 hw->eeprom.ops.init_params(hw);
1078 if (words == 0)
1079 return IXGBE_ERR_INVALID_ARGUMENT;
1081 if (offset + words > hw->eeprom.word_size)
1082 return IXGBE_ERR_EEPROM;
1085 * We cannot hold synchronization semaphores for too long
1086 * to avoid other entity starvation. However it is more efficient
1087 * to read in bursts than synchronizing access for each word.
1089 for (i = 0; i < words; i += IXGBE_EEPROM_RD_BUFFER_MAX_COUNT) {
1090 count = (words - i) / IXGBE_EEPROM_RD_BUFFER_MAX_COUNT > 0 ?
1091 IXGBE_EEPROM_RD_BUFFER_MAX_COUNT : (words - i);
1093 status = ixgbe_read_eeprom_buffer_bit_bang(hw, offset + i,
1094 count, &data[i]);
1096 if (status)
1097 return status;
1100 return 0;
1104 * ixgbe_read_eeprom_buffer_bit_bang - Read EEPROM using bit-bang
1105 * @hw: pointer to hardware structure
1106 * @offset: offset within the EEPROM to be read
1107 * @words: number of word(s)
1108 * @data: read 16 bit word(s) from EEPROM
1110 * Reads 16 bit word(s) from EEPROM through bit-bang method
1112 static s32 ixgbe_read_eeprom_buffer_bit_bang(struct ixgbe_hw *hw, u16 offset,
1113 u16 words, u16 *data)
1115 s32 status;
1116 u16 word_in;
1117 u8 read_opcode = IXGBE_EEPROM_READ_OPCODE_SPI;
1118 u16 i;
1120 /* Prepare the EEPROM for reading */
1121 status = ixgbe_acquire_eeprom(hw);
1122 if (status)
1123 return status;
1125 if (ixgbe_ready_eeprom(hw) != 0) {
1126 ixgbe_release_eeprom(hw);
1127 return IXGBE_ERR_EEPROM;
1130 for (i = 0; i < words; i++) {
1131 ixgbe_standby_eeprom(hw);
1132 /* Some SPI eeproms use the 8th address bit embedded
1133 * in the opcode
1135 if ((hw->eeprom.address_bits == 8) &&
1136 ((offset + i) >= 128))
1137 read_opcode |= IXGBE_EEPROM_A8_OPCODE_SPI;
1139 /* Send the READ command (opcode + addr) */
1140 ixgbe_shift_out_eeprom_bits(hw, read_opcode,
1141 IXGBE_EEPROM_OPCODE_BITS);
1142 ixgbe_shift_out_eeprom_bits(hw, (u16)((offset + i) * 2),
1143 hw->eeprom.address_bits);
1145 /* Read the data. */
1146 word_in = ixgbe_shift_in_eeprom_bits(hw, 16);
1147 data[i] = (word_in >> 8) | (word_in << 8);
1150 /* End this read operation */
1151 ixgbe_release_eeprom(hw);
1153 return 0;
1157 * ixgbe_read_eeprom_bit_bang_generic - Read EEPROM word using bit-bang
1158 * @hw: pointer to hardware structure
1159 * @offset: offset within the EEPROM to be read
1160 * @data: read 16 bit value from EEPROM
1162 * Reads 16 bit value from EEPROM through bit-bang method
1164 s32 ixgbe_read_eeprom_bit_bang_generic(struct ixgbe_hw *hw, u16 offset,
1165 u16 *data)
1167 hw->eeprom.ops.init_params(hw);
1169 if (offset >= hw->eeprom.word_size)
1170 return IXGBE_ERR_EEPROM;
1172 return ixgbe_read_eeprom_buffer_bit_bang(hw, offset, 1, data);
1176 * ixgbe_read_eerd_buffer_generic - Read EEPROM word(s) using EERD
1177 * @hw: pointer to hardware structure
1178 * @offset: offset of word in the EEPROM to read
1179 * @words: number of word(s)
1180 * @data: 16 bit word(s) from the EEPROM
1182 * Reads a 16 bit word(s) from the EEPROM using the EERD register.
1184 s32 ixgbe_read_eerd_buffer_generic(struct ixgbe_hw *hw, u16 offset,
1185 u16 words, u16 *data)
1187 u32 eerd;
1188 s32 status;
1189 u32 i;
1191 hw->eeprom.ops.init_params(hw);
1193 if (words == 0)
1194 return IXGBE_ERR_INVALID_ARGUMENT;
1196 if (offset >= hw->eeprom.word_size)
1197 return IXGBE_ERR_EEPROM;
1199 for (i = 0; i < words; i++) {
1200 eerd = ((offset + i) << IXGBE_EEPROM_RW_ADDR_SHIFT) |
1201 IXGBE_EEPROM_RW_REG_START;
1203 IXGBE_WRITE_REG(hw, IXGBE_EERD, eerd);
1204 status = ixgbe_poll_eerd_eewr_done(hw, IXGBE_NVM_POLL_READ);
1206 if (status == 0) {
1207 data[i] = (IXGBE_READ_REG(hw, IXGBE_EERD) >>
1208 IXGBE_EEPROM_RW_REG_DATA);
1209 } else {
1210 hw_dbg(hw, "Eeprom read timed out\n");
1211 return status;
1215 return 0;
1219 * ixgbe_detect_eeprom_page_size_generic - Detect EEPROM page size
1220 * @hw: pointer to hardware structure
1221 * @offset: offset within the EEPROM to be used as a scratch pad
1223 * Discover EEPROM page size by writing marching data at given offset.
1224 * This function is called only when we are writing a new large buffer
1225 * at given offset so the data would be overwritten anyway.
1227 static s32 ixgbe_detect_eeprom_page_size_generic(struct ixgbe_hw *hw,
1228 u16 offset)
1230 u16 data[IXGBE_EEPROM_PAGE_SIZE_MAX];
1231 s32 status;
1232 u16 i;
1234 for (i = 0; i < IXGBE_EEPROM_PAGE_SIZE_MAX; i++)
1235 data[i] = i;
1237 hw->eeprom.word_page_size = IXGBE_EEPROM_PAGE_SIZE_MAX;
1238 status = ixgbe_write_eeprom_buffer_bit_bang(hw, offset,
1239 IXGBE_EEPROM_PAGE_SIZE_MAX, data);
1240 hw->eeprom.word_page_size = 0;
1241 if (status)
1242 return status;
1244 status = ixgbe_read_eeprom_buffer_bit_bang(hw, offset, 1, data);
1245 if (status)
1246 return status;
1249 * When writing in burst more than the actual page size
1250 * EEPROM address wraps around current page.
1252 hw->eeprom.word_page_size = IXGBE_EEPROM_PAGE_SIZE_MAX - data[0];
1254 hw_dbg(hw, "Detected EEPROM page size = %d words.\n",
1255 hw->eeprom.word_page_size);
1256 return 0;
1260 * ixgbe_read_eerd_generic - Read EEPROM word using EERD
1261 * @hw: pointer to hardware structure
1262 * @offset: offset of word in the EEPROM to read
1263 * @data: word read from the EEPROM
1265 * Reads a 16 bit word from the EEPROM using the EERD register.
1267 s32 ixgbe_read_eerd_generic(struct ixgbe_hw *hw, u16 offset, u16 *data)
1269 return ixgbe_read_eerd_buffer_generic(hw, offset, 1, data);
1273 * ixgbe_write_eewr_buffer_generic - Write EEPROM word(s) using EEWR
1274 * @hw: pointer to hardware structure
1275 * @offset: offset of word in the EEPROM to write
1276 * @words: number of words
1277 * @data: word(s) write to the EEPROM
1279 * Write a 16 bit word(s) to the EEPROM using the EEWR register.
1281 s32 ixgbe_write_eewr_buffer_generic(struct ixgbe_hw *hw, u16 offset,
1282 u16 words, u16 *data)
1284 u32 eewr;
1285 s32 status;
1286 u16 i;
1288 hw->eeprom.ops.init_params(hw);
1290 if (words == 0)
1291 return IXGBE_ERR_INVALID_ARGUMENT;
1293 if (offset >= hw->eeprom.word_size)
1294 return IXGBE_ERR_EEPROM;
1296 for (i = 0; i < words; i++) {
1297 eewr = ((offset + i) << IXGBE_EEPROM_RW_ADDR_SHIFT) |
1298 (data[i] << IXGBE_EEPROM_RW_REG_DATA) |
1299 IXGBE_EEPROM_RW_REG_START;
1301 status = ixgbe_poll_eerd_eewr_done(hw, IXGBE_NVM_POLL_WRITE);
1302 if (status) {
1303 hw_dbg(hw, "Eeprom write EEWR timed out\n");
1304 return status;
1307 IXGBE_WRITE_REG(hw, IXGBE_EEWR, eewr);
1309 status = ixgbe_poll_eerd_eewr_done(hw, IXGBE_NVM_POLL_WRITE);
1310 if (status) {
1311 hw_dbg(hw, "Eeprom write EEWR timed out\n");
1312 return status;
1316 return 0;
1320 * ixgbe_write_eewr_generic - Write EEPROM word using EEWR
1321 * @hw: pointer to hardware structure
1322 * @offset: offset of word in the EEPROM to write
1323 * @data: word write to the EEPROM
1325 * Write a 16 bit word to the EEPROM using the EEWR register.
1327 s32 ixgbe_write_eewr_generic(struct ixgbe_hw *hw, u16 offset, u16 data)
1329 return ixgbe_write_eewr_buffer_generic(hw, offset, 1, &data);
1333 * ixgbe_poll_eerd_eewr_done - Poll EERD read or EEWR write status
1334 * @hw: pointer to hardware structure
1335 * @ee_reg: EEPROM flag for polling
1337 * Polls the status bit (bit 1) of the EERD or EEWR to determine when the
1338 * read or write is done respectively.
1340 static s32 ixgbe_poll_eerd_eewr_done(struct ixgbe_hw *hw, u32 ee_reg)
1342 u32 i;
1343 u32 reg;
1345 for (i = 0; i < IXGBE_EERD_EEWR_ATTEMPTS; i++) {
1346 if (ee_reg == IXGBE_NVM_POLL_READ)
1347 reg = IXGBE_READ_REG(hw, IXGBE_EERD);
1348 else
1349 reg = IXGBE_READ_REG(hw, IXGBE_EEWR);
1351 if (reg & IXGBE_EEPROM_RW_REG_DONE) {
1352 return 0;
1354 udelay(5);
1356 return IXGBE_ERR_EEPROM;
1360 * ixgbe_acquire_eeprom - Acquire EEPROM using bit-bang
1361 * @hw: pointer to hardware structure
1363 * Prepares EEPROM for access using bit-bang method. This function should
1364 * be called before issuing a command to the EEPROM.
1366 static s32 ixgbe_acquire_eeprom(struct ixgbe_hw *hw)
1368 u32 eec;
1369 u32 i;
1371 if (hw->mac.ops.acquire_swfw_sync(hw, IXGBE_GSSR_EEP_SM) != 0)
1372 return IXGBE_ERR_SWFW_SYNC;
1374 eec = IXGBE_READ_REG(hw, IXGBE_EEC(hw));
1376 /* Request EEPROM Access */
1377 eec |= IXGBE_EEC_REQ;
1378 IXGBE_WRITE_REG(hw, IXGBE_EEC(hw), eec);
1380 for (i = 0; i < IXGBE_EEPROM_GRANT_ATTEMPTS; i++) {
1381 eec = IXGBE_READ_REG(hw, IXGBE_EEC(hw));
1382 if (eec & IXGBE_EEC_GNT)
1383 break;
1384 udelay(5);
1387 /* Release if grant not acquired */
1388 if (!(eec & IXGBE_EEC_GNT)) {
1389 eec &= ~IXGBE_EEC_REQ;
1390 IXGBE_WRITE_REG(hw, IXGBE_EEC(hw), eec);
1391 hw_dbg(hw, "Could not acquire EEPROM grant\n");
1393 hw->mac.ops.release_swfw_sync(hw, IXGBE_GSSR_EEP_SM);
1394 return IXGBE_ERR_EEPROM;
1397 /* Setup EEPROM for Read/Write */
1398 /* Clear CS and SK */
1399 eec &= ~(IXGBE_EEC_CS | IXGBE_EEC_SK);
1400 IXGBE_WRITE_REG(hw, IXGBE_EEC(hw), eec);
1401 IXGBE_WRITE_FLUSH(hw);
1402 udelay(1);
1403 return 0;
1407 * ixgbe_get_eeprom_semaphore - Get hardware semaphore
1408 * @hw: pointer to hardware structure
1410 * Sets the hardware semaphores so EEPROM access can occur for bit-bang method
1412 static s32 ixgbe_get_eeprom_semaphore(struct ixgbe_hw *hw)
1414 u32 timeout = 2000;
1415 u32 i;
1416 u32 swsm;
1418 /* Get SMBI software semaphore between device drivers first */
1419 for (i = 0; i < timeout; i++) {
1421 * If the SMBI bit is 0 when we read it, then the bit will be
1422 * set and we have the semaphore
1424 swsm = IXGBE_READ_REG(hw, IXGBE_SWSM(hw));
1425 if (!(swsm & IXGBE_SWSM_SMBI))
1426 break;
1427 usleep_range(50, 100);
1430 if (i == timeout) {
1431 hw_dbg(hw, "Driver can't access the Eeprom - SMBI Semaphore not granted.\n");
1432 /* this release is particularly important because our attempts
1433 * above to get the semaphore may have succeeded, and if there
1434 * was a timeout, we should unconditionally clear the semaphore
1435 * bits to free the driver to make progress
1437 ixgbe_release_eeprom_semaphore(hw);
1439 usleep_range(50, 100);
1440 /* one last try
1441 * If the SMBI bit is 0 when we read it, then the bit will be
1442 * set and we have the semaphore
1444 swsm = IXGBE_READ_REG(hw, IXGBE_SWSM(hw));
1445 if (swsm & IXGBE_SWSM_SMBI) {
1446 hw_dbg(hw, "Software semaphore SMBI between device drivers not granted.\n");
1447 return IXGBE_ERR_EEPROM;
1451 /* Now get the semaphore between SW/FW through the SWESMBI bit */
1452 for (i = 0; i < timeout; i++) {
1453 swsm = IXGBE_READ_REG(hw, IXGBE_SWSM(hw));
1455 /* Set the SW EEPROM semaphore bit to request access */
1456 swsm |= IXGBE_SWSM_SWESMBI;
1457 IXGBE_WRITE_REG(hw, IXGBE_SWSM(hw), swsm);
1459 /* If we set the bit successfully then we got the
1460 * semaphore.
1462 swsm = IXGBE_READ_REG(hw, IXGBE_SWSM(hw));
1463 if (swsm & IXGBE_SWSM_SWESMBI)
1464 break;
1466 usleep_range(50, 100);
1469 /* Release semaphores and return error if SW EEPROM semaphore
1470 * was not granted because we don't have access to the EEPROM
1472 if (i >= timeout) {
1473 hw_dbg(hw, "SWESMBI Software EEPROM semaphore not granted.\n");
1474 ixgbe_release_eeprom_semaphore(hw);
1475 return IXGBE_ERR_EEPROM;
1478 return 0;
1482 * ixgbe_release_eeprom_semaphore - Release hardware semaphore
1483 * @hw: pointer to hardware structure
1485 * This function clears hardware semaphore bits.
1487 static void ixgbe_release_eeprom_semaphore(struct ixgbe_hw *hw)
1489 u32 swsm;
1491 swsm = IXGBE_READ_REG(hw, IXGBE_SWSM(hw));
1493 /* Release both semaphores by writing 0 to the bits SWESMBI and SMBI */
1494 swsm &= ~(IXGBE_SWSM_SWESMBI | IXGBE_SWSM_SMBI);
1495 IXGBE_WRITE_REG(hw, IXGBE_SWSM(hw), swsm);
1496 IXGBE_WRITE_FLUSH(hw);
1500 * ixgbe_ready_eeprom - Polls for EEPROM ready
1501 * @hw: pointer to hardware structure
1503 static s32 ixgbe_ready_eeprom(struct ixgbe_hw *hw)
1505 u16 i;
1506 u8 spi_stat_reg;
1509 * Read "Status Register" repeatedly until the LSB is cleared. The
1510 * EEPROM will signal that the command has been completed by clearing
1511 * bit 0 of the internal status register. If it's not cleared within
1512 * 5 milliseconds, then error out.
1514 for (i = 0; i < IXGBE_EEPROM_MAX_RETRY_SPI; i += 5) {
1515 ixgbe_shift_out_eeprom_bits(hw, IXGBE_EEPROM_RDSR_OPCODE_SPI,
1516 IXGBE_EEPROM_OPCODE_BITS);
1517 spi_stat_reg = (u8)ixgbe_shift_in_eeprom_bits(hw, 8);
1518 if (!(spi_stat_reg & IXGBE_EEPROM_STATUS_RDY_SPI))
1519 break;
1521 udelay(5);
1522 ixgbe_standby_eeprom(hw);
1526 * On some parts, SPI write time could vary from 0-20mSec on 3.3V
1527 * devices (and only 0-5mSec on 5V devices)
1529 if (i >= IXGBE_EEPROM_MAX_RETRY_SPI) {
1530 hw_dbg(hw, "SPI EEPROM Status error\n");
1531 return IXGBE_ERR_EEPROM;
1534 return 0;
1538 * ixgbe_standby_eeprom - Returns EEPROM to a "standby" state
1539 * @hw: pointer to hardware structure
1541 static void ixgbe_standby_eeprom(struct ixgbe_hw *hw)
1543 u32 eec;
1545 eec = IXGBE_READ_REG(hw, IXGBE_EEC(hw));
1547 /* Toggle CS to flush commands */
1548 eec |= IXGBE_EEC_CS;
1549 IXGBE_WRITE_REG(hw, IXGBE_EEC(hw), eec);
1550 IXGBE_WRITE_FLUSH(hw);
1551 udelay(1);
1552 eec &= ~IXGBE_EEC_CS;
1553 IXGBE_WRITE_REG(hw, IXGBE_EEC(hw), eec);
1554 IXGBE_WRITE_FLUSH(hw);
1555 udelay(1);
1559 * ixgbe_shift_out_eeprom_bits - Shift data bits out to the EEPROM.
1560 * @hw: pointer to hardware structure
1561 * @data: data to send to the EEPROM
1562 * @count: number of bits to shift out
1564 static void ixgbe_shift_out_eeprom_bits(struct ixgbe_hw *hw, u16 data,
1565 u16 count)
1567 u32 eec;
1568 u32 mask;
1569 u32 i;
1571 eec = IXGBE_READ_REG(hw, IXGBE_EEC(hw));
1574 * Mask is used to shift "count" bits of "data" out to the EEPROM
1575 * one bit at a time. Determine the starting bit based on count
1577 mask = BIT(count - 1);
1579 for (i = 0; i < count; i++) {
1581 * A "1" is shifted out to the EEPROM by setting bit "DI" to a
1582 * "1", and then raising and then lowering the clock (the SK
1583 * bit controls the clock input to the EEPROM). A "0" is
1584 * shifted out to the EEPROM by setting "DI" to "0" and then
1585 * raising and then lowering the clock.
1587 if (data & mask)
1588 eec |= IXGBE_EEC_DI;
1589 else
1590 eec &= ~IXGBE_EEC_DI;
1592 IXGBE_WRITE_REG(hw, IXGBE_EEC(hw), eec);
1593 IXGBE_WRITE_FLUSH(hw);
1595 udelay(1);
1597 ixgbe_raise_eeprom_clk(hw, &eec);
1598 ixgbe_lower_eeprom_clk(hw, &eec);
1601 * Shift mask to signify next bit of data to shift in to the
1602 * EEPROM
1604 mask = mask >> 1;
1607 /* We leave the "DI" bit set to "0" when we leave this routine. */
1608 eec &= ~IXGBE_EEC_DI;
1609 IXGBE_WRITE_REG(hw, IXGBE_EEC(hw), eec);
1610 IXGBE_WRITE_FLUSH(hw);
1614 * ixgbe_shift_in_eeprom_bits - Shift data bits in from the EEPROM
1615 * @hw: pointer to hardware structure
1616 * @count: number of bits to shift
1618 static u16 ixgbe_shift_in_eeprom_bits(struct ixgbe_hw *hw, u16 count)
1620 u32 eec;
1621 u32 i;
1622 u16 data = 0;
1625 * In order to read a register from the EEPROM, we need to shift
1626 * 'count' bits in from the EEPROM. Bits are "shifted in" by raising
1627 * the clock input to the EEPROM (setting the SK bit), and then reading
1628 * the value of the "DO" bit. During this "shifting in" process the
1629 * "DI" bit should always be clear.
1631 eec = IXGBE_READ_REG(hw, IXGBE_EEC(hw));
1633 eec &= ~(IXGBE_EEC_DO | IXGBE_EEC_DI);
1635 for (i = 0; i < count; i++) {
1636 data = data << 1;
1637 ixgbe_raise_eeprom_clk(hw, &eec);
1639 eec = IXGBE_READ_REG(hw, IXGBE_EEC(hw));
1641 eec &= ~(IXGBE_EEC_DI);
1642 if (eec & IXGBE_EEC_DO)
1643 data |= 1;
1645 ixgbe_lower_eeprom_clk(hw, &eec);
1648 return data;
1652 * ixgbe_raise_eeprom_clk - Raises the EEPROM's clock input.
1653 * @hw: pointer to hardware structure
1654 * @eec: EEC register's current value
1656 static void ixgbe_raise_eeprom_clk(struct ixgbe_hw *hw, u32 *eec)
1659 * Raise the clock input to the EEPROM
1660 * (setting the SK bit), then delay
1662 *eec = *eec | IXGBE_EEC_SK;
1663 IXGBE_WRITE_REG(hw, IXGBE_EEC(hw), *eec);
1664 IXGBE_WRITE_FLUSH(hw);
1665 udelay(1);
1669 * ixgbe_lower_eeprom_clk - Lowers the EEPROM's clock input.
1670 * @hw: pointer to hardware structure
1671 * @eec: EEC's current value
1673 static void ixgbe_lower_eeprom_clk(struct ixgbe_hw *hw, u32 *eec)
1676 * Lower the clock input to the EEPROM (clearing the SK bit), then
1677 * delay
1679 *eec = *eec & ~IXGBE_EEC_SK;
1680 IXGBE_WRITE_REG(hw, IXGBE_EEC(hw), *eec);
1681 IXGBE_WRITE_FLUSH(hw);
1682 udelay(1);
1686 * ixgbe_release_eeprom - Release EEPROM, release semaphores
1687 * @hw: pointer to hardware structure
1689 static void ixgbe_release_eeprom(struct ixgbe_hw *hw)
1691 u32 eec;
1693 eec = IXGBE_READ_REG(hw, IXGBE_EEC(hw));
1695 eec |= IXGBE_EEC_CS; /* Pull CS high */
1696 eec &= ~IXGBE_EEC_SK; /* Lower SCK */
1698 IXGBE_WRITE_REG(hw, IXGBE_EEC(hw), eec);
1699 IXGBE_WRITE_FLUSH(hw);
1701 udelay(1);
1703 /* Stop requesting EEPROM access */
1704 eec &= ~IXGBE_EEC_REQ;
1705 IXGBE_WRITE_REG(hw, IXGBE_EEC(hw), eec);
1707 hw->mac.ops.release_swfw_sync(hw, IXGBE_GSSR_EEP_SM);
1710 * Delay before attempt to obtain semaphore again to allow FW
1711 * access. semaphore_delay is in ms we need us for usleep_range
1713 usleep_range(hw->eeprom.semaphore_delay * 1000,
1714 hw->eeprom.semaphore_delay * 2000);
1718 * ixgbe_calc_eeprom_checksum_generic - Calculates and returns the checksum
1719 * @hw: pointer to hardware structure
1721 s32 ixgbe_calc_eeprom_checksum_generic(struct ixgbe_hw *hw)
1723 u16 i;
1724 u16 j;
1725 u16 checksum = 0;
1726 u16 length = 0;
1727 u16 pointer = 0;
1728 u16 word = 0;
1730 /* Include 0x0-0x3F in the checksum */
1731 for (i = 0; i < IXGBE_EEPROM_CHECKSUM; i++) {
1732 if (hw->eeprom.ops.read(hw, i, &word)) {
1733 hw_dbg(hw, "EEPROM read failed\n");
1734 break;
1736 checksum += word;
1739 /* Include all data from pointers except for the fw pointer */
1740 for (i = IXGBE_PCIE_ANALOG_PTR; i < IXGBE_FW_PTR; i++) {
1741 if (hw->eeprom.ops.read(hw, i, &pointer)) {
1742 hw_dbg(hw, "EEPROM read failed\n");
1743 return IXGBE_ERR_EEPROM;
1746 /* If the pointer seems invalid */
1747 if (pointer == 0xFFFF || pointer == 0)
1748 continue;
1750 if (hw->eeprom.ops.read(hw, pointer, &length)) {
1751 hw_dbg(hw, "EEPROM read failed\n");
1752 return IXGBE_ERR_EEPROM;
1755 if (length == 0xFFFF || length == 0)
1756 continue;
1758 for (j = pointer + 1; j <= pointer + length; j++) {
1759 if (hw->eeprom.ops.read(hw, j, &word)) {
1760 hw_dbg(hw, "EEPROM read failed\n");
1761 return IXGBE_ERR_EEPROM;
1763 checksum += word;
1767 checksum = (u16)IXGBE_EEPROM_SUM - checksum;
1769 return (s32)checksum;
1773 * ixgbe_validate_eeprom_checksum_generic - Validate EEPROM checksum
1774 * @hw: pointer to hardware structure
1775 * @checksum_val: calculated checksum
1777 * Performs checksum calculation and validates the EEPROM checksum. If the
1778 * caller does not need checksum_val, the value can be NULL.
1780 s32 ixgbe_validate_eeprom_checksum_generic(struct ixgbe_hw *hw,
1781 u16 *checksum_val)
1783 s32 status;
1784 u16 checksum;
1785 u16 read_checksum = 0;
1788 * Read the first word from the EEPROM. If this times out or fails, do
1789 * not continue or we could be in for a very long wait while every
1790 * EEPROM read fails
1792 status = hw->eeprom.ops.read(hw, 0, &checksum);
1793 if (status) {
1794 hw_dbg(hw, "EEPROM read failed\n");
1795 return status;
1798 status = hw->eeprom.ops.calc_checksum(hw);
1799 if (status < 0)
1800 return status;
1802 checksum = (u16)(status & 0xffff);
1804 status = hw->eeprom.ops.read(hw, IXGBE_EEPROM_CHECKSUM, &read_checksum);
1805 if (status) {
1806 hw_dbg(hw, "EEPROM read failed\n");
1807 return status;
1810 /* Verify read checksum from EEPROM is the same as
1811 * calculated checksum
1813 if (read_checksum != checksum)
1814 status = IXGBE_ERR_EEPROM_CHECKSUM;
1816 /* If the user cares, return the calculated checksum */
1817 if (checksum_val)
1818 *checksum_val = checksum;
1820 return status;
1824 * ixgbe_update_eeprom_checksum_generic - Updates the EEPROM checksum
1825 * @hw: pointer to hardware structure
1827 s32 ixgbe_update_eeprom_checksum_generic(struct ixgbe_hw *hw)
1829 s32 status;
1830 u16 checksum;
1833 * Read the first word from the EEPROM. If this times out or fails, do
1834 * not continue or we could be in for a very long wait while every
1835 * EEPROM read fails
1837 status = hw->eeprom.ops.read(hw, 0, &checksum);
1838 if (status) {
1839 hw_dbg(hw, "EEPROM read failed\n");
1840 return status;
1843 status = hw->eeprom.ops.calc_checksum(hw);
1844 if (status < 0)
1845 return status;
1847 checksum = (u16)(status & 0xffff);
1849 status = hw->eeprom.ops.write(hw, IXGBE_EEPROM_CHECKSUM, checksum);
1851 return status;
1855 * ixgbe_set_rar_generic - Set Rx address register
1856 * @hw: pointer to hardware structure
1857 * @index: Receive address register to write
1858 * @addr: Address to put into receive address register
1859 * @vmdq: VMDq "set" or "pool" index
1860 * @enable_addr: set flag that address is active
1862 * Puts an ethernet address into a receive address register.
1864 s32 ixgbe_set_rar_generic(struct ixgbe_hw *hw, u32 index, u8 *addr, u32 vmdq,
1865 u32 enable_addr)
1867 u32 rar_low, rar_high;
1868 u32 rar_entries = hw->mac.num_rar_entries;
1870 /* Make sure we are using a valid rar index range */
1871 if (index >= rar_entries) {
1872 hw_dbg(hw, "RAR index %d is out of range.\n", index);
1873 return IXGBE_ERR_INVALID_ARGUMENT;
1876 /* setup VMDq pool selection before this RAR gets enabled */
1877 hw->mac.ops.set_vmdq(hw, index, vmdq);
1880 * HW expects these in little endian so we reverse the byte
1881 * order from network order (big endian) to little endian
1883 rar_low = ((u32)addr[0] |
1884 ((u32)addr[1] << 8) |
1885 ((u32)addr[2] << 16) |
1886 ((u32)addr[3] << 24));
1888 * Some parts put the VMDq setting in the extra RAH bits,
1889 * so save everything except the lower 16 bits that hold part
1890 * of the address and the address valid bit.
1892 rar_high = IXGBE_READ_REG(hw, IXGBE_RAH(index));
1893 rar_high &= ~(0x0000FFFF | IXGBE_RAH_AV);
1894 rar_high |= ((u32)addr[4] | ((u32)addr[5] << 8));
1896 if (enable_addr != 0)
1897 rar_high |= IXGBE_RAH_AV;
1899 IXGBE_WRITE_REG(hw, IXGBE_RAL(index), rar_low);
1900 IXGBE_WRITE_REG(hw, IXGBE_RAH(index), rar_high);
1902 return 0;
1906 * ixgbe_clear_rar_generic - Remove Rx address register
1907 * @hw: pointer to hardware structure
1908 * @index: Receive address register to write
1910 * Clears an ethernet address from a receive address register.
1912 s32 ixgbe_clear_rar_generic(struct ixgbe_hw *hw, u32 index)
1914 u32 rar_high;
1915 u32 rar_entries = hw->mac.num_rar_entries;
1917 /* Make sure we are using a valid rar index range */
1918 if (index >= rar_entries) {
1919 hw_dbg(hw, "RAR index %d is out of range.\n", index);
1920 return IXGBE_ERR_INVALID_ARGUMENT;
1924 * Some parts put the VMDq setting in the extra RAH bits,
1925 * so save everything except the lower 16 bits that hold part
1926 * of the address and the address valid bit.
1928 rar_high = IXGBE_READ_REG(hw, IXGBE_RAH(index));
1929 rar_high &= ~(0x0000FFFF | IXGBE_RAH_AV);
1931 IXGBE_WRITE_REG(hw, IXGBE_RAL(index), 0);
1932 IXGBE_WRITE_REG(hw, IXGBE_RAH(index), rar_high);
1934 /* clear VMDq pool/queue selection for this RAR */
1935 hw->mac.ops.clear_vmdq(hw, index, IXGBE_CLEAR_VMDQ_ALL);
1937 return 0;
1941 * ixgbe_init_rx_addrs_generic - Initializes receive address filters.
1942 * @hw: pointer to hardware structure
1944 * Places the MAC address in receive address register 0 and clears the rest
1945 * of the receive address registers. Clears the multicast table. Assumes
1946 * the receiver is in reset when the routine is called.
1948 s32 ixgbe_init_rx_addrs_generic(struct ixgbe_hw *hw)
1950 u32 i;
1951 u32 rar_entries = hw->mac.num_rar_entries;
1954 * If the current mac address is valid, assume it is a software override
1955 * to the permanent address.
1956 * Otherwise, use the permanent address from the eeprom.
1958 if (!is_valid_ether_addr(hw->mac.addr)) {
1959 /* Get the MAC address from the RAR0 for later reference */
1960 hw->mac.ops.get_mac_addr(hw, hw->mac.addr);
1962 hw_dbg(hw, " Keeping Current RAR0 Addr =%pM\n", hw->mac.addr);
1963 } else {
1964 /* Setup the receive address. */
1965 hw_dbg(hw, "Overriding MAC Address in RAR[0]\n");
1966 hw_dbg(hw, " New MAC Addr =%pM\n", hw->mac.addr);
1968 hw->mac.ops.set_rar(hw, 0, hw->mac.addr, 0, IXGBE_RAH_AV);
1971 /* clear VMDq pool/queue selection for RAR 0 */
1972 hw->mac.ops.clear_vmdq(hw, 0, IXGBE_CLEAR_VMDQ_ALL);
1974 hw->addr_ctrl.overflow_promisc = 0;
1976 hw->addr_ctrl.rar_used_count = 1;
1978 /* Zero out the other receive addresses. */
1979 hw_dbg(hw, "Clearing RAR[1-%d]\n", rar_entries - 1);
1980 for (i = 1; i < rar_entries; i++) {
1981 IXGBE_WRITE_REG(hw, IXGBE_RAL(i), 0);
1982 IXGBE_WRITE_REG(hw, IXGBE_RAH(i), 0);
1985 /* Clear the MTA */
1986 hw->addr_ctrl.mta_in_use = 0;
1987 IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL, hw->mac.mc_filter_type);
1989 hw_dbg(hw, " Clearing MTA\n");
1990 for (i = 0; i < hw->mac.mcft_size; i++)
1991 IXGBE_WRITE_REG(hw, IXGBE_MTA(i), 0);
1993 if (hw->mac.ops.init_uta_tables)
1994 hw->mac.ops.init_uta_tables(hw);
1996 return 0;
2000 * ixgbe_mta_vector - Determines bit-vector in multicast table to set
2001 * @hw: pointer to hardware structure
2002 * @mc_addr: the multicast address
2004 * Extracts the 12 bits, from a multicast address, to determine which
2005 * bit-vector to set in the multicast table. The hardware uses 12 bits, from
2006 * incoming rx multicast addresses, to determine the bit-vector to check in
2007 * the MTA. Which of the 4 combination, of 12-bits, the hardware uses is set
2008 * by the MO field of the MCSTCTRL. The MO field is set during initialization
2009 * to mc_filter_type.
2011 static s32 ixgbe_mta_vector(struct ixgbe_hw *hw, u8 *mc_addr)
2013 u32 vector = 0;
2015 switch (hw->mac.mc_filter_type) {
2016 case 0: /* use bits [47:36] of the address */
2017 vector = ((mc_addr[4] >> 4) | (((u16)mc_addr[5]) << 4));
2018 break;
2019 case 1: /* use bits [46:35] of the address */
2020 vector = ((mc_addr[4] >> 3) | (((u16)mc_addr[5]) << 5));
2021 break;
2022 case 2: /* use bits [45:34] of the address */
2023 vector = ((mc_addr[4] >> 2) | (((u16)mc_addr[5]) << 6));
2024 break;
2025 case 3: /* use bits [43:32] of the address */
2026 vector = ((mc_addr[4]) | (((u16)mc_addr[5]) << 8));
2027 break;
2028 default: /* Invalid mc_filter_type */
2029 hw_dbg(hw, "MC filter type param set incorrectly\n");
2030 break;
2033 /* vector can only be 12-bits or boundary will be exceeded */
2034 vector &= 0xFFF;
2035 return vector;
2039 * ixgbe_set_mta - Set bit-vector in multicast table
2040 * @hw: pointer to hardware structure
2041 * @mc_addr: Multicast address
2043 * Sets the bit-vector in the multicast table.
2045 static void ixgbe_set_mta(struct ixgbe_hw *hw, u8 *mc_addr)
2047 u32 vector;
2048 u32 vector_bit;
2049 u32 vector_reg;
2051 hw->addr_ctrl.mta_in_use++;
2053 vector = ixgbe_mta_vector(hw, mc_addr);
2054 hw_dbg(hw, " bit-vector = 0x%03X\n", vector);
2057 * The MTA is a register array of 128 32-bit registers. It is treated
2058 * like an array of 4096 bits. We want to set bit
2059 * BitArray[vector_value]. So we figure out what register the bit is
2060 * in, read it, OR in the new bit, then write back the new value. The
2061 * register is determined by the upper 7 bits of the vector value and
2062 * the bit within that register are determined by the lower 5 bits of
2063 * the value.
2065 vector_reg = (vector >> 5) & 0x7F;
2066 vector_bit = vector & 0x1F;
2067 hw->mac.mta_shadow[vector_reg] |= BIT(vector_bit);
2071 * ixgbe_update_mc_addr_list_generic - Updates MAC list of multicast addresses
2072 * @hw: pointer to hardware structure
2073 * @netdev: pointer to net device structure
2075 * The given list replaces any existing list. Clears the MC addrs from receive
2076 * address registers and the multicast table. Uses unused receive address
2077 * registers for the first multicast addresses, and hashes the rest into the
2078 * multicast table.
2080 s32 ixgbe_update_mc_addr_list_generic(struct ixgbe_hw *hw,
2081 struct net_device *netdev)
2083 struct netdev_hw_addr *ha;
2084 u32 i;
2087 * Set the new number of MC addresses that we are being requested to
2088 * use.
2090 hw->addr_ctrl.num_mc_addrs = netdev_mc_count(netdev);
2091 hw->addr_ctrl.mta_in_use = 0;
2093 /* Clear mta_shadow */
2094 hw_dbg(hw, " Clearing MTA\n");
2095 memset(&hw->mac.mta_shadow, 0, sizeof(hw->mac.mta_shadow));
2097 /* Update mta shadow */
2098 netdev_for_each_mc_addr(ha, netdev) {
2099 hw_dbg(hw, " Adding the multicast addresses:\n");
2100 ixgbe_set_mta(hw, ha->addr);
2103 /* Enable mta */
2104 for (i = 0; i < hw->mac.mcft_size; i++)
2105 IXGBE_WRITE_REG_ARRAY(hw, IXGBE_MTA(0), i,
2106 hw->mac.mta_shadow[i]);
2108 if (hw->addr_ctrl.mta_in_use > 0)
2109 IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL,
2110 IXGBE_MCSTCTRL_MFE | hw->mac.mc_filter_type);
2112 hw_dbg(hw, "ixgbe_update_mc_addr_list_generic Complete\n");
2113 return 0;
2117 * ixgbe_enable_mc_generic - Enable multicast address in RAR
2118 * @hw: pointer to hardware structure
2120 * Enables multicast address in RAR and the use of the multicast hash table.
2122 s32 ixgbe_enable_mc_generic(struct ixgbe_hw *hw)
2124 struct ixgbe_addr_filter_info *a = &hw->addr_ctrl;
2126 if (a->mta_in_use > 0)
2127 IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL, IXGBE_MCSTCTRL_MFE |
2128 hw->mac.mc_filter_type);
2130 return 0;
2134 * ixgbe_disable_mc_generic - Disable multicast address in RAR
2135 * @hw: pointer to hardware structure
2137 * Disables multicast address in RAR and the use of the multicast hash table.
2139 s32 ixgbe_disable_mc_generic(struct ixgbe_hw *hw)
2141 struct ixgbe_addr_filter_info *a = &hw->addr_ctrl;
2143 if (a->mta_in_use > 0)
2144 IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL, hw->mac.mc_filter_type);
2146 return 0;
2150 * ixgbe_fc_enable_generic - Enable flow control
2151 * @hw: pointer to hardware structure
2153 * Enable flow control according to the current settings.
2155 s32 ixgbe_fc_enable_generic(struct ixgbe_hw *hw)
2157 u32 mflcn_reg, fccfg_reg;
2158 u32 reg;
2159 u32 fcrtl, fcrth;
2160 int i;
2162 /* Validate the water mark configuration. */
2163 if (!hw->fc.pause_time)
2164 return IXGBE_ERR_INVALID_LINK_SETTINGS;
2166 /* Low water mark of zero causes XOFF floods */
2167 for (i = 0; i < MAX_TRAFFIC_CLASS; i++) {
2168 if ((hw->fc.current_mode & ixgbe_fc_tx_pause) &&
2169 hw->fc.high_water[i]) {
2170 if (!hw->fc.low_water[i] ||
2171 hw->fc.low_water[i] >= hw->fc.high_water[i]) {
2172 hw_dbg(hw, "Invalid water mark configuration\n");
2173 return IXGBE_ERR_INVALID_LINK_SETTINGS;
2178 /* Negotiate the fc mode to use */
2179 hw->mac.ops.fc_autoneg(hw);
2181 /* Disable any previous flow control settings */
2182 mflcn_reg = IXGBE_READ_REG(hw, IXGBE_MFLCN);
2183 mflcn_reg &= ~(IXGBE_MFLCN_RPFCE_MASK | IXGBE_MFLCN_RFCE);
2185 fccfg_reg = IXGBE_READ_REG(hw, IXGBE_FCCFG);
2186 fccfg_reg &= ~(IXGBE_FCCFG_TFCE_802_3X | IXGBE_FCCFG_TFCE_PRIORITY);
2189 * The possible values of fc.current_mode are:
2190 * 0: Flow control is completely disabled
2191 * 1: Rx flow control is enabled (we can receive pause frames,
2192 * but not send pause frames).
2193 * 2: Tx flow control is enabled (we can send pause frames but
2194 * we do not support receiving pause frames).
2195 * 3: Both Rx and Tx flow control (symmetric) are enabled.
2196 * other: Invalid.
2198 switch (hw->fc.current_mode) {
2199 case ixgbe_fc_none:
2201 * Flow control is disabled by software override or autoneg.
2202 * The code below will actually disable it in the HW.
2204 break;
2205 case ixgbe_fc_rx_pause:
2207 * Rx Flow control is enabled and Tx Flow control is
2208 * disabled by software override. Since there really
2209 * isn't a way to advertise that we are capable of RX
2210 * Pause ONLY, we will advertise that we support both
2211 * symmetric and asymmetric Rx PAUSE. Later, we will
2212 * disable the adapter's ability to send PAUSE frames.
2214 mflcn_reg |= IXGBE_MFLCN_RFCE;
2215 break;
2216 case ixgbe_fc_tx_pause:
2218 * Tx Flow control is enabled, and Rx Flow control is
2219 * disabled by software override.
2221 fccfg_reg |= IXGBE_FCCFG_TFCE_802_3X;
2222 break;
2223 case ixgbe_fc_full:
2224 /* Flow control (both Rx and Tx) is enabled by SW override. */
2225 mflcn_reg |= IXGBE_MFLCN_RFCE;
2226 fccfg_reg |= IXGBE_FCCFG_TFCE_802_3X;
2227 break;
2228 default:
2229 hw_dbg(hw, "Flow control param set incorrectly\n");
2230 return IXGBE_ERR_CONFIG;
2233 /* Set 802.3x based flow control settings. */
2234 mflcn_reg |= IXGBE_MFLCN_DPF;
2235 IXGBE_WRITE_REG(hw, IXGBE_MFLCN, mflcn_reg);
2236 IXGBE_WRITE_REG(hw, IXGBE_FCCFG, fccfg_reg);
2238 /* Set up and enable Rx high/low water mark thresholds, enable XON. */
2239 for (i = 0; i < MAX_TRAFFIC_CLASS; i++) {
2240 if ((hw->fc.current_mode & ixgbe_fc_tx_pause) &&
2241 hw->fc.high_water[i]) {
2242 fcrtl = (hw->fc.low_water[i] << 10) | IXGBE_FCRTL_XONE;
2243 IXGBE_WRITE_REG(hw, IXGBE_FCRTL_82599(i), fcrtl);
2244 fcrth = (hw->fc.high_water[i] << 10) | IXGBE_FCRTH_FCEN;
2245 } else {
2246 IXGBE_WRITE_REG(hw, IXGBE_FCRTL_82599(i), 0);
2248 * In order to prevent Tx hangs when the internal Tx
2249 * switch is enabled we must set the high water mark
2250 * to the Rx packet buffer size - 24KB. This allows
2251 * the Tx switch to function even under heavy Rx
2252 * workloads.
2254 fcrth = IXGBE_READ_REG(hw, IXGBE_RXPBSIZE(i)) - 24576;
2257 IXGBE_WRITE_REG(hw, IXGBE_FCRTH_82599(i), fcrth);
2260 /* Configure pause time (2 TCs per register) */
2261 reg = hw->fc.pause_time * 0x00010001;
2262 for (i = 0; i < (MAX_TRAFFIC_CLASS / 2); i++)
2263 IXGBE_WRITE_REG(hw, IXGBE_FCTTV(i), reg);
2265 IXGBE_WRITE_REG(hw, IXGBE_FCRTV, hw->fc.pause_time / 2);
2267 return 0;
2271 * ixgbe_negotiate_fc - Negotiate flow control
2272 * @hw: pointer to hardware structure
2273 * @adv_reg: flow control advertised settings
2274 * @lp_reg: link partner's flow control settings
2275 * @adv_sym: symmetric pause bit in advertisement
2276 * @adv_asm: asymmetric pause bit in advertisement
2277 * @lp_sym: symmetric pause bit in link partner advertisement
2278 * @lp_asm: asymmetric pause bit in link partner advertisement
2280 * Find the intersection between advertised settings and link partner's
2281 * advertised settings
2283 s32 ixgbe_negotiate_fc(struct ixgbe_hw *hw, u32 adv_reg, u32 lp_reg,
2284 u32 adv_sym, u32 adv_asm, u32 lp_sym, u32 lp_asm)
2286 if ((!(adv_reg)) || (!(lp_reg)))
2287 return IXGBE_ERR_FC_NOT_NEGOTIATED;
2289 if ((adv_reg & adv_sym) && (lp_reg & lp_sym)) {
2291 * Now we need to check if the user selected Rx ONLY
2292 * of pause frames. In this case, we had to advertise
2293 * FULL flow control because we could not advertise RX
2294 * ONLY. Hence, we must now check to see if we need to
2295 * turn OFF the TRANSMISSION of PAUSE frames.
2297 if (hw->fc.requested_mode == ixgbe_fc_full) {
2298 hw->fc.current_mode = ixgbe_fc_full;
2299 hw_dbg(hw, "Flow Control = FULL.\n");
2300 } else {
2301 hw->fc.current_mode = ixgbe_fc_rx_pause;
2302 hw_dbg(hw, "Flow Control=RX PAUSE frames only\n");
2304 } else if (!(adv_reg & adv_sym) && (adv_reg & adv_asm) &&
2305 (lp_reg & lp_sym) && (lp_reg & lp_asm)) {
2306 hw->fc.current_mode = ixgbe_fc_tx_pause;
2307 hw_dbg(hw, "Flow Control = TX PAUSE frames only.\n");
2308 } else if ((adv_reg & adv_sym) && (adv_reg & adv_asm) &&
2309 !(lp_reg & lp_sym) && (lp_reg & lp_asm)) {
2310 hw->fc.current_mode = ixgbe_fc_rx_pause;
2311 hw_dbg(hw, "Flow Control = RX PAUSE frames only.\n");
2312 } else {
2313 hw->fc.current_mode = ixgbe_fc_none;
2314 hw_dbg(hw, "Flow Control = NONE.\n");
2316 return 0;
2320 * ixgbe_fc_autoneg_fiber - Enable flow control on 1 gig fiber
2321 * @hw: pointer to hardware structure
2323 * Enable flow control according on 1 gig fiber.
2325 static s32 ixgbe_fc_autoneg_fiber(struct ixgbe_hw *hw)
2327 u32 pcs_anadv_reg, pcs_lpab_reg, linkstat;
2328 s32 ret_val;
2331 * On multispeed fiber at 1g, bail out if
2332 * - link is up but AN did not complete, or if
2333 * - link is up and AN completed but timed out
2336 linkstat = IXGBE_READ_REG(hw, IXGBE_PCS1GLSTA);
2337 if ((!!(linkstat & IXGBE_PCS1GLSTA_AN_COMPLETE) == 0) ||
2338 (!!(linkstat & IXGBE_PCS1GLSTA_AN_TIMED_OUT) == 1))
2339 return IXGBE_ERR_FC_NOT_NEGOTIATED;
2341 pcs_anadv_reg = IXGBE_READ_REG(hw, IXGBE_PCS1GANA);
2342 pcs_lpab_reg = IXGBE_READ_REG(hw, IXGBE_PCS1GANLP);
2344 ret_val = ixgbe_negotiate_fc(hw, pcs_anadv_reg,
2345 pcs_lpab_reg, IXGBE_PCS1GANA_SYM_PAUSE,
2346 IXGBE_PCS1GANA_ASM_PAUSE,
2347 IXGBE_PCS1GANA_SYM_PAUSE,
2348 IXGBE_PCS1GANA_ASM_PAUSE);
2350 return ret_val;
2354 * ixgbe_fc_autoneg_backplane - Enable flow control IEEE clause 37
2355 * @hw: pointer to hardware structure
2357 * Enable flow control according to IEEE clause 37.
2359 static s32 ixgbe_fc_autoneg_backplane(struct ixgbe_hw *hw)
2361 u32 links2, anlp1_reg, autoc_reg, links;
2362 s32 ret_val;
2365 * On backplane, bail out if
2366 * - backplane autoneg was not completed, or if
2367 * - we are 82599 and link partner is not AN enabled
2369 links = IXGBE_READ_REG(hw, IXGBE_LINKS);
2370 if ((links & IXGBE_LINKS_KX_AN_COMP) == 0)
2371 return IXGBE_ERR_FC_NOT_NEGOTIATED;
2373 if (hw->mac.type == ixgbe_mac_82599EB) {
2374 links2 = IXGBE_READ_REG(hw, IXGBE_LINKS2);
2375 if ((links2 & IXGBE_LINKS2_AN_SUPPORTED) == 0)
2376 return IXGBE_ERR_FC_NOT_NEGOTIATED;
2379 * Read the 10g AN autoc and LP ability registers and resolve
2380 * local flow control settings accordingly
2382 autoc_reg = IXGBE_READ_REG(hw, IXGBE_AUTOC);
2383 anlp1_reg = IXGBE_READ_REG(hw, IXGBE_ANLP1);
2385 ret_val = ixgbe_negotiate_fc(hw, autoc_reg,
2386 anlp1_reg, IXGBE_AUTOC_SYM_PAUSE, IXGBE_AUTOC_ASM_PAUSE,
2387 IXGBE_ANLP1_SYM_PAUSE, IXGBE_ANLP1_ASM_PAUSE);
2389 return ret_val;
2393 * ixgbe_fc_autoneg_copper - Enable flow control IEEE clause 37
2394 * @hw: pointer to hardware structure
2396 * Enable flow control according to IEEE clause 37.
2398 static s32 ixgbe_fc_autoneg_copper(struct ixgbe_hw *hw)
2400 u16 technology_ability_reg = 0;
2401 u16 lp_technology_ability_reg = 0;
2403 hw->phy.ops.read_reg(hw, MDIO_AN_ADVERTISE,
2404 MDIO_MMD_AN,
2405 &technology_ability_reg);
2406 hw->phy.ops.read_reg(hw, MDIO_AN_LPA,
2407 MDIO_MMD_AN,
2408 &lp_technology_ability_reg);
2410 return ixgbe_negotiate_fc(hw, (u32)technology_ability_reg,
2411 (u32)lp_technology_ability_reg,
2412 IXGBE_TAF_SYM_PAUSE, IXGBE_TAF_ASM_PAUSE,
2413 IXGBE_TAF_SYM_PAUSE, IXGBE_TAF_ASM_PAUSE);
2417 * ixgbe_fc_autoneg - Configure flow control
2418 * @hw: pointer to hardware structure
2420 * Compares our advertised flow control capabilities to those advertised by
2421 * our link partner, and determines the proper flow control mode to use.
2423 void ixgbe_fc_autoneg(struct ixgbe_hw *hw)
2425 s32 ret_val = IXGBE_ERR_FC_NOT_NEGOTIATED;
2426 ixgbe_link_speed speed;
2427 bool link_up;
2430 * AN should have completed when the cable was plugged in.
2431 * Look for reasons to bail out. Bail out if:
2432 * - FC autoneg is disabled, or if
2433 * - link is not up.
2435 * Since we're being called from an LSC, link is already known to be up.
2436 * So use link_up_wait_to_complete=false.
2438 if (hw->fc.disable_fc_autoneg)
2439 goto out;
2441 hw->mac.ops.check_link(hw, &speed, &link_up, false);
2442 if (!link_up)
2443 goto out;
2445 switch (hw->phy.media_type) {
2446 /* Autoneg flow control on fiber adapters */
2447 case ixgbe_media_type_fiber:
2448 if (speed == IXGBE_LINK_SPEED_1GB_FULL)
2449 ret_val = ixgbe_fc_autoneg_fiber(hw);
2450 break;
2452 /* Autoneg flow control on backplane adapters */
2453 case ixgbe_media_type_backplane:
2454 ret_val = ixgbe_fc_autoneg_backplane(hw);
2455 break;
2457 /* Autoneg flow control on copper adapters */
2458 case ixgbe_media_type_copper:
2459 if (ixgbe_device_supports_autoneg_fc(hw))
2460 ret_val = ixgbe_fc_autoneg_copper(hw);
2461 break;
2463 default:
2464 break;
2467 out:
2468 if (ret_val == 0) {
2469 hw->fc.fc_was_autonegged = true;
2470 } else {
2471 hw->fc.fc_was_autonegged = false;
2472 hw->fc.current_mode = hw->fc.requested_mode;
2477 * ixgbe_pcie_timeout_poll - Return number of times to poll for completion
2478 * @hw: pointer to hardware structure
2480 * System-wide timeout range is encoded in PCIe Device Control2 register.
2482 * Add 10% to specified maximum and return the number of times to poll for
2483 * completion timeout, in units of 100 microsec. Never return less than
2484 * 800 = 80 millisec.
2486 static u32 ixgbe_pcie_timeout_poll(struct ixgbe_hw *hw)
2488 s16 devctl2;
2489 u32 pollcnt;
2491 devctl2 = ixgbe_read_pci_cfg_word(hw, IXGBE_PCI_DEVICE_CONTROL2);
2492 devctl2 &= IXGBE_PCIDEVCTRL2_TIMEO_MASK;
2494 switch (devctl2) {
2495 case IXGBE_PCIDEVCTRL2_65_130ms:
2496 pollcnt = 1300; /* 130 millisec */
2497 break;
2498 case IXGBE_PCIDEVCTRL2_260_520ms:
2499 pollcnt = 5200; /* 520 millisec */
2500 break;
2501 case IXGBE_PCIDEVCTRL2_1_2s:
2502 pollcnt = 20000; /* 2 sec */
2503 break;
2504 case IXGBE_PCIDEVCTRL2_4_8s:
2505 pollcnt = 80000; /* 8 sec */
2506 break;
2507 case IXGBE_PCIDEVCTRL2_17_34s:
2508 pollcnt = 34000; /* 34 sec */
2509 break;
2510 case IXGBE_PCIDEVCTRL2_50_100us: /* 100 microsecs */
2511 case IXGBE_PCIDEVCTRL2_1_2ms: /* 2 millisecs */
2512 case IXGBE_PCIDEVCTRL2_16_32ms: /* 32 millisec */
2513 case IXGBE_PCIDEVCTRL2_16_32ms_def: /* 32 millisec default */
2514 default:
2515 pollcnt = 800; /* 80 millisec minimum */
2516 break;
2519 /* add 10% to spec maximum */
2520 return (pollcnt * 11) / 10;
2524 * ixgbe_disable_pcie_master - Disable PCI-express master access
2525 * @hw: pointer to hardware structure
2527 * Disables PCI-Express master access and verifies there are no pending
2528 * requests. IXGBE_ERR_MASTER_REQUESTS_PENDING is returned if master disable
2529 * bit hasn't caused the master requests to be disabled, else 0
2530 * is returned signifying master requests disabled.
2532 static s32 ixgbe_disable_pcie_master(struct ixgbe_hw *hw)
2534 u32 i, poll;
2535 u16 value;
2537 /* Always set this bit to ensure any future transactions are blocked */
2538 IXGBE_WRITE_REG(hw, IXGBE_CTRL, IXGBE_CTRL_GIO_DIS);
2540 /* Poll for bit to read as set */
2541 for (i = 0; i < IXGBE_PCI_MASTER_DISABLE_TIMEOUT; i++) {
2542 if (IXGBE_READ_REG(hw, IXGBE_CTRL) & IXGBE_CTRL_GIO_DIS)
2543 break;
2544 usleep_range(100, 120);
2546 if (i >= IXGBE_PCI_MASTER_DISABLE_TIMEOUT) {
2547 hw_dbg(hw, "GIO disable did not set - requesting resets\n");
2548 goto gio_disable_fail;
2551 /* Exit if master requests are blocked */
2552 if (!(IXGBE_READ_REG(hw, IXGBE_STATUS) & IXGBE_STATUS_GIO) ||
2553 ixgbe_removed(hw->hw_addr))
2554 return 0;
2556 /* Poll for master request bit to clear */
2557 for (i = 0; i < IXGBE_PCI_MASTER_DISABLE_TIMEOUT; i++) {
2558 udelay(100);
2559 if (!(IXGBE_READ_REG(hw, IXGBE_STATUS) & IXGBE_STATUS_GIO))
2560 return 0;
2564 * Two consecutive resets are required via CTRL.RST per datasheet
2565 * 5.2.5.3.2 Master Disable. We set a flag to inform the reset routine
2566 * of this need. The first reset prevents new master requests from
2567 * being issued by our device. We then must wait 1usec or more for any
2568 * remaining completions from the PCIe bus to trickle in, and then reset
2569 * again to clear out any effects they may have had on our device.
2571 hw_dbg(hw, "GIO Master Disable bit didn't clear - requesting resets\n");
2572 gio_disable_fail:
2573 hw->mac.flags |= IXGBE_FLAGS_DOUBLE_RESET_REQUIRED;
2575 if (hw->mac.type >= ixgbe_mac_X550)
2576 return 0;
2579 * Before proceeding, make sure that the PCIe block does not have
2580 * transactions pending.
2582 poll = ixgbe_pcie_timeout_poll(hw);
2583 for (i = 0; i < poll; i++) {
2584 udelay(100);
2585 value = ixgbe_read_pci_cfg_word(hw, IXGBE_PCI_DEVICE_STATUS);
2586 if (ixgbe_removed(hw->hw_addr))
2587 return 0;
2588 if (!(value & IXGBE_PCI_DEVICE_STATUS_TRANSACTION_PENDING))
2589 return 0;
2592 hw_dbg(hw, "PCIe transaction pending bit also did not clear.\n");
2593 return IXGBE_ERR_MASTER_REQUESTS_PENDING;
2597 * ixgbe_acquire_swfw_sync - Acquire SWFW semaphore
2598 * @hw: pointer to hardware structure
2599 * @mask: Mask to specify which semaphore to acquire
2601 * Acquires the SWFW semaphore through the GSSR register for the specified
2602 * function (CSR, PHY0, PHY1, EEPROM, Flash)
2604 s32 ixgbe_acquire_swfw_sync(struct ixgbe_hw *hw, u32 mask)
2606 u32 gssr = 0;
2607 u32 swmask = mask;
2608 u32 fwmask = mask << 5;
2609 u32 timeout = 200;
2610 u32 i;
2612 for (i = 0; i < timeout; i++) {
2614 * SW NVM semaphore bit is used for access to all
2615 * SW_FW_SYNC bits (not just NVM)
2617 if (ixgbe_get_eeprom_semaphore(hw))
2618 return IXGBE_ERR_SWFW_SYNC;
2620 gssr = IXGBE_READ_REG(hw, IXGBE_GSSR);
2621 if (!(gssr & (fwmask | swmask))) {
2622 gssr |= swmask;
2623 IXGBE_WRITE_REG(hw, IXGBE_GSSR, gssr);
2624 ixgbe_release_eeprom_semaphore(hw);
2625 return 0;
2626 } else {
2627 /* Resource is currently in use by FW or SW */
2628 ixgbe_release_eeprom_semaphore(hw);
2629 usleep_range(5000, 10000);
2633 /* If time expired clear the bits holding the lock and retry */
2634 if (gssr & (fwmask | swmask))
2635 ixgbe_release_swfw_sync(hw, gssr & (fwmask | swmask));
2637 usleep_range(5000, 10000);
2638 return IXGBE_ERR_SWFW_SYNC;
2642 * ixgbe_release_swfw_sync - Release SWFW semaphore
2643 * @hw: pointer to hardware structure
2644 * @mask: Mask to specify which semaphore to release
2646 * Releases the SWFW semaphore through the GSSR register for the specified
2647 * function (CSR, PHY0, PHY1, EEPROM, Flash)
2649 void ixgbe_release_swfw_sync(struct ixgbe_hw *hw, u32 mask)
2651 u32 gssr;
2652 u32 swmask = mask;
2654 ixgbe_get_eeprom_semaphore(hw);
2656 gssr = IXGBE_READ_REG(hw, IXGBE_GSSR);
2657 gssr &= ~swmask;
2658 IXGBE_WRITE_REG(hw, IXGBE_GSSR, gssr);
2660 ixgbe_release_eeprom_semaphore(hw);
2664 * prot_autoc_read_generic - Hides MAC differences needed for AUTOC read
2665 * @hw: pointer to hardware structure
2666 * @reg_val: Value we read from AUTOC
2667 * @locked: bool to indicate whether the SW/FW lock should be taken. Never
2668 * true in this the generic case.
2670 * The default case requires no protection so just to the register read.
2672 s32 prot_autoc_read_generic(struct ixgbe_hw *hw, bool *locked, u32 *reg_val)
2674 *locked = false;
2675 *reg_val = IXGBE_READ_REG(hw, IXGBE_AUTOC);
2676 return 0;
2680 * prot_autoc_write_generic - Hides MAC differences needed for AUTOC write
2681 * @hw: pointer to hardware structure
2682 * @reg_val: value to write to AUTOC
2683 * @locked: bool to indicate whether the SW/FW lock was already taken by
2684 * previous read.
2686 s32 prot_autoc_write_generic(struct ixgbe_hw *hw, u32 reg_val, bool locked)
2688 IXGBE_WRITE_REG(hw, IXGBE_AUTOC, reg_val);
2689 return 0;
2693 * ixgbe_disable_rx_buff_generic - Stops the receive data path
2694 * @hw: pointer to hardware structure
2696 * Stops the receive data path and waits for the HW to internally
2697 * empty the Rx security block.
2699 s32 ixgbe_disable_rx_buff_generic(struct ixgbe_hw *hw)
2701 #define IXGBE_MAX_SECRX_POLL 40
2702 int i;
2703 int secrxreg;
2705 secrxreg = IXGBE_READ_REG(hw, IXGBE_SECRXCTRL);
2706 secrxreg |= IXGBE_SECRXCTRL_RX_DIS;
2707 IXGBE_WRITE_REG(hw, IXGBE_SECRXCTRL, secrxreg);
2708 for (i = 0; i < IXGBE_MAX_SECRX_POLL; i++) {
2709 secrxreg = IXGBE_READ_REG(hw, IXGBE_SECRXSTAT);
2710 if (secrxreg & IXGBE_SECRXSTAT_SECRX_RDY)
2711 break;
2712 else
2713 /* Use interrupt-safe sleep just in case */
2714 udelay(1000);
2717 /* For informational purposes only */
2718 if (i >= IXGBE_MAX_SECRX_POLL)
2719 hw_dbg(hw, "Rx unit being enabled before security path fully disabled. Continuing with init.\n");
2721 return 0;
2726 * ixgbe_enable_rx_buff - Enables the receive data path
2727 * @hw: pointer to hardware structure
2729 * Enables the receive data path
2731 s32 ixgbe_enable_rx_buff_generic(struct ixgbe_hw *hw)
2733 u32 secrxreg;
2735 secrxreg = IXGBE_READ_REG(hw, IXGBE_SECRXCTRL);
2736 secrxreg &= ~IXGBE_SECRXCTRL_RX_DIS;
2737 IXGBE_WRITE_REG(hw, IXGBE_SECRXCTRL, secrxreg);
2738 IXGBE_WRITE_FLUSH(hw);
2740 return 0;
2744 * ixgbe_enable_rx_dma_generic - Enable the Rx DMA unit
2745 * @hw: pointer to hardware structure
2746 * @regval: register value to write to RXCTRL
2748 * Enables the Rx DMA unit
2750 s32 ixgbe_enable_rx_dma_generic(struct ixgbe_hw *hw, u32 regval)
2752 if (regval & IXGBE_RXCTRL_RXEN)
2753 hw->mac.ops.enable_rx(hw);
2754 else
2755 hw->mac.ops.disable_rx(hw);
2757 return 0;
2761 * ixgbe_blink_led_start_generic - Blink LED based on index.
2762 * @hw: pointer to hardware structure
2763 * @index: led number to blink
2765 s32 ixgbe_blink_led_start_generic(struct ixgbe_hw *hw, u32 index)
2767 ixgbe_link_speed speed = 0;
2768 bool link_up = false;
2769 u32 autoc_reg = IXGBE_READ_REG(hw, IXGBE_AUTOC);
2770 u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
2771 bool locked = false;
2772 s32 ret_val;
2774 if (index > 3)
2775 return IXGBE_ERR_PARAM;
2778 * Link must be up to auto-blink the LEDs;
2779 * Force it if link is down.
2781 hw->mac.ops.check_link(hw, &speed, &link_up, false);
2783 if (!link_up) {
2784 ret_val = hw->mac.ops.prot_autoc_read(hw, &locked, &autoc_reg);
2785 if (ret_val)
2786 return ret_val;
2788 autoc_reg |= IXGBE_AUTOC_AN_RESTART;
2789 autoc_reg |= IXGBE_AUTOC_FLU;
2791 ret_val = hw->mac.ops.prot_autoc_write(hw, autoc_reg, locked);
2792 if (ret_val)
2793 return ret_val;
2795 IXGBE_WRITE_FLUSH(hw);
2797 usleep_range(10000, 20000);
2800 led_reg &= ~IXGBE_LED_MODE_MASK(index);
2801 led_reg |= IXGBE_LED_BLINK(index);
2802 IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg);
2803 IXGBE_WRITE_FLUSH(hw);
2805 return 0;
2809 * ixgbe_blink_led_stop_generic - Stop blinking LED based on index.
2810 * @hw: pointer to hardware structure
2811 * @index: led number to stop blinking
2813 s32 ixgbe_blink_led_stop_generic(struct ixgbe_hw *hw, u32 index)
2815 u32 autoc_reg = 0;
2816 u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
2817 bool locked = false;
2818 s32 ret_val;
2820 if (index > 3)
2821 return IXGBE_ERR_PARAM;
2823 ret_val = hw->mac.ops.prot_autoc_read(hw, &locked, &autoc_reg);
2824 if (ret_val)
2825 return ret_val;
2827 autoc_reg &= ~IXGBE_AUTOC_FLU;
2828 autoc_reg |= IXGBE_AUTOC_AN_RESTART;
2830 ret_val = hw->mac.ops.prot_autoc_write(hw, autoc_reg, locked);
2831 if (ret_val)
2832 return ret_val;
2834 led_reg &= ~IXGBE_LED_MODE_MASK(index);
2835 led_reg &= ~IXGBE_LED_BLINK(index);
2836 led_reg |= IXGBE_LED_LINK_ACTIVE << IXGBE_LED_MODE_SHIFT(index);
2837 IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg);
2838 IXGBE_WRITE_FLUSH(hw);
2840 return 0;
2844 * ixgbe_get_san_mac_addr_offset - Get SAN MAC address offset from the EEPROM
2845 * @hw: pointer to hardware structure
2846 * @san_mac_offset: SAN MAC address offset
2848 * This function will read the EEPROM location for the SAN MAC address
2849 * pointer, and returns the value at that location. This is used in both
2850 * get and set mac_addr routines.
2852 static s32 ixgbe_get_san_mac_addr_offset(struct ixgbe_hw *hw,
2853 u16 *san_mac_offset)
2855 s32 ret_val;
2858 * First read the EEPROM pointer to see if the MAC addresses are
2859 * available.
2861 ret_val = hw->eeprom.ops.read(hw, IXGBE_SAN_MAC_ADDR_PTR,
2862 san_mac_offset);
2863 if (ret_val)
2864 hw_err(hw, "eeprom read at offset %d failed\n",
2865 IXGBE_SAN_MAC_ADDR_PTR);
2867 return ret_val;
2871 * ixgbe_get_san_mac_addr_generic - SAN MAC address retrieval from the EEPROM
2872 * @hw: pointer to hardware structure
2873 * @san_mac_addr: SAN MAC address
2875 * Reads the SAN MAC address from the EEPROM, if it's available. This is
2876 * per-port, so set_lan_id() must be called before reading the addresses.
2877 * set_lan_id() is called by identify_sfp(), but this cannot be relied
2878 * upon for non-SFP connections, so we must call it here.
2880 s32 ixgbe_get_san_mac_addr_generic(struct ixgbe_hw *hw, u8 *san_mac_addr)
2882 u16 san_mac_data, san_mac_offset;
2883 u8 i;
2884 s32 ret_val;
2887 * First read the EEPROM pointer to see if the MAC addresses are
2888 * available. If they're not, no point in calling set_lan_id() here.
2890 ret_val = ixgbe_get_san_mac_addr_offset(hw, &san_mac_offset);
2891 if (ret_val || san_mac_offset == 0 || san_mac_offset == 0xFFFF)
2893 goto san_mac_addr_clr;
2895 /* make sure we know which port we need to program */
2896 hw->mac.ops.set_lan_id(hw);
2897 /* apply the port offset to the address offset */
2898 (hw->bus.func) ? (san_mac_offset += IXGBE_SAN_MAC_ADDR_PORT1_OFFSET) :
2899 (san_mac_offset += IXGBE_SAN_MAC_ADDR_PORT0_OFFSET);
2900 for (i = 0; i < 3; i++) {
2901 ret_val = hw->eeprom.ops.read(hw, san_mac_offset,
2902 &san_mac_data);
2903 if (ret_val) {
2904 hw_err(hw, "eeprom read at offset %d failed\n",
2905 san_mac_offset);
2906 goto san_mac_addr_clr;
2908 san_mac_addr[i * 2] = (u8)(san_mac_data);
2909 san_mac_addr[i * 2 + 1] = (u8)(san_mac_data >> 8);
2910 san_mac_offset++;
2912 return 0;
2914 san_mac_addr_clr:
2915 /* No addresses available in this EEPROM. It's not necessarily an
2916 * error though, so just wipe the local address and return.
2918 for (i = 0; i < 6; i++)
2919 san_mac_addr[i] = 0xFF;
2920 return ret_val;
2924 * ixgbe_get_pcie_msix_count_generic - Gets MSI-X vector count
2925 * @hw: pointer to hardware structure
2927 * Read PCIe configuration space, and get the MSI-X vector count from
2928 * the capabilities table.
2930 u16 ixgbe_get_pcie_msix_count_generic(struct ixgbe_hw *hw)
2932 u16 msix_count;
2933 u16 max_msix_count;
2934 u16 pcie_offset;
2936 switch (hw->mac.type) {
2937 case ixgbe_mac_82598EB:
2938 pcie_offset = IXGBE_PCIE_MSIX_82598_CAPS;
2939 max_msix_count = IXGBE_MAX_MSIX_VECTORS_82598;
2940 break;
2941 case ixgbe_mac_82599EB:
2942 case ixgbe_mac_X540:
2943 case ixgbe_mac_X550:
2944 case ixgbe_mac_X550EM_x:
2945 case ixgbe_mac_x550em_a:
2946 pcie_offset = IXGBE_PCIE_MSIX_82599_CAPS;
2947 max_msix_count = IXGBE_MAX_MSIX_VECTORS_82599;
2948 break;
2949 default:
2950 return 1;
2953 msix_count = ixgbe_read_pci_cfg_word(hw, pcie_offset);
2954 if (ixgbe_removed(hw->hw_addr))
2955 msix_count = 0;
2956 msix_count &= IXGBE_PCIE_MSIX_TBL_SZ_MASK;
2958 /* MSI-X count is zero-based in HW */
2959 msix_count++;
2961 if (msix_count > max_msix_count)
2962 msix_count = max_msix_count;
2964 return msix_count;
2968 * ixgbe_clear_vmdq_generic - Disassociate a VMDq pool index from a rx address
2969 * @hw: pointer to hardware struct
2970 * @rar: receive address register index to disassociate
2971 * @vmdq: VMDq pool index to remove from the rar
2973 s32 ixgbe_clear_vmdq_generic(struct ixgbe_hw *hw, u32 rar, u32 vmdq)
2975 u32 mpsar_lo, mpsar_hi;
2976 u32 rar_entries = hw->mac.num_rar_entries;
2978 /* Make sure we are using a valid rar index range */
2979 if (rar >= rar_entries) {
2980 hw_dbg(hw, "RAR index %d is out of range.\n", rar);
2981 return IXGBE_ERR_INVALID_ARGUMENT;
2984 mpsar_lo = IXGBE_READ_REG(hw, IXGBE_MPSAR_LO(rar));
2985 mpsar_hi = IXGBE_READ_REG(hw, IXGBE_MPSAR_HI(rar));
2987 if (ixgbe_removed(hw->hw_addr))
2988 return 0;
2990 if (!mpsar_lo && !mpsar_hi)
2991 return 0;
2993 if (vmdq == IXGBE_CLEAR_VMDQ_ALL) {
2994 if (mpsar_lo) {
2995 IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), 0);
2996 mpsar_lo = 0;
2998 if (mpsar_hi) {
2999 IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), 0);
3000 mpsar_hi = 0;
3002 } else if (vmdq < 32) {
3003 mpsar_lo &= ~BIT(vmdq);
3004 IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), mpsar_lo);
3005 } else {
3006 mpsar_hi &= ~BIT(vmdq - 32);
3007 IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), mpsar_hi);
3010 /* was that the last pool using this rar? */
3011 if (mpsar_lo == 0 && mpsar_hi == 0 &&
3012 rar != 0 && rar != hw->mac.san_mac_rar_index)
3013 hw->mac.ops.clear_rar(hw, rar);
3015 return 0;
3019 * ixgbe_set_vmdq_generic - Associate a VMDq pool index with a rx address
3020 * @hw: pointer to hardware struct
3021 * @rar: receive address register index to associate with a VMDq index
3022 * @vmdq: VMDq pool index
3024 s32 ixgbe_set_vmdq_generic(struct ixgbe_hw *hw, u32 rar, u32 vmdq)
3026 u32 mpsar;
3027 u32 rar_entries = hw->mac.num_rar_entries;
3029 /* Make sure we are using a valid rar index range */
3030 if (rar >= rar_entries) {
3031 hw_dbg(hw, "RAR index %d is out of range.\n", rar);
3032 return IXGBE_ERR_INVALID_ARGUMENT;
3035 if (vmdq < 32) {
3036 mpsar = IXGBE_READ_REG(hw, IXGBE_MPSAR_LO(rar));
3037 mpsar |= BIT(vmdq);
3038 IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), mpsar);
3039 } else {
3040 mpsar = IXGBE_READ_REG(hw, IXGBE_MPSAR_HI(rar));
3041 mpsar |= BIT(vmdq - 32);
3042 IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), mpsar);
3044 return 0;
3048 * This function should only be involved in the IOV mode.
3049 * In IOV mode, Default pool is next pool after the number of
3050 * VFs advertized and not 0.
3051 * MPSAR table needs to be updated for SAN_MAC RAR [hw->mac.san_mac_rar_index]
3053 * ixgbe_set_vmdq_san_mac - Associate default VMDq pool index with a rx address
3054 * @hw: pointer to hardware struct
3055 * @vmdq: VMDq pool index
3057 s32 ixgbe_set_vmdq_san_mac_generic(struct ixgbe_hw *hw, u32 vmdq)
3059 u32 rar = hw->mac.san_mac_rar_index;
3061 if (vmdq < 32) {
3062 IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), BIT(vmdq));
3063 IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), 0);
3064 } else {
3065 IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), 0);
3066 IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), BIT(vmdq - 32));
3069 return 0;
3073 * ixgbe_init_uta_tables_generic - Initialize the Unicast Table Array
3074 * @hw: pointer to hardware structure
3076 s32 ixgbe_init_uta_tables_generic(struct ixgbe_hw *hw)
3078 int i;
3080 for (i = 0; i < 128; i++)
3081 IXGBE_WRITE_REG(hw, IXGBE_UTA(i), 0);
3083 return 0;
3087 * ixgbe_find_vlvf_slot - find the vlanid or the first empty slot
3088 * @hw: pointer to hardware structure
3089 * @vlan: VLAN id to write to VLAN filter
3090 * @vlvf_bypass: true to find vlanid only, false returns first empty slot if
3091 * vlanid not found
3093 * return the VLVF index where this VLAN id should be placed
3096 static s32 ixgbe_find_vlvf_slot(struct ixgbe_hw *hw, u32 vlan, bool vlvf_bypass)
3098 s32 regindex, first_empty_slot;
3099 u32 bits;
3101 /* short cut the special case */
3102 if (vlan == 0)
3103 return 0;
3105 /* if vlvf_bypass is set we don't want to use an empty slot, we
3106 * will simply bypass the VLVF if there are no entries present in the
3107 * VLVF that contain our VLAN
3109 first_empty_slot = vlvf_bypass ? IXGBE_ERR_NO_SPACE : 0;
3111 /* add VLAN enable bit for comparison */
3112 vlan |= IXGBE_VLVF_VIEN;
3114 /* Search for the vlan id in the VLVF entries. Save off the first empty
3115 * slot found along the way.
3117 * pre-decrement loop covering (IXGBE_VLVF_ENTRIES - 1) .. 1
3119 for (regindex = IXGBE_VLVF_ENTRIES; --regindex;) {
3120 bits = IXGBE_READ_REG(hw, IXGBE_VLVF(regindex));
3121 if (bits == vlan)
3122 return regindex;
3123 if (!first_empty_slot && !bits)
3124 first_empty_slot = regindex;
3127 /* If we are here then we didn't find the VLAN. Return first empty
3128 * slot we found during our search, else error.
3130 if (!first_empty_slot)
3131 hw_dbg(hw, "No space in VLVF.\n");
3133 return first_empty_slot ? : IXGBE_ERR_NO_SPACE;
3137 * ixgbe_set_vfta_generic - Set VLAN filter table
3138 * @hw: pointer to hardware structure
3139 * @vlan: VLAN id to write to VLAN filter
3140 * @vind: VMDq output index that maps queue to VLAN id in VFVFB
3141 * @vlan_on: boolean flag to turn on/off VLAN in VFVF
3142 * @vlvf_bypass: boolean flag indicating updating default pool is okay
3144 * Turn on/off specified VLAN in the VLAN filter table.
3146 s32 ixgbe_set_vfta_generic(struct ixgbe_hw *hw, u32 vlan, u32 vind,
3147 bool vlan_on, bool vlvf_bypass)
3149 u32 regidx, vfta_delta, vfta, bits;
3150 s32 vlvf_index;
3152 if ((vlan > 4095) || (vind > 63))
3153 return IXGBE_ERR_PARAM;
3156 * this is a 2 part operation - first the VFTA, then the
3157 * VLVF and VLVFB if VT Mode is set
3158 * We don't write the VFTA until we know the VLVF part succeeded.
3161 /* Part 1
3162 * The VFTA is a bitstring made up of 128 32-bit registers
3163 * that enable the particular VLAN id, much like the MTA:
3164 * bits[11-5]: which register
3165 * bits[4-0]: which bit in the register
3167 regidx = vlan / 32;
3168 vfta_delta = BIT(vlan % 32);
3169 vfta = IXGBE_READ_REG(hw, IXGBE_VFTA(regidx));
3171 /* vfta_delta represents the difference between the current value
3172 * of vfta and the value we want in the register. Since the diff
3173 * is an XOR mask we can just update vfta using an XOR.
3175 vfta_delta &= vlan_on ? ~vfta : vfta;
3176 vfta ^= vfta_delta;
3178 /* Part 2
3179 * If VT Mode is set
3180 * Either vlan_on
3181 * make sure the vlan is in VLVF
3182 * set the vind bit in the matching VLVFB
3183 * Or !vlan_on
3184 * clear the pool bit and possibly the vind
3186 if (!(IXGBE_READ_REG(hw, IXGBE_VT_CTL) & IXGBE_VT_CTL_VT_ENABLE))
3187 goto vfta_update;
3189 vlvf_index = ixgbe_find_vlvf_slot(hw, vlan, vlvf_bypass);
3190 if (vlvf_index < 0) {
3191 if (vlvf_bypass)
3192 goto vfta_update;
3193 return vlvf_index;
3196 bits = IXGBE_READ_REG(hw, IXGBE_VLVFB(vlvf_index * 2 + vind / 32));
3198 /* set the pool bit */
3199 bits |= BIT(vind % 32);
3200 if (vlan_on)
3201 goto vlvf_update;
3203 /* clear the pool bit */
3204 bits ^= BIT(vind % 32);
3206 if (!bits &&
3207 !IXGBE_READ_REG(hw, IXGBE_VLVFB(vlvf_index * 2 + 1 - vind / 32))) {
3208 /* Clear VFTA first, then disable VLVF. Otherwise
3209 * we run the risk of stray packets leaking into
3210 * the PF via the default pool
3212 if (vfta_delta)
3213 IXGBE_WRITE_REG(hw, IXGBE_VFTA(regidx), vfta);
3215 /* disable VLVF and clear remaining bit from pool */
3216 IXGBE_WRITE_REG(hw, IXGBE_VLVF(vlvf_index), 0);
3217 IXGBE_WRITE_REG(hw, IXGBE_VLVFB(vlvf_index * 2 + vind / 32), 0);
3219 return 0;
3222 /* If there are still bits set in the VLVFB registers
3223 * for the VLAN ID indicated we need to see if the
3224 * caller is requesting that we clear the VFTA entry bit.
3225 * If the caller has requested that we clear the VFTA
3226 * entry bit but there are still pools/VFs using this VLAN
3227 * ID entry then ignore the request. We're not worried
3228 * about the case where we're turning the VFTA VLAN ID
3229 * entry bit on, only when requested to turn it off as
3230 * there may be multiple pools and/or VFs using the
3231 * VLAN ID entry. In that case we cannot clear the
3232 * VFTA bit until all pools/VFs using that VLAN ID have also
3233 * been cleared. This will be indicated by "bits" being
3234 * zero.
3236 vfta_delta = 0;
3238 vlvf_update:
3239 /* record pool change and enable VLAN ID if not already enabled */
3240 IXGBE_WRITE_REG(hw, IXGBE_VLVFB(vlvf_index * 2 + vind / 32), bits);
3241 IXGBE_WRITE_REG(hw, IXGBE_VLVF(vlvf_index), IXGBE_VLVF_VIEN | vlan);
3243 vfta_update:
3244 /* Update VFTA now that we are ready for traffic */
3245 if (vfta_delta)
3246 IXGBE_WRITE_REG(hw, IXGBE_VFTA(regidx), vfta);
3248 return 0;
3252 * ixgbe_clear_vfta_generic - Clear VLAN filter table
3253 * @hw: pointer to hardware structure
3255 * Clears the VLAN filer table, and the VMDq index associated with the filter
3257 s32 ixgbe_clear_vfta_generic(struct ixgbe_hw *hw)
3259 u32 offset;
3261 for (offset = 0; offset < hw->mac.vft_size; offset++)
3262 IXGBE_WRITE_REG(hw, IXGBE_VFTA(offset), 0);
3264 for (offset = 0; offset < IXGBE_VLVF_ENTRIES; offset++) {
3265 IXGBE_WRITE_REG(hw, IXGBE_VLVF(offset), 0);
3266 IXGBE_WRITE_REG(hw, IXGBE_VLVFB(offset * 2), 0);
3267 IXGBE_WRITE_REG(hw, IXGBE_VLVFB(offset * 2 + 1), 0);
3270 return 0;
3274 * ixgbe_need_crosstalk_fix - Determine if we need to do cross talk fix
3275 * @hw: pointer to hardware structure
3277 * Contains the logic to identify if we need to verify link for the
3278 * crosstalk fix
3280 static bool ixgbe_need_crosstalk_fix(struct ixgbe_hw *hw)
3282 /* Does FW say we need the fix */
3283 if (!hw->need_crosstalk_fix)
3284 return false;
3286 /* Only consider SFP+ PHYs i.e. media type fiber */
3287 switch (hw->mac.ops.get_media_type(hw)) {
3288 case ixgbe_media_type_fiber:
3289 case ixgbe_media_type_fiber_qsfp:
3290 break;
3291 default:
3292 return false;
3295 return true;
3299 * ixgbe_check_mac_link_generic - Determine link and speed status
3300 * @hw: pointer to hardware structure
3301 * @speed: pointer to link speed
3302 * @link_up: true when link is up
3303 * @link_up_wait_to_complete: bool used to wait for link up or not
3305 * Reads the links register to determine if link is up and the current speed
3307 s32 ixgbe_check_mac_link_generic(struct ixgbe_hw *hw, ixgbe_link_speed *speed,
3308 bool *link_up, bool link_up_wait_to_complete)
3310 u32 links_reg, links_orig;
3311 u32 i;
3313 /* If Crosstalk fix enabled do the sanity check of making sure
3314 * the SFP+ cage is full.
3316 if (ixgbe_need_crosstalk_fix(hw)) {
3317 u32 sfp_cage_full;
3319 switch (hw->mac.type) {
3320 case ixgbe_mac_82599EB:
3321 sfp_cage_full = IXGBE_READ_REG(hw, IXGBE_ESDP) &
3322 IXGBE_ESDP_SDP2;
3323 break;
3324 case ixgbe_mac_X550EM_x:
3325 case ixgbe_mac_x550em_a:
3326 sfp_cage_full = IXGBE_READ_REG(hw, IXGBE_ESDP) &
3327 IXGBE_ESDP_SDP0;
3328 break;
3329 default:
3330 /* sanity check - No SFP+ devices here */
3331 sfp_cage_full = false;
3332 break;
3335 if (!sfp_cage_full) {
3336 *link_up = false;
3337 *speed = IXGBE_LINK_SPEED_UNKNOWN;
3338 return 0;
3342 /* clear the old state */
3343 links_orig = IXGBE_READ_REG(hw, IXGBE_LINKS);
3345 links_reg = IXGBE_READ_REG(hw, IXGBE_LINKS);
3347 if (links_orig != links_reg) {
3348 hw_dbg(hw, "LINKS changed from %08X to %08X\n",
3349 links_orig, links_reg);
3352 if (link_up_wait_to_complete) {
3353 for (i = 0; i < IXGBE_LINK_UP_TIME; i++) {
3354 if (links_reg & IXGBE_LINKS_UP) {
3355 *link_up = true;
3356 break;
3357 } else {
3358 *link_up = false;
3360 msleep(100);
3361 links_reg = IXGBE_READ_REG(hw, IXGBE_LINKS);
3363 } else {
3364 if (links_reg & IXGBE_LINKS_UP)
3365 *link_up = true;
3366 else
3367 *link_up = false;
3370 switch (links_reg & IXGBE_LINKS_SPEED_82599) {
3371 case IXGBE_LINKS_SPEED_10G_82599:
3372 if ((hw->mac.type >= ixgbe_mac_X550) &&
3373 (links_reg & IXGBE_LINKS_SPEED_NON_STD))
3374 *speed = IXGBE_LINK_SPEED_2_5GB_FULL;
3375 else
3376 *speed = IXGBE_LINK_SPEED_10GB_FULL;
3377 break;
3378 case IXGBE_LINKS_SPEED_1G_82599:
3379 *speed = IXGBE_LINK_SPEED_1GB_FULL;
3380 break;
3381 case IXGBE_LINKS_SPEED_100_82599:
3382 if ((hw->mac.type >= ixgbe_mac_X550) &&
3383 (links_reg & IXGBE_LINKS_SPEED_NON_STD))
3384 *speed = IXGBE_LINK_SPEED_5GB_FULL;
3385 else
3386 *speed = IXGBE_LINK_SPEED_100_FULL;
3387 break;
3388 case IXGBE_LINKS_SPEED_10_X550EM_A:
3389 *speed = IXGBE_LINK_SPEED_UNKNOWN;
3390 if (hw->device_id == IXGBE_DEV_ID_X550EM_A_1G_T ||
3391 hw->device_id == IXGBE_DEV_ID_X550EM_A_1G_T_L) {
3392 *speed = IXGBE_LINK_SPEED_10_FULL;
3394 break;
3395 default:
3396 *speed = IXGBE_LINK_SPEED_UNKNOWN;
3399 return 0;
3403 * ixgbe_get_wwn_prefix_generic - Get alternative WWNN/WWPN prefix from
3404 * the EEPROM
3405 * @hw: pointer to hardware structure
3406 * @wwnn_prefix: the alternative WWNN prefix
3407 * @wwpn_prefix: the alternative WWPN prefix
3409 * This function will read the EEPROM from the alternative SAN MAC address
3410 * block to check the support for the alternative WWNN/WWPN prefix support.
3412 s32 ixgbe_get_wwn_prefix_generic(struct ixgbe_hw *hw, u16 *wwnn_prefix,
3413 u16 *wwpn_prefix)
3415 u16 offset, caps;
3416 u16 alt_san_mac_blk_offset;
3418 /* clear output first */
3419 *wwnn_prefix = 0xFFFF;
3420 *wwpn_prefix = 0xFFFF;
3422 /* check if alternative SAN MAC is supported */
3423 offset = IXGBE_ALT_SAN_MAC_ADDR_BLK_PTR;
3424 if (hw->eeprom.ops.read(hw, offset, &alt_san_mac_blk_offset))
3425 goto wwn_prefix_err;
3427 if ((alt_san_mac_blk_offset == 0) ||
3428 (alt_san_mac_blk_offset == 0xFFFF))
3429 return 0;
3431 /* check capability in alternative san mac address block */
3432 offset = alt_san_mac_blk_offset + IXGBE_ALT_SAN_MAC_ADDR_CAPS_OFFSET;
3433 if (hw->eeprom.ops.read(hw, offset, &caps))
3434 goto wwn_prefix_err;
3435 if (!(caps & IXGBE_ALT_SAN_MAC_ADDR_CAPS_ALTWWN))
3436 return 0;
3438 /* get the corresponding prefix for WWNN/WWPN */
3439 offset = alt_san_mac_blk_offset + IXGBE_ALT_SAN_MAC_ADDR_WWNN_OFFSET;
3440 if (hw->eeprom.ops.read(hw, offset, wwnn_prefix))
3441 hw_err(hw, "eeprom read at offset %d failed\n", offset);
3443 offset = alt_san_mac_blk_offset + IXGBE_ALT_SAN_MAC_ADDR_WWPN_OFFSET;
3444 if (hw->eeprom.ops.read(hw, offset, wwpn_prefix))
3445 goto wwn_prefix_err;
3447 return 0;
3449 wwn_prefix_err:
3450 hw_err(hw, "eeprom read at offset %d failed\n", offset);
3451 return 0;
3455 * ixgbe_set_mac_anti_spoofing - Enable/Disable MAC anti-spoofing
3456 * @hw: pointer to hardware structure
3457 * @enable: enable or disable switch for MAC anti-spoofing
3458 * @vf: Virtual Function pool - VF Pool to set for MAC anti-spoofing
3461 void ixgbe_set_mac_anti_spoofing(struct ixgbe_hw *hw, bool enable, int vf)
3463 int vf_target_reg = vf >> 3;
3464 int vf_target_shift = vf % 8;
3465 u32 pfvfspoof;
3467 if (hw->mac.type == ixgbe_mac_82598EB)
3468 return;
3470 pfvfspoof = IXGBE_READ_REG(hw, IXGBE_PFVFSPOOF(vf_target_reg));
3471 if (enable)
3472 pfvfspoof |= BIT(vf_target_shift);
3473 else
3474 pfvfspoof &= ~BIT(vf_target_shift);
3475 IXGBE_WRITE_REG(hw, IXGBE_PFVFSPOOF(vf_target_reg), pfvfspoof);
3479 * ixgbe_set_vlan_anti_spoofing - Enable/Disable VLAN anti-spoofing
3480 * @hw: pointer to hardware structure
3481 * @enable: enable or disable switch for VLAN anti-spoofing
3482 * @vf: Virtual Function pool - VF Pool to set for VLAN anti-spoofing
3485 void ixgbe_set_vlan_anti_spoofing(struct ixgbe_hw *hw, bool enable, int vf)
3487 int vf_target_reg = vf >> 3;
3488 int vf_target_shift = vf % 8 + IXGBE_SPOOF_VLANAS_SHIFT;
3489 u32 pfvfspoof;
3491 if (hw->mac.type == ixgbe_mac_82598EB)
3492 return;
3494 pfvfspoof = IXGBE_READ_REG(hw, IXGBE_PFVFSPOOF(vf_target_reg));
3495 if (enable)
3496 pfvfspoof |= BIT(vf_target_shift);
3497 else
3498 pfvfspoof &= ~BIT(vf_target_shift);
3499 IXGBE_WRITE_REG(hw, IXGBE_PFVFSPOOF(vf_target_reg), pfvfspoof);
3503 * ixgbe_get_device_caps_generic - Get additional device capabilities
3504 * @hw: pointer to hardware structure
3505 * @device_caps: the EEPROM word with the extra device capabilities
3507 * This function will read the EEPROM location for the device capabilities,
3508 * and return the word through device_caps.
3510 s32 ixgbe_get_device_caps_generic(struct ixgbe_hw *hw, u16 *device_caps)
3512 hw->eeprom.ops.read(hw, IXGBE_DEVICE_CAPS, device_caps);
3514 return 0;
3518 * ixgbe_set_rxpba_generic - Initialize RX packet buffer
3519 * @hw: pointer to hardware structure
3520 * @num_pb: number of packet buffers to allocate
3521 * @headroom: reserve n KB of headroom
3522 * @strategy: packet buffer allocation strategy
3524 void ixgbe_set_rxpba_generic(struct ixgbe_hw *hw,
3525 int num_pb,
3526 u32 headroom,
3527 int strategy)
3529 u32 pbsize = hw->mac.rx_pb_size;
3530 int i = 0;
3531 u32 rxpktsize, txpktsize, txpbthresh;
3533 /* Reserve headroom */
3534 pbsize -= headroom;
3536 if (!num_pb)
3537 num_pb = 1;
3539 /* Divide remaining packet buffer space amongst the number
3540 * of packet buffers requested using supplied strategy.
3542 switch (strategy) {
3543 case (PBA_STRATEGY_WEIGHTED):
3544 /* pba_80_48 strategy weight first half of packet buffer with
3545 * 5/8 of the packet buffer space.
3547 rxpktsize = ((pbsize * 5 * 2) / (num_pb * 8));
3548 pbsize -= rxpktsize * (num_pb / 2);
3549 rxpktsize <<= IXGBE_RXPBSIZE_SHIFT;
3550 for (; i < (num_pb / 2); i++)
3551 IXGBE_WRITE_REG(hw, IXGBE_RXPBSIZE(i), rxpktsize);
3552 /* fall through - configure remaining packet buffers */
3553 case (PBA_STRATEGY_EQUAL):
3554 /* Divide the remaining Rx packet buffer evenly among the TCs */
3555 rxpktsize = (pbsize / (num_pb - i)) << IXGBE_RXPBSIZE_SHIFT;
3556 for (; i < num_pb; i++)
3557 IXGBE_WRITE_REG(hw, IXGBE_RXPBSIZE(i), rxpktsize);
3558 break;
3559 default:
3560 break;
3564 * Setup Tx packet buffer and threshold equally for all TCs
3565 * TXPBTHRESH register is set in K so divide by 1024 and subtract
3566 * 10 since the largest packet we support is just over 9K.
3568 txpktsize = IXGBE_TXPBSIZE_MAX / num_pb;
3569 txpbthresh = (txpktsize / 1024) - IXGBE_TXPKT_SIZE_MAX;
3570 for (i = 0; i < num_pb; i++) {
3571 IXGBE_WRITE_REG(hw, IXGBE_TXPBSIZE(i), txpktsize);
3572 IXGBE_WRITE_REG(hw, IXGBE_TXPBTHRESH(i), txpbthresh);
3575 /* Clear unused TCs, if any, to zero buffer size*/
3576 for (; i < IXGBE_MAX_PB; i++) {
3577 IXGBE_WRITE_REG(hw, IXGBE_RXPBSIZE(i), 0);
3578 IXGBE_WRITE_REG(hw, IXGBE_TXPBSIZE(i), 0);
3579 IXGBE_WRITE_REG(hw, IXGBE_TXPBTHRESH(i), 0);
3584 * ixgbe_calculate_checksum - Calculate checksum for buffer
3585 * @buffer: pointer to EEPROM
3586 * @length: size of EEPROM to calculate a checksum for
3588 * Calculates the checksum for some buffer on a specified length. The
3589 * checksum calculated is returned.
3591 u8 ixgbe_calculate_checksum(u8 *buffer, u32 length)
3593 u32 i;
3594 u8 sum = 0;
3596 if (!buffer)
3597 return 0;
3599 for (i = 0; i < length; i++)
3600 sum += buffer[i];
3602 return (u8) (0 - sum);
3606 * ixgbe_hic_unlocked - Issue command to manageability block unlocked
3607 * @hw: pointer to the HW structure
3608 * @buffer: command to write and where the return status will be placed
3609 * @length: length of buffer, must be multiple of 4 bytes
3610 * @timeout: time in ms to wait for command completion
3612 * Communicates with the manageability block. On success return 0
3613 * else returns semaphore error when encountering an error acquiring
3614 * semaphore or IXGBE_ERR_HOST_INTERFACE_COMMAND when command fails.
3616 * This function assumes that the IXGBE_GSSR_SW_MNG_SM semaphore is held
3617 * by the caller.
3619 s32 ixgbe_hic_unlocked(struct ixgbe_hw *hw, u32 *buffer, u32 length,
3620 u32 timeout)
3622 u32 hicr, i, fwsts;
3623 u16 dword_len;
3625 if (!length || length > IXGBE_HI_MAX_BLOCK_BYTE_LENGTH) {
3626 hw_dbg(hw, "Buffer length failure buffersize-%d.\n", length);
3627 return IXGBE_ERR_HOST_INTERFACE_COMMAND;
3630 /* Set bit 9 of FWSTS clearing FW reset indication */
3631 fwsts = IXGBE_READ_REG(hw, IXGBE_FWSTS);
3632 IXGBE_WRITE_REG(hw, IXGBE_FWSTS, fwsts | IXGBE_FWSTS_FWRI);
3634 /* Check that the host interface is enabled. */
3635 hicr = IXGBE_READ_REG(hw, IXGBE_HICR);
3636 if (!(hicr & IXGBE_HICR_EN)) {
3637 hw_dbg(hw, "IXGBE_HOST_EN bit disabled.\n");
3638 return IXGBE_ERR_HOST_INTERFACE_COMMAND;
3641 /* Calculate length in DWORDs. We must be DWORD aligned */
3642 if (length % sizeof(u32)) {
3643 hw_dbg(hw, "Buffer length failure, not aligned to dword");
3644 return IXGBE_ERR_INVALID_ARGUMENT;
3647 dword_len = length >> 2;
3649 /* The device driver writes the relevant command block
3650 * into the ram area.
3652 for (i = 0; i < dword_len; i++)
3653 IXGBE_WRITE_REG_ARRAY(hw, IXGBE_FLEX_MNG,
3654 i, cpu_to_le32(buffer[i]));
3656 /* Setting this bit tells the ARC that a new command is pending. */
3657 IXGBE_WRITE_REG(hw, IXGBE_HICR, hicr | IXGBE_HICR_C);
3659 for (i = 0; i < timeout; i++) {
3660 hicr = IXGBE_READ_REG(hw, IXGBE_HICR);
3661 if (!(hicr & IXGBE_HICR_C))
3662 break;
3663 usleep_range(1000, 2000);
3666 /* Check command successful completion. */
3667 if ((timeout && i == timeout) ||
3668 !(IXGBE_READ_REG(hw, IXGBE_HICR) & IXGBE_HICR_SV))
3669 return IXGBE_ERR_HOST_INTERFACE_COMMAND;
3671 return 0;
3675 * ixgbe_host_interface_command - Issue command to manageability block
3676 * @hw: pointer to the HW structure
3677 * @buffer: contains the command to write and where the return status will
3678 * be placed
3679 * @length: length of buffer, must be multiple of 4 bytes
3680 * @timeout: time in ms to wait for command completion
3681 * @return_data: read and return data from the buffer (true) or not (false)
3682 * Needed because FW structures are big endian and decoding of
3683 * these fields can be 8 bit or 16 bit based on command. Decoding
3684 * is not easily understood without making a table of commands.
3685 * So we will leave this up to the caller to read back the data
3686 * in these cases.
3688 * Communicates with the manageability block. On success return 0
3689 * else return IXGBE_ERR_HOST_INTERFACE_COMMAND.
3691 s32 ixgbe_host_interface_command(struct ixgbe_hw *hw, void *buffer,
3692 u32 length, u32 timeout,
3693 bool return_data)
3695 u32 hdr_size = sizeof(struct ixgbe_hic_hdr);
3696 union {
3697 struct ixgbe_hic_hdr hdr;
3698 u32 u32arr[1];
3699 } *bp = buffer;
3700 u16 buf_len, dword_len;
3701 s32 status;
3702 u32 bi;
3704 if (!length || length > IXGBE_HI_MAX_BLOCK_BYTE_LENGTH) {
3705 hw_dbg(hw, "Buffer length failure buffersize-%d.\n", length);
3706 return IXGBE_ERR_HOST_INTERFACE_COMMAND;
3708 /* Take management host interface semaphore */
3709 status = hw->mac.ops.acquire_swfw_sync(hw, IXGBE_GSSR_SW_MNG_SM);
3710 if (status)
3711 return status;
3713 status = ixgbe_hic_unlocked(hw, buffer, length, timeout);
3714 if (status)
3715 goto rel_out;
3717 if (!return_data)
3718 goto rel_out;
3720 /* Calculate length in DWORDs */
3721 dword_len = hdr_size >> 2;
3723 /* first pull in the header so we know the buffer length */
3724 for (bi = 0; bi < dword_len; bi++) {
3725 bp->u32arr[bi] = IXGBE_READ_REG_ARRAY(hw, IXGBE_FLEX_MNG, bi);
3726 le32_to_cpus(&bp->u32arr[bi]);
3729 /* If there is any thing in data position pull it in */
3730 buf_len = bp->hdr.buf_len;
3731 if (!buf_len)
3732 goto rel_out;
3734 if (length < round_up(buf_len, 4) + hdr_size) {
3735 hw_dbg(hw, "Buffer not large enough for reply message.\n");
3736 status = IXGBE_ERR_HOST_INTERFACE_COMMAND;
3737 goto rel_out;
3740 /* Calculate length in DWORDs, add 3 for odd lengths */
3741 dword_len = (buf_len + 3) >> 2;
3743 /* Pull in the rest of the buffer (bi is where we left off) */
3744 for (; bi <= dword_len; bi++) {
3745 bp->u32arr[bi] = IXGBE_READ_REG_ARRAY(hw, IXGBE_FLEX_MNG, bi);
3746 le32_to_cpus(&bp->u32arr[bi]);
3749 rel_out:
3750 hw->mac.ops.release_swfw_sync(hw, IXGBE_GSSR_SW_MNG_SM);
3752 return status;
3756 * ixgbe_set_fw_drv_ver_generic - Sends driver version to firmware
3757 * @hw: pointer to the HW structure
3758 * @maj: driver version major number
3759 * @min: driver version minor number
3760 * @build: driver version build number
3761 * @sub: driver version sub build number
3762 * @len: length of driver_ver string
3763 * @driver_ver: driver string
3765 * Sends driver version number to firmware through the manageability
3766 * block. On success return 0
3767 * else returns IXGBE_ERR_SWFW_SYNC when encountering an error acquiring
3768 * semaphore or IXGBE_ERR_HOST_INTERFACE_COMMAND when command fails.
3770 s32 ixgbe_set_fw_drv_ver_generic(struct ixgbe_hw *hw, u8 maj, u8 min,
3771 u8 build, u8 sub, __always_unused u16 len,
3772 __always_unused const char *driver_ver)
3774 struct ixgbe_hic_drv_info fw_cmd;
3775 int i;
3776 s32 ret_val;
3778 fw_cmd.hdr.cmd = FW_CEM_CMD_DRIVER_INFO;
3779 fw_cmd.hdr.buf_len = FW_CEM_CMD_DRIVER_INFO_LEN;
3780 fw_cmd.hdr.cmd_or_resp.cmd_resv = FW_CEM_CMD_RESERVED;
3781 fw_cmd.port_num = hw->bus.func;
3782 fw_cmd.ver_maj = maj;
3783 fw_cmd.ver_min = min;
3784 fw_cmd.ver_build = build;
3785 fw_cmd.ver_sub = sub;
3786 fw_cmd.hdr.checksum = 0;
3787 fw_cmd.pad = 0;
3788 fw_cmd.pad2 = 0;
3789 fw_cmd.hdr.checksum = ixgbe_calculate_checksum((u8 *)&fw_cmd,
3790 (FW_CEM_HDR_LEN + fw_cmd.hdr.buf_len));
3792 for (i = 0; i <= FW_CEM_MAX_RETRIES; i++) {
3793 ret_val = ixgbe_host_interface_command(hw, &fw_cmd,
3794 sizeof(fw_cmd),
3795 IXGBE_HI_COMMAND_TIMEOUT,
3796 true);
3797 if (ret_val != 0)
3798 continue;
3800 if (fw_cmd.hdr.cmd_or_resp.ret_status ==
3801 FW_CEM_RESP_STATUS_SUCCESS)
3802 ret_val = 0;
3803 else
3804 ret_val = IXGBE_ERR_HOST_INTERFACE_COMMAND;
3806 break;
3809 return ret_val;
3813 * ixgbe_clear_tx_pending - Clear pending TX work from the PCIe fifo
3814 * @hw: pointer to the hardware structure
3816 * The 82599 and x540 MACs can experience issues if TX work is still pending
3817 * when a reset occurs. This function prevents this by flushing the PCIe
3818 * buffers on the system.
3820 void ixgbe_clear_tx_pending(struct ixgbe_hw *hw)
3822 u32 gcr_ext, hlreg0, i, poll;
3823 u16 value;
3826 * If double reset is not requested then all transactions should
3827 * already be clear and as such there is no work to do
3829 if (!(hw->mac.flags & IXGBE_FLAGS_DOUBLE_RESET_REQUIRED))
3830 return;
3833 * Set loopback enable to prevent any transmits from being sent
3834 * should the link come up. This assumes that the RXCTRL.RXEN bit
3835 * has already been cleared.
3837 hlreg0 = IXGBE_READ_REG(hw, IXGBE_HLREG0);
3838 IXGBE_WRITE_REG(hw, IXGBE_HLREG0, hlreg0 | IXGBE_HLREG0_LPBK);
3840 /* wait for a last completion before clearing buffers */
3841 IXGBE_WRITE_FLUSH(hw);
3842 usleep_range(3000, 6000);
3844 /* Before proceeding, make sure that the PCIe block does not have
3845 * transactions pending.
3847 poll = ixgbe_pcie_timeout_poll(hw);
3848 for (i = 0; i < poll; i++) {
3849 usleep_range(100, 200);
3850 value = ixgbe_read_pci_cfg_word(hw, IXGBE_PCI_DEVICE_STATUS);
3851 if (ixgbe_removed(hw->hw_addr))
3852 break;
3853 if (!(value & IXGBE_PCI_DEVICE_STATUS_TRANSACTION_PENDING))
3854 break;
3857 /* initiate cleaning flow for buffers in the PCIe transaction layer */
3858 gcr_ext = IXGBE_READ_REG(hw, IXGBE_GCR_EXT);
3859 IXGBE_WRITE_REG(hw, IXGBE_GCR_EXT,
3860 gcr_ext | IXGBE_GCR_EXT_BUFFERS_CLEAR);
3862 /* Flush all writes and allow 20usec for all transactions to clear */
3863 IXGBE_WRITE_FLUSH(hw);
3864 udelay(20);
3866 /* restore previous register values */
3867 IXGBE_WRITE_REG(hw, IXGBE_GCR_EXT, gcr_ext);
3868 IXGBE_WRITE_REG(hw, IXGBE_HLREG0, hlreg0);
3871 static const u8 ixgbe_emc_temp_data[4] = {
3872 IXGBE_EMC_INTERNAL_DATA,
3873 IXGBE_EMC_DIODE1_DATA,
3874 IXGBE_EMC_DIODE2_DATA,
3875 IXGBE_EMC_DIODE3_DATA
3877 static const u8 ixgbe_emc_therm_limit[4] = {
3878 IXGBE_EMC_INTERNAL_THERM_LIMIT,
3879 IXGBE_EMC_DIODE1_THERM_LIMIT,
3880 IXGBE_EMC_DIODE2_THERM_LIMIT,
3881 IXGBE_EMC_DIODE3_THERM_LIMIT
3885 * ixgbe_get_ets_data - Extracts the ETS bit data
3886 * @hw: pointer to hardware structure
3887 * @ets_cfg: extected ETS data
3888 * @ets_offset: offset of ETS data
3890 * Returns error code.
3892 static s32 ixgbe_get_ets_data(struct ixgbe_hw *hw, u16 *ets_cfg,
3893 u16 *ets_offset)
3895 s32 status;
3897 status = hw->eeprom.ops.read(hw, IXGBE_ETS_CFG, ets_offset);
3898 if (status)
3899 return status;
3901 if ((*ets_offset == 0x0000) || (*ets_offset == 0xFFFF))
3902 return IXGBE_NOT_IMPLEMENTED;
3904 status = hw->eeprom.ops.read(hw, *ets_offset, ets_cfg);
3905 if (status)
3906 return status;
3908 if ((*ets_cfg & IXGBE_ETS_TYPE_MASK) != IXGBE_ETS_TYPE_EMC_SHIFTED)
3909 return IXGBE_NOT_IMPLEMENTED;
3911 return 0;
3915 * ixgbe_get_thermal_sensor_data - Gathers thermal sensor data
3916 * @hw: pointer to hardware structure
3918 * Returns the thermal sensor data structure
3920 s32 ixgbe_get_thermal_sensor_data_generic(struct ixgbe_hw *hw)
3922 s32 status;
3923 u16 ets_offset;
3924 u16 ets_cfg;
3925 u16 ets_sensor;
3926 u8 num_sensors;
3927 u8 i;
3928 struct ixgbe_thermal_sensor_data *data = &hw->mac.thermal_sensor_data;
3930 /* Only support thermal sensors attached to physical port 0 */
3931 if ((IXGBE_READ_REG(hw, IXGBE_STATUS) & IXGBE_STATUS_LAN_ID_1))
3932 return IXGBE_NOT_IMPLEMENTED;
3934 status = ixgbe_get_ets_data(hw, &ets_cfg, &ets_offset);
3935 if (status)
3936 return status;
3938 num_sensors = (ets_cfg & IXGBE_ETS_NUM_SENSORS_MASK);
3939 if (num_sensors > IXGBE_MAX_SENSORS)
3940 num_sensors = IXGBE_MAX_SENSORS;
3942 for (i = 0; i < num_sensors; i++) {
3943 u8 sensor_index;
3944 u8 sensor_location;
3946 status = hw->eeprom.ops.read(hw, (ets_offset + 1 + i),
3947 &ets_sensor);
3948 if (status)
3949 return status;
3951 sensor_index = ((ets_sensor & IXGBE_ETS_DATA_INDEX_MASK) >>
3952 IXGBE_ETS_DATA_INDEX_SHIFT);
3953 sensor_location = ((ets_sensor & IXGBE_ETS_DATA_LOC_MASK) >>
3954 IXGBE_ETS_DATA_LOC_SHIFT);
3956 if (sensor_location != 0) {
3957 status = hw->phy.ops.read_i2c_byte(hw,
3958 ixgbe_emc_temp_data[sensor_index],
3959 IXGBE_I2C_THERMAL_SENSOR_ADDR,
3960 &data->sensor[i].temp);
3961 if (status)
3962 return status;
3966 return 0;
3970 * ixgbe_init_thermal_sensor_thresh_generic - Inits thermal sensor thresholds
3971 * @hw: pointer to hardware structure
3973 * Inits the thermal sensor thresholds according to the NVM map
3974 * and save off the threshold and location values into mac.thermal_sensor_data
3976 s32 ixgbe_init_thermal_sensor_thresh_generic(struct ixgbe_hw *hw)
3978 s32 status;
3979 u16 ets_offset;
3980 u16 ets_cfg;
3981 u16 ets_sensor;
3982 u8 low_thresh_delta;
3983 u8 num_sensors;
3984 u8 therm_limit;
3985 u8 i;
3986 struct ixgbe_thermal_sensor_data *data = &hw->mac.thermal_sensor_data;
3988 memset(data, 0, sizeof(struct ixgbe_thermal_sensor_data));
3990 /* Only support thermal sensors attached to physical port 0 */
3991 if ((IXGBE_READ_REG(hw, IXGBE_STATUS) & IXGBE_STATUS_LAN_ID_1))
3992 return IXGBE_NOT_IMPLEMENTED;
3994 status = ixgbe_get_ets_data(hw, &ets_cfg, &ets_offset);
3995 if (status)
3996 return status;
3998 low_thresh_delta = ((ets_cfg & IXGBE_ETS_LTHRES_DELTA_MASK) >>
3999 IXGBE_ETS_LTHRES_DELTA_SHIFT);
4000 num_sensors = (ets_cfg & IXGBE_ETS_NUM_SENSORS_MASK);
4001 if (num_sensors > IXGBE_MAX_SENSORS)
4002 num_sensors = IXGBE_MAX_SENSORS;
4004 for (i = 0; i < num_sensors; i++) {
4005 u8 sensor_index;
4006 u8 sensor_location;
4008 if (hw->eeprom.ops.read(hw, ets_offset + 1 + i, &ets_sensor)) {
4009 hw_err(hw, "eeprom read at offset %d failed\n",
4010 ets_offset + 1 + i);
4011 continue;
4013 sensor_index = ((ets_sensor & IXGBE_ETS_DATA_INDEX_MASK) >>
4014 IXGBE_ETS_DATA_INDEX_SHIFT);
4015 sensor_location = ((ets_sensor & IXGBE_ETS_DATA_LOC_MASK) >>
4016 IXGBE_ETS_DATA_LOC_SHIFT);
4017 therm_limit = ets_sensor & IXGBE_ETS_DATA_HTHRESH_MASK;
4019 hw->phy.ops.write_i2c_byte(hw,
4020 ixgbe_emc_therm_limit[sensor_index],
4021 IXGBE_I2C_THERMAL_SENSOR_ADDR, therm_limit);
4023 if (sensor_location == 0)
4024 continue;
4026 data->sensor[i].location = sensor_location;
4027 data->sensor[i].caution_thresh = therm_limit;
4028 data->sensor[i].max_op_thresh = therm_limit - low_thresh_delta;
4031 return 0;
4035 * ixgbe_get_orom_version - Return option ROM from EEPROM
4037 * @hw: pointer to hardware structure
4038 * @nvm_ver: pointer to output structure
4040 * if valid option ROM version, nvm_ver->or_valid set to true
4041 * else nvm_ver->or_valid is false.
4043 void ixgbe_get_orom_version(struct ixgbe_hw *hw,
4044 struct ixgbe_nvm_version *nvm_ver)
4046 u16 offset, eeprom_cfg_blkh, eeprom_cfg_blkl;
4048 nvm_ver->or_valid = false;
4049 /* Option Rom may or may not be present. Start with pointer */
4050 hw->eeprom.ops.read(hw, NVM_OROM_OFFSET, &offset);
4052 /* make sure offset is valid */
4053 if (offset == 0x0 || offset == NVM_INVALID_PTR)
4054 return;
4056 hw->eeprom.ops.read(hw, offset + NVM_OROM_BLK_HI, &eeprom_cfg_blkh);
4057 hw->eeprom.ops.read(hw, offset + NVM_OROM_BLK_LOW, &eeprom_cfg_blkl);
4059 /* option rom exists and is valid */
4060 if ((eeprom_cfg_blkl | eeprom_cfg_blkh) == 0x0 ||
4061 eeprom_cfg_blkl == NVM_VER_INVALID ||
4062 eeprom_cfg_blkh == NVM_VER_INVALID)
4063 return;
4065 nvm_ver->or_valid = true;
4066 nvm_ver->or_major = eeprom_cfg_blkl >> NVM_OROM_SHIFT;
4067 nvm_ver->or_build = (eeprom_cfg_blkl << NVM_OROM_SHIFT) |
4068 (eeprom_cfg_blkh >> NVM_OROM_SHIFT);
4069 nvm_ver->or_patch = eeprom_cfg_blkh & NVM_OROM_PATCH_MASK;
4073 * ixgbe_get_oem_prod_version Etrack ID from EEPROM
4075 * @hw: pointer to hardware structure
4076 * @nvm_ver: pointer to output structure
4078 * if valid OEM product version, nvm_ver->oem_valid set to true
4079 * else nvm_ver->oem_valid is false.
4081 void ixgbe_get_oem_prod_version(struct ixgbe_hw *hw,
4082 struct ixgbe_nvm_version *nvm_ver)
4084 u16 rel_num, prod_ver, mod_len, cap, offset;
4086 nvm_ver->oem_valid = false;
4087 hw->eeprom.ops.read(hw, NVM_OEM_PROD_VER_PTR, &offset);
4089 /* Return is offset to OEM Product Version block is invalid */
4090 if (offset == 0x0 || offset == NVM_INVALID_PTR)
4091 return;
4093 /* Read product version block */
4094 hw->eeprom.ops.read(hw, offset, &mod_len);
4095 hw->eeprom.ops.read(hw, offset + NVM_OEM_PROD_VER_CAP_OFF, &cap);
4097 /* Return if OEM product version block is invalid */
4098 if (mod_len != NVM_OEM_PROD_VER_MOD_LEN ||
4099 (cap & NVM_OEM_PROD_VER_CAP_MASK) != 0x0)
4100 return;
4102 hw->eeprom.ops.read(hw, offset + NVM_OEM_PROD_VER_OFF_L, &prod_ver);
4103 hw->eeprom.ops.read(hw, offset + NVM_OEM_PROD_VER_OFF_H, &rel_num);
4105 /* Return if version is invalid */
4106 if ((rel_num | prod_ver) == 0x0 ||
4107 rel_num == NVM_VER_INVALID || prod_ver == NVM_VER_INVALID)
4108 return;
4110 nvm_ver->oem_major = prod_ver >> NVM_VER_SHIFT;
4111 nvm_ver->oem_minor = prod_ver & NVM_VER_MASK;
4112 nvm_ver->oem_release = rel_num;
4113 nvm_ver->oem_valid = true;
4117 * ixgbe_get_etk_id - Return Etrack ID from EEPROM
4119 * @hw: pointer to hardware structure
4120 * @nvm_ver: pointer to output structure
4122 * word read errors will return 0xFFFF
4124 void ixgbe_get_etk_id(struct ixgbe_hw *hw,
4125 struct ixgbe_nvm_version *nvm_ver)
4127 u16 etk_id_l, etk_id_h;
4129 if (hw->eeprom.ops.read(hw, NVM_ETK_OFF_LOW, &etk_id_l))
4130 etk_id_l = NVM_VER_INVALID;
4131 if (hw->eeprom.ops.read(hw, NVM_ETK_OFF_HI, &etk_id_h))
4132 etk_id_h = NVM_VER_INVALID;
4134 /* The word order for the version format is determined by high order
4135 * word bit 15.
4137 if ((etk_id_h & NVM_ETK_VALID) == 0) {
4138 nvm_ver->etk_id = etk_id_h;
4139 nvm_ver->etk_id |= (etk_id_l << NVM_ETK_SHIFT);
4140 } else {
4141 nvm_ver->etk_id = etk_id_l;
4142 nvm_ver->etk_id |= (etk_id_h << NVM_ETK_SHIFT);
4146 void ixgbe_disable_rx_generic(struct ixgbe_hw *hw)
4148 u32 rxctrl;
4150 rxctrl = IXGBE_READ_REG(hw, IXGBE_RXCTRL);
4151 if (rxctrl & IXGBE_RXCTRL_RXEN) {
4152 if (hw->mac.type != ixgbe_mac_82598EB) {
4153 u32 pfdtxgswc;
4155 pfdtxgswc = IXGBE_READ_REG(hw, IXGBE_PFDTXGSWC);
4156 if (pfdtxgswc & IXGBE_PFDTXGSWC_VT_LBEN) {
4157 pfdtxgswc &= ~IXGBE_PFDTXGSWC_VT_LBEN;
4158 IXGBE_WRITE_REG(hw, IXGBE_PFDTXGSWC, pfdtxgswc);
4159 hw->mac.set_lben = true;
4160 } else {
4161 hw->mac.set_lben = false;
4164 rxctrl &= ~IXGBE_RXCTRL_RXEN;
4165 IXGBE_WRITE_REG(hw, IXGBE_RXCTRL, rxctrl);
4169 void ixgbe_enable_rx_generic(struct ixgbe_hw *hw)
4171 u32 rxctrl;
4173 rxctrl = IXGBE_READ_REG(hw, IXGBE_RXCTRL);
4174 IXGBE_WRITE_REG(hw, IXGBE_RXCTRL, (rxctrl | IXGBE_RXCTRL_RXEN));
4176 if (hw->mac.type != ixgbe_mac_82598EB) {
4177 if (hw->mac.set_lben) {
4178 u32 pfdtxgswc;
4180 pfdtxgswc = IXGBE_READ_REG(hw, IXGBE_PFDTXGSWC);
4181 pfdtxgswc |= IXGBE_PFDTXGSWC_VT_LBEN;
4182 IXGBE_WRITE_REG(hw, IXGBE_PFDTXGSWC, pfdtxgswc);
4183 hw->mac.set_lben = false;
4188 /** ixgbe_mng_present - returns true when management capability is present
4189 * @hw: pointer to hardware structure
4191 bool ixgbe_mng_present(struct ixgbe_hw *hw)
4193 u32 fwsm;
4195 if (hw->mac.type < ixgbe_mac_82599EB)
4196 return false;
4198 fwsm = IXGBE_READ_REG(hw, IXGBE_FWSM(hw));
4200 return !!(fwsm & IXGBE_FWSM_FW_MODE_PT);
4204 * ixgbe_setup_mac_link_multispeed_fiber - Set MAC link speed
4205 * @hw: pointer to hardware structure
4206 * @speed: new link speed
4207 * @autoneg_wait_to_complete: true when waiting for completion is needed
4209 * Set the link speed in the MAC and/or PHY register and restarts link.
4211 s32 ixgbe_setup_mac_link_multispeed_fiber(struct ixgbe_hw *hw,
4212 ixgbe_link_speed speed,
4213 bool autoneg_wait_to_complete)
4215 ixgbe_link_speed link_speed = IXGBE_LINK_SPEED_UNKNOWN;
4216 ixgbe_link_speed highest_link_speed = IXGBE_LINK_SPEED_UNKNOWN;
4217 s32 status = 0;
4218 u32 speedcnt = 0;
4219 u32 i = 0;
4220 bool autoneg, link_up = false;
4222 /* Mask off requested but non-supported speeds */
4223 status = hw->mac.ops.get_link_capabilities(hw, &link_speed, &autoneg);
4224 if (status)
4225 return status;
4227 speed &= link_speed;
4229 /* Try each speed one by one, highest priority first. We do this in
4230 * software because 10Gb fiber doesn't support speed autonegotiation.
4232 if (speed & IXGBE_LINK_SPEED_10GB_FULL) {
4233 speedcnt++;
4234 highest_link_speed = IXGBE_LINK_SPEED_10GB_FULL;
4236 /* Set the module link speed */
4237 switch (hw->phy.media_type) {
4238 case ixgbe_media_type_fiber:
4239 hw->mac.ops.set_rate_select_speed(hw,
4240 IXGBE_LINK_SPEED_10GB_FULL);
4241 break;
4242 case ixgbe_media_type_fiber_qsfp:
4243 /* QSFP module automatically detects MAC link speed */
4244 break;
4245 default:
4246 hw_dbg(hw, "Unexpected media type\n");
4247 break;
4250 /* Allow module to change analog characteristics (1G->10G) */
4251 msleep(40);
4253 status = hw->mac.ops.setup_mac_link(hw,
4254 IXGBE_LINK_SPEED_10GB_FULL,
4255 autoneg_wait_to_complete);
4256 if (status)
4257 return status;
4259 /* Flap the Tx laser if it has not already been done */
4260 if (hw->mac.ops.flap_tx_laser)
4261 hw->mac.ops.flap_tx_laser(hw);
4263 /* Wait for the controller to acquire link. Per IEEE 802.3ap,
4264 * Section 73.10.2, we may have to wait up to 500ms if KR is
4265 * attempted. 82599 uses the same timing for 10g SFI.
4267 for (i = 0; i < 5; i++) {
4268 /* Wait for the link partner to also set speed */
4269 msleep(100);
4271 /* If we have link, just jump out */
4272 status = hw->mac.ops.check_link(hw, &link_speed,
4273 &link_up, false);
4274 if (status)
4275 return status;
4277 if (link_up)
4278 goto out;
4282 if (speed & IXGBE_LINK_SPEED_1GB_FULL) {
4283 speedcnt++;
4284 if (highest_link_speed == IXGBE_LINK_SPEED_UNKNOWN)
4285 highest_link_speed = IXGBE_LINK_SPEED_1GB_FULL;
4287 /* Set the module link speed */
4288 switch (hw->phy.media_type) {
4289 case ixgbe_media_type_fiber:
4290 hw->mac.ops.set_rate_select_speed(hw,
4291 IXGBE_LINK_SPEED_1GB_FULL);
4292 break;
4293 case ixgbe_media_type_fiber_qsfp:
4294 /* QSFP module automatically detects link speed */
4295 break;
4296 default:
4297 hw_dbg(hw, "Unexpected media type\n");
4298 break;
4301 /* Allow module to change analog characteristics (10G->1G) */
4302 msleep(40);
4304 status = hw->mac.ops.setup_mac_link(hw,
4305 IXGBE_LINK_SPEED_1GB_FULL,
4306 autoneg_wait_to_complete);
4307 if (status)
4308 return status;
4310 /* Flap the Tx laser if it has not already been done */
4311 if (hw->mac.ops.flap_tx_laser)
4312 hw->mac.ops.flap_tx_laser(hw);
4314 /* Wait for the link partner to also set speed */
4315 msleep(100);
4317 /* If we have link, just jump out */
4318 status = hw->mac.ops.check_link(hw, &link_speed, &link_up,
4319 false);
4320 if (status)
4321 return status;
4323 if (link_up)
4324 goto out;
4327 /* We didn't get link. Configure back to the highest speed we tried,
4328 * (if there was more than one). We call ourselves back with just the
4329 * single highest speed that the user requested.
4331 if (speedcnt > 1)
4332 status = ixgbe_setup_mac_link_multispeed_fiber(hw,
4333 highest_link_speed,
4334 autoneg_wait_to_complete);
4336 out:
4337 /* Set autoneg_advertised value based on input link speed */
4338 hw->phy.autoneg_advertised = 0;
4340 if (speed & IXGBE_LINK_SPEED_10GB_FULL)
4341 hw->phy.autoneg_advertised |= IXGBE_LINK_SPEED_10GB_FULL;
4343 if (speed & IXGBE_LINK_SPEED_1GB_FULL)
4344 hw->phy.autoneg_advertised |= IXGBE_LINK_SPEED_1GB_FULL;
4346 return status;
4350 * ixgbe_set_soft_rate_select_speed - Set module link speed
4351 * @hw: pointer to hardware structure
4352 * @speed: link speed to set
4354 * Set module link speed via the soft rate select.
4356 void ixgbe_set_soft_rate_select_speed(struct ixgbe_hw *hw,
4357 ixgbe_link_speed speed)
4359 s32 status;
4360 u8 rs, eeprom_data;
4362 switch (speed) {
4363 case IXGBE_LINK_SPEED_10GB_FULL:
4364 /* one bit mask same as setting on */
4365 rs = IXGBE_SFF_SOFT_RS_SELECT_10G;
4366 break;
4367 case IXGBE_LINK_SPEED_1GB_FULL:
4368 rs = IXGBE_SFF_SOFT_RS_SELECT_1G;
4369 break;
4370 default:
4371 hw_dbg(hw, "Invalid fixed module speed\n");
4372 return;
4375 /* Set RS0 */
4376 status = hw->phy.ops.read_i2c_byte(hw, IXGBE_SFF_SFF_8472_OSCB,
4377 IXGBE_I2C_EEPROM_DEV_ADDR2,
4378 &eeprom_data);
4379 if (status) {
4380 hw_dbg(hw, "Failed to read Rx Rate Select RS0\n");
4381 return;
4384 eeprom_data = (eeprom_data & ~IXGBE_SFF_SOFT_RS_SELECT_MASK) | rs;
4386 status = hw->phy.ops.write_i2c_byte(hw, IXGBE_SFF_SFF_8472_OSCB,
4387 IXGBE_I2C_EEPROM_DEV_ADDR2,
4388 eeprom_data);
4389 if (status) {
4390 hw_dbg(hw, "Failed to write Rx Rate Select RS0\n");
4391 return;
4394 /* Set RS1 */
4395 status = hw->phy.ops.read_i2c_byte(hw, IXGBE_SFF_SFF_8472_ESCB,
4396 IXGBE_I2C_EEPROM_DEV_ADDR2,
4397 &eeprom_data);
4398 if (status) {
4399 hw_dbg(hw, "Failed to read Rx Rate Select RS1\n");
4400 return;
4403 eeprom_data = (eeprom_data & ~IXGBE_SFF_SOFT_RS_SELECT_MASK) | rs;
4405 status = hw->phy.ops.write_i2c_byte(hw, IXGBE_SFF_SFF_8472_ESCB,
4406 IXGBE_I2C_EEPROM_DEV_ADDR2,
4407 eeprom_data);
4408 if (status) {
4409 hw_dbg(hw, "Failed to write Rx Rate Select RS1\n");
4410 return;