2 * Driver for Marvell PPv2 network controller for Armada 375 SoC.
4 * Copyright (C) 2014 Marvell
6 * Marcin Wojtas <mw@semihalf.com>
8 * This file is licensed under the terms of the GNU General Public
9 * License version 2. This program is licensed "as is" without any
10 * warranty of any kind, whether express or implied.
13 #include <linux/acpi.h>
14 #include <linux/kernel.h>
15 #include <linux/netdevice.h>
16 #include <linux/etherdevice.h>
17 #include <linux/platform_device.h>
18 #include <linux/skbuff.h>
19 #include <linux/inetdevice.h>
20 #include <linux/mbus.h>
21 #include <linux/module.h>
22 #include <linux/mfd/syscon.h>
23 #include <linux/interrupt.h>
24 #include <linux/cpumask.h>
26 #include <linux/of_irq.h>
27 #include <linux/of_mdio.h>
28 #include <linux/of_net.h>
29 #include <linux/of_address.h>
30 #include <linux/of_device.h>
31 #include <linux/phy.h>
32 #include <linux/phy/phy.h>
33 #include <linux/clk.h>
34 #include <linux/hrtimer.h>
35 #include <linux/ktime.h>
36 #include <linux/regmap.h>
37 #include <uapi/linux/ppp_defs.h>
43 #define MVPP2_RX_DATA_FIFO_SIZE_REG(port) (0x00 + 4 * (port))
44 #define MVPP2_RX_ATTR_FIFO_SIZE_REG(port) (0x20 + 4 * (port))
45 #define MVPP2_RX_MIN_PKT_SIZE_REG 0x60
46 #define MVPP2_RX_FIFO_INIT_REG 0x64
47 #define MVPP22_TX_FIFO_SIZE_REG(port) (0x8860 + 4 * (port))
49 /* RX DMA Top Registers */
50 #define MVPP2_RX_CTRL_REG(port) (0x140 + 4 * (port))
51 #define MVPP2_RX_LOW_LATENCY_PKT_SIZE(s) (((s) & 0xfff) << 16)
52 #define MVPP2_RX_USE_PSEUDO_FOR_CSUM_MASK BIT(31)
53 #define MVPP2_POOL_BUF_SIZE_REG(pool) (0x180 + 4 * (pool))
54 #define MVPP2_POOL_BUF_SIZE_OFFSET 5
55 #define MVPP2_RXQ_CONFIG_REG(rxq) (0x800 + 4 * (rxq))
56 #define MVPP2_SNOOP_PKT_SIZE_MASK 0x1ff
57 #define MVPP2_SNOOP_BUF_HDR_MASK BIT(9)
58 #define MVPP2_RXQ_POOL_SHORT_OFFS 20
59 #define MVPP21_RXQ_POOL_SHORT_MASK 0x700000
60 #define MVPP22_RXQ_POOL_SHORT_MASK 0xf00000
61 #define MVPP2_RXQ_POOL_LONG_OFFS 24
62 #define MVPP21_RXQ_POOL_LONG_MASK 0x7000000
63 #define MVPP22_RXQ_POOL_LONG_MASK 0xf000000
64 #define MVPP2_RXQ_PACKET_OFFSET_OFFS 28
65 #define MVPP2_RXQ_PACKET_OFFSET_MASK 0x70000000
66 #define MVPP2_RXQ_DISABLE_MASK BIT(31)
68 /* Parser Registers */
69 #define MVPP2_PRS_INIT_LOOKUP_REG 0x1000
70 #define MVPP2_PRS_PORT_LU_MAX 0xf
71 #define MVPP2_PRS_PORT_LU_MASK(port) (0xff << ((port) * 4))
72 #define MVPP2_PRS_PORT_LU_VAL(port, val) ((val) << ((port) * 4))
73 #define MVPP2_PRS_INIT_OFFS_REG(port) (0x1004 + ((port) & 4))
74 #define MVPP2_PRS_INIT_OFF_MASK(port) (0x3f << (((port) % 4) * 8))
75 #define MVPP2_PRS_INIT_OFF_VAL(port, val) ((val) << (((port) % 4) * 8))
76 #define MVPP2_PRS_MAX_LOOP_REG(port) (0x100c + ((port) & 4))
77 #define MVPP2_PRS_MAX_LOOP_MASK(port) (0xff << (((port) % 4) * 8))
78 #define MVPP2_PRS_MAX_LOOP_VAL(port, val) ((val) << (((port) % 4) * 8))
79 #define MVPP2_PRS_TCAM_IDX_REG 0x1100
80 #define MVPP2_PRS_TCAM_DATA_REG(idx) (0x1104 + (idx) * 4)
81 #define MVPP2_PRS_TCAM_INV_MASK BIT(31)
82 #define MVPP2_PRS_SRAM_IDX_REG 0x1200
83 #define MVPP2_PRS_SRAM_DATA_REG(idx) (0x1204 + (idx) * 4)
84 #define MVPP2_PRS_TCAM_CTRL_REG 0x1230
85 #define MVPP2_PRS_TCAM_EN_MASK BIT(0)
88 #define MVPP22_RSS_INDEX 0x1500
89 #define MVPP22_RSS_INDEX_TABLE_ENTRY(idx) (idx)
90 #define MVPP22_RSS_INDEX_TABLE(idx) ((idx) << 8)
91 #define MVPP22_RSS_INDEX_QUEUE(idx) ((idx) << 16)
92 #define MVPP22_RSS_TABLE_ENTRY 0x1508
93 #define MVPP22_RSS_TABLE 0x1510
94 #define MVPP22_RSS_TABLE_POINTER(p) (p)
95 #define MVPP22_RSS_WIDTH 0x150c
97 /* Classifier Registers */
98 #define MVPP2_CLS_MODE_REG 0x1800
99 #define MVPP2_CLS_MODE_ACTIVE_MASK BIT(0)
100 #define MVPP2_CLS_PORT_WAY_REG 0x1810
101 #define MVPP2_CLS_PORT_WAY_MASK(port) (1 << (port))
102 #define MVPP2_CLS_LKP_INDEX_REG 0x1814
103 #define MVPP2_CLS_LKP_INDEX_WAY_OFFS 6
104 #define MVPP2_CLS_LKP_TBL_REG 0x1818
105 #define MVPP2_CLS_LKP_TBL_RXQ_MASK 0xff
106 #define MVPP2_CLS_LKP_TBL_LOOKUP_EN_MASK BIT(25)
107 #define MVPP2_CLS_FLOW_INDEX_REG 0x1820
108 #define MVPP2_CLS_FLOW_TBL0_REG 0x1824
109 #define MVPP2_CLS_FLOW_TBL1_REG 0x1828
110 #define MVPP2_CLS_FLOW_TBL2_REG 0x182c
111 #define MVPP2_CLS_OVERSIZE_RXQ_LOW_REG(port) (0x1980 + ((port) * 4))
112 #define MVPP2_CLS_OVERSIZE_RXQ_LOW_BITS 3
113 #define MVPP2_CLS_OVERSIZE_RXQ_LOW_MASK 0x7
114 #define MVPP2_CLS_SWFWD_P2HQ_REG(port) (0x19b0 + ((port) * 4))
115 #define MVPP2_CLS_SWFWD_PCTRL_REG 0x19d0
116 #define MVPP2_CLS_SWFWD_PCTRL_MASK(port) (1 << (port))
118 /* Descriptor Manager Top Registers */
119 #define MVPP2_RXQ_NUM_REG 0x2040
120 #define MVPP2_RXQ_DESC_ADDR_REG 0x2044
121 #define MVPP22_DESC_ADDR_OFFS 8
122 #define MVPP2_RXQ_DESC_SIZE_REG 0x2048
123 #define MVPP2_RXQ_DESC_SIZE_MASK 0x3ff0
124 #define MVPP2_RXQ_STATUS_UPDATE_REG(rxq) (0x3000 + 4 * (rxq))
125 #define MVPP2_RXQ_NUM_PROCESSED_OFFSET 0
126 #define MVPP2_RXQ_NUM_NEW_OFFSET 16
127 #define MVPP2_RXQ_STATUS_REG(rxq) (0x3400 + 4 * (rxq))
128 #define MVPP2_RXQ_OCCUPIED_MASK 0x3fff
129 #define MVPP2_RXQ_NON_OCCUPIED_OFFSET 16
130 #define MVPP2_RXQ_NON_OCCUPIED_MASK 0x3fff0000
131 #define MVPP2_RXQ_THRESH_REG 0x204c
132 #define MVPP2_OCCUPIED_THRESH_OFFSET 0
133 #define MVPP2_OCCUPIED_THRESH_MASK 0x3fff
134 #define MVPP2_RXQ_INDEX_REG 0x2050
135 #define MVPP2_TXQ_NUM_REG 0x2080
136 #define MVPP2_TXQ_DESC_ADDR_REG 0x2084
137 #define MVPP2_TXQ_DESC_SIZE_REG 0x2088
138 #define MVPP2_TXQ_DESC_SIZE_MASK 0x3ff0
139 #define MVPP2_TXQ_THRESH_REG 0x2094
140 #define MVPP2_TXQ_THRESH_OFFSET 16
141 #define MVPP2_TXQ_THRESH_MASK 0x3fff
142 #define MVPP2_AGGR_TXQ_UPDATE_REG 0x2090
143 #define MVPP2_TXQ_INDEX_REG 0x2098
144 #define MVPP2_TXQ_PREF_BUF_REG 0x209c
145 #define MVPP2_PREF_BUF_PTR(desc) ((desc) & 0xfff)
146 #define MVPP2_PREF_BUF_SIZE_4 (BIT(12) | BIT(13))
147 #define MVPP2_PREF_BUF_SIZE_16 (BIT(12) | BIT(14))
148 #define MVPP2_PREF_BUF_THRESH(val) ((val) << 17)
149 #define MVPP2_TXQ_DRAIN_EN_MASK BIT(31)
150 #define MVPP2_TXQ_PENDING_REG 0x20a0
151 #define MVPP2_TXQ_PENDING_MASK 0x3fff
152 #define MVPP2_TXQ_INT_STATUS_REG 0x20a4
153 #define MVPP2_TXQ_SENT_REG(txq) (0x3c00 + 4 * (txq))
154 #define MVPP2_TRANSMITTED_COUNT_OFFSET 16
155 #define MVPP2_TRANSMITTED_COUNT_MASK 0x3fff0000
156 #define MVPP2_TXQ_RSVD_REQ_REG 0x20b0
157 #define MVPP2_TXQ_RSVD_REQ_Q_OFFSET 16
158 #define MVPP2_TXQ_RSVD_RSLT_REG 0x20b4
159 #define MVPP2_TXQ_RSVD_RSLT_MASK 0x3fff
160 #define MVPP2_TXQ_RSVD_CLR_REG 0x20b8
161 #define MVPP2_TXQ_RSVD_CLR_OFFSET 16
162 #define MVPP2_AGGR_TXQ_DESC_ADDR_REG(cpu) (0x2100 + 4 * (cpu))
163 #define MVPP22_AGGR_TXQ_DESC_ADDR_OFFS 8
164 #define MVPP2_AGGR_TXQ_DESC_SIZE_REG(cpu) (0x2140 + 4 * (cpu))
165 #define MVPP2_AGGR_TXQ_DESC_SIZE_MASK 0x3ff0
166 #define MVPP2_AGGR_TXQ_STATUS_REG(cpu) (0x2180 + 4 * (cpu))
167 #define MVPP2_AGGR_TXQ_PENDING_MASK 0x3fff
168 #define MVPP2_AGGR_TXQ_INDEX_REG(cpu) (0x21c0 + 4 * (cpu))
170 /* MBUS bridge registers */
171 #define MVPP2_WIN_BASE(w) (0x4000 + ((w) << 2))
172 #define MVPP2_WIN_SIZE(w) (0x4020 + ((w) << 2))
173 #define MVPP2_WIN_REMAP(w) (0x4040 + ((w) << 2))
174 #define MVPP2_BASE_ADDR_ENABLE 0x4060
176 /* AXI Bridge Registers */
177 #define MVPP22_AXI_BM_WR_ATTR_REG 0x4100
178 #define MVPP22_AXI_BM_RD_ATTR_REG 0x4104
179 #define MVPP22_AXI_AGGRQ_DESCR_RD_ATTR_REG 0x4110
180 #define MVPP22_AXI_TXQ_DESCR_WR_ATTR_REG 0x4114
181 #define MVPP22_AXI_TXQ_DESCR_RD_ATTR_REG 0x4118
182 #define MVPP22_AXI_RXQ_DESCR_WR_ATTR_REG 0x411c
183 #define MVPP22_AXI_RX_DATA_WR_ATTR_REG 0x4120
184 #define MVPP22_AXI_TX_DATA_RD_ATTR_REG 0x4130
185 #define MVPP22_AXI_RD_NORMAL_CODE_REG 0x4150
186 #define MVPP22_AXI_RD_SNOOP_CODE_REG 0x4154
187 #define MVPP22_AXI_WR_NORMAL_CODE_REG 0x4160
188 #define MVPP22_AXI_WR_SNOOP_CODE_REG 0x4164
190 /* Values for AXI Bridge registers */
191 #define MVPP22_AXI_ATTR_CACHE_OFFS 0
192 #define MVPP22_AXI_ATTR_DOMAIN_OFFS 12
194 #define MVPP22_AXI_CODE_CACHE_OFFS 0
195 #define MVPP22_AXI_CODE_DOMAIN_OFFS 4
197 #define MVPP22_AXI_CODE_CACHE_NON_CACHE 0x3
198 #define MVPP22_AXI_CODE_CACHE_WR_CACHE 0x7
199 #define MVPP22_AXI_CODE_CACHE_RD_CACHE 0xb
201 #define MVPP22_AXI_CODE_DOMAIN_OUTER_DOM 2
202 #define MVPP22_AXI_CODE_DOMAIN_SYSTEM 3
204 /* Interrupt Cause and Mask registers */
205 #define MVPP2_ISR_TX_THRESHOLD_REG(port) (0x5140 + 4 * (port))
206 #define MVPP2_MAX_ISR_TX_THRESHOLD 0xfffff0
208 #define MVPP2_ISR_RX_THRESHOLD_REG(rxq) (0x5200 + 4 * (rxq))
209 #define MVPP2_MAX_ISR_RX_THRESHOLD 0xfffff0
210 #define MVPP21_ISR_RXQ_GROUP_REG(port) (0x5400 + 4 * (port))
212 #define MVPP22_ISR_RXQ_GROUP_INDEX_REG 0x5400
213 #define MVPP22_ISR_RXQ_GROUP_INDEX_SUBGROUP_MASK 0xf
214 #define MVPP22_ISR_RXQ_GROUP_INDEX_GROUP_MASK 0x380
215 #define MVPP22_ISR_RXQ_GROUP_INDEX_GROUP_OFFSET 7
217 #define MVPP22_ISR_RXQ_GROUP_INDEX_SUBGROUP_MASK 0xf
218 #define MVPP22_ISR_RXQ_GROUP_INDEX_GROUP_MASK 0x380
220 #define MVPP22_ISR_RXQ_SUB_GROUP_CONFIG_REG 0x5404
221 #define MVPP22_ISR_RXQ_SUB_GROUP_STARTQ_MASK 0x1f
222 #define MVPP22_ISR_RXQ_SUB_GROUP_SIZE_MASK 0xf00
223 #define MVPP22_ISR_RXQ_SUB_GROUP_SIZE_OFFSET 8
225 #define MVPP2_ISR_ENABLE_REG(port) (0x5420 + 4 * (port))
226 #define MVPP2_ISR_ENABLE_INTERRUPT(mask) ((mask) & 0xffff)
227 #define MVPP2_ISR_DISABLE_INTERRUPT(mask) (((mask) << 16) & 0xffff0000)
228 #define MVPP2_ISR_RX_TX_CAUSE_REG(port) (0x5480 + 4 * (port))
229 #define MVPP2_CAUSE_RXQ_OCCUP_DESC_ALL_MASK 0xffff
230 #define MVPP2_CAUSE_TXQ_OCCUP_DESC_ALL_MASK 0xff0000
231 #define MVPP2_CAUSE_TXQ_OCCUP_DESC_ALL_OFFSET 16
232 #define MVPP2_CAUSE_RX_FIFO_OVERRUN_MASK BIT(24)
233 #define MVPP2_CAUSE_FCS_ERR_MASK BIT(25)
234 #define MVPP2_CAUSE_TX_FIFO_UNDERRUN_MASK BIT(26)
235 #define MVPP2_CAUSE_TX_EXCEPTION_SUM_MASK BIT(29)
236 #define MVPP2_CAUSE_RX_EXCEPTION_SUM_MASK BIT(30)
237 #define MVPP2_CAUSE_MISC_SUM_MASK BIT(31)
238 #define MVPP2_ISR_RX_TX_MASK_REG(port) (0x54a0 + 4 * (port))
239 #define MVPP2_ISR_PON_RX_TX_MASK_REG 0x54bc
240 #define MVPP2_PON_CAUSE_RXQ_OCCUP_DESC_ALL_MASK 0xffff
241 #define MVPP2_PON_CAUSE_TXP_OCCUP_DESC_ALL_MASK 0x3fc00000
242 #define MVPP2_PON_CAUSE_MISC_SUM_MASK BIT(31)
243 #define MVPP2_ISR_MISC_CAUSE_REG 0x55b0
245 /* Buffer Manager registers */
246 #define MVPP2_BM_POOL_BASE_REG(pool) (0x6000 + ((pool) * 4))
247 #define MVPP2_BM_POOL_BASE_ADDR_MASK 0xfffff80
248 #define MVPP2_BM_POOL_SIZE_REG(pool) (0x6040 + ((pool) * 4))
249 #define MVPP2_BM_POOL_SIZE_MASK 0xfff0
250 #define MVPP2_BM_POOL_READ_PTR_REG(pool) (0x6080 + ((pool) * 4))
251 #define MVPP2_BM_POOL_GET_READ_PTR_MASK 0xfff0
252 #define MVPP2_BM_POOL_PTRS_NUM_REG(pool) (0x60c0 + ((pool) * 4))
253 #define MVPP2_BM_POOL_PTRS_NUM_MASK 0xfff0
254 #define MVPP2_BM_BPPI_READ_PTR_REG(pool) (0x6100 + ((pool) * 4))
255 #define MVPP2_BM_BPPI_PTRS_NUM_REG(pool) (0x6140 + ((pool) * 4))
256 #define MVPP2_BM_BPPI_PTR_NUM_MASK 0x7ff
257 #define MVPP2_BM_BPPI_PREFETCH_FULL_MASK BIT(16)
258 #define MVPP2_BM_POOL_CTRL_REG(pool) (0x6200 + ((pool) * 4))
259 #define MVPP2_BM_START_MASK BIT(0)
260 #define MVPP2_BM_STOP_MASK BIT(1)
261 #define MVPP2_BM_STATE_MASK BIT(4)
262 #define MVPP2_BM_LOW_THRESH_OFFS 8
263 #define MVPP2_BM_LOW_THRESH_MASK 0x7f00
264 #define MVPP2_BM_LOW_THRESH_VALUE(val) ((val) << \
265 MVPP2_BM_LOW_THRESH_OFFS)
266 #define MVPP2_BM_HIGH_THRESH_OFFS 16
267 #define MVPP2_BM_HIGH_THRESH_MASK 0x7f0000
268 #define MVPP2_BM_HIGH_THRESH_VALUE(val) ((val) << \
269 MVPP2_BM_HIGH_THRESH_OFFS)
270 #define MVPP2_BM_INTR_CAUSE_REG(pool) (0x6240 + ((pool) * 4))
271 #define MVPP2_BM_RELEASED_DELAY_MASK BIT(0)
272 #define MVPP2_BM_ALLOC_FAILED_MASK BIT(1)
273 #define MVPP2_BM_BPPE_EMPTY_MASK BIT(2)
274 #define MVPP2_BM_BPPE_FULL_MASK BIT(3)
275 #define MVPP2_BM_AVAILABLE_BP_LOW_MASK BIT(4)
276 #define MVPP2_BM_INTR_MASK_REG(pool) (0x6280 + ((pool) * 4))
277 #define MVPP2_BM_PHY_ALLOC_REG(pool) (0x6400 + ((pool) * 4))
278 #define MVPP2_BM_PHY_ALLOC_GRNTD_MASK BIT(0)
279 #define MVPP2_BM_VIRT_ALLOC_REG 0x6440
280 #define MVPP22_BM_ADDR_HIGH_ALLOC 0x6444
281 #define MVPP22_BM_ADDR_HIGH_PHYS_MASK 0xff
282 #define MVPP22_BM_ADDR_HIGH_VIRT_MASK 0xff00
283 #define MVPP22_BM_ADDR_HIGH_VIRT_SHIFT 8
284 #define MVPP2_BM_PHY_RLS_REG(pool) (0x6480 + ((pool) * 4))
285 #define MVPP2_BM_PHY_RLS_MC_BUFF_MASK BIT(0)
286 #define MVPP2_BM_PHY_RLS_PRIO_EN_MASK BIT(1)
287 #define MVPP2_BM_PHY_RLS_GRNTD_MASK BIT(2)
288 #define MVPP2_BM_VIRT_RLS_REG 0x64c0
289 #define MVPP22_BM_ADDR_HIGH_RLS_REG 0x64c4
290 #define MVPP22_BM_ADDR_HIGH_PHYS_RLS_MASK 0xff
291 #define MVPP22_BM_ADDR_HIGH_VIRT_RLS_MASK 0xff00
292 #define MVPP22_BM_ADDR_HIGH_VIRT_RLS_SHIFT 8
294 /* TX Scheduler registers */
295 #define MVPP2_TXP_SCHED_PORT_INDEX_REG 0x8000
296 #define MVPP2_TXP_SCHED_Q_CMD_REG 0x8004
297 #define MVPP2_TXP_SCHED_ENQ_MASK 0xff
298 #define MVPP2_TXP_SCHED_DISQ_OFFSET 8
299 #define MVPP2_TXP_SCHED_CMD_1_REG 0x8010
300 #define MVPP2_TXP_SCHED_PERIOD_REG 0x8018
301 #define MVPP2_TXP_SCHED_MTU_REG 0x801c
302 #define MVPP2_TXP_MTU_MAX 0x7FFFF
303 #define MVPP2_TXP_SCHED_REFILL_REG 0x8020
304 #define MVPP2_TXP_REFILL_TOKENS_ALL_MASK 0x7ffff
305 #define MVPP2_TXP_REFILL_PERIOD_ALL_MASK 0x3ff00000
306 #define MVPP2_TXP_REFILL_PERIOD_MASK(v) ((v) << 20)
307 #define MVPP2_TXP_SCHED_TOKEN_SIZE_REG 0x8024
308 #define MVPP2_TXP_TOKEN_SIZE_MAX 0xffffffff
309 #define MVPP2_TXQ_SCHED_REFILL_REG(q) (0x8040 + ((q) << 2))
310 #define MVPP2_TXQ_REFILL_TOKENS_ALL_MASK 0x7ffff
311 #define MVPP2_TXQ_REFILL_PERIOD_ALL_MASK 0x3ff00000
312 #define MVPP2_TXQ_REFILL_PERIOD_MASK(v) ((v) << 20)
313 #define MVPP2_TXQ_SCHED_TOKEN_SIZE_REG(q) (0x8060 + ((q) << 2))
314 #define MVPP2_TXQ_TOKEN_SIZE_MAX 0x7fffffff
315 #define MVPP2_TXQ_SCHED_TOKEN_CNTR_REG(q) (0x8080 + ((q) << 2))
316 #define MVPP2_TXQ_TOKEN_CNTR_MAX 0xffffffff
318 /* TX general registers */
319 #define MVPP2_TX_SNOOP_REG 0x8800
320 #define MVPP2_TX_PORT_FLUSH_REG 0x8810
321 #define MVPP2_TX_PORT_FLUSH_MASK(port) (1 << (port))
324 #define MVPP2_SRC_ADDR_MIDDLE 0x24
325 #define MVPP2_SRC_ADDR_HIGH 0x28
326 #define MVPP2_PHY_AN_CFG0_REG 0x34
327 #define MVPP2_PHY_AN_STOP_SMI0_MASK BIT(7)
328 #define MVPP2_MNG_EXTENDED_GLOBAL_CTRL_REG 0x305c
329 #define MVPP2_EXT_GLOBAL_CTRL_DEFAULT 0x27
331 /* Per-port registers */
332 #define MVPP2_GMAC_CTRL_0_REG 0x0
333 #define MVPP2_GMAC_PORT_EN_MASK BIT(0)
334 #define MVPP2_GMAC_PORT_TYPE_MASK BIT(1)
335 #define MVPP2_GMAC_MAX_RX_SIZE_OFFS 2
336 #define MVPP2_GMAC_MAX_RX_SIZE_MASK 0x7ffc
337 #define MVPP2_GMAC_MIB_CNTR_EN_MASK BIT(15)
338 #define MVPP2_GMAC_CTRL_1_REG 0x4
339 #define MVPP2_GMAC_PERIODIC_XON_EN_MASK BIT(1)
340 #define MVPP2_GMAC_GMII_LB_EN_MASK BIT(5)
341 #define MVPP2_GMAC_PCS_LB_EN_BIT 6
342 #define MVPP2_GMAC_PCS_LB_EN_MASK BIT(6)
343 #define MVPP2_GMAC_SA_LOW_OFFS 7
344 #define MVPP2_GMAC_CTRL_2_REG 0x8
345 #define MVPP2_GMAC_INBAND_AN_MASK BIT(0)
346 #define MVPP2_GMAC_FLOW_CTRL_MASK GENMASK(2, 1)
347 #define MVPP2_GMAC_PCS_ENABLE_MASK BIT(3)
348 #define MVPP2_GMAC_INTERNAL_CLK_MASK BIT(4)
349 #define MVPP2_GMAC_DISABLE_PADDING BIT(5)
350 #define MVPP2_GMAC_PORT_RESET_MASK BIT(6)
351 #define MVPP2_GMAC_AUTONEG_CONFIG 0xc
352 #define MVPP2_GMAC_FORCE_LINK_DOWN BIT(0)
353 #define MVPP2_GMAC_FORCE_LINK_PASS BIT(1)
354 #define MVPP2_GMAC_IN_BAND_AUTONEG BIT(2)
355 #define MVPP2_GMAC_IN_BAND_AUTONEG_BYPASS BIT(3)
356 #define MVPP2_GMAC_CONFIG_MII_SPEED BIT(5)
357 #define MVPP2_GMAC_CONFIG_GMII_SPEED BIT(6)
358 #define MVPP2_GMAC_AN_SPEED_EN BIT(7)
359 #define MVPP2_GMAC_FC_ADV_EN BIT(9)
360 #define MVPP2_GMAC_FLOW_CTRL_AUTONEG BIT(11)
361 #define MVPP2_GMAC_CONFIG_FULL_DUPLEX BIT(12)
362 #define MVPP2_GMAC_AN_DUPLEX_EN BIT(13)
363 #define MVPP2_GMAC_STATUS0 0x10
364 #define MVPP2_GMAC_STATUS0_LINK_UP BIT(0)
365 #define MVPP2_GMAC_PORT_FIFO_CFG_1_REG 0x1c
366 #define MVPP2_GMAC_TX_FIFO_MIN_TH_OFFS 6
367 #define MVPP2_GMAC_TX_FIFO_MIN_TH_ALL_MASK 0x1fc0
368 #define MVPP2_GMAC_TX_FIFO_MIN_TH_MASK(v) (((v) << 6) & \
369 MVPP2_GMAC_TX_FIFO_MIN_TH_ALL_MASK)
370 #define MVPP22_GMAC_INT_STAT 0x20
371 #define MVPP22_GMAC_INT_STAT_LINK BIT(1)
372 #define MVPP22_GMAC_INT_MASK 0x24
373 #define MVPP22_GMAC_INT_MASK_LINK_STAT BIT(1)
374 #define MVPP22_GMAC_CTRL_4_REG 0x90
375 #define MVPP22_CTRL4_EXT_PIN_GMII_SEL BIT(0)
376 #define MVPP22_CTRL4_DP_CLK_SEL BIT(5)
377 #define MVPP22_CTRL4_SYNC_BYPASS_DIS BIT(6)
378 #define MVPP22_CTRL4_QSGMII_BYPASS_ACTIVE BIT(7)
379 #define MVPP22_GMAC_INT_SUM_MASK 0xa4
380 #define MVPP22_GMAC_INT_SUM_MASK_LINK_STAT BIT(1)
382 /* Per-port XGMAC registers. PPv2.2 only, only for GOP port 0,
383 * relative to port->base.
385 #define MVPP22_XLG_CTRL0_REG 0x100
386 #define MVPP22_XLG_CTRL0_PORT_EN BIT(0)
387 #define MVPP22_XLG_CTRL0_MAC_RESET_DIS BIT(1)
388 #define MVPP22_XLG_CTRL0_RX_FLOW_CTRL_EN BIT(7)
389 #define MVPP22_XLG_CTRL0_MIB_CNT_DIS BIT(14)
390 #define MVPP22_XLG_CTRL1_REG 0x104
391 #define MVPP22_XLG_CTRL1_FRAMESIZELIMIT_OFFS 0
392 #define MVPP22_XLG_CTRL1_FRAMESIZELIMIT_MASK 0x1fff
393 #define MVPP22_XLG_STATUS 0x10c
394 #define MVPP22_XLG_STATUS_LINK_UP BIT(0)
395 #define MVPP22_XLG_INT_STAT 0x114
396 #define MVPP22_XLG_INT_STAT_LINK BIT(1)
397 #define MVPP22_XLG_INT_MASK 0x118
398 #define MVPP22_XLG_INT_MASK_LINK BIT(1)
399 #define MVPP22_XLG_CTRL3_REG 0x11c
400 #define MVPP22_XLG_CTRL3_MACMODESELECT_MASK (7 << 13)
401 #define MVPP22_XLG_CTRL3_MACMODESELECT_GMAC (0 << 13)
402 #define MVPP22_XLG_CTRL3_MACMODESELECT_10G (1 << 13)
403 #define MVPP22_XLG_EXT_INT_MASK 0x15c
404 #define MVPP22_XLG_EXT_INT_MASK_XLG BIT(1)
405 #define MVPP22_XLG_EXT_INT_MASK_GIG BIT(2)
406 #define MVPP22_XLG_CTRL4_REG 0x184
407 #define MVPP22_XLG_CTRL4_FWD_FC BIT(5)
408 #define MVPP22_XLG_CTRL4_FWD_PFC BIT(6)
409 #define MVPP22_XLG_CTRL4_MACMODSELECT_GMAC BIT(12)
411 /* SMI registers. PPv2.2 only, relative to priv->iface_base. */
412 #define MVPP22_SMI_MISC_CFG_REG 0x1204
413 #define MVPP22_SMI_POLLING_EN BIT(10)
415 #define MVPP22_GMAC_BASE(port) (0x7000 + (port) * 0x1000 + 0xe00)
417 #define MVPP2_CAUSE_TXQ_SENT_DESC_ALL_MASK 0xff
419 /* Descriptor ring Macros */
420 #define MVPP2_QUEUE_NEXT_DESC(q, index) \
421 (((index) < (q)->last_desc) ? ((index) + 1) : 0)
423 /* XPCS registers. PPv2.2 only */
424 #define MVPP22_MPCS_BASE(port) (0x7000 + (port) * 0x1000)
425 #define MVPP22_MPCS_CTRL 0x14
426 #define MVPP22_MPCS_CTRL_FWD_ERR_CONN BIT(10)
427 #define MVPP22_MPCS_CLK_RESET 0x14c
428 #define MAC_CLK_RESET_SD_TX BIT(0)
429 #define MAC_CLK_RESET_SD_RX BIT(1)
430 #define MAC_CLK_RESET_MAC BIT(2)
431 #define MVPP22_MPCS_CLK_RESET_DIV_RATIO(n) ((n) << 4)
432 #define MVPP22_MPCS_CLK_RESET_DIV_SET BIT(11)
434 /* XPCS registers. PPv2.2 only */
435 #define MVPP22_XPCS_BASE(port) (0x7400 + (port) * 0x1000)
436 #define MVPP22_XPCS_CFG0 0x0
437 #define MVPP22_XPCS_CFG0_PCS_MODE(n) ((n) << 3)
438 #define MVPP22_XPCS_CFG0_ACTIVE_LANE(n) ((n) << 5)
440 /* System controller registers. Accessed through a regmap. */
441 #define GENCONF_SOFT_RESET1 0x1108
442 #define GENCONF_SOFT_RESET1_GOP BIT(6)
443 #define GENCONF_PORT_CTRL0 0x1110
444 #define GENCONF_PORT_CTRL0_BUS_WIDTH_SELECT BIT(1)
445 #define GENCONF_PORT_CTRL0_RX_DATA_SAMPLE BIT(29)
446 #define GENCONF_PORT_CTRL0_CLK_DIV_PHASE_CLR BIT(31)
447 #define GENCONF_PORT_CTRL1 0x1114
448 #define GENCONF_PORT_CTRL1_EN(p) BIT(p)
449 #define GENCONF_PORT_CTRL1_RESET(p) (BIT(p) << 28)
450 #define GENCONF_CTRL0 0x1120
451 #define GENCONF_CTRL0_PORT0_RGMII BIT(0)
452 #define GENCONF_CTRL0_PORT1_RGMII_MII BIT(1)
453 #define GENCONF_CTRL0_PORT1_RGMII BIT(2)
455 /* Various constants */
458 #define MVPP2_TXDONE_COAL_PKTS_THRESH 64
459 #define MVPP2_TXDONE_HRTIMER_PERIOD_NS 1000000UL
460 #define MVPP2_TXDONE_COAL_USEC 1000
461 #define MVPP2_RX_COAL_PKTS 32
462 #define MVPP2_RX_COAL_USEC 64
464 /* The two bytes Marvell header. Either contains a special value used
465 * by Marvell switches when a specific hardware mode is enabled (not
466 * supported by this driver) or is filled automatically by zeroes on
467 * the RX side. Those two bytes being at the front of the Ethernet
468 * header, they allow to have the IP header aligned on a 4 bytes
469 * boundary automatically: the hardware skips those two bytes on its
472 #define MVPP2_MH_SIZE 2
473 #define MVPP2_ETH_TYPE_LEN 2
474 #define MVPP2_PPPOE_HDR_SIZE 8
475 #define MVPP2_VLAN_TAG_LEN 4
477 /* Lbtd 802.3 type */
478 #define MVPP2_IP_LBDT_TYPE 0xfffa
480 #define MVPP2_TX_CSUM_MAX_SIZE 9800
482 /* Timeout constants */
483 #define MVPP2_TX_DISABLE_TIMEOUT_MSEC 1000
484 #define MVPP2_TX_PENDING_TIMEOUT_MSEC 1000
486 #define MVPP2_TX_MTU_MAX 0x7ffff
488 /* Maximum number of T-CONTs of PON port */
489 #define MVPP2_MAX_TCONT 16
491 /* Maximum number of supported ports */
492 #define MVPP2_MAX_PORTS 4
494 /* Maximum number of TXQs used by single port */
495 #define MVPP2_MAX_TXQ 8
497 /* MVPP2_MAX_TSO_SEGS is the maximum number of fragments to allow in the GSO
498 * skb. As we need a maxium of two descriptors per fragments (1 header, 1 data),
499 * multiply this value by two to count the maximum number of skb descs needed.
501 #define MVPP2_MAX_TSO_SEGS 300
502 #define MVPP2_MAX_SKB_DESCS (MVPP2_MAX_TSO_SEGS * 2 + MAX_SKB_FRAGS)
504 /* Dfault number of RXQs in use */
505 #define MVPP2_DEFAULT_RXQ 4
507 /* Max number of Rx descriptors */
508 #define MVPP2_MAX_RXD_MAX 1024
509 #define MVPP2_MAX_RXD_DFLT 128
511 /* Max number of Tx descriptors */
512 #define MVPP2_MAX_TXD_MAX 2048
513 #define MVPP2_MAX_TXD_DFLT 1024
515 /* Amount of Tx descriptors that can be reserved at once by CPU */
516 #define MVPP2_CPU_DESC_CHUNK 64
518 /* Max number of Tx descriptors in each aggregated queue */
519 #define MVPP2_AGGR_TXQ_SIZE 256
521 /* Descriptor aligned size */
522 #define MVPP2_DESC_ALIGNED_SIZE 32
524 /* Descriptor alignment mask */
525 #define MVPP2_TX_DESC_ALIGN (MVPP2_DESC_ALIGNED_SIZE - 1)
527 /* RX FIFO constants */
528 #define MVPP2_RX_FIFO_PORT_DATA_SIZE_32KB 0x8000
529 #define MVPP2_RX_FIFO_PORT_DATA_SIZE_8KB 0x2000
530 #define MVPP2_RX_FIFO_PORT_DATA_SIZE_4KB 0x1000
531 #define MVPP2_RX_FIFO_PORT_ATTR_SIZE_32KB 0x200
532 #define MVPP2_RX_FIFO_PORT_ATTR_SIZE_8KB 0x80
533 #define MVPP2_RX_FIFO_PORT_ATTR_SIZE_4KB 0x40
534 #define MVPP2_RX_FIFO_PORT_MIN_PKT 0x80
536 /* TX FIFO constants */
537 #define MVPP22_TX_FIFO_DATA_SIZE_10KB 0xa
538 #define MVPP22_TX_FIFO_DATA_SIZE_3KB 0x3
540 /* RX buffer constants */
541 #define MVPP2_SKB_SHINFO_SIZE \
542 SKB_DATA_ALIGN(sizeof(struct skb_shared_info))
544 #define MVPP2_RX_PKT_SIZE(mtu) \
545 ALIGN((mtu) + MVPP2_MH_SIZE + MVPP2_VLAN_TAG_LEN + \
546 ETH_HLEN + ETH_FCS_LEN, cache_line_size())
548 #define MVPP2_RX_BUF_SIZE(pkt_size) ((pkt_size) + NET_SKB_PAD)
549 #define MVPP2_RX_TOTAL_SIZE(buf_size) ((buf_size) + MVPP2_SKB_SHINFO_SIZE)
550 #define MVPP2_RX_MAX_PKT_SIZE(total_size) \
551 ((total_size) - NET_SKB_PAD - MVPP2_SKB_SHINFO_SIZE)
553 #define MVPP2_BIT_TO_BYTE(bit) ((bit) / 8)
555 /* IPv6 max L3 address size */
556 #define MVPP2_MAX_L3_ADDR_SIZE 16
559 #define MVPP2_F_LOOPBACK BIT(0)
561 /* Marvell tag types */
562 enum mvpp2_tag_type
{
563 MVPP2_TAG_TYPE_NONE
= 0,
564 MVPP2_TAG_TYPE_MH
= 1,
565 MVPP2_TAG_TYPE_DSA
= 2,
566 MVPP2_TAG_TYPE_EDSA
= 3,
567 MVPP2_TAG_TYPE_VLAN
= 4,
568 MVPP2_TAG_TYPE_LAST
= 5
571 /* Parser constants */
572 #define MVPP2_PRS_TCAM_SRAM_SIZE 256
573 #define MVPP2_PRS_TCAM_WORDS 6
574 #define MVPP2_PRS_SRAM_WORDS 4
575 #define MVPP2_PRS_FLOW_ID_SIZE 64
576 #define MVPP2_PRS_FLOW_ID_MASK 0x3f
577 #define MVPP2_PRS_TCAM_ENTRY_INVALID 1
578 #define MVPP2_PRS_TCAM_DSA_TAGGED_BIT BIT(5)
579 #define MVPP2_PRS_IPV4_HEAD 0x40
580 #define MVPP2_PRS_IPV4_HEAD_MASK 0xf0
581 #define MVPP2_PRS_IPV4_MC 0xe0
582 #define MVPP2_PRS_IPV4_MC_MASK 0xf0
583 #define MVPP2_PRS_IPV4_BC_MASK 0xff
584 #define MVPP2_PRS_IPV4_IHL 0x5
585 #define MVPP2_PRS_IPV4_IHL_MASK 0xf
586 #define MVPP2_PRS_IPV6_MC 0xff
587 #define MVPP2_PRS_IPV6_MC_MASK 0xff
588 #define MVPP2_PRS_IPV6_HOP_MASK 0xff
589 #define MVPP2_PRS_TCAM_PROTO_MASK 0xff
590 #define MVPP2_PRS_TCAM_PROTO_MASK_L 0x3f
591 #define MVPP2_PRS_DBL_VLANS_MAX 100
594 * - lookup ID - 4 bits
596 * - additional information - 1 byte
597 * - header data - 8 bytes
598 * The fields are represented by MVPP2_PRS_TCAM_DATA_REG(5)->(0).
600 #define MVPP2_PRS_AI_BITS 8
601 #define MVPP2_PRS_PORT_MASK 0xff
602 #define MVPP2_PRS_LU_MASK 0xf
603 #define MVPP2_PRS_TCAM_DATA_BYTE(offs) \
604 (((offs) - ((offs) % 2)) * 2 + ((offs) % 2))
605 #define MVPP2_PRS_TCAM_DATA_BYTE_EN(offs) \
606 (((offs) * 2) - ((offs) % 2) + 2)
607 #define MVPP2_PRS_TCAM_AI_BYTE 16
608 #define MVPP2_PRS_TCAM_PORT_BYTE 17
609 #define MVPP2_PRS_TCAM_LU_BYTE 20
610 #define MVPP2_PRS_TCAM_EN_OFFS(offs) ((offs) + 2)
611 #define MVPP2_PRS_TCAM_INV_WORD 5
612 /* Tcam entries ID */
613 #define MVPP2_PE_DROP_ALL 0
614 #define MVPP2_PE_FIRST_FREE_TID 1
615 #define MVPP2_PE_LAST_FREE_TID (MVPP2_PRS_TCAM_SRAM_SIZE - 31)
616 #define MVPP2_PE_IP6_EXT_PROTO_UN (MVPP2_PRS_TCAM_SRAM_SIZE - 30)
617 #define MVPP2_PE_MAC_MC_IP6 (MVPP2_PRS_TCAM_SRAM_SIZE - 29)
618 #define MVPP2_PE_IP6_ADDR_UN (MVPP2_PRS_TCAM_SRAM_SIZE - 28)
619 #define MVPP2_PE_IP4_ADDR_UN (MVPP2_PRS_TCAM_SRAM_SIZE - 27)
620 #define MVPP2_PE_LAST_DEFAULT_FLOW (MVPP2_PRS_TCAM_SRAM_SIZE - 26)
621 #define MVPP2_PE_FIRST_DEFAULT_FLOW (MVPP2_PRS_TCAM_SRAM_SIZE - 19)
622 #define MVPP2_PE_EDSA_TAGGED (MVPP2_PRS_TCAM_SRAM_SIZE - 18)
623 #define MVPP2_PE_EDSA_UNTAGGED (MVPP2_PRS_TCAM_SRAM_SIZE - 17)
624 #define MVPP2_PE_DSA_TAGGED (MVPP2_PRS_TCAM_SRAM_SIZE - 16)
625 #define MVPP2_PE_DSA_UNTAGGED (MVPP2_PRS_TCAM_SRAM_SIZE - 15)
626 #define MVPP2_PE_ETYPE_EDSA_TAGGED (MVPP2_PRS_TCAM_SRAM_SIZE - 14)
627 #define MVPP2_PE_ETYPE_EDSA_UNTAGGED (MVPP2_PRS_TCAM_SRAM_SIZE - 13)
628 #define MVPP2_PE_ETYPE_DSA_TAGGED (MVPP2_PRS_TCAM_SRAM_SIZE - 12)
629 #define MVPP2_PE_ETYPE_DSA_UNTAGGED (MVPP2_PRS_TCAM_SRAM_SIZE - 11)
630 #define MVPP2_PE_MH_DEFAULT (MVPP2_PRS_TCAM_SRAM_SIZE - 10)
631 #define MVPP2_PE_DSA_DEFAULT (MVPP2_PRS_TCAM_SRAM_SIZE - 9)
632 #define MVPP2_PE_IP6_PROTO_UN (MVPP2_PRS_TCAM_SRAM_SIZE - 8)
633 #define MVPP2_PE_IP4_PROTO_UN (MVPP2_PRS_TCAM_SRAM_SIZE - 7)
634 #define MVPP2_PE_ETH_TYPE_UN (MVPP2_PRS_TCAM_SRAM_SIZE - 6)
635 #define MVPP2_PE_VLAN_DBL (MVPP2_PRS_TCAM_SRAM_SIZE - 5)
636 #define MVPP2_PE_VLAN_NONE (MVPP2_PRS_TCAM_SRAM_SIZE - 4)
637 #define MVPP2_PE_MAC_MC_ALL (MVPP2_PRS_TCAM_SRAM_SIZE - 3)
638 #define MVPP2_PE_MAC_PROMISCUOUS (MVPP2_PRS_TCAM_SRAM_SIZE - 2)
639 #define MVPP2_PE_MAC_NON_PROMISCUOUS (MVPP2_PRS_TCAM_SRAM_SIZE - 1)
642 * The fields are represented by MVPP2_PRS_TCAM_DATA_REG(3)->(0).
644 #define MVPP2_PRS_SRAM_RI_OFFS 0
645 #define MVPP2_PRS_SRAM_RI_WORD 0
646 #define MVPP2_PRS_SRAM_RI_CTRL_OFFS 32
647 #define MVPP2_PRS_SRAM_RI_CTRL_WORD 1
648 #define MVPP2_PRS_SRAM_RI_CTRL_BITS 32
649 #define MVPP2_PRS_SRAM_SHIFT_OFFS 64
650 #define MVPP2_PRS_SRAM_SHIFT_SIGN_BIT 72
651 #define MVPP2_PRS_SRAM_UDF_OFFS 73
652 #define MVPP2_PRS_SRAM_UDF_BITS 8
653 #define MVPP2_PRS_SRAM_UDF_MASK 0xff
654 #define MVPP2_PRS_SRAM_UDF_SIGN_BIT 81
655 #define MVPP2_PRS_SRAM_UDF_TYPE_OFFS 82
656 #define MVPP2_PRS_SRAM_UDF_TYPE_MASK 0x7
657 #define MVPP2_PRS_SRAM_UDF_TYPE_L3 1
658 #define MVPP2_PRS_SRAM_UDF_TYPE_L4 4
659 #define MVPP2_PRS_SRAM_OP_SEL_SHIFT_OFFS 85
660 #define MVPP2_PRS_SRAM_OP_SEL_SHIFT_MASK 0x3
661 #define MVPP2_PRS_SRAM_OP_SEL_SHIFT_ADD 1
662 #define MVPP2_PRS_SRAM_OP_SEL_SHIFT_IP4_ADD 2
663 #define MVPP2_PRS_SRAM_OP_SEL_SHIFT_IP6_ADD 3
664 #define MVPP2_PRS_SRAM_OP_SEL_UDF_OFFS 87
665 #define MVPP2_PRS_SRAM_OP_SEL_UDF_BITS 2
666 #define MVPP2_PRS_SRAM_OP_SEL_UDF_MASK 0x3
667 #define MVPP2_PRS_SRAM_OP_SEL_UDF_ADD 0
668 #define MVPP2_PRS_SRAM_OP_SEL_UDF_IP4_ADD 2
669 #define MVPP2_PRS_SRAM_OP_SEL_UDF_IP6_ADD 3
670 #define MVPP2_PRS_SRAM_OP_SEL_BASE_OFFS 89
671 #define MVPP2_PRS_SRAM_AI_OFFS 90
672 #define MVPP2_PRS_SRAM_AI_CTRL_OFFS 98
673 #define MVPP2_PRS_SRAM_AI_CTRL_BITS 8
674 #define MVPP2_PRS_SRAM_AI_MASK 0xff
675 #define MVPP2_PRS_SRAM_NEXT_LU_OFFS 106
676 #define MVPP2_PRS_SRAM_NEXT_LU_MASK 0xf
677 #define MVPP2_PRS_SRAM_LU_DONE_BIT 110
678 #define MVPP2_PRS_SRAM_LU_GEN_BIT 111
680 /* Sram result info bits assignment */
681 #define MVPP2_PRS_RI_MAC_ME_MASK 0x1
682 #define MVPP2_PRS_RI_DSA_MASK 0x2
683 #define MVPP2_PRS_RI_VLAN_MASK (BIT(2) | BIT(3))
684 #define MVPP2_PRS_RI_VLAN_NONE 0x0
685 #define MVPP2_PRS_RI_VLAN_SINGLE BIT(2)
686 #define MVPP2_PRS_RI_VLAN_DOUBLE BIT(3)
687 #define MVPP2_PRS_RI_VLAN_TRIPLE (BIT(2) | BIT(3))
688 #define MVPP2_PRS_RI_CPU_CODE_MASK 0x70
689 #define MVPP2_PRS_RI_CPU_CODE_RX_SPEC BIT(4)
690 #define MVPP2_PRS_RI_L2_CAST_MASK (BIT(9) | BIT(10))
691 #define MVPP2_PRS_RI_L2_UCAST 0x0
692 #define MVPP2_PRS_RI_L2_MCAST BIT(9)
693 #define MVPP2_PRS_RI_L2_BCAST BIT(10)
694 #define MVPP2_PRS_RI_PPPOE_MASK 0x800
695 #define MVPP2_PRS_RI_L3_PROTO_MASK (BIT(12) | BIT(13) | BIT(14))
696 #define MVPP2_PRS_RI_L3_UN 0x0
697 #define MVPP2_PRS_RI_L3_IP4 BIT(12)
698 #define MVPP2_PRS_RI_L3_IP4_OPT BIT(13)
699 #define MVPP2_PRS_RI_L3_IP4_OTHER (BIT(12) | BIT(13))
700 #define MVPP2_PRS_RI_L3_IP6 BIT(14)
701 #define MVPP2_PRS_RI_L3_IP6_EXT (BIT(12) | BIT(14))
702 #define MVPP2_PRS_RI_L3_ARP (BIT(13) | BIT(14))
703 #define MVPP2_PRS_RI_L3_ADDR_MASK (BIT(15) | BIT(16))
704 #define MVPP2_PRS_RI_L3_UCAST 0x0
705 #define MVPP2_PRS_RI_L3_MCAST BIT(15)
706 #define MVPP2_PRS_RI_L3_BCAST (BIT(15) | BIT(16))
707 #define MVPP2_PRS_RI_IP_FRAG_MASK 0x20000
708 #define MVPP2_PRS_RI_IP_FRAG_TRUE BIT(17)
709 #define MVPP2_PRS_RI_UDF3_MASK 0x300000
710 #define MVPP2_PRS_RI_UDF3_RX_SPECIAL BIT(21)
711 #define MVPP2_PRS_RI_L4_PROTO_MASK 0x1c00000
712 #define MVPP2_PRS_RI_L4_TCP BIT(22)
713 #define MVPP2_PRS_RI_L4_UDP BIT(23)
714 #define MVPP2_PRS_RI_L4_OTHER (BIT(22) | BIT(23))
715 #define MVPP2_PRS_RI_UDF7_MASK 0x60000000
716 #define MVPP2_PRS_RI_UDF7_IP6_LITE BIT(29)
717 #define MVPP2_PRS_RI_DROP_MASK 0x80000000
719 /* Sram additional info bits assignment */
720 #define MVPP2_PRS_IPV4_DIP_AI_BIT BIT(0)
721 #define MVPP2_PRS_IPV6_NO_EXT_AI_BIT BIT(0)
722 #define MVPP2_PRS_IPV6_EXT_AI_BIT BIT(1)
723 #define MVPP2_PRS_IPV6_EXT_AH_AI_BIT BIT(2)
724 #define MVPP2_PRS_IPV6_EXT_AH_LEN_AI_BIT BIT(3)
725 #define MVPP2_PRS_IPV6_EXT_AH_L4_AI_BIT BIT(4)
726 #define MVPP2_PRS_SINGLE_VLAN_AI 0
727 #define MVPP2_PRS_DBL_VLAN_AI_BIT BIT(7)
730 #define MVPP2_PRS_TAGGED true
731 #define MVPP2_PRS_UNTAGGED false
732 #define MVPP2_PRS_EDSA true
733 #define MVPP2_PRS_DSA false
735 /* MAC entries, shadow udf */
737 MVPP2_PRS_UDF_MAC_DEF
,
738 MVPP2_PRS_UDF_MAC_RANGE
,
739 MVPP2_PRS_UDF_L2_DEF
,
740 MVPP2_PRS_UDF_L2_DEF_COPY
,
741 MVPP2_PRS_UDF_L2_USER
,
745 enum mvpp2_prs_lookup
{
759 enum mvpp2_prs_l3_cast
{
760 MVPP2_PRS_L3_UNI_CAST
,
761 MVPP2_PRS_L3_MULTI_CAST
,
762 MVPP2_PRS_L3_BROAD_CAST
765 /* Classifier constants */
766 #define MVPP2_CLS_FLOWS_TBL_SIZE 512
767 #define MVPP2_CLS_FLOWS_TBL_DATA_WORDS 3
768 #define MVPP2_CLS_LKP_TBL_SIZE 64
769 #define MVPP2_CLS_RX_QUEUES 256
772 #define MVPP22_RSS_TABLE_ENTRIES 32
775 #define MVPP2_BM_POOLS_NUM 8
776 #define MVPP2_BM_LONG_BUF_NUM 1024
777 #define MVPP2_BM_SHORT_BUF_NUM 2048
778 #define MVPP2_BM_POOL_SIZE_MAX (16*1024 - MVPP2_BM_POOL_PTR_ALIGN/4)
779 #define MVPP2_BM_POOL_PTR_ALIGN 128
780 #define MVPP2_BM_SWF_LONG_POOL(port) ((port > 2) ? 2 : port)
781 #define MVPP2_BM_SWF_SHORT_POOL 3
783 /* BM cookie (32 bits) definition */
784 #define MVPP2_BM_COOKIE_POOL_OFFS 8
785 #define MVPP2_BM_COOKIE_CPU_OFFS 24
787 /* BM short pool packet size
788 * These value assure that for SWF the total number
789 * of bytes allocated for each buffer will be 512
791 #define MVPP2_BM_SHORT_PKT_SIZE MVPP2_RX_MAX_PKT_SIZE(512)
793 #define MVPP21_ADDR_SPACE_SZ 0
794 #define MVPP22_ADDR_SPACE_SZ SZ_64K
796 #define MVPP2_MAX_THREADS 8
797 #define MVPP2_MAX_QVECS MVPP2_MAX_THREADS
805 /* GMAC MIB Counters register definitions */
806 #define MVPP21_MIB_COUNTERS_OFFSET 0x1000
807 #define MVPP21_MIB_COUNTERS_PORT_SZ 0x400
808 #define MVPP22_MIB_COUNTERS_OFFSET 0x0
809 #define MVPP22_MIB_COUNTERS_PORT_SZ 0x100
811 #define MVPP2_MIB_GOOD_OCTETS_RCVD 0x0
812 #define MVPP2_MIB_BAD_OCTETS_RCVD 0x8
813 #define MVPP2_MIB_CRC_ERRORS_SENT 0xc
814 #define MVPP2_MIB_UNICAST_FRAMES_RCVD 0x10
815 #define MVPP2_MIB_BROADCAST_FRAMES_RCVD 0x18
816 #define MVPP2_MIB_MULTICAST_FRAMES_RCVD 0x1c
817 #define MVPP2_MIB_FRAMES_64_OCTETS 0x20
818 #define MVPP2_MIB_FRAMES_65_TO_127_OCTETS 0x24
819 #define MVPP2_MIB_FRAMES_128_TO_255_OCTETS 0x28
820 #define MVPP2_MIB_FRAMES_256_TO_511_OCTETS 0x2c
821 #define MVPP2_MIB_FRAMES_512_TO_1023_OCTETS 0x30
822 #define MVPP2_MIB_FRAMES_1024_TO_MAX_OCTETS 0x34
823 #define MVPP2_MIB_GOOD_OCTETS_SENT 0x38
824 #define MVPP2_MIB_UNICAST_FRAMES_SENT 0x40
825 #define MVPP2_MIB_MULTICAST_FRAMES_SENT 0x48
826 #define MVPP2_MIB_BROADCAST_FRAMES_SENT 0x4c
827 #define MVPP2_MIB_FC_SENT 0x54
828 #define MVPP2_MIB_FC_RCVD 0x58
829 #define MVPP2_MIB_RX_FIFO_OVERRUN 0x5c
830 #define MVPP2_MIB_UNDERSIZE_RCVD 0x60
831 #define MVPP2_MIB_FRAGMENTS_RCVD 0x64
832 #define MVPP2_MIB_OVERSIZE_RCVD 0x68
833 #define MVPP2_MIB_JABBER_RCVD 0x6c
834 #define MVPP2_MIB_MAC_RCV_ERROR 0x70
835 #define MVPP2_MIB_BAD_CRC_EVENT 0x74
836 #define MVPP2_MIB_COLLISION 0x78
837 #define MVPP2_MIB_LATE_COLLISION 0x7c
839 #define MVPP2_MIB_COUNTERS_STATS_DELAY (1 * HZ)
843 /* Shared Packet Processor resources */
845 /* Shared registers' base addresses */
846 void __iomem
*lms_base
;
847 void __iomem
*iface_base
;
849 /* On PPv2.2, each "software thread" can access the base
850 * register through a separate address space, each 64 KB apart
851 * from each other. Typically, such address spaces will be
854 void __iomem
*swth_base
[MVPP2_MAX_THREADS
];
856 /* On PPv2.2, some port control registers are located into the system
857 * controller space. These registers are accessible through a regmap.
859 struct regmap
*sysctrl_base
;
867 /* List of pointers to port structures */
869 struct mvpp2_port
*port_list
[MVPP2_MAX_PORTS
];
871 /* Aggregated TXQs */
872 struct mvpp2_tx_queue
*aggr_txqs
;
875 struct mvpp2_bm_pool
*bm_pools
;
877 /* PRS shadow table */
878 struct mvpp2_prs_shadow
*prs_shadow
;
879 /* PRS auxiliary table for double vlan entries control */
880 bool *prs_double_vlans
;
886 enum { MVPP21
, MVPP22
} hw_version
;
888 /* Maximum number of RXQs per port */
889 unsigned int max_port_rxqs
;
891 /* Workqueue to gather hardware statistics */
893 struct workqueue_struct
*stats_queue
;
896 struct mvpp2_pcpu_stats
{
897 struct u64_stats_sync syncp
;
904 /* Per-CPU port control */
905 struct mvpp2_port_pcpu
{
906 struct hrtimer tx_done_timer
;
907 bool timer_scheduled
;
908 /* Tasklet for egress finalization */
909 struct tasklet_struct tx_done_tasklet
;
912 struct mvpp2_queue_vector
{
914 struct napi_struct napi
;
915 enum { MVPP2_QUEUE_VECTOR_SHARED
, MVPP2_QUEUE_VECTOR_PRIVATE
} type
;
920 u32 pending_cause_rx
;
921 struct mvpp2_port
*port
;
927 /* Index of the port from the "group of ports" complex point
936 /* Firmware node associated to the port */
937 struct fwnode_handle
*fwnode
;
939 /* Per-port registers' base address */
941 void __iomem
*stats_base
;
943 struct mvpp2_rx_queue
**rxqs
;
945 struct mvpp2_tx_queue
**txqs
;
947 struct net_device
*dev
;
951 /* Per-CPU port control */
952 struct mvpp2_port_pcpu __percpu
*pcpu
;
959 struct mvpp2_pcpu_stats __percpu
*stats
;
962 /* Per-port work and its lock to gather hardware statistics */
963 struct mutex gather_stats_lock
;
964 struct delayed_work stats_work
;
966 phy_interface_t phy_interface
;
967 struct device_node
*phy_node
;
973 struct mvpp2_bm_pool
*pool_long
;
974 struct mvpp2_bm_pool
*pool_short
;
976 /* Index of first port's physical RXQ */
979 struct mvpp2_queue_vector qvecs
[MVPP2_MAX_QVECS
];
986 /* The mvpp2_tx_desc and mvpp2_rx_desc structures describe the
987 * layout of the transmit and reception DMA descriptors, and their
988 * layout is therefore defined by the hardware design
991 #define MVPP2_TXD_L3_OFF_SHIFT 0
992 #define MVPP2_TXD_IP_HLEN_SHIFT 8
993 #define MVPP2_TXD_L4_CSUM_FRAG BIT(13)
994 #define MVPP2_TXD_L4_CSUM_NOT BIT(14)
995 #define MVPP2_TXD_IP_CSUM_DISABLE BIT(15)
996 #define MVPP2_TXD_PADDING_DISABLE BIT(23)
997 #define MVPP2_TXD_L4_UDP BIT(24)
998 #define MVPP2_TXD_L3_IP6 BIT(26)
999 #define MVPP2_TXD_L_DESC BIT(28)
1000 #define MVPP2_TXD_F_DESC BIT(29)
1002 #define MVPP2_RXD_ERR_SUMMARY BIT(15)
1003 #define MVPP2_RXD_ERR_CODE_MASK (BIT(13) | BIT(14))
1004 #define MVPP2_RXD_ERR_CRC 0x0
1005 #define MVPP2_RXD_ERR_OVERRUN BIT(13)
1006 #define MVPP2_RXD_ERR_RESOURCE (BIT(13) | BIT(14))
1007 #define MVPP2_RXD_BM_POOL_ID_OFFS 16
1008 #define MVPP2_RXD_BM_POOL_ID_MASK (BIT(16) | BIT(17) | BIT(18))
1009 #define MVPP2_RXD_HWF_SYNC BIT(21)
1010 #define MVPP2_RXD_L4_CSUM_OK BIT(22)
1011 #define MVPP2_RXD_IP4_HEADER_ERR BIT(24)
1012 #define MVPP2_RXD_L4_TCP BIT(25)
1013 #define MVPP2_RXD_L4_UDP BIT(26)
1014 #define MVPP2_RXD_L3_IP4 BIT(28)
1015 #define MVPP2_RXD_L3_IP6 BIT(30)
1016 #define MVPP2_RXD_BUF_HDR BIT(31)
1018 /* HW TX descriptor for PPv2.1 */
1019 struct mvpp21_tx_desc
{
1020 u32 command
; /* Options used by HW for packet transmitting.*/
1021 u8 packet_offset
; /* the offset from the buffer beginning */
1022 u8 phys_txq
; /* destination queue ID */
1023 u16 data_size
; /* data size of transmitted packet in bytes */
1024 u32 buf_dma_addr
; /* physical addr of transmitted buffer */
1025 u32 buf_cookie
; /* cookie for access to TX buffer in tx path */
1026 u32 reserved1
[3]; /* hw_cmd (for future use, BM, PON, PNC) */
1027 u32 reserved2
; /* reserved (for future use) */
1030 /* HW RX descriptor for PPv2.1 */
1031 struct mvpp21_rx_desc
{
1032 u32 status
; /* info about received packet */
1033 u16 reserved1
; /* parser_info (for future use, PnC) */
1034 u16 data_size
; /* size of received packet in bytes */
1035 u32 buf_dma_addr
; /* physical address of the buffer */
1036 u32 buf_cookie
; /* cookie for access to RX buffer in rx path */
1037 u16 reserved2
; /* gem_port_id (for future use, PON) */
1038 u16 reserved3
; /* csum_l4 (for future use, PnC) */
1039 u8 reserved4
; /* bm_qset (for future use, BM) */
1041 u16 reserved6
; /* classify_info (for future use, PnC) */
1042 u32 reserved7
; /* flow_id (for future use, PnC) */
1046 /* HW TX descriptor for PPv2.2 */
1047 struct mvpp22_tx_desc
{
1053 u64 buf_dma_addr_ptp
;
1054 u64 buf_cookie_misc
;
1057 /* HW RX descriptor for PPv2.2 */
1058 struct mvpp22_rx_desc
{
1064 u64 buf_dma_addr_key_hash
;
1065 u64 buf_cookie_misc
;
1068 /* Opaque type used by the driver to manipulate the HW TX and RX
1071 struct mvpp2_tx_desc
{
1073 struct mvpp21_tx_desc pp21
;
1074 struct mvpp22_tx_desc pp22
;
1078 struct mvpp2_rx_desc
{
1080 struct mvpp21_rx_desc pp21
;
1081 struct mvpp22_rx_desc pp22
;
1085 struct mvpp2_txq_pcpu_buf
{
1086 /* Transmitted SKB */
1087 struct sk_buff
*skb
;
1089 /* Physical address of transmitted buffer */
1092 /* Size transmitted */
1096 /* Per-CPU Tx queue control */
1097 struct mvpp2_txq_pcpu
{
1100 /* Number of Tx DMA descriptors in the descriptor ring */
1103 /* Number of currently used Tx DMA descriptor in the
1111 /* Number of Tx DMA descriptors reserved for each CPU */
1114 /* Infos about transmitted buffers */
1115 struct mvpp2_txq_pcpu_buf
*buffs
;
1117 /* Index of last TX DMA descriptor that was inserted */
1120 /* Index of the TX DMA descriptor to be cleaned up */
1123 /* DMA buffer for TSO headers */
1125 dma_addr_t tso_headers_dma
;
1128 struct mvpp2_tx_queue
{
1129 /* Physical number of this Tx queue */
1132 /* Logical number of this Tx queue */
1135 /* Number of Tx DMA descriptors in the descriptor ring */
1138 /* Number of currently used Tx DMA descriptor in the descriptor ring */
1141 /* Per-CPU control of physical Tx queues */
1142 struct mvpp2_txq_pcpu __percpu
*pcpu
;
1146 /* Virtual address of thex Tx DMA descriptors array */
1147 struct mvpp2_tx_desc
*descs
;
1149 /* DMA address of the Tx DMA descriptors array */
1150 dma_addr_t descs_dma
;
1152 /* Index of the last Tx DMA descriptor */
1155 /* Index of the next Tx DMA descriptor to process */
1156 int next_desc_to_proc
;
1159 struct mvpp2_rx_queue
{
1160 /* RX queue number, in the range 0-31 for physical RXQs */
1163 /* Num of rx descriptors in the rx descriptor ring */
1169 /* Virtual address of the RX DMA descriptors array */
1170 struct mvpp2_rx_desc
*descs
;
1172 /* DMA address of the RX DMA descriptors array */
1173 dma_addr_t descs_dma
;
1175 /* Index of the last RX DMA descriptor */
1178 /* Index of the next RX DMA descriptor to process */
1179 int next_desc_to_proc
;
1181 /* ID of port to which physical RXQ is mapped */
1184 /* Port's logic RXQ number to which physical RXQ is mapped */
1188 union mvpp2_prs_tcam_entry
{
1189 u32 word
[MVPP2_PRS_TCAM_WORDS
];
1190 u8 byte
[MVPP2_PRS_TCAM_WORDS
* 4];
1193 union mvpp2_prs_sram_entry
{
1194 u32 word
[MVPP2_PRS_SRAM_WORDS
];
1195 u8 byte
[MVPP2_PRS_SRAM_WORDS
* 4];
1198 struct mvpp2_prs_entry
{
1200 union mvpp2_prs_tcam_entry tcam
;
1201 union mvpp2_prs_sram_entry sram
;
1204 struct mvpp2_prs_shadow
{
1211 /* User defined offset */
1219 struct mvpp2_cls_flow_entry
{
1221 u32 data
[MVPP2_CLS_FLOWS_TBL_DATA_WORDS
];
1224 struct mvpp2_cls_lookup_entry
{
1230 struct mvpp2_bm_pool
{
1231 /* Pool number in the range 0-7 */
1233 enum mvpp2_bm_type type
;
1235 /* Buffer Pointers Pool External (BPPE) size */
1237 /* BPPE size in bytes */
1239 /* Number of buffers for this pool */
1241 /* Pool buffer size */
1247 /* BPPE virtual base address */
1249 /* BPPE DMA base address */
1250 dma_addr_t dma_addr
;
1252 /* Ports using BM pool */
1256 #define IS_TSO_HEADER(txq_pcpu, addr) \
1257 ((addr) >= (txq_pcpu)->tso_headers_dma && \
1258 (addr) < (txq_pcpu)->tso_headers_dma + \
1259 (txq_pcpu)->size * TSO_HEADER_SIZE)
1262 #define MVPP2_QDIST_SINGLE_MODE 0
1263 #define MVPP2_QDIST_MULTI_MODE 1
1265 static int queue_mode
= MVPP2_QDIST_SINGLE_MODE
;
1267 module_param(queue_mode
, int, 0444);
1268 MODULE_PARM_DESC(queue_mode
, "Set queue_mode (single=0, multi=1)");
1270 #define MVPP2_DRIVER_NAME "mvpp2"
1271 #define MVPP2_DRIVER_VERSION "1.0"
1273 /* Utility/helper methods */
1275 static void mvpp2_write(struct mvpp2
*priv
, u32 offset
, u32 data
)
1277 writel(data
, priv
->swth_base
[0] + offset
);
1280 static u32
mvpp2_read(struct mvpp2
*priv
, u32 offset
)
1282 return readl(priv
->swth_base
[0] + offset
);
1285 /* These accessors should be used to access:
1287 * - per-CPU registers, where each CPU has its own copy of the
1290 * MVPP2_BM_VIRT_ALLOC_REG
1291 * MVPP2_BM_ADDR_HIGH_ALLOC
1292 * MVPP22_BM_ADDR_HIGH_RLS_REG
1293 * MVPP2_BM_VIRT_RLS_REG
1294 * MVPP2_ISR_RX_TX_CAUSE_REG
1295 * MVPP2_ISR_RX_TX_MASK_REG
1297 * MVPP2_AGGR_TXQ_UPDATE_REG
1298 * MVPP2_TXQ_RSVD_REQ_REG
1299 * MVPP2_TXQ_RSVD_RSLT_REG
1300 * MVPP2_TXQ_SENT_REG
1303 * - global registers that must be accessed through a specific CPU
1304 * window, because they are related to an access to a per-CPU
1307 * MVPP2_BM_PHY_ALLOC_REG (related to MVPP2_BM_VIRT_ALLOC_REG)
1308 * MVPP2_BM_PHY_RLS_REG (related to MVPP2_BM_VIRT_RLS_REG)
1309 * MVPP2_RXQ_THRESH_REG (related to MVPP2_RXQ_NUM_REG)
1310 * MVPP2_RXQ_DESC_ADDR_REG (related to MVPP2_RXQ_NUM_REG)
1311 * MVPP2_RXQ_DESC_SIZE_REG (related to MVPP2_RXQ_NUM_REG)
1312 * MVPP2_RXQ_INDEX_REG (related to MVPP2_RXQ_NUM_REG)
1313 * MVPP2_TXQ_PENDING_REG (related to MVPP2_TXQ_NUM_REG)
1314 * MVPP2_TXQ_DESC_ADDR_REG (related to MVPP2_TXQ_NUM_REG)
1315 * MVPP2_TXQ_DESC_SIZE_REG (related to MVPP2_TXQ_NUM_REG)
1316 * MVPP2_TXQ_INDEX_REG (related to MVPP2_TXQ_NUM_REG)
1317 * MVPP2_TXQ_PENDING_REG (related to MVPP2_TXQ_NUM_REG)
1318 * MVPP2_TXQ_PREF_BUF_REG (related to MVPP2_TXQ_NUM_REG)
1319 * MVPP2_TXQ_PREF_BUF_REG (related to MVPP2_TXQ_NUM_REG)
1321 static void mvpp2_percpu_write(struct mvpp2
*priv
, int cpu
,
1322 u32 offset
, u32 data
)
1324 writel(data
, priv
->swth_base
[cpu
] + offset
);
1327 static u32
mvpp2_percpu_read(struct mvpp2
*priv
, int cpu
,
1330 return readl(priv
->swth_base
[cpu
] + offset
);
1333 static dma_addr_t
mvpp2_txdesc_dma_addr_get(struct mvpp2_port
*port
,
1334 struct mvpp2_tx_desc
*tx_desc
)
1336 if (port
->priv
->hw_version
== MVPP21
)
1337 return tx_desc
->pp21
.buf_dma_addr
;
1339 return tx_desc
->pp22
.buf_dma_addr_ptp
& GENMASK_ULL(40, 0);
1342 static void mvpp2_txdesc_dma_addr_set(struct mvpp2_port
*port
,
1343 struct mvpp2_tx_desc
*tx_desc
,
1344 dma_addr_t dma_addr
)
1346 dma_addr_t addr
, offset
;
1348 addr
= dma_addr
& ~MVPP2_TX_DESC_ALIGN
;
1349 offset
= dma_addr
& MVPP2_TX_DESC_ALIGN
;
1351 if (port
->priv
->hw_version
== MVPP21
) {
1352 tx_desc
->pp21
.buf_dma_addr
= addr
;
1353 tx_desc
->pp21
.packet_offset
= offset
;
1355 u64 val
= (u64
)addr
;
1357 tx_desc
->pp22
.buf_dma_addr_ptp
&= ~GENMASK_ULL(40, 0);
1358 tx_desc
->pp22
.buf_dma_addr_ptp
|= val
;
1359 tx_desc
->pp22
.packet_offset
= offset
;
1363 static size_t mvpp2_txdesc_size_get(struct mvpp2_port
*port
,
1364 struct mvpp2_tx_desc
*tx_desc
)
1366 if (port
->priv
->hw_version
== MVPP21
)
1367 return tx_desc
->pp21
.data_size
;
1369 return tx_desc
->pp22
.data_size
;
1372 static void mvpp2_txdesc_size_set(struct mvpp2_port
*port
,
1373 struct mvpp2_tx_desc
*tx_desc
,
1376 if (port
->priv
->hw_version
== MVPP21
)
1377 tx_desc
->pp21
.data_size
= size
;
1379 tx_desc
->pp22
.data_size
= size
;
1382 static void mvpp2_txdesc_txq_set(struct mvpp2_port
*port
,
1383 struct mvpp2_tx_desc
*tx_desc
,
1386 if (port
->priv
->hw_version
== MVPP21
)
1387 tx_desc
->pp21
.phys_txq
= txq
;
1389 tx_desc
->pp22
.phys_txq
= txq
;
1392 static void mvpp2_txdesc_cmd_set(struct mvpp2_port
*port
,
1393 struct mvpp2_tx_desc
*tx_desc
,
1394 unsigned int command
)
1396 if (port
->priv
->hw_version
== MVPP21
)
1397 tx_desc
->pp21
.command
= command
;
1399 tx_desc
->pp22
.command
= command
;
1402 static unsigned int mvpp2_txdesc_offset_get(struct mvpp2_port
*port
,
1403 struct mvpp2_tx_desc
*tx_desc
)
1405 if (port
->priv
->hw_version
== MVPP21
)
1406 return tx_desc
->pp21
.packet_offset
;
1408 return tx_desc
->pp22
.packet_offset
;
1411 static dma_addr_t
mvpp2_rxdesc_dma_addr_get(struct mvpp2_port
*port
,
1412 struct mvpp2_rx_desc
*rx_desc
)
1414 if (port
->priv
->hw_version
== MVPP21
)
1415 return rx_desc
->pp21
.buf_dma_addr
;
1417 return rx_desc
->pp22
.buf_dma_addr_key_hash
& GENMASK_ULL(40, 0);
1420 static unsigned long mvpp2_rxdesc_cookie_get(struct mvpp2_port
*port
,
1421 struct mvpp2_rx_desc
*rx_desc
)
1423 if (port
->priv
->hw_version
== MVPP21
)
1424 return rx_desc
->pp21
.buf_cookie
;
1426 return rx_desc
->pp22
.buf_cookie_misc
& GENMASK_ULL(40, 0);
1429 static size_t mvpp2_rxdesc_size_get(struct mvpp2_port
*port
,
1430 struct mvpp2_rx_desc
*rx_desc
)
1432 if (port
->priv
->hw_version
== MVPP21
)
1433 return rx_desc
->pp21
.data_size
;
1435 return rx_desc
->pp22
.data_size
;
1438 static u32
mvpp2_rxdesc_status_get(struct mvpp2_port
*port
,
1439 struct mvpp2_rx_desc
*rx_desc
)
1441 if (port
->priv
->hw_version
== MVPP21
)
1442 return rx_desc
->pp21
.status
;
1444 return rx_desc
->pp22
.status
;
1447 static void mvpp2_txq_inc_get(struct mvpp2_txq_pcpu
*txq_pcpu
)
1449 txq_pcpu
->txq_get_index
++;
1450 if (txq_pcpu
->txq_get_index
== txq_pcpu
->size
)
1451 txq_pcpu
->txq_get_index
= 0;
1454 static void mvpp2_txq_inc_put(struct mvpp2_port
*port
,
1455 struct mvpp2_txq_pcpu
*txq_pcpu
,
1456 struct sk_buff
*skb
,
1457 struct mvpp2_tx_desc
*tx_desc
)
1459 struct mvpp2_txq_pcpu_buf
*tx_buf
=
1460 txq_pcpu
->buffs
+ txq_pcpu
->txq_put_index
;
1462 tx_buf
->size
= mvpp2_txdesc_size_get(port
, tx_desc
);
1463 tx_buf
->dma
= mvpp2_txdesc_dma_addr_get(port
, tx_desc
) +
1464 mvpp2_txdesc_offset_get(port
, tx_desc
);
1465 txq_pcpu
->txq_put_index
++;
1466 if (txq_pcpu
->txq_put_index
== txq_pcpu
->size
)
1467 txq_pcpu
->txq_put_index
= 0;
1470 /* Get number of physical egress port */
1471 static inline int mvpp2_egress_port(struct mvpp2_port
*port
)
1473 return MVPP2_MAX_TCONT
+ port
->id
;
1476 /* Get number of physical TXQ */
1477 static inline int mvpp2_txq_phys(int port
, int txq
)
1479 return (MVPP2_MAX_TCONT
+ port
) * MVPP2_MAX_TXQ
+ txq
;
1482 /* Parser configuration routines */
1484 /* Update parser tcam and sram hw entries */
1485 static int mvpp2_prs_hw_write(struct mvpp2
*priv
, struct mvpp2_prs_entry
*pe
)
1489 if (pe
->index
> MVPP2_PRS_TCAM_SRAM_SIZE
- 1)
1492 /* Clear entry invalidation bit */
1493 pe
->tcam
.word
[MVPP2_PRS_TCAM_INV_WORD
] &= ~MVPP2_PRS_TCAM_INV_MASK
;
1495 /* Write tcam index - indirect access */
1496 mvpp2_write(priv
, MVPP2_PRS_TCAM_IDX_REG
, pe
->index
);
1497 for (i
= 0; i
< MVPP2_PRS_TCAM_WORDS
; i
++)
1498 mvpp2_write(priv
, MVPP2_PRS_TCAM_DATA_REG(i
), pe
->tcam
.word
[i
]);
1500 /* Write sram index - indirect access */
1501 mvpp2_write(priv
, MVPP2_PRS_SRAM_IDX_REG
, pe
->index
);
1502 for (i
= 0; i
< MVPP2_PRS_SRAM_WORDS
; i
++)
1503 mvpp2_write(priv
, MVPP2_PRS_SRAM_DATA_REG(i
), pe
->sram
.word
[i
]);
1508 /* Read tcam entry from hw */
1509 static int mvpp2_prs_hw_read(struct mvpp2
*priv
, struct mvpp2_prs_entry
*pe
)
1513 if (pe
->index
> MVPP2_PRS_TCAM_SRAM_SIZE
- 1)
1516 /* Write tcam index - indirect access */
1517 mvpp2_write(priv
, MVPP2_PRS_TCAM_IDX_REG
, pe
->index
);
1519 pe
->tcam
.word
[MVPP2_PRS_TCAM_INV_WORD
] = mvpp2_read(priv
,
1520 MVPP2_PRS_TCAM_DATA_REG(MVPP2_PRS_TCAM_INV_WORD
));
1521 if (pe
->tcam
.word
[MVPP2_PRS_TCAM_INV_WORD
] & MVPP2_PRS_TCAM_INV_MASK
)
1522 return MVPP2_PRS_TCAM_ENTRY_INVALID
;
1524 for (i
= 0; i
< MVPP2_PRS_TCAM_WORDS
; i
++)
1525 pe
->tcam
.word
[i
] = mvpp2_read(priv
, MVPP2_PRS_TCAM_DATA_REG(i
));
1527 /* Write sram index - indirect access */
1528 mvpp2_write(priv
, MVPP2_PRS_SRAM_IDX_REG
, pe
->index
);
1529 for (i
= 0; i
< MVPP2_PRS_SRAM_WORDS
; i
++)
1530 pe
->sram
.word
[i
] = mvpp2_read(priv
, MVPP2_PRS_SRAM_DATA_REG(i
));
1535 /* Invalidate tcam hw entry */
1536 static void mvpp2_prs_hw_inv(struct mvpp2
*priv
, int index
)
1538 /* Write index - indirect access */
1539 mvpp2_write(priv
, MVPP2_PRS_TCAM_IDX_REG
, index
);
1540 mvpp2_write(priv
, MVPP2_PRS_TCAM_DATA_REG(MVPP2_PRS_TCAM_INV_WORD
),
1541 MVPP2_PRS_TCAM_INV_MASK
);
1544 /* Enable shadow table entry and set its lookup ID */
1545 static void mvpp2_prs_shadow_set(struct mvpp2
*priv
, int index
, int lu
)
1547 priv
->prs_shadow
[index
].valid
= true;
1548 priv
->prs_shadow
[index
].lu
= lu
;
1551 /* Update ri fields in shadow table entry */
1552 static void mvpp2_prs_shadow_ri_set(struct mvpp2
*priv
, int index
,
1553 unsigned int ri
, unsigned int ri_mask
)
1555 priv
->prs_shadow
[index
].ri_mask
= ri_mask
;
1556 priv
->prs_shadow
[index
].ri
= ri
;
1559 /* Update lookup field in tcam sw entry */
1560 static void mvpp2_prs_tcam_lu_set(struct mvpp2_prs_entry
*pe
, unsigned int lu
)
1562 int enable_off
= MVPP2_PRS_TCAM_EN_OFFS(MVPP2_PRS_TCAM_LU_BYTE
);
1564 pe
->tcam
.byte
[MVPP2_PRS_TCAM_LU_BYTE
] = lu
;
1565 pe
->tcam
.byte
[enable_off
] = MVPP2_PRS_LU_MASK
;
1568 /* Update mask for single port in tcam sw entry */
1569 static void mvpp2_prs_tcam_port_set(struct mvpp2_prs_entry
*pe
,
1570 unsigned int port
, bool add
)
1572 int enable_off
= MVPP2_PRS_TCAM_EN_OFFS(MVPP2_PRS_TCAM_PORT_BYTE
);
1575 pe
->tcam
.byte
[enable_off
] &= ~(1 << port
);
1577 pe
->tcam
.byte
[enable_off
] |= 1 << port
;
1580 /* Update port map in tcam sw entry */
1581 static void mvpp2_prs_tcam_port_map_set(struct mvpp2_prs_entry
*pe
,
1584 unsigned char port_mask
= MVPP2_PRS_PORT_MASK
;
1585 int enable_off
= MVPP2_PRS_TCAM_EN_OFFS(MVPP2_PRS_TCAM_PORT_BYTE
);
1587 pe
->tcam
.byte
[MVPP2_PRS_TCAM_PORT_BYTE
] = 0;
1588 pe
->tcam
.byte
[enable_off
] &= ~port_mask
;
1589 pe
->tcam
.byte
[enable_off
] |= ~ports
& MVPP2_PRS_PORT_MASK
;
1592 /* Obtain port map from tcam sw entry */
1593 static unsigned int mvpp2_prs_tcam_port_map_get(struct mvpp2_prs_entry
*pe
)
1595 int enable_off
= MVPP2_PRS_TCAM_EN_OFFS(MVPP2_PRS_TCAM_PORT_BYTE
);
1597 return ~(pe
->tcam
.byte
[enable_off
]) & MVPP2_PRS_PORT_MASK
;
1600 /* Set byte of data and its enable bits in tcam sw entry */
1601 static void mvpp2_prs_tcam_data_byte_set(struct mvpp2_prs_entry
*pe
,
1602 unsigned int offs
, unsigned char byte
,
1603 unsigned char enable
)
1605 pe
->tcam
.byte
[MVPP2_PRS_TCAM_DATA_BYTE(offs
)] = byte
;
1606 pe
->tcam
.byte
[MVPP2_PRS_TCAM_DATA_BYTE_EN(offs
)] = enable
;
1609 /* Get byte of data and its enable bits from tcam sw entry */
1610 static void mvpp2_prs_tcam_data_byte_get(struct mvpp2_prs_entry
*pe
,
1611 unsigned int offs
, unsigned char *byte
,
1612 unsigned char *enable
)
1614 *byte
= pe
->tcam
.byte
[MVPP2_PRS_TCAM_DATA_BYTE(offs
)];
1615 *enable
= pe
->tcam
.byte
[MVPP2_PRS_TCAM_DATA_BYTE_EN(offs
)];
1618 /* Compare tcam data bytes with a pattern */
1619 static bool mvpp2_prs_tcam_data_cmp(struct mvpp2_prs_entry
*pe
, int offs
,
1622 int off
= MVPP2_PRS_TCAM_DATA_BYTE(offs
);
1625 tcam_data
= (pe
->tcam
.byte
[off
+ 1] << 8) | pe
->tcam
.byte
[off
];
1626 if (tcam_data
!= data
)
1631 /* Update ai bits in tcam sw entry */
1632 static void mvpp2_prs_tcam_ai_update(struct mvpp2_prs_entry
*pe
,
1633 unsigned int bits
, unsigned int enable
)
1635 int i
, ai_idx
= MVPP2_PRS_TCAM_AI_BYTE
;
1637 for (i
= 0; i
< MVPP2_PRS_AI_BITS
; i
++) {
1639 if (!(enable
& BIT(i
)))
1643 pe
->tcam
.byte
[ai_idx
] |= 1 << i
;
1645 pe
->tcam
.byte
[ai_idx
] &= ~(1 << i
);
1648 pe
->tcam
.byte
[MVPP2_PRS_TCAM_EN_OFFS(ai_idx
)] |= enable
;
1651 /* Get ai bits from tcam sw entry */
1652 static int mvpp2_prs_tcam_ai_get(struct mvpp2_prs_entry
*pe
)
1654 return pe
->tcam
.byte
[MVPP2_PRS_TCAM_AI_BYTE
];
1657 /* Set ethertype in tcam sw entry */
1658 static void mvpp2_prs_match_etype(struct mvpp2_prs_entry
*pe
, int offset
,
1659 unsigned short ethertype
)
1661 mvpp2_prs_tcam_data_byte_set(pe
, offset
+ 0, ethertype
>> 8, 0xff);
1662 mvpp2_prs_tcam_data_byte_set(pe
, offset
+ 1, ethertype
& 0xff, 0xff);
1665 /* Set bits in sram sw entry */
1666 static void mvpp2_prs_sram_bits_set(struct mvpp2_prs_entry
*pe
, int bit_num
,
1669 pe
->sram
.byte
[MVPP2_BIT_TO_BYTE(bit_num
)] |= (val
<< (bit_num
% 8));
1672 /* Clear bits in sram sw entry */
1673 static void mvpp2_prs_sram_bits_clear(struct mvpp2_prs_entry
*pe
, int bit_num
,
1676 pe
->sram
.byte
[MVPP2_BIT_TO_BYTE(bit_num
)] &= ~(val
<< (bit_num
% 8));
1679 /* Update ri bits in sram sw entry */
1680 static void mvpp2_prs_sram_ri_update(struct mvpp2_prs_entry
*pe
,
1681 unsigned int bits
, unsigned int mask
)
1685 for (i
= 0; i
< MVPP2_PRS_SRAM_RI_CTRL_BITS
; i
++) {
1686 int ri_off
= MVPP2_PRS_SRAM_RI_OFFS
;
1688 if (!(mask
& BIT(i
)))
1692 mvpp2_prs_sram_bits_set(pe
, ri_off
+ i
, 1);
1694 mvpp2_prs_sram_bits_clear(pe
, ri_off
+ i
, 1);
1696 mvpp2_prs_sram_bits_set(pe
, MVPP2_PRS_SRAM_RI_CTRL_OFFS
+ i
, 1);
1700 /* Obtain ri bits from sram sw entry */
1701 static int mvpp2_prs_sram_ri_get(struct mvpp2_prs_entry
*pe
)
1703 return pe
->sram
.word
[MVPP2_PRS_SRAM_RI_WORD
];
1706 /* Update ai bits in sram sw entry */
1707 static void mvpp2_prs_sram_ai_update(struct mvpp2_prs_entry
*pe
,
1708 unsigned int bits
, unsigned int mask
)
1711 int ai_off
= MVPP2_PRS_SRAM_AI_OFFS
;
1713 for (i
= 0; i
< MVPP2_PRS_SRAM_AI_CTRL_BITS
; i
++) {
1715 if (!(mask
& BIT(i
)))
1719 mvpp2_prs_sram_bits_set(pe
, ai_off
+ i
, 1);
1721 mvpp2_prs_sram_bits_clear(pe
, ai_off
+ i
, 1);
1723 mvpp2_prs_sram_bits_set(pe
, MVPP2_PRS_SRAM_AI_CTRL_OFFS
+ i
, 1);
1727 /* Read ai bits from sram sw entry */
1728 static int mvpp2_prs_sram_ai_get(struct mvpp2_prs_entry
*pe
)
1731 int ai_off
= MVPP2_BIT_TO_BYTE(MVPP2_PRS_SRAM_AI_OFFS
);
1732 int ai_en_off
= ai_off
+ 1;
1733 int ai_shift
= MVPP2_PRS_SRAM_AI_OFFS
% 8;
1735 bits
= (pe
->sram
.byte
[ai_off
] >> ai_shift
) |
1736 (pe
->sram
.byte
[ai_en_off
] << (8 - ai_shift
));
1741 /* In sram sw entry set lookup ID field of the tcam key to be used in the next
1744 static void mvpp2_prs_sram_next_lu_set(struct mvpp2_prs_entry
*pe
,
1747 int sram_next_off
= MVPP2_PRS_SRAM_NEXT_LU_OFFS
;
1749 mvpp2_prs_sram_bits_clear(pe
, sram_next_off
,
1750 MVPP2_PRS_SRAM_NEXT_LU_MASK
);
1751 mvpp2_prs_sram_bits_set(pe
, sram_next_off
, lu
);
1754 /* In the sram sw entry set sign and value of the next lookup offset
1755 * and the offset value generated to the classifier
1757 static void mvpp2_prs_sram_shift_set(struct mvpp2_prs_entry
*pe
, int shift
,
1762 mvpp2_prs_sram_bits_set(pe
, MVPP2_PRS_SRAM_SHIFT_SIGN_BIT
, 1);
1765 mvpp2_prs_sram_bits_clear(pe
, MVPP2_PRS_SRAM_SHIFT_SIGN_BIT
, 1);
1769 pe
->sram
.byte
[MVPP2_BIT_TO_BYTE(MVPP2_PRS_SRAM_SHIFT_OFFS
)] =
1770 (unsigned char)shift
;
1772 /* Reset and set operation */
1773 mvpp2_prs_sram_bits_clear(pe
, MVPP2_PRS_SRAM_OP_SEL_SHIFT_OFFS
,
1774 MVPP2_PRS_SRAM_OP_SEL_SHIFT_MASK
);
1775 mvpp2_prs_sram_bits_set(pe
, MVPP2_PRS_SRAM_OP_SEL_SHIFT_OFFS
, op
);
1777 /* Set base offset as current */
1778 mvpp2_prs_sram_bits_clear(pe
, MVPP2_PRS_SRAM_OP_SEL_BASE_OFFS
, 1);
1781 /* In the sram sw entry set sign and value of the user defined offset
1782 * generated to the classifier
1784 static void mvpp2_prs_sram_offset_set(struct mvpp2_prs_entry
*pe
,
1785 unsigned int type
, int offset
,
1790 mvpp2_prs_sram_bits_set(pe
, MVPP2_PRS_SRAM_UDF_SIGN_BIT
, 1);
1791 offset
= 0 - offset
;
1793 mvpp2_prs_sram_bits_clear(pe
, MVPP2_PRS_SRAM_UDF_SIGN_BIT
, 1);
1797 mvpp2_prs_sram_bits_clear(pe
, MVPP2_PRS_SRAM_UDF_OFFS
,
1798 MVPP2_PRS_SRAM_UDF_MASK
);
1799 mvpp2_prs_sram_bits_set(pe
, MVPP2_PRS_SRAM_UDF_OFFS
, offset
);
1800 pe
->sram
.byte
[MVPP2_BIT_TO_BYTE(MVPP2_PRS_SRAM_UDF_OFFS
+
1801 MVPP2_PRS_SRAM_UDF_BITS
)] &=
1802 ~(MVPP2_PRS_SRAM_UDF_MASK
>> (8 - (MVPP2_PRS_SRAM_UDF_OFFS
% 8)));
1803 pe
->sram
.byte
[MVPP2_BIT_TO_BYTE(MVPP2_PRS_SRAM_UDF_OFFS
+
1804 MVPP2_PRS_SRAM_UDF_BITS
)] |=
1805 (offset
>> (8 - (MVPP2_PRS_SRAM_UDF_OFFS
% 8)));
1807 /* Set offset type */
1808 mvpp2_prs_sram_bits_clear(pe
, MVPP2_PRS_SRAM_UDF_TYPE_OFFS
,
1809 MVPP2_PRS_SRAM_UDF_TYPE_MASK
);
1810 mvpp2_prs_sram_bits_set(pe
, MVPP2_PRS_SRAM_UDF_TYPE_OFFS
, type
);
1812 /* Set offset operation */
1813 mvpp2_prs_sram_bits_clear(pe
, MVPP2_PRS_SRAM_OP_SEL_UDF_OFFS
,
1814 MVPP2_PRS_SRAM_OP_SEL_UDF_MASK
);
1815 mvpp2_prs_sram_bits_set(pe
, MVPP2_PRS_SRAM_OP_SEL_UDF_OFFS
, op
);
1817 pe
->sram
.byte
[MVPP2_BIT_TO_BYTE(MVPP2_PRS_SRAM_OP_SEL_UDF_OFFS
+
1818 MVPP2_PRS_SRAM_OP_SEL_UDF_BITS
)] &=
1819 ~(MVPP2_PRS_SRAM_OP_SEL_UDF_MASK
>>
1820 (8 - (MVPP2_PRS_SRAM_OP_SEL_UDF_OFFS
% 8)));
1822 pe
->sram
.byte
[MVPP2_BIT_TO_BYTE(MVPP2_PRS_SRAM_OP_SEL_UDF_OFFS
+
1823 MVPP2_PRS_SRAM_OP_SEL_UDF_BITS
)] |=
1824 (op
>> (8 - (MVPP2_PRS_SRAM_OP_SEL_UDF_OFFS
% 8)));
1826 /* Set base offset as current */
1827 mvpp2_prs_sram_bits_clear(pe
, MVPP2_PRS_SRAM_OP_SEL_BASE_OFFS
, 1);
1830 /* Find parser flow entry */
1831 static struct mvpp2_prs_entry
*mvpp2_prs_flow_find(struct mvpp2
*priv
, int flow
)
1833 struct mvpp2_prs_entry
*pe
;
1836 pe
= kzalloc(sizeof(*pe
), GFP_KERNEL
);
1839 mvpp2_prs_tcam_lu_set(pe
, MVPP2_PRS_LU_FLOWS
);
1841 /* Go through the all entires with MVPP2_PRS_LU_FLOWS */
1842 for (tid
= MVPP2_PRS_TCAM_SRAM_SIZE
- 1; tid
>= 0; tid
--) {
1845 if (!priv
->prs_shadow
[tid
].valid
||
1846 priv
->prs_shadow
[tid
].lu
!= MVPP2_PRS_LU_FLOWS
)
1850 mvpp2_prs_hw_read(priv
, pe
);
1851 bits
= mvpp2_prs_sram_ai_get(pe
);
1853 /* Sram store classification lookup ID in AI bits [5:0] */
1854 if ((bits
& MVPP2_PRS_FLOW_ID_MASK
) == flow
)
1862 /* Return first free tcam index, seeking from start to end */
1863 static int mvpp2_prs_tcam_first_free(struct mvpp2
*priv
, unsigned char start
,
1871 if (end
>= MVPP2_PRS_TCAM_SRAM_SIZE
)
1872 end
= MVPP2_PRS_TCAM_SRAM_SIZE
- 1;
1874 for (tid
= start
; tid
<= end
; tid
++) {
1875 if (!priv
->prs_shadow
[tid
].valid
)
1882 /* Enable/disable dropping all mac da's */
1883 static void mvpp2_prs_mac_drop_all_set(struct mvpp2
*priv
, int port
, bool add
)
1885 struct mvpp2_prs_entry pe
;
1887 if (priv
->prs_shadow
[MVPP2_PE_DROP_ALL
].valid
) {
1888 /* Entry exist - update port only */
1889 pe
.index
= MVPP2_PE_DROP_ALL
;
1890 mvpp2_prs_hw_read(priv
, &pe
);
1892 /* Entry doesn't exist - create new */
1893 memset(&pe
, 0, sizeof(pe
));
1894 mvpp2_prs_tcam_lu_set(&pe
, MVPP2_PRS_LU_MAC
);
1895 pe
.index
= MVPP2_PE_DROP_ALL
;
1897 /* Non-promiscuous mode for all ports - DROP unknown packets */
1898 mvpp2_prs_sram_ri_update(&pe
, MVPP2_PRS_RI_DROP_MASK
,
1899 MVPP2_PRS_RI_DROP_MASK
);
1901 mvpp2_prs_sram_bits_set(&pe
, MVPP2_PRS_SRAM_LU_GEN_BIT
, 1);
1902 mvpp2_prs_sram_next_lu_set(&pe
, MVPP2_PRS_LU_FLOWS
);
1904 /* Update shadow table */
1905 mvpp2_prs_shadow_set(priv
, pe
.index
, MVPP2_PRS_LU_MAC
);
1907 /* Mask all ports */
1908 mvpp2_prs_tcam_port_map_set(&pe
, 0);
1911 /* Update port mask */
1912 mvpp2_prs_tcam_port_set(&pe
, port
, add
);
1914 mvpp2_prs_hw_write(priv
, &pe
);
1917 /* Set port to promiscuous mode */
1918 static void mvpp2_prs_mac_promisc_set(struct mvpp2
*priv
, int port
, bool add
)
1920 struct mvpp2_prs_entry pe
;
1922 /* Promiscuous mode - Accept unknown packets */
1924 if (priv
->prs_shadow
[MVPP2_PE_MAC_PROMISCUOUS
].valid
) {
1925 /* Entry exist - update port only */
1926 pe
.index
= MVPP2_PE_MAC_PROMISCUOUS
;
1927 mvpp2_prs_hw_read(priv
, &pe
);
1929 /* Entry doesn't exist - create new */
1930 memset(&pe
, 0, sizeof(pe
));
1931 mvpp2_prs_tcam_lu_set(&pe
, MVPP2_PRS_LU_MAC
);
1932 pe
.index
= MVPP2_PE_MAC_PROMISCUOUS
;
1934 /* Continue - set next lookup */
1935 mvpp2_prs_sram_next_lu_set(&pe
, MVPP2_PRS_LU_DSA
);
1937 /* Set result info bits */
1938 mvpp2_prs_sram_ri_update(&pe
, MVPP2_PRS_RI_L2_UCAST
,
1939 MVPP2_PRS_RI_L2_CAST_MASK
);
1941 /* Shift to ethertype */
1942 mvpp2_prs_sram_shift_set(&pe
, 2 * ETH_ALEN
,
1943 MVPP2_PRS_SRAM_OP_SEL_SHIFT_ADD
);
1945 /* Mask all ports */
1946 mvpp2_prs_tcam_port_map_set(&pe
, 0);
1948 /* Update shadow table */
1949 mvpp2_prs_shadow_set(priv
, pe
.index
, MVPP2_PRS_LU_MAC
);
1952 /* Update port mask */
1953 mvpp2_prs_tcam_port_set(&pe
, port
, add
);
1955 mvpp2_prs_hw_write(priv
, &pe
);
1958 /* Accept multicast */
1959 static void mvpp2_prs_mac_multi_set(struct mvpp2
*priv
, int port
, int index
,
1962 struct mvpp2_prs_entry pe
;
1963 unsigned char da_mc
;
1965 /* Ethernet multicast address first byte is
1966 * 0x01 for IPv4 and 0x33 for IPv6
1968 da_mc
= (index
== MVPP2_PE_MAC_MC_ALL
) ? 0x01 : 0x33;
1970 if (priv
->prs_shadow
[index
].valid
) {
1971 /* Entry exist - update port only */
1973 mvpp2_prs_hw_read(priv
, &pe
);
1975 /* Entry doesn't exist - create new */
1976 memset(&pe
, 0, sizeof(pe
));
1977 mvpp2_prs_tcam_lu_set(&pe
, MVPP2_PRS_LU_MAC
);
1980 /* Continue - set next lookup */
1981 mvpp2_prs_sram_next_lu_set(&pe
, MVPP2_PRS_LU_DSA
);
1983 /* Set result info bits */
1984 mvpp2_prs_sram_ri_update(&pe
, MVPP2_PRS_RI_L2_MCAST
,
1985 MVPP2_PRS_RI_L2_CAST_MASK
);
1987 /* Update tcam entry data first byte */
1988 mvpp2_prs_tcam_data_byte_set(&pe
, 0, da_mc
, 0xff);
1990 /* Shift to ethertype */
1991 mvpp2_prs_sram_shift_set(&pe
, 2 * ETH_ALEN
,
1992 MVPP2_PRS_SRAM_OP_SEL_SHIFT_ADD
);
1994 /* Mask all ports */
1995 mvpp2_prs_tcam_port_map_set(&pe
, 0);
1997 /* Update shadow table */
1998 mvpp2_prs_shadow_set(priv
, pe
.index
, MVPP2_PRS_LU_MAC
);
2001 /* Update port mask */
2002 mvpp2_prs_tcam_port_set(&pe
, port
, add
);
2004 mvpp2_prs_hw_write(priv
, &pe
);
2007 /* Set entry for dsa packets */
2008 static void mvpp2_prs_dsa_tag_set(struct mvpp2
*priv
, int port
, bool add
,
2009 bool tagged
, bool extend
)
2011 struct mvpp2_prs_entry pe
;
2015 tid
= tagged
? MVPP2_PE_EDSA_TAGGED
: MVPP2_PE_EDSA_UNTAGGED
;
2018 tid
= tagged
? MVPP2_PE_DSA_TAGGED
: MVPP2_PE_DSA_UNTAGGED
;
2022 if (priv
->prs_shadow
[tid
].valid
) {
2023 /* Entry exist - update port only */
2025 mvpp2_prs_hw_read(priv
, &pe
);
2027 /* Entry doesn't exist - create new */
2028 memset(&pe
, 0, sizeof(pe
));
2029 mvpp2_prs_tcam_lu_set(&pe
, MVPP2_PRS_LU_DSA
);
2032 /* Shift 4 bytes if DSA tag or 8 bytes in case of EDSA tag*/
2033 mvpp2_prs_sram_shift_set(&pe
, shift
,
2034 MVPP2_PRS_SRAM_OP_SEL_SHIFT_ADD
);
2036 /* Update shadow table */
2037 mvpp2_prs_shadow_set(priv
, pe
.index
, MVPP2_PRS_LU_DSA
);
2040 /* Set tagged bit in DSA tag */
2041 mvpp2_prs_tcam_data_byte_set(&pe
, 0,
2042 MVPP2_PRS_TCAM_DSA_TAGGED_BIT
,
2043 MVPP2_PRS_TCAM_DSA_TAGGED_BIT
);
2044 /* Clear all ai bits for next iteration */
2045 mvpp2_prs_sram_ai_update(&pe
, 0,
2046 MVPP2_PRS_SRAM_AI_MASK
);
2047 /* If packet is tagged continue check vlans */
2048 mvpp2_prs_sram_next_lu_set(&pe
, MVPP2_PRS_LU_VLAN
);
2050 /* Set result info bits to 'no vlans' */
2051 mvpp2_prs_sram_ri_update(&pe
, MVPP2_PRS_RI_VLAN_NONE
,
2052 MVPP2_PRS_RI_VLAN_MASK
);
2053 mvpp2_prs_sram_next_lu_set(&pe
, MVPP2_PRS_LU_L2
);
2056 /* Mask all ports */
2057 mvpp2_prs_tcam_port_map_set(&pe
, 0);
2060 /* Update port mask */
2061 mvpp2_prs_tcam_port_set(&pe
, port
, add
);
2063 mvpp2_prs_hw_write(priv
, &pe
);
2066 /* Set entry for dsa ethertype */
2067 static void mvpp2_prs_dsa_tag_ethertype_set(struct mvpp2
*priv
, int port
,
2068 bool add
, bool tagged
, bool extend
)
2070 struct mvpp2_prs_entry pe
;
2071 int tid
, shift
, port_mask
;
2074 tid
= tagged
? MVPP2_PE_ETYPE_EDSA_TAGGED
:
2075 MVPP2_PE_ETYPE_EDSA_UNTAGGED
;
2079 tid
= tagged
? MVPP2_PE_ETYPE_DSA_TAGGED
:
2080 MVPP2_PE_ETYPE_DSA_UNTAGGED
;
2081 port_mask
= MVPP2_PRS_PORT_MASK
;
2085 if (priv
->prs_shadow
[tid
].valid
) {
2086 /* Entry exist - update port only */
2088 mvpp2_prs_hw_read(priv
, &pe
);
2090 /* Entry doesn't exist - create new */
2091 memset(&pe
, 0, sizeof(pe
));
2092 mvpp2_prs_tcam_lu_set(&pe
, MVPP2_PRS_LU_DSA
);
2096 mvpp2_prs_match_etype(&pe
, 0, ETH_P_EDSA
);
2097 mvpp2_prs_match_etype(&pe
, 2, 0);
2099 mvpp2_prs_sram_ri_update(&pe
, MVPP2_PRS_RI_DSA_MASK
,
2100 MVPP2_PRS_RI_DSA_MASK
);
2101 /* Shift ethertype + 2 byte reserved + tag*/
2102 mvpp2_prs_sram_shift_set(&pe
, 2 + MVPP2_ETH_TYPE_LEN
+ shift
,
2103 MVPP2_PRS_SRAM_OP_SEL_SHIFT_ADD
);
2105 /* Update shadow table */
2106 mvpp2_prs_shadow_set(priv
, pe
.index
, MVPP2_PRS_LU_DSA
);
2109 /* Set tagged bit in DSA tag */
2110 mvpp2_prs_tcam_data_byte_set(&pe
,
2111 MVPP2_ETH_TYPE_LEN
+ 2 + 3,
2112 MVPP2_PRS_TCAM_DSA_TAGGED_BIT
,
2113 MVPP2_PRS_TCAM_DSA_TAGGED_BIT
);
2114 /* Clear all ai bits for next iteration */
2115 mvpp2_prs_sram_ai_update(&pe
, 0,
2116 MVPP2_PRS_SRAM_AI_MASK
);
2117 /* If packet is tagged continue check vlans */
2118 mvpp2_prs_sram_next_lu_set(&pe
, MVPP2_PRS_LU_VLAN
);
2120 /* Set result info bits to 'no vlans' */
2121 mvpp2_prs_sram_ri_update(&pe
, MVPP2_PRS_RI_VLAN_NONE
,
2122 MVPP2_PRS_RI_VLAN_MASK
);
2123 mvpp2_prs_sram_next_lu_set(&pe
, MVPP2_PRS_LU_L2
);
2125 /* Mask/unmask all ports, depending on dsa type */
2126 mvpp2_prs_tcam_port_map_set(&pe
, port_mask
);
2129 /* Update port mask */
2130 mvpp2_prs_tcam_port_set(&pe
, port
, add
);
2132 mvpp2_prs_hw_write(priv
, &pe
);
2135 /* Search for existing single/triple vlan entry */
2136 static struct mvpp2_prs_entry
*mvpp2_prs_vlan_find(struct mvpp2
*priv
,
2137 unsigned short tpid
, int ai
)
2139 struct mvpp2_prs_entry
*pe
;
2142 pe
= kzalloc(sizeof(*pe
), GFP_KERNEL
);
2145 mvpp2_prs_tcam_lu_set(pe
, MVPP2_PRS_LU_VLAN
);
2147 /* Go through the all entries with MVPP2_PRS_LU_VLAN */
2148 for (tid
= MVPP2_PE_FIRST_FREE_TID
;
2149 tid
<= MVPP2_PE_LAST_FREE_TID
; tid
++) {
2150 unsigned int ri_bits
, ai_bits
;
2153 if (!priv
->prs_shadow
[tid
].valid
||
2154 priv
->prs_shadow
[tid
].lu
!= MVPP2_PRS_LU_VLAN
)
2159 mvpp2_prs_hw_read(priv
, pe
);
2160 match
= mvpp2_prs_tcam_data_cmp(pe
, 0, swab16(tpid
));
2165 ri_bits
= mvpp2_prs_sram_ri_get(pe
);
2166 ri_bits
&= MVPP2_PRS_RI_VLAN_MASK
;
2168 /* Get current ai value from tcam */
2169 ai_bits
= mvpp2_prs_tcam_ai_get(pe
);
2170 /* Clear double vlan bit */
2171 ai_bits
&= ~MVPP2_PRS_DBL_VLAN_AI_BIT
;
2176 if (ri_bits
== MVPP2_PRS_RI_VLAN_SINGLE
||
2177 ri_bits
== MVPP2_PRS_RI_VLAN_TRIPLE
)
2185 /* Add/update single/triple vlan entry */
2186 static int mvpp2_prs_vlan_add(struct mvpp2
*priv
, unsigned short tpid
, int ai
,
2187 unsigned int port_map
)
2189 struct mvpp2_prs_entry
*pe
;
2193 pe
= mvpp2_prs_vlan_find(priv
, tpid
, ai
);
2196 /* Create new tcam entry */
2197 tid
= mvpp2_prs_tcam_first_free(priv
, MVPP2_PE_LAST_FREE_TID
,
2198 MVPP2_PE_FIRST_FREE_TID
);
2202 pe
= kzalloc(sizeof(*pe
), GFP_KERNEL
);
2206 /* Get last double vlan tid */
2207 for (tid_aux
= MVPP2_PE_LAST_FREE_TID
;
2208 tid_aux
>= MVPP2_PE_FIRST_FREE_TID
; tid_aux
--) {
2209 unsigned int ri_bits
;
2211 if (!priv
->prs_shadow
[tid_aux
].valid
||
2212 priv
->prs_shadow
[tid_aux
].lu
!= MVPP2_PRS_LU_VLAN
)
2215 pe
->index
= tid_aux
;
2216 mvpp2_prs_hw_read(priv
, pe
);
2217 ri_bits
= mvpp2_prs_sram_ri_get(pe
);
2218 if ((ri_bits
& MVPP2_PRS_RI_VLAN_MASK
) ==
2219 MVPP2_PRS_RI_VLAN_DOUBLE
)
2223 if (tid
<= tid_aux
) {
2228 memset(pe
, 0, sizeof(*pe
));
2229 mvpp2_prs_tcam_lu_set(pe
, MVPP2_PRS_LU_VLAN
);
2232 mvpp2_prs_match_etype(pe
, 0, tpid
);
2234 mvpp2_prs_sram_next_lu_set(pe
, MVPP2_PRS_LU_L2
);
2235 /* Shift 4 bytes - skip 1 vlan tag */
2236 mvpp2_prs_sram_shift_set(pe
, MVPP2_VLAN_TAG_LEN
,
2237 MVPP2_PRS_SRAM_OP_SEL_SHIFT_ADD
);
2238 /* Clear all ai bits for next iteration */
2239 mvpp2_prs_sram_ai_update(pe
, 0, MVPP2_PRS_SRAM_AI_MASK
);
2241 if (ai
== MVPP2_PRS_SINGLE_VLAN_AI
) {
2242 mvpp2_prs_sram_ri_update(pe
, MVPP2_PRS_RI_VLAN_SINGLE
,
2243 MVPP2_PRS_RI_VLAN_MASK
);
2245 ai
|= MVPP2_PRS_DBL_VLAN_AI_BIT
;
2246 mvpp2_prs_sram_ri_update(pe
, MVPP2_PRS_RI_VLAN_TRIPLE
,
2247 MVPP2_PRS_RI_VLAN_MASK
);
2249 mvpp2_prs_tcam_ai_update(pe
, ai
, MVPP2_PRS_SRAM_AI_MASK
);
2251 mvpp2_prs_shadow_set(priv
, pe
->index
, MVPP2_PRS_LU_VLAN
);
2253 /* Update ports' mask */
2254 mvpp2_prs_tcam_port_map_set(pe
, port_map
);
2256 mvpp2_prs_hw_write(priv
, pe
);
2263 /* Get first free double vlan ai number */
2264 static int mvpp2_prs_double_vlan_ai_free_get(struct mvpp2
*priv
)
2268 for (i
= 1; i
< MVPP2_PRS_DBL_VLANS_MAX
; i
++) {
2269 if (!priv
->prs_double_vlans
[i
])
2276 /* Search for existing double vlan entry */
2277 static struct mvpp2_prs_entry
*mvpp2_prs_double_vlan_find(struct mvpp2
*priv
,
2278 unsigned short tpid1
,
2279 unsigned short tpid2
)
2281 struct mvpp2_prs_entry
*pe
;
2284 pe
= kzalloc(sizeof(*pe
), GFP_KERNEL
);
2287 mvpp2_prs_tcam_lu_set(pe
, MVPP2_PRS_LU_VLAN
);
2289 /* Go through the all entries with MVPP2_PRS_LU_VLAN */
2290 for (tid
= MVPP2_PE_FIRST_FREE_TID
;
2291 tid
<= MVPP2_PE_LAST_FREE_TID
; tid
++) {
2292 unsigned int ri_mask
;
2295 if (!priv
->prs_shadow
[tid
].valid
||
2296 priv
->prs_shadow
[tid
].lu
!= MVPP2_PRS_LU_VLAN
)
2300 mvpp2_prs_hw_read(priv
, pe
);
2302 match
= mvpp2_prs_tcam_data_cmp(pe
, 0, swab16(tpid1
))
2303 && mvpp2_prs_tcam_data_cmp(pe
, 4, swab16(tpid2
));
2308 ri_mask
= mvpp2_prs_sram_ri_get(pe
) & MVPP2_PRS_RI_VLAN_MASK
;
2309 if (ri_mask
== MVPP2_PRS_RI_VLAN_DOUBLE
)
2317 /* Add or update double vlan entry */
2318 static int mvpp2_prs_double_vlan_add(struct mvpp2
*priv
, unsigned short tpid1
,
2319 unsigned short tpid2
,
2320 unsigned int port_map
)
2322 struct mvpp2_prs_entry
*pe
;
2323 int tid_aux
, tid
, ai
, ret
= 0;
2325 pe
= mvpp2_prs_double_vlan_find(priv
, tpid1
, tpid2
);
2328 /* Create new tcam entry */
2329 tid
= mvpp2_prs_tcam_first_free(priv
, MVPP2_PE_FIRST_FREE_TID
,
2330 MVPP2_PE_LAST_FREE_TID
);
2334 pe
= kzalloc(sizeof(*pe
), GFP_KERNEL
);
2338 /* Set ai value for new double vlan entry */
2339 ai
= mvpp2_prs_double_vlan_ai_free_get(priv
);
2345 /* Get first single/triple vlan tid */
2346 for (tid_aux
= MVPP2_PE_FIRST_FREE_TID
;
2347 tid_aux
<= MVPP2_PE_LAST_FREE_TID
; tid_aux
++) {
2348 unsigned int ri_bits
;
2350 if (!priv
->prs_shadow
[tid_aux
].valid
||
2351 priv
->prs_shadow
[tid_aux
].lu
!= MVPP2_PRS_LU_VLAN
)
2354 pe
->index
= tid_aux
;
2355 mvpp2_prs_hw_read(priv
, pe
);
2356 ri_bits
= mvpp2_prs_sram_ri_get(pe
);
2357 ri_bits
&= MVPP2_PRS_RI_VLAN_MASK
;
2358 if (ri_bits
== MVPP2_PRS_RI_VLAN_SINGLE
||
2359 ri_bits
== MVPP2_PRS_RI_VLAN_TRIPLE
)
2363 if (tid
>= tid_aux
) {
2368 memset(pe
, 0, sizeof(*pe
));
2369 mvpp2_prs_tcam_lu_set(pe
, MVPP2_PRS_LU_VLAN
);
2372 priv
->prs_double_vlans
[ai
] = true;
2374 mvpp2_prs_match_etype(pe
, 0, tpid1
);
2375 mvpp2_prs_match_etype(pe
, 4, tpid2
);
2377 mvpp2_prs_sram_next_lu_set(pe
, MVPP2_PRS_LU_VLAN
);
2378 /* Shift 8 bytes - skip 2 vlan tags */
2379 mvpp2_prs_sram_shift_set(pe
, 2 * MVPP2_VLAN_TAG_LEN
,
2380 MVPP2_PRS_SRAM_OP_SEL_SHIFT_ADD
);
2381 mvpp2_prs_sram_ri_update(pe
, MVPP2_PRS_RI_VLAN_DOUBLE
,
2382 MVPP2_PRS_RI_VLAN_MASK
);
2383 mvpp2_prs_sram_ai_update(pe
, ai
| MVPP2_PRS_DBL_VLAN_AI_BIT
,
2384 MVPP2_PRS_SRAM_AI_MASK
);
2386 mvpp2_prs_shadow_set(priv
, pe
->index
, MVPP2_PRS_LU_VLAN
);
2389 /* Update ports' mask */
2390 mvpp2_prs_tcam_port_map_set(pe
, port_map
);
2391 mvpp2_prs_hw_write(priv
, pe
);
2397 /* IPv4 header parsing for fragmentation and L4 offset */
2398 static int mvpp2_prs_ip4_proto(struct mvpp2
*priv
, unsigned short proto
,
2399 unsigned int ri
, unsigned int ri_mask
)
2401 struct mvpp2_prs_entry pe
;
2404 if ((proto
!= IPPROTO_TCP
) && (proto
!= IPPROTO_UDP
) &&
2405 (proto
!= IPPROTO_IGMP
))
2408 /* Not fragmented packet */
2409 tid
= mvpp2_prs_tcam_first_free(priv
, MVPP2_PE_FIRST_FREE_TID
,
2410 MVPP2_PE_LAST_FREE_TID
);
2414 memset(&pe
, 0, sizeof(pe
));
2415 mvpp2_prs_tcam_lu_set(&pe
, MVPP2_PRS_LU_IP4
);
2418 /* Set next lu to IPv4 */
2419 mvpp2_prs_sram_next_lu_set(&pe
, MVPP2_PRS_LU_IP4
);
2420 mvpp2_prs_sram_shift_set(&pe
, 12, MVPP2_PRS_SRAM_OP_SEL_SHIFT_ADD
);
2422 mvpp2_prs_sram_offset_set(&pe
, MVPP2_PRS_SRAM_UDF_TYPE_L4
,
2423 sizeof(struct iphdr
) - 4,
2424 MVPP2_PRS_SRAM_OP_SEL_UDF_ADD
);
2425 mvpp2_prs_sram_ai_update(&pe
, MVPP2_PRS_IPV4_DIP_AI_BIT
,
2426 MVPP2_PRS_IPV4_DIP_AI_BIT
);
2427 mvpp2_prs_sram_ri_update(&pe
, ri
, ri_mask
| MVPP2_PRS_RI_IP_FRAG_MASK
);
2429 mvpp2_prs_tcam_data_byte_set(&pe
, 2, 0x00,
2430 MVPP2_PRS_TCAM_PROTO_MASK_L
);
2431 mvpp2_prs_tcam_data_byte_set(&pe
, 3, 0x00,
2432 MVPP2_PRS_TCAM_PROTO_MASK
);
2434 mvpp2_prs_tcam_data_byte_set(&pe
, 5, proto
, MVPP2_PRS_TCAM_PROTO_MASK
);
2435 mvpp2_prs_tcam_ai_update(&pe
, 0, MVPP2_PRS_IPV4_DIP_AI_BIT
);
2436 /* Unmask all ports */
2437 mvpp2_prs_tcam_port_map_set(&pe
, MVPP2_PRS_PORT_MASK
);
2439 /* Update shadow table and hw entry */
2440 mvpp2_prs_shadow_set(priv
, pe
.index
, MVPP2_PRS_LU_IP4
);
2441 mvpp2_prs_hw_write(priv
, &pe
);
2443 /* Fragmented packet */
2444 tid
= mvpp2_prs_tcam_first_free(priv
, MVPP2_PE_FIRST_FREE_TID
,
2445 MVPP2_PE_LAST_FREE_TID
);
2450 /* Clear ri before updating */
2451 pe
.sram
.word
[MVPP2_PRS_SRAM_RI_WORD
] = 0x0;
2452 pe
.sram
.word
[MVPP2_PRS_SRAM_RI_CTRL_WORD
] = 0x0;
2453 mvpp2_prs_sram_ri_update(&pe
, ri
, ri_mask
);
2455 mvpp2_prs_sram_ri_update(&pe
, ri
| MVPP2_PRS_RI_IP_FRAG_TRUE
,
2456 ri_mask
| MVPP2_PRS_RI_IP_FRAG_MASK
);
2458 mvpp2_prs_tcam_data_byte_set(&pe
, 2, 0x00, 0x0);
2459 mvpp2_prs_tcam_data_byte_set(&pe
, 3, 0x00, 0x0);
2461 /* Update shadow table and hw entry */
2462 mvpp2_prs_shadow_set(priv
, pe
.index
, MVPP2_PRS_LU_IP4
);
2463 mvpp2_prs_hw_write(priv
, &pe
);
2468 /* IPv4 L3 multicast or broadcast */
2469 static int mvpp2_prs_ip4_cast(struct mvpp2
*priv
, unsigned short l3_cast
)
2471 struct mvpp2_prs_entry pe
;
2474 tid
= mvpp2_prs_tcam_first_free(priv
, MVPP2_PE_FIRST_FREE_TID
,
2475 MVPP2_PE_LAST_FREE_TID
);
2479 memset(&pe
, 0, sizeof(pe
));
2480 mvpp2_prs_tcam_lu_set(&pe
, MVPP2_PRS_LU_IP4
);
2484 case MVPP2_PRS_L3_MULTI_CAST
:
2485 mvpp2_prs_tcam_data_byte_set(&pe
, 0, MVPP2_PRS_IPV4_MC
,
2486 MVPP2_PRS_IPV4_MC_MASK
);
2487 mvpp2_prs_sram_ri_update(&pe
, MVPP2_PRS_RI_L3_MCAST
,
2488 MVPP2_PRS_RI_L3_ADDR_MASK
);
2490 case MVPP2_PRS_L3_BROAD_CAST
:
2491 mask
= MVPP2_PRS_IPV4_BC_MASK
;
2492 mvpp2_prs_tcam_data_byte_set(&pe
, 0, mask
, mask
);
2493 mvpp2_prs_tcam_data_byte_set(&pe
, 1, mask
, mask
);
2494 mvpp2_prs_tcam_data_byte_set(&pe
, 2, mask
, mask
);
2495 mvpp2_prs_tcam_data_byte_set(&pe
, 3, mask
, mask
);
2496 mvpp2_prs_sram_ri_update(&pe
, MVPP2_PRS_RI_L3_BCAST
,
2497 MVPP2_PRS_RI_L3_ADDR_MASK
);
2503 /* Finished: go to flowid generation */
2504 mvpp2_prs_sram_next_lu_set(&pe
, MVPP2_PRS_LU_FLOWS
);
2505 mvpp2_prs_sram_bits_set(&pe
, MVPP2_PRS_SRAM_LU_GEN_BIT
, 1);
2507 mvpp2_prs_tcam_ai_update(&pe
, MVPP2_PRS_IPV4_DIP_AI_BIT
,
2508 MVPP2_PRS_IPV4_DIP_AI_BIT
);
2509 /* Unmask all ports */
2510 mvpp2_prs_tcam_port_map_set(&pe
, MVPP2_PRS_PORT_MASK
);
2512 /* Update shadow table and hw entry */
2513 mvpp2_prs_shadow_set(priv
, pe
.index
, MVPP2_PRS_LU_IP4
);
2514 mvpp2_prs_hw_write(priv
, &pe
);
2519 /* Set entries for protocols over IPv6 */
2520 static int mvpp2_prs_ip6_proto(struct mvpp2
*priv
, unsigned short proto
,
2521 unsigned int ri
, unsigned int ri_mask
)
2523 struct mvpp2_prs_entry pe
;
2526 if ((proto
!= IPPROTO_TCP
) && (proto
!= IPPROTO_UDP
) &&
2527 (proto
!= IPPROTO_ICMPV6
) && (proto
!= IPPROTO_IPIP
))
2530 tid
= mvpp2_prs_tcam_first_free(priv
, MVPP2_PE_FIRST_FREE_TID
,
2531 MVPP2_PE_LAST_FREE_TID
);
2535 memset(&pe
, 0, sizeof(pe
));
2536 mvpp2_prs_tcam_lu_set(&pe
, MVPP2_PRS_LU_IP6
);
2539 /* Finished: go to flowid generation */
2540 mvpp2_prs_sram_next_lu_set(&pe
, MVPP2_PRS_LU_FLOWS
);
2541 mvpp2_prs_sram_bits_set(&pe
, MVPP2_PRS_SRAM_LU_GEN_BIT
, 1);
2542 mvpp2_prs_sram_ri_update(&pe
, ri
, ri_mask
);
2543 mvpp2_prs_sram_offset_set(&pe
, MVPP2_PRS_SRAM_UDF_TYPE_L4
,
2544 sizeof(struct ipv6hdr
) - 6,
2545 MVPP2_PRS_SRAM_OP_SEL_UDF_ADD
);
2547 mvpp2_prs_tcam_data_byte_set(&pe
, 0, proto
, MVPP2_PRS_TCAM_PROTO_MASK
);
2548 mvpp2_prs_tcam_ai_update(&pe
, MVPP2_PRS_IPV6_NO_EXT_AI_BIT
,
2549 MVPP2_PRS_IPV6_NO_EXT_AI_BIT
);
2550 /* Unmask all ports */
2551 mvpp2_prs_tcam_port_map_set(&pe
, MVPP2_PRS_PORT_MASK
);
2554 mvpp2_prs_shadow_set(priv
, pe
.index
, MVPP2_PRS_LU_IP6
);
2555 mvpp2_prs_hw_write(priv
, &pe
);
2560 /* IPv6 L3 multicast entry */
2561 static int mvpp2_prs_ip6_cast(struct mvpp2
*priv
, unsigned short l3_cast
)
2563 struct mvpp2_prs_entry pe
;
2566 if (l3_cast
!= MVPP2_PRS_L3_MULTI_CAST
)
2569 tid
= mvpp2_prs_tcam_first_free(priv
, MVPP2_PE_FIRST_FREE_TID
,
2570 MVPP2_PE_LAST_FREE_TID
);
2574 memset(&pe
, 0, sizeof(pe
));
2575 mvpp2_prs_tcam_lu_set(&pe
, MVPP2_PRS_LU_IP6
);
2578 /* Finished: go to flowid generation */
2579 mvpp2_prs_sram_next_lu_set(&pe
, MVPP2_PRS_LU_IP6
);
2580 mvpp2_prs_sram_ri_update(&pe
, MVPP2_PRS_RI_L3_MCAST
,
2581 MVPP2_PRS_RI_L3_ADDR_MASK
);
2582 mvpp2_prs_sram_ai_update(&pe
, MVPP2_PRS_IPV6_NO_EXT_AI_BIT
,
2583 MVPP2_PRS_IPV6_NO_EXT_AI_BIT
);
2584 /* Shift back to IPv6 NH */
2585 mvpp2_prs_sram_shift_set(&pe
, -18, MVPP2_PRS_SRAM_OP_SEL_SHIFT_ADD
);
2587 mvpp2_prs_tcam_data_byte_set(&pe
, 0, MVPP2_PRS_IPV6_MC
,
2588 MVPP2_PRS_IPV6_MC_MASK
);
2589 mvpp2_prs_tcam_ai_update(&pe
, 0, MVPP2_PRS_IPV6_NO_EXT_AI_BIT
);
2590 /* Unmask all ports */
2591 mvpp2_prs_tcam_port_map_set(&pe
, MVPP2_PRS_PORT_MASK
);
2593 /* Update shadow table and hw entry */
2594 mvpp2_prs_shadow_set(priv
, pe
.index
, MVPP2_PRS_LU_IP6
);
2595 mvpp2_prs_hw_write(priv
, &pe
);
2600 /* Parser per-port initialization */
2601 static void mvpp2_prs_hw_port_init(struct mvpp2
*priv
, int port
, int lu_first
,
2602 int lu_max
, int offset
)
2607 val
= mvpp2_read(priv
, MVPP2_PRS_INIT_LOOKUP_REG
);
2608 val
&= ~MVPP2_PRS_PORT_LU_MASK(port
);
2609 val
|= MVPP2_PRS_PORT_LU_VAL(port
, lu_first
);
2610 mvpp2_write(priv
, MVPP2_PRS_INIT_LOOKUP_REG
, val
);
2612 /* Set maximum number of loops for packet received from port */
2613 val
= mvpp2_read(priv
, MVPP2_PRS_MAX_LOOP_REG(port
));
2614 val
&= ~MVPP2_PRS_MAX_LOOP_MASK(port
);
2615 val
|= MVPP2_PRS_MAX_LOOP_VAL(port
, lu_max
);
2616 mvpp2_write(priv
, MVPP2_PRS_MAX_LOOP_REG(port
), val
);
2618 /* Set initial offset for packet header extraction for the first
2621 val
= mvpp2_read(priv
, MVPP2_PRS_INIT_OFFS_REG(port
));
2622 val
&= ~MVPP2_PRS_INIT_OFF_MASK(port
);
2623 val
|= MVPP2_PRS_INIT_OFF_VAL(port
, offset
);
2624 mvpp2_write(priv
, MVPP2_PRS_INIT_OFFS_REG(port
), val
);
2627 /* Default flow entries initialization for all ports */
2628 static void mvpp2_prs_def_flow_init(struct mvpp2
*priv
)
2630 struct mvpp2_prs_entry pe
;
2633 for (port
= 0; port
< MVPP2_MAX_PORTS
; port
++) {
2634 memset(&pe
, 0, sizeof(pe
));
2635 mvpp2_prs_tcam_lu_set(&pe
, MVPP2_PRS_LU_FLOWS
);
2636 pe
.index
= MVPP2_PE_FIRST_DEFAULT_FLOW
- port
;
2638 /* Mask all ports */
2639 mvpp2_prs_tcam_port_map_set(&pe
, 0);
2642 mvpp2_prs_sram_ai_update(&pe
, port
, MVPP2_PRS_FLOW_ID_MASK
);
2643 mvpp2_prs_sram_bits_set(&pe
, MVPP2_PRS_SRAM_LU_DONE_BIT
, 1);
2645 /* Update shadow table and hw entry */
2646 mvpp2_prs_shadow_set(priv
, pe
.index
, MVPP2_PRS_LU_FLOWS
);
2647 mvpp2_prs_hw_write(priv
, &pe
);
2651 /* Set default entry for Marvell Header field */
2652 static void mvpp2_prs_mh_init(struct mvpp2
*priv
)
2654 struct mvpp2_prs_entry pe
;
2656 memset(&pe
, 0, sizeof(pe
));
2658 pe
.index
= MVPP2_PE_MH_DEFAULT
;
2659 mvpp2_prs_tcam_lu_set(&pe
, MVPP2_PRS_LU_MH
);
2660 mvpp2_prs_sram_shift_set(&pe
, MVPP2_MH_SIZE
,
2661 MVPP2_PRS_SRAM_OP_SEL_SHIFT_ADD
);
2662 mvpp2_prs_sram_next_lu_set(&pe
, MVPP2_PRS_LU_MAC
);
2664 /* Unmask all ports */
2665 mvpp2_prs_tcam_port_map_set(&pe
, MVPP2_PRS_PORT_MASK
);
2667 /* Update shadow table and hw entry */
2668 mvpp2_prs_shadow_set(priv
, pe
.index
, MVPP2_PRS_LU_MH
);
2669 mvpp2_prs_hw_write(priv
, &pe
);
2672 /* Set default entires (place holder) for promiscuous, non-promiscuous and
2673 * multicast MAC addresses
2675 static void mvpp2_prs_mac_init(struct mvpp2
*priv
)
2677 struct mvpp2_prs_entry pe
;
2679 memset(&pe
, 0, sizeof(pe
));
2681 /* Non-promiscuous mode for all ports - DROP unknown packets */
2682 pe
.index
= MVPP2_PE_MAC_NON_PROMISCUOUS
;
2683 mvpp2_prs_tcam_lu_set(&pe
, MVPP2_PRS_LU_MAC
);
2685 mvpp2_prs_sram_ri_update(&pe
, MVPP2_PRS_RI_DROP_MASK
,
2686 MVPP2_PRS_RI_DROP_MASK
);
2687 mvpp2_prs_sram_bits_set(&pe
, MVPP2_PRS_SRAM_LU_GEN_BIT
, 1);
2688 mvpp2_prs_sram_next_lu_set(&pe
, MVPP2_PRS_LU_FLOWS
);
2690 /* Unmask all ports */
2691 mvpp2_prs_tcam_port_map_set(&pe
, MVPP2_PRS_PORT_MASK
);
2693 /* Update shadow table and hw entry */
2694 mvpp2_prs_shadow_set(priv
, pe
.index
, MVPP2_PRS_LU_MAC
);
2695 mvpp2_prs_hw_write(priv
, &pe
);
2697 /* place holders only - no ports */
2698 mvpp2_prs_mac_drop_all_set(priv
, 0, false);
2699 mvpp2_prs_mac_promisc_set(priv
, 0, false);
2700 mvpp2_prs_mac_multi_set(priv
, 0, MVPP2_PE_MAC_MC_ALL
, false);
2701 mvpp2_prs_mac_multi_set(priv
, 0, MVPP2_PE_MAC_MC_IP6
, false);
2704 /* Set default entries for various types of dsa packets */
2705 static void mvpp2_prs_dsa_init(struct mvpp2
*priv
)
2707 struct mvpp2_prs_entry pe
;
2709 /* None tagged EDSA entry - place holder */
2710 mvpp2_prs_dsa_tag_set(priv
, 0, false, MVPP2_PRS_UNTAGGED
,
2713 /* Tagged EDSA entry - place holder */
2714 mvpp2_prs_dsa_tag_set(priv
, 0, false, MVPP2_PRS_TAGGED
, MVPP2_PRS_EDSA
);
2716 /* None tagged DSA entry - place holder */
2717 mvpp2_prs_dsa_tag_set(priv
, 0, false, MVPP2_PRS_UNTAGGED
,
2720 /* Tagged DSA entry - place holder */
2721 mvpp2_prs_dsa_tag_set(priv
, 0, false, MVPP2_PRS_TAGGED
, MVPP2_PRS_DSA
);
2723 /* None tagged EDSA ethertype entry - place holder*/
2724 mvpp2_prs_dsa_tag_ethertype_set(priv
, 0, false,
2725 MVPP2_PRS_UNTAGGED
, MVPP2_PRS_EDSA
);
2727 /* Tagged EDSA ethertype entry - place holder*/
2728 mvpp2_prs_dsa_tag_ethertype_set(priv
, 0, false,
2729 MVPP2_PRS_TAGGED
, MVPP2_PRS_EDSA
);
2731 /* None tagged DSA ethertype entry */
2732 mvpp2_prs_dsa_tag_ethertype_set(priv
, 0, true,
2733 MVPP2_PRS_UNTAGGED
, MVPP2_PRS_DSA
);
2735 /* Tagged DSA ethertype entry */
2736 mvpp2_prs_dsa_tag_ethertype_set(priv
, 0, true,
2737 MVPP2_PRS_TAGGED
, MVPP2_PRS_DSA
);
2739 /* Set default entry, in case DSA or EDSA tag not found */
2740 memset(&pe
, 0, sizeof(pe
));
2741 mvpp2_prs_tcam_lu_set(&pe
, MVPP2_PRS_LU_DSA
);
2742 pe
.index
= MVPP2_PE_DSA_DEFAULT
;
2743 mvpp2_prs_sram_next_lu_set(&pe
, MVPP2_PRS_LU_VLAN
);
2746 mvpp2_prs_sram_shift_set(&pe
, 0, MVPP2_PRS_SRAM_OP_SEL_SHIFT_ADD
);
2747 mvpp2_prs_shadow_set(priv
, pe
.index
, MVPP2_PRS_LU_MAC
);
2749 /* Clear all sram ai bits for next iteration */
2750 mvpp2_prs_sram_ai_update(&pe
, 0, MVPP2_PRS_SRAM_AI_MASK
);
2752 /* Unmask all ports */
2753 mvpp2_prs_tcam_port_map_set(&pe
, MVPP2_PRS_PORT_MASK
);
2755 mvpp2_prs_hw_write(priv
, &pe
);
2758 /* Match basic ethertypes */
2759 static int mvpp2_prs_etype_init(struct mvpp2
*priv
)
2761 struct mvpp2_prs_entry pe
;
2764 /* Ethertype: PPPoE */
2765 tid
= mvpp2_prs_tcam_first_free(priv
, MVPP2_PE_FIRST_FREE_TID
,
2766 MVPP2_PE_LAST_FREE_TID
);
2770 memset(&pe
, 0, sizeof(pe
));
2771 mvpp2_prs_tcam_lu_set(&pe
, MVPP2_PRS_LU_L2
);
2774 mvpp2_prs_match_etype(&pe
, 0, ETH_P_PPP_SES
);
2776 mvpp2_prs_sram_shift_set(&pe
, MVPP2_PPPOE_HDR_SIZE
,
2777 MVPP2_PRS_SRAM_OP_SEL_SHIFT_ADD
);
2778 mvpp2_prs_sram_next_lu_set(&pe
, MVPP2_PRS_LU_PPPOE
);
2779 mvpp2_prs_sram_ri_update(&pe
, MVPP2_PRS_RI_PPPOE_MASK
,
2780 MVPP2_PRS_RI_PPPOE_MASK
);
2782 /* Update shadow table and hw entry */
2783 mvpp2_prs_shadow_set(priv
, pe
.index
, MVPP2_PRS_LU_L2
);
2784 priv
->prs_shadow
[pe
.index
].udf
= MVPP2_PRS_UDF_L2_DEF
;
2785 priv
->prs_shadow
[pe
.index
].finish
= false;
2786 mvpp2_prs_shadow_ri_set(priv
, pe
.index
, MVPP2_PRS_RI_PPPOE_MASK
,
2787 MVPP2_PRS_RI_PPPOE_MASK
);
2788 mvpp2_prs_hw_write(priv
, &pe
);
2790 /* Ethertype: ARP */
2791 tid
= mvpp2_prs_tcam_first_free(priv
, MVPP2_PE_FIRST_FREE_TID
,
2792 MVPP2_PE_LAST_FREE_TID
);
2796 memset(&pe
, 0, sizeof(pe
));
2797 mvpp2_prs_tcam_lu_set(&pe
, MVPP2_PRS_LU_L2
);
2800 mvpp2_prs_match_etype(&pe
, 0, ETH_P_ARP
);
2802 /* Generate flow in the next iteration*/
2803 mvpp2_prs_sram_next_lu_set(&pe
, MVPP2_PRS_LU_FLOWS
);
2804 mvpp2_prs_sram_bits_set(&pe
, MVPP2_PRS_SRAM_LU_GEN_BIT
, 1);
2805 mvpp2_prs_sram_ri_update(&pe
, MVPP2_PRS_RI_L3_ARP
,
2806 MVPP2_PRS_RI_L3_PROTO_MASK
);
2808 mvpp2_prs_sram_offset_set(&pe
, MVPP2_PRS_SRAM_UDF_TYPE_L3
,
2810 MVPP2_PRS_SRAM_OP_SEL_UDF_ADD
);
2812 /* Update shadow table and hw entry */
2813 mvpp2_prs_shadow_set(priv
, pe
.index
, MVPP2_PRS_LU_L2
);
2814 priv
->prs_shadow
[pe
.index
].udf
= MVPP2_PRS_UDF_L2_DEF
;
2815 priv
->prs_shadow
[pe
.index
].finish
= true;
2816 mvpp2_prs_shadow_ri_set(priv
, pe
.index
, MVPP2_PRS_RI_L3_ARP
,
2817 MVPP2_PRS_RI_L3_PROTO_MASK
);
2818 mvpp2_prs_hw_write(priv
, &pe
);
2820 /* Ethertype: LBTD */
2821 tid
= mvpp2_prs_tcam_first_free(priv
, MVPP2_PE_FIRST_FREE_TID
,
2822 MVPP2_PE_LAST_FREE_TID
);
2826 memset(&pe
, 0, sizeof(pe
));
2827 mvpp2_prs_tcam_lu_set(&pe
, MVPP2_PRS_LU_L2
);
2830 mvpp2_prs_match_etype(&pe
, 0, MVPP2_IP_LBDT_TYPE
);
2832 /* Generate flow in the next iteration*/
2833 mvpp2_prs_sram_next_lu_set(&pe
, MVPP2_PRS_LU_FLOWS
);
2834 mvpp2_prs_sram_bits_set(&pe
, MVPP2_PRS_SRAM_LU_GEN_BIT
, 1);
2835 mvpp2_prs_sram_ri_update(&pe
, MVPP2_PRS_RI_CPU_CODE_RX_SPEC
|
2836 MVPP2_PRS_RI_UDF3_RX_SPECIAL
,
2837 MVPP2_PRS_RI_CPU_CODE_MASK
|
2838 MVPP2_PRS_RI_UDF3_MASK
);
2840 mvpp2_prs_sram_offset_set(&pe
, MVPP2_PRS_SRAM_UDF_TYPE_L3
,
2842 MVPP2_PRS_SRAM_OP_SEL_UDF_ADD
);
2844 /* Update shadow table and hw entry */
2845 mvpp2_prs_shadow_set(priv
, pe
.index
, MVPP2_PRS_LU_L2
);
2846 priv
->prs_shadow
[pe
.index
].udf
= MVPP2_PRS_UDF_L2_DEF
;
2847 priv
->prs_shadow
[pe
.index
].finish
= true;
2848 mvpp2_prs_shadow_ri_set(priv
, pe
.index
, MVPP2_PRS_RI_CPU_CODE_RX_SPEC
|
2849 MVPP2_PRS_RI_UDF3_RX_SPECIAL
,
2850 MVPP2_PRS_RI_CPU_CODE_MASK
|
2851 MVPP2_PRS_RI_UDF3_MASK
);
2852 mvpp2_prs_hw_write(priv
, &pe
);
2854 /* Ethertype: IPv4 without options */
2855 tid
= mvpp2_prs_tcam_first_free(priv
, MVPP2_PE_FIRST_FREE_TID
,
2856 MVPP2_PE_LAST_FREE_TID
);
2860 memset(&pe
, 0, sizeof(pe
));
2861 mvpp2_prs_tcam_lu_set(&pe
, MVPP2_PRS_LU_L2
);
2864 mvpp2_prs_match_etype(&pe
, 0, ETH_P_IP
);
2865 mvpp2_prs_tcam_data_byte_set(&pe
, MVPP2_ETH_TYPE_LEN
,
2866 MVPP2_PRS_IPV4_HEAD
| MVPP2_PRS_IPV4_IHL
,
2867 MVPP2_PRS_IPV4_HEAD_MASK
|
2868 MVPP2_PRS_IPV4_IHL_MASK
);
2870 mvpp2_prs_sram_next_lu_set(&pe
, MVPP2_PRS_LU_IP4
);
2871 mvpp2_prs_sram_ri_update(&pe
, MVPP2_PRS_RI_L3_IP4
,
2872 MVPP2_PRS_RI_L3_PROTO_MASK
);
2873 /* Skip eth_type + 4 bytes of IP header */
2874 mvpp2_prs_sram_shift_set(&pe
, MVPP2_ETH_TYPE_LEN
+ 4,
2875 MVPP2_PRS_SRAM_OP_SEL_SHIFT_ADD
);
2877 mvpp2_prs_sram_offset_set(&pe
, MVPP2_PRS_SRAM_UDF_TYPE_L3
,
2879 MVPP2_PRS_SRAM_OP_SEL_UDF_ADD
);
2881 /* Update shadow table and hw entry */
2882 mvpp2_prs_shadow_set(priv
, pe
.index
, MVPP2_PRS_LU_L2
);
2883 priv
->prs_shadow
[pe
.index
].udf
= MVPP2_PRS_UDF_L2_DEF
;
2884 priv
->prs_shadow
[pe
.index
].finish
= false;
2885 mvpp2_prs_shadow_ri_set(priv
, pe
.index
, MVPP2_PRS_RI_L3_IP4
,
2886 MVPP2_PRS_RI_L3_PROTO_MASK
);
2887 mvpp2_prs_hw_write(priv
, &pe
);
2889 /* Ethertype: IPv4 with options */
2890 tid
= mvpp2_prs_tcam_first_free(priv
, MVPP2_PE_FIRST_FREE_TID
,
2891 MVPP2_PE_LAST_FREE_TID
);
2897 /* Clear tcam data before updating */
2898 pe
.tcam
.byte
[MVPP2_PRS_TCAM_DATA_BYTE(MVPP2_ETH_TYPE_LEN
)] = 0x0;
2899 pe
.tcam
.byte
[MVPP2_PRS_TCAM_DATA_BYTE_EN(MVPP2_ETH_TYPE_LEN
)] = 0x0;
2901 mvpp2_prs_tcam_data_byte_set(&pe
, MVPP2_ETH_TYPE_LEN
,
2902 MVPP2_PRS_IPV4_HEAD
,
2903 MVPP2_PRS_IPV4_HEAD_MASK
);
2905 /* Clear ri before updating */
2906 pe
.sram
.word
[MVPP2_PRS_SRAM_RI_WORD
] = 0x0;
2907 pe
.sram
.word
[MVPP2_PRS_SRAM_RI_CTRL_WORD
] = 0x0;
2908 mvpp2_prs_sram_ri_update(&pe
, MVPP2_PRS_RI_L3_IP4_OPT
,
2909 MVPP2_PRS_RI_L3_PROTO_MASK
);
2911 /* Update shadow table and hw entry */
2912 mvpp2_prs_shadow_set(priv
, pe
.index
, MVPP2_PRS_LU_L2
);
2913 priv
->prs_shadow
[pe
.index
].udf
= MVPP2_PRS_UDF_L2_DEF
;
2914 priv
->prs_shadow
[pe
.index
].finish
= false;
2915 mvpp2_prs_shadow_ri_set(priv
, pe
.index
, MVPP2_PRS_RI_L3_IP4_OPT
,
2916 MVPP2_PRS_RI_L3_PROTO_MASK
);
2917 mvpp2_prs_hw_write(priv
, &pe
);
2919 /* Ethertype: IPv6 without options */
2920 tid
= mvpp2_prs_tcam_first_free(priv
, MVPP2_PE_FIRST_FREE_TID
,
2921 MVPP2_PE_LAST_FREE_TID
);
2925 memset(&pe
, 0, sizeof(pe
));
2926 mvpp2_prs_tcam_lu_set(&pe
, MVPP2_PRS_LU_L2
);
2929 mvpp2_prs_match_etype(&pe
, 0, ETH_P_IPV6
);
2931 /* Skip DIP of IPV6 header */
2932 mvpp2_prs_sram_shift_set(&pe
, MVPP2_ETH_TYPE_LEN
+ 8 +
2933 MVPP2_MAX_L3_ADDR_SIZE
,
2934 MVPP2_PRS_SRAM_OP_SEL_SHIFT_ADD
);
2935 mvpp2_prs_sram_next_lu_set(&pe
, MVPP2_PRS_LU_IP6
);
2936 mvpp2_prs_sram_ri_update(&pe
, MVPP2_PRS_RI_L3_IP6
,
2937 MVPP2_PRS_RI_L3_PROTO_MASK
);
2939 mvpp2_prs_sram_offset_set(&pe
, MVPP2_PRS_SRAM_UDF_TYPE_L3
,
2941 MVPP2_PRS_SRAM_OP_SEL_UDF_ADD
);
2943 mvpp2_prs_shadow_set(priv
, pe
.index
, MVPP2_PRS_LU_L2
);
2944 priv
->prs_shadow
[pe
.index
].udf
= MVPP2_PRS_UDF_L2_DEF
;
2945 priv
->prs_shadow
[pe
.index
].finish
= false;
2946 mvpp2_prs_shadow_ri_set(priv
, pe
.index
, MVPP2_PRS_RI_L3_IP6
,
2947 MVPP2_PRS_RI_L3_PROTO_MASK
);
2948 mvpp2_prs_hw_write(priv
, &pe
);
2950 /* Default entry for MVPP2_PRS_LU_L2 - Unknown ethtype */
2951 memset(&pe
, 0, sizeof(struct mvpp2_prs_entry
));
2952 mvpp2_prs_tcam_lu_set(&pe
, MVPP2_PRS_LU_L2
);
2953 pe
.index
= MVPP2_PE_ETH_TYPE_UN
;
2955 /* Unmask all ports */
2956 mvpp2_prs_tcam_port_map_set(&pe
, MVPP2_PRS_PORT_MASK
);
2958 /* Generate flow in the next iteration*/
2959 mvpp2_prs_sram_bits_set(&pe
, MVPP2_PRS_SRAM_LU_GEN_BIT
, 1);
2960 mvpp2_prs_sram_next_lu_set(&pe
, MVPP2_PRS_LU_FLOWS
);
2961 mvpp2_prs_sram_ri_update(&pe
, MVPP2_PRS_RI_L3_UN
,
2962 MVPP2_PRS_RI_L3_PROTO_MASK
);
2963 /* Set L3 offset even it's unknown L3 */
2964 mvpp2_prs_sram_offset_set(&pe
, MVPP2_PRS_SRAM_UDF_TYPE_L3
,
2966 MVPP2_PRS_SRAM_OP_SEL_UDF_ADD
);
2968 /* Update shadow table and hw entry */
2969 mvpp2_prs_shadow_set(priv
, pe
.index
, MVPP2_PRS_LU_L2
);
2970 priv
->prs_shadow
[pe
.index
].udf
= MVPP2_PRS_UDF_L2_DEF
;
2971 priv
->prs_shadow
[pe
.index
].finish
= true;
2972 mvpp2_prs_shadow_ri_set(priv
, pe
.index
, MVPP2_PRS_RI_L3_UN
,
2973 MVPP2_PRS_RI_L3_PROTO_MASK
);
2974 mvpp2_prs_hw_write(priv
, &pe
);
2979 /* Configure vlan entries and detect up to 2 successive VLAN tags.
2986 static int mvpp2_prs_vlan_init(struct platform_device
*pdev
, struct mvpp2
*priv
)
2988 struct mvpp2_prs_entry pe
;
2991 priv
->prs_double_vlans
= devm_kcalloc(&pdev
->dev
, sizeof(bool),
2992 MVPP2_PRS_DBL_VLANS_MAX
,
2994 if (!priv
->prs_double_vlans
)
2997 /* Double VLAN: 0x8100, 0x88A8 */
2998 err
= mvpp2_prs_double_vlan_add(priv
, ETH_P_8021Q
, ETH_P_8021AD
,
2999 MVPP2_PRS_PORT_MASK
);
3003 /* Double VLAN: 0x8100, 0x8100 */
3004 err
= mvpp2_prs_double_vlan_add(priv
, ETH_P_8021Q
, ETH_P_8021Q
,
3005 MVPP2_PRS_PORT_MASK
);
3009 /* Single VLAN: 0x88a8 */
3010 err
= mvpp2_prs_vlan_add(priv
, ETH_P_8021AD
, MVPP2_PRS_SINGLE_VLAN_AI
,
3011 MVPP2_PRS_PORT_MASK
);
3015 /* Single VLAN: 0x8100 */
3016 err
= mvpp2_prs_vlan_add(priv
, ETH_P_8021Q
, MVPP2_PRS_SINGLE_VLAN_AI
,
3017 MVPP2_PRS_PORT_MASK
);
3021 /* Set default double vlan entry */
3022 memset(&pe
, 0, sizeof(pe
));
3023 mvpp2_prs_tcam_lu_set(&pe
, MVPP2_PRS_LU_VLAN
);
3024 pe
.index
= MVPP2_PE_VLAN_DBL
;
3026 mvpp2_prs_sram_next_lu_set(&pe
, MVPP2_PRS_LU_L2
);
3027 /* Clear ai for next iterations */
3028 mvpp2_prs_sram_ai_update(&pe
, 0, MVPP2_PRS_SRAM_AI_MASK
);
3029 mvpp2_prs_sram_ri_update(&pe
, MVPP2_PRS_RI_VLAN_DOUBLE
,
3030 MVPP2_PRS_RI_VLAN_MASK
);
3032 mvpp2_prs_tcam_ai_update(&pe
, MVPP2_PRS_DBL_VLAN_AI_BIT
,
3033 MVPP2_PRS_DBL_VLAN_AI_BIT
);
3034 /* Unmask all ports */
3035 mvpp2_prs_tcam_port_map_set(&pe
, MVPP2_PRS_PORT_MASK
);
3037 /* Update shadow table and hw entry */
3038 mvpp2_prs_shadow_set(priv
, pe
.index
, MVPP2_PRS_LU_VLAN
);
3039 mvpp2_prs_hw_write(priv
, &pe
);
3041 /* Set default vlan none entry */
3042 memset(&pe
, 0, sizeof(pe
));
3043 mvpp2_prs_tcam_lu_set(&pe
, MVPP2_PRS_LU_VLAN
);
3044 pe
.index
= MVPP2_PE_VLAN_NONE
;
3046 mvpp2_prs_sram_next_lu_set(&pe
, MVPP2_PRS_LU_L2
);
3047 mvpp2_prs_sram_ri_update(&pe
, MVPP2_PRS_RI_VLAN_NONE
,
3048 MVPP2_PRS_RI_VLAN_MASK
);
3050 /* Unmask all ports */
3051 mvpp2_prs_tcam_port_map_set(&pe
, MVPP2_PRS_PORT_MASK
);
3053 /* Update shadow table and hw entry */
3054 mvpp2_prs_shadow_set(priv
, pe
.index
, MVPP2_PRS_LU_VLAN
);
3055 mvpp2_prs_hw_write(priv
, &pe
);
3060 /* Set entries for PPPoE ethertype */
3061 static int mvpp2_prs_pppoe_init(struct mvpp2
*priv
)
3063 struct mvpp2_prs_entry pe
;
3066 /* IPv4 over PPPoE with options */
3067 tid
= mvpp2_prs_tcam_first_free(priv
, MVPP2_PE_FIRST_FREE_TID
,
3068 MVPP2_PE_LAST_FREE_TID
);
3072 memset(&pe
, 0, sizeof(pe
));
3073 mvpp2_prs_tcam_lu_set(&pe
, MVPP2_PRS_LU_PPPOE
);
3076 mvpp2_prs_match_etype(&pe
, 0, PPP_IP
);
3078 mvpp2_prs_sram_next_lu_set(&pe
, MVPP2_PRS_LU_IP4
);
3079 mvpp2_prs_sram_ri_update(&pe
, MVPP2_PRS_RI_L3_IP4_OPT
,
3080 MVPP2_PRS_RI_L3_PROTO_MASK
);
3081 /* Skip eth_type + 4 bytes of IP header */
3082 mvpp2_prs_sram_shift_set(&pe
, MVPP2_ETH_TYPE_LEN
+ 4,
3083 MVPP2_PRS_SRAM_OP_SEL_SHIFT_ADD
);
3085 mvpp2_prs_sram_offset_set(&pe
, MVPP2_PRS_SRAM_UDF_TYPE_L3
,
3087 MVPP2_PRS_SRAM_OP_SEL_UDF_ADD
);
3089 /* Update shadow table and hw entry */
3090 mvpp2_prs_shadow_set(priv
, pe
.index
, MVPP2_PRS_LU_PPPOE
);
3091 mvpp2_prs_hw_write(priv
, &pe
);
3093 /* IPv4 over PPPoE without options */
3094 tid
= mvpp2_prs_tcam_first_free(priv
, MVPP2_PE_FIRST_FREE_TID
,
3095 MVPP2_PE_LAST_FREE_TID
);
3101 mvpp2_prs_tcam_data_byte_set(&pe
, MVPP2_ETH_TYPE_LEN
,
3102 MVPP2_PRS_IPV4_HEAD
| MVPP2_PRS_IPV4_IHL
,
3103 MVPP2_PRS_IPV4_HEAD_MASK
|
3104 MVPP2_PRS_IPV4_IHL_MASK
);
3106 /* Clear ri before updating */
3107 pe
.sram
.word
[MVPP2_PRS_SRAM_RI_WORD
] = 0x0;
3108 pe
.sram
.word
[MVPP2_PRS_SRAM_RI_CTRL_WORD
] = 0x0;
3109 mvpp2_prs_sram_ri_update(&pe
, MVPP2_PRS_RI_L3_IP4
,
3110 MVPP2_PRS_RI_L3_PROTO_MASK
);
3112 /* Update shadow table and hw entry */
3113 mvpp2_prs_shadow_set(priv
, pe
.index
, MVPP2_PRS_LU_PPPOE
);
3114 mvpp2_prs_hw_write(priv
, &pe
);
3116 /* IPv6 over PPPoE */
3117 tid
= mvpp2_prs_tcam_first_free(priv
, MVPP2_PE_FIRST_FREE_TID
,
3118 MVPP2_PE_LAST_FREE_TID
);
3122 memset(&pe
, 0, sizeof(pe
));
3123 mvpp2_prs_tcam_lu_set(&pe
, MVPP2_PRS_LU_PPPOE
);
3126 mvpp2_prs_match_etype(&pe
, 0, PPP_IPV6
);
3128 mvpp2_prs_sram_next_lu_set(&pe
, MVPP2_PRS_LU_IP6
);
3129 mvpp2_prs_sram_ri_update(&pe
, MVPP2_PRS_RI_L3_IP6
,
3130 MVPP2_PRS_RI_L3_PROTO_MASK
);
3131 /* Skip eth_type + 4 bytes of IPv6 header */
3132 mvpp2_prs_sram_shift_set(&pe
, MVPP2_ETH_TYPE_LEN
+ 4,
3133 MVPP2_PRS_SRAM_OP_SEL_SHIFT_ADD
);
3135 mvpp2_prs_sram_offset_set(&pe
, MVPP2_PRS_SRAM_UDF_TYPE_L3
,
3137 MVPP2_PRS_SRAM_OP_SEL_UDF_ADD
);
3139 /* Update shadow table and hw entry */
3140 mvpp2_prs_shadow_set(priv
, pe
.index
, MVPP2_PRS_LU_PPPOE
);
3141 mvpp2_prs_hw_write(priv
, &pe
);
3143 /* Non-IP over PPPoE */
3144 tid
= mvpp2_prs_tcam_first_free(priv
, MVPP2_PE_FIRST_FREE_TID
,
3145 MVPP2_PE_LAST_FREE_TID
);
3149 memset(&pe
, 0, sizeof(pe
));
3150 mvpp2_prs_tcam_lu_set(&pe
, MVPP2_PRS_LU_PPPOE
);
3153 mvpp2_prs_sram_ri_update(&pe
, MVPP2_PRS_RI_L3_UN
,
3154 MVPP2_PRS_RI_L3_PROTO_MASK
);
3156 /* Finished: go to flowid generation */
3157 mvpp2_prs_sram_next_lu_set(&pe
, MVPP2_PRS_LU_FLOWS
);
3158 mvpp2_prs_sram_bits_set(&pe
, MVPP2_PRS_SRAM_LU_GEN_BIT
, 1);
3159 /* Set L3 offset even if it's unknown L3 */
3160 mvpp2_prs_sram_offset_set(&pe
, MVPP2_PRS_SRAM_UDF_TYPE_L3
,
3162 MVPP2_PRS_SRAM_OP_SEL_UDF_ADD
);
3164 /* Update shadow table and hw entry */
3165 mvpp2_prs_shadow_set(priv
, pe
.index
, MVPP2_PRS_LU_PPPOE
);
3166 mvpp2_prs_hw_write(priv
, &pe
);
3171 /* Initialize entries for IPv4 */
3172 static int mvpp2_prs_ip4_init(struct mvpp2
*priv
)
3174 struct mvpp2_prs_entry pe
;
3177 /* Set entries for TCP, UDP and IGMP over IPv4 */
3178 err
= mvpp2_prs_ip4_proto(priv
, IPPROTO_TCP
, MVPP2_PRS_RI_L4_TCP
,
3179 MVPP2_PRS_RI_L4_PROTO_MASK
);
3183 err
= mvpp2_prs_ip4_proto(priv
, IPPROTO_UDP
, MVPP2_PRS_RI_L4_UDP
,
3184 MVPP2_PRS_RI_L4_PROTO_MASK
);
3188 err
= mvpp2_prs_ip4_proto(priv
, IPPROTO_IGMP
,
3189 MVPP2_PRS_RI_CPU_CODE_RX_SPEC
|
3190 MVPP2_PRS_RI_UDF3_RX_SPECIAL
,
3191 MVPP2_PRS_RI_CPU_CODE_MASK
|
3192 MVPP2_PRS_RI_UDF3_MASK
);
3196 /* IPv4 Broadcast */
3197 err
= mvpp2_prs_ip4_cast(priv
, MVPP2_PRS_L3_BROAD_CAST
);
3201 /* IPv4 Multicast */
3202 err
= mvpp2_prs_ip4_cast(priv
, MVPP2_PRS_L3_MULTI_CAST
);
3206 /* Default IPv4 entry for unknown protocols */
3207 memset(&pe
, 0, sizeof(pe
));
3208 mvpp2_prs_tcam_lu_set(&pe
, MVPP2_PRS_LU_IP4
);
3209 pe
.index
= MVPP2_PE_IP4_PROTO_UN
;
3211 /* Set next lu to IPv4 */
3212 mvpp2_prs_sram_next_lu_set(&pe
, MVPP2_PRS_LU_IP4
);
3213 mvpp2_prs_sram_shift_set(&pe
, 12, MVPP2_PRS_SRAM_OP_SEL_SHIFT_ADD
);
3215 mvpp2_prs_sram_offset_set(&pe
, MVPP2_PRS_SRAM_UDF_TYPE_L4
,
3216 sizeof(struct iphdr
) - 4,
3217 MVPP2_PRS_SRAM_OP_SEL_UDF_ADD
);
3218 mvpp2_prs_sram_ai_update(&pe
, MVPP2_PRS_IPV4_DIP_AI_BIT
,
3219 MVPP2_PRS_IPV4_DIP_AI_BIT
);
3220 mvpp2_prs_sram_ri_update(&pe
, MVPP2_PRS_RI_L4_OTHER
,
3221 MVPP2_PRS_RI_L4_PROTO_MASK
);
3223 mvpp2_prs_tcam_ai_update(&pe
, 0, MVPP2_PRS_IPV4_DIP_AI_BIT
);
3224 /* Unmask all ports */
3225 mvpp2_prs_tcam_port_map_set(&pe
, MVPP2_PRS_PORT_MASK
);
3227 /* Update shadow table and hw entry */
3228 mvpp2_prs_shadow_set(priv
, pe
.index
, MVPP2_PRS_LU_IP4
);
3229 mvpp2_prs_hw_write(priv
, &pe
);
3231 /* Default IPv4 entry for unicast address */
3232 memset(&pe
, 0, sizeof(pe
));
3233 mvpp2_prs_tcam_lu_set(&pe
, MVPP2_PRS_LU_IP4
);
3234 pe
.index
= MVPP2_PE_IP4_ADDR_UN
;
3236 /* Finished: go to flowid generation */
3237 mvpp2_prs_sram_next_lu_set(&pe
, MVPP2_PRS_LU_FLOWS
);
3238 mvpp2_prs_sram_bits_set(&pe
, MVPP2_PRS_SRAM_LU_GEN_BIT
, 1);
3239 mvpp2_prs_sram_ri_update(&pe
, MVPP2_PRS_RI_L3_UCAST
,
3240 MVPP2_PRS_RI_L3_ADDR_MASK
);
3242 mvpp2_prs_tcam_ai_update(&pe
, MVPP2_PRS_IPV4_DIP_AI_BIT
,
3243 MVPP2_PRS_IPV4_DIP_AI_BIT
);
3244 /* Unmask all ports */
3245 mvpp2_prs_tcam_port_map_set(&pe
, MVPP2_PRS_PORT_MASK
);
3247 /* Update shadow table and hw entry */
3248 mvpp2_prs_shadow_set(priv
, pe
.index
, MVPP2_PRS_LU_IP4
);
3249 mvpp2_prs_hw_write(priv
, &pe
);
3254 /* Initialize entries for IPv6 */
3255 static int mvpp2_prs_ip6_init(struct mvpp2
*priv
)
3257 struct mvpp2_prs_entry pe
;
3260 /* Set entries for TCP, UDP and ICMP over IPv6 */
3261 err
= mvpp2_prs_ip6_proto(priv
, IPPROTO_TCP
,
3262 MVPP2_PRS_RI_L4_TCP
,
3263 MVPP2_PRS_RI_L4_PROTO_MASK
);
3267 err
= mvpp2_prs_ip6_proto(priv
, IPPROTO_UDP
,
3268 MVPP2_PRS_RI_L4_UDP
,
3269 MVPP2_PRS_RI_L4_PROTO_MASK
);
3273 err
= mvpp2_prs_ip6_proto(priv
, IPPROTO_ICMPV6
,
3274 MVPP2_PRS_RI_CPU_CODE_RX_SPEC
|
3275 MVPP2_PRS_RI_UDF3_RX_SPECIAL
,
3276 MVPP2_PRS_RI_CPU_CODE_MASK
|
3277 MVPP2_PRS_RI_UDF3_MASK
);
3281 /* IPv4 is the last header. This is similar case as 6-TCP or 17-UDP */
3282 /* Result Info: UDF7=1, DS lite */
3283 err
= mvpp2_prs_ip6_proto(priv
, IPPROTO_IPIP
,
3284 MVPP2_PRS_RI_UDF7_IP6_LITE
,
3285 MVPP2_PRS_RI_UDF7_MASK
);
3289 /* IPv6 multicast */
3290 err
= mvpp2_prs_ip6_cast(priv
, MVPP2_PRS_L3_MULTI_CAST
);
3294 /* Entry for checking hop limit */
3295 tid
= mvpp2_prs_tcam_first_free(priv
, MVPP2_PE_FIRST_FREE_TID
,
3296 MVPP2_PE_LAST_FREE_TID
);
3300 memset(&pe
, 0, sizeof(pe
));
3301 mvpp2_prs_tcam_lu_set(&pe
, MVPP2_PRS_LU_IP6
);
3304 /* Finished: go to flowid generation */
3305 mvpp2_prs_sram_next_lu_set(&pe
, MVPP2_PRS_LU_FLOWS
);
3306 mvpp2_prs_sram_bits_set(&pe
, MVPP2_PRS_SRAM_LU_GEN_BIT
, 1);
3307 mvpp2_prs_sram_ri_update(&pe
, MVPP2_PRS_RI_L3_UN
|
3308 MVPP2_PRS_RI_DROP_MASK
,
3309 MVPP2_PRS_RI_L3_PROTO_MASK
|
3310 MVPP2_PRS_RI_DROP_MASK
);
3312 mvpp2_prs_tcam_data_byte_set(&pe
, 1, 0x00, MVPP2_PRS_IPV6_HOP_MASK
);
3313 mvpp2_prs_tcam_ai_update(&pe
, MVPP2_PRS_IPV6_NO_EXT_AI_BIT
,
3314 MVPP2_PRS_IPV6_NO_EXT_AI_BIT
);
3316 /* Update shadow table and hw entry */
3317 mvpp2_prs_shadow_set(priv
, pe
.index
, MVPP2_PRS_LU_IP4
);
3318 mvpp2_prs_hw_write(priv
, &pe
);
3320 /* Default IPv6 entry for unknown protocols */
3321 memset(&pe
, 0, sizeof(pe
));
3322 mvpp2_prs_tcam_lu_set(&pe
, MVPP2_PRS_LU_IP6
);
3323 pe
.index
= MVPP2_PE_IP6_PROTO_UN
;
3325 /* Finished: go to flowid generation */
3326 mvpp2_prs_sram_next_lu_set(&pe
, MVPP2_PRS_LU_FLOWS
);
3327 mvpp2_prs_sram_bits_set(&pe
, MVPP2_PRS_SRAM_LU_GEN_BIT
, 1);
3328 mvpp2_prs_sram_ri_update(&pe
, MVPP2_PRS_RI_L4_OTHER
,
3329 MVPP2_PRS_RI_L4_PROTO_MASK
);
3330 /* Set L4 offset relatively to our current place */
3331 mvpp2_prs_sram_offset_set(&pe
, MVPP2_PRS_SRAM_UDF_TYPE_L4
,
3332 sizeof(struct ipv6hdr
) - 4,
3333 MVPP2_PRS_SRAM_OP_SEL_UDF_ADD
);
3335 mvpp2_prs_tcam_ai_update(&pe
, MVPP2_PRS_IPV6_NO_EXT_AI_BIT
,
3336 MVPP2_PRS_IPV6_NO_EXT_AI_BIT
);
3337 /* Unmask all ports */
3338 mvpp2_prs_tcam_port_map_set(&pe
, MVPP2_PRS_PORT_MASK
);
3340 /* Update shadow table and hw entry */
3341 mvpp2_prs_shadow_set(priv
, pe
.index
, MVPP2_PRS_LU_IP4
);
3342 mvpp2_prs_hw_write(priv
, &pe
);
3344 /* Default IPv6 entry for unknown ext protocols */
3345 memset(&pe
, 0, sizeof(struct mvpp2_prs_entry
));
3346 mvpp2_prs_tcam_lu_set(&pe
, MVPP2_PRS_LU_IP6
);
3347 pe
.index
= MVPP2_PE_IP6_EXT_PROTO_UN
;
3349 /* Finished: go to flowid generation */
3350 mvpp2_prs_sram_next_lu_set(&pe
, MVPP2_PRS_LU_FLOWS
);
3351 mvpp2_prs_sram_bits_set(&pe
, MVPP2_PRS_SRAM_LU_GEN_BIT
, 1);
3352 mvpp2_prs_sram_ri_update(&pe
, MVPP2_PRS_RI_L4_OTHER
,
3353 MVPP2_PRS_RI_L4_PROTO_MASK
);
3355 mvpp2_prs_tcam_ai_update(&pe
, MVPP2_PRS_IPV6_EXT_AI_BIT
,
3356 MVPP2_PRS_IPV6_EXT_AI_BIT
);
3357 /* Unmask all ports */
3358 mvpp2_prs_tcam_port_map_set(&pe
, MVPP2_PRS_PORT_MASK
);
3360 /* Update shadow table and hw entry */
3361 mvpp2_prs_shadow_set(priv
, pe
.index
, MVPP2_PRS_LU_IP4
);
3362 mvpp2_prs_hw_write(priv
, &pe
);
3364 /* Default IPv6 entry for unicast address */
3365 memset(&pe
, 0, sizeof(struct mvpp2_prs_entry
));
3366 mvpp2_prs_tcam_lu_set(&pe
, MVPP2_PRS_LU_IP6
);
3367 pe
.index
= MVPP2_PE_IP6_ADDR_UN
;
3369 /* Finished: go to IPv6 again */
3370 mvpp2_prs_sram_next_lu_set(&pe
, MVPP2_PRS_LU_IP6
);
3371 mvpp2_prs_sram_ri_update(&pe
, MVPP2_PRS_RI_L3_UCAST
,
3372 MVPP2_PRS_RI_L3_ADDR_MASK
);
3373 mvpp2_prs_sram_ai_update(&pe
, MVPP2_PRS_IPV6_NO_EXT_AI_BIT
,
3374 MVPP2_PRS_IPV6_NO_EXT_AI_BIT
);
3375 /* Shift back to IPV6 NH */
3376 mvpp2_prs_sram_shift_set(&pe
, -18, MVPP2_PRS_SRAM_OP_SEL_SHIFT_ADD
);
3378 mvpp2_prs_tcam_ai_update(&pe
, 0, MVPP2_PRS_IPV6_NO_EXT_AI_BIT
);
3379 /* Unmask all ports */
3380 mvpp2_prs_tcam_port_map_set(&pe
, MVPP2_PRS_PORT_MASK
);
3382 /* Update shadow table and hw entry */
3383 mvpp2_prs_shadow_set(priv
, pe
.index
, MVPP2_PRS_LU_IP6
);
3384 mvpp2_prs_hw_write(priv
, &pe
);
3389 /* Parser default initialization */
3390 static int mvpp2_prs_default_init(struct platform_device
*pdev
,
3395 /* Enable tcam table */
3396 mvpp2_write(priv
, MVPP2_PRS_TCAM_CTRL_REG
, MVPP2_PRS_TCAM_EN_MASK
);
3398 /* Clear all tcam and sram entries */
3399 for (index
= 0; index
< MVPP2_PRS_TCAM_SRAM_SIZE
; index
++) {
3400 mvpp2_write(priv
, MVPP2_PRS_TCAM_IDX_REG
, index
);
3401 for (i
= 0; i
< MVPP2_PRS_TCAM_WORDS
; i
++)
3402 mvpp2_write(priv
, MVPP2_PRS_TCAM_DATA_REG(i
), 0);
3404 mvpp2_write(priv
, MVPP2_PRS_SRAM_IDX_REG
, index
);
3405 for (i
= 0; i
< MVPP2_PRS_SRAM_WORDS
; i
++)
3406 mvpp2_write(priv
, MVPP2_PRS_SRAM_DATA_REG(i
), 0);
3409 /* Invalidate all tcam entries */
3410 for (index
= 0; index
< MVPP2_PRS_TCAM_SRAM_SIZE
; index
++)
3411 mvpp2_prs_hw_inv(priv
, index
);
3413 priv
->prs_shadow
= devm_kcalloc(&pdev
->dev
, MVPP2_PRS_TCAM_SRAM_SIZE
,
3414 sizeof(*priv
->prs_shadow
),
3416 if (!priv
->prs_shadow
)
3419 /* Always start from lookup = 0 */
3420 for (index
= 0; index
< MVPP2_MAX_PORTS
; index
++)
3421 mvpp2_prs_hw_port_init(priv
, index
, MVPP2_PRS_LU_MH
,
3422 MVPP2_PRS_PORT_LU_MAX
, 0);
3424 mvpp2_prs_def_flow_init(priv
);
3426 mvpp2_prs_mh_init(priv
);
3428 mvpp2_prs_mac_init(priv
);
3430 mvpp2_prs_dsa_init(priv
);
3432 err
= mvpp2_prs_etype_init(priv
);
3436 err
= mvpp2_prs_vlan_init(pdev
, priv
);
3440 err
= mvpp2_prs_pppoe_init(priv
);
3444 err
= mvpp2_prs_ip6_init(priv
);
3448 err
= mvpp2_prs_ip4_init(priv
);
3455 /* Compare MAC DA with tcam entry data */
3456 static bool mvpp2_prs_mac_range_equals(struct mvpp2_prs_entry
*pe
,
3457 const u8
*da
, unsigned char *mask
)
3459 unsigned char tcam_byte
, tcam_mask
;
3462 for (index
= 0; index
< ETH_ALEN
; index
++) {
3463 mvpp2_prs_tcam_data_byte_get(pe
, index
, &tcam_byte
, &tcam_mask
);
3464 if (tcam_mask
!= mask
[index
])
3467 if ((tcam_mask
& tcam_byte
) != (da
[index
] & mask
[index
]))
3474 /* Find tcam entry with matched pair <MAC DA, port> */
3475 static struct mvpp2_prs_entry
*
3476 mvpp2_prs_mac_da_range_find(struct mvpp2
*priv
, int pmap
, const u8
*da
,
3477 unsigned char *mask
, int udf_type
)
3479 struct mvpp2_prs_entry
*pe
;
3482 pe
= kzalloc(sizeof(*pe
), GFP_ATOMIC
);
3485 mvpp2_prs_tcam_lu_set(pe
, MVPP2_PRS_LU_MAC
);
3487 /* Go through the all entires with MVPP2_PRS_LU_MAC */
3488 for (tid
= MVPP2_PE_FIRST_FREE_TID
;
3489 tid
<= MVPP2_PE_LAST_FREE_TID
; tid
++) {
3490 unsigned int entry_pmap
;
3492 if (!priv
->prs_shadow
[tid
].valid
||
3493 (priv
->prs_shadow
[tid
].lu
!= MVPP2_PRS_LU_MAC
) ||
3494 (priv
->prs_shadow
[tid
].udf
!= udf_type
))
3498 mvpp2_prs_hw_read(priv
, pe
);
3499 entry_pmap
= mvpp2_prs_tcam_port_map_get(pe
);
3501 if (mvpp2_prs_mac_range_equals(pe
, da
, mask
) &&
3510 /* Update parser's mac da entry */
3511 static int mvpp2_prs_mac_da_accept(struct mvpp2
*priv
, int port
,
3512 const u8
*da
, bool add
)
3514 struct mvpp2_prs_entry
*pe
;
3515 unsigned int pmap
, len
, ri
;
3516 unsigned char mask
[ETH_ALEN
] = { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff };
3519 /* Scan TCAM and see if entry with this <MAC DA, port> already exist */
3520 pe
= mvpp2_prs_mac_da_range_find(priv
, (1 << port
), da
, mask
,
3521 MVPP2_PRS_UDF_MAC_DEF
);
3528 /* Create new TCAM entry */
3529 /* Find first range mac entry*/
3530 for (tid
= MVPP2_PE_FIRST_FREE_TID
;
3531 tid
<= MVPP2_PE_LAST_FREE_TID
; tid
++)
3532 if (priv
->prs_shadow
[tid
].valid
&&
3533 (priv
->prs_shadow
[tid
].lu
== MVPP2_PRS_LU_MAC
) &&
3534 (priv
->prs_shadow
[tid
].udf
==
3535 MVPP2_PRS_UDF_MAC_RANGE
))
3538 /* Go through the all entries from first to last */
3539 tid
= mvpp2_prs_tcam_first_free(priv
, MVPP2_PE_FIRST_FREE_TID
,
3544 pe
= kzalloc(sizeof(*pe
), GFP_ATOMIC
);
3547 mvpp2_prs_tcam_lu_set(pe
, MVPP2_PRS_LU_MAC
);
3550 /* Mask all ports */
3551 mvpp2_prs_tcam_port_map_set(pe
, 0);
3554 /* Update port mask */
3555 mvpp2_prs_tcam_port_set(pe
, port
, add
);
3557 /* Invalidate the entry if no ports are left enabled */
3558 pmap
= mvpp2_prs_tcam_port_map_get(pe
);
3564 mvpp2_prs_hw_inv(priv
, pe
->index
);
3565 priv
->prs_shadow
[pe
->index
].valid
= false;
3570 /* Continue - set next lookup */
3571 mvpp2_prs_sram_next_lu_set(pe
, MVPP2_PRS_LU_DSA
);
3573 /* Set match on DA */
3576 mvpp2_prs_tcam_data_byte_set(pe
, len
, da
[len
], 0xff);
3578 /* Set result info bits */
3579 if (is_broadcast_ether_addr(da
))
3580 ri
= MVPP2_PRS_RI_L2_BCAST
;
3581 else if (is_multicast_ether_addr(da
))
3582 ri
= MVPP2_PRS_RI_L2_MCAST
;
3584 ri
= MVPP2_PRS_RI_L2_UCAST
| MVPP2_PRS_RI_MAC_ME_MASK
;
3586 mvpp2_prs_sram_ri_update(pe
, ri
, MVPP2_PRS_RI_L2_CAST_MASK
|
3587 MVPP2_PRS_RI_MAC_ME_MASK
);
3588 mvpp2_prs_shadow_ri_set(priv
, pe
->index
, ri
, MVPP2_PRS_RI_L2_CAST_MASK
|
3589 MVPP2_PRS_RI_MAC_ME_MASK
);
3591 /* Shift to ethertype */
3592 mvpp2_prs_sram_shift_set(pe
, 2 * ETH_ALEN
,
3593 MVPP2_PRS_SRAM_OP_SEL_SHIFT_ADD
);
3595 /* Update shadow table and hw entry */
3596 priv
->prs_shadow
[pe
->index
].udf
= MVPP2_PRS_UDF_MAC_DEF
;
3597 mvpp2_prs_shadow_set(priv
, pe
->index
, MVPP2_PRS_LU_MAC
);
3598 mvpp2_prs_hw_write(priv
, pe
);
3605 static int mvpp2_prs_update_mac_da(struct net_device
*dev
, const u8
*da
)
3607 struct mvpp2_port
*port
= netdev_priv(dev
);
3610 /* Remove old parser entry */
3611 err
= mvpp2_prs_mac_da_accept(port
->priv
, port
->id
, dev
->dev_addr
,
3616 /* Add new parser entry */
3617 err
= mvpp2_prs_mac_da_accept(port
->priv
, port
->id
, da
, true);
3621 /* Set addr in the device */
3622 ether_addr_copy(dev
->dev_addr
, da
);
3627 /* Delete all port's multicast simple (not range) entries */
3628 static void mvpp2_prs_mcast_del_all(struct mvpp2
*priv
, int port
)
3630 struct mvpp2_prs_entry pe
;
3633 for (tid
= MVPP2_PE_FIRST_FREE_TID
;
3634 tid
<= MVPP2_PE_LAST_FREE_TID
; tid
++) {
3635 unsigned char da
[ETH_ALEN
], da_mask
[ETH_ALEN
];
3637 if (!priv
->prs_shadow
[tid
].valid
||
3638 (priv
->prs_shadow
[tid
].lu
!= MVPP2_PRS_LU_MAC
) ||
3639 (priv
->prs_shadow
[tid
].udf
!= MVPP2_PRS_UDF_MAC_DEF
))
3642 /* Only simple mac entries */
3644 mvpp2_prs_hw_read(priv
, &pe
);
3646 /* Read mac addr from entry */
3647 for (index
= 0; index
< ETH_ALEN
; index
++)
3648 mvpp2_prs_tcam_data_byte_get(&pe
, index
, &da
[index
],
3651 if (is_multicast_ether_addr(da
) && !is_broadcast_ether_addr(da
))
3652 /* Delete this entry */
3653 mvpp2_prs_mac_da_accept(priv
, port
, da
, false);
3657 static int mvpp2_prs_tag_mode_set(struct mvpp2
*priv
, int port
, int type
)
3660 case MVPP2_TAG_TYPE_EDSA
:
3661 /* Add port to EDSA entries */
3662 mvpp2_prs_dsa_tag_set(priv
, port
, true,
3663 MVPP2_PRS_TAGGED
, MVPP2_PRS_EDSA
);
3664 mvpp2_prs_dsa_tag_set(priv
, port
, true,
3665 MVPP2_PRS_UNTAGGED
, MVPP2_PRS_EDSA
);
3666 /* Remove port from DSA entries */
3667 mvpp2_prs_dsa_tag_set(priv
, port
, false,
3668 MVPP2_PRS_TAGGED
, MVPP2_PRS_DSA
);
3669 mvpp2_prs_dsa_tag_set(priv
, port
, false,
3670 MVPP2_PRS_UNTAGGED
, MVPP2_PRS_DSA
);
3673 case MVPP2_TAG_TYPE_DSA
:
3674 /* Add port to DSA entries */
3675 mvpp2_prs_dsa_tag_set(priv
, port
, true,
3676 MVPP2_PRS_TAGGED
, MVPP2_PRS_DSA
);
3677 mvpp2_prs_dsa_tag_set(priv
, port
, true,
3678 MVPP2_PRS_UNTAGGED
, MVPP2_PRS_DSA
);
3679 /* Remove port from EDSA entries */
3680 mvpp2_prs_dsa_tag_set(priv
, port
, false,
3681 MVPP2_PRS_TAGGED
, MVPP2_PRS_EDSA
);
3682 mvpp2_prs_dsa_tag_set(priv
, port
, false,
3683 MVPP2_PRS_UNTAGGED
, MVPP2_PRS_EDSA
);
3686 case MVPP2_TAG_TYPE_MH
:
3687 case MVPP2_TAG_TYPE_NONE
:
3688 /* Remove port form EDSA and DSA entries */
3689 mvpp2_prs_dsa_tag_set(priv
, port
, false,
3690 MVPP2_PRS_TAGGED
, MVPP2_PRS_DSA
);
3691 mvpp2_prs_dsa_tag_set(priv
, port
, false,
3692 MVPP2_PRS_UNTAGGED
, MVPP2_PRS_DSA
);
3693 mvpp2_prs_dsa_tag_set(priv
, port
, false,
3694 MVPP2_PRS_TAGGED
, MVPP2_PRS_EDSA
);
3695 mvpp2_prs_dsa_tag_set(priv
, port
, false,
3696 MVPP2_PRS_UNTAGGED
, MVPP2_PRS_EDSA
);
3700 if ((type
< 0) || (type
> MVPP2_TAG_TYPE_EDSA
))
3707 /* Set prs flow for the port */
3708 static int mvpp2_prs_def_flow(struct mvpp2_port
*port
)
3710 struct mvpp2_prs_entry
*pe
;
3713 pe
= mvpp2_prs_flow_find(port
->priv
, port
->id
);
3715 /* Such entry not exist */
3717 /* Go through the all entires from last to first */
3718 tid
= mvpp2_prs_tcam_first_free(port
->priv
,
3719 MVPP2_PE_LAST_FREE_TID
,
3720 MVPP2_PE_FIRST_FREE_TID
);
3724 pe
= kzalloc(sizeof(*pe
), GFP_KERNEL
);
3728 mvpp2_prs_tcam_lu_set(pe
, MVPP2_PRS_LU_FLOWS
);
3732 mvpp2_prs_sram_ai_update(pe
, port
->id
, MVPP2_PRS_FLOW_ID_MASK
);
3733 mvpp2_prs_sram_bits_set(pe
, MVPP2_PRS_SRAM_LU_DONE_BIT
, 1);
3735 /* Update shadow table */
3736 mvpp2_prs_shadow_set(port
->priv
, pe
->index
, MVPP2_PRS_LU_FLOWS
);
3739 mvpp2_prs_tcam_port_map_set(pe
, (1 << port
->id
));
3740 mvpp2_prs_hw_write(port
->priv
, pe
);
3746 /* Classifier configuration routines */
3748 /* Update classification flow table registers */
3749 static void mvpp2_cls_flow_write(struct mvpp2
*priv
,
3750 struct mvpp2_cls_flow_entry
*fe
)
3752 mvpp2_write(priv
, MVPP2_CLS_FLOW_INDEX_REG
, fe
->index
);
3753 mvpp2_write(priv
, MVPP2_CLS_FLOW_TBL0_REG
, fe
->data
[0]);
3754 mvpp2_write(priv
, MVPP2_CLS_FLOW_TBL1_REG
, fe
->data
[1]);
3755 mvpp2_write(priv
, MVPP2_CLS_FLOW_TBL2_REG
, fe
->data
[2]);
3758 /* Update classification lookup table register */
3759 static void mvpp2_cls_lookup_write(struct mvpp2
*priv
,
3760 struct mvpp2_cls_lookup_entry
*le
)
3764 val
= (le
->way
<< MVPP2_CLS_LKP_INDEX_WAY_OFFS
) | le
->lkpid
;
3765 mvpp2_write(priv
, MVPP2_CLS_LKP_INDEX_REG
, val
);
3766 mvpp2_write(priv
, MVPP2_CLS_LKP_TBL_REG
, le
->data
);
3769 /* Classifier default initialization */
3770 static void mvpp2_cls_init(struct mvpp2
*priv
)
3772 struct mvpp2_cls_lookup_entry le
;
3773 struct mvpp2_cls_flow_entry fe
;
3776 /* Enable classifier */
3777 mvpp2_write(priv
, MVPP2_CLS_MODE_REG
, MVPP2_CLS_MODE_ACTIVE_MASK
);
3779 /* Clear classifier flow table */
3780 memset(&fe
.data
, 0, sizeof(fe
.data
));
3781 for (index
= 0; index
< MVPP2_CLS_FLOWS_TBL_SIZE
; index
++) {
3783 mvpp2_cls_flow_write(priv
, &fe
);
3786 /* Clear classifier lookup table */
3788 for (index
= 0; index
< MVPP2_CLS_LKP_TBL_SIZE
; index
++) {
3791 mvpp2_cls_lookup_write(priv
, &le
);
3794 mvpp2_cls_lookup_write(priv
, &le
);
3798 static void mvpp2_cls_port_config(struct mvpp2_port
*port
)
3800 struct mvpp2_cls_lookup_entry le
;
3803 /* Set way for the port */
3804 val
= mvpp2_read(port
->priv
, MVPP2_CLS_PORT_WAY_REG
);
3805 val
&= ~MVPP2_CLS_PORT_WAY_MASK(port
->id
);
3806 mvpp2_write(port
->priv
, MVPP2_CLS_PORT_WAY_REG
, val
);
3808 /* Pick the entry to be accessed in lookup ID decoding table
3809 * according to the way and lkpid.
3811 le
.lkpid
= port
->id
;
3815 /* Set initial CPU queue for receiving packets */
3816 le
.data
&= ~MVPP2_CLS_LKP_TBL_RXQ_MASK
;
3817 le
.data
|= port
->first_rxq
;
3819 /* Disable classification engines */
3820 le
.data
&= ~MVPP2_CLS_LKP_TBL_LOOKUP_EN_MASK
;
3822 /* Update lookup ID table entry */
3823 mvpp2_cls_lookup_write(port
->priv
, &le
);
3826 /* Set CPU queue number for oversize packets */
3827 static void mvpp2_cls_oversize_rxq_set(struct mvpp2_port
*port
)
3831 mvpp2_write(port
->priv
, MVPP2_CLS_OVERSIZE_RXQ_LOW_REG(port
->id
),
3832 port
->first_rxq
& MVPP2_CLS_OVERSIZE_RXQ_LOW_MASK
);
3834 mvpp2_write(port
->priv
, MVPP2_CLS_SWFWD_P2HQ_REG(port
->id
),
3835 (port
->first_rxq
>> MVPP2_CLS_OVERSIZE_RXQ_LOW_BITS
));
3837 val
= mvpp2_read(port
->priv
, MVPP2_CLS_SWFWD_PCTRL_REG
);
3838 val
|= MVPP2_CLS_SWFWD_PCTRL_MASK(port
->id
);
3839 mvpp2_write(port
->priv
, MVPP2_CLS_SWFWD_PCTRL_REG
, val
);
3842 static void *mvpp2_frag_alloc(const struct mvpp2_bm_pool
*pool
)
3844 if (likely(pool
->frag_size
<= PAGE_SIZE
))
3845 return netdev_alloc_frag(pool
->frag_size
);
3847 return kmalloc(pool
->frag_size
, GFP_ATOMIC
);
3850 static void mvpp2_frag_free(const struct mvpp2_bm_pool
*pool
, void *data
)
3852 if (likely(pool
->frag_size
<= PAGE_SIZE
))
3853 skb_free_frag(data
);
3858 /* Buffer Manager configuration routines */
3861 static int mvpp2_bm_pool_create(struct platform_device
*pdev
,
3863 struct mvpp2_bm_pool
*bm_pool
, int size
)
3867 /* Number of buffer pointers must be a multiple of 16, as per
3868 * hardware constraints
3870 if (!IS_ALIGNED(size
, 16))
3873 /* PPv2.1 needs 8 bytes per buffer pointer, PPv2.2 needs 16
3874 * bytes per buffer pointer
3876 if (priv
->hw_version
== MVPP21
)
3877 bm_pool
->size_bytes
= 2 * sizeof(u32
) * size
;
3879 bm_pool
->size_bytes
= 2 * sizeof(u64
) * size
;
3881 bm_pool
->virt_addr
= dma_alloc_coherent(&pdev
->dev
, bm_pool
->size_bytes
,
3884 if (!bm_pool
->virt_addr
)
3887 if (!IS_ALIGNED((unsigned long)bm_pool
->virt_addr
,
3888 MVPP2_BM_POOL_PTR_ALIGN
)) {
3889 dma_free_coherent(&pdev
->dev
, bm_pool
->size_bytes
,
3890 bm_pool
->virt_addr
, bm_pool
->dma_addr
);
3891 dev_err(&pdev
->dev
, "BM pool %d is not %d bytes aligned\n",
3892 bm_pool
->id
, MVPP2_BM_POOL_PTR_ALIGN
);
3896 mvpp2_write(priv
, MVPP2_BM_POOL_BASE_REG(bm_pool
->id
),
3897 lower_32_bits(bm_pool
->dma_addr
));
3898 mvpp2_write(priv
, MVPP2_BM_POOL_SIZE_REG(bm_pool
->id
), size
);
3900 val
= mvpp2_read(priv
, MVPP2_BM_POOL_CTRL_REG(bm_pool
->id
));
3901 val
|= MVPP2_BM_START_MASK
;
3902 mvpp2_write(priv
, MVPP2_BM_POOL_CTRL_REG(bm_pool
->id
), val
);
3904 bm_pool
->type
= MVPP2_BM_FREE
;
3905 bm_pool
->size
= size
;
3906 bm_pool
->pkt_size
= 0;
3907 bm_pool
->buf_num
= 0;
3912 /* Set pool buffer size */
3913 static void mvpp2_bm_pool_bufsize_set(struct mvpp2
*priv
,
3914 struct mvpp2_bm_pool
*bm_pool
,
3919 bm_pool
->buf_size
= buf_size
;
3921 val
= ALIGN(buf_size
, 1 << MVPP2_POOL_BUF_SIZE_OFFSET
);
3922 mvpp2_write(priv
, MVPP2_POOL_BUF_SIZE_REG(bm_pool
->id
), val
);
3925 static void mvpp2_bm_bufs_get_addrs(struct device
*dev
, struct mvpp2
*priv
,
3926 struct mvpp2_bm_pool
*bm_pool
,
3927 dma_addr_t
*dma_addr
,
3928 phys_addr_t
*phys_addr
)
3930 int cpu
= get_cpu();
3932 *dma_addr
= mvpp2_percpu_read(priv
, cpu
,
3933 MVPP2_BM_PHY_ALLOC_REG(bm_pool
->id
));
3934 *phys_addr
= mvpp2_percpu_read(priv
, cpu
, MVPP2_BM_VIRT_ALLOC_REG
);
3936 if (priv
->hw_version
== MVPP22
) {
3938 u32 dma_addr_highbits
, phys_addr_highbits
;
3940 val
= mvpp2_percpu_read(priv
, cpu
, MVPP22_BM_ADDR_HIGH_ALLOC
);
3941 dma_addr_highbits
= (val
& MVPP22_BM_ADDR_HIGH_PHYS_MASK
);
3942 phys_addr_highbits
= (val
& MVPP22_BM_ADDR_HIGH_VIRT_MASK
) >>
3943 MVPP22_BM_ADDR_HIGH_VIRT_SHIFT
;
3945 if (sizeof(dma_addr_t
) == 8)
3946 *dma_addr
|= (u64
)dma_addr_highbits
<< 32;
3948 if (sizeof(phys_addr_t
) == 8)
3949 *phys_addr
|= (u64
)phys_addr_highbits
<< 32;
3955 /* Free all buffers from the pool */
3956 static void mvpp2_bm_bufs_free(struct device
*dev
, struct mvpp2
*priv
,
3957 struct mvpp2_bm_pool
*bm_pool
)
3961 for (i
= 0; i
< bm_pool
->buf_num
; i
++) {
3962 dma_addr_t buf_dma_addr
;
3963 phys_addr_t buf_phys_addr
;
3966 mvpp2_bm_bufs_get_addrs(dev
, priv
, bm_pool
,
3967 &buf_dma_addr
, &buf_phys_addr
);
3969 dma_unmap_single(dev
, buf_dma_addr
,
3970 bm_pool
->buf_size
, DMA_FROM_DEVICE
);
3972 data
= (void *)phys_to_virt(buf_phys_addr
);
3976 mvpp2_frag_free(bm_pool
, data
);
3979 /* Update BM driver with number of buffers removed from pool */
3980 bm_pool
->buf_num
-= i
;
3984 static int mvpp2_bm_pool_destroy(struct platform_device
*pdev
,
3986 struct mvpp2_bm_pool
*bm_pool
)
3990 mvpp2_bm_bufs_free(&pdev
->dev
, priv
, bm_pool
);
3991 if (bm_pool
->buf_num
) {
3992 WARN(1, "cannot free all buffers in pool %d\n", bm_pool
->id
);
3996 val
= mvpp2_read(priv
, MVPP2_BM_POOL_CTRL_REG(bm_pool
->id
));
3997 val
|= MVPP2_BM_STOP_MASK
;
3998 mvpp2_write(priv
, MVPP2_BM_POOL_CTRL_REG(bm_pool
->id
), val
);
4000 dma_free_coherent(&pdev
->dev
, bm_pool
->size_bytes
,
4006 static int mvpp2_bm_pools_init(struct platform_device
*pdev
,
4010 struct mvpp2_bm_pool
*bm_pool
;
4012 /* Create all pools with maximum size */
4013 size
= MVPP2_BM_POOL_SIZE_MAX
;
4014 for (i
= 0; i
< MVPP2_BM_POOLS_NUM
; i
++) {
4015 bm_pool
= &priv
->bm_pools
[i
];
4017 err
= mvpp2_bm_pool_create(pdev
, priv
, bm_pool
, size
);
4019 goto err_unroll_pools
;
4020 mvpp2_bm_pool_bufsize_set(priv
, bm_pool
, 0);
4025 dev_err(&pdev
->dev
, "failed to create BM pool %d, size %d\n", i
, size
);
4026 for (i
= i
- 1; i
>= 0; i
--)
4027 mvpp2_bm_pool_destroy(pdev
, priv
, &priv
->bm_pools
[i
]);
4031 static int mvpp2_bm_init(struct platform_device
*pdev
, struct mvpp2
*priv
)
4035 for (i
= 0; i
< MVPP2_BM_POOLS_NUM
; i
++) {
4036 /* Mask BM all interrupts */
4037 mvpp2_write(priv
, MVPP2_BM_INTR_MASK_REG(i
), 0);
4038 /* Clear BM cause register */
4039 mvpp2_write(priv
, MVPP2_BM_INTR_CAUSE_REG(i
), 0);
4042 /* Allocate and initialize BM pools */
4043 priv
->bm_pools
= devm_kcalloc(&pdev
->dev
, MVPP2_BM_POOLS_NUM
,
4044 sizeof(*priv
->bm_pools
), GFP_KERNEL
);
4045 if (!priv
->bm_pools
)
4048 err
= mvpp2_bm_pools_init(pdev
, priv
);
4054 /* Attach long pool to rxq */
4055 static void mvpp2_rxq_long_pool_set(struct mvpp2_port
*port
,
4056 int lrxq
, int long_pool
)
4061 /* Get queue physical ID */
4062 prxq
= port
->rxqs
[lrxq
]->id
;
4064 if (port
->priv
->hw_version
== MVPP21
)
4065 mask
= MVPP21_RXQ_POOL_LONG_MASK
;
4067 mask
= MVPP22_RXQ_POOL_LONG_MASK
;
4069 val
= mvpp2_read(port
->priv
, MVPP2_RXQ_CONFIG_REG(prxq
));
4071 val
|= (long_pool
<< MVPP2_RXQ_POOL_LONG_OFFS
) & mask
;
4072 mvpp2_write(port
->priv
, MVPP2_RXQ_CONFIG_REG(prxq
), val
);
4075 /* Attach short pool to rxq */
4076 static void mvpp2_rxq_short_pool_set(struct mvpp2_port
*port
,
4077 int lrxq
, int short_pool
)
4082 /* Get queue physical ID */
4083 prxq
= port
->rxqs
[lrxq
]->id
;
4085 if (port
->priv
->hw_version
== MVPP21
)
4086 mask
= MVPP21_RXQ_POOL_SHORT_MASK
;
4088 mask
= MVPP22_RXQ_POOL_SHORT_MASK
;
4090 val
= mvpp2_read(port
->priv
, MVPP2_RXQ_CONFIG_REG(prxq
));
4092 val
|= (short_pool
<< MVPP2_RXQ_POOL_SHORT_OFFS
) & mask
;
4093 mvpp2_write(port
->priv
, MVPP2_RXQ_CONFIG_REG(prxq
), val
);
4096 static void *mvpp2_buf_alloc(struct mvpp2_port
*port
,
4097 struct mvpp2_bm_pool
*bm_pool
,
4098 dma_addr_t
*buf_dma_addr
,
4099 phys_addr_t
*buf_phys_addr
,
4102 dma_addr_t dma_addr
;
4105 data
= mvpp2_frag_alloc(bm_pool
);
4109 dma_addr
= dma_map_single(port
->dev
->dev
.parent
, data
,
4110 MVPP2_RX_BUF_SIZE(bm_pool
->pkt_size
),
4112 if (unlikely(dma_mapping_error(port
->dev
->dev
.parent
, dma_addr
))) {
4113 mvpp2_frag_free(bm_pool
, data
);
4116 *buf_dma_addr
= dma_addr
;
4117 *buf_phys_addr
= virt_to_phys(data
);
4122 /* Release buffer to BM */
4123 static inline void mvpp2_bm_pool_put(struct mvpp2_port
*port
, int pool
,
4124 dma_addr_t buf_dma_addr
,
4125 phys_addr_t buf_phys_addr
)
4127 int cpu
= get_cpu();
4129 if (port
->priv
->hw_version
== MVPP22
) {
4132 if (sizeof(dma_addr_t
) == 8)
4133 val
|= upper_32_bits(buf_dma_addr
) &
4134 MVPP22_BM_ADDR_HIGH_PHYS_RLS_MASK
;
4136 if (sizeof(phys_addr_t
) == 8)
4137 val
|= (upper_32_bits(buf_phys_addr
)
4138 << MVPP22_BM_ADDR_HIGH_VIRT_RLS_SHIFT
) &
4139 MVPP22_BM_ADDR_HIGH_VIRT_RLS_MASK
;
4141 mvpp2_percpu_write(port
->priv
, cpu
,
4142 MVPP22_BM_ADDR_HIGH_RLS_REG
, val
);
4145 /* MVPP2_BM_VIRT_RLS_REG is not interpreted by HW, and simply
4146 * returned in the "cookie" field of the RX
4147 * descriptor. Instead of storing the virtual address, we
4148 * store the physical address
4150 mvpp2_percpu_write(port
->priv
, cpu
,
4151 MVPP2_BM_VIRT_RLS_REG
, buf_phys_addr
);
4152 mvpp2_percpu_write(port
->priv
, cpu
,
4153 MVPP2_BM_PHY_RLS_REG(pool
), buf_dma_addr
);
4158 /* Allocate buffers for the pool */
4159 static int mvpp2_bm_bufs_add(struct mvpp2_port
*port
,
4160 struct mvpp2_bm_pool
*bm_pool
, int buf_num
)
4162 int i
, buf_size
, total_size
;
4163 dma_addr_t dma_addr
;
4164 phys_addr_t phys_addr
;
4167 buf_size
= MVPP2_RX_BUF_SIZE(bm_pool
->pkt_size
);
4168 total_size
= MVPP2_RX_TOTAL_SIZE(buf_size
);
4171 (buf_num
+ bm_pool
->buf_num
> bm_pool
->size
)) {
4172 netdev_err(port
->dev
,
4173 "cannot allocate %d buffers for pool %d\n",
4174 buf_num
, bm_pool
->id
);
4178 for (i
= 0; i
< buf_num
; i
++) {
4179 buf
= mvpp2_buf_alloc(port
, bm_pool
, &dma_addr
,
4180 &phys_addr
, GFP_KERNEL
);
4184 mvpp2_bm_pool_put(port
, bm_pool
->id
, dma_addr
,
4188 /* Update BM driver with number of buffers added to pool */
4189 bm_pool
->buf_num
+= i
;
4191 netdev_dbg(port
->dev
,
4192 "%s pool %d: pkt_size=%4d, buf_size=%4d, total_size=%4d\n",
4193 bm_pool
->type
== MVPP2_BM_SWF_SHORT
? "short" : " long",
4194 bm_pool
->id
, bm_pool
->pkt_size
, buf_size
, total_size
);
4196 netdev_dbg(port
->dev
,
4197 "%s pool %d: %d of %d buffers added\n",
4198 bm_pool
->type
== MVPP2_BM_SWF_SHORT
? "short" : " long",
4199 bm_pool
->id
, i
, buf_num
);
4203 /* Notify the driver that BM pool is being used as specific type and return the
4204 * pool pointer on success
4206 static struct mvpp2_bm_pool
*
4207 mvpp2_bm_pool_use(struct mvpp2_port
*port
, int pool
, enum mvpp2_bm_type type
,
4210 struct mvpp2_bm_pool
*new_pool
= &port
->priv
->bm_pools
[pool
];
4213 if (new_pool
->type
!= MVPP2_BM_FREE
&& new_pool
->type
!= type
) {
4214 netdev_err(port
->dev
, "mixing pool types is forbidden\n");
4218 if (new_pool
->type
== MVPP2_BM_FREE
)
4219 new_pool
->type
= type
;
4221 /* Allocate buffers in case BM pool is used as long pool, but packet
4222 * size doesn't match MTU or BM pool hasn't being used yet
4224 if (((type
== MVPP2_BM_SWF_LONG
) && (pkt_size
> new_pool
->pkt_size
)) ||
4225 (new_pool
->pkt_size
== 0)) {
4228 /* Set default buffer number or free all the buffers in case
4229 * the pool is not empty
4231 pkts_num
= new_pool
->buf_num
;
4233 pkts_num
= type
== MVPP2_BM_SWF_LONG
?
4234 MVPP2_BM_LONG_BUF_NUM
:
4235 MVPP2_BM_SHORT_BUF_NUM
;
4237 mvpp2_bm_bufs_free(port
->dev
->dev
.parent
,
4238 port
->priv
, new_pool
);
4240 new_pool
->pkt_size
= pkt_size
;
4241 new_pool
->frag_size
=
4242 SKB_DATA_ALIGN(MVPP2_RX_BUF_SIZE(pkt_size
)) +
4243 MVPP2_SKB_SHINFO_SIZE
;
4245 /* Allocate buffers for this pool */
4246 num
= mvpp2_bm_bufs_add(port
, new_pool
, pkts_num
);
4247 if (num
!= pkts_num
) {
4248 WARN(1, "pool %d: %d of %d allocated\n",
4249 new_pool
->id
, num
, pkts_num
);
4254 mvpp2_bm_pool_bufsize_set(port
->priv
, new_pool
,
4255 MVPP2_RX_BUF_SIZE(new_pool
->pkt_size
));
4260 /* Initialize pools for swf */
4261 static int mvpp2_swf_bm_pool_init(struct mvpp2_port
*port
)
4265 if (!port
->pool_long
) {
4267 mvpp2_bm_pool_use(port
, MVPP2_BM_SWF_LONG_POOL(port
->id
),
4270 if (!port
->pool_long
)
4273 port
->pool_long
->port_map
|= (1 << port
->id
);
4275 for (rxq
= 0; rxq
< port
->nrxqs
; rxq
++)
4276 mvpp2_rxq_long_pool_set(port
, rxq
, port
->pool_long
->id
);
4279 if (!port
->pool_short
) {
4281 mvpp2_bm_pool_use(port
, MVPP2_BM_SWF_SHORT_POOL
,
4283 MVPP2_BM_SHORT_PKT_SIZE
);
4284 if (!port
->pool_short
)
4287 port
->pool_short
->port_map
|= (1 << port
->id
);
4289 for (rxq
= 0; rxq
< port
->nrxqs
; rxq
++)
4290 mvpp2_rxq_short_pool_set(port
, rxq
,
4291 port
->pool_short
->id
);
4297 static int mvpp2_bm_update_mtu(struct net_device
*dev
, int mtu
)
4299 struct mvpp2_port
*port
= netdev_priv(dev
);
4300 struct mvpp2_bm_pool
*port_pool
= port
->pool_long
;
4301 int num
, pkts_num
= port_pool
->buf_num
;
4302 int pkt_size
= MVPP2_RX_PKT_SIZE(mtu
);
4304 /* Update BM pool with new buffer size */
4305 mvpp2_bm_bufs_free(dev
->dev
.parent
, port
->priv
, port_pool
);
4306 if (port_pool
->buf_num
) {
4307 WARN(1, "cannot free all buffers in pool %d\n", port_pool
->id
);
4311 port_pool
->pkt_size
= pkt_size
;
4312 port_pool
->frag_size
= SKB_DATA_ALIGN(MVPP2_RX_BUF_SIZE(pkt_size
)) +
4313 MVPP2_SKB_SHINFO_SIZE
;
4314 num
= mvpp2_bm_bufs_add(port
, port_pool
, pkts_num
);
4315 if (num
!= pkts_num
) {
4316 WARN(1, "pool %d: %d of %d allocated\n",
4317 port_pool
->id
, num
, pkts_num
);
4321 mvpp2_bm_pool_bufsize_set(port
->priv
, port_pool
,
4322 MVPP2_RX_BUF_SIZE(port_pool
->pkt_size
));
4324 netdev_update_features(dev
);
4328 static inline void mvpp2_interrupts_enable(struct mvpp2_port
*port
)
4330 int i
, sw_thread_mask
= 0;
4332 for (i
= 0; i
< port
->nqvecs
; i
++)
4333 sw_thread_mask
|= port
->qvecs
[i
].sw_thread_mask
;
4335 mvpp2_write(port
->priv
, MVPP2_ISR_ENABLE_REG(port
->id
),
4336 MVPP2_ISR_ENABLE_INTERRUPT(sw_thread_mask
));
4339 static inline void mvpp2_interrupts_disable(struct mvpp2_port
*port
)
4341 int i
, sw_thread_mask
= 0;
4343 for (i
= 0; i
< port
->nqvecs
; i
++)
4344 sw_thread_mask
|= port
->qvecs
[i
].sw_thread_mask
;
4346 mvpp2_write(port
->priv
, MVPP2_ISR_ENABLE_REG(port
->id
),
4347 MVPP2_ISR_DISABLE_INTERRUPT(sw_thread_mask
));
4350 static inline void mvpp2_qvec_interrupt_enable(struct mvpp2_queue_vector
*qvec
)
4352 struct mvpp2_port
*port
= qvec
->port
;
4354 mvpp2_write(port
->priv
, MVPP2_ISR_ENABLE_REG(port
->id
),
4355 MVPP2_ISR_ENABLE_INTERRUPT(qvec
->sw_thread_mask
));
4358 static inline void mvpp2_qvec_interrupt_disable(struct mvpp2_queue_vector
*qvec
)
4360 struct mvpp2_port
*port
= qvec
->port
;
4362 mvpp2_write(port
->priv
, MVPP2_ISR_ENABLE_REG(port
->id
),
4363 MVPP2_ISR_DISABLE_INTERRUPT(qvec
->sw_thread_mask
));
4366 /* Mask the current CPU's Rx/Tx interrupts
4367 * Called by on_each_cpu(), guaranteed to run with migration disabled,
4368 * using smp_processor_id() is OK.
4370 static void mvpp2_interrupts_mask(void *arg
)
4372 struct mvpp2_port
*port
= arg
;
4374 mvpp2_percpu_write(port
->priv
, smp_processor_id(),
4375 MVPP2_ISR_RX_TX_MASK_REG(port
->id
), 0);
4378 /* Unmask the current CPU's Rx/Tx interrupts.
4379 * Called by on_each_cpu(), guaranteed to run with migration disabled,
4380 * using smp_processor_id() is OK.
4382 static void mvpp2_interrupts_unmask(void *arg
)
4384 struct mvpp2_port
*port
= arg
;
4387 val
= MVPP2_CAUSE_MISC_SUM_MASK
|
4388 MVPP2_CAUSE_RXQ_OCCUP_DESC_ALL_MASK
;
4389 if (port
->has_tx_irqs
)
4390 val
|= MVPP2_CAUSE_TXQ_OCCUP_DESC_ALL_MASK
;
4392 mvpp2_percpu_write(port
->priv
, smp_processor_id(),
4393 MVPP2_ISR_RX_TX_MASK_REG(port
->id
), val
);
4397 mvpp2_shared_interrupt_mask_unmask(struct mvpp2_port
*port
, bool mask
)
4402 if (port
->priv
->hw_version
!= MVPP22
)
4408 val
= MVPP2_CAUSE_RXQ_OCCUP_DESC_ALL_MASK
;
4410 for (i
= 0; i
< port
->nqvecs
; i
++) {
4411 struct mvpp2_queue_vector
*v
= port
->qvecs
+ i
;
4413 if (v
->type
!= MVPP2_QUEUE_VECTOR_SHARED
)
4416 mvpp2_percpu_write(port
->priv
, v
->sw_thread_id
,
4417 MVPP2_ISR_RX_TX_MASK_REG(port
->id
), val
);
4421 /* Port configuration routines */
4423 static void mvpp22_gop_init_rgmii(struct mvpp2_port
*port
)
4425 struct mvpp2
*priv
= port
->priv
;
4428 regmap_read(priv
->sysctrl_base
, GENCONF_PORT_CTRL0
, &val
);
4429 val
|= GENCONF_PORT_CTRL0_BUS_WIDTH_SELECT
;
4430 regmap_write(priv
->sysctrl_base
, GENCONF_PORT_CTRL0
, val
);
4432 regmap_read(priv
->sysctrl_base
, GENCONF_CTRL0
, &val
);
4433 if (port
->gop_id
== 2)
4434 val
|= GENCONF_CTRL0_PORT0_RGMII
| GENCONF_CTRL0_PORT1_RGMII
;
4435 else if (port
->gop_id
== 3)
4436 val
|= GENCONF_CTRL0_PORT1_RGMII_MII
;
4437 regmap_write(priv
->sysctrl_base
, GENCONF_CTRL0
, val
);
4440 static void mvpp22_gop_init_sgmii(struct mvpp2_port
*port
)
4442 struct mvpp2
*priv
= port
->priv
;
4445 regmap_read(priv
->sysctrl_base
, GENCONF_PORT_CTRL0
, &val
);
4446 val
|= GENCONF_PORT_CTRL0_BUS_WIDTH_SELECT
|
4447 GENCONF_PORT_CTRL0_RX_DATA_SAMPLE
;
4448 regmap_write(priv
->sysctrl_base
, GENCONF_PORT_CTRL0
, val
);
4450 if (port
->gop_id
> 1) {
4451 regmap_read(priv
->sysctrl_base
, GENCONF_CTRL0
, &val
);
4452 if (port
->gop_id
== 2)
4453 val
&= ~GENCONF_CTRL0_PORT0_RGMII
;
4454 else if (port
->gop_id
== 3)
4455 val
&= ~GENCONF_CTRL0_PORT1_RGMII_MII
;
4456 regmap_write(priv
->sysctrl_base
, GENCONF_CTRL0
, val
);
4460 static void mvpp22_gop_init_10gkr(struct mvpp2_port
*port
)
4462 struct mvpp2
*priv
= port
->priv
;
4463 void __iomem
*mpcs
= priv
->iface_base
+ MVPP22_MPCS_BASE(port
->gop_id
);
4464 void __iomem
*xpcs
= priv
->iface_base
+ MVPP22_XPCS_BASE(port
->gop_id
);
4468 val
= readl(xpcs
+ MVPP22_XPCS_CFG0
);
4469 val
&= ~(MVPP22_XPCS_CFG0_PCS_MODE(0x3) |
4470 MVPP22_XPCS_CFG0_ACTIVE_LANE(0x3));
4471 val
|= MVPP22_XPCS_CFG0_ACTIVE_LANE(2);
4472 writel(val
, xpcs
+ MVPP22_XPCS_CFG0
);
4475 val
= readl(mpcs
+ MVPP22_MPCS_CTRL
);
4476 val
&= ~MVPP22_MPCS_CTRL_FWD_ERR_CONN
;
4477 writel(val
, mpcs
+ MVPP22_MPCS_CTRL
);
4479 val
= readl(mpcs
+ MVPP22_MPCS_CLK_RESET
);
4480 val
&= ~(MVPP22_MPCS_CLK_RESET_DIV_RATIO(0x7) | MAC_CLK_RESET_MAC
|
4481 MAC_CLK_RESET_SD_RX
| MAC_CLK_RESET_SD_TX
);
4482 val
|= MVPP22_MPCS_CLK_RESET_DIV_RATIO(1);
4483 writel(val
, mpcs
+ MVPP22_MPCS_CLK_RESET
);
4485 val
&= ~MVPP22_MPCS_CLK_RESET_DIV_SET
;
4486 val
|= MAC_CLK_RESET_MAC
| MAC_CLK_RESET_SD_RX
| MAC_CLK_RESET_SD_TX
;
4487 writel(val
, mpcs
+ MVPP22_MPCS_CLK_RESET
);
4490 static int mvpp22_gop_init(struct mvpp2_port
*port
)
4492 struct mvpp2
*priv
= port
->priv
;
4495 if (!priv
->sysctrl_base
)
4498 switch (port
->phy_interface
) {
4499 case PHY_INTERFACE_MODE_RGMII
:
4500 case PHY_INTERFACE_MODE_RGMII_ID
:
4501 case PHY_INTERFACE_MODE_RGMII_RXID
:
4502 case PHY_INTERFACE_MODE_RGMII_TXID
:
4503 if (port
->gop_id
== 0)
4505 mvpp22_gop_init_rgmii(port
);
4507 case PHY_INTERFACE_MODE_SGMII
:
4508 mvpp22_gop_init_sgmii(port
);
4510 case PHY_INTERFACE_MODE_10GKR
:
4511 if (port
->gop_id
!= 0)
4513 mvpp22_gop_init_10gkr(port
);
4516 goto unsupported_conf
;
4519 regmap_read(priv
->sysctrl_base
, GENCONF_PORT_CTRL1
, &val
);
4520 val
|= GENCONF_PORT_CTRL1_RESET(port
->gop_id
) |
4521 GENCONF_PORT_CTRL1_EN(port
->gop_id
);
4522 regmap_write(priv
->sysctrl_base
, GENCONF_PORT_CTRL1
, val
);
4524 regmap_read(priv
->sysctrl_base
, GENCONF_PORT_CTRL0
, &val
);
4525 val
|= GENCONF_PORT_CTRL0_CLK_DIV_PHASE_CLR
;
4526 regmap_write(priv
->sysctrl_base
, GENCONF_PORT_CTRL0
, val
);
4528 regmap_read(priv
->sysctrl_base
, GENCONF_SOFT_RESET1
, &val
);
4529 val
|= GENCONF_SOFT_RESET1_GOP
;
4530 regmap_write(priv
->sysctrl_base
, GENCONF_SOFT_RESET1
, val
);
4536 netdev_err(port
->dev
, "Invalid port configuration\n");
4540 static void mvpp22_gop_unmask_irq(struct mvpp2_port
*port
)
4544 if (phy_interface_mode_is_rgmii(port
->phy_interface
) ||
4545 port
->phy_interface
== PHY_INTERFACE_MODE_SGMII
) {
4546 /* Enable the GMAC link status irq for this port */
4547 val
= readl(port
->base
+ MVPP22_GMAC_INT_SUM_MASK
);
4548 val
|= MVPP22_GMAC_INT_SUM_MASK_LINK_STAT
;
4549 writel(val
, port
->base
+ MVPP22_GMAC_INT_SUM_MASK
);
4552 if (port
->gop_id
== 0) {
4553 /* Enable the XLG/GIG irqs for this port */
4554 val
= readl(port
->base
+ MVPP22_XLG_EXT_INT_MASK
);
4555 if (port
->phy_interface
== PHY_INTERFACE_MODE_10GKR
)
4556 val
|= MVPP22_XLG_EXT_INT_MASK_XLG
;
4558 val
|= MVPP22_XLG_EXT_INT_MASK_GIG
;
4559 writel(val
, port
->base
+ MVPP22_XLG_EXT_INT_MASK
);
4563 static void mvpp22_gop_mask_irq(struct mvpp2_port
*port
)
4567 if (port
->gop_id
== 0) {
4568 val
= readl(port
->base
+ MVPP22_XLG_EXT_INT_MASK
);
4569 val
&= ~(MVPP22_XLG_EXT_INT_MASK_XLG
|
4570 MVPP22_XLG_EXT_INT_MASK_GIG
);
4571 writel(val
, port
->base
+ MVPP22_XLG_EXT_INT_MASK
);
4574 if (phy_interface_mode_is_rgmii(port
->phy_interface
) ||
4575 port
->phy_interface
== PHY_INTERFACE_MODE_SGMII
) {
4576 val
= readl(port
->base
+ MVPP22_GMAC_INT_SUM_MASK
);
4577 val
&= ~MVPP22_GMAC_INT_SUM_MASK_LINK_STAT
;
4578 writel(val
, port
->base
+ MVPP22_GMAC_INT_SUM_MASK
);
4582 static void mvpp22_gop_setup_irq(struct mvpp2_port
*port
)
4586 if (phy_interface_mode_is_rgmii(port
->phy_interface
) ||
4587 port
->phy_interface
== PHY_INTERFACE_MODE_SGMII
) {
4588 val
= readl(port
->base
+ MVPP22_GMAC_INT_MASK
);
4589 val
|= MVPP22_GMAC_INT_MASK_LINK_STAT
;
4590 writel(val
, port
->base
+ MVPP22_GMAC_INT_MASK
);
4593 if (port
->gop_id
== 0) {
4594 val
= readl(port
->base
+ MVPP22_XLG_INT_MASK
);
4595 val
|= MVPP22_XLG_INT_MASK_LINK
;
4596 writel(val
, port
->base
+ MVPP22_XLG_INT_MASK
);
4599 mvpp22_gop_unmask_irq(port
);
4602 static int mvpp22_comphy_init(struct mvpp2_port
*port
)
4610 switch (port
->phy_interface
) {
4611 case PHY_INTERFACE_MODE_SGMII
:
4612 mode
= PHY_MODE_SGMII
;
4614 case PHY_INTERFACE_MODE_10GKR
:
4615 mode
= PHY_MODE_10GKR
;
4621 ret
= phy_set_mode(port
->comphy
, mode
);
4625 return phy_power_on(port
->comphy
);
4628 static void mvpp2_port_mii_gmac_configure_mode(struct mvpp2_port
*port
)
4632 if (port
->phy_interface
== PHY_INTERFACE_MODE_SGMII
) {
4633 val
= readl(port
->base
+ MVPP22_GMAC_CTRL_4_REG
);
4634 val
|= MVPP22_CTRL4_SYNC_BYPASS_DIS
| MVPP22_CTRL4_DP_CLK_SEL
|
4635 MVPP22_CTRL4_QSGMII_BYPASS_ACTIVE
;
4636 val
&= ~MVPP22_CTRL4_EXT_PIN_GMII_SEL
;
4637 writel(val
, port
->base
+ MVPP22_GMAC_CTRL_4_REG
);
4638 } else if (phy_interface_mode_is_rgmii(port
->phy_interface
)) {
4639 val
= readl(port
->base
+ MVPP22_GMAC_CTRL_4_REG
);
4640 val
|= MVPP22_CTRL4_EXT_PIN_GMII_SEL
|
4641 MVPP22_CTRL4_SYNC_BYPASS_DIS
|
4642 MVPP22_CTRL4_QSGMII_BYPASS_ACTIVE
;
4643 val
&= ~MVPP22_CTRL4_DP_CLK_SEL
;
4644 writel(val
, port
->base
+ MVPP22_GMAC_CTRL_4_REG
);
4647 /* The port is connected to a copper PHY */
4648 val
= readl(port
->base
+ MVPP2_GMAC_CTRL_0_REG
);
4649 val
&= ~MVPP2_GMAC_PORT_TYPE_MASK
;
4650 writel(val
, port
->base
+ MVPP2_GMAC_CTRL_0_REG
);
4652 val
= readl(port
->base
+ MVPP2_GMAC_AUTONEG_CONFIG
);
4653 val
|= MVPP2_GMAC_IN_BAND_AUTONEG_BYPASS
|
4654 MVPP2_GMAC_AN_SPEED_EN
| MVPP2_GMAC_FLOW_CTRL_AUTONEG
|
4655 MVPP2_GMAC_AN_DUPLEX_EN
;
4656 if (port
->phy_interface
== PHY_INTERFACE_MODE_SGMII
)
4657 val
|= MVPP2_GMAC_IN_BAND_AUTONEG
;
4658 writel(val
, port
->base
+ MVPP2_GMAC_AUTONEG_CONFIG
);
4661 static void mvpp2_port_mii_gmac_configure(struct mvpp2_port
*port
)
4665 /* Force link down */
4666 val
= readl(port
->base
+ MVPP2_GMAC_AUTONEG_CONFIG
);
4667 val
&= ~MVPP2_GMAC_FORCE_LINK_PASS
;
4668 val
|= MVPP2_GMAC_FORCE_LINK_DOWN
;
4669 writel(val
, port
->base
+ MVPP2_GMAC_AUTONEG_CONFIG
);
4671 /* Set the GMAC in a reset state */
4672 val
= readl(port
->base
+ MVPP2_GMAC_CTRL_2_REG
);
4673 val
|= MVPP2_GMAC_PORT_RESET_MASK
;
4674 writel(val
, port
->base
+ MVPP2_GMAC_CTRL_2_REG
);
4676 /* Configure the PCS and in-band AN */
4677 val
= readl(port
->base
+ MVPP2_GMAC_CTRL_2_REG
);
4678 if (port
->phy_interface
== PHY_INTERFACE_MODE_SGMII
) {
4679 val
|= MVPP2_GMAC_INBAND_AN_MASK
| MVPP2_GMAC_PCS_ENABLE_MASK
;
4680 } else if (phy_interface_mode_is_rgmii(port
->phy_interface
)) {
4681 val
&= ~MVPP2_GMAC_PCS_ENABLE_MASK
;
4683 writel(val
, port
->base
+ MVPP2_GMAC_CTRL_2_REG
);
4685 mvpp2_port_mii_gmac_configure_mode(port
);
4687 /* Unset the GMAC reset state */
4688 val
= readl(port
->base
+ MVPP2_GMAC_CTRL_2_REG
);
4689 val
&= ~MVPP2_GMAC_PORT_RESET_MASK
;
4690 writel(val
, port
->base
+ MVPP2_GMAC_CTRL_2_REG
);
4692 /* Stop forcing link down */
4693 val
= readl(port
->base
+ MVPP2_GMAC_AUTONEG_CONFIG
);
4694 val
&= ~MVPP2_GMAC_FORCE_LINK_DOWN
;
4695 writel(val
, port
->base
+ MVPP2_GMAC_AUTONEG_CONFIG
);
4698 static void mvpp2_port_mii_xlg_configure(struct mvpp2_port
*port
)
4702 if (port
->gop_id
!= 0)
4705 val
= readl(port
->base
+ MVPP22_XLG_CTRL0_REG
);
4706 val
|= MVPP22_XLG_CTRL0_RX_FLOW_CTRL_EN
;
4707 writel(val
, port
->base
+ MVPP22_XLG_CTRL0_REG
);
4709 val
= readl(port
->base
+ MVPP22_XLG_CTRL4_REG
);
4710 val
&= ~MVPP22_XLG_CTRL4_MACMODSELECT_GMAC
;
4711 val
|= MVPP22_XLG_CTRL4_FWD_FC
| MVPP22_XLG_CTRL4_FWD_PFC
;
4712 writel(val
, port
->base
+ MVPP22_XLG_CTRL4_REG
);
4715 static void mvpp22_port_mii_set(struct mvpp2_port
*port
)
4719 /* Only GOP port 0 has an XLG MAC */
4720 if (port
->gop_id
== 0) {
4721 val
= readl(port
->base
+ MVPP22_XLG_CTRL3_REG
);
4722 val
&= ~MVPP22_XLG_CTRL3_MACMODESELECT_MASK
;
4724 if (port
->phy_interface
== PHY_INTERFACE_MODE_XAUI
||
4725 port
->phy_interface
== PHY_INTERFACE_MODE_10GKR
)
4726 val
|= MVPP22_XLG_CTRL3_MACMODESELECT_10G
;
4728 val
|= MVPP22_XLG_CTRL3_MACMODESELECT_GMAC
;
4730 writel(val
, port
->base
+ MVPP22_XLG_CTRL3_REG
);
4734 static void mvpp2_port_mii_set(struct mvpp2_port
*port
)
4736 if (port
->priv
->hw_version
== MVPP22
)
4737 mvpp22_port_mii_set(port
);
4739 if (phy_interface_mode_is_rgmii(port
->phy_interface
) ||
4740 port
->phy_interface
== PHY_INTERFACE_MODE_SGMII
)
4741 mvpp2_port_mii_gmac_configure(port
);
4742 else if (port
->phy_interface
== PHY_INTERFACE_MODE_10GKR
)
4743 mvpp2_port_mii_xlg_configure(port
);
4746 static void mvpp2_port_fc_adv_enable(struct mvpp2_port
*port
)
4750 val
= readl(port
->base
+ MVPP2_GMAC_AUTONEG_CONFIG
);
4751 val
|= MVPP2_GMAC_FC_ADV_EN
;
4752 writel(val
, port
->base
+ MVPP2_GMAC_AUTONEG_CONFIG
);
4755 static void mvpp2_port_enable(struct mvpp2_port
*port
)
4759 /* Only GOP port 0 has an XLG MAC */
4760 if (port
->gop_id
== 0 &&
4761 (port
->phy_interface
== PHY_INTERFACE_MODE_XAUI
||
4762 port
->phy_interface
== PHY_INTERFACE_MODE_10GKR
)) {
4763 val
= readl(port
->base
+ MVPP22_XLG_CTRL0_REG
);
4764 val
|= MVPP22_XLG_CTRL0_PORT_EN
|
4765 MVPP22_XLG_CTRL0_MAC_RESET_DIS
;
4766 val
&= ~MVPP22_XLG_CTRL0_MIB_CNT_DIS
;
4767 writel(val
, port
->base
+ MVPP22_XLG_CTRL0_REG
);
4769 val
= readl(port
->base
+ MVPP2_GMAC_CTRL_0_REG
);
4770 val
|= MVPP2_GMAC_PORT_EN_MASK
;
4771 val
|= MVPP2_GMAC_MIB_CNTR_EN_MASK
;
4772 writel(val
, port
->base
+ MVPP2_GMAC_CTRL_0_REG
);
4776 static void mvpp2_port_disable(struct mvpp2_port
*port
)
4780 /* Only GOP port 0 has an XLG MAC */
4781 if (port
->gop_id
== 0 &&
4782 (port
->phy_interface
== PHY_INTERFACE_MODE_XAUI
||
4783 port
->phy_interface
== PHY_INTERFACE_MODE_10GKR
)) {
4784 val
= readl(port
->base
+ MVPP22_XLG_CTRL0_REG
);
4785 val
&= ~(MVPP22_XLG_CTRL0_PORT_EN
|
4786 MVPP22_XLG_CTRL0_MAC_RESET_DIS
);
4787 writel(val
, port
->base
+ MVPP22_XLG_CTRL0_REG
);
4789 val
= readl(port
->base
+ MVPP2_GMAC_CTRL_0_REG
);
4790 val
&= ~(MVPP2_GMAC_PORT_EN_MASK
);
4791 writel(val
, port
->base
+ MVPP2_GMAC_CTRL_0_REG
);
4795 /* Set IEEE 802.3x Flow Control Xon Packet Transmission Mode */
4796 static void mvpp2_port_periodic_xon_disable(struct mvpp2_port
*port
)
4800 val
= readl(port
->base
+ MVPP2_GMAC_CTRL_1_REG
) &
4801 ~MVPP2_GMAC_PERIODIC_XON_EN_MASK
;
4802 writel(val
, port
->base
+ MVPP2_GMAC_CTRL_1_REG
);
4805 /* Configure loopback port */
4806 static void mvpp2_port_loopback_set(struct mvpp2_port
*port
)
4810 val
= readl(port
->base
+ MVPP2_GMAC_CTRL_1_REG
);
4812 if (port
->speed
== 1000)
4813 val
|= MVPP2_GMAC_GMII_LB_EN_MASK
;
4815 val
&= ~MVPP2_GMAC_GMII_LB_EN_MASK
;
4817 if (port
->phy_interface
== PHY_INTERFACE_MODE_SGMII
)
4818 val
|= MVPP2_GMAC_PCS_LB_EN_MASK
;
4820 val
&= ~MVPP2_GMAC_PCS_LB_EN_MASK
;
4822 writel(val
, port
->base
+ MVPP2_GMAC_CTRL_1_REG
);
4825 struct mvpp2_ethtool_counter
{
4826 unsigned int offset
;
4827 const char string
[ETH_GSTRING_LEN
];
4831 static u64
mvpp2_read_count(struct mvpp2_port
*port
,
4832 const struct mvpp2_ethtool_counter
*counter
)
4836 val
= readl(port
->stats_base
+ counter
->offset
);
4837 if (counter
->reg_is_64b
)
4838 val
+= (u64
)readl(port
->stats_base
+ counter
->offset
+ 4) << 32;
4843 /* Due to the fact that software statistics and hardware statistics are, by
4844 * design, incremented at different moments in the chain of packet processing,
4845 * it is very likely that incoming packets could have been dropped after being
4846 * counted by hardware but before reaching software statistics (most probably
4847 * multicast packets), and in the oppposite way, during transmission, FCS bytes
4848 * are added in between as well as TSO skb will be split and header bytes added.
4849 * Hence, statistics gathered from userspace with ifconfig (software) and
4850 * ethtool (hardware) cannot be compared.
4852 static const struct mvpp2_ethtool_counter mvpp2_ethtool_regs
[] = {
4853 { MVPP2_MIB_GOOD_OCTETS_RCVD
, "good_octets_received", true },
4854 { MVPP2_MIB_BAD_OCTETS_RCVD
, "bad_octets_received" },
4855 { MVPP2_MIB_CRC_ERRORS_SENT
, "crc_errors_sent" },
4856 { MVPP2_MIB_UNICAST_FRAMES_RCVD
, "unicast_frames_received" },
4857 { MVPP2_MIB_BROADCAST_FRAMES_RCVD
, "broadcast_frames_received" },
4858 { MVPP2_MIB_MULTICAST_FRAMES_RCVD
, "multicast_frames_received" },
4859 { MVPP2_MIB_FRAMES_64_OCTETS
, "frames_64_octets" },
4860 { MVPP2_MIB_FRAMES_65_TO_127_OCTETS
, "frames_65_to_127_octet" },
4861 { MVPP2_MIB_FRAMES_128_TO_255_OCTETS
, "frames_128_to_255_octet" },
4862 { MVPP2_MIB_FRAMES_256_TO_511_OCTETS
, "frames_256_to_511_octet" },
4863 { MVPP2_MIB_FRAMES_512_TO_1023_OCTETS
, "frames_512_to_1023_octet" },
4864 { MVPP2_MIB_FRAMES_1024_TO_MAX_OCTETS
, "frames_1024_to_max_octet" },
4865 { MVPP2_MIB_GOOD_OCTETS_SENT
, "good_octets_sent", true },
4866 { MVPP2_MIB_UNICAST_FRAMES_SENT
, "unicast_frames_sent" },
4867 { MVPP2_MIB_MULTICAST_FRAMES_SENT
, "multicast_frames_sent" },
4868 { MVPP2_MIB_BROADCAST_FRAMES_SENT
, "broadcast_frames_sent" },
4869 { MVPP2_MIB_FC_SENT
, "fc_sent" },
4870 { MVPP2_MIB_FC_RCVD
, "fc_received" },
4871 { MVPP2_MIB_RX_FIFO_OVERRUN
, "rx_fifo_overrun" },
4872 { MVPP2_MIB_UNDERSIZE_RCVD
, "undersize_received" },
4873 { MVPP2_MIB_FRAGMENTS_RCVD
, "fragments_received" },
4874 { MVPP2_MIB_OVERSIZE_RCVD
, "oversize_received" },
4875 { MVPP2_MIB_JABBER_RCVD
, "jabber_received" },
4876 { MVPP2_MIB_MAC_RCV_ERROR
, "mac_receive_error" },
4877 { MVPP2_MIB_BAD_CRC_EVENT
, "bad_crc_event" },
4878 { MVPP2_MIB_COLLISION
, "collision" },
4879 { MVPP2_MIB_LATE_COLLISION
, "late_collision" },
4882 static void mvpp2_ethtool_get_strings(struct net_device
*netdev
, u32 sset
,
4885 if (sset
== ETH_SS_STATS
) {
4888 for (i
= 0; i
< ARRAY_SIZE(mvpp2_ethtool_regs
); i
++)
4889 memcpy(data
+ i
* ETH_GSTRING_LEN
,
4890 &mvpp2_ethtool_regs
[i
].string
, ETH_GSTRING_LEN
);
4894 static void mvpp2_gather_hw_statistics(struct work_struct
*work
)
4896 struct delayed_work
*del_work
= to_delayed_work(work
);
4897 struct mvpp2_port
*port
= container_of(del_work
, struct mvpp2_port
,
4902 mutex_lock(&port
->gather_stats_lock
);
4904 pstats
= port
->ethtool_stats
;
4905 for (i
= 0; i
< ARRAY_SIZE(mvpp2_ethtool_regs
); i
++)
4906 *pstats
++ += mvpp2_read_count(port
, &mvpp2_ethtool_regs
[i
]);
4908 /* No need to read again the counters right after this function if it
4909 * was called asynchronously by the user (ie. use of ethtool).
4911 cancel_delayed_work(&port
->stats_work
);
4912 queue_delayed_work(port
->priv
->stats_queue
, &port
->stats_work
,
4913 MVPP2_MIB_COUNTERS_STATS_DELAY
);
4915 mutex_unlock(&port
->gather_stats_lock
);
4918 static void mvpp2_ethtool_get_stats(struct net_device
*dev
,
4919 struct ethtool_stats
*stats
, u64
*data
)
4921 struct mvpp2_port
*port
= netdev_priv(dev
);
4923 /* Update statistics for the given port, then take the lock to avoid
4924 * concurrent accesses on the ethtool_stats structure during its copy.
4926 mvpp2_gather_hw_statistics(&port
->stats_work
.work
);
4928 mutex_lock(&port
->gather_stats_lock
);
4929 memcpy(data
, port
->ethtool_stats
,
4930 sizeof(u64
) * ARRAY_SIZE(mvpp2_ethtool_regs
));
4931 mutex_unlock(&port
->gather_stats_lock
);
4934 static int mvpp2_ethtool_get_sset_count(struct net_device
*dev
, int sset
)
4936 if (sset
== ETH_SS_STATS
)
4937 return ARRAY_SIZE(mvpp2_ethtool_regs
);
4942 static void mvpp2_port_reset(struct mvpp2_port
*port
)
4947 /* Read the GOP statistics to reset the hardware counters */
4948 for (i
= 0; i
< ARRAY_SIZE(mvpp2_ethtool_regs
); i
++)
4949 mvpp2_read_count(port
, &mvpp2_ethtool_regs
[i
]);
4951 val
= readl(port
->base
+ MVPP2_GMAC_CTRL_2_REG
) &
4952 ~MVPP2_GMAC_PORT_RESET_MASK
;
4953 writel(val
, port
->base
+ MVPP2_GMAC_CTRL_2_REG
);
4955 while (readl(port
->base
+ MVPP2_GMAC_CTRL_2_REG
) &
4956 MVPP2_GMAC_PORT_RESET_MASK
)
4960 /* Change maximum receive size of the port */
4961 static inline void mvpp2_gmac_max_rx_size_set(struct mvpp2_port
*port
)
4965 val
= readl(port
->base
+ MVPP2_GMAC_CTRL_0_REG
);
4966 val
&= ~MVPP2_GMAC_MAX_RX_SIZE_MASK
;
4967 val
|= (((port
->pkt_size
- MVPP2_MH_SIZE
) / 2) <<
4968 MVPP2_GMAC_MAX_RX_SIZE_OFFS
);
4969 writel(val
, port
->base
+ MVPP2_GMAC_CTRL_0_REG
);
4972 /* Change maximum receive size of the port */
4973 static inline void mvpp2_xlg_max_rx_size_set(struct mvpp2_port
*port
)
4977 val
= readl(port
->base
+ MVPP22_XLG_CTRL1_REG
);
4978 val
&= ~MVPP22_XLG_CTRL1_FRAMESIZELIMIT_MASK
;
4979 val
|= ((port
->pkt_size
- MVPP2_MH_SIZE
) / 2) <<
4980 MVPP22_XLG_CTRL1_FRAMESIZELIMIT_OFFS
;
4981 writel(val
, port
->base
+ MVPP22_XLG_CTRL1_REG
);
4984 /* Set defaults to the MVPP2 port */
4985 static void mvpp2_defaults_set(struct mvpp2_port
*port
)
4987 int tx_port_num
, val
, queue
, ptxq
, lrxq
;
4989 if (port
->priv
->hw_version
== MVPP21
) {
4990 /* Configure port to loopback if needed */
4991 if (port
->flags
& MVPP2_F_LOOPBACK
)
4992 mvpp2_port_loopback_set(port
);
4994 /* Update TX FIFO MIN Threshold */
4995 val
= readl(port
->base
+ MVPP2_GMAC_PORT_FIFO_CFG_1_REG
);
4996 val
&= ~MVPP2_GMAC_TX_FIFO_MIN_TH_ALL_MASK
;
4997 /* Min. TX threshold must be less than minimal packet length */
4998 val
|= MVPP2_GMAC_TX_FIFO_MIN_TH_MASK(64 - 4 - 2);
4999 writel(val
, port
->base
+ MVPP2_GMAC_PORT_FIFO_CFG_1_REG
);
5002 /* Disable Legacy WRR, Disable EJP, Release from reset */
5003 tx_port_num
= mvpp2_egress_port(port
);
5004 mvpp2_write(port
->priv
, MVPP2_TXP_SCHED_PORT_INDEX_REG
,
5006 mvpp2_write(port
->priv
, MVPP2_TXP_SCHED_CMD_1_REG
, 0);
5008 /* Close bandwidth for all queues */
5009 for (queue
= 0; queue
< MVPP2_MAX_TXQ
; queue
++) {
5010 ptxq
= mvpp2_txq_phys(port
->id
, queue
);
5011 mvpp2_write(port
->priv
,
5012 MVPP2_TXQ_SCHED_TOKEN_CNTR_REG(ptxq
), 0);
5015 /* Set refill period to 1 usec, refill tokens
5016 * and bucket size to maximum
5018 mvpp2_write(port
->priv
, MVPP2_TXP_SCHED_PERIOD_REG
,
5019 port
->priv
->tclk
/ USEC_PER_SEC
);
5020 val
= mvpp2_read(port
->priv
, MVPP2_TXP_SCHED_REFILL_REG
);
5021 val
&= ~MVPP2_TXP_REFILL_PERIOD_ALL_MASK
;
5022 val
|= MVPP2_TXP_REFILL_PERIOD_MASK(1);
5023 val
|= MVPP2_TXP_REFILL_TOKENS_ALL_MASK
;
5024 mvpp2_write(port
->priv
, MVPP2_TXP_SCHED_REFILL_REG
, val
);
5025 val
= MVPP2_TXP_TOKEN_SIZE_MAX
;
5026 mvpp2_write(port
->priv
, MVPP2_TXP_SCHED_TOKEN_SIZE_REG
, val
);
5028 /* Set MaximumLowLatencyPacketSize value to 256 */
5029 mvpp2_write(port
->priv
, MVPP2_RX_CTRL_REG(port
->id
),
5030 MVPP2_RX_USE_PSEUDO_FOR_CSUM_MASK
|
5031 MVPP2_RX_LOW_LATENCY_PKT_SIZE(256));
5033 /* Enable Rx cache snoop */
5034 for (lrxq
= 0; lrxq
< port
->nrxqs
; lrxq
++) {
5035 queue
= port
->rxqs
[lrxq
]->id
;
5036 val
= mvpp2_read(port
->priv
, MVPP2_RXQ_CONFIG_REG(queue
));
5037 val
|= MVPP2_SNOOP_PKT_SIZE_MASK
|
5038 MVPP2_SNOOP_BUF_HDR_MASK
;
5039 mvpp2_write(port
->priv
, MVPP2_RXQ_CONFIG_REG(queue
), val
);
5042 /* At default, mask all interrupts to all present cpus */
5043 mvpp2_interrupts_disable(port
);
5046 /* Enable/disable receiving packets */
5047 static void mvpp2_ingress_enable(struct mvpp2_port
*port
)
5052 for (lrxq
= 0; lrxq
< port
->nrxqs
; lrxq
++) {
5053 queue
= port
->rxqs
[lrxq
]->id
;
5054 val
= mvpp2_read(port
->priv
, MVPP2_RXQ_CONFIG_REG(queue
));
5055 val
&= ~MVPP2_RXQ_DISABLE_MASK
;
5056 mvpp2_write(port
->priv
, MVPP2_RXQ_CONFIG_REG(queue
), val
);
5060 static void mvpp2_ingress_disable(struct mvpp2_port
*port
)
5065 for (lrxq
= 0; lrxq
< port
->nrxqs
; lrxq
++) {
5066 queue
= port
->rxqs
[lrxq
]->id
;
5067 val
= mvpp2_read(port
->priv
, MVPP2_RXQ_CONFIG_REG(queue
));
5068 val
|= MVPP2_RXQ_DISABLE_MASK
;
5069 mvpp2_write(port
->priv
, MVPP2_RXQ_CONFIG_REG(queue
), val
);
5073 /* Enable transmit via physical egress queue
5074 * - HW starts take descriptors from DRAM
5076 static void mvpp2_egress_enable(struct mvpp2_port
*port
)
5080 int tx_port_num
= mvpp2_egress_port(port
);
5082 /* Enable all initialized TXs. */
5084 for (queue
= 0; queue
< port
->ntxqs
; queue
++) {
5085 struct mvpp2_tx_queue
*txq
= port
->txqs
[queue
];
5088 qmap
|= (1 << queue
);
5091 mvpp2_write(port
->priv
, MVPP2_TXP_SCHED_PORT_INDEX_REG
, tx_port_num
);
5092 mvpp2_write(port
->priv
, MVPP2_TXP_SCHED_Q_CMD_REG
, qmap
);
5095 /* Disable transmit via physical egress queue
5096 * - HW doesn't take descriptors from DRAM
5098 static void mvpp2_egress_disable(struct mvpp2_port
*port
)
5102 int tx_port_num
= mvpp2_egress_port(port
);
5104 /* Issue stop command for active channels only */
5105 mvpp2_write(port
->priv
, MVPP2_TXP_SCHED_PORT_INDEX_REG
, tx_port_num
);
5106 reg_data
= (mvpp2_read(port
->priv
, MVPP2_TXP_SCHED_Q_CMD_REG
)) &
5107 MVPP2_TXP_SCHED_ENQ_MASK
;
5109 mvpp2_write(port
->priv
, MVPP2_TXP_SCHED_Q_CMD_REG
,
5110 (reg_data
<< MVPP2_TXP_SCHED_DISQ_OFFSET
));
5112 /* Wait for all Tx activity to terminate. */
5115 if (delay
>= MVPP2_TX_DISABLE_TIMEOUT_MSEC
) {
5116 netdev_warn(port
->dev
,
5117 "Tx stop timed out, status=0x%08x\n",
5124 /* Check port TX Command register that all
5125 * Tx queues are stopped
5127 reg_data
= mvpp2_read(port
->priv
, MVPP2_TXP_SCHED_Q_CMD_REG
);
5128 } while (reg_data
& MVPP2_TXP_SCHED_ENQ_MASK
);
5131 /* Rx descriptors helper methods */
5133 /* Get number of Rx descriptors occupied by received packets */
5135 mvpp2_rxq_received(struct mvpp2_port
*port
, int rxq_id
)
5137 u32 val
= mvpp2_read(port
->priv
, MVPP2_RXQ_STATUS_REG(rxq_id
));
5139 return val
& MVPP2_RXQ_OCCUPIED_MASK
;
5142 /* Update Rx queue status with the number of occupied and available
5143 * Rx descriptor slots.
5146 mvpp2_rxq_status_update(struct mvpp2_port
*port
, int rxq_id
,
5147 int used_count
, int free_count
)
5149 /* Decrement the number of used descriptors and increment count
5150 * increment the number of free descriptors.
5152 u32 val
= used_count
| (free_count
<< MVPP2_RXQ_NUM_NEW_OFFSET
);
5154 mvpp2_write(port
->priv
, MVPP2_RXQ_STATUS_UPDATE_REG(rxq_id
), val
);
5157 /* Get pointer to next RX descriptor to be processed by SW */
5158 static inline struct mvpp2_rx_desc
*
5159 mvpp2_rxq_next_desc_get(struct mvpp2_rx_queue
*rxq
)
5161 int rx_desc
= rxq
->next_desc_to_proc
;
5163 rxq
->next_desc_to_proc
= MVPP2_QUEUE_NEXT_DESC(rxq
, rx_desc
);
5164 prefetch(rxq
->descs
+ rxq
->next_desc_to_proc
);
5165 return rxq
->descs
+ rx_desc
;
5168 /* Set rx queue offset */
5169 static void mvpp2_rxq_offset_set(struct mvpp2_port
*port
,
5170 int prxq
, int offset
)
5174 /* Convert offset from bytes to units of 32 bytes */
5175 offset
= offset
>> 5;
5177 val
= mvpp2_read(port
->priv
, MVPP2_RXQ_CONFIG_REG(prxq
));
5178 val
&= ~MVPP2_RXQ_PACKET_OFFSET_MASK
;
5181 val
|= ((offset
<< MVPP2_RXQ_PACKET_OFFSET_OFFS
) &
5182 MVPP2_RXQ_PACKET_OFFSET_MASK
);
5184 mvpp2_write(port
->priv
, MVPP2_RXQ_CONFIG_REG(prxq
), val
);
5187 /* Tx descriptors helper methods */
5189 /* Get pointer to next Tx descriptor to be processed (send) by HW */
5190 static struct mvpp2_tx_desc
*
5191 mvpp2_txq_next_desc_get(struct mvpp2_tx_queue
*txq
)
5193 int tx_desc
= txq
->next_desc_to_proc
;
5195 txq
->next_desc_to_proc
= MVPP2_QUEUE_NEXT_DESC(txq
, tx_desc
);
5196 return txq
->descs
+ tx_desc
;
5199 /* Update HW with number of aggregated Tx descriptors to be sent
5201 * Called only from mvpp2_tx(), so migration is disabled, using
5202 * smp_processor_id() is OK.
5204 static void mvpp2_aggr_txq_pend_desc_add(struct mvpp2_port
*port
, int pending
)
5206 /* aggregated access - relevant TXQ number is written in TX desc */
5207 mvpp2_percpu_write(port
->priv
, smp_processor_id(),
5208 MVPP2_AGGR_TXQ_UPDATE_REG
, pending
);
5212 /* Check if there are enough free descriptors in aggregated txq.
5213 * If not, update the number of occupied descriptors and repeat the check.
5215 * Called only from mvpp2_tx(), so migration is disabled, using
5216 * smp_processor_id() is OK.
5218 static int mvpp2_aggr_desc_num_check(struct mvpp2
*priv
,
5219 struct mvpp2_tx_queue
*aggr_txq
, int num
)
5221 if ((aggr_txq
->count
+ num
) > MVPP2_AGGR_TXQ_SIZE
) {
5222 /* Update number of occupied aggregated Tx descriptors */
5223 int cpu
= smp_processor_id();
5224 u32 val
= mvpp2_read(priv
, MVPP2_AGGR_TXQ_STATUS_REG(cpu
));
5226 aggr_txq
->count
= val
& MVPP2_AGGR_TXQ_PENDING_MASK
;
5229 if ((aggr_txq
->count
+ num
) > MVPP2_AGGR_TXQ_SIZE
)
5235 /* Reserved Tx descriptors allocation request
5237 * Called only from mvpp2_txq_reserved_desc_num_proc(), itself called
5238 * only by mvpp2_tx(), so migration is disabled, using
5239 * smp_processor_id() is OK.
5241 static int mvpp2_txq_alloc_reserved_desc(struct mvpp2
*priv
,
5242 struct mvpp2_tx_queue
*txq
, int num
)
5245 int cpu
= smp_processor_id();
5247 val
= (txq
->id
<< MVPP2_TXQ_RSVD_REQ_Q_OFFSET
) | num
;
5248 mvpp2_percpu_write(priv
, cpu
, MVPP2_TXQ_RSVD_REQ_REG
, val
);
5250 val
= mvpp2_percpu_read(priv
, cpu
, MVPP2_TXQ_RSVD_RSLT_REG
);
5252 return val
& MVPP2_TXQ_RSVD_RSLT_MASK
;
5255 /* Check if there are enough reserved descriptors for transmission.
5256 * If not, request chunk of reserved descriptors and check again.
5258 static int mvpp2_txq_reserved_desc_num_proc(struct mvpp2
*priv
,
5259 struct mvpp2_tx_queue
*txq
,
5260 struct mvpp2_txq_pcpu
*txq_pcpu
,
5263 int req
, cpu
, desc_count
;
5265 if (txq_pcpu
->reserved_num
>= num
)
5268 /* Not enough descriptors reserved! Update the reserved descriptor
5269 * count and check again.
5273 /* Compute total of used descriptors */
5274 for_each_present_cpu(cpu
) {
5275 struct mvpp2_txq_pcpu
*txq_pcpu_aux
;
5277 txq_pcpu_aux
= per_cpu_ptr(txq
->pcpu
, cpu
);
5278 desc_count
+= txq_pcpu_aux
->count
;
5279 desc_count
+= txq_pcpu_aux
->reserved_num
;
5282 req
= max(MVPP2_CPU_DESC_CHUNK
, num
- txq_pcpu
->reserved_num
);
5286 (txq
->size
- (num_present_cpus() * MVPP2_CPU_DESC_CHUNK
)))
5289 txq_pcpu
->reserved_num
+= mvpp2_txq_alloc_reserved_desc(priv
, txq
, req
);
5291 /* OK, the descriptor cound has been updated: check again. */
5292 if (txq_pcpu
->reserved_num
< num
)
5297 /* Release the last allocated Tx descriptor. Useful to handle DMA
5298 * mapping failures in the Tx path.
5300 static void mvpp2_txq_desc_put(struct mvpp2_tx_queue
*txq
)
5302 if (txq
->next_desc_to_proc
== 0)
5303 txq
->next_desc_to_proc
= txq
->last_desc
- 1;
5305 txq
->next_desc_to_proc
--;
5308 /* Set Tx descriptors fields relevant for CSUM calculation */
5309 static u32
mvpp2_txq_desc_csum(int l3_offs
, int l3_proto
,
5310 int ip_hdr_len
, int l4_proto
)
5314 /* fields: L3_offset, IP_hdrlen, L3_type, G_IPv4_chk,
5315 * G_L4_chk, L4_type required only for checksum calculation
5317 command
= (l3_offs
<< MVPP2_TXD_L3_OFF_SHIFT
);
5318 command
|= (ip_hdr_len
<< MVPP2_TXD_IP_HLEN_SHIFT
);
5319 command
|= MVPP2_TXD_IP_CSUM_DISABLE
;
5321 if (l3_proto
== swab16(ETH_P_IP
)) {
5322 command
&= ~MVPP2_TXD_IP_CSUM_DISABLE
; /* enable IPv4 csum */
5323 command
&= ~MVPP2_TXD_L3_IP6
; /* enable IPv4 */
5325 command
|= MVPP2_TXD_L3_IP6
; /* enable IPv6 */
5328 if (l4_proto
== IPPROTO_TCP
) {
5329 command
&= ~MVPP2_TXD_L4_UDP
; /* enable TCP */
5330 command
&= ~MVPP2_TXD_L4_CSUM_FRAG
; /* generate L4 csum */
5331 } else if (l4_proto
== IPPROTO_UDP
) {
5332 command
|= MVPP2_TXD_L4_UDP
; /* enable UDP */
5333 command
&= ~MVPP2_TXD_L4_CSUM_FRAG
; /* generate L4 csum */
5335 command
|= MVPP2_TXD_L4_CSUM_NOT
;
5341 /* Get number of sent descriptors and decrement counter.
5342 * The number of sent descriptors is returned.
5345 * Called only from mvpp2_txq_done(), called from mvpp2_tx()
5346 * (migration disabled) and from the TX completion tasklet (migration
5347 * disabled) so using smp_processor_id() is OK.
5349 static inline int mvpp2_txq_sent_desc_proc(struct mvpp2_port
*port
,
5350 struct mvpp2_tx_queue
*txq
)
5354 /* Reading status reg resets transmitted descriptor counter */
5355 val
= mvpp2_percpu_read(port
->priv
, smp_processor_id(),
5356 MVPP2_TXQ_SENT_REG(txq
->id
));
5358 return (val
& MVPP2_TRANSMITTED_COUNT_MASK
) >>
5359 MVPP2_TRANSMITTED_COUNT_OFFSET
;
5362 /* Called through on_each_cpu(), so runs on all CPUs, with migration
5363 * disabled, therefore using smp_processor_id() is OK.
5365 static void mvpp2_txq_sent_counter_clear(void *arg
)
5367 struct mvpp2_port
*port
= arg
;
5370 for (queue
= 0; queue
< port
->ntxqs
; queue
++) {
5371 int id
= port
->txqs
[queue
]->id
;
5373 mvpp2_percpu_read(port
->priv
, smp_processor_id(),
5374 MVPP2_TXQ_SENT_REG(id
));
5378 /* Set max sizes for Tx queues */
5379 static void mvpp2_txp_max_tx_size_set(struct mvpp2_port
*port
)
5382 int txq
, tx_port_num
;
5384 mtu
= port
->pkt_size
* 8;
5385 if (mtu
> MVPP2_TXP_MTU_MAX
)
5386 mtu
= MVPP2_TXP_MTU_MAX
;
5388 /* WA for wrong Token bucket update: Set MTU value = 3*real MTU value */
5391 /* Indirect access to registers */
5392 tx_port_num
= mvpp2_egress_port(port
);
5393 mvpp2_write(port
->priv
, MVPP2_TXP_SCHED_PORT_INDEX_REG
, tx_port_num
);
5396 val
= mvpp2_read(port
->priv
, MVPP2_TXP_SCHED_MTU_REG
);
5397 val
&= ~MVPP2_TXP_MTU_MAX
;
5399 mvpp2_write(port
->priv
, MVPP2_TXP_SCHED_MTU_REG
, val
);
5401 /* TXP token size and all TXQs token size must be larger that MTU */
5402 val
= mvpp2_read(port
->priv
, MVPP2_TXP_SCHED_TOKEN_SIZE_REG
);
5403 size
= val
& MVPP2_TXP_TOKEN_SIZE_MAX
;
5406 val
&= ~MVPP2_TXP_TOKEN_SIZE_MAX
;
5408 mvpp2_write(port
->priv
, MVPP2_TXP_SCHED_TOKEN_SIZE_REG
, val
);
5411 for (txq
= 0; txq
< port
->ntxqs
; txq
++) {
5412 val
= mvpp2_read(port
->priv
,
5413 MVPP2_TXQ_SCHED_TOKEN_SIZE_REG(txq
));
5414 size
= val
& MVPP2_TXQ_TOKEN_SIZE_MAX
;
5418 val
&= ~MVPP2_TXQ_TOKEN_SIZE_MAX
;
5420 mvpp2_write(port
->priv
,
5421 MVPP2_TXQ_SCHED_TOKEN_SIZE_REG(txq
),
5427 /* Set the number of packets that will be received before Rx interrupt
5428 * will be generated by HW.
5430 static void mvpp2_rx_pkts_coal_set(struct mvpp2_port
*port
,
5431 struct mvpp2_rx_queue
*rxq
)
5433 int cpu
= get_cpu();
5435 if (rxq
->pkts_coal
> MVPP2_OCCUPIED_THRESH_MASK
)
5436 rxq
->pkts_coal
= MVPP2_OCCUPIED_THRESH_MASK
;
5438 mvpp2_percpu_write(port
->priv
, cpu
, MVPP2_RXQ_NUM_REG
, rxq
->id
);
5439 mvpp2_percpu_write(port
->priv
, cpu
, MVPP2_RXQ_THRESH_REG
,
5445 /* For some reason in the LSP this is done on each CPU. Why ? */
5446 static void mvpp2_tx_pkts_coal_set(struct mvpp2_port
*port
,
5447 struct mvpp2_tx_queue
*txq
)
5449 int cpu
= get_cpu();
5452 if (txq
->done_pkts_coal
> MVPP2_TXQ_THRESH_MASK
)
5453 txq
->done_pkts_coal
= MVPP2_TXQ_THRESH_MASK
;
5455 val
= (txq
->done_pkts_coal
<< MVPP2_TXQ_THRESH_OFFSET
);
5456 mvpp2_percpu_write(port
->priv
, cpu
, MVPP2_TXQ_NUM_REG
, txq
->id
);
5457 mvpp2_percpu_write(port
->priv
, cpu
, MVPP2_TXQ_THRESH_REG
, val
);
5462 static u32
mvpp2_usec_to_cycles(u32 usec
, unsigned long clk_hz
)
5464 u64 tmp
= (u64
)clk_hz
* usec
;
5466 do_div(tmp
, USEC_PER_SEC
);
5468 return tmp
> U32_MAX
? U32_MAX
: tmp
;
5471 static u32
mvpp2_cycles_to_usec(u32 cycles
, unsigned long clk_hz
)
5473 u64 tmp
= (u64
)cycles
* USEC_PER_SEC
;
5475 do_div(tmp
, clk_hz
);
5477 return tmp
> U32_MAX
? U32_MAX
: tmp
;
5480 /* Set the time delay in usec before Rx interrupt */
5481 static void mvpp2_rx_time_coal_set(struct mvpp2_port
*port
,
5482 struct mvpp2_rx_queue
*rxq
)
5484 unsigned long freq
= port
->priv
->tclk
;
5485 u32 val
= mvpp2_usec_to_cycles(rxq
->time_coal
, freq
);
5487 if (val
> MVPP2_MAX_ISR_RX_THRESHOLD
) {
5489 mvpp2_cycles_to_usec(MVPP2_MAX_ISR_RX_THRESHOLD
, freq
);
5491 /* re-evaluate to get actual register value */
5492 val
= mvpp2_usec_to_cycles(rxq
->time_coal
, freq
);
5495 mvpp2_write(port
->priv
, MVPP2_ISR_RX_THRESHOLD_REG(rxq
->id
), val
);
5498 static void mvpp2_tx_time_coal_set(struct mvpp2_port
*port
)
5500 unsigned long freq
= port
->priv
->tclk
;
5501 u32 val
= mvpp2_usec_to_cycles(port
->tx_time_coal
, freq
);
5503 if (val
> MVPP2_MAX_ISR_TX_THRESHOLD
) {
5504 port
->tx_time_coal
=
5505 mvpp2_cycles_to_usec(MVPP2_MAX_ISR_TX_THRESHOLD
, freq
);
5507 /* re-evaluate to get actual register value */
5508 val
= mvpp2_usec_to_cycles(port
->tx_time_coal
, freq
);
5511 mvpp2_write(port
->priv
, MVPP2_ISR_TX_THRESHOLD_REG(port
->id
), val
);
5514 /* Free Tx queue skbuffs */
5515 static void mvpp2_txq_bufs_free(struct mvpp2_port
*port
,
5516 struct mvpp2_tx_queue
*txq
,
5517 struct mvpp2_txq_pcpu
*txq_pcpu
, int num
)
5521 for (i
= 0; i
< num
; i
++) {
5522 struct mvpp2_txq_pcpu_buf
*tx_buf
=
5523 txq_pcpu
->buffs
+ txq_pcpu
->txq_get_index
;
5525 if (!IS_TSO_HEADER(txq_pcpu
, tx_buf
->dma
))
5526 dma_unmap_single(port
->dev
->dev
.parent
, tx_buf
->dma
,
5527 tx_buf
->size
, DMA_TO_DEVICE
);
5529 dev_kfree_skb_any(tx_buf
->skb
);
5531 mvpp2_txq_inc_get(txq_pcpu
);
5535 static inline struct mvpp2_rx_queue
*mvpp2_get_rx_queue(struct mvpp2_port
*port
,
5538 int queue
= fls(cause
) - 1;
5540 return port
->rxqs
[queue
];
5543 static inline struct mvpp2_tx_queue
*mvpp2_get_tx_queue(struct mvpp2_port
*port
,
5546 int queue
= fls(cause
) - 1;
5548 return port
->txqs
[queue
];
5551 /* Handle end of transmission */
5552 static void mvpp2_txq_done(struct mvpp2_port
*port
, struct mvpp2_tx_queue
*txq
,
5553 struct mvpp2_txq_pcpu
*txq_pcpu
)
5555 struct netdev_queue
*nq
= netdev_get_tx_queue(port
->dev
, txq
->log_id
);
5558 if (txq_pcpu
->cpu
!= smp_processor_id())
5559 netdev_err(port
->dev
, "wrong cpu on the end of Tx processing\n");
5561 tx_done
= mvpp2_txq_sent_desc_proc(port
, txq
);
5564 mvpp2_txq_bufs_free(port
, txq
, txq_pcpu
, tx_done
);
5566 txq_pcpu
->count
-= tx_done
;
5568 if (netif_tx_queue_stopped(nq
))
5569 if (txq_pcpu
->count
<= txq_pcpu
->wake_threshold
)
5570 netif_tx_wake_queue(nq
);
5573 static unsigned int mvpp2_tx_done(struct mvpp2_port
*port
, u32 cause
,
5576 struct mvpp2_tx_queue
*txq
;
5577 struct mvpp2_txq_pcpu
*txq_pcpu
;
5578 unsigned int tx_todo
= 0;
5581 txq
= mvpp2_get_tx_queue(port
, cause
);
5585 txq_pcpu
= per_cpu_ptr(txq
->pcpu
, cpu
);
5587 if (txq_pcpu
->count
) {
5588 mvpp2_txq_done(port
, txq
, txq_pcpu
);
5589 tx_todo
+= txq_pcpu
->count
;
5592 cause
&= ~(1 << txq
->log_id
);
5597 /* Rx/Tx queue initialization/cleanup methods */
5599 /* Allocate and initialize descriptors for aggr TXQ */
5600 static int mvpp2_aggr_txq_init(struct platform_device
*pdev
,
5601 struct mvpp2_tx_queue
*aggr_txq
, int cpu
,
5606 /* Allocate memory for TX descriptors */
5607 aggr_txq
->descs
= dma_zalloc_coherent(&pdev
->dev
,
5608 MVPP2_AGGR_TXQ_SIZE
* MVPP2_DESC_ALIGNED_SIZE
,
5609 &aggr_txq
->descs_dma
, GFP_KERNEL
);
5610 if (!aggr_txq
->descs
)
5613 aggr_txq
->last_desc
= MVPP2_AGGR_TXQ_SIZE
- 1;
5615 /* Aggr TXQ no reset WA */
5616 aggr_txq
->next_desc_to_proc
= mvpp2_read(priv
,
5617 MVPP2_AGGR_TXQ_INDEX_REG(cpu
));
5619 /* Set Tx descriptors queue starting address indirect
5622 if (priv
->hw_version
== MVPP21
)
5623 txq_dma
= aggr_txq
->descs_dma
;
5625 txq_dma
= aggr_txq
->descs_dma
>>
5626 MVPP22_AGGR_TXQ_DESC_ADDR_OFFS
;
5628 mvpp2_write(priv
, MVPP2_AGGR_TXQ_DESC_ADDR_REG(cpu
), txq_dma
);
5629 mvpp2_write(priv
, MVPP2_AGGR_TXQ_DESC_SIZE_REG(cpu
),
5630 MVPP2_AGGR_TXQ_SIZE
);
5635 /* Create a specified Rx queue */
5636 static int mvpp2_rxq_init(struct mvpp2_port
*port
,
5637 struct mvpp2_rx_queue
*rxq
)
5643 rxq
->size
= port
->rx_ring_size
;
5645 /* Allocate memory for RX descriptors */
5646 rxq
->descs
= dma_alloc_coherent(port
->dev
->dev
.parent
,
5647 rxq
->size
* MVPP2_DESC_ALIGNED_SIZE
,
5648 &rxq
->descs_dma
, GFP_KERNEL
);
5652 rxq
->last_desc
= rxq
->size
- 1;
5654 /* Zero occupied and non-occupied counters - direct access */
5655 mvpp2_write(port
->priv
, MVPP2_RXQ_STATUS_REG(rxq
->id
), 0);
5657 /* Set Rx descriptors queue starting address - indirect access */
5659 mvpp2_percpu_write(port
->priv
, cpu
, MVPP2_RXQ_NUM_REG
, rxq
->id
);
5660 if (port
->priv
->hw_version
== MVPP21
)
5661 rxq_dma
= rxq
->descs_dma
;
5663 rxq_dma
= rxq
->descs_dma
>> MVPP22_DESC_ADDR_OFFS
;
5664 mvpp2_percpu_write(port
->priv
, cpu
, MVPP2_RXQ_DESC_ADDR_REG
, rxq_dma
);
5665 mvpp2_percpu_write(port
->priv
, cpu
, MVPP2_RXQ_DESC_SIZE_REG
, rxq
->size
);
5666 mvpp2_percpu_write(port
->priv
, cpu
, MVPP2_RXQ_INDEX_REG
, 0);
5670 mvpp2_rxq_offset_set(port
, rxq
->id
, NET_SKB_PAD
);
5672 /* Set coalescing pkts and time */
5673 mvpp2_rx_pkts_coal_set(port
, rxq
);
5674 mvpp2_rx_time_coal_set(port
, rxq
);
5676 /* Add number of descriptors ready for receiving packets */
5677 mvpp2_rxq_status_update(port
, rxq
->id
, 0, rxq
->size
);
5682 /* Push packets received by the RXQ to BM pool */
5683 static void mvpp2_rxq_drop_pkts(struct mvpp2_port
*port
,
5684 struct mvpp2_rx_queue
*rxq
)
5688 rx_received
= mvpp2_rxq_received(port
, rxq
->id
);
5692 for (i
= 0; i
< rx_received
; i
++) {
5693 struct mvpp2_rx_desc
*rx_desc
= mvpp2_rxq_next_desc_get(rxq
);
5694 u32 status
= mvpp2_rxdesc_status_get(port
, rx_desc
);
5697 pool
= (status
& MVPP2_RXD_BM_POOL_ID_MASK
) >>
5698 MVPP2_RXD_BM_POOL_ID_OFFS
;
5700 mvpp2_bm_pool_put(port
, pool
,
5701 mvpp2_rxdesc_dma_addr_get(port
, rx_desc
),
5702 mvpp2_rxdesc_cookie_get(port
, rx_desc
));
5704 mvpp2_rxq_status_update(port
, rxq
->id
, rx_received
, rx_received
);
5707 /* Cleanup Rx queue */
5708 static void mvpp2_rxq_deinit(struct mvpp2_port
*port
,
5709 struct mvpp2_rx_queue
*rxq
)
5713 mvpp2_rxq_drop_pkts(port
, rxq
);
5716 dma_free_coherent(port
->dev
->dev
.parent
,
5717 rxq
->size
* MVPP2_DESC_ALIGNED_SIZE
,
5723 rxq
->next_desc_to_proc
= 0;
5726 /* Clear Rx descriptors queue starting address and size;
5727 * free descriptor number
5729 mvpp2_write(port
->priv
, MVPP2_RXQ_STATUS_REG(rxq
->id
), 0);
5731 mvpp2_percpu_write(port
->priv
, cpu
, MVPP2_RXQ_NUM_REG
, rxq
->id
);
5732 mvpp2_percpu_write(port
->priv
, cpu
, MVPP2_RXQ_DESC_ADDR_REG
, 0);
5733 mvpp2_percpu_write(port
->priv
, cpu
, MVPP2_RXQ_DESC_SIZE_REG
, 0);
5737 /* Create and initialize a Tx queue */
5738 static int mvpp2_txq_init(struct mvpp2_port
*port
,
5739 struct mvpp2_tx_queue
*txq
)
5742 int cpu
, desc
, desc_per_txq
, tx_port_num
;
5743 struct mvpp2_txq_pcpu
*txq_pcpu
;
5745 txq
->size
= port
->tx_ring_size
;
5747 /* Allocate memory for Tx descriptors */
5748 txq
->descs
= dma_alloc_coherent(port
->dev
->dev
.parent
,
5749 txq
->size
* MVPP2_DESC_ALIGNED_SIZE
,
5750 &txq
->descs_dma
, GFP_KERNEL
);
5754 txq
->last_desc
= txq
->size
- 1;
5756 /* Set Tx descriptors queue starting address - indirect access */
5758 mvpp2_percpu_write(port
->priv
, cpu
, MVPP2_TXQ_NUM_REG
, txq
->id
);
5759 mvpp2_percpu_write(port
->priv
, cpu
, MVPP2_TXQ_DESC_ADDR_REG
,
5761 mvpp2_percpu_write(port
->priv
, cpu
, MVPP2_TXQ_DESC_SIZE_REG
,
5762 txq
->size
& MVPP2_TXQ_DESC_SIZE_MASK
);
5763 mvpp2_percpu_write(port
->priv
, cpu
, MVPP2_TXQ_INDEX_REG
, 0);
5764 mvpp2_percpu_write(port
->priv
, cpu
, MVPP2_TXQ_RSVD_CLR_REG
,
5765 txq
->id
<< MVPP2_TXQ_RSVD_CLR_OFFSET
);
5766 val
= mvpp2_percpu_read(port
->priv
, cpu
, MVPP2_TXQ_PENDING_REG
);
5767 val
&= ~MVPP2_TXQ_PENDING_MASK
;
5768 mvpp2_percpu_write(port
->priv
, cpu
, MVPP2_TXQ_PENDING_REG
, val
);
5770 /* Calculate base address in prefetch buffer. We reserve 16 descriptors
5771 * for each existing TXQ.
5772 * TCONTS for PON port must be continuous from 0 to MVPP2_MAX_TCONT
5773 * GBE ports assumed to be continious from 0 to MVPP2_MAX_PORTS
5776 desc
= (port
->id
* MVPP2_MAX_TXQ
* desc_per_txq
) +
5777 (txq
->log_id
* desc_per_txq
);
5779 mvpp2_percpu_write(port
->priv
, cpu
, MVPP2_TXQ_PREF_BUF_REG
,
5780 MVPP2_PREF_BUF_PTR(desc
) | MVPP2_PREF_BUF_SIZE_16
|
5781 MVPP2_PREF_BUF_THRESH(desc_per_txq
/ 2));
5784 /* WRR / EJP configuration - indirect access */
5785 tx_port_num
= mvpp2_egress_port(port
);
5786 mvpp2_write(port
->priv
, MVPP2_TXP_SCHED_PORT_INDEX_REG
, tx_port_num
);
5788 val
= mvpp2_read(port
->priv
, MVPP2_TXQ_SCHED_REFILL_REG(txq
->log_id
));
5789 val
&= ~MVPP2_TXQ_REFILL_PERIOD_ALL_MASK
;
5790 val
|= MVPP2_TXQ_REFILL_PERIOD_MASK(1);
5791 val
|= MVPP2_TXQ_REFILL_TOKENS_ALL_MASK
;
5792 mvpp2_write(port
->priv
, MVPP2_TXQ_SCHED_REFILL_REG(txq
->log_id
), val
);
5794 val
= MVPP2_TXQ_TOKEN_SIZE_MAX
;
5795 mvpp2_write(port
->priv
, MVPP2_TXQ_SCHED_TOKEN_SIZE_REG(txq
->log_id
),
5798 for_each_present_cpu(cpu
) {
5799 txq_pcpu
= per_cpu_ptr(txq
->pcpu
, cpu
);
5800 txq_pcpu
->size
= txq
->size
;
5801 txq_pcpu
->buffs
= kmalloc_array(txq_pcpu
->size
,
5802 sizeof(*txq_pcpu
->buffs
),
5804 if (!txq_pcpu
->buffs
)
5807 txq_pcpu
->count
= 0;
5808 txq_pcpu
->reserved_num
= 0;
5809 txq_pcpu
->txq_put_index
= 0;
5810 txq_pcpu
->txq_get_index
= 0;
5811 txq_pcpu
->tso_headers
= NULL
;
5813 txq_pcpu
->stop_threshold
= txq
->size
- MVPP2_MAX_SKB_DESCS
;
5814 txq_pcpu
->wake_threshold
= txq_pcpu
->stop_threshold
/ 2;
5816 txq_pcpu
->tso_headers
=
5817 dma_alloc_coherent(port
->dev
->dev
.parent
,
5818 txq_pcpu
->size
* TSO_HEADER_SIZE
,
5819 &txq_pcpu
->tso_headers_dma
,
5821 if (!txq_pcpu
->tso_headers
)
5828 /* Free allocated TXQ resources */
5829 static void mvpp2_txq_deinit(struct mvpp2_port
*port
,
5830 struct mvpp2_tx_queue
*txq
)
5832 struct mvpp2_txq_pcpu
*txq_pcpu
;
5835 for_each_present_cpu(cpu
) {
5836 txq_pcpu
= per_cpu_ptr(txq
->pcpu
, cpu
);
5837 kfree(txq_pcpu
->buffs
);
5839 if (txq_pcpu
->tso_headers
)
5840 dma_free_coherent(port
->dev
->dev
.parent
,
5841 txq_pcpu
->size
* TSO_HEADER_SIZE
,
5842 txq_pcpu
->tso_headers
,
5843 txq_pcpu
->tso_headers_dma
);
5845 txq_pcpu
->tso_headers
= NULL
;
5849 dma_free_coherent(port
->dev
->dev
.parent
,
5850 txq
->size
* MVPP2_DESC_ALIGNED_SIZE
,
5851 txq
->descs
, txq
->descs_dma
);
5855 txq
->next_desc_to_proc
= 0;
5858 /* Set minimum bandwidth for disabled TXQs */
5859 mvpp2_write(port
->priv
, MVPP2_TXQ_SCHED_TOKEN_CNTR_REG(txq
->id
), 0);
5861 /* Set Tx descriptors queue starting address and size */
5863 mvpp2_percpu_write(port
->priv
, cpu
, MVPP2_TXQ_NUM_REG
, txq
->id
);
5864 mvpp2_percpu_write(port
->priv
, cpu
, MVPP2_TXQ_DESC_ADDR_REG
, 0);
5865 mvpp2_percpu_write(port
->priv
, cpu
, MVPP2_TXQ_DESC_SIZE_REG
, 0);
5869 /* Cleanup Tx ports */
5870 static void mvpp2_txq_clean(struct mvpp2_port
*port
, struct mvpp2_tx_queue
*txq
)
5872 struct mvpp2_txq_pcpu
*txq_pcpu
;
5873 int delay
, pending
, cpu
;
5877 mvpp2_percpu_write(port
->priv
, cpu
, MVPP2_TXQ_NUM_REG
, txq
->id
);
5878 val
= mvpp2_percpu_read(port
->priv
, cpu
, MVPP2_TXQ_PREF_BUF_REG
);
5879 val
|= MVPP2_TXQ_DRAIN_EN_MASK
;
5880 mvpp2_percpu_write(port
->priv
, cpu
, MVPP2_TXQ_PREF_BUF_REG
, val
);
5882 /* The napi queue has been stopped so wait for all packets
5883 * to be transmitted.
5887 if (delay
>= MVPP2_TX_PENDING_TIMEOUT_MSEC
) {
5888 netdev_warn(port
->dev
,
5889 "port %d: cleaning queue %d timed out\n",
5890 port
->id
, txq
->log_id
);
5896 pending
= mvpp2_percpu_read(port
->priv
, cpu
,
5897 MVPP2_TXQ_PENDING_REG
);
5898 pending
&= MVPP2_TXQ_PENDING_MASK
;
5901 val
&= ~MVPP2_TXQ_DRAIN_EN_MASK
;
5902 mvpp2_percpu_write(port
->priv
, cpu
, MVPP2_TXQ_PREF_BUF_REG
, val
);
5905 for_each_present_cpu(cpu
) {
5906 txq_pcpu
= per_cpu_ptr(txq
->pcpu
, cpu
);
5908 /* Release all packets */
5909 mvpp2_txq_bufs_free(port
, txq
, txq_pcpu
, txq_pcpu
->count
);
5912 txq_pcpu
->count
= 0;
5913 txq_pcpu
->txq_put_index
= 0;
5914 txq_pcpu
->txq_get_index
= 0;
5918 /* Cleanup all Tx queues */
5919 static void mvpp2_cleanup_txqs(struct mvpp2_port
*port
)
5921 struct mvpp2_tx_queue
*txq
;
5925 val
= mvpp2_read(port
->priv
, MVPP2_TX_PORT_FLUSH_REG
);
5927 /* Reset Tx ports and delete Tx queues */
5928 val
|= MVPP2_TX_PORT_FLUSH_MASK(port
->id
);
5929 mvpp2_write(port
->priv
, MVPP2_TX_PORT_FLUSH_REG
, val
);
5931 for (queue
= 0; queue
< port
->ntxqs
; queue
++) {
5932 txq
= port
->txqs
[queue
];
5933 mvpp2_txq_clean(port
, txq
);
5934 mvpp2_txq_deinit(port
, txq
);
5937 on_each_cpu(mvpp2_txq_sent_counter_clear
, port
, 1);
5939 val
&= ~MVPP2_TX_PORT_FLUSH_MASK(port
->id
);
5940 mvpp2_write(port
->priv
, MVPP2_TX_PORT_FLUSH_REG
, val
);
5943 /* Cleanup all Rx queues */
5944 static void mvpp2_cleanup_rxqs(struct mvpp2_port
*port
)
5948 for (queue
= 0; queue
< port
->nrxqs
; queue
++)
5949 mvpp2_rxq_deinit(port
, port
->rxqs
[queue
]);
5952 /* Init all Rx queues for port */
5953 static int mvpp2_setup_rxqs(struct mvpp2_port
*port
)
5957 for (queue
= 0; queue
< port
->nrxqs
; queue
++) {
5958 err
= mvpp2_rxq_init(port
, port
->rxqs
[queue
]);
5965 mvpp2_cleanup_rxqs(port
);
5969 /* Init all tx queues for port */
5970 static int mvpp2_setup_txqs(struct mvpp2_port
*port
)
5972 struct mvpp2_tx_queue
*txq
;
5975 for (queue
= 0; queue
< port
->ntxqs
; queue
++) {
5976 txq
= port
->txqs
[queue
];
5977 err
= mvpp2_txq_init(port
, txq
);
5982 if (port
->has_tx_irqs
) {
5983 mvpp2_tx_time_coal_set(port
);
5984 for (queue
= 0; queue
< port
->ntxqs
; queue
++) {
5985 txq
= port
->txqs
[queue
];
5986 mvpp2_tx_pkts_coal_set(port
, txq
);
5990 on_each_cpu(mvpp2_txq_sent_counter_clear
, port
, 1);
5994 mvpp2_cleanup_txqs(port
);
5998 /* The callback for per-port interrupt */
5999 static irqreturn_t
mvpp2_isr(int irq
, void *dev_id
)
6001 struct mvpp2_queue_vector
*qv
= dev_id
;
6003 mvpp2_qvec_interrupt_disable(qv
);
6005 napi_schedule(&qv
->napi
);
6010 /* Per-port interrupt for link status changes */
6011 static irqreturn_t
mvpp2_link_status_isr(int irq
, void *dev_id
)
6013 struct mvpp2_port
*port
= (struct mvpp2_port
*)dev_id
;
6014 struct net_device
*dev
= port
->dev
;
6015 bool event
= false, link
= false;
6018 mvpp22_gop_mask_irq(port
);
6020 if (port
->gop_id
== 0 &&
6021 port
->phy_interface
== PHY_INTERFACE_MODE_10GKR
) {
6022 val
= readl(port
->base
+ MVPP22_XLG_INT_STAT
);
6023 if (val
& MVPP22_XLG_INT_STAT_LINK
) {
6025 val
= readl(port
->base
+ MVPP22_XLG_STATUS
);
6026 if (val
& MVPP22_XLG_STATUS_LINK_UP
)
6029 } else if (phy_interface_mode_is_rgmii(port
->phy_interface
) ||
6030 port
->phy_interface
== PHY_INTERFACE_MODE_SGMII
) {
6031 val
= readl(port
->base
+ MVPP22_GMAC_INT_STAT
);
6032 if (val
& MVPP22_GMAC_INT_STAT_LINK
) {
6034 val
= readl(port
->base
+ MVPP2_GMAC_STATUS0
);
6035 if (val
& MVPP2_GMAC_STATUS0_LINK_UP
)
6040 if (!netif_running(dev
) || !event
)
6044 mvpp2_interrupts_enable(port
);
6046 mvpp2_egress_enable(port
);
6047 mvpp2_ingress_enable(port
);
6048 netif_carrier_on(dev
);
6049 netif_tx_wake_all_queues(dev
);
6051 netif_tx_stop_all_queues(dev
);
6052 netif_carrier_off(dev
);
6053 mvpp2_ingress_disable(port
);
6054 mvpp2_egress_disable(port
);
6056 mvpp2_interrupts_disable(port
);
6060 mvpp22_gop_unmask_irq(port
);
6064 static void mvpp2_gmac_set_autoneg(struct mvpp2_port
*port
,
6065 struct phy_device
*phydev
)
6069 if (port
->phy_interface
!= PHY_INTERFACE_MODE_RGMII
&&
6070 port
->phy_interface
!= PHY_INTERFACE_MODE_RGMII_ID
&&
6071 port
->phy_interface
!= PHY_INTERFACE_MODE_RGMII_RXID
&&
6072 port
->phy_interface
!= PHY_INTERFACE_MODE_RGMII_TXID
&&
6073 port
->phy_interface
!= PHY_INTERFACE_MODE_SGMII
)
6076 val
= readl(port
->base
+ MVPP2_GMAC_AUTONEG_CONFIG
);
6077 val
&= ~(MVPP2_GMAC_CONFIG_MII_SPEED
|
6078 MVPP2_GMAC_CONFIG_GMII_SPEED
|
6079 MVPP2_GMAC_CONFIG_FULL_DUPLEX
|
6080 MVPP2_GMAC_AN_SPEED_EN
|
6081 MVPP2_GMAC_AN_DUPLEX_EN
);
6084 val
|= MVPP2_GMAC_CONFIG_FULL_DUPLEX
;
6086 if (phydev
->speed
== SPEED_1000
)
6087 val
|= MVPP2_GMAC_CONFIG_GMII_SPEED
;
6088 else if (phydev
->speed
== SPEED_100
)
6089 val
|= MVPP2_GMAC_CONFIG_MII_SPEED
;
6091 writel(val
, port
->base
+ MVPP2_GMAC_AUTONEG_CONFIG
);
6095 static void mvpp2_link_event(struct net_device
*dev
)
6097 struct mvpp2_port
*port
= netdev_priv(dev
);
6098 struct phy_device
*phydev
= dev
->phydev
;
6099 bool link_reconfigured
= false;
6103 if (port
->phy_interface
!= phydev
->interface
&& port
->comphy
) {
6104 /* disable current port for reconfiguration */
6105 mvpp2_interrupts_disable(port
);
6106 netif_carrier_off(port
->dev
);
6107 mvpp2_port_disable(port
);
6108 phy_power_off(port
->comphy
);
6110 /* comphy reconfiguration */
6111 port
->phy_interface
= phydev
->interface
;
6112 mvpp22_comphy_init(port
);
6114 /* gop/mac reconfiguration */
6115 mvpp22_gop_init(port
);
6116 mvpp2_port_mii_set(port
);
6118 link_reconfigured
= true;
6121 if ((port
->speed
!= phydev
->speed
) ||
6122 (port
->duplex
!= phydev
->duplex
)) {
6123 mvpp2_gmac_set_autoneg(port
, phydev
);
6125 port
->duplex
= phydev
->duplex
;
6126 port
->speed
= phydev
->speed
;
6130 if (phydev
->link
!= port
->link
|| link_reconfigured
) {
6131 port
->link
= phydev
->link
;
6134 if (port
->phy_interface
== PHY_INTERFACE_MODE_RGMII
||
6135 port
->phy_interface
== PHY_INTERFACE_MODE_RGMII_ID
||
6136 port
->phy_interface
== PHY_INTERFACE_MODE_RGMII_RXID
||
6137 port
->phy_interface
== PHY_INTERFACE_MODE_RGMII_TXID
||
6138 port
->phy_interface
== PHY_INTERFACE_MODE_SGMII
) {
6139 val
= readl(port
->base
+ MVPP2_GMAC_AUTONEG_CONFIG
);
6140 val
|= (MVPP2_GMAC_FORCE_LINK_PASS
|
6141 MVPP2_GMAC_FORCE_LINK_DOWN
);
6142 writel(val
, port
->base
+ MVPP2_GMAC_AUTONEG_CONFIG
);
6145 mvpp2_interrupts_enable(port
);
6146 mvpp2_port_enable(port
);
6148 mvpp2_egress_enable(port
);
6149 mvpp2_ingress_enable(port
);
6150 netif_carrier_on(dev
);
6151 netif_tx_wake_all_queues(dev
);
6156 netif_tx_stop_all_queues(dev
);
6157 netif_carrier_off(dev
);
6158 mvpp2_ingress_disable(port
);
6159 mvpp2_egress_disable(port
);
6161 mvpp2_port_disable(port
);
6162 mvpp2_interrupts_disable(port
);
6165 phy_print_status(phydev
);
6169 static void mvpp2_timer_set(struct mvpp2_port_pcpu
*port_pcpu
)
6173 if (!port_pcpu
->timer_scheduled
) {
6174 port_pcpu
->timer_scheduled
= true;
6175 interval
= MVPP2_TXDONE_HRTIMER_PERIOD_NS
;
6176 hrtimer_start(&port_pcpu
->tx_done_timer
, interval
,
6177 HRTIMER_MODE_REL_PINNED
);
6181 static void mvpp2_tx_proc_cb(unsigned long data
)
6183 struct net_device
*dev
= (struct net_device
*)data
;
6184 struct mvpp2_port
*port
= netdev_priv(dev
);
6185 struct mvpp2_port_pcpu
*port_pcpu
= this_cpu_ptr(port
->pcpu
);
6186 unsigned int tx_todo
, cause
;
6188 if (!netif_running(dev
))
6190 port_pcpu
->timer_scheduled
= false;
6192 /* Process all the Tx queues */
6193 cause
= (1 << port
->ntxqs
) - 1;
6194 tx_todo
= mvpp2_tx_done(port
, cause
, smp_processor_id());
6196 /* Set the timer in case not all the packets were processed */
6198 mvpp2_timer_set(port_pcpu
);
6201 static enum hrtimer_restart
mvpp2_hr_timer_cb(struct hrtimer
*timer
)
6203 struct mvpp2_port_pcpu
*port_pcpu
= container_of(timer
,
6204 struct mvpp2_port_pcpu
,
6207 tasklet_schedule(&port_pcpu
->tx_done_tasklet
);
6209 return HRTIMER_NORESTART
;
6212 /* Main RX/TX processing routines */
6214 /* Display more error info */
6215 static void mvpp2_rx_error(struct mvpp2_port
*port
,
6216 struct mvpp2_rx_desc
*rx_desc
)
6218 u32 status
= mvpp2_rxdesc_status_get(port
, rx_desc
);
6219 size_t sz
= mvpp2_rxdesc_size_get(port
, rx_desc
);
6221 switch (status
& MVPP2_RXD_ERR_CODE_MASK
) {
6222 case MVPP2_RXD_ERR_CRC
:
6223 netdev_err(port
->dev
, "bad rx status %08x (crc error), size=%zu\n",
6226 case MVPP2_RXD_ERR_OVERRUN
:
6227 netdev_err(port
->dev
, "bad rx status %08x (overrun error), size=%zu\n",
6230 case MVPP2_RXD_ERR_RESOURCE
:
6231 netdev_err(port
->dev
, "bad rx status %08x (resource error), size=%zu\n",
6237 /* Handle RX checksum offload */
6238 static void mvpp2_rx_csum(struct mvpp2_port
*port
, u32 status
,
6239 struct sk_buff
*skb
)
6241 if (((status
& MVPP2_RXD_L3_IP4
) &&
6242 !(status
& MVPP2_RXD_IP4_HEADER_ERR
)) ||
6243 (status
& MVPP2_RXD_L3_IP6
))
6244 if (((status
& MVPP2_RXD_L4_UDP
) ||
6245 (status
& MVPP2_RXD_L4_TCP
)) &&
6246 (status
& MVPP2_RXD_L4_CSUM_OK
)) {
6248 skb
->ip_summed
= CHECKSUM_UNNECESSARY
;
6252 skb
->ip_summed
= CHECKSUM_NONE
;
6255 /* Reuse skb if possible, or allocate a new skb and add it to BM pool */
6256 static int mvpp2_rx_refill(struct mvpp2_port
*port
,
6257 struct mvpp2_bm_pool
*bm_pool
, int pool
)
6259 dma_addr_t dma_addr
;
6260 phys_addr_t phys_addr
;
6263 /* No recycle or too many buffers are in use, so allocate a new skb */
6264 buf
= mvpp2_buf_alloc(port
, bm_pool
, &dma_addr
, &phys_addr
,
6269 mvpp2_bm_pool_put(port
, pool
, dma_addr
, phys_addr
);
6274 /* Handle tx checksum */
6275 static u32
mvpp2_skb_tx_csum(struct mvpp2_port
*port
, struct sk_buff
*skb
)
6277 if (skb
->ip_summed
== CHECKSUM_PARTIAL
) {
6281 if (skb
->protocol
== htons(ETH_P_IP
)) {
6282 struct iphdr
*ip4h
= ip_hdr(skb
);
6284 /* Calculate IPv4 checksum and L4 checksum */
6285 ip_hdr_len
= ip4h
->ihl
;
6286 l4_proto
= ip4h
->protocol
;
6287 } else if (skb
->protocol
== htons(ETH_P_IPV6
)) {
6288 struct ipv6hdr
*ip6h
= ipv6_hdr(skb
);
6290 /* Read l4_protocol from one of IPv6 extra headers */
6291 if (skb_network_header_len(skb
) > 0)
6292 ip_hdr_len
= (skb_network_header_len(skb
) >> 2);
6293 l4_proto
= ip6h
->nexthdr
;
6295 return MVPP2_TXD_L4_CSUM_NOT
;
6298 return mvpp2_txq_desc_csum(skb_network_offset(skb
),
6299 skb
->protocol
, ip_hdr_len
, l4_proto
);
6302 return MVPP2_TXD_L4_CSUM_NOT
| MVPP2_TXD_IP_CSUM_DISABLE
;
6305 /* Main rx processing */
6306 static int mvpp2_rx(struct mvpp2_port
*port
, struct napi_struct
*napi
,
6307 int rx_todo
, struct mvpp2_rx_queue
*rxq
)
6309 struct net_device
*dev
= port
->dev
;
6315 /* Get number of received packets and clamp the to-do */
6316 rx_received
= mvpp2_rxq_received(port
, rxq
->id
);
6317 if (rx_todo
> rx_received
)
6318 rx_todo
= rx_received
;
6320 while (rx_done
< rx_todo
) {
6321 struct mvpp2_rx_desc
*rx_desc
= mvpp2_rxq_next_desc_get(rxq
);
6322 struct mvpp2_bm_pool
*bm_pool
;
6323 struct sk_buff
*skb
;
6324 unsigned int frag_size
;
6325 dma_addr_t dma_addr
;
6326 phys_addr_t phys_addr
;
6328 int pool
, rx_bytes
, err
;
6332 rx_status
= mvpp2_rxdesc_status_get(port
, rx_desc
);
6333 rx_bytes
= mvpp2_rxdesc_size_get(port
, rx_desc
);
6334 rx_bytes
-= MVPP2_MH_SIZE
;
6335 dma_addr
= mvpp2_rxdesc_dma_addr_get(port
, rx_desc
);
6336 phys_addr
= mvpp2_rxdesc_cookie_get(port
, rx_desc
);
6337 data
= (void *)phys_to_virt(phys_addr
);
6339 pool
= (rx_status
& MVPP2_RXD_BM_POOL_ID_MASK
) >>
6340 MVPP2_RXD_BM_POOL_ID_OFFS
;
6341 bm_pool
= &port
->priv
->bm_pools
[pool
];
6343 /* In case of an error, release the requested buffer pointer
6344 * to the Buffer Manager. This request process is controlled
6345 * by the hardware, and the information about the buffer is
6346 * comprised by the RX descriptor.
6348 if (rx_status
& MVPP2_RXD_ERR_SUMMARY
) {
6350 dev
->stats
.rx_errors
++;
6351 mvpp2_rx_error(port
, rx_desc
);
6352 /* Return the buffer to the pool */
6353 mvpp2_bm_pool_put(port
, pool
, dma_addr
, phys_addr
);
6357 if (bm_pool
->frag_size
> PAGE_SIZE
)
6360 frag_size
= bm_pool
->frag_size
;
6362 skb
= build_skb(data
, frag_size
);
6364 netdev_warn(port
->dev
, "skb build failed\n");
6365 goto err_drop_frame
;
6368 err
= mvpp2_rx_refill(port
, bm_pool
, pool
);
6370 netdev_err(port
->dev
, "failed to refill BM pools\n");
6371 goto err_drop_frame
;
6374 dma_unmap_single(dev
->dev
.parent
, dma_addr
,
6375 bm_pool
->buf_size
, DMA_FROM_DEVICE
);
6378 rcvd_bytes
+= rx_bytes
;
6380 skb_reserve(skb
, MVPP2_MH_SIZE
+ NET_SKB_PAD
);
6381 skb_put(skb
, rx_bytes
);
6382 skb
->protocol
= eth_type_trans(skb
, dev
);
6383 mvpp2_rx_csum(port
, rx_status
, skb
);
6385 napi_gro_receive(napi
, skb
);
6389 struct mvpp2_pcpu_stats
*stats
= this_cpu_ptr(port
->stats
);
6391 u64_stats_update_begin(&stats
->syncp
);
6392 stats
->rx_packets
+= rcvd_pkts
;
6393 stats
->rx_bytes
+= rcvd_bytes
;
6394 u64_stats_update_end(&stats
->syncp
);
6397 /* Update Rx queue management counters */
6399 mvpp2_rxq_status_update(port
, rxq
->id
, rx_done
, rx_done
);
6405 tx_desc_unmap_put(struct mvpp2_port
*port
, struct mvpp2_tx_queue
*txq
,
6406 struct mvpp2_tx_desc
*desc
)
6408 struct mvpp2_txq_pcpu
*txq_pcpu
= this_cpu_ptr(txq
->pcpu
);
6410 dma_addr_t buf_dma_addr
=
6411 mvpp2_txdesc_dma_addr_get(port
, desc
);
6413 mvpp2_txdesc_size_get(port
, desc
);
6414 if (!IS_TSO_HEADER(txq_pcpu
, buf_dma_addr
))
6415 dma_unmap_single(port
->dev
->dev
.parent
, buf_dma_addr
,
6416 buf_sz
, DMA_TO_DEVICE
);
6417 mvpp2_txq_desc_put(txq
);
6420 /* Handle tx fragmentation processing */
6421 static int mvpp2_tx_frag_process(struct mvpp2_port
*port
, struct sk_buff
*skb
,
6422 struct mvpp2_tx_queue
*aggr_txq
,
6423 struct mvpp2_tx_queue
*txq
)
6425 struct mvpp2_txq_pcpu
*txq_pcpu
= this_cpu_ptr(txq
->pcpu
);
6426 struct mvpp2_tx_desc
*tx_desc
;
6428 dma_addr_t buf_dma_addr
;
6430 for (i
= 0; i
< skb_shinfo(skb
)->nr_frags
; i
++) {
6431 skb_frag_t
*frag
= &skb_shinfo(skb
)->frags
[i
];
6432 void *addr
= page_address(frag
->page
.p
) + frag
->page_offset
;
6434 tx_desc
= mvpp2_txq_next_desc_get(aggr_txq
);
6435 mvpp2_txdesc_txq_set(port
, tx_desc
, txq
->id
);
6436 mvpp2_txdesc_size_set(port
, tx_desc
, frag
->size
);
6438 buf_dma_addr
= dma_map_single(port
->dev
->dev
.parent
, addr
,
6441 if (dma_mapping_error(port
->dev
->dev
.parent
, buf_dma_addr
)) {
6442 mvpp2_txq_desc_put(txq
);
6446 mvpp2_txdesc_dma_addr_set(port
, tx_desc
, buf_dma_addr
);
6448 if (i
== (skb_shinfo(skb
)->nr_frags
- 1)) {
6449 /* Last descriptor */
6450 mvpp2_txdesc_cmd_set(port
, tx_desc
,
6452 mvpp2_txq_inc_put(port
, txq_pcpu
, skb
, tx_desc
);
6454 /* Descriptor in the middle: Not First, Not Last */
6455 mvpp2_txdesc_cmd_set(port
, tx_desc
, 0);
6456 mvpp2_txq_inc_put(port
, txq_pcpu
, NULL
, tx_desc
);
6462 /* Release all descriptors that were used to map fragments of
6463 * this packet, as well as the corresponding DMA mappings
6465 for (i
= i
- 1; i
>= 0; i
--) {
6466 tx_desc
= txq
->descs
+ i
;
6467 tx_desc_unmap_put(port
, txq
, tx_desc
);
6473 static inline void mvpp2_tso_put_hdr(struct sk_buff
*skb
,
6474 struct net_device
*dev
,
6475 struct mvpp2_tx_queue
*txq
,
6476 struct mvpp2_tx_queue
*aggr_txq
,
6477 struct mvpp2_txq_pcpu
*txq_pcpu
,
6480 struct mvpp2_port
*port
= netdev_priv(dev
);
6481 struct mvpp2_tx_desc
*tx_desc
= mvpp2_txq_next_desc_get(aggr_txq
);
6484 mvpp2_txdesc_txq_set(port
, tx_desc
, txq
->id
);
6485 mvpp2_txdesc_size_set(port
, tx_desc
, hdr_sz
);
6487 addr
= txq_pcpu
->tso_headers_dma
+
6488 txq_pcpu
->txq_put_index
* TSO_HEADER_SIZE
;
6489 mvpp2_txdesc_dma_addr_set(port
, tx_desc
, addr
);
6491 mvpp2_txdesc_cmd_set(port
, tx_desc
, mvpp2_skb_tx_csum(port
, skb
) |
6493 MVPP2_TXD_PADDING_DISABLE
);
6494 mvpp2_txq_inc_put(port
, txq_pcpu
, NULL
, tx_desc
);
6497 static inline int mvpp2_tso_put_data(struct sk_buff
*skb
,
6498 struct net_device
*dev
, struct tso_t
*tso
,
6499 struct mvpp2_tx_queue
*txq
,
6500 struct mvpp2_tx_queue
*aggr_txq
,
6501 struct mvpp2_txq_pcpu
*txq_pcpu
,
6502 int sz
, bool left
, bool last
)
6504 struct mvpp2_port
*port
= netdev_priv(dev
);
6505 struct mvpp2_tx_desc
*tx_desc
= mvpp2_txq_next_desc_get(aggr_txq
);
6506 dma_addr_t buf_dma_addr
;
6508 mvpp2_txdesc_txq_set(port
, tx_desc
, txq
->id
);
6509 mvpp2_txdesc_size_set(port
, tx_desc
, sz
);
6511 buf_dma_addr
= dma_map_single(dev
->dev
.parent
, tso
->data
, sz
,
6513 if (unlikely(dma_mapping_error(dev
->dev
.parent
, buf_dma_addr
))) {
6514 mvpp2_txq_desc_put(txq
);
6518 mvpp2_txdesc_dma_addr_set(port
, tx_desc
, buf_dma_addr
);
6521 mvpp2_txdesc_cmd_set(port
, tx_desc
, MVPP2_TXD_L_DESC
);
6523 mvpp2_txq_inc_put(port
, txq_pcpu
, skb
, tx_desc
);
6527 mvpp2_txdesc_cmd_set(port
, tx_desc
, 0);
6530 mvpp2_txq_inc_put(port
, txq_pcpu
, NULL
, tx_desc
);
6534 static int mvpp2_tx_tso(struct sk_buff
*skb
, struct net_device
*dev
,
6535 struct mvpp2_tx_queue
*txq
,
6536 struct mvpp2_tx_queue
*aggr_txq
,
6537 struct mvpp2_txq_pcpu
*txq_pcpu
)
6539 struct mvpp2_port
*port
= netdev_priv(dev
);
6541 int hdr_sz
= skb_transport_offset(skb
) + tcp_hdrlen(skb
);
6542 int i
, len
, descs
= 0;
6544 /* Check number of available descriptors */
6545 if (mvpp2_aggr_desc_num_check(port
->priv
, aggr_txq
,
6546 tso_count_descs(skb
)) ||
6547 mvpp2_txq_reserved_desc_num_proc(port
->priv
, txq
, txq_pcpu
,
6548 tso_count_descs(skb
)))
6551 tso_start(skb
, &tso
);
6552 len
= skb
->len
- hdr_sz
;
6554 int left
= min_t(int, skb_shinfo(skb
)->gso_size
, len
);
6555 char *hdr
= txq_pcpu
->tso_headers
+
6556 txq_pcpu
->txq_put_index
* TSO_HEADER_SIZE
;
6561 tso_build_hdr(skb
, hdr
, &tso
, left
, len
== 0);
6562 mvpp2_tso_put_hdr(skb
, dev
, txq
, aggr_txq
, txq_pcpu
, hdr_sz
);
6565 int sz
= min_t(int, tso
.size
, left
);
6569 if (mvpp2_tso_put_data(skb
, dev
, &tso
, txq
, aggr_txq
,
6570 txq_pcpu
, sz
, left
, len
== 0))
6572 tso_build_data(skb
, &tso
, sz
);
6579 for (i
= descs
- 1; i
>= 0; i
--) {
6580 struct mvpp2_tx_desc
*tx_desc
= txq
->descs
+ i
;
6581 tx_desc_unmap_put(port
, txq
, tx_desc
);
6586 /* Main tx processing */
6587 static int mvpp2_tx(struct sk_buff
*skb
, struct net_device
*dev
)
6589 struct mvpp2_port
*port
= netdev_priv(dev
);
6590 struct mvpp2_tx_queue
*txq
, *aggr_txq
;
6591 struct mvpp2_txq_pcpu
*txq_pcpu
;
6592 struct mvpp2_tx_desc
*tx_desc
;
6593 dma_addr_t buf_dma_addr
;
6598 txq_id
= skb_get_queue_mapping(skb
);
6599 txq
= port
->txqs
[txq_id
];
6600 txq_pcpu
= this_cpu_ptr(txq
->pcpu
);
6601 aggr_txq
= &port
->priv
->aggr_txqs
[smp_processor_id()];
6603 if (skb_is_gso(skb
)) {
6604 frags
= mvpp2_tx_tso(skb
, dev
, txq
, aggr_txq
, txq_pcpu
);
6607 frags
= skb_shinfo(skb
)->nr_frags
+ 1;
6609 /* Check number of available descriptors */
6610 if (mvpp2_aggr_desc_num_check(port
->priv
, aggr_txq
, frags
) ||
6611 mvpp2_txq_reserved_desc_num_proc(port
->priv
, txq
,
6617 /* Get a descriptor for the first part of the packet */
6618 tx_desc
= mvpp2_txq_next_desc_get(aggr_txq
);
6619 mvpp2_txdesc_txq_set(port
, tx_desc
, txq
->id
);
6620 mvpp2_txdesc_size_set(port
, tx_desc
, skb_headlen(skb
));
6622 buf_dma_addr
= dma_map_single(dev
->dev
.parent
, skb
->data
,
6623 skb_headlen(skb
), DMA_TO_DEVICE
);
6624 if (unlikely(dma_mapping_error(dev
->dev
.parent
, buf_dma_addr
))) {
6625 mvpp2_txq_desc_put(txq
);
6630 mvpp2_txdesc_dma_addr_set(port
, tx_desc
, buf_dma_addr
);
6632 tx_cmd
= mvpp2_skb_tx_csum(port
, skb
);
6635 /* First and Last descriptor */
6636 tx_cmd
|= MVPP2_TXD_F_DESC
| MVPP2_TXD_L_DESC
;
6637 mvpp2_txdesc_cmd_set(port
, tx_desc
, tx_cmd
);
6638 mvpp2_txq_inc_put(port
, txq_pcpu
, skb
, tx_desc
);
6640 /* First but not Last */
6641 tx_cmd
|= MVPP2_TXD_F_DESC
| MVPP2_TXD_PADDING_DISABLE
;
6642 mvpp2_txdesc_cmd_set(port
, tx_desc
, tx_cmd
);
6643 mvpp2_txq_inc_put(port
, txq_pcpu
, NULL
, tx_desc
);
6645 /* Continue with other skb fragments */
6646 if (mvpp2_tx_frag_process(port
, skb
, aggr_txq
, txq
)) {
6647 tx_desc_unmap_put(port
, txq
, tx_desc
);
6654 struct mvpp2_pcpu_stats
*stats
= this_cpu_ptr(port
->stats
);
6655 struct netdev_queue
*nq
= netdev_get_tx_queue(dev
, txq_id
);
6657 txq_pcpu
->reserved_num
-= frags
;
6658 txq_pcpu
->count
+= frags
;
6659 aggr_txq
->count
+= frags
;
6661 /* Enable transmit */
6663 mvpp2_aggr_txq_pend_desc_add(port
, frags
);
6665 if (txq_pcpu
->count
>= txq_pcpu
->stop_threshold
)
6666 netif_tx_stop_queue(nq
);
6668 u64_stats_update_begin(&stats
->syncp
);
6669 stats
->tx_packets
++;
6670 stats
->tx_bytes
+= skb
->len
;
6671 u64_stats_update_end(&stats
->syncp
);
6673 dev
->stats
.tx_dropped
++;
6674 dev_kfree_skb_any(skb
);
6677 /* Finalize TX processing */
6678 if (!port
->has_tx_irqs
&& txq_pcpu
->count
>= txq
->done_pkts_coal
)
6679 mvpp2_txq_done(port
, txq
, txq_pcpu
);
6681 /* Set the timer in case not all frags were processed */
6682 if (!port
->has_tx_irqs
&& txq_pcpu
->count
<= frags
&&
6683 txq_pcpu
->count
> 0) {
6684 struct mvpp2_port_pcpu
*port_pcpu
= this_cpu_ptr(port
->pcpu
);
6686 mvpp2_timer_set(port_pcpu
);
6689 return NETDEV_TX_OK
;
6692 static inline void mvpp2_cause_error(struct net_device
*dev
, int cause
)
6694 if (cause
& MVPP2_CAUSE_FCS_ERR_MASK
)
6695 netdev_err(dev
, "FCS error\n");
6696 if (cause
& MVPP2_CAUSE_RX_FIFO_OVERRUN_MASK
)
6697 netdev_err(dev
, "rx fifo overrun error\n");
6698 if (cause
& MVPP2_CAUSE_TX_FIFO_UNDERRUN_MASK
)
6699 netdev_err(dev
, "tx fifo underrun error\n");
6702 static int mvpp2_poll(struct napi_struct
*napi
, int budget
)
6704 u32 cause_rx_tx
, cause_rx
, cause_tx
, cause_misc
;
6706 struct mvpp2_port
*port
= netdev_priv(napi
->dev
);
6707 struct mvpp2_queue_vector
*qv
;
6708 int cpu
= smp_processor_id();
6710 qv
= container_of(napi
, struct mvpp2_queue_vector
, napi
);
6712 /* Rx/Tx cause register
6714 * Bits 0-15: each bit indicates received packets on the Rx queue
6715 * (bit 0 is for Rx queue 0).
6717 * Bits 16-23: each bit indicates transmitted packets on the Tx queue
6718 * (bit 16 is for Tx queue 0).
6720 * Each CPU has its own Rx/Tx cause register
6722 cause_rx_tx
= mvpp2_percpu_read(port
->priv
, qv
->sw_thread_id
,
6723 MVPP2_ISR_RX_TX_CAUSE_REG(port
->id
));
6725 cause_misc
= cause_rx_tx
& MVPP2_CAUSE_MISC_SUM_MASK
;
6727 mvpp2_cause_error(port
->dev
, cause_misc
);
6729 /* Clear the cause register */
6730 mvpp2_write(port
->priv
, MVPP2_ISR_MISC_CAUSE_REG
, 0);
6731 mvpp2_percpu_write(port
->priv
, cpu
,
6732 MVPP2_ISR_RX_TX_CAUSE_REG(port
->id
),
6733 cause_rx_tx
& ~MVPP2_CAUSE_MISC_SUM_MASK
);
6736 cause_tx
= cause_rx_tx
& MVPP2_CAUSE_TXQ_OCCUP_DESC_ALL_MASK
;
6738 cause_tx
>>= MVPP2_CAUSE_TXQ_OCCUP_DESC_ALL_OFFSET
;
6739 mvpp2_tx_done(port
, cause_tx
, qv
->sw_thread_id
);
6742 /* Process RX packets */
6743 cause_rx
= cause_rx_tx
& MVPP2_CAUSE_RXQ_OCCUP_DESC_ALL_MASK
;
6744 cause_rx
<<= qv
->first_rxq
;
6745 cause_rx
|= qv
->pending_cause_rx
;
6746 while (cause_rx
&& budget
> 0) {
6748 struct mvpp2_rx_queue
*rxq
;
6750 rxq
= mvpp2_get_rx_queue(port
, cause_rx
);
6754 count
= mvpp2_rx(port
, napi
, budget
, rxq
);
6758 /* Clear the bit associated to this Rx queue
6759 * so that next iteration will continue from
6760 * the next Rx queue.
6762 cause_rx
&= ~(1 << rxq
->logic_rxq
);
6768 napi_complete_done(napi
, rx_done
);
6770 mvpp2_qvec_interrupt_enable(qv
);
6772 qv
->pending_cause_rx
= cause_rx
;
6776 /* Set hw internals when starting port */
6777 static void mvpp2_start_dev(struct mvpp2_port
*port
)
6779 struct net_device
*ndev
= port
->dev
;
6782 if (port
->gop_id
== 0 &&
6783 (port
->phy_interface
== PHY_INTERFACE_MODE_XAUI
||
6784 port
->phy_interface
== PHY_INTERFACE_MODE_10GKR
))
6785 mvpp2_xlg_max_rx_size_set(port
);
6787 mvpp2_gmac_max_rx_size_set(port
);
6789 mvpp2_txp_max_tx_size_set(port
);
6791 for (i
= 0; i
< port
->nqvecs
; i
++)
6792 napi_enable(&port
->qvecs
[i
].napi
);
6794 /* Enable interrupts on all CPUs */
6795 mvpp2_interrupts_enable(port
);
6797 if (port
->priv
->hw_version
== MVPP22
) {
6798 mvpp22_comphy_init(port
);
6799 mvpp22_gop_init(port
);
6802 mvpp2_port_mii_set(port
);
6803 mvpp2_port_enable(port
);
6805 phy_start(ndev
->phydev
);
6806 netif_tx_start_all_queues(port
->dev
);
6809 /* Set hw internals when stopping port */
6810 static void mvpp2_stop_dev(struct mvpp2_port
*port
)
6812 struct net_device
*ndev
= port
->dev
;
6815 /* Stop new packets from arriving to RXQs */
6816 mvpp2_ingress_disable(port
);
6820 /* Disable interrupts on all CPUs */
6821 mvpp2_interrupts_disable(port
);
6823 for (i
= 0; i
< port
->nqvecs
; i
++)
6824 napi_disable(&port
->qvecs
[i
].napi
);
6826 netif_carrier_off(port
->dev
);
6827 netif_tx_stop_all_queues(port
->dev
);
6829 mvpp2_egress_disable(port
);
6830 mvpp2_port_disable(port
);
6832 phy_stop(ndev
->phydev
);
6833 phy_power_off(port
->comphy
);
6836 static int mvpp2_check_ringparam_valid(struct net_device
*dev
,
6837 struct ethtool_ringparam
*ring
)
6839 u16 new_rx_pending
= ring
->rx_pending
;
6840 u16 new_tx_pending
= ring
->tx_pending
;
6842 if (ring
->rx_pending
== 0 || ring
->tx_pending
== 0)
6845 if (ring
->rx_pending
> MVPP2_MAX_RXD_MAX
)
6846 new_rx_pending
= MVPP2_MAX_RXD_MAX
;
6847 else if (!IS_ALIGNED(ring
->rx_pending
, 16))
6848 new_rx_pending
= ALIGN(ring
->rx_pending
, 16);
6850 if (ring
->tx_pending
> MVPP2_MAX_TXD_MAX
)
6851 new_tx_pending
= MVPP2_MAX_TXD_MAX
;
6852 else if (!IS_ALIGNED(ring
->tx_pending
, 32))
6853 new_tx_pending
= ALIGN(ring
->tx_pending
, 32);
6855 /* The Tx ring size cannot be smaller than the minimum number of
6856 * descriptors needed for TSO.
6858 if (new_tx_pending
< MVPP2_MAX_SKB_DESCS
)
6859 new_tx_pending
= ALIGN(MVPP2_MAX_SKB_DESCS
, 32);
6861 if (ring
->rx_pending
!= new_rx_pending
) {
6862 netdev_info(dev
, "illegal Rx ring size value %d, round to %d\n",
6863 ring
->rx_pending
, new_rx_pending
);
6864 ring
->rx_pending
= new_rx_pending
;
6867 if (ring
->tx_pending
!= new_tx_pending
) {
6868 netdev_info(dev
, "illegal Tx ring size value %d, round to %d\n",
6869 ring
->tx_pending
, new_tx_pending
);
6870 ring
->tx_pending
= new_tx_pending
;
6876 static void mvpp21_get_mac_address(struct mvpp2_port
*port
, unsigned char *addr
)
6878 u32 mac_addr_l
, mac_addr_m
, mac_addr_h
;
6880 mac_addr_l
= readl(port
->base
+ MVPP2_GMAC_CTRL_1_REG
);
6881 mac_addr_m
= readl(port
->priv
->lms_base
+ MVPP2_SRC_ADDR_MIDDLE
);
6882 mac_addr_h
= readl(port
->priv
->lms_base
+ MVPP2_SRC_ADDR_HIGH
);
6883 addr
[0] = (mac_addr_h
>> 24) & 0xFF;
6884 addr
[1] = (mac_addr_h
>> 16) & 0xFF;
6885 addr
[2] = (mac_addr_h
>> 8) & 0xFF;
6886 addr
[3] = mac_addr_h
& 0xFF;
6887 addr
[4] = mac_addr_m
& 0xFF;
6888 addr
[5] = (mac_addr_l
>> MVPP2_GMAC_SA_LOW_OFFS
) & 0xFF;
6891 static int mvpp2_phy_connect(struct mvpp2_port
*port
)
6893 struct phy_device
*phy_dev
;
6895 /* No PHY is attached */
6896 if (!port
->phy_node
)
6899 phy_dev
= of_phy_connect(port
->dev
, port
->phy_node
, mvpp2_link_event
, 0,
6900 port
->phy_interface
);
6902 netdev_err(port
->dev
, "cannot connect to phy\n");
6905 phy_dev
->supported
&= PHY_GBIT_FEATURES
;
6906 phy_dev
->advertising
= phy_dev
->supported
;
6915 static void mvpp2_phy_disconnect(struct mvpp2_port
*port
)
6917 struct net_device
*ndev
= port
->dev
;
6922 phy_disconnect(ndev
->phydev
);
6925 static int mvpp2_irqs_init(struct mvpp2_port
*port
)
6929 for (i
= 0; i
< port
->nqvecs
; i
++) {
6930 struct mvpp2_queue_vector
*qv
= port
->qvecs
+ i
;
6932 if (qv
->type
== MVPP2_QUEUE_VECTOR_PRIVATE
)
6933 irq_set_status_flags(qv
->irq
, IRQ_NO_BALANCING
);
6935 err
= request_irq(qv
->irq
, mvpp2_isr
, 0, port
->dev
->name
, qv
);
6939 if (qv
->type
== MVPP2_QUEUE_VECTOR_PRIVATE
)
6940 irq_set_affinity_hint(qv
->irq
,
6941 cpumask_of(qv
->sw_thread_id
));
6946 for (i
= 0; i
< port
->nqvecs
; i
++) {
6947 struct mvpp2_queue_vector
*qv
= port
->qvecs
+ i
;
6949 irq_set_affinity_hint(qv
->irq
, NULL
);
6950 free_irq(qv
->irq
, qv
);
6956 static void mvpp2_irqs_deinit(struct mvpp2_port
*port
)
6960 for (i
= 0; i
< port
->nqvecs
; i
++) {
6961 struct mvpp2_queue_vector
*qv
= port
->qvecs
+ i
;
6963 irq_set_affinity_hint(qv
->irq
, NULL
);
6964 irq_clear_status_flags(qv
->irq
, IRQ_NO_BALANCING
);
6965 free_irq(qv
->irq
, qv
);
6969 static void mvpp22_init_rss(struct mvpp2_port
*port
)
6971 struct mvpp2
*priv
= port
->priv
;
6974 /* Set the table width: replace the whole classifier Rx queue number
6975 * with the ones configured in RSS table entries.
6977 mvpp2_write(priv
, MVPP22_RSS_INDEX
, MVPP22_RSS_INDEX_TABLE(0));
6978 mvpp2_write(priv
, MVPP22_RSS_WIDTH
, 8);
6980 /* Loop through the classifier Rx Queues and map them to a RSS table.
6981 * Map them all to the first table (0) by default.
6983 for (i
= 0; i
< MVPP2_CLS_RX_QUEUES
; i
++) {
6984 mvpp2_write(priv
, MVPP22_RSS_INDEX
, MVPP22_RSS_INDEX_QUEUE(i
));
6985 mvpp2_write(priv
, MVPP22_RSS_TABLE
,
6986 MVPP22_RSS_TABLE_POINTER(0));
6989 /* Configure the first table to evenly distribute the packets across
6990 * real Rx Queues. The table entries map a hash to an port Rx Queue.
6992 for (i
= 0; i
< MVPP22_RSS_TABLE_ENTRIES
; i
++) {
6993 u32 sel
= MVPP22_RSS_INDEX_TABLE(0) |
6994 MVPP22_RSS_INDEX_TABLE_ENTRY(i
);
6995 mvpp2_write(priv
, MVPP22_RSS_INDEX
, sel
);
6997 mvpp2_write(priv
, MVPP22_RSS_TABLE_ENTRY
, i
% port
->nrxqs
);
7002 static int mvpp2_open(struct net_device
*dev
)
7004 struct mvpp2_port
*port
= netdev_priv(dev
);
7005 struct mvpp2
*priv
= port
->priv
;
7006 unsigned char mac_bcast
[ETH_ALEN
] = {
7007 0xff, 0xff, 0xff, 0xff, 0xff, 0xff };
7010 err
= mvpp2_prs_mac_da_accept(port
->priv
, port
->id
, mac_bcast
, true);
7012 netdev_err(dev
, "mvpp2_prs_mac_da_accept BC failed\n");
7015 err
= mvpp2_prs_mac_da_accept(port
->priv
, port
->id
,
7016 dev
->dev_addr
, true);
7018 netdev_err(dev
, "mvpp2_prs_mac_da_accept MC failed\n");
7021 err
= mvpp2_prs_tag_mode_set(port
->priv
, port
->id
, MVPP2_TAG_TYPE_MH
);
7023 netdev_err(dev
, "mvpp2_prs_tag_mode_set failed\n");
7026 err
= mvpp2_prs_def_flow(port
);
7028 netdev_err(dev
, "mvpp2_prs_def_flow failed\n");
7032 /* Allocate the Rx/Tx queues */
7033 err
= mvpp2_setup_rxqs(port
);
7035 netdev_err(port
->dev
, "cannot allocate Rx queues\n");
7039 err
= mvpp2_setup_txqs(port
);
7041 netdev_err(port
->dev
, "cannot allocate Tx queues\n");
7042 goto err_cleanup_rxqs
;
7045 err
= mvpp2_irqs_init(port
);
7047 netdev_err(port
->dev
, "cannot init IRQs\n");
7048 goto err_cleanup_txqs
;
7051 if (priv
->hw_version
== MVPP22
&& !port
->phy_node
&& port
->link_irq
) {
7052 err
= request_irq(port
->link_irq
, mvpp2_link_status_isr
, 0,
7055 netdev_err(port
->dev
, "cannot request link IRQ %d\n",
7060 mvpp22_gop_setup_irq(port
);
7063 /* In default link is down */
7064 netif_carrier_off(port
->dev
);
7066 err
= mvpp2_phy_connect(port
);
7068 goto err_free_link_irq
;
7070 /* Unmask interrupts on all CPUs */
7071 on_each_cpu(mvpp2_interrupts_unmask
, port
, 1);
7072 mvpp2_shared_interrupt_mask_unmask(port
, false);
7074 mvpp2_start_dev(port
);
7076 if (priv
->hw_version
== MVPP22
)
7077 mvpp22_init_rss(port
);
7079 /* Start hardware statistics gathering */
7080 queue_delayed_work(priv
->stats_queue
, &port
->stats_work
,
7081 MVPP2_MIB_COUNTERS_STATS_DELAY
);
7086 if (priv
->hw_version
== MVPP22
&& !port
->phy_node
&& port
->link_irq
)
7087 free_irq(port
->link_irq
, port
);
7089 mvpp2_irqs_deinit(port
);
7091 mvpp2_cleanup_txqs(port
);
7093 mvpp2_cleanup_rxqs(port
);
7097 static int mvpp2_stop(struct net_device
*dev
)
7099 struct mvpp2_port
*port
= netdev_priv(dev
);
7100 struct mvpp2_port_pcpu
*port_pcpu
;
7101 struct mvpp2
*priv
= port
->priv
;
7104 mvpp2_stop_dev(port
);
7105 mvpp2_phy_disconnect(port
);
7107 /* Mask interrupts on all CPUs */
7108 on_each_cpu(mvpp2_interrupts_mask
, port
, 1);
7109 mvpp2_shared_interrupt_mask_unmask(port
, true);
7111 if (priv
->hw_version
== MVPP22
&& !port
->phy_node
&& port
->link_irq
)
7112 free_irq(port
->link_irq
, port
);
7114 mvpp2_irqs_deinit(port
);
7115 if (!port
->has_tx_irqs
) {
7116 for_each_present_cpu(cpu
) {
7117 port_pcpu
= per_cpu_ptr(port
->pcpu
, cpu
);
7119 hrtimer_cancel(&port_pcpu
->tx_done_timer
);
7120 port_pcpu
->timer_scheduled
= false;
7121 tasklet_kill(&port_pcpu
->tx_done_tasklet
);
7124 mvpp2_cleanup_rxqs(port
);
7125 mvpp2_cleanup_txqs(port
);
7127 cancel_delayed_work_sync(&port
->stats_work
);
7132 static void mvpp2_set_rx_mode(struct net_device
*dev
)
7134 struct mvpp2_port
*port
= netdev_priv(dev
);
7135 struct mvpp2
*priv
= port
->priv
;
7136 struct netdev_hw_addr
*ha
;
7138 bool allmulti
= dev
->flags
& IFF_ALLMULTI
;
7140 mvpp2_prs_mac_promisc_set(priv
, id
, dev
->flags
& IFF_PROMISC
);
7141 mvpp2_prs_mac_multi_set(priv
, id
, MVPP2_PE_MAC_MC_ALL
, allmulti
);
7142 mvpp2_prs_mac_multi_set(priv
, id
, MVPP2_PE_MAC_MC_IP6
, allmulti
);
7144 /* Remove all port->id's mcast enries */
7145 mvpp2_prs_mcast_del_all(priv
, id
);
7147 if (allmulti
&& !netdev_mc_empty(dev
)) {
7148 netdev_for_each_mc_addr(ha
, dev
)
7149 mvpp2_prs_mac_da_accept(priv
, id
, ha
->addr
, true);
7153 static int mvpp2_set_mac_address(struct net_device
*dev
, void *p
)
7155 struct mvpp2_port
*port
= netdev_priv(dev
);
7156 const struct sockaddr
*addr
= p
;
7159 if (!is_valid_ether_addr(addr
->sa_data
)) {
7160 err
= -EADDRNOTAVAIL
;
7164 if (!netif_running(dev
)) {
7165 err
= mvpp2_prs_update_mac_da(dev
, addr
->sa_data
);
7168 /* Reconfigure parser to accept the original MAC address */
7169 err
= mvpp2_prs_update_mac_da(dev
, dev
->dev_addr
);
7174 mvpp2_stop_dev(port
);
7176 err
= mvpp2_prs_update_mac_da(dev
, addr
->sa_data
);
7180 /* Reconfigure parser accept the original MAC address */
7181 err
= mvpp2_prs_update_mac_da(dev
, dev
->dev_addr
);
7185 mvpp2_start_dev(port
);
7186 mvpp2_egress_enable(port
);
7187 mvpp2_ingress_enable(port
);
7190 netdev_err(dev
, "failed to change MAC address\n");
7194 static int mvpp2_change_mtu(struct net_device
*dev
, int mtu
)
7196 struct mvpp2_port
*port
= netdev_priv(dev
);
7199 if (!IS_ALIGNED(MVPP2_RX_PKT_SIZE(mtu
), 8)) {
7200 netdev_info(dev
, "illegal MTU value %d, round to %d\n", mtu
,
7201 ALIGN(MVPP2_RX_PKT_SIZE(mtu
), 8));
7202 mtu
= ALIGN(MVPP2_RX_PKT_SIZE(mtu
), 8);
7205 if (!netif_running(dev
)) {
7206 err
= mvpp2_bm_update_mtu(dev
, mtu
);
7208 port
->pkt_size
= MVPP2_RX_PKT_SIZE(mtu
);
7212 /* Reconfigure BM to the original MTU */
7213 err
= mvpp2_bm_update_mtu(dev
, dev
->mtu
);
7218 mvpp2_stop_dev(port
);
7220 err
= mvpp2_bm_update_mtu(dev
, mtu
);
7222 port
->pkt_size
= MVPP2_RX_PKT_SIZE(mtu
);
7226 /* Reconfigure BM to the original MTU */
7227 err
= mvpp2_bm_update_mtu(dev
, dev
->mtu
);
7232 mvpp2_start_dev(port
);
7233 mvpp2_egress_enable(port
);
7234 mvpp2_ingress_enable(port
);
7238 netdev_err(dev
, "failed to change MTU\n");
7243 mvpp2_get_stats64(struct net_device
*dev
, struct rtnl_link_stats64
*stats
)
7245 struct mvpp2_port
*port
= netdev_priv(dev
);
7249 for_each_possible_cpu(cpu
) {
7250 struct mvpp2_pcpu_stats
*cpu_stats
;
7256 cpu_stats
= per_cpu_ptr(port
->stats
, cpu
);
7258 start
= u64_stats_fetch_begin_irq(&cpu_stats
->syncp
);
7259 rx_packets
= cpu_stats
->rx_packets
;
7260 rx_bytes
= cpu_stats
->rx_bytes
;
7261 tx_packets
= cpu_stats
->tx_packets
;
7262 tx_bytes
= cpu_stats
->tx_bytes
;
7263 } while (u64_stats_fetch_retry_irq(&cpu_stats
->syncp
, start
));
7265 stats
->rx_packets
+= rx_packets
;
7266 stats
->rx_bytes
+= rx_bytes
;
7267 stats
->tx_packets
+= tx_packets
;
7268 stats
->tx_bytes
+= tx_bytes
;
7271 stats
->rx_errors
= dev
->stats
.rx_errors
;
7272 stats
->rx_dropped
= dev
->stats
.rx_dropped
;
7273 stats
->tx_dropped
= dev
->stats
.tx_dropped
;
7276 static int mvpp2_ioctl(struct net_device
*dev
, struct ifreq
*ifr
, int cmd
)
7283 ret
= phy_mii_ioctl(dev
->phydev
, ifr
, cmd
);
7285 mvpp2_link_event(dev
);
7290 /* Ethtool methods */
7292 /* Set interrupt coalescing for ethtools */
7293 static int mvpp2_ethtool_set_coalesce(struct net_device
*dev
,
7294 struct ethtool_coalesce
*c
)
7296 struct mvpp2_port
*port
= netdev_priv(dev
);
7299 for (queue
= 0; queue
< port
->nrxqs
; queue
++) {
7300 struct mvpp2_rx_queue
*rxq
= port
->rxqs
[queue
];
7302 rxq
->time_coal
= c
->rx_coalesce_usecs
;
7303 rxq
->pkts_coal
= c
->rx_max_coalesced_frames
;
7304 mvpp2_rx_pkts_coal_set(port
, rxq
);
7305 mvpp2_rx_time_coal_set(port
, rxq
);
7308 if (port
->has_tx_irqs
) {
7309 port
->tx_time_coal
= c
->tx_coalesce_usecs
;
7310 mvpp2_tx_time_coal_set(port
);
7313 for (queue
= 0; queue
< port
->ntxqs
; queue
++) {
7314 struct mvpp2_tx_queue
*txq
= port
->txqs
[queue
];
7316 txq
->done_pkts_coal
= c
->tx_max_coalesced_frames
;
7318 if (port
->has_tx_irqs
)
7319 mvpp2_tx_pkts_coal_set(port
, txq
);
7325 /* get coalescing for ethtools */
7326 static int mvpp2_ethtool_get_coalesce(struct net_device
*dev
,
7327 struct ethtool_coalesce
*c
)
7329 struct mvpp2_port
*port
= netdev_priv(dev
);
7331 c
->rx_coalesce_usecs
= port
->rxqs
[0]->time_coal
;
7332 c
->rx_max_coalesced_frames
= port
->rxqs
[0]->pkts_coal
;
7333 c
->tx_max_coalesced_frames
= port
->txqs
[0]->done_pkts_coal
;
7334 c
->tx_coalesce_usecs
= port
->tx_time_coal
;
7338 static void mvpp2_ethtool_get_drvinfo(struct net_device
*dev
,
7339 struct ethtool_drvinfo
*drvinfo
)
7341 strlcpy(drvinfo
->driver
, MVPP2_DRIVER_NAME
,
7342 sizeof(drvinfo
->driver
));
7343 strlcpy(drvinfo
->version
, MVPP2_DRIVER_VERSION
,
7344 sizeof(drvinfo
->version
));
7345 strlcpy(drvinfo
->bus_info
, dev_name(&dev
->dev
),
7346 sizeof(drvinfo
->bus_info
));
7349 static void mvpp2_ethtool_get_ringparam(struct net_device
*dev
,
7350 struct ethtool_ringparam
*ring
)
7352 struct mvpp2_port
*port
= netdev_priv(dev
);
7354 ring
->rx_max_pending
= MVPP2_MAX_RXD_MAX
;
7355 ring
->tx_max_pending
= MVPP2_MAX_TXD_MAX
;
7356 ring
->rx_pending
= port
->rx_ring_size
;
7357 ring
->tx_pending
= port
->tx_ring_size
;
7360 static int mvpp2_ethtool_set_ringparam(struct net_device
*dev
,
7361 struct ethtool_ringparam
*ring
)
7363 struct mvpp2_port
*port
= netdev_priv(dev
);
7364 u16 prev_rx_ring_size
= port
->rx_ring_size
;
7365 u16 prev_tx_ring_size
= port
->tx_ring_size
;
7368 err
= mvpp2_check_ringparam_valid(dev
, ring
);
7372 if (!netif_running(dev
)) {
7373 port
->rx_ring_size
= ring
->rx_pending
;
7374 port
->tx_ring_size
= ring
->tx_pending
;
7378 /* The interface is running, so we have to force a
7379 * reallocation of the queues
7381 mvpp2_stop_dev(port
);
7382 mvpp2_cleanup_rxqs(port
);
7383 mvpp2_cleanup_txqs(port
);
7385 port
->rx_ring_size
= ring
->rx_pending
;
7386 port
->tx_ring_size
= ring
->tx_pending
;
7388 err
= mvpp2_setup_rxqs(port
);
7390 /* Reallocate Rx queues with the original ring size */
7391 port
->rx_ring_size
= prev_rx_ring_size
;
7392 ring
->rx_pending
= prev_rx_ring_size
;
7393 err
= mvpp2_setup_rxqs(port
);
7397 err
= mvpp2_setup_txqs(port
);
7399 /* Reallocate Tx queues with the original ring size */
7400 port
->tx_ring_size
= prev_tx_ring_size
;
7401 ring
->tx_pending
= prev_tx_ring_size
;
7402 err
= mvpp2_setup_txqs(port
);
7404 goto err_clean_rxqs
;
7407 mvpp2_start_dev(port
);
7408 mvpp2_egress_enable(port
);
7409 mvpp2_ingress_enable(port
);
7414 mvpp2_cleanup_rxqs(port
);
7416 netdev_err(dev
, "failed to change ring parameters");
7422 static const struct net_device_ops mvpp2_netdev_ops
= {
7423 .ndo_open
= mvpp2_open
,
7424 .ndo_stop
= mvpp2_stop
,
7425 .ndo_start_xmit
= mvpp2_tx
,
7426 .ndo_set_rx_mode
= mvpp2_set_rx_mode
,
7427 .ndo_set_mac_address
= mvpp2_set_mac_address
,
7428 .ndo_change_mtu
= mvpp2_change_mtu
,
7429 .ndo_get_stats64
= mvpp2_get_stats64
,
7430 .ndo_do_ioctl
= mvpp2_ioctl
,
7433 static const struct ethtool_ops mvpp2_eth_tool_ops
= {
7434 .nway_reset
= phy_ethtool_nway_reset
,
7435 .get_link
= ethtool_op_get_link
,
7436 .set_coalesce
= mvpp2_ethtool_set_coalesce
,
7437 .get_coalesce
= mvpp2_ethtool_get_coalesce
,
7438 .get_drvinfo
= mvpp2_ethtool_get_drvinfo
,
7439 .get_ringparam
= mvpp2_ethtool_get_ringparam
,
7440 .set_ringparam
= mvpp2_ethtool_set_ringparam
,
7441 .get_strings
= mvpp2_ethtool_get_strings
,
7442 .get_ethtool_stats
= mvpp2_ethtool_get_stats
,
7443 .get_sset_count
= mvpp2_ethtool_get_sset_count
,
7444 .get_link_ksettings
= phy_ethtool_get_link_ksettings
,
7445 .set_link_ksettings
= phy_ethtool_set_link_ksettings
,
7448 /* Used for PPv2.1, or PPv2.2 with the old Device Tree binding that
7449 * had a single IRQ defined per-port.
7451 static int mvpp2_simple_queue_vectors_init(struct mvpp2_port
*port
,
7452 struct device_node
*port_node
)
7454 struct mvpp2_queue_vector
*v
= &port
->qvecs
[0];
7457 v
->nrxqs
= port
->nrxqs
;
7458 v
->type
= MVPP2_QUEUE_VECTOR_SHARED
;
7459 v
->sw_thread_id
= 0;
7460 v
->sw_thread_mask
= *cpumask_bits(cpu_online_mask
);
7462 v
->irq
= irq_of_parse_and_map(port_node
, 0);
7465 netif_napi_add(port
->dev
, &v
->napi
, mvpp2_poll
,
7473 static int mvpp2_multi_queue_vectors_init(struct mvpp2_port
*port
,
7474 struct device_node
*port_node
)
7476 struct mvpp2_queue_vector
*v
;
7479 port
->nqvecs
= num_possible_cpus();
7480 if (queue_mode
== MVPP2_QDIST_SINGLE_MODE
)
7483 for (i
= 0; i
< port
->nqvecs
; i
++) {
7486 v
= port
->qvecs
+ i
;
7489 v
->type
= MVPP2_QUEUE_VECTOR_PRIVATE
;
7490 v
->sw_thread_id
= i
;
7491 v
->sw_thread_mask
= BIT(i
);
7493 snprintf(irqname
, sizeof(irqname
), "tx-cpu%d", i
);
7495 if (queue_mode
== MVPP2_QDIST_MULTI_MODE
) {
7496 v
->first_rxq
= i
* MVPP2_DEFAULT_RXQ
;
7497 v
->nrxqs
= MVPP2_DEFAULT_RXQ
;
7498 } else if (queue_mode
== MVPP2_QDIST_SINGLE_MODE
&&
7499 i
== (port
->nqvecs
- 1)) {
7501 v
->nrxqs
= port
->nrxqs
;
7502 v
->type
= MVPP2_QUEUE_VECTOR_SHARED
;
7503 strncpy(irqname
, "rx-shared", sizeof(irqname
));
7507 v
->irq
= of_irq_get_byname(port_node
, irqname
);
7509 v
->irq
= fwnode_irq_get(port
->fwnode
, i
);
7515 netif_napi_add(port
->dev
, &v
->napi
, mvpp2_poll
,
7522 for (i
= 0; i
< port
->nqvecs
; i
++)
7523 irq_dispose_mapping(port
->qvecs
[i
].irq
);
7527 static int mvpp2_queue_vectors_init(struct mvpp2_port
*port
,
7528 struct device_node
*port_node
)
7530 if (port
->has_tx_irqs
)
7531 return mvpp2_multi_queue_vectors_init(port
, port_node
);
7533 return mvpp2_simple_queue_vectors_init(port
, port_node
);
7536 static void mvpp2_queue_vectors_deinit(struct mvpp2_port
*port
)
7540 for (i
= 0; i
< port
->nqvecs
; i
++)
7541 irq_dispose_mapping(port
->qvecs
[i
].irq
);
7544 /* Configure Rx queue group interrupt for this port */
7545 static void mvpp2_rx_irqs_setup(struct mvpp2_port
*port
)
7547 struct mvpp2
*priv
= port
->priv
;
7551 if (priv
->hw_version
== MVPP21
) {
7552 mvpp2_write(priv
, MVPP21_ISR_RXQ_GROUP_REG(port
->id
),
7557 /* Handle the more complicated PPv2.2 case */
7558 for (i
= 0; i
< port
->nqvecs
; i
++) {
7559 struct mvpp2_queue_vector
*qv
= port
->qvecs
+ i
;
7564 val
= qv
->sw_thread_id
;
7565 val
|= port
->id
<< MVPP22_ISR_RXQ_GROUP_INDEX_GROUP_OFFSET
;
7566 mvpp2_write(priv
, MVPP22_ISR_RXQ_GROUP_INDEX_REG
, val
);
7568 val
= qv
->first_rxq
;
7569 val
|= qv
->nrxqs
<< MVPP22_ISR_RXQ_SUB_GROUP_SIZE_OFFSET
;
7570 mvpp2_write(priv
, MVPP22_ISR_RXQ_SUB_GROUP_CONFIG_REG
, val
);
7574 /* Initialize port HW */
7575 static int mvpp2_port_init(struct mvpp2_port
*port
)
7577 struct device
*dev
= port
->dev
->dev
.parent
;
7578 struct mvpp2
*priv
= port
->priv
;
7579 struct mvpp2_txq_pcpu
*txq_pcpu
;
7580 int queue
, cpu
, err
;
7582 /* Checks for hardware constraints */
7583 if (port
->first_rxq
+ port
->nrxqs
>
7584 MVPP2_MAX_PORTS
* priv
->max_port_rxqs
)
7587 if (port
->nrxqs
% 4 || (port
->nrxqs
> priv
->max_port_rxqs
) ||
7588 (port
->ntxqs
> MVPP2_MAX_TXQ
))
7592 mvpp2_egress_disable(port
);
7593 mvpp2_port_disable(port
);
7595 port
->tx_time_coal
= MVPP2_TXDONE_COAL_USEC
;
7597 port
->txqs
= devm_kcalloc(dev
, port
->ntxqs
, sizeof(*port
->txqs
),
7602 /* Associate physical Tx queues to this port and initialize.
7603 * The mapping is predefined.
7605 for (queue
= 0; queue
< port
->ntxqs
; queue
++) {
7606 int queue_phy_id
= mvpp2_txq_phys(port
->id
, queue
);
7607 struct mvpp2_tx_queue
*txq
;
7609 txq
= devm_kzalloc(dev
, sizeof(*txq
), GFP_KERNEL
);
7612 goto err_free_percpu
;
7615 txq
->pcpu
= alloc_percpu(struct mvpp2_txq_pcpu
);
7618 goto err_free_percpu
;
7621 txq
->id
= queue_phy_id
;
7622 txq
->log_id
= queue
;
7623 txq
->done_pkts_coal
= MVPP2_TXDONE_COAL_PKTS_THRESH
;
7624 for_each_present_cpu(cpu
) {
7625 txq_pcpu
= per_cpu_ptr(txq
->pcpu
, cpu
);
7626 txq_pcpu
->cpu
= cpu
;
7629 port
->txqs
[queue
] = txq
;
7632 port
->rxqs
= devm_kcalloc(dev
, port
->nrxqs
, sizeof(*port
->rxqs
),
7636 goto err_free_percpu
;
7639 /* Allocate and initialize Rx queue for this port */
7640 for (queue
= 0; queue
< port
->nrxqs
; queue
++) {
7641 struct mvpp2_rx_queue
*rxq
;
7643 /* Map physical Rx queue to port's logical Rx queue */
7644 rxq
= devm_kzalloc(dev
, sizeof(*rxq
), GFP_KERNEL
);
7647 goto err_free_percpu
;
7649 /* Map this Rx queue to a physical queue */
7650 rxq
->id
= port
->first_rxq
+ queue
;
7651 rxq
->port
= port
->id
;
7652 rxq
->logic_rxq
= queue
;
7654 port
->rxqs
[queue
] = rxq
;
7657 mvpp2_rx_irqs_setup(port
);
7659 /* Create Rx descriptor rings */
7660 for (queue
= 0; queue
< port
->nrxqs
; queue
++) {
7661 struct mvpp2_rx_queue
*rxq
= port
->rxqs
[queue
];
7663 rxq
->size
= port
->rx_ring_size
;
7664 rxq
->pkts_coal
= MVPP2_RX_COAL_PKTS
;
7665 rxq
->time_coal
= MVPP2_RX_COAL_USEC
;
7668 mvpp2_ingress_disable(port
);
7670 /* Port default configuration */
7671 mvpp2_defaults_set(port
);
7673 /* Port's classifier configuration */
7674 mvpp2_cls_oversize_rxq_set(port
);
7675 mvpp2_cls_port_config(port
);
7677 /* Provide an initial Rx packet size */
7678 port
->pkt_size
= MVPP2_RX_PKT_SIZE(port
->dev
->mtu
);
7680 /* Initialize pools for swf */
7681 err
= mvpp2_swf_bm_pool_init(port
);
7683 goto err_free_percpu
;
7688 for (queue
= 0; queue
< port
->ntxqs
; queue
++) {
7689 if (!port
->txqs
[queue
])
7691 free_percpu(port
->txqs
[queue
]->pcpu
);
7696 /* Checks if the port DT description has the TX interrupts
7697 * described. On PPv2.1, there are no such interrupts. On PPv2.2,
7698 * there are available, but we need to keep support for old DTs.
7700 static bool mvpp2_port_has_tx_irqs(struct mvpp2
*priv
,
7701 struct device_node
*port_node
)
7703 char *irqs
[5] = { "rx-shared", "tx-cpu0", "tx-cpu1",
7704 "tx-cpu2", "tx-cpu3" };
7707 if (priv
->hw_version
== MVPP21
)
7710 for (i
= 0; i
< 5; i
++) {
7711 ret
= of_property_match_string(port_node
, "interrupt-names",
7720 static void mvpp2_port_copy_mac_addr(struct net_device
*dev
, struct mvpp2
*priv
,
7721 struct fwnode_handle
*fwnode
,
7724 struct mvpp2_port
*port
= netdev_priv(dev
);
7725 char hw_mac_addr
[ETH_ALEN
] = {0};
7726 char fw_mac_addr
[ETH_ALEN
];
7728 if (fwnode_get_mac_address(fwnode
, fw_mac_addr
, ETH_ALEN
)) {
7729 *mac_from
= "firmware node";
7730 ether_addr_copy(dev
->dev_addr
, fw_mac_addr
);
7734 if (priv
->hw_version
== MVPP21
) {
7735 mvpp21_get_mac_address(port
, hw_mac_addr
);
7736 if (is_valid_ether_addr(hw_mac_addr
)) {
7737 *mac_from
= "hardware";
7738 ether_addr_copy(dev
->dev_addr
, hw_mac_addr
);
7743 *mac_from
= "random";
7744 eth_hw_addr_random(dev
);
7747 /* Ports initialization */
7748 static int mvpp2_port_probe(struct platform_device
*pdev
,
7749 struct fwnode_handle
*port_fwnode
,
7752 struct device_node
*phy_node
;
7753 struct phy
*comphy
= NULL
;
7754 struct mvpp2_port
*port
;
7755 struct mvpp2_port_pcpu
*port_pcpu
;
7756 struct device_node
*port_node
= to_of_node(port_fwnode
);
7757 struct net_device
*dev
;
7758 struct resource
*res
;
7759 char *mac_from
= "";
7760 unsigned int ntxqs
, nrxqs
;
7768 has_tx_irqs
= mvpp2_port_has_tx_irqs(priv
, port_node
);
7771 queue_mode
= MVPP2_QDIST_MULTI_MODE
;
7775 queue_mode
= MVPP2_QDIST_SINGLE_MODE
;
7777 ntxqs
= MVPP2_MAX_TXQ
;
7778 if (priv
->hw_version
== MVPP22
&& queue_mode
== MVPP2_QDIST_MULTI_MODE
)
7779 nrxqs
= MVPP2_DEFAULT_RXQ
* num_possible_cpus();
7781 nrxqs
= MVPP2_DEFAULT_RXQ
;
7783 dev
= alloc_etherdev_mqs(sizeof(*port
), ntxqs
, nrxqs
);
7788 phy_node
= of_parse_phandle(port_node
, "phy", 0);
7792 phy_mode
= fwnode_get_phy_mode(port_fwnode
);
7794 dev_err(&pdev
->dev
, "incorrect phy mode\n");
7796 goto err_free_netdev
;
7800 comphy
= devm_of_phy_get(&pdev
->dev
, port_node
, NULL
);
7801 if (IS_ERR(comphy
)) {
7802 if (PTR_ERR(comphy
) == -EPROBE_DEFER
) {
7803 err
= -EPROBE_DEFER
;
7804 goto err_free_netdev
;
7810 if (fwnode_property_read_u32(port_fwnode
, "port-id", &id
)) {
7812 dev_err(&pdev
->dev
, "missing port-id value\n");
7813 goto err_free_netdev
;
7816 dev
->tx_queue_len
= MVPP2_MAX_TXD_MAX
;
7817 dev
->watchdog_timeo
= 5 * HZ
;
7818 dev
->netdev_ops
= &mvpp2_netdev_ops
;
7819 dev
->ethtool_ops
= &mvpp2_eth_tool_ops
;
7821 port
= netdev_priv(dev
);
7823 port
->fwnode
= port_fwnode
;
7824 port
->ntxqs
= ntxqs
;
7825 port
->nrxqs
= nrxqs
;
7827 port
->has_tx_irqs
= has_tx_irqs
;
7829 err
= mvpp2_queue_vectors_init(port
, port_node
);
7831 goto err_free_netdev
;
7834 port
->link_irq
= of_irq_get_byname(port_node
, "link");
7836 port
->link_irq
= fwnode_irq_get(port_fwnode
, port
->nqvecs
+ 1);
7837 if (port
->link_irq
== -EPROBE_DEFER
) {
7838 err
= -EPROBE_DEFER
;
7839 goto err_deinit_qvecs
;
7841 if (port
->link_irq
<= 0)
7842 /* the link irq is optional */
7845 if (fwnode_property_read_bool(port_fwnode
, "marvell,loopback"))
7846 port
->flags
|= MVPP2_F_LOOPBACK
;
7849 if (priv
->hw_version
== MVPP21
)
7850 port
->first_rxq
= port
->id
* port
->nrxqs
;
7852 port
->first_rxq
= port
->id
* priv
->max_port_rxqs
;
7854 port
->phy_node
= phy_node
;
7855 port
->phy_interface
= phy_mode
;
7856 port
->comphy
= comphy
;
7858 if (priv
->hw_version
== MVPP21
) {
7859 res
= platform_get_resource(pdev
, IORESOURCE_MEM
, 2 + id
);
7860 port
->base
= devm_ioremap_resource(&pdev
->dev
, res
);
7861 if (IS_ERR(port
->base
)) {
7862 err
= PTR_ERR(port
->base
);
7866 port
->stats_base
= port
->priv
->lms_base
+
7867 MVPP21_MIB_COUNTERS_OFFSET
+
7868 port
->gop_id
* MVPP21_MIB_COUNTERS_PORT_SZ
;
7870 if (fwnode_property_read_u32(port_fwnode
, "gop-port-id",
7873 dev_err(&pdev
->dev
, "missing gop-port-id value\n");
7874 goto err_deinit_qvecs
;
7877 port
->base
= priv
->iface_base
+ MVPP22_GMAC_BASE(port
->gop_id
);
7878 port
->stats_base
= port
->priv
->iface_base
+
7879 MVPP22_MIB_COUNTERS_OFFSET
+
7880 port
->gop_id
* MVPP22_MIB_COUNTERS_PORT_SZ
;
7883 /* Alloc per-cpu and ethtool stats */
7884 port
->stats
= netdev_alloc_pcpu_stats(struct mvpp2_pcpu_stats
);
7890 port
->ethtool_stats
= devm_kcalloc(&pdev
->dev
,
7891 ARRAY_SIZE(mvpp2_ethtool_regs
),
7892 sizeof(u64
), GFP_KERNEL
);
7893 if (!port
->ethtool_stats
) {
7895 goto err_free_stats
;
7898 mutex_init(&port
->gather_stats_lock
);
7899 INIT_DELAYED_WORK(&port
->stats_work
, mvpp2_gather_hw_statistics
);
7901 mvpp2_port_copy_mac_addr(dev
, priv
, port_fwnode
, &mac_from
);
7903 port
->tx_ring_size
= MVPP2_MAX_TXD_DFLT
;
7904 port
->rx_ring_size
= MVPP2_MAX_RXD_DFLT
;
7905 SET_NETDEV_DEV(dev
, &pdev
->dev
);
7907 err
= mvpp2_port_init(port
);
7909 dev_err(&pdev
->dev
, "failed to init port %d\n", id
);
7910 goto err_free_stats
;
7913 mvpp2_port_periodic_xon_disable(port
);
7915 if (priv
->hw_version
== MVPP21
)
7916 mvpp2_port_fc_adv_enable(port
);
7918 mvpp2_port_reset(port
);
7920 port
->pcpu
= alloc_percpu(struct mvpp2_port_pcpu
);
7923 goto err_free_txq_pcpu
;
7926 if (!port
->has_tx_irqs
) {
7927 for_each_present_cpu(cpu
) {
7928 port_pcpu
= per_cpu_ptr(port
->pcpu
, cpu
);
7930 hrtimer_init(&port_pcpu
->tx_done_timer
, CLOCK_MONOTONIC
,
7931 HRTIMER_MODE_REL_PINNED
);
7932 port_pcpu
->tx_done_timer
.function
= mvpp2_hr_timer_cb
;
7933 port_pcpu
->timer_scheduled
= false;
7935 tasklet_init(&port_pcpu
->tx_done_tasklet
,
7937 (unsigned long)dev
);
7941 features
= NETIF_F_SG
| NETIF_F_IP_CSUM
| NETIF_F_TSO
;
7942 dev
->features
= features
| NETIF_F_RXCSUM
;
7943 dev
->hw_features
|= features
| NETIF_F_RXCSUM
| NETIF_F_GRO
;
7944 dev
->vlan_features
|= features
;
7945 dev
->gso_max_segs
= MVPP2_MAX_TSO_SEGS
;
7947 /* MTU range: 68 - 9676 */
7948 dev
->min_mtu
= ETH_MIN_MTU
;
7949 /* 9676 == 9700 - 20 and rounding to 8 */
7950 dev
->max_mtu
= 9676;
7952 err
= register_netdev(dev
);
7954 dev_err(&pdev
->dev
, "failed to register netdev\n");
7955 goto err_free_port_pcpu
;
7957 netdev_info(dev
, "Using %s mac address %pM\n", mac_from
, dev
->dev_addr
);
7959 priv
->port_list
[priv
->port_count
++] = port
;
7964 free_percpu(port
->pcpu
);
7966 for (i
= 0; i
< port
->ntxqs
; i
++)
7967 free_percpu(port
->txqs
[i
]->pcpu
);
7969 free_percpu(port
->stats
);
7972 irq_dispose_mapping(port
->link_irq
);
7974 mvpp2_queue_vectors_deinit(port
);
7976 of_node_put(phy_node
);
7981 /* Ports removal routine */
7982 static void mvpp2_port_remove(struct mvpp2_port
*port
)
7986 unregister_netdev(port
->dev
);
7987 of_node_put(port
->phy_node
);
7988 free_percpu(port
->pcpu
);
7989 free_percpu(port
->stats
);
7990 for (i
= 0; i
< port
->ntxqs
; i
++)
7991 free_percpu(port
->txqs
[i
]->pcpu
);
7992 mvpp2_queue_vectors_deinit(port
);
7994 irq_dispose_mapping(port
->link_irq
);
7995 free_netdev(port
->dev
);
7998 /* Initialize decoding windows */
7999 static void mvpp2_conf_mbus_windows(const struct mbus_dram_target_info
*dram
,
8005 for (i
= 0; i
< 6; i
++) {
8006 mvpp2_write(priv
, MVPP2_WIN_BASE(i
), 0);
8007 mvpp2_write(priv
, MVPP2_WIN_SIZE(i
), 0);
8010 mvpp2_write(priv
, MVPP2_WIN_REMAP(i
), 0);
8015 for (i
= 0; i
< dram
->num_cs
; i
++) {
8016 const struct mbus_dram_window
*cs
= dram
->cs
+ i
;
8018 mvpp2_write(priv
, MVPP2_WIN_BASE(i
),
8019 (cs
->base
& 0xffff0000) | (cs
->mbus_attr
<< 8) |
8020 dram
->mbus_dram_target_id
);
8022 mvpp2_write(priv
, MVPP2_WIN_SIZE(i
),
8023 (cs
->size
- 1) & 0xffff0000);
8025 win_enable
|= (1 << i
);
8028 mvpp2_write(priv
, MVPP2_BASE_ADDR_ENABLE
, win_enable
);
8031 /* Initialize Rx FIFO's */
8032 static void mvpp2_rx_fifo_init(struct mvpp2
*priv
)
8036 for (port
= 0; port
< MVPP2_MAX_PORTS
; port
++) {
8037 mvpp2_write(priv
, MVPP2_RX_DATA_FIFO_SIZE_REG(port
),
8038 MVPP2_RX_FIFO_PORT_DATA_SIZE_4KB
);
8039 mvpp2_write(priv
, MVPP2_RX_ATTR_FIFO_SIZE_REG(port
),
8040 MVPP2_RX_FIFO_PORT_ATTR_SIZE_4KB
);
8043 mvpp2_write(priv
, MVPP2_RX_MIN_PKT_SIZE_REG
,
8044 MVPP2_RX_FIFO_PORT_MIN_PKT
);
8045 mvpp2_write(priv
, MVPP2_RX_FIFO_INIT_REG
, 0x1);
8048 static void mvpp22_rx_fifo_init(struct mvpp2
*priv
)
8052 /* The FIFO size parameters are set depending on the maximum speed a
8053 * given port can handle:
8056 * - Ports 2 and 3: 1Gbps
8059 mvpp2_write(priv
, MVPP2_RX_DATA_FIFO_SIZE_REG(0),
8060 MVPP2_RX_FIFO_PORT_DATA_SIZE_32KB
);
8061 mvpp2_write(priv
, MVPP2_RX_ATTR_FIFO_SIZE_REG(0),
8062 MVPP2_RX_FIFO_PORT_ATTR_SIZE_32KB
);
8064 mvpp2_write(priv
, MVPP2_RX_DATA_FIFO_SIZE_REG(1),
8065 MVPP2_RX_FIFO_PORT_DATA_SIZE_8KB
);
8066 mvpp2_write(priv
, MVPP2_RX_ATTR_FIFO_SIZE_REG(1),
8067 MVPP2_RX_FIFO_PORT_ATTR_SIZE_8KB
);
8069 for (port
= 2; port
< MVPP2_MAX_PORTS
; port
++) {
8070 mvpp2_write(priv
, MVPP2_RX_DATA_FIFO_SIZE_REG(port
),
8071 MVPP2_RX_FIFO_PORT_DATA_SIZE_4KB
);
8072 mvpp2_write(priv
, MVPP2_RX_ATTR_FIFO_SIZE_REG(port
),
8073 MVPP2_RX_FIFO_PORT_ATTR_SIZE_4KB
);
8076 mvpp2_write(priv
, MVPP2_RX_MIN_PKT_SIZE_REG
,
8077 MVPP2_RX_FIFO_PORT_MIN_PKT
);
8078 mvpp2_write(priv
, MVPP2_RX_FIFO_INIT_REG
, 0x1);
8081 /* Initialize Tx FIFO's */
8082 static void mvpp22_tx_fifo_init(struct mvpp2
*priv
)
8086 for (port
= 0; port
< MVPP2_MAX_PORTS
; port
++)
8087 mvpp2_write(priv
, MVPP22_TX_FIFO_SIZE_REG(port
),
8088 MVPP22_TX_FIFO_DATA_SIZE_3KB
);
8091 static void mvpp2_axi_init(struct mvpp2
*priv
)
8093 u32 val
, rdval
, wrval
;
8095 mvpp2_write(priv
, MVPP22_BM_ADDR_HIGH_RLS_REG
, 0x0);
8097 /* AXI Bridge Configuration */
8099 rdval
= MVPP22_AXI_CODE_CACHE_RD_CACHE
8100 << MVPP22_AXI_ATTR_CACHE_OFFS
;
8101 rdval
|= MVPP22_AXI_CODE_DOMAIN_OUTER_DOM
8102 << MVPP22_AXI_ATTR_DOMAIN_OFFS
;
8104 wrval
= MVPP22_AXI_CODE_CACHE_WR_CACHE
8105 << MVPP22_AXI_ATTR_CACHE_OFFS
;
8106 wrval
|= MVPP22_AXI_CODE_DOMAIN_OUTER_DOM
8107 << MVPP22_AXI_ATTR_DOMAIN_OFFS
;
8110 mvpp2_write(priv
, MVPP22_AXI_BM_WR_ATTR_REG
, wrval
);
8111 mvpp2_write(priv
, MVPP22_AXI_BM_RD_ATTR_REG
, rdval
);
8114 mvpp2_write(priv
, MVPP22_AXI_AGGRQ_DESCR_RD_ATTR_REG
, rdval
);
8115 mvpp2_write(priv
, MVPP22_AXI_TXQ_DESCR_WR_ATTR_REG
, wrval
);
8116 mvpp2_write(priv
, MVPP22_AXI_TXQ_DESCR_RD_ATTR_REG
, rdval
);
8117 mvpp2_write(priv
, MVPP22_AXI_RXQ_DESCR_WR_ATTR_REG
, wrval
);
8120 mvpp2_write(priv
, MVPP22_AXI_TX_DATA_RD_ATTR_REG
, rdval
);
8121 mvpp2_write(priv
, MVPP22_AXI_RX_DATA_WR_ATTR_REG
, wrval
);
8123 val
= MVPP22_AXI_CODE_CACHE_NON_CACHE
8124 << MVPP22_AXI_CODE_CACHE_OFFS
;
8125 val
|= MVPP22_AXI_CODE_DOMAIN_SYSTEM
8126 << MVPP22_AXI_CODE_DOMAIN_OFFS
;
8127 mvpp2_write(priv
, MVPP22_AXI_RD_NORMAL_CODE_REG
, val
);
8128 mvpp2_write(priv
, MVPP22_AXI_WR_NORMAL_CODE_REG
, val
);
8130 val
= MVPP22_AXI_CODE_CACHE_RD_CACHE
8131 << MVPP22_AXI_CODE_CACHE_OFFS
;
8132 val
|= MVPP22_AXI_CODE_DOMAIN_OUTER_DOM
8133 << MVPP22_AXI_CODE_DOMAIN_OFFS
;
8135 mvpp2_write(priv
, MVPP22_AXI_RD_SNOOP_CODE_REG
, val
);
8137 val
= MVPP22_AXI_CODE_CACHE_WR_CACHE
8138 << MVPP22_AXI_CODE_CACHE_OFFS
;
8139 val
|= MVPP22_AXI_CODE_DOMAIN_OUTER_DOM
8140 << MVPP22_AXI_CODE_DOMAIN_OFFS
;
8142 mvpp2_write(priv
, MVPP22_AXI_WR_SNOOP_CODE_REG
, val
);
8145 /* Initialize network controller common part HW */
8146 static int mvpp2_init(struct platform_device
*pdev
, struct mvpp2
*priv
)
8148 const struct mbus_dram_target_info
*dram_target_info
;
8152 /* MBUS windows configuration */
8153 dram_target_info
= mv_mbus_dram_info();
8154 if (dram_target_info
)
8155 mvpp2_conf_mbus_windows(dram_target_info
, priv
);
8157 if (priv
->hw_version
== MVPP22
)
8158 mvpp2_axi_init(priv
);
8160 /* Disable HW PHY polling */
8161 if (priv
->hw_version
== MVPP21
) {
8162 val
= readl(priv
->lms_base
+ MVPP2_PHY_AN_CFG0_REG
);
8163 val
|= MVPP2_PHY_AN_STOP_SMI0_MASK
;
8164 writel(val
, priv
->lms_base
+ MVPP2_PHY_AN_CFG0_REG
);
8166 val
= readl(priv
->iface_base
+ MVPP22_SMI_MISC_CFG_REG
);
8167 val
&= ~MVPP22_SMI_POLLING_EN
;
8168 writel(val
, priv
->iface_base
+ MVPP22_SMI_MISC_CFG_REG
);
8171 /* Allocate and initialize aggregated TXQs */
8172 priv
->aggr_txqs
= devm_kcalloc(&pdev
->dev
, num_present_cpus(),
8173 sizeof(*priv
->aggr_txqs
),
8175 if (!priv
->aggr_txqs
)
8178 for_each_present_cpu(i
) {
8179 priv
->aggr_txqs
[i
].id
= i
;
8180 priv
->aggr_txqs
[i
].size
= MVPP2_AGGR_TXQ_SIZE
;
8181 err
= mvpp2_aggr_txq_init(pdev
, &priv
->aggr_txqs
[i
], i
, priv
);
8187 if (priv
->hw_version
== MVPP21
) {
8188 mvpp2_rx_fifo_init(priv
);
8190 mvpp22_rx_fifo_init(priv
);
8191 mvpp22_tx_fifo_init(priv
);
8194 if (priv
->hw_version
== MVPP21
)
8195 writel(MVPP2_EXT_GLOBAL_CTRL_DEFAULT
,
8196 priv
->lms_base
+ MVPP2_MNG_EXTENDED_GLOBAL_CTRL_REG
);
8198 /* Allow cache snoop when transmiting packets */
8199 mvpp2_write(priv
, MVPP2_TX_SNOOP_REG
, 0x1);
8201 /* Buffer Manager initialization */
8202 err
= mvpp2_bm_init(pdev
, priv
);
8206 /* Parser default initialization */
8207 err
= mvpp2_prs_default_init(pdev
, priv
);
8211 /* Classifier default initialization */
8212 mvpp2_cls_init(priv
);
8217 static int mvpp2_probe(struct platform_device
*pdev
)
8219 const struct acpi_device_id
*acpi_id
;
8220 struct fwnode_handle
*fwnode
= pdev
->dev
.fwnode
;
8221 struct fwnode_handle
*port_fwnode
;
8223 struct resource
*res
;
8228 priv
= devm_kzalloc(&pdev
->dev
, sizeof(*priv
), GFP_KERNEL
);
8232 if (has_acpi_companion(&pdev
->dev
)) {
8233 acpi_id
= acpi_match_device(pdev
->dev
.driver
->acpi_match_table
,
8235 priv
->hw_version
= (unsigned long)acpi_id
->driver_data
;
8238 (unsigned long)of_device_get_match_data(&pdev
->dev
);
8241 res
= platform_get_resource(pdev
, IORESOURCE_MEM
, 0);
8242 base
= devm_ioremap_resource(&pdev
->dev
, res
);
8244 return PTR_ERR(base
);
8246 if (priv
->hw_version
== MVPP21
) {
8247 res
= platform_get_resource(pdev
, IORESOURCE_MEM
, 1);
8248 priv
->lms_base
= devm_ioremap_resource(&pdev
->dev
, res
);
8249 if (IS_ERR(priv
->lms_base
))
8250 return PTR_ERR(priv
->lms_base
);
8252 res
= platform_get_resource(pdev
, IORESOURCE_MEM
, 1);
8253 if (has_acpi_companion(&pdev
->dev
)) {
8254 /* In case the MDIO memory region is declared in
8255 * the ACPI, it can already appear as 'in-use'
8256 * in the OS. Because it is overlapped by second
8257 * region of the network controller, make
8258 * sure it is released, before requesting it again.
8259 * The care is taken by mvpp2 driver to avoid
8260 * concurrent access to this memory region.
8262 release_resource(res
);
8264 priv
->iface_base
= devm_ioremap_resource(&pdev
->dev
, res
);
8265 if (IS_ERR(priv
->iface_base
))
8266 return PTR_ERR(priv
->iface_base
);
8269 if (priv
->hw_version
== MVPP22
&& dev_of_node(&pdev
->dev
)) {
8270 priv
->sysctrl_base
=
8271 syscon_regmap_lookup_by_phandle(pdev
->dev
.of_node
,
8272 "marvell,system-controller");
8273 if (IS_ERR(priv
->sysctrl_base
))
8274 /* The system controller regmap is optional for dt
8275 * compatibility reasons. When not provided, the
8276 * configuration of the GoP relies on the
8277 * firmware/bootloader.
8279 priv
->sysctrl_base
= NULL
;
8282 for (i
= 0; i
< MVPP2_MAX_THREADS
; i
++) {
8285 addr_space_sz
= (priv
->hw_version
== MVPP21
?
8286 MVPP21_ADDR_SPACE_SZ
: MVPP22_ADDR_SPACE_SZ
);
8287 priv
->swth_base
[i
] = base
+ i
* addr_space_sz
;
8290 if (priv
->hw_version
== MVPP21
)
8291 priv
->max_port_rxqs
= 8;
8293 priv
->max_port_rxqs
= 32;
8295 if (dev_of_node(&pdev
->dev
)) {
8296 priv
->pp_clk
= devm_clk_get(&pdev
->dev
, "pp_clk");
8297 if (IS_ERR(priv
->pp_clk
))
8298 return PTR_ERR(priv
->pp_clk
);
8299 err
= clk_prepare_enable(priv
->pp_clk
);
8303 priv
->gop_clk
= devm_clk_get(&pdev
->dev
, "gop_clk");
8304 if (IS_ERR(priv
->gop_clk
)) {
8305 err
= PTR_ERR(priv
->gop_clk
);
8308 err
= clk_prepare_enable(priv
->gop_clk
);
8312 if (priv
->hw_version
== MVPP22
) {
8313 priv
->mg_clk
= devm_clk_get(&pdev
->dev
, "mg_clk");
8314 if (IS_ERR(priv
->mg_clk
)) {
8315 err
= PTR_ERR(priv
->mg_clk
);
8319 err
= clk_prepare_enable(priv
->mg_clk
);
8324 priv
->axi_clk
= devm_clk_get(&pdev
->dev
, "axi_clk");
8325 if (IS_ERR(priv
->axi_clk
)) {
8326 err
= PTR_ERR(priv
->axi_clk
);
8327 if (err
== -EPROBE_DEFER
)
8329 priv
->axi_clk
= NULL
;
8331 err
= clk_prepare_enable(priv
->axi_clk
);
8336 /* Get system's tclk rate */
8337 priv
->tclk
= clk_get_rate(priv
->pp_clk
);
8338 } else if (device_property_read_u32(&pdev
->dev
, "clock-frequency",
8340 dev_err(&pdev
->dev
, "missing clock-frequency value\n");
8344 if (priv
->hw_version
== MVPP22
) {
8345 err
= dma_set_mask(&pdev
->dev
, DMA_BIT_MASK(40));
8348 /* Sadly, the BM pools all share the same register to
8349 * store the high 32 bits of their address. So they
8350 * must all have the same high 32 bits, which forces
8351 * us to restrict coherent memory to DMA_BIT_MASK(32).
8353 err
= dma_set_coherent_mask(&pdev
->dev
, DMA_BIT_MASK(32));
8358 /* Initialize network controller */
8359 err
= mvpp2_init(pdev
, priv
);
8361 dev_err(&pdev
->dev
, "failed to initialize controller\n");
8365 /* Initialize ports */
8366 fwnode_for_each_available_child_node(fwnode
, port_fwnode
) {
8367 err
= mvpp2_port_probe(pdev
, port_fwnode
, priv
);
8369 goto err_port_probe
;
8372 if (priv
->port_count
== 0) {
8373 dev_err(&pdev
->dev
, "no ports enabled\n");
8378 /* Statistics must be gathered regularly because some of them (like
8379 * packets counters) are 32-bit registers and could overflow quite
8380 * quickly. For instance, a 10Gb link used at full bandwidth with the
8381 * smallest packets (64B) will overflow a 32-bit counter in less than
8382 * 30 seconds. Then, use a workqueue to fill 64-bit counters.
8384 snprintf(priv
->queue_name
, sizeof(priv
->queue_name
),
8385 "stats-wq-%s%s", netdev_name(priv
->port_list
[0]->dev
),
8386 priv
->port_count
> 1 ? "+" : "");
8387 priv
->stats_queue
= create_singlethread_workqueue(priv
->queue_name
);
8388 if (!priv
->stats_queue
) {
8390 goto err_port_probe
;
8393 platform_set_drvdata(pdev
, priv
);
8398 fwnode_for_each_available_child_node(fwnode
, port_fwnode
) {
8399 if (priv
->port_list
[i
])
8400 mvpp2_port_remove(priv
->port_list
[i
]);
8404 clk_disable_unprepare(priv
->axi_clk
);
8405 if (priv
->hw_version
== MVPP22
)
8406 clk_disable_unprepare(priv
->mg_clk
);
8408 clk_disable_unprepare(priv
->gop_clk
);
8410 clk_disable_unprepare(priv
->pp_clk
);
8414 static int mvpp2_remove(struct platform_device
*pdev
)
8416 struct mvpp2
*priv
= platform_get_drvdata(pdev
);
8417 struct fwnode_handle
*fwnode
= pdev
->dev
.fwnode
;
8418 struct fwnode_handle
*port_fwnode
;
8421 flush_workqueue(priv
->stats_queue
);
8422 destroy_workqueue(priv
->stats_queue
);
8424 fwnode_for_each_available_child_node(fwnode
, port_fwnode
) {
8425 if (priv
->port_list
[i
]) {
8426 mutex_destroy(&priv
->port_list
[i
]->gather_stats_lock
);
8427 mvpp2_port_remove(priv
->port_list
[i
]);
8432 for (i
= 0; i
< MVPP2_BM_POOLS_NUM
; i
++) {
8433 struct mvpp2_bm_pool
*bm_pool
= &priv
->bm_pools
[i
];
8435 mvpp2_bm_pool_destroy(pdev
, priv
, bm_pool
);
8438 for_each_present_cpu(i
) {
8439 struct mvpp2_tx_queue
*aggr_txq
= &priv
->aggr_txqs
[i
];
8441 dma_free_coherent(&pdev
->dev
,
8442 MVPP2_AGGR_TXQ_SIZE
* MVPP2_DESC_ALIGNED_SIZE
,
8444 aggr_txq
->descs_dma
);
8447 if (is_acpi_node(port_fwnode
))
8450 clk_disable_unprepare(priv
->axi_clk
);
8451 clk_disable_unprepare(priv
->mg_clk
);
8452 clk_disable_unprepare(priv
->pp_clk
);
8453 clk_disable_unprepare(priv
->gop_clk
);
8458 static const struct of_device_id mvpp2_match
[] = {
8460 .compatible
= "marvell,armada-375-pp2",
8461 .data
= (void *)MVPP21
,
8464 .compatible
= "marvell,armada-7k-pp22",
8465 .data
= (void *)MVPP22
,
8469 MODULE_DEVICE_TABLE(of
, mvpp2_match
);
8471 static const struct acpi_device_id mvpp2_acpi_match
[] = {
8472 { "MRVL0110", MVPP22
},
8475 MODULE_DEVICE_TABLE(acpi
, mvpp2_acpi_match
);
8477 static struct platform_driver mvpp2_driver
= {
8478 .probe
= mvpp2_probe
,
8479 .remove
= mvpp2_remove
,
8481 .name
= MVPP2_DRIVER_NAME
,
8482 .of_match_table
= mvpp2_match
,
8483 .acpi_match_table
= ACPI_PTR(mvpp2_acpi_match
),
8487 module_platform_driver(mvpp2_driver
);
8489 MODULE_DESCRIPTION("Marvell PPv2 Ethernet Driver - www.marvell.com");
8490 MODULE_AUTHOR("Marcin Wojtas <mw@semihalf.com>");
8491 MODULE_LICENSE("GPL v2");