x86/topology: Fix function name in documentation
[cris-mirror.git] / drivers / net / ethernet / marvell / mvpp2.c
bloba1d7b88cf0835de86455f21b1f967d739207b572
1 /*
2 * Driver for Marvell PPv2 network controller for Armada 375 SoC.
4 * Copyright (C) 2014 Marvell
6 * Marcin Wojtas <mw@semihalf.com>
8 * This file is licensed under the terms of the GNU General Public
9 * License version 2. This program is licensed "as is" without any
10 * warranty of any kind, whether express or implied.
13 #include <linux/acpi.h>
14 #include <linux/kernel.h>
15 #include <linux/netdevice.h>
16 #include <linux/etherdevice.h>
17 #include <linux/platform_device.h>
18 #include <linux/skbuff.h>
19 #include <linux/inetdevice.h>
20 #include <linux/mbus.h>
21 #include <linux/module.h>
22 #include <linux/mfd/syscon.h>
23 #include <linux/interrupt.h>
24 #include <linux/cpumask.h>
25 #include <linux/of.h>
26 #include <linux/of_irq.h>
27 #include <linux/of_mdio.h>
28 #include <linux/of_net.h>
29 #include <linux/of_address.h>
30 #include <linux/of_device.h>
31 #include <linux/phy.h>
32 #include <linux/phy/phy.h>
33 #include <linux/clk.h>
34 #include <linux/hrtimer.h>
35 #include <linux/ktime.h>
36 #include <linux/regmap.h>
37 #include <uapi/linux/ppp_defs.h>
38 #include <net/ip.h>
39 #include <net/ipv6.h>
40 #include <net/tso.h>
42 /* Fifo Registers */
43 #define MVPP2_RX_DATA_FIFO_SIZE_REG(port) (0x00 + 4 * (port))
44 #define MVPP2_RX_ATTR_FIFO_SIZE_REG(port) (0x20 + 4 * (port))
45 #define MVPP2_RX_MIN_PKT_SIZE_REG 0x60
46 #define MVPP2_RX_FIFO_INIT_REG 0x64
47 #define MVPP22_TX_FIFO_SIZE_REG(port) (0x8860 + 4 * (port))
49 /* RX DMA Top Registers */
50 #define MVPP2_RX_CTRL_REG(port) (0x140 + 4 * (port))
51 #define MVPP2_RX_LOW_LATENCY_PKT_SIZE(s) (((s) & 0xfff) << 16)
52 #define MVPP2_RX_USE_PSEUDO_FOR_CSUM_MASK BIT(31)
53 #define MVPP2_POOL_BUF_SIZE_REG(pool) (0x180 + 4 * (pool))
54 #define MVPP2_POOL_BUF_SIZE_OFFSET 5
55 #define MVPP2_RXQ_CONFIG_REG(rxq) (0x800 + 4 * (rxq))
56 #define MVPP2_SNOOP_PKT_SIZE_MASK 0x1ff
57 #define MVPP2_SNOOP_BUF_HDR_MASK BIT(9)
58 #define MVPP2_RXQ_POOL_SHORT_OFFS 20
59 #define MVPP21_RXQ_POOL_SHORT_MASK 0x700000
60 #define MVPP22_RXQ_POOL_SHORT_MASK 0xf00000
61 #define MVPP2_RXQ_POOL_LONG_OFFS 24
62 #define MVPP21_RXQ_POOL_LONG_MASK 0x7000000
63 #define MVPP22_RXQ_POOL_LONG_MASK 0xf000000
64 #define MVPP2_RXQ_PACKET_OFFSET_OFFS 28
65 #define MVPP2_RXQ_PACKET_OFFSET_MASK 0x70000000
66 #define MVPP2_RXQ_DISABLE_MASK BIT(31)
68 /* Parser Registers */
69 #define MVPP2_PRS_INIT_LOOKUP_REG 0x1000
70 #define MVPP2_PRS_PORT_LU_MAX 0xf
71 #define MVPP2_PRS_PORT_LU_MASK(port) (0xff << ((port) * 4))
72 #define MVPP2_PRS_PORT_LU_VAL(port, val) ((val) << ((port) * 4))
73 #define MVPP2_PRS_INIT_OFFS_REG(port) (0x1004 + ((port) & 4))
74 #define MVPP2_PRS_INIT_OFF_MASK(port) (0x3f << (((port) % 4) * 8))
75 #define MVPP2_PRS_INIT_OFF_VAL(port, val) ((val) << (((port) % 4) * 8))
76 #define MVPP2_PRS_MAX_LOOP_REG(port) (0x100c + ((port) & 4))
77 #define MVPP2_PRS_MAX_LOOP_MASK(port) (0xff << (((port) % 4) * 8))
78 #define MVPP2_PRS_MAX_LOOP_VAL(port, val) ((val) << (((port) % 4) * 8))
79 #define MVPP2_PRS_TCAM_IDX_REG 0x1100
80 #define MVPP2_PRS_TCAM_DATA_REG(idx) (0x1104 + (idx) * 4)
81 #define MVPP2_PRS_TCAM_INV_MASK BIT(31)
82 #define MVPP2_PRS_SRAM_IDX_REG 0x1200
83 #define MVPP2_PRS_SRAM_DATA_REG(idx) (0x1204 + (idx) * 4)
84 #define MVPP2_PRS_TCAM_CTRL_REG 0x1230
85 #define MVPP2_PRS_TCAM_EN_MASK BIT(0)
87 /* RSS Registers */
88 #define MVPP22_RSS_INDEX 0x1500
89 #define MVPP22_RSS_INDEX_TABLE_ENTRY(idx) (idx)
90 #define MVPP22_RSS_INDEX_TABLE(idx) ((idx) << 8)
91 #define MVPP22_RSS_INDEX_QUEUE(idx) ((idx) << 16)
92 #define MVPP22_RSS_TABLE_ENTRY 0x1508
93 #define MVPP22_RSS_TABLE 0x1510
94 #define MVPP22_RSS_TABLE_POINTER(p) (p)
95 #define MVPP22_RSS_WIDTH 0x150c
97 /* Classifier Registers */
98 #define MVPP2_CLS_MODE_REG 0x1800
99 #define MVPP2_CLS_MODE_ACTIVE_MASK BIT(0)
100 #define MVPP2_CLS_PORT_WAY_REG 0x1810
101 #define MVPP2_CLS_PORT_WAY_MASK(port) (1 << (port))
102 #define MVPP2_CLS_LKP_INDEX_REG 0x1814
103 #define MVPP2_CLS_LKP_INDEX_WAY_OFFS 6
104 #define MVPP2_CLS_LKP_TBL_REG 0x1818
105 #define MVPP2_CLS_LKP_TBL_RXQ_MASK 0xff
106 #define MVPP2_CLS_LKP_TBL_LOOKUP_EN_MASK BIT(25)
107 #define MVPP2_CLS_FLOW_INDEX_REG 0x1820
108 #define MVPP2_CLS_FLOW_TBL0_REG 0x1824
109 #define MVPP2_CLS_FLOW_TBL1_REG 0x1828
110 #define MVPP2_CLS_FLOW_TBL2_REG 0x182c
111 #define MVPP2_CLS_OVERSIZE_RXQ_LOW_REG(port) (0x1980 + ((port) * 4))
112 #define MVPP2_CLS_OVERSIZE_RXQ_LOW_BITS 3
113 #define MVPP2_CLS_OVERSIZE_RXQ_LOW_MASK 0x7
114 #define MVPP2_CLS_SWFWD_P2HQ_REG(port) (0x19b0 + ((port) * 4))
115 #define MVPP2_CLS_SWFWD_PCTRL_REG 0x19d0
116 #define MVPP2_CLS_SWFWD_PCTRL_MASK(port) (1 << (port))
118 /* Descriptor Manager Top Registers */
119 #define MVPP2_RXQ_NUM_REG 0x2040
120 #define MVPP2_RXQ_DESC_ADDR_REG 0x2044
121 #define MVPP22_DESC_ADDR_OFFS 8
122 #define MVPP2_RXQ_DESC_SIZE_REG 0x2048
123 #define MVPP2_RXQ_DESC_SIZE_MASK 0x3ff0
124 #define MVPP2_RXQ_STATUS_UPDATE_REG(rxq) (0x3000 + 4 * (rxq))
125 #define MVPP2_RXQ_NUM_PROCESSED_OFFSET 0
126 #define MVPP2_RXQ_NUM_NEW_OFFSET 16
127 #define MVPP2_RXQ_STATUS_REG(rxq) (0x3400 + 4 * (rxq))
128 #define MVPP2_RXQ_OCCUPIED_MASK 0x3fff
129 #define MVPP2_RXQ_NON_OCCUPIED_OFFSET 16
130 #define MVPP2_RXQ_NON_OCCUPIED_MASK 0x3fff0000
131 #define MVPP2_RXQ_THRESH_REG 0x204c
132 #define MVPP2_OCCUPIED_THRESH_OFFSET 0
133 #define MVPP2_OCCUPIED_THRESH_MASK 0x3fff
134 #define MVPP2_RXQ_INDEX_REG 0x2050
135 #define MVPP2_TXQ_NUM_REG 0x2080
136 #define MVPP2_TXQ_DESC_ADDR_REG 0x2084
137 #define MVPP2_TXQ_DESC_SIZE_REG 0x2088
138 #define MVPP2_TXQ_DESC_SIZE_MASK 0x3ff0
139 #define MVPP2_TXQ_THRESH_REG 0x2094
140 #define MVPP2_TXQ_THRESH_OFFSET 16
141 #define MVPP2_TXQ_THRESH_MASK 0x3fff
142 #define MVPP2_AGGR_TXQ_UPDATE_REG 0x2090
143 #define MVPP2_TXQ_INDEX_REG 0x2098
144 #define MVPP2_TXQ_PREF_BUF_REG 0x209c
145 #define MVPP2_PREF_BUF_PTR(desc) ((desc) & 0xfff)
146 #define MVPP2_PREF_BUF_SIZE_4 (BIT(12) | BIT(13))
147 #define MVPP2_PREF_BUF_SIZE_16 (BIT(12) | BIT(14))
148 #define MVPP2_PREF_BUF_THRESH(val) ((val) << 17)
149 #define MVPP2_TXQ_DRAIN_EN_MASK BIT(31)
150 #define MVPP2_TXQ_PENDING_REG 0x20a0
151 #define MVPP2_TXQ_PENDING_MASK 0x3fff
152 #define MVPP2_TXQ_INT_STATUS_REG 0x20a4
153 #define MVPP2_TXQ_SENT_REG(txq) (0x3c00 + 4 * (txq))
154 #define MVPP2_TRANSMITTED_COUNT_OFFSET 16
155 #define MVPP2_TRANSMITTED_COUNT_MASK 0x3fff0000
156 #define MVPP2_TXQ_RSVD_REQ_REG 0x20b0
157 #define MVPP2_TXQ_RSVD_REQ_Q_OFFSET 16
158 #define MVPP2_TXQ_RSVD_RSLT_REG 0x20b4
159 #define MVPP2_TXQ_RSVD_RSLT_MASK 0x3fff
160 #define MVPP2_TXQ_RSVD_CLR_REG 0x20b8
161 #define MVPP2_TXQ_RSVD_CLR_OFFSET 16
162 #define MVPP2_AGGR_TXQ_DESC_ADDR_REG(cpu) (0x2100 + 4 * (cpu))
163 #define MVPP22_AGGR_TXQ_DESC_ADDR_OFFS 8
164 #define MVPP2_AGGR_TXQ_DESC_SIZE_REG(cpu) (0x2140 + 4 * (cpu))
165 #define MVPP2_AGGR_TXQ_DESC_SIZE_MASK 0x3ff0
166 #define MVPP2_AGGR_TXQ_STATUS_REG(cpu) (0x2180 + 4 * (cpu))
167 #define MVPP2_AGGR_TXQ_PENDING_MASK 0x3fff
168 #define MVPP2_AGGR_TXQ_INDEX_REG(cpu) (0x21c0 + 4 * (cpu))
170 /* MBUS bridge registers */
171 #define MVPP2_WIN_BASE(w) (0x4000 + ((w) << 2))
172 #define MVPP2_WIN_SIZE(w) (0x4020 + ((w) << 2))
173 #define MVPP2_WIN_REMAP(w) (0x4040 + ((w) << 2))
174 #define MVPP2_BASE_ADDR_ENABLE 0x4060
176 /* AXI Bridge Registers */
177 #define MVPP22_AXI_BM_WR_ATTR_REG 0x4100
178 #define MVPP22_AXI_BM_RD_ATTR_REG 0x4104
179 #define MVPP22_AXI_AGGRQ_DESCR_RD_ATTR_REG 0x4110
180 #define MVPP22_AXI_TXQ_DESCR_WR_ATTR_REG 0x4114
181 #define MVPP22_AXI_TXQ_DESCR_RD_ATTR_REG 0x4118
182 #define MVPP22_AXI_RXQ_DESCR_WR_ATTR_REG 0x411c
183 #define MVPP22_AXI_RX_DATA_WR_ATTR_REG 0x4120
184 #define MVPP22_AXI_TX_DATA_RD_ATTR_REG 0x4130
185 #define MVPP22_AXI_RD_NORMAL_CODE_REG 0x4150
186 #define MVPP22_AXI_RD_SNOOP_CODE_REG 0x4154
187 #define MVPP22_AXI_WR_NORMAL_CODE_REG 0x4160
188 #define MVPP22_AXI_WR_SNOOP_CODE_REG 0x4164
190 /* Values for AXI Bridge registers */
191 #define MVPP22_AXI_ATTR_CACHE_OFFS 0
192 #define MVPP22_AXI_ATTR_DOMAIN_OFFS 12
194 #define MVPP22_AXI_CODE_CACHE_OFFS 0
195 #define MVPP22_AXI_CODE_DOMAIN_OFFS 4
197 #define MVPP22_AXI_CODE_CACHE_NON_CACHE 0x3
198 #define MVPP22_AXI_CODE_CACHE_WR_CACHE 0x7
199 #define MVPP22_AXI_CODE_CACHE_RD_CACHE 0xb
201 #define MVPP22_AXI_CODE_DOMAIN_OUTER_DOM 2
202 #define MVPP22_AXI_CODE_DOMAIN_SYSTEM 3
204 /* Interrupt Cause and Mask registers */
205 #define MVPP2_ISR_TX_THRESHOLD_REG(port) (0x5140 + 4 * (port))
206 #define MVPP2_MAX_ISR_TX_THRESHOLD 0xfffff0
208 #define MVPP2_ISR_RX_THRESHOLD_REG(rxq) (0x5200 + 4 * (rxq))
209 #define MVPP2_MAX_ISR_RX_THRESHOLD 0xfffff0
210 #define MVPP21_ISR_RXQ_GROUP_REG(port) (0x5400 + 4 * (port))
212 #define MVPP22_ISR_RXQ_GROUP_INDEX_REG 0x5400
213 #define MVPP22_ISR_RXQ_GROUP_INDEX_SUBGROUP_MASK 0xf
214 #define MVPP22_ISR_RXQ_GROUP_INDEX_GROUP_MASK 0x380
215 #define MVPP22_ISR_RXQ_GROUP_INDEX_GROUP_OFFSET 7
217 #define MVPP22_ISR_RXQ_GROUP_INDEX_SUBGROUP_MASK 0xf
218 #define MVPP22_ISR_RXQ_GROUP_INDEX_GROUP_MASK 0x380
220 #define MVPP22_ISR_RXQ_SUB_GROUP_CONFIG_REG 0x5404
221 #define MVPP22_ISR_RXQ_SUB_GROUP_STARTQ_MASK 0x1f
222 #define MVPP22_ISR_RXQ_SUB_GROUP_SIZE_MASK 0xf00
223 #define MVPP22_ISR_RXQ_SUB_GROUP_SIZE_OFFSET 8
225 #define MVPP2_ISR_ENABLE_REG(port) (0x5420 + 4 * (port))
226 #define MVPP2_ISR_ENABLE_INTERRUPT(mask) ((mask) & 0xffff)
227 #define MVPP2_ISR_DISABLE_INTERRUPT(mask) (((mask) << 16) & 0xffff0000)
228 #define MVPP2_ISR_RX_TX_CAUSE_REG(port) (0x5480 + 4 * (port))
229 #define MVPP2_CAUSE_RXQ_OCCUP_DESC_ALL_MASK 0xffff
230 #define MVPP2_CAUSE_TXQ_OCCUP_DESC_ALL_MASK 0xff0000
231 #define MVPP2_CAUSE_TXQ_OCCUP_DESC_ALL_OFFSET 16
232 #define MVPP2_CAUSE_RX_FIFO_OVERRUN_MASK BIT(24)
233 #define MVPP2_CAUSE_FCS_ERR_MASK BIT(25)
234 #define MVPP2_CAUSE_TX_FIFO_UNDERRUN_MASK BIT(26)
235 #define MVPP2_CAUSE_TX_EXCEPTION_SUM_MASK BIT(29)
236 #define MVPP2_CAUSE_RX_EXCEPTION_SUM_MASK BIT(30)
237 #define MVPP2_CAUSE_MISC_SUM_MASK BIT(31)
238 #define MVPP2_ISR_RX_TX_MASK_REG(port) (0x54a0 + 4 * (port))
239 #define MVPP2_ISR_PON_RX_TX_MASK_REG 0x54bc
240 #define MVPP2_PON_CAUSE_RXQ_OCCUP_DESC_ALL_MASK 0xffff
241 #define MVPP2_PON_CAUSE_TXP_OCCUP_DESC_ALL_MASK 0x3fc00000
242 #define MVPP2_PON_CAUSE_MISC_SUM_MASK BIT(31)
243 #define MVPP2_ISR_MISC_CAUSE_REG 0x55b0
245 /* Buffer Manager registers */
246 #define MVPP2_BM_POOL_BASE_REG(pool) (0x6000 + ((pool) * 4))
247 #define MVPP2_BM_POOL_BASE_ADDR_MASK 0xfffff80
248 #define MVPP2_BM_POOL_SIZE_REG(pool) (0x6040 + ((pool) * 4))
249 #define MVPP2_BM_POOL_SIZE_MASK 0xfff0
250 #define MVPP2_BM_POOL_READ_PTR_REG(pool) (0x6080 + ((pool) * 4))
251 #define MVPP2_BM_POOL_GET_READ_PTR_MASK 0xfff0
252 #define MVPP2_BM_POOL_PTRS_NUM_REG(pool) (0x60c0 + ((pool) * 4))
253 #define MVPP2_BM_POOL_PTRS_NUM_MASK 0xfff0
254 #define MVPP2_BM_BPPI_READ_PTR_REG(pool) (0x6100 + ((pool) * 4))
255 #define MVPP2_BM_BPPI_PTRS_NUM_REG(pool) (0x6140 + ((pool) * 4))
256 #define MVPP2_BM_BPPI_PTR_NUM_MASK 0x7ff
257 #define MVPP2_BM_BPPI_PREFETCH_FULL_MASK BIT(16)
258 #define MVPP2_BM_POOL_CTRL_REG(pool) (0x6200 + ((pool) * 4))
259 #define MVPP2_BM_START_MASK BIT(0)
260 #define MVPP2_BM_STOP_MASK BIT(1)
261 #define MVPP2_BM_STATE_MASK BIT(4)
262 #define MVPP2_BM_LOW_THRESH_OFFS 8
263 #define MVPP2_BM_LOW_THRESH_MASK 0x7f00
264 #define MVPP2_BM_LOW_THRESH_VALUE(val) ((val) << \
265 MVPP2_BM_LOW_THRESH_OFFS)
266 #define MVPP2_BM_HIGH_THRESH_OFFS 16
267 #define MVPP2_BM_HIGH_THRESH_MASK 0x7f0000
268 #define MVPP2_BM_HIGH_THRESH_VALUE(val) ((val) << \
269 MVPP2_BM_HIGH_THRESH_OFFS)
270 #define MVPP2_BM_INTR_CAUSE_REG(pool) (0x6240 + ((pool) * 4))
271 #define MVPP2_BM_RELEASED_DELAY_MASK BIT(0)
272 #define MVPP2_BM_ALLOC_FAILED_MASK BIT(1)
273 #define MVPP2_BM_BPPE_EMPTY_MASK BIT(2)
274 #define MVPP2_BM_BPPE_FULL_MASK BIT(3)
275 #define MVPP2_BM_AVAILABLE_BP_LOW_MASK BIT(4)
276 #define MVPP2_BM_INTR_MASK_REG(pool) (0x6280 + ((pool) * 4))
277 #define MVPP2_BM_PHY_ALLOC_REG(pool) (0x6400 + ((pool) * 4))
278 #define MVPP2_BM_PHY_ALLOC_GRNTD_MASK BIT(0)
279 #define MVPP2_BM_VIRT_ALLOC_REG 0x6440
280 #define MVPP22_BM_ADDR_HIGH_ALLOC 0x6444
281 #define MVPP22_BM_ADDR_HIGH_PHYS_MASK 0xff
282 #define MVPP22_BM_ADDR_HIGH_VIRT_MASK 0xff00
283 #define MVPP22_BM_ADDR_HIGH_VIRT_SHIFT 8
284 #define MVPP2_BM_PHY_RLS_REG(pool) (0x6480 + ((pool) * 4))
285 #define MVPP2_BM_PHY_RLS_MC_BUFF_MASK BIT(0)
286 #define MVPP2_BM_PHY_RLS_PRIO_EN_MASK BIT(1)
287 #define MVPP2_BM_PHY_RLS_GRNTD_MASK BIT(2)
288 #define MVPP2_BM_VIRT_RLS_REG 0x64c0
289 #define MVPP22_BM_ADDR_HIGH_RLS_REG 0x64c4
290 #define MVPP22_BM_ADDR_HIGH_PHYS_RLS_MASK 0xff
291 #define MVPP22_BM_ADDR_HIGH_VIRT_RLS_MASK 0xff00
292 #define MVPP22_BM_ADDR_HIGH_VIRT_RLS_SHIFT 8
294 /* TX Scheduler registers */
295 #define MVPP2_TXP_SCHED_PORT_INDEX_REG 0x8000
296 #define MVPP2_TXP_SCHED_Q_CMD_REG 0x8004
297 #define MVPP2_TXP_SCHED_ENQ_MASK 0xff
298 #define MVPP2_TXP_SCHED_DISQ_OFFSET 8
299 #define MVPP2_TXP_SCHED_CMD_1_REG 0x8010
300 #define MVPP2_TXP_SCHED_PERIOD_REG 0x8018
301 #define MVPP2_TXP_SCHED_MTU_REG 0x801c
302 #define MVPP2_TXP_MTU_MAX 0x7FFFF
303 #define MVPP2_TXP_SCHED_REFILL_REG 0x8020
304 #define MVPP2_TXP_REFILL_TOKENS_ALL_MASK 0x7ffff
305 #define MVPP2_TXP_REFILL_PERIOD_ALL_MASK 0x3ff00000
306 #define MVPP2_TXP_REFILL_PERIOD_MASK(v) ((v) << 20)
307 #define MVPP2_TXP_SCHED_TOKEN_SIZE_REG 0x8024
308 #define MVPP2_TXP_TOKEN_SIZE_MAX 0xffffffff
309 #define MVPP2_TXQ_SCHED_REFILL_REG(q) (0x8040 + ((q) << 2))
310 #define MVPP2_TXQ_REFILL_TOKENS_ALL_MASK 0x7ffff
311 #define MVPP2_TXQ_REFILL_PERIOD_ALL_MASK 0x3ff00000
312 #define MVPP2_TXQ_REFILL_PERIOD_MASK(v) ((v) << 20)
313 #define MVPP2_TXQ_SCHED_TOKEN_SIZE_REG(q) (0x8060 + ((q) << 2))
314 #define MVPP2_TXQ_TOKEN_SIZE_MAX 0x7fffffff
315 #define MVPP2_TXQ_SCHED_TOKEN_CNTR_REG(q) (0x8080 + ((q) << 2))
316 #define MVPP2_TXQ_TOKEN_CNTR_MAX 0xffffffff
318 /* TX general registers */
319 #define MVPP2_TX_SNOOP_REG 0x8800
320 #define MVPP2_TX_PORT_FLUSH_REG 0x8810
321 #define MVPP2_TX_PORT_FLUSH_MASK(port) (1 << (port))
323 /* LMS registers */
324 #define MVPP2_SRC_ADDR_MIDDLE 0x24
325 #define MVPP2_SRC_ADDR_HIGH 0x28
326 #define MVPP2_PHY_AN_CFG0_REG 0x34
327 #define MVPP2_PHY_AN_STOP_SMI0_MASK BIT(7)
328 #define MVPP2_MNG_EXTENDED_GLOBAL_CTRL_REG 0x305c
329 #define MVPP2_EXT_GLOBAL_CTRL_DEFAULT 0x27
331 /* Per-port registers */
332 #define MVPP2_GMAC_CTRL_0_REG 0x0
333 #define MVPP2_GMAC_PORT_EN_MASK BIT(0)
334 #define MVPP2_GMAC_PORT_TYPE_MASK BIT(1)
335 #define MVPP2_GMAC_MAX_RX_SIZE_OFFS 2
336 #define MVPP2_GMAC_MAX_RX_SIZE_MASK 0x7ffc
337 #define MVPP2_GMAC_MIB_CNTR_EN_MASK BIT(15)
338 #define MVPP2_GMAC_CTRL_1_REG 0x4
339 #define MVPP2_GMAC_PERIODIC_XON_EN_MASK BIT(1)
340 #define MVPP2_GMAC_GMII_LB_EN_MASK BIT(5)
341 #define MVPP2_GMAC_PCS_LB_EN_BIT 6
342 #define MVPP2_GMAC_PCS_LB_EN_MASK BIT(6)
343 #define MVPP2_GMAC_SA_LOW_OFFS 7
344 #define MVPP2_GMAC_CTRL_2_REG 0x8
345 #define MVPP2_GMAC_INBAND_AN_MASK BIT(0)
346 #define MVPP2_GMAC_FLOW_CTRL_MASK GENMASK(2, 1)
347 #define MVPP2_GMAC_PCS_ENABLE_MASK BIT(3)
348 #define MVPP2_GMAC_INTERNAL_CLK_MASK BIT(4)
349 #define MVPP2_GMAC_DISABLE_PADDING BIT(5)
350 #define MVPP2_GMAC_PORT_RESET_MASK BIT(6)
351 #define MVPP2_GMAC_AUTONEG_CONFIG 0xc
352 #define MVPP2_GMAC_FORCE_LINK_DOWN BIT(0)
353 #define MVPP2_GMAC_FORCE_LINK_PASS BIT(1)
354 #define MVPP2_GMAC_IN_BAND_AUTONEG BIT(2)
355 #define MVPP2_GMAC_IN_BAND_AUTONEG_BYPASS BIT(3)
356 #define MVPP2_GMAC_CONFIG_MII_SPEED BIT(5)
357 #define MVPP2_GMAC_CONFIG_GMII_SPEED BIT(6)
358 #define MVPP2_GMAC_AN_SPEED_EN BIT(7)
359 #define MVPP2_GMAC_FC_ADV_EN BIT(9)
360 #define MVPP2_GMAC_FLOW_CTRL_AUTONEG BIT(11)
361 #define MVPP2_GMAC_CONFIG_FULL_DUPLEX BIT(12)
362 #define MVPP2_GMAC_AN_DUPLEX_EN BIT(13)
363 #define MVPP2_GMAC_STATUS0 0x10
364 #define MVPP2_GMAC_STATUS0_LINK_UP BIT(0)
365 #define MVPP2_GMAC_PORT_FIFO_CFG_1_REG 0x1c
366 #define MVPP2_GMAC_TX_FIFO_MIN_TH_OFFS 6
367 #define MVPP2_GMAC_TX_FIFO_MIN_TH_ALL_MASK 0x1fc0
368 #define MVPP2_GMAC_TX_FIFO_MIN_TH_MASK(v) (((v) << 6) & \
369 MVPP2_GMAC_TX_FIFO_MIN_TH_ALL_MASK)
370 #define MVPP22_GMAC_INT_STAT 0x20
371 #define MVPP22_GMAC_INT_STAT_LINK BIT(1)
372 #define MVPP22_GMAC_INT_MASK 0x24
373 #define MVPP22_GMAC_INT_MASK_LINK_STAT BIT(1)
374 #define MVPP22_GMAC_CTRL_4_REG 0x90
375 #define MVPP22_CTRL4_EXT_PIN_GMII_SEL BIT(0)
376 #define MVPP22_CTRL4_DP_CLK_SEL BIT(5)
377 #define MVPP22_CTRL4_SYNC_BYPASS_DIS BIT(6)
378 #define MVPP22_CTRL4_QSGMII_BYPASS_ACTIVE BIT(7)
379 #define MVPP22_GMAC_INT_SUM_MASK 0xa4
380 #define MVPP22_GMAC_INT_SUM_MASK_LINK_STAT BIT(1)
382 /* Per-port XGMAC registers. PPv2.2 only, only for GOP port 0,
383 * relative to port->base.
385 #define MVPP22_XLG_CTRL0_REG 0x100
386 #define MVPP22_XLG_CTRL0_PORT_EN BIT(0)
387 #define MVPP22_XLG_CTRL0_MAC_RESET_DIS BIT(1)
388 #define MVPP22_XLG_CTRL0_RX_FLOW_CTRL_EN BIT(7)
389 #define MVPP22_XLG_CTRL0_MIB_CNT_DIS BIT(14)
390 #define MVPP22_XLG_CTRL1_REG 0x104
391 #define MVPP22_XLG_CTRL1_FRAMESIZELIMIT_OFFS 0
392 #define MVPP22_XLG_CTRL1_FRAMESIZELIMIT_MASK 0x1fff
393 #define MVPP22_XLG_STATUS 0x10c
394 #define MVPP22_XLG_STATUS_LINK_UP BIT(0)
395 #define MVPP22_XLG_INT_STAT 0x114
396 #define MVPP22_XLG_INT_STAT_LINK BIT(1)
397 #define MVPP22_XLG_INT_MASK 0x118
398 #define MVPP22_XLG_INT_MASK_LINK BIT(1)
399 #define MVPP22_XLG_CTRL3_REG 0x11c
400 #define MVPP22_XLG_CTRL3_MACMODESELECT_MASK (7 << 13)
401 #define MVPP22_XLG_CTRL3_MACMODESELECT_GMAC (0 << 13)
402 #define MVPP22_XLG_CTRL3_MACMODESELECT_10G (1 << 13)
403 #define MVPP22_XLG_EXT_INT_MASK 0x15c
404 #define MVPP22_XLG_EXT_INT_MASK_XLG BIT(1)
405 #define MVPP22_XLG_EXT_INT_MASK_GIG BIT(2)
406 #define MVPP22_XLG_CTRL4_REG 0x184
407 #define MVPP22_XLG_CTRL4_FWD_FC BIT(5)
408 #define MVPP22_XLG_CTRL4_FWD_PFC BIT(6)
409 #define MVPP22_XLG_CTRL4_MACMODSELECT_GMAC BIT(12)
411 /* SMI registers. PPv2.2 only, relative to priv->iface_base. */
412 #define MVPP22_SMI_MISC_CFG_REG 0x1204
413 #define MVPP22_SMI_POLLING_EN BIT(10)
415 #define MVPP22_GMAC_BASE(port) (0x7000 + (port) * 0x1000 + 0xe00)
417 #define MVPP2_CAUSE_TXQ_SENT_DESC_ALL_MASK 0xff
419 /* Descriptor ring Macros */
420 #define MVPP2_QUEUE_NEXT_DESC(q, index) \
421 (((index) < (q)->last_desc) ? ((index) + 1) : 0)
423 /* XPCS registers. PPv2.2 only */
424 #define MVPP22_MPCS_BASE(port) (0x7000 + (port) * 0x1000)
425 #define MVPP22_MPCS_CTRL 0x14
426 #define MVPP22_MPCS_CTRL_FWD_ERR_CONN BIT(10)
427 #define MVPP22_MPCS_CLK_RESET 0x14c
428 #define MAC_CLK_RESET_SD_TX BIT(0)
429 #define MAC_CLK_RESET_SD_RX BIT(1)
430 #define MAC_CLK_RESET_MAC BIT(2)
431 #define MVPP22_MPCS_CLK_RESET_DIV_RATIO(n) ((n) << 4)
432 #define MVPP22_MPCS_CLK_RESET_DIV_SET BIT(11)
434 /* XPCS registers. PPv2.2 only */
435 #define MVPP22_XPCS_BASE(port) (0x7400 + (port) * 0x1000)
436 #define MVPP22_XPCS_CFG0 0x0
437 #define MVPP22_XPCS_CFG0_PCS_MODE(n) ((n) << 3)
438 #define MVPP22_XPCS_CFG0_ACTIVE_LANE(n) ((n) << 5)
440 /* System controller registers. Accessed through a regmap. */
441 #define GENCONF_SOFT_RESET1 0x1108
442 #define GENCONF_SOFT_RESET1_GOP BIT(6)
443 #define GENCONF_PORT_CTRL0 0x1110
444 #define GENCONF_PORT_CTRL0_BUS_WIDTH_SELECT BIT(1)
445 #define GENCONF_PORT_CTRL0_RX_DATA_SAMPLE BIT(29)
446 #define GENCONF_PORT_CTRL0_CLK_DIV_PHASE_CLR BIT(31)
447 #define GENCONF_PORT_CTRL1 0x1114
448 #define GENCONF_PORT_CTRL1_EN(p) BIT(p)
449 #define GENCONF_PORT_CTRL1_RESET(p) (BIT(p) << 28)
450 #define GENCONF_CTRL0 0x1120
451 #define GENCONF_CTRL0_PORT0_RGMII BIT(0)
452 #define GENCONF_CTRL0_PORT1_RGMII_MII BIT(1)
453 #define GENCONF_CTRL0_PORT1_RGMII BIT(2)
455 /* Various constants */
457 /* Coalescing */
458 #define MVPP2_TXDONE_COAL_PKTS_THRESH 64
459 #define MVPP2_TXDONE_HRTIMER_PERIOD_NS 1000000UL
460 #define MVPP2_TXDONE_COAL_USEC 1000
461 #define MVPP2_RX_COAL_PKTS 32
462 #define MVPP2_RX_COAL_USEC 64
464 /* The two bytes Marvell header. Either contains a special value used
465 * by Marvell switches when a specific hardware mode is enabled (not
466 * supported by this driver) or is filled automatically by zeroes on
467 * the RX side. Those two bytes being at the front of the Ethernet
468 * header, they allow to have the IP header aligned on a 4 bytes
469 * boundary automatically: the hardware skips those two bytes on its
470 * own.
472 #define MVPP2_MH_SIZE 2
473 #define MVPP2_ETH_TYPE_LEN 2
474 #define MVPP2_PPPOE_HDR_SIZE 8
475 #define MVPP2_VLAN_TAG_LEN 4
477 /* Lbtd 802.3 type */
478 #define MVPP2_IP_LBDT_TYPE 0xfffa
480 #define MVPP2_TX_CSUM_MAX_SIZE 9800
482 /* Timeout constants */
483 #define MVPP2_TX_DISABLE_TIMEOUT_MSEC 1000
484 #define MVPP2_TX_PENDING_TIMEOUT_MSEC 1000
486 #define MVPP2_TX_MTU_MAX 0x7ffff
488 /* Maximum number of T-CONTs of PON port */
489 #define MVPP2_MAX_TCONT 16
491 /* Maximum number of supported ports */
492 #define MVPP2_MAX_PORTS 4
494 /* Maximum number of TXQs used by single port */
495 #define MVPP2_MAX_TXQ 8
497 /* MVPP2_MAX_TSO_SEGS is the maximum number of fragments to allow in the GSO
498 * skb. As we need a maxium of two descriptors per fragments (1 header, 1 data),
499 * multiply this value by two to count the maximum number of skb descs needed.
501 #define MVPP2_MAX_TSO_SEGS 300
502 #define MVPP2_MAX_SKB_DESCS (MVPP2_MAX_TSO_SEGS * 2 + MAX_SKB_FRAGS)
504 /* Dfault number of RXQs in use */
505 #define MVPP2_DEFAULT_RXQ 4
507 /* Max number of Rx descriptors */
508 #define MVPP2_MAX_RXD_MAX 1024
509 #define MVPP2_MAX_RXD_DFLT 128
511 /* Max number of Tx descriptors */
512 #define MVPP2_MAX_TXD_MAX 2048
513 #define MVPP2_MAX_TXD_DFLT 1024
515 /* Amount of Tx descriptors that can be reserved at once by CPU */
516 #define MVPP2_CPU_DESC_CHUNK 64
518 /* Max number of Tx descriptors in each aggregated queue */
519 #define MVPP2_AGGR_TXQ_SIZE 256
521 /* Descriptor aligned size */
522 #define MVPP2_DESC_ALIGNED_SIZE 32
524 /* Descriptor alignment mask */
525 #define MVPP2_TX_DESC_ALIGN (MVPP2_DESC_ALIGNED_SIZE - 1)
527 /* RX FIFO constants */
528 #define MVPP2_RX_FIFO_PORT_DATA_SIZE_32KB 0x8000
529 #define MVPP2_RX_FIFO_PORT_DATA_SIZE_8KB 0x2000
530 #define MVPP2_RX_FIFO_PORT_DATA_SIZE_4KB 0x1000
531 #define MVPP2_RX_FIFO_PORT_ATTR_SIZE_32KB 0x200
532 #define MVPP2_RX_FIFO_PORT_ATTR_SIZE_8KB 0x80
533 #define MVPP2_RX_FIFO_PORT_ATTR_SIZE_4KB 0x40
534 #define MVPP2_RX_FIFO_PORT_MIN_PKT 0x80
536 /* TX FIFO constants */
537 #define MVPP22_TX_FIFO_DATA_SIZE_10KB 0xa
538 #define MVPP22_TX_FIFO_DATA_SIZE_3KB 0x3
540 /* RX buffer constants */
541 #define MVPP2_SKB_SHINFO_SIZE \
542 SKB_DATA_ALIGN(sizeof(struct skb_shared_info))
544 #define MVPP2_RX_PKT_SIZE(mtu) \
545 ALIGN((mtu) + MVPP2_MH_SIZE + MVPP2_VLAN_TAG_LEN + \
546 ETH_HLEN + ETH_FCS_LEN, cache_line_size())
548 #define MVPP2_RX_BUF_SIZE(pkt_size) ((pkt_size) + NET_SKB_PAD)
549 #define MVPP2_RX_TOTAL_SIZE(buf_size) ((buf_size) + MVPP2_SKB_SHINFO_SIZE)
550 #define MVPP2_RX_MAX_PKT_SIZE(total_size) \
551 ((total_size) - NET_SKB_PAD - MVPP2_SKB_SHINFO_SIZE)
553 #define MVPP2_BIT_TO_BYTE(bit) ((bit) / 8)
555 /* IPv6 max L3 address size */
556 #define MVPP2_MAX_L3_ADDR_SIZE 16
558 /* Port flags */
559 #define MVPP2_F_LOOPBACK BIT(0)
561 /* Marvell tag types */
562 enum mvpp2_tag_type {
563 MVPP2_TAG_TYPE_NONE = 0,
564 MVPP2_TAG_TYPE_MH = 1,
565 MVPP2_TAG_TYPE_DSA = 2,
566 MVPP2_TAG_TYPE_EDSA = 3,
567 MVPP2_TAG_TYPE_VLAN = 4,
568 MVPP2_TAG_TYPE_LAST = 5
571 /* Parser constants */
572 #define MVPP2_PRS_TCAM_SRAM_SIZE 256
573 #define MVPP2_PRS_TCAM_WORDS 6
574 #define MVPP2_PRS_SRAM_WORDS 4
575 #define MVPP2_PRS_FLOW_ID_SIZE 64
576 #define MVPP2_PRS_FLOW_ID_MASK 0x3f
577 #define MVPP2_PRS_TCAM_ENTRY_INVALID 1
578 #define MVPP2_PRS_TCAM_DSA_TAGGED_BIT BIT(5)
579 #define MVPP2_PRS_IPV4_HEAD 0x40
580 #define MVPP2_PRS_IPV4_HEAD_MASK 0xf0
581 #define MVPP2_PRS_IPV4_MC 0xe0
582 #define MVPP2_PRS_IPV4_MC_MASK 0xf0
583 #define MVPP2_PRS_IPV4_BC_MASK 0xff
584 #define MVPP2_PRS_IPV4_IHL 0x5
585 #define MVPP2_PRS_IPV4_IHL_MASK 0xf
586 #define MVPP2_PRS_IPV6_MC 0xff
587 #define MVPP2_PRS_IPV6_MC_MASK 0xff
588 #define MVPP2_PRS_IPV6_HOP_MASK 0xff
589 #define MVPP2_PRS_TCAM_PROTO_MASK 0xff
590 #define MVPP2_PRS_TCAM_PROTO_MASK_L 0x3f
591 #define MVPP2_PRS_DBL_VLANS_MAX 100
593 /* Tcam structure:
594 * - lookup ID - 4 bits
595 * - port ID - 1 byte
596 * - additional information - 1 byte
597 * - header data - 8 bytes
598 * The fields are represented by MVPP2_PRS_TCAM_DATA_REG(5)->(0).
600 #define MVPP2_PRS_AI_BITS 8
601 #define MVPP2_PRS_PORT_MASK 0xff
602 #define MVPP2_PRS_LU_MASK 0xf
603 #define MVPP2_PRS_TCAM_DATA_BYTE(offs) \
604 (((offs) - ((offs) % 2)) * 2 + ((offs) % 2))
605 #define MVPP2_PRS_TCAM_DATA_BYTE_EN(offs) \
606 (((offs) * 2) - ((offs) % 2) + 2)
607 #define MVPP2_PRS_TCAM_AI_BYTE 16
608 #define MVPP2_PRS_TCAM_PORT_BYTE 17
609 #define MVPP2_PRS_TCAM_LU_BYTE 20
610 #define MVPP2_PRS_TCAM_EN_OFFS(offs) ((offs) + 2)
611 #define MVPP2_PRS_TCAM_INV_WORD 5
612 /* Tcam entries ID */
613 #define MVPP2_PE_DROP_ALL 0
614 #define MVPP2_PE_FIRST_FREE_TID 1
615 #define MVPP2_PE_LAST_FREE_TID (MVPP2_PRS_TCAM_SRAM_SIZE - 31)
616 #define MVPP2_PE_IP6_EXT_PROTO_UN (MVPP2_PRS_TCAM_SRAM_SIZE - 30)
617 #define MVPP2_PE_MAC_MC_IP6 (MVPP2_PRS_TCAM_SRAM_SIZE - 29)
618 #define MVPP2_PE_IP6_ADDR_UN (MVPP2_PRS_TCAM_SRAM_SIZE - 28)
619 #define MVPP2_PE_IP4_ADDR_UN (MVPP2_PRS_TCAM_SRAM_SIZE - 27)
620 #define MVPP2_PE_LAST_DEFAULT_FLOW (MVPP2_PRS_TCAM_SRAM_SIZE - 26)
621 #define MVPP2_PE_FIRST_DEFAULT_FLOW (MVPP2_PRS_TCAM_SRAM_SIZE - 19)
622 #define MVPP2_PE_EDSA_TAGGED (MVPP2_PRS_TCAM_SRAM_SIZE - 18)
623 #define MVPP2_PE_EDSA_UNTAGGED (MVPP2_PRS_TCAM_SRAM_SIZE - 17)
624 #define MVPP2_PE_DSA_TAGGED (MVPP2_PRS_TCAM_SRAM_SIZE - 16)
625 #define MVPP2_PE_DSA_UNTAGGED (MVPP2_PRS_TCAM_SRAM_SIZE - 15)
626 #define MVPP2_PE_ETYPE_EDSA_TAGGED (MVPP2_PRS_TCAM_SRAM_SIZE - 14)
627 #define MVPP2_PE_ETYPE_EDSA_UNTAGGED (MVPP2_PRS_TCAM_SRAM_SIZE - 13)
628 #define MVPP2_PE_ETYPE_DSA_TAGGED (MVPP2_PRS_TCAM_SRAM_SIZE - 12)
629 #define MVPP2_PE_ETYPE_DSA_UNTAGGED (MVPP2_PRS_TCAM_SRAM_SIZE - 11)
630 #define MVPP2_PE_MH_DEFAULT (MVPP2_PRS_TCAM_SRAM_SIZE - 10)
631 #define MVPP2_PE_DSA_DEFAULT (MVPP2_PRS_TCAM_SRAM_SIZE - 9)
632 #define MVPP2_PE_IP6_PROTO_UN (MVPP2_PRS_TCAM_SRAM_SIZE - 8)
633 #define MVPP2_PE_IP4_PROTO_UN (MVPP2_PRS_TCAM_SRAM_SIZE - 7)
634 #define MVPP2_PE_ETH_TYPE_UN (MVPP2_PRS_TCAM_SRAM_SIZE - 6)
635 #define MVPP2_PE_VLAN_DBL (MVPP2_PRS_TCAM_SRAM_SIZE - 5)
636 #define MVPP2_PE_VLAN_NONE (MVPP2_PRS_TCAM_SRAM_SIZE - 4)
637 #define MVPP2_PE_MAC_MC_ALL (MVPP2_PRS_TCAM_SRAM_SIZE - 3)
638 #define MVPP2_PE_MAC_PROMISCUOUS (MVPP2_PRS_TCAM_SRAM_SIZE - 2)
639 #define MVPP2_PE_MAC_NON_PROMISCUOUS (MVPP2_PRS_TCAM_SRAM_SIZE - 1)
641 /* Sram structure
642 * The fields are represented by MVPP2_PRS_TCAM_DATA_REG(3)->(0).
644 #define MVPP2_PRS_SRAM_RI_OFFS 0
645 #define MVPP2_PRS_SRAM_RI_WORD 0
646 #define MVPP2_PRS_SRAM_RI_CTRL_OFFS 32
647 #define MVPP2_PRS_SRAM_RI_CTRL_WORD 1
648 #define MVPP2_PRS_SRAM_RI_CTRL_BITS 32
649 #define MVPP2_PRS_SRAM_SHIFT_OFFS 64
650 #define MVPP2_PRS_SRAM_SHIFT_SIGN_BIT 72
651 #define MVPP2_PRS_SRAM_UDF_OFFS 73
652 #define MVPP2_PRS_SRAM_UDF_BITS 8
653 #define MVPP2_PRS_SRAM_UDF_MASK 0xff
654 #define MVPP2_PRS_SRAM_UDF_SIGN_BIT 81
655 #define MVPP2_PRS_SRAM_UDF_TYPE_OFFS 82
656 #define MVPP2_PRS_SRAM_UDF_TYPE_MASK 0x7
657 #define MVPP2_PRS_SRAM_UDF_TYPE_L3 1
658 #define MVPP2_PRS_SRAM_UDF_TYPE_L4 4
659 #define MVPP2_PRS_SRAM_OP_SEL_SHIFT_OFFS 85
660 #define MVPP2_PRS_SRAM_OP_SEL_SHIFT_MASK 0x3
661 #define MVPP2_PRS_SRAM_OP_SEL_SHIFT_ADD 1
662 #define MVPP2_PRS_SRAM_OP_SEL_SHIFT_IP4_ADD 2
663 #define MVPP2_PRS_SRAM_OP_SEL_SHIFT_IP6_ADD 3
664 #define MVPP2_PRS_SRAM_OP_SEL_UDF_OFFS 87
665 #define MVPP2_PRS_SRAM_OP_SEL_UDF_BITS 2
666 #define MVPP2_PRS_SRAM_OP_SEL_UDF_MASK 0x3
667 #define MVPP2_PRS_SRAM_OP_SEL_UDF_ADD 0
668 #define MVPP2_PRS_SRAM_OP_SEL_UDF_IP4_ADD 2
669 #define MVPP2_PRS_SRAM_OP_SEL_UDF_IP6_ADD 3
670 #define MVPP2_PRS_SRAM_OP_SEL_BASE_OFFS 89
671 #define MVPP2_PRS_SRAM_AI_OFFS 90
672 #define MVPP2_PRS_SRAM_AI_CTRL_OFFS 98
673 #define MVPP2_PRS_SRAM_AI_CTRL_BITS 8
674 #define MVPP2_PRS_SRAM_AI_MASK 0xff
675 #define MVPP2_PRS_SRAM_NEXT_LU_OFFS 106
676 #define MVPP2_PRS_SRAM_NEXT_LU_MASK 0xf
677 #define MVPP2_PRS_SRAM_LU_DONE_BIT 110
678 #define MVPP2_PRS_SRAM_LU_GEN_BIT 111
680 /* Sram result info bits assignment */
681 #define MVPP2_PRS_RI_MAC_ME_MASK 0x1
682 #define MVPP2_PRS_RI_DSA_MASK 0x2
683 #define MVPP2_PRS_RI_VLAN_MASK (BIT(2) | BIT(3))
684 #define MVPP2_PRS_RI_VLAN_NONE 0x0
685 #define MVPP2_PRS_RI_VLAN_SINGLE BIT(2)
686 #define MVPP2_PRS_RI_VLAN_DOUBLE BIT(3)
687 #define MVPP2_PRS_RI_VLAN_TRIPLE (BIT(2) | BIT(3))
688 #define MVPP2_PRS_RI_CPU_CODE_MASK 0x70
689 #define MVPP2_PRS_RI_CPU_CODE_RX_SPEC BIT(4)
690 #define MVPP2_PRS_RI_L2_CAST_MASK (BIT(9) | BIT(10))
691 #define MVPP2_PRS_RI_L2_UCAST 0x0
692 #define MVPP2_PRS_RI_L2_MCAST BIT(9)
693 #define MVPP2_PRS_RI_L2_BCAST BIT(10)
694 #define MVPP2_PRS_RI_PPPOE_MASK 0x800
695 #define MVPP2_PRS_RI_L3_PROTO_MASK (BIT(12) | BIT(13) | BIT(14))
696 #define MVPP2_PRS_RI_L3_UN 0x0
697 #define MVPP2_PRS_RI_L3_IP4 BIT(12)
698 #define MVPP2_PRS_RI_L3_IP4_OPT BIT(13)
699 #define MVPP2_PRS_RI_L3_IP4_OTHER (BIT(12) | BIT(13))
700 #define MVPP2_PRS_RI_L3_IP6 BIT(14)
701 #define MVPP2_PRS_RI_L3_IP6_EXT (BIT(12) | BIT(14))
702 #define MVPP2_PRS_RI_L3_ARP (BIT(13) | BIT(14))
703 #define MVPP2_PRS_RI_L3_ADDR_MASK (BIT(15) | BIT(16))
704 #define MVPP2_PRS_RI_L3_UCAST 0x0
705 #define MVPP2_PRS_RI_L3_MCAST BIT(15)
706 #define MVPP2_PRS_RI_L3_BCAST (BIT(15) | BIT(16))
707 #define MVPP2_PRS_RI_IP_FRAG_MASK 0x20000
708 #define MVPP2_PRS_RI_IP_FRAG_TRUE BIT(17)
709 #define MVPP2_PRS_RI_UDF3_MASK 0x300000
710 #define MVPP2_PRS_RI_UDF3_RX_SPECIAL BIT(21)
711 #define MVPP2_PRS_RI_L4_PROTO_MASK 0x1c00000
712 #define MVPP2_PRS_RI_L4_TCP BIT(22)
713 #define MVPP2_PRS_RI_L4_UDP BIT(23)
714 #define MVPP2_PRS_RI_L4_OTHER (BIT(22) | BIT(23))
715 #define MVPP2_PRS_RI_UDF7_MASK 0x60000000
716 #define MVPP2_PRS_RI_UDF7_IP6_LITE BIT(29)
717 #define MVPP2_PRS_RI_DROP_MASK 0x80000000
719 /* Sram additional info bits assignment */
720 #define MVPP2_PRS_IPV4_DIP_AI_BIT BIT(0)
721 #define MVPP2_PRS_IPV6_NO_EXT_AI_BIT BIT(0)
722 #define MVPP2_PRS_IPV6_EXT_AI_BIT BIT(1)
723 #define MVPP2_PRS_IPV6_EXT_AH_AI_BIT BIT(2)
724 #define MVPP2_PRS_IPV6_EXT_AH_LEN_AI_BIT BIT(3)
725 #define MVPP2_PRS_IPV6_EXT_AH_L4_AI_BIT BIT(4)
726 #define MVPP2_PRS_SINGLE_VLAN_AI 0
727 #define MVPP2_PRS_DBL_VLAN_AI_BIT BIT(7)
729 /* DSA/EDSA type */
730 #define MVPP2_PRS_TAGGED true
731 #define MVPP2_PRS_UNTAGGED false
732 #define MVPP2_PRS_EDSA true
733 #define MVPP2_PRS_DSA false
735 /* MAC entries, shadow udf */
736 enum mvpp2_prs_udf {
737 MVPP2_PRS_UDF_MAC_DEF,
738 MVPP2_PRS_UDF_MAC_RANGE,
739 MVPP2_PRS_UDF_L2_DEF,
740 MVPP2_PRS_UDF_L2_DEF_COPY,
741 MVPP2_PRS_UDF_L2_USER,
744 /* Lookup ID */
745 enum mvpp2_prs_lookup {
746 MVPP2_PRS_LU_MH,
747 MVPP2_PRS_LU_MAC,
748 MVPP2_PRS_LU_DSA,
749 MVPP2_PRS_LU_VLAN,
750 MVPP2_PRS_LU_L2,
751 MVPP2_PRS_LU_PPPOE,
752 MVPP2_PRS_LU_IP4,
753 MVPP2_PRS_LU_IP6,
754 MVPP2_PRS_LU_FLOWS,
755 MVPP2_PRS_LU_LAST,
758 /* L3 cast enum */
759 enum mvpp2_prs_l3_cast {
760 MVPP2_PRS_L3_UNI_CAST,
761 MVPP2_PRS_L3_MULTI_CAST,
762 MVPP2_PRS_L3_BROAD_CAST
765 /* Classifier constants */
766 #define MVPP2_CLS_FLOWS_TBL_SIZE 512
767 #define MVPP2_CLS_FLOWS_TBL_DATA_WORDS 3
768 #define MVPP2_CLS_LKP_TBL_SIZE 64
769 #define MVPP2_CLS_RX_QUEUES 256
771 /* RSS constants */
772 #define MVPP22_RSS_TABLE_ENTRIES 32
774 /* BM constants */
775 #define MVPP2_BM_POOLS_NUM 8
776 #define MVPP2_BM_LONG_BUF_NUM 1024
777 #define MVPP2_BM_SHORT_BUF_NUM 2048
778 #define MVPP2_BM_POOL_SIZE_MAX (16*1024 - MVPP2_BM_POOL_PTR_ALIGN/4)
779 #define MVPP2_BM_POOL_PTR_ALIGN 128
780 #define MVPP2_BM_SWF_LONG_POOL(port) ((port > 2) ? 2 : port)
781 #define MVPP2_BM_SWF_SHORT_POOL 3
783 /* BM cookie (32 bits) definition */
784 #define MVPP2_BM_COOKIE_POOL_OFFS 8
785 #define MVPP2_BM_COOKIE_CPU_OFFS 24
787 /* BM short pool packet size
788 * These value assure that for SWF the total number
789 * of bytes allocated for each buffer will be 512
791 #define MVPP2_BM_SHORT_PKT_SIZE MVPP2_RX_MAX_PKT_SIZE(512)
793 #define MVPP21_ADDR_SPACE_SZ 0
794 #define MVPP22_ADDR_SPACE_SZ SZ_64K
796 #define MVPP2_MAX_THREADS 8
797 #define MVPP2_MAX_QVECS MVPP2_MAX_THREADS
799 enum mvpp2_bm_type {
800 MVPP2_BM_FREE,
801 MVPP2_BM_SWF_LONG,
802 MVPP2_BM_SWF_SHORT
805 /* GMAC MIB Counters register definitions */
806 #define MVPP21_MIB_COUNTERS_OFFSET 0x1000
807 #define MVPP21_MIB_COUNTERS_PORT_SZ 0x400
808 #define MVPP22_MIB_COUNTERS_OFFSET 0x0
809 #define MVPP22_MIB_COUNTERS_PORT_SZ 0x100
811 #define MVPP2_MIB_GOOD_OCTETS_RCVD 0x0
812 #define MVPP2_MIB_BAD_OCTETS_RCVD 0x8
813 #define MVPP2_MIB_CRC_ERRORS_SENT 0xc
814 #define MVPP2_MIB_UNICAST_FRAMES_RCVD 0x10
815 #define MVPP2_MIB_BROADCAST_FRAMES_RCVD 0x18
816 #define MVPP2_MIB_MULTICAST_FRAMES_RCVD 0x1c
817 #define MVPP2_MIB_FRAMES_64_OCTETS 0x20
818 #define MVPP2_MIB_FRAMES_65_TO_127_OCTETS 0x24
819 #define MVPP2_MIB_FRAMES_128_TO_255_OCTETS 0x28
820 #define MVPP2_MIB_FRAMES_256_TO_511_OCTETS 0x2c
821 #define MVPP2_MIB_FRAMES_512_TO_1023_OCTETS 0x30
822 #define MVPP2_MIB_FRAMES_1024_TO_MAX_OCTETS 0x34
823 #define MVPP2_MIB_GOOD_OCTETS_SENT 0x38
824 #define MVPP2_MIB_UNICAST_FRAMES_SENT 0x40
825 #define MVPP2_MIB_MULTICAST_FRAMES_SENT 0x48
826 #define MVPP2_MIB_BROADCAST_FRAMES_SENT 0x4c
827 #define MVPP2_MIB_FC_SENT 0x54
828 #define MVPP2_MIB_FC_RCVD 0x58
829 #define MVPP2_MIB_RX_FIFO_OVERRUN 0x5c
830 #define MVPP2_MIB_UNDERSIZE_RCVD 0x60
831 #define MVPP2_MIB_FRAGMENTS_RCVD 0x64
832 #define MVPP2_MIB_OVERSIZE_RCVD 0x68
833 #define MVPP2_MIB_JABBER_RCVD 0x6c
834 #define MVPP2_MIB_MAC_RCV_ERROR 0x70
835 #define MVPP2_MIB_BAD_CRC_EVENT 0x74
836 #define MVPP2_MIB_COLLISION 0x78
837 #define MVPP2_MIB_LATE_COLLISION 0x7c
839 #define MVPP2_MIB_COUNTERS_STATS_DELAY (1 * HZ)
841 /* Definitions */
843 /* Shared Packet Processor resources */
844 struct mvpp2 {
845 /* Shared registers' base addresses */
846 void __iomem *lms_base;
847 void __iomem *iface_base;
849 /* On PPv2.2, each "software thread" can access the base
850 * register through a separate address space, each 64 KB apart
851 * from each other. Typically, such address spaces will be
852 * used per CPU.
854 void __iomem *swth_base[MVPP2_MAX_THREADS];
856 /* On PPv2.2, some port control registers are located into the system
857 * controller space. These registers are accessible through a regmap.
859 struct regmap *sysctrl_base;
861 /* Common clocks */
862 struct clk *pp_clk;
863 struct clk *gop_clk;
864 struct clk *mg_clk;
865 struct clk *axi_clk;
867 /* List of pointers to port structures */
868 int port_count;
869 struct mvpp2_port *port_list[MVPP2_MAX_PORTS];
871 /* Aggregated TXQs */
872 struct mvpp2_tx_queue *aggr_txqs;
874 /* BM pools */
875 struct mvpp2_bm_pool *bm_pools;
877 /* PRS shadow table */
878 struct mvpp2_prs_shadow *prs_shadow;
879 /* PRS auxiliary table for double vlan entries control */
880 bool *prs_double_vlans;
882 /* Tclk value */
883 u32 tclk;
885 /* HW version */
886 enum { MVPP21, MVPP22 } hw_version;
888 /* Maximum number of RXQs per port */
889 unsigned int max_port_rxqs;
891 /* Workqueue to gather hardware statistics */
892 char queue_name[30];
893 struct workqueue_struct *stats_queue;
896 struct mvpp2_pcpu_stats {
897 struct u64_stats_sync syncp;
898 u64 rx_packets;
899 u64 rx_bytes;
900 u64 tx_packets;
901 u64 tx_bytes;
904 /* Per-CPU port control */
905 struct mvpp2_port_pcpu {
906 struct hrtimer tx_done_timer;
907 bool timer_scheduled;
908 /* Tasklet for egress finalization */
909 struct tasklet_struct tx_done_tasklet;
912 struct mvpp2_queue_vector {
913 int irq;
914 struct napi_struct napi;
915 enum { MVPP2_QUEUE_VECTOR_SHARED, MVPP2_QUEUE_VECTOR_PRIVATE } type;
916 int sw_thread_id;
917 u16 sw_thread_mask;
918 int first_rxq;
919 int nrxqs;
920 u32 pending_cause_rx;
921 struct mvpp2_port *port;
924 struct mvpp2_port {
925 u8 id;
927 /* Index of the port from the "group of ports" complex point
928 * of view
930 int gop_id;
932 int link_irq;
934 struct mvpp2 *priv;
936 /* Firmware node associated to the port */
937 struct fwnode_handle *fwnode;
939 /* Per-port registers' base address */
940 void __iomem *base;
941 void __iomem *stats_base;
943 struct mvpp2_rx_queue **rxqs;
944 unsigned int nrxqs;
945 struct mvpp2_tx_queue **txqs;
946 unsigned int ntxqs;
947 struct net_device *dev;
949 int pkt_size;
951 /* Per-CPU port control */
952 struct mvpp2_port_pcpu __percpu *pcpu;
954 /* Flags */
955 unsigned long flags;
957 u16 tx_ring_size;
958 u16 rx_ring_size;
959 struct mvpp2_pcpu_stats __percpu *stats;
960 u64 *ethtool_stats;
962 /* Per-port work and its lock to gather hardware statistics */
963 struct mutex gather_stats_lock;
964 struct delayed_work stats_work;
966 phy_interface_t phy_interface;
967 struct device_node *phy_node;
968 struct phy *comphy;
969 unsigned int link;
970 unsigned int duplex;
971 unsigned int speed;
973 struct mvpp2_bm_pool *pool_long;
974 struct mvpp2_bm_pool *pool_short;
976 /* Index of first port's physical RXQ */
977 u8 first_rxq;
979 struct mvpp2_queue_vector qvecs[MVPP2_MAX_QVECS];
980 unsigned int nqvecs;
981 bool has_tx_irqs;
983 u32 tx_time_coal;
986 /* The mvpp2_tx_desc and mvpp2_rx_desc structures describe the
987 * layout of the transmit and reception DMA descriptors, and their
988 * layout is therefore defined by the hardware design
991 #define MVPP2_TXD_L3_OFF_SHIFT 0
992 #define MVPP2_TXD_IP_HLEN_SHIFT 8
993 #define MVPP2_TXD_L4_CSUM_FRAG BIT(13)
994 #define MVPP2_TXD_L4_CSUM_NOT BIT(14)
995 #define MVPP2_TXD_IP_CSUM_DISABLE BIT(15)
996 #define MVPP2_TXD_PADDING_DISABLE BIT(23)
997 #define MVPP2_TXD_L4_UDP BIT(24)
998 #define MVPP2_TXD_L3_IP6 BIT(26)
999 #define MVPP2_TXD_L_DESC BIT(28)
1000 #define MVPP2_TXD_F_DESC BIT(29)
1002 #define MVPP2_RXD_ERR_SUMMARY BIT(15)
1003 #define MVPP2_RXD_ERR_CODE_MASK (BIT(13) | BIT(14))
1004 #define MVPP2_RXD_ERR_CRC 0x0
1005 #define MVPP2_RXD_ERR_OVERRUN BIT(13)
1006 #define MVPP2_RXD_ERR_RESOURCE (BIT(13) | BIT(14))
1007 #define MVPP2_RXD_BM_POOL_ID_OFFS 16
1008 #define MVPP2_RXD_BM_POOL_ID_MASK (BIT(16) | BIT(17) | BIT(18))
1009 #define MVPP2_RXD_HWF_SYNC BIT(21)
1010 #define MVPP2_RXD_L4_CSUM_OK BIT(22)
1011 #define MVPP2_RXD_IP4_HEADER_ERR BIT(24)
1012 #define MVPP2_RXD_L4_TCP BIT(25)
1013 #define MVPP2_RXD_L4_UDP BIT(26)
1014 #define MVPP2_RXD_L3_IP4 BIT(28)
1015 #define MVPP2_RXD_L3_IP6 BIT(30)
1016 #define MVPP2_RXD_BUF_HDR BIT(31)
1018 /* HW TX descriptor for PPv2.1 */
1019 struct mvpp21_tx_desc {
1020 u32 command; /* Options used by HW for packet transmitting.*/
1021 u8 packet_offset; /* the offset from the buffer beginning */
1022 u8 phys_txq; /* destination queue ID */
1023 u16 data_size; /* data size of transmitted packet in bytes */
1024 u32 buf_dma_addr; /* physical addr of transmitted buffer */
1025 u32 buf_cookie; /* cookie for access to TX buffer in tx path */
1026 u32 reserved1[3]; /* hw_cmd (for future use, BM, PON, PNC) */
1027 u32 reserved2; /* reserved (for future use) */
1030 /* HW RX descriptor for PPv2.1 */
1031 struct mvpp21_rx_desc {
1032 u32 status; /* info about received packet */
1033 u16 reserved1; /* parser_info (for future use, PnC) */
1034 u16 data_size; /* size of received packet in bytes */
1035 u32 buf_dma_addr; /* physical address of the buffer */
1036 u32 buf_cookie; /* cookie for access to RX buffer in rx path */
1037 u16 reserved2; /* gem_port_id (for future use, PON) */
1038 u16 reserved3; /* csum_l4 (for future use, PnC) */
1039 u8 reserved4; /* bm_qset (for future use, BM) */
1040 u8 reserved5;
1041 u16 reserved6; /* classify_info (for future use, PnC) */
1042 u32 reserved7; /* flow_id (for future use, PnC) */
1043 u32 reserved8;
1046 /* HW TX descriptor for PPv2.2 */
1047 struct mvpp22_tx_desc {
1048 u32 command;
1049 u8 packet_offset;
1050 u8 phys_txq;
1051 u16 data_size;
1052 u64 reserved1;
1053 u64 buf_dma_addr_ptp;
1054 u64 buf_cookie_misc;
1057 /* HW RX descriptor for PPv2.2 */
1058 struct mvpp22_rx_desc {
1059 u32 status;
1060 u16 reserved1;
1061 u16 data_size;
1062 u32 reserved2;
1063 u32 reserved3;
1064 u64 buf_dma_addr_key_hash;
1065 u64 buf_cookie_misc;
1068 /* Opaque type used by the driver to manipulate the HW TX and RX
1069 * descriptors
1071 struct mvpp2_tx_desc {
1072 union {
1073 struct mvpp21_tx_desc pp21;
1074 struct mvpp22_tx_desc pp22;
1078 struct mvpp2_rx_desc {
1079 union {
1080 struct mvpp21_rx_desc pp21;
1081 struct mvpp22_rx_desc pp22;
1085 struct mvpp2_txq_pcpu_buf {
1086 /* Transmitted SKB */
1087 struct sk_buff *skb;
1089 /* Physical address of transmitted buffer */
1090 dma_addr_t dma;
1092 /* Size transmitted */
1093 size_t size;
1096 /* Per-CPU Tx queue control */
1097 struct mvpp2_txq_pcpu {
1098 int cpu;
1100 /* Number of Tx DMA descriptors in the descriptor ring */
1101 int size;
1103 /* Number of currently used Tx DMA descriptor in the
1104 * descriptor ring
1106 int count;
1108 int wake_threshold;
1109 int stop_threshold;
1111 /* Number of Tx DMA descriptors reserved for each CPU */
1112 int reserved_num;
1114 /* Infos about transmitted buffers */
1115 struct mvpp2_txq_pcpu_buf *buffs;
1117 /* Index of last TX DMA descriptor that was inserted */
1118 int txq_put_index;
1120 /* Index of the TX DMA descriptor to be cleaned up */
1121 int txq_get_index;
1123 /* DMA buffer for TSO headers */
1124 char *tso_headers;
1125 dma_addr_t tso_headers_dma;
1128 struct mvpp2_tx_queue {
1129 /* Physical number of this Tx queue */
1130 u8 id;
1132 /* Logical number of this Tx queue */
1133 u8 log_id;
1135 /* Number of Tx DMA descriptors in the descriptor ring */
1136 int size;
1138 /* Number of currently used Tx DMA descriptor in the descriptor ring */
1139 int count;
1141 /* Per-CPU control of physical Tx queues */
1142 struct mvpp2_txq_pcpu __percpu *pcpu;
1144 u32 done_pkts_coal;
1146 /* Virtual address of thex Tx DMA descriptors array */
1147 struct mvpp2_tx_desc *descs;
1149 /* DMA address of the Tx DMA descriptors array */
1150 dma_addr_t descs_dma;
1152 /* Index of the last Tx DMA descriptor */
1153 int last_desc;
1155 /* Index of the next Tx DMA descriptor to process */
1156 int next_desc_to_proc;
1159 struct mvpp2_rx_queue {
1160 /* RX queue number, in the range 0-31 for physical RXQs */
1161 u8 id;
1163 /* Num of rx descriptors in the rx descriptor ring */
1164 int size;
1166 u32 pkts_coal;
1167 u32 time_coal;
1169 /* Virtual address of the RX DMA descriptors array */
1170 struct mvpp2_rx_desc *descs;
1172 /* DMA address of the RX DMA descriptors array */
1173 dma_addr_t descs_dma;
1175 /* Index of the last RX DMA descriptor */
1176 int last_desc;
1178 /* Index of the next RX DMA descriptor to process */
1179 int next_desc_to_proc;
1181 /* ID of port to which physical RXQ is mapped */
1182 int port;
1184 /* Port's logic RXQ number to which physical RXQ is mapped */
1185 int logic_rxq;
1188 union mvpp2_prs_tcam_entry {
1189 u32 word[MVPP2_PRS_TCAM_WORDS];
1190 u8 byte[MVPP2_PRS_TCAM_WORDS * 4];
1193 union mvpp2_prs_sram_entry {
1194 u32 word[MVPP2_PRS_SRAM_WORDS];
1195 u8 byte[MVPP2_PRS_SRAM_WORDS * 4];
1198 struct mvpp2_prs_entry {
1199 u32 index;
1200 union mvpp2_prs_tcam_entry tcam;
1201 union mvpp2_prs_sram_entry sram;
1204 struct mvpp2_prs_shadow {
1205 bool valid;
1206 bool finish;
1208 /* Lookup ID */
1209 int lu;
1211 /* User defined offset */
1212 int udf;
1214 /* Result info */
1215 u32 ri;
1216 u32 ri_mask;
1219 struct mvpp2_cls_flow_entry {
1220 u32 index;
1221 u32 data[MVPP2_CLS_FLOWS_TBL_DATA_WORDS];
1224 struct mvpp2_cls_lookup_entry {
1225 u32 lkpid;
1226 u32 way;
1227 u32 data;
1230 struct mvpp2_bm_pool {
1231 /* Pool number in the range 0-7 */
1232 int id;
1233 enum mvpp2_bm_type type;
1235 /* Buffer Pointers Pool External (BPPE) size */
1236 int size;
1237 /* BPPE size in bytes */
1238 int size_bytes;
1239 /* Number of buffers for this pool */
1240 int buf_num;
1241 /* Pool buffer size */
1242 int buf_size;
1243 /* Packet size */
1244 int pkt_size;
1245 int frag_size;
1247 /* BPPE virtual base address */
1248 u32 *virt_addr;
1249 /* BPPE DMA base address */
1250 dma_addr_t dma_addr;
1252 /* Ports using BM pool */
1253 u32 port_map;
1256 #define IS_TSO_HEADER(txq_pcpu, addr) \
1257 ((addr) >= (txq_pcpu)->tso_headers_dma && \
1258 (addr) < (txq_pcpu)->tso_headers_dma + \
1259 (txq_pcpu)->size * TSO_HEADER_SIZE)
1261 /* Queue modes */
1262 #define MVPP2_QDIST_SINGLE_MODE 0
1263 #define MVPP2_QDIST_MULTI_MODE 1
1265 static int queue_mode = MVPP2_QDIST_SINGLE_MODE;
1267 module_param(queue_mode, int, 0444);
1268 MODULE_PARM_DESC(queue_mode, "Set queue_mode (single=0, multi=1)");
1270 #define MVPP2_DRIVER_NAME "mvpp2"
1271 #define MVPP2_DRIVER_VERSION "1.0"
1273 /* Utility/helper methods */
1275 static void mvpp2_write(struct mvpp2 *priv, u32 offset, u32 data)
1277 writel(data, priv->swth_base[0] + offset);
1280 static u32 mvpp2_read(struct mvpp2 *priv, u32 offset)
1282 return readl(priv->swth_base[0] + offset);
1285 /* These accessors should be used to access:
1287 * - per-CPU registers, where each CPU has its own copy of the
1288 * register.
1290 * MVPP2_BM_VIRT_ALLOC_REG
1291 * MVPP2_BM_ADDR_HIGH_ALLOC
1292 * MVPP22_BM_ADDR_HIGH_RLS_REG
1293 * MVPP2_BM_VIRT_RLS_REG
1294 * MVPP2_ISR_RX_TX_CAUSE_REG
1295 * MVPP2_ISR_RX_TX_MASK_REG
1296 * MVPP2_TXQ_NUM_REG
1297 * MVPP2_AGGR_TXQ_UPDATE_REG
1298 * MVPP2_TXQ_RSVD_REQ_REG
1299 * MVPP2_TXQ_RSVD_RSLT_REG
1300 * MVPP2_TXQ_SENT_REG
1301 * MVPP2_RXQ_NUM_REG
1303 * - global registers that must be accessed through a specific CPU
1304 * window, because they are related to an access to a per-CPU
1305 * register
1307 * MVPP2_BM_PHY_ALLOC_REG (related to MVPP2_BM_VIRT_ALLOC_REG)
1308 * MVPP2_BM_PHY_RLS_REG (related to MVPP2_BM_VIRT_RLS_REG)
1309 * MVPP2_RXQ_THRESH_REG (related to MVPP2_RXQ_NUM_REG)
1310 * MVPP2_RXQ_DESC_ADDR_REG (related to MVPP2_RXQ_NUM_REG)
1311 * MVPP2_RXQ_DESC_SIZE_REG (related to MVPP2_RXQ_NUM_REG)
1312 * MVPP2_RXQ_INDEX_REG (related to MVPP2_RXQ_NUM_REG)
1313 * MVPP2_TXQ_PENDING_REG (related to MVPP2_TXQ_NUM_REG)
1314 * MVPP2_TXQ_DESC_ADDR_REG (related to MVPP2_TXQ_NUM_REG)
1315 * MVPP2_TXQ_DESC_SIZE_REG (related to MVPP2_TXQ_NUM_REG)
1316 * MVPP2_TXQ_INDEX_REG (related to MVPP2_TXQ_NUM_REG)
1317 * MVPP2_TXQ_PENDING_REG (related to MVPP2_TXQ_NUM_REG)
1318 * MVPP2_TXQ_PREF_BUF_REG (related to MVPP2_TXQ_NUM_REG)
1319 * MVPP2_TXQ_PREF_BUF_REG (related to MVPP2_TXQ_NUM_REG)
1321 static void mvpp2_percpu_write(struct mvpp2 *priv, int cpu,
1322 u32 offset, u32 data)
1324 writel(data, priv->swth_base[cpu] + offset);
1327 static u32 mvpp2_percpu_read(struct mvpp2 *priv, int cpu,
1328 u32 offset)
1330 return readl(priv->swth_base[cpu] + offset);
1333 static dma_addr_t mvpp2_txdesc_dma_addr_get(struct mvpp2_port *port,
1334 struct mvpp2_tx_desc *tx_desc)
1336 if (port->priv->hw_version == MVPP21)
1337 return tx_desc->pp21.buf_dma_addr;
1338 else
1339 return tx_desc->pp22.buf_dma_addr_ptp & GENMASK_ULL(40, 0);
1342 static void mvpp2_txdesc_dma_addr_set(struct mvpp2_port *port,
1343 struct mvpp2_tx_desc *tx_desc,
1344 dma_addr_t dma_addr)
1346 dma_addr_t addr, offset;
1348 addr = dma_addr & ~MVPP2_TX_DESC_ALIGN;
1349 offset = dma_addr & MVPP2_TX_DESC_ALIGN;
1351 if (port->priv->hw_version == MVPP21) {
1352 tx_desc->pp21.buf_dma_addr = addr;
1353 tx_desc->pp21.packet_offset = offset;
1354 } else {
1355 u64 val = (u64)addr;
1357 tx_desc->pp22.buf_dma_addr_ptp &= ~GENMASK_ULL(40, 0);
1358 tx_desc->pp22.buf_dma_addr_ptp |= val;
1359 tx_desc->pp22.packet_offset = offset;
1363 static size_t mvpp2_txdesc_size_get(struct mvpp2_port *port,
1364 struct mvpp2_tx_desc *tx_desc)
1366 if (port->priv->hw_version == MVPP21)
1367 return tx_desc->pp21.data_size;
1368 else
1369 return tx_desc->pp22.data_size;
1372 static void mvpp2_txdesc_size_set(struct mvpp2_port *port,
1373 struct mvpp2_tx_desc *tx_desc,
1374 size_t size)
1376 if (port->priv->hw_version == MVPP21)
1377 tx_desc->pp21.data_size = size;
1378 else
1379 tx_desc->pp22.data_size = size;
1382 static void mvpp2_txdesc_txq_set(struct mvpp2_port *port,
1383 struct mvpp2_tx_desc *tx_desc,
1384 unsigned int txq)
1386 if (port->priv->hw_version == MVPP21)
1387 tx_desc->pp21.phys_txq = txq;
1388 else
1389 tx_desc->pp22.phys_txq = txq;
1392 static void mvpp2_txdesc_cmd_set(struct mvpp2_port *port,
1393 struct mvpp2_tx_desc *tx_desc,
1394 unsigned int command)
1396 if (port->priv->hw_version == MVPP21)
1397 tx_desc->pp21.command = command;
1398 else
1399 tx_desc->pp22.command = command;
1402 static unsigned int mvpp2_txdesc_offset_get(struct mvpp2_port *port,
1403 struct mvpp2_tx_desc *tx_desc)
1405 if (port->priv->hw_version == MVPP21)
1406 return tx_desc->pp21.packet_offset;
1407 else
1408 return tx_desc->pp22.packet_offset;
1411 static dma_addr_t mvpp2_rxdesc_dma_addr_get(struct mvpp2_port *port,
1412 struct mvpp2_rx_desc *rx_desc)
1414 if (port->priv->hw_version == MVPP21)
1415 return rx_desc->pp21.buf_dma_addr;
1416 else
1417 return rx_desc->pp22.buf_dma_addr_key_hash & GENMASK_ULL(40, 0);
1420 static unsigned long mvpp2_rxdesc_cookie_get(struct mvpp2_port *port,
1421 struct mvpp2_rx_desc *rx_desc)
1423 if (port->priv->hw_version == MVPP21)
1424 return rx_desc->pp21.buf_cookie;
1425 else
1426 return rx_desc->pp22.buf_cookie_misc & GENMASK_ULL(40, 0);
1429 static size_t mvpp2_rxdesc_size_get(struct mvpp2_port *port,
1430 struct mvpp2_rx_desc *rx_desc)
1432 if (port->priv->hw_version == MVPP21)
1433 return rx_desc->pp21.data_size;
1434 else
1435 return rx_desc->pp22.data_size;
1438 static u32 mvpp2_rxdesc_status_get(struct mvpp2_port *port,
1439 struct mvpp2_rx_desc *rx_desc)
1441 if (port->priv->hw_version == MVPP21)
1442 return rx_desc->pp21.status;
1443 else
1444 return rx_desc->pp22.status;
1447 static void mvpp2_txq_inc_get(struct mvpp2_txq_pcpu *txq_pcpu)
1449 txq_pcpu->txq_get_index++;
1450 if (txq_pcpu->txq_get_index == txq_pcpu->size)
1451 txq_pcpu->txq_get_index = 0;
1454 static void mvpp2_txq_inc_put(struct mvpp2_port *port,
1455 struct mvpp2_txq_pcpu *txq_pcpu,
1456 struct sk_buff *skb,
1457 struct mvpp2_tx_desc *tx_desc)
1459 struct mvpp2_txq_pcpu_buf *tx_buf =
1460 txq_pcpu->buffs + txq_pcpu->txq_put_index;
1461 tx_buf->skb = skb;
1462 tx_buf->size = mvpp2_txdesc_size_get(port, tx_desc);
1463 tx_buf->dma = mvpp2_txdesc_dma_addr_get(port, tx_desc) +
1464 mvpp2_txdesc_offset_get(port, tx_desc);
1465 txq_pcpu->txq_put_index++;
1466 if (txq_pcpu->txq_put_index == txq_pcpu->size)
1467 txq_pcpu->txq_put_index = 0;
1470 /* Get number of physical egress port */
1471 static inline int mvpp2_egress_port(struct mvpp2_port *port)
1473 return MVPP2_MAX_TCONT + port->id;
1476 /* Get number of physical TXQ */
1477 static inline int mvpp2_txq_phys(int port, int txq)
1479 return (MVPP2_MAX_TCONT + port) * MVPP2_MAX_TXQ + txq;
1482 /* Parser configuration routines */
1484 /* Update parser tcam and sram hw entries */
1485 static int mvpp2_prs_hw_write(struct mvpp2 *priv, struct mvpp2_prs_entry *pe)
1487 int i;
1489 if (pe->index > MVPP2_PRS_TCAM_SRAM_SIZE - 1)
1490 return -EINVAL;
1492 /* Clear entry invalidation bit */
1493 pe->tcam.word[MVPP2_PRS_TCAM_INV_WORD] &= ~MVPP2_PRS_TCAM_INV_MASK;
1495 /* Write tcam index - indirect access */
1496 mvpp2_write(priv, MVPP2_PRS_TCAM_IDX_REG, pe->index);
1497 for (i = 0; i < MVPP2_PRS_TCAM_WORDS; i++)
1498 mvpp2_write(priv, MVPP2_PRS_TCAM_DATA_REG(i), pe->tcam.word[i]);
1500 /* Write sram index - indirect access */
1501 mvpp2_write(priv, MVPP2_PRS_SRAM_IDX_REG, pe->index);
1502 for (i = 0; i < MVPP2_PRS_SRAM_WORDS; i++)
1503 mvpp2_write(priv, MVPP2_PRS_SRAM_DATA_REG(i), pe->sram.word[i]);
1505 return 0;
1508 /* Read tcam entry from hw */
1509 static int mvpp2_prs_hw_read(struct mvpp2 *priv, struct mvpp2_prs_entry *pe)
1511 int i;
1513 if (pe->index > MVPP2_PRS_TCAM_SRAM_SIZE - 1)
1514 return -EINVAL;
1516 /* Write tcam index - indirect access */
1517 mvpp2_write(priv, MVPP2_PRS_TCAM_IDX_REG, pe->index);
1519 pe->tcam.word[MVPP2_PRS_TCAM_INV_WORD] = mvpp2_read(priv,
1520 MVPP2_PRS_TCAM_DATA_REG(MVPP2_PRS_TCAM_INV_WORD));
1521 if (pe->tcam.word[MVPP2_PRS_TCAM_INV_WORD] & MVPP2_PRS_TCAM_INV_MASK)
1522 return MVPP2_PRS_TCAM_ENTRY_INVALID;
1524 for (i = 0; i < MVPP2_PRS_TCAM_WORDS; i++)
1525 pe->tcam.word[i] = mvpp2_read(priv, MVPP2_PRS_TCAM_DATA_REG(i));
1527 /* Write sram index - indirect access */
1528 mvpp2_write(priv, MVPP2_PRS_SRAM_IDX_REG, pe->index);
1529 for (i = 0; i < MVPP2_PRS_SRAM_WORDS; i++)
1530 pe->sram.word[i] = mvpp2_read(priv, MVPP2_PRS_SRAM_DATA_REG(i));
1532 return 0;
1535 /* Invalidate tcam hw entry */
1536 static void mvpp2_prs_hw_inv(struct mvpp2 *priv, int index)
1538 /* Write index - indirect access */
1539 mvpp2_write(priv, MVPP2_PRS_TCAM_IDX_REG, index);
1540 mvpp2_write(priv, MVPP2_PRS_TCAM_DATA_REG(MVPP2_PRS_TCAM_INV_WORD),
1541 MVPP2_PRS_TCAM_INV_MASK);
1544 /* Enable shadow table entry and set its lookup ID */
1545 static void mvpp2_prs_shadow_set(struct mvpp2 *priv, int index, int lu)
1547 priv->prs_shadow[index].valid = true;
1548 priv->prs_shadow[index].lu = lu;
1551 /* Update ri fields in shadow table entry */
1552 static void mvpp2_prs_shadow_ri_set(struct mvpp2 *priv, int index,
1553 unsigned int ri, unsigned int ri_mask)
1555 priv->prs_shadow[index].ri_mask = ri_mask;
1556 priv->prs_shadow[index].ri = ri;
1559 /* Update lookup field in tcam sw entry */
1560 static void mvpp2_prs_tcam_lu_set(struct mvpp2_prs_entry *pe, unsigned int lu)
1562 int enable_off = MVPP2_PRS_TCAM_EN_OFFS(MVPP2_PRS_TCAM_LU_BYTE);
1564 pe->tcam.byte[MVPP2_PRS_TCAM_LU_BYTE] = lu;
1565 pe->tcam.byte[enable_off] = MVPP2_PRS_LU_MASK;
1568 /* Update mask for single port in tcam sw entry */
1569 static void mvpp2_prs_tcam_port_set(struct mvpp2_prs_entry *pe,
1570 unsigned int port, bool add)
1572 int enable_off = MVPP2_PRS_TCAM_EN_OFFS(MVPP2_PRS_TCAM_PORT_BYTE);
1574 if (add)
1575 pe->tcam.byte[enable_off] &= ~(1 << port);
1576 else
1577 pe->tcam.byte[enable_off] |= 1 << port;
1580 /* Update port map in tcam sw entry */
1581 static void mvpp2_prs_tcam_port_map_set(struct mvpp2_prs_entry *pe,
1582 unsigned int ports)
1584 unsigned char port_mask = MVPP2_PRS_PORT_MASK;
1585 int enable_off = MVPP2_PRS_TCAM_EN_OFFS(MVPP2_PRS_TCAM_PORT_BYTE);
1587 pe->tcam.byte[MVPP2_PRS_TCAM_PORT_BYTE] = 0;
1588 pe->tcam.byte[enable_off] &= ~port_mask;
1589 pe->tcam.byte[enable_off] |= ~ports & MVPP2_PRS_PORT_MASK;
1592 /* Obtain port map from tcam sw entry */
1593 static unsigned int mvpp2_prs_tcam_port_map_get(struct mvpp2_prs_entry *pe)
1595 int enable_off = MVPP2_PRS_TCAM_EN_OFFS(MVPP2_PRS_TCAM_PORT_BYTE);
1597 return ~(pe->tcam.byte[enable_off]) & MVPP2_PRS_PORT_MASK;
1600 /* Set byte of data and its enable bits in tcam sw entry */
1601 static void mvpp2_prs_tcam_data_byte_set(struct mvpp2_prs_entry *pe,
1602 unsigned int offs, unsigned char byte,
1603 unsigned char enable)
1605 pe->tcam.byte[MVPP2_PRS_TCAM_DATA_BYTE(offs)] = byte;
1606 pe->tcam.byte[MVPP2_PRS_TCAM_DATA_BYTE_EN(offs)] = enable;
1609 /* Get byte of data and its enable bits from tcam sw entry */
1610 static void mvpp2_prs_tcam_data_byte_get(struct mvpp2_prs_entry *pe,
1611 unsigned int offs, unsigned char *byte,
1612 unsigned char *enable)
1614 *byte = pe->tcam.byte[MVPP2_PRS_TCAM_DATA_BYTE(offs)];
1615 *enable = pe->tcam.byte[MVPP2_PRS_TCAM_DATA_BYTE_EN(offs)];
1618 /* Compare tcam data bytes with a pattern */
1619 static bool mvpp2_prs_tcam_data_cmp(struct mvpp2_prs_entry *pe, int offs,
1620 u16 data)
1622 int off = MVPP2_PRS_TCAM_DATA_BYTE(offs);
1623 u16 tcam_data;
1625 tcam_data = (pe->tcam.byte[off + 1] << 8) | pe->tcam.byte[off];
1626 if (tcam_data != data)
1627 return false;
1628 return true;
1631 /* Update ai bits in tcam sw entry */
1632 static void mvpp2_prs_tcam_ai_update(struct mvpp2_prs_entry *pe,
1633 unsigned int bits, unsigned int enable)
1635 int i, ai_idx = MVPP2_PRS_TCAM_AI_BYTE;
1637 for (i = 0; i < MVPP2_PRS_AI_BITS; i++) {
1639 if (!(enable & BIT(i)))
1640 continue;
1642 if (bits & BIT(i))
1643 pe->tcam.byte[ai_idx] |= 1 << i;
1644 else
1645 pe->tcam.byte[ai_idx] &= ~(1 << i);
1648 pe->tcam.byte[MVPP2_PRS_TCAM_EN_OFFS(ai_idx)] |= enable;
1651 /* Get ai bits from tcam sw entry */
1652 static int mvpp2_prs_tcam_ai_get(struct mvpp2_prs_entry *pe)
1654 return pe->tcam.byte[MVPP2_PRS_TCAM_AI_BYTE];
1657 /* Set ethertype in tcam sw entry */
1658 static void mvpp2_prs_match_etype(struct mvpp2_prs_entry *pe, int offset,
1659 unsigned short ethertype)
1661 mvpp2_prs_tcam_data_byte_set(pe, offset + 0, ethertype >> 8, 0xff);
1662 mvpp2_prs_tcam_data_byte_set(pe, offset + 1, ethertype & 0xff, 0xff);
1665 /* Set bits in sram sw entry */
1666 static void mvpp2_prs_sram_bits_set(struct mvpp2_prs_entry *pe, int bit_num,
1667 int val)
1669 pe->sram.byte[MVPP2_BIT_TO_BYTE(bit_num)] |= (val << (bit_num % 8));
1672 /* Clear bits in sram sw entry */
1673 static void mvpp2_prs_sram_bits_clear(struct mvpp2_prs_entry *pe, int bit_num,
1674 int val)
1676 pe->sram.byte[MVPP2_BIT_TO_BYTE(bit_num)] &= ~(val << (bit_num % 8));
1679 /* Update ri bits in sram sw entry */
1680 static void mvpp2_prs_sram_ri_update(struct mvpp2_prs_entry *pe,
1681 unsigned int bits, unsigned int mask)
1683 unsigned int i;
1685 for (i = 0; i < MVPP2_PRS_SRAM_RI_CTRL_BITS; i++) {
1686 int ri_off = MVPP2_PRS_SRAM_RI_OFFS;
1688 if (!(mask & BIT(i)))
1689 continue;
1691 if (bits & BIT(i))
1692 mvpp2_prs_sram_bits_set(pe, ri_off + i, 1);
1693 else
1694 mvpp2_prs_sram_bits_clear(pe, ri_off + i, 1);
1696 mvpp2_prs_sram_bits_set(pe, MVPP2_PRS_SRAM_RI_CTRL_OFFS + i, 1);
1700 /* Obtain ri bits from sram sw entry */
1701 static int mvpp2_prs_sram_ri_get(struct mvpp2_prs_entry *pe)
1703 return pe->sram.word[MVPP2_PRS_SRAM_RI_WORD];
1706 /* Update ai bits in sram sw entry */
1707 static void mvpp2_prs_sram_ai_update(struct mvpp2_prs_entry *pe,
1708 unsigned int bits, unsigned int mask)
1710 unsigned int i;
1711 int ai_off = MVPP2_PRS_SRAM_AI_OFFS;
1713 for (i = 0; i < MVPP2_PRS_SRAM_AI_CTRL_BITS; i++) {
1715 if (!(mask & BIT(i)))
1716 continue;
1718 if (bits & BIT(i))
1719 mvpp2_prs_sram_bits_set(pe, ai_off + i, 1);
1720 else
1721 mvpp2_prs_sram_bits_clear(pe, ai_off + i, 1);
1723 mvpp2_prs_sram_bits_set(pe, MVPP2_PRS_SRAM_AI_CTRL_OFFS + i, 1);
1727 /* Read ai bits from sram sw entry */
1728 static int mvpp2_prs_sram_ai_get(struct mvpp2_prs_entry *pe)
1730 u8 bits;
1731 int ai_off = MVPP2_BIT_TO_BYTE(MVPP2_PRS_SRAM_AI_OFFS);
1732 int ai_en_off = ai_off + 1;
1733 int ai_shift = MVPP2_PRS_SRAM_AI_OFFS % 8;
1735 bits = (pe->sram.byte[ai_off] >> ai_shift) |
1736 (pe->sram.byte[ai_en_off] << (8 - ai_shift));
1738 return bits;
1741 /* In sram sw entry set lookup ID field of the tcam key to be used in the next
1742 * lookup interation
1744 static void mvpp2_prs_sram_next_lu_set(struct mvpp2_prs_entry *pe,
1745 unsigned int lu)
1747 int sram_next_off = MVPP2_PRS_SRAM_NEXT_LU_OFFS;
1749 mvpp2_prs_sram_bits_clear(pe, sram_next_off,
1750 MVPP2_PRS_SRAM_NEXT_LU_MASK);
1751 mvpp2_prs_sram_bits_set(pe, sram_next_off, lu);
1754 /* In the sram sw entry set sign and value of the next lookup offset
1755 * and the offset value generated to the classifier
1757 static void mvpp2_prs_sram_shift_set(struct mvpp2_prs_entry *pe, int shift,
1758 unsigned int op)
1760 /* Set sign */
1761 if (shift < 0) {
1762 mvpp2_prs_sram_bits_set(pe, MVPP2_PRS_SRAM_SHIFT_SIGN_BIT, 1);
1763 shift = 0 - shift;
1764 } else {
1765 mvpp2_prs_sram_bits_clear(pe, MVPP2_PRS_SRAM_SHIFT_SIGN_BIT, 1);
1768 /* Set value */
1769 pe->sram.byte[MVPP2_BIT_TO_BYTE(MVPP2_PRS_SRAM_SHIFT_OFFS)] =
1770 (unsigned char)shift;
1772 /* Reset and set operation */
1773 mvpp2_prs_sram_bits_clear(pe, MVPP2_PRS_SRAM_OP_SEL_SHIFT_OFFS,
1774 MVPP2_PRS_SRAM_OP_SEL_SHIFT_MASK);
1775 mvpp2_prs_sram_bits_set(pe, MVPP2_PRS_SRAM_OP_SEL_SHIFT_OFFS, op);
1777 /* Set base offset as current */
1778 mvpp2_prs_sram_bits_clear(pe, MVPP2_PRS_SRAM_OP_SEL_BASE_OFFS, 1);
1781 /* In the sram sw entry set sign and value of the user defined offset
1782 * generated to the classifier
1784 static void mvpp2_prs_sram_offset_set(struct mvpp2_prs_entry *pe,
1785 unsigned int type, int offset,
1786 unsigned int op)
1788 /* Set sign */
1789 if (offset < 0) {
1790 mvpp2_prs_sram_bits_set(pe, MVPP2_PRS_SRAM_UDF_SIGN_BIT, 1);
1791 offset = 0 - offset;
1792 } else {
1793 mvpp2_prs_sram_bits_clear(pe, MVPP2_PRS_SRAM_UDF_SIGN_BIT, 1);
1796 /* Set value */
1797 mvpp2_prs_sram_bits_clear(pe, MVPP2_PRS_SRAM_UDF_OFFS,
1798 MVPP2_PRS_SRAM_UDF_MASK);
1799 mvpp2_prs_sram_bits_set(pe, MVPP2_PRS_SRAM_UDF_OFFS, offset);
1800 pe->sram.byte[MVPP2_BIT_TO_BYTE(MVPP2_PRS_SRAM_UDF_OFFS +
1801 MVPP2_PRS_SRAM_UDF_BITS)] &=
1802 ~(MVPP2_PRS_SRAM_UDF_MASK >> (8 - (MVPP2_PRS_SRAM_UDF_OFFS % 8)));
1803 pe->sram.byte[MVPP2_BIT_TO_BYTE(MVPP2_PRS_SRAM_UDF_OFFS +
1804 MVPP2_PRS_SRAM_UDF_BITS)] |=
1805 (offset >> (8 - (MVPP2_PRS_SRAM_UDF_OFFS % 8)));
1807 /* Set offset type */
1808 mvpp2_prs_sram_bits_clear(pe, MVPP2_PRS_SRAM_UDF_TYPE_OFFS,
1809 MVPP2_PRS_SRAM_UDF_TYPE_MASK);
1810 mvpp2_prs_sram_bits_set(pe, MVPP2_PRS_SRAM_UDF_TYPE_OFFS, type);
1812 /* Set offset operation */
1813 mvpp2_prs_sram_bits_clear(pe, MVPP2_PRS_SRAM_OP_SEL_UDF_OFFS,
1814 MVPP2_PRS_SRAM_OP_SEL_UDF_MASK);
1815 mvpp2_prs_sram_bits_set(pe, MVPP2_PRS_SRAM_OP_SEL_UDF_OFFS, op);
1817 pe->sram.byte[MVPP2_BIT_TO_BYTE(MVPP2_PRS_SRAM_OP_SEL_UDF_OFFS +
1818 MVPP2_PRS_SRAM_OP_SEL_UDF_BITS)] &=
1819 ~(MVPP2_PRS_SRAM_OP_SEL_UDF_MASK >>
1820 (8 - (MVPP2_PRS_SRAM_OP_SEL_UDF_OFFS % 8)));
1822 pe->sram.byte[MVPP2_BIT_TO_BYTE(MVPP2_PRS_SRAM_OP_SEL_UDF_OFFS +
1823 MVPP2_PRS_SRAM_OP_SEL_UDF_BITS)] |=
1824 (op >> (8 - (MVPP2_PRS_SRAM_OP_SEL_UDF_OFFS % 8)));
1826 /* Set base offset as current */
1827 mvpp2_prs_sram_bits_clear(pe, MVPP2_PRS_SRAM_OP_SEL_BASE_OFFS, 1);
1830 /* Find parser flow entry */
1831 static struct mvpp2_prs_entry *mvpp2_prs_flow_find(struct mvpp2 *priv, int flow)
1833 struct mvpp2_prs_entry *pe;
1834 int tid;
1836 pe = kzalloc(sizeof(*pe), GFP_KERNEL);
1837 if (!pe)
1838 return NULL;
1839 mvpp2_prs_tcam_lu_set(pe, MVPP2_PRS_LU_FLOWS);
1841 /* Go through the all entires with MVPP2_PRS_LU_FLOWS */
1842 for (tid = MVPP2_PRS_TCAM_SRAM_SIZE - 1; tid >= 0; tid--) {
1843 u8 bits;
1845 if (!priv->prs_shadow[tid].valid ||
1846 priv->prs_shadow[tid].lu != MVPP2_PRS_LU_FLOWS)
1847 continue;
1849 pe->index = tid;
1850 mvpp2_prs_hw_read(priv, pe);
1851 bits = mvpp2_prs_sram_ai_get(pe);
1853 /* Sram store classification lookup ID in AI bits [5:0] */
1854 if ((bits & MVPP2_PRS_FLOW_ID_MASK) == flow)
1855 return pe;
1857 kfree(pe);
1859 return NULL;
1862 /* Return first free tcam index, seeking from start to end */
1863 static int mvpp2_prs_tcam_first_free(struct mvpp2 *priv, unsigned char start,
1864 unsigned char end)
1866 int tid;
1868 if (start > end)
1869 swap(start, end);
1871 if (end >= MVPP2_PRS_TCAM_SRAM_SIZE)
1872 end = MVPP2_PRS_TCAM_SRAM_SIZE - 1;
1874 for (tid = start; tid <= end; tid++) {
1875 if (!priv->prs_shadow[tid].valid)
1876 return tid;
1879 return -EINVAL;
1882 /* Enable/disable dropping all mac da's */
1883 static void mvpp2_prs_mac_drop_all_set(struct mvpp2 *priv, int port, bool add)
1885 struct mvpp2_prs_entry pe;
1887 if (priv->prs_shadow[MVPP2_PE_DROP_ALL].valid) {
1888 /* Entry exist - update port only */
1889 pe.index = MVPP2_PE_DROP_ALL;
1890 mvpp2_prs_hw_read(priv, &pe);
1891 } else {
1892 /* Entry doesn't exist - create new */
1893 memset(&pe, 0, sizeof(pe));
1894 mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_MAC);
1895 pe.index = MVPP2_PE_DROP_ALL;
1897 /* Non-promiscuous mode for all ports - DROP unknown packets */
1898 mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_DROP_MASK,
1899 MVPP2_PRS_RI_DROP_MASK);
1901 mvpp2_prs_sram_bits_set(&pe, MVPP2_PRS_SRAM_LU_GEN_BIT, 1);
1902 mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_FLOWS);
1904 /* Update shadow table */
1905 mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_MAC);
1907 /* Mask all ports */
1908 mvpp2_prs_tcam_port_map_set(&pe, 0);
1911 /* Update port mask */
1912 mvpp2_prs_tcam_port_set(&pe, port, add);
1914 mvpp2_prs_hw_write(priv, &pe);
1917 /* Set port to promiscuous mode */
1918 static void mvpp2_prs_mac_promisc_set(struct mvpp2 *priv, int port, bool add)
1920 struct mvpp2_prs_entry pe;
1922 /* Promiscuous mode - Accept unknown packets */
1924 if (priv->prs_shadow[MVPP2_PE_MAC_PROMISCUOUS].valid) {
1925 /* Entry exist - update port only */
1926 pe.index = MVPP2_PE_MAC_PROMISCUOUS;
1927 mvpp2_prs_hw_read(priv, &pe);
1928 } else {
1929 /* Entry doesn't exist - create new */
1930 memset(&pe, 0, sizeof(pe));
1931 mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_MAC);
1932 pe.index = MVPP2_PE_MAC_PROMISCUOUS;
1934 /* Continue - set next lookup */
1935 mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_DSA);
1937 /* Set result info bits */
1938 mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_L2_UCAST,
1939 MVPP2_PRS_RI_L2_CAST_MASK);
1941 /* Shift to ethertype */
1942 mvpp2_prs_sram_shift_set(&pe, 2 * ETH_ALEN,
1943 MVPP2_PRS_SRAM_OP_SEL_SHIFT_ADD);
1945 /* Mask all ports */
1946 mvpp2_prs_tcam_port_map_set(&pe, 0);
1948 /* Update shadow table */
1949 mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_MAC);
1952 /* Update port mask */
1953 mvpp2_prs_tcam_port_set(&pe, port, add);
1955 mvpp2_prs_hw_write(priv, &pe);
1958 /* Accept multicast */
1959 static void mvpp2_prs_mac_multi_set(struct mvpp2 *priv, int port, int index,
1960 bool add)
1962 struct mvpp2_prs_entry pe;
1963 unsigned char da_mc;
1965 /* Ethernet multicast address first byte is
1966 * 0x01 for IPv4 and 0x33 for IPv6
1968 da_mc = (index == MVPP2_PE_MAC_MC_ALL) ? 0x01 : 0x33;
1970 if (priv->prs_shadow[index].valid) {
1971 /* Entry exist - update port only */
1972 pe.index = index;
1973 mvpp2_prs_hw_read(priv, &pe);
1974 } else {
1975 /* Entry doesn't exist - create new */
1976 memset(&pe, 0, sizeof(pe));
1977 mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_MAC);
1978 pe.index = index;
1980 /* Continue - set next lookup */
1981 mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_DSA);
1983 /* Set result info bits */
1984 mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_L2_MCAST,
1985 MVPP2_PRS_RI_L2_CAST_MASK);
1987 /* Update tcam entry data first byte */
1988 mvpp2_prs_tcam_data_byte_set(&pe, 0, da_mc, 0xff);
1990 /* Shift to ethertype */
1991 mvpp2_prs_sram_shift_set(&pe, 2 * ETH_ALEN,
1992 MVPP2_PRS_SRAM_OP_SEL_SHIFT_ADD);
1994 /* Mask all ports */
1995 mvpp2_prs_tcam_port_map_set(&pe, 0);
1997 /* Update shadow table */
1998 mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_MAC);
2001 /* Update port mask */
2002 mvpp2_prs_tcam_port_set(&pe, port, add);
2004 mvpp2_prs_hw_write(priv, &pe);
2007 /* Set entry for dsa packets */
2008 static void mvpp2_prs_dsa_tag_set(struct mvpp2 *priv, int port, bool add,
2009 bool tagged, bool extend)
2011 struct mvpp2_prs_entry pe;
2012 int tid, shift;
2014 if (extend) {
2015 tid = tagged ? MVPP2_PE_EDSA_TAGGED : MVPP2_PE_EDSA_UNTAGGED;
2016 shift = 8;
2017 } else {
2018 tid = tagged ? MVPP2_PE_DSA_TAGGED : MVPP2_PE_DSA_UNTAGGED;
2019 shift = 4;
2022 if (priv->prs_shadow[tid].valid) {
2023 /* Entry exist - update port only */
2024 pe.index = tid;
2025 mvpp2_prs_hw_read(priv, &pe);
2026 } else {
2027 /* Entry doesn't exist - create new */
2028 memset(&pe, 0, sizeof(pe));
2029 mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_DSA);
2030 pe.index = tid;
2032 /* Shift 4 bytes if DSA tag or 8 bytes in case of EDSA tag*/
2033 mvpp2_prs_sram_shift_set(&pe, shift,
2034 MVPP2_PRS_SRAM_OP_SEL_SHIFT_ADD);
2036 /* Update shadow table */
2037 mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_DSA);
2039 if (tagged) {
2040 /* Set tagged bit in DSA tag */
2041 mvpp2_prs_tcam_data_byte_set(&pe, 0,
2042 MVPP2_PRS_TCAM_DSA_TAGGED_BIT,
2043 MVPP2_PRS_TCAM_DSA_TAGGED_BIT);
2044 /* Clear all ai bits for next iteration */
2045 mvpp2_prs_sram_ai_update(&pe, 0,
2046 MVPP2_PRS_SRAM_AI_MASK);
2047 /* If packet is tagged continue check vlans */
2048 mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_VLAN);
2049 } else {
2050 /* Set result info bits to 'no vlans' */
2051 mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_VLAN_NONE,
2052 MVPP2_PRS_RI_VLAN_MASK);
2053 mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_L2);
2056 /* Mask all ports */
2057 mvpp2_prs_tcam_port_map_set(&pe, 0);
2060 /* Update port mask */
2061 mvpp2_prs_tcam_port_set(&pe, port, add);
2063 mvpp2_prs_hw_write(priv, &pe);
2066 /* Set entry for dsa ethertype */
2067 static void mvpp2_prs_dsa_tag_ethertype_set(struct mvpp2 *priv, int port,
2068 bool add, bool tagged, bool extend)
2070 struct mvpp2_prs_entry pe;
2071 int tid, shift, port_mask;
2073 if (extend) {
2074 tid = tagged ? MVPP2_PE_ETYPE_EDSA_TAGGED :
2075 MVPP2_PE_ETYPE_EDSA_UNTAGGED;
2076 port_mask = 0;
2077 shift = 8;
2078 } else {
2079 tid = tagged ? MVPP2_PE_ETYPE_DSA_TAGGED :
2080 MVPP2_PE_ETYPE_DSA_UNTAGGED;
2081 port_mask = MVPP2_PRS_PORT_MASK;
2082 shift = 4;
2085 if (priv->prs_shadow[tid].valid) {
2086 /* Entry exist - update port only */
2087 pe.index = tid;
2088 mvpp2_prs_hw_read(priv, &pe);
2089 } else {
2090 /* Entry doesn't exist - create new */
2091 memset(&pe, 0, sizeof(pe));
2092 mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_DSA);
2093 pe.index = tid;
2095 /* Set ethertype */
2096 mvpp2_prs_match_etype(&pe, 0, ETH_P_EDSA);
2097 mvpp2_prs_match_etype(&pe, 2, 0);
2099 mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_DSA_MASK,
2100 MVPP2_PRS_RI_DSA_MASK);
2101 /* Shift ethertype + 2 byte reserved + tag*/
2102 mvpp2_prs_sram_shift_set(&pe, 2 + MVPP2_ETH_TYPE_LEN + shift,
2103 MVPP2_PRS_SRAM_OP_SEL_SHIFT_ADD);
2105 /* Update shadow table */
2106 mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_DSA);
2108 if (tagged) {
2109 /* Set tagged bit in DSA tag */
2110 mvpp2_prs_tcam_data_byte_set(&pe,
2111 MVPP2_ETH_TYPE_LEN + 2 + 3,
2112 MVPP2_PRS_TCAM_DSA_TAGGED_BIT,
2113 MVPP2_PRS_TCAM_DSA_TAGGED_BIT);
2114 /* Clear all ai bits for next iteration */
2115 mvpp2_prs_sram_ai_update(&pe, 0,
2116 MVPP2_PRS_SRAM_AI_MASK);
2117 /* If packet is tagged continue check vlans */
2118 mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_VLAN);
2119 } else {
2120 /* Set result info bits to 'no vlans' */
2121 mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_VLAN_NONE,
2122 MVPP2_PRS_RI_VLAN_MASK);
2123 mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_L2);
2125 /* Mask/unmask all ports, depending on dsa type */
2126 mvpp2_prs_tcam_port_map_set(&pe, port_mask);
2129 /* Update port mask */
2130 mvpp2_prs_tcam_port_set(&pe, port, add);
2132 mvpp2_prs_hw_write(priv, &pe);
2135 /* Search for existing single/triple vlan entry */
2136 static struct mvpp2_prs_entry *mvpp2_prs_vlan_find(struct mvpp2 *priv,
2137 unsigned short tpid, int ai)
2139 struct mvpp2_prs_entry *pe;
2140 int tid;
2142 pe = kzalloc(sizeof(*pe), GFP_KERNEL);
2143 if (!pe)
2144 return NULL;
2145 mvpp2_prs_tcam_lu_set(pe, MVPP2_PRS_LU_VLAN);
2147 /* Go through the all entries with MVPP2_PRS_LU_VLAN */
2148 for (tid = MVPP2_PE_FIRST_FREE_TID;
2149 tid <= MVPP2_PE_LAST_FREE_TID; tid++) {
2150 unsigned int ri_bits, ai_bits;
2151 bool match;
2153 if (!priv->prs_shadow[tid].valid ||
2154 priv->prs_shadow[tid].lu != MVPP2_PRS_LU_VLAN)
2155 continue;
2157 pe->index = tid;
2159 mvpp2_prs_hw_read(priv, pe);
2160 match = mvpp2_prs_tcam_data_cmp(pe, 0, swab16(tpid));
2161 if (!match)
2162 continue;
2164 /* Get vlan type */
2165 ri_bits = mvpp2_prs_sram_ri_get(pe);
2166 ri_bits &= MVPP2_PRS_RI_VLAN_MASK;
2168 /* Get current ai value from tcam */
2169 ai_bits = mvpp2_prs_tcam_ai_get(pe);
2170 /* Clear double vlan bit */
2171 ai_bits &= ~MVPP2_PRS_DBL_VLAN_AI_BIT;
2173 if (ai != ai_bits)
2174 continue;
2176 if (ri_bits == MVPP2_PRS_RI_VLAN_SINGLE ||
2177 ri_bits == MVPP2_PRS_RI_VLAN_TRIPLE)
2178 return pe;
2180 kfree(pe);
2182 return NULL;
2185 /* Add/update single/triple vlan entry */
2186 static int mvpp2_prs_vlan_add(struct mvpp2 *priv, unsigned short tpid, int ai,
2187 unsigned int port_map)
2189 struct mvpp2_prs_entry *pe;
2190 int tid_aux, tid;
2191 int ret = 0;
2193 pe = mvpp2_prs_vlan_find(priv, tpid, ai);
2195 if (!pe) {
2196 /* Create new tcam entry */
2197 tid = mvpp2_prs_tcam_first_free(priv, MVPP2_PE_LAST_FREE_TID,
2198 MVPP2_PE_FIRST_FREE_TID);
2199 if (tid < 0)
2200 return tid;
2202 pe = kzalloc(sizeof(*pe), GFP_KERNEL);
2203 if (!pe)
2204 return -ENOMEM;
2206 /* Get last double vlan tid */
2207 for (tid_aux = MVPP2_PE_LAST_FREE_TID;
2208 tid_aux >= MVPP2_PE_FIRST_FREE_TID; tid_aux--) {
2209 unsigned int ri_bits;
2211 if (!priv->prs_shadow[tid_aux].valid ||
2212 priv->prs_shadow[tid_aux].lu != MVPP2_PRS_LU_VLAN)
2213 continue;
2215 pe->index = tid_aux;
2216 mvpp2_prs_hw_read(priv, pe);
2217 ri_bits = mvpp2_prs_sram_ri_get(pe);
2218 if ((ri_bits & MVPP2_PRS_RI_VLAN_MASK) ==
2219 MVPP2_PRS_RI_VLAN_DOUBLE)
2220 break;
2223 if (tid <= tid_aux) {
2224 ret = -EINVAL;
2225 goto free_pe;
2228 memset(pe, 0, sizeof(*pe));
2229 mvpp2_prs_tcam_lu_set(pe, MVPP2_PRS_LU_VLAN);
2230 pe->index = tid;
2232 mvpp2_prs_match_etype(pe, 0, tpid);
2234 mvpp2_prs_sram_next_lu_set(pe, MVPP2_PRS_LU_L2);
2235 /* Shift 4 bytes - skip 1 vlan tag */
2236 mvpp2_prs_sram_shift_set(pe, MVPP2_VLAN_TAG_LEN,
2237 MVPP2_PRS_SRAM_OP_SEL_SHIFT_ADD);
2238 /* Clear all ai bits for next iteration */
2239 mvpp2_prs_sram_ai_update(pe, 0, MVPP2_PRS_SRAM_AI_MASK);
2241 if (ai == MVPP2_PRS_SINGLE_VLAN_AI) {
2242 mvpp2_prs_sram_ri_update(pe, MVPP2_PRS_RI_VLAN_SINGLE,
2243 MVPP2_PRS_RI_VLAN_MASK);
2244 } else {
2245 ai |= MVPP2_PRS_DBL_VLAN_AI_BIT;
2246 mvpp2_prs_sram_ri_update(pe, MVPP2_PRS_RI_VLAN_TRIPLE,
2247 MVPP2_PRS_RI_VLAN_MASK);
2249 mvpp2_prs_tcam_ai_update(pe, ai, MVPP2_PRS_SRAM_AI_MASK);
2251 mvpp2_prs_shadow_set(priv, pe->index, MVPP2_PRS_LU_VLAN);
2253 /* Update ports' mask */
2254 mvpp2_prs_tcam_port_map_set(pe, port_map);
2256 mvpp2_prs_hw_write(priv, pe);
2257 free_pe:
2258 kfree(pe);
2260 return ret;
2263 /* Get first free double vlan ai number */
2264 static int mvpp2_prs_double_vlan_ai_free_get(struct mvpp2 *priv)
2266 int i;
2268 for (i = 1; i < MVPP2_PRS_DBL_VLANS_MAX; i++) {
2269 if (!priv->prs_double_vlans[i])
2270 return i;
2273 return -EINVAL;
2276 /* Search for existing double vlan entry */
2277 static struct mvpp2_prs_entry *mvpp2_prs_double_vlan_find(struct mvpp2 *priv,
2278 unsigned short tpid1,
2279 unsigned short tpid2)
2281 struct mvpp2_prs_entry *pe;
2282 int tid;
2284 pe = kzalloc(sizeof(*pe), GFP_KERNEL);
2285 if (!pe)
2286 return NULL;
2287 mvpp2_prs_tcam_lu_set(pe, MVPP2_PRS_LU_VLAN);
2289 /* Go through the all entries with MVPP2_PRS_LU_VLAN */
2290 for (tid = MVPP2_PE_FIRST_FREE_TID;
2291 tid <= MVPP2_PE_LAST_FREE_TID; tid++) {
2292 unsigned int ri_mask;
2293 bool match;
2295 if (!priv->prs_shadow[tid].valid ||
2296 priv->prs_shadow[tid].lu != MVPP2_PRS_LU_VLAN)
2297 continue;
2299 pe->index = tid;
2300 mvpp2_prs_hw_read(priv, pe);
2302 match = mvpp2_prs_tcam_data_cmp(pe, 0, swab16(tpid1))
2303 && mvpp2_prs_tcam_data_cmp(pe, 4, swab16(tpid2));
2305 if (!match)
2306 continue;
2308 ri_mask = mvpp2_prs_sram_ri_get(pe) & MVPP2_PRS_RI_VLAN_MASK;
2309 if (ri_mask == MVPP2_PRS_RI_VLAN_DOUBLE)
2310 return pe;
2312 kfree(pe);
2314 return NULL;
2317 /* Add or update double vlan entry */
2318 static int mvpp2_prs_double_vlan_add(struct mvpp2 *priv, unsigned short tpid1,
2319 unsigned short tpid2,
2320 unsigned int port_map)
2322 struct mvpp2_prs_entry *pe;
2323 int tid_aux, tid, ai, ret = 0;
2325 pe = mvpp2_prs_double_vlan_find(priv, tpid1, tpid2);
2327 if (!pe) {
2328 /* Create new tcam entry */
2329 tid = mvpp2_prs_tcam_first_free(priv, MVPP2_PE_FIRST_FREE_TID,
2330 MVPP2_PE_LAST_FREE_TID);
2331 if (tid < 0)
2332 return tid;
2334 pe = kzalloc(sizeof(*pe), GFP_KERNEL);
2335 if (!pe)
2336 return -ENOMEM;
2338 /* Set ai value for new double vlan entry */
2339 ai = mvpp2_prs_double_vlan_ai_free_get(priv);
2340 if (ai < 0) {
2341 ret = ai;
2342 goto free_pe;
2345 /* Get first single/triple vlan tid */
2346 for (tid_aux = MVPP2_PE_FIRST_FREE_TID;
2347 tid_aux <= MVPP2_PE_LAST_FREE_TID; tid_aux++) {
2348 unsigned int ri_bits;
2350 if (!priv->prs_shadow[tid_aux].valid ||
2351 priv->prs_shadow[tid_aux].lu != MVPP2_PRS_LU_VLAN)
2352 continue;
2354 pe->index = tid_aux;
2355 mvpp2_prs_hw_read(priv, pe);
2356 ri_bits = mvpp2_prs_sram_ri_get(pe);
2357 ri_bits &= MVPP2_PRS_RI_VLAN_MASK;
2358 if (ri_bits == MVPP2_PRS_RI_VLAN_SINGLE ||
2359 ri_bits == MVPP2_PRS_RI_VLAN_TRIPLE)
2360 break;
2363 if (tid >= tid_aux) {
2364 ret = -ERANGE;
2365 goto free_pe;
2368 memset(pe, 0, sizeof(*pe));
2369 mvpp2_prs_tcam_lu_set(pe, MVPP2_PRS_LU_VLAN);
2370 pe->index = tid;
2372 priv->prs_double_vlans[ai] = true;
2374 mvpp2_prs_match_etype(pe, 0, tpid1);
2375 mvpp2_prs_match_etype(pe, 4, tpid2);
2377 mvpp2_prs_sram_next_lu_set(pe, MVPP2_PRS_LU_VLAN);
2378 /* Shift 8 bytes - skip 2 vlan tags */
2379 mvpp2_prs_sram_shift_set(pe, 2 * MVPP2_VLAN_TAG_LEN,
2380 MVPP2_PRS_SRAM_OP_SEL_SHIFT_ADD);
2381 mvpp2_prs_sram_ri_update(pe, MVPP2_PRS_RI_VLAN_DOUBLE,
2382 MVPP2_PRS_RI_VLAN_MASK);
2383 mvpp2_prs_sram_ai_update(pe, ai | MVPP2_PRS_DBL_VLAN_AI_BIT,
2384 MVPP2_PRS_SRAM_AI_MASK);
2386 mvpp2_prs_shadow_set(priv, pe->index, MVPP2_PRS_LU_VLAN);
2389 /* Update ports' mask */
2390 mvpp2_prs_tcam_port_map_set(pe, port_map);
2391 mvpp2_prs_hw_write(priv, pe);
2392 free_pe:
2393 kfree(pe);
2394 return ret;
2397 /* IPv4 header parsing for fragmentation and L4 offset */
2398 static int mvpp2_prs_ip4_proto(struct mvpp2 *priv, unsigned short proto,
2399 unsigned int ri, unsigned int ri_mask)
2401 struct mvpp2_prs_entry pe;
2402 int tid;
2404 if ((proto != IPPROTO_TCP) && (proto != IPPROTO_UDP) &&
2405 (proto != IPPROTO_IGMP))
2406 return -EINVAL;
2408 /* Not fragmented packet */
2409 tid = mvpp2_prs_tcam_first_free(priv, MVPP2_PE_FIRST_FREE_TID,
2410 MVPP2_PE_LAST_FREE_TID);
2411 if (tid < 0)
2412 return tid;
2414 memset(&pe, 0, sizeof(pe));
2415 mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_IP4);
2416 pe.index = tid;
2418 /* Set next lu to IPv4 */
2419 mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_IP4);
2420 mvpp2_prs_sram_shift_set(&pe, 12, MVPP2_PRS_SRAM_OP_SEL_SHIFT_ADD);
2421 /* Set L4 offset */
2422 mvpp2_prs_sram_offset_set(&pe, MVPP2_PRS_SRAM_UDF_TYPE_L4,
2423 sizeof(struct iphdr) - 4,
2424 MVPP2_PRS_SRAM_OP_SEL_UDF_ADD);
2425 mvpp2_prs_sram_ai_update(&pe, MVPP2_PRS_IPV4_DIP_AI_BIT,
2426 MVPP2_PRS_IPV4_DIP_AI_BIT);
2427 mvpp2_prs_sram_ri_update(&pe, ri, ri_mask | MVPP2_PRS_RI_IP_FRAG_MASK);
2429 mvpp2_prs_tcam_data_byte_set(&pe, 2, 0x00,
2430 MVPP2_PRS_TCAM_PROTO_MASK_L);
2431 mvpp2_prs_tcam_data_byte_set(&pe, 3, 0x00,
2432 MVPP2_PRS_TCAM_PROTO_MASK);
2434 mvpp2_prs_tcam_data_byte_set(&pe, 5, proto, MVPP2_PRS_TCAM_PROTO_MASK);
2435 mvpp2_prs_tcam_ai_update(&pe, 0, MVPP2_PRS_IPV4_DIP_AI_BIT);
2436 /* Unmask all ports */
2437 mvpp2_prs_tcam_port_map_set(&pe, MVPP2_PRS_PORT_MASK);
2439 /* Update shadow table and hw entry */
2440 mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_IP4);
2441 mvpp2_prs_hw_write(priv, &pe);
2443 /* Fragmented packet */
2444 tid = mvpp2_prs_tcam_first_free(priv, MVPP2_PE_FIRST_FREE_TID,
2445 MVPP2_PE_LAST_FREE_TID);
2446 if (tid < 0)
2447 return tid;
2449 pe.index = tid;
2450 /* Clear ri before updating */
2451 pe.sram.word[MVPP2_PRS_SRAM_RI_WORD] = 0x0;
2452 pe.sram.word[MVPP2_PRS_SRAM_RI_CTRL_WORD] = 0x0;
2453 mvpp2_prs_sram_ri_update(&pe, ri, ri_mask);
2455 mvpp2_prs_sram_ri_update(&pe, ri | MVPP2_PRS_RI_IP_FRAG_TRUE,
2456 ri_mask | MVPP2_PRS_RI_IP_FRAG_MASK);
2458 mvpp2_prs_tcam_data_byte_set(&pe, 2, 0x00, 0x0);
2459 mvpp2_prs_tcam_data_byte_set(&pe, 3, 0x00, 0x0);
2461 /* Update shadow table and hw entry */
2462 mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_IP4);
2463 mvpp2_prs_hw_write(priv, &pe);
2465 return 0;
2468 /* IPv4 L3 multicast or broadcast */
2469 static int mvpp2_prs_ip4_cast(struct mvpp2 *priv, unsigned short l3_cast)
2471 struct mvpp2_prs_entry pe;
2472 int mask, tid;
2474 tid = mvpp2_prs_tcam_first_free(priv, MVPP2_PE_FIRST_FREE_TID,
2475 MVPP2_PE_LAST_FREE_TID);
2476 if (tid < 0)
2477 return tid;
2479 memset(&pe, 0, sizeof(pe));
2480 mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_IP4);
2481 pe.index = tid;
2483 switch (l3_cast) {
2484 case MVPP2_PRS_L3_MULTI_CAST:
2485 mvpp2_prs_tcam_data_byte_set(&pe, 0, MVPP2_PRS_IPV4_MC,
2486 MVPP2_PRS_IPV4_MC_MASK);
2487 mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_L3_MCAST,
2488 MVPP2_PRS_RI_L3_ADDR_MASK);
2489 break;
2490 case MVPP2_PRS_L3_BROAD_CAST:
2491 mask = MVPP2_PRS_IPV4_BC_MASK;
2492 mvpp2_prs_tcam_data_byte_set(&pe, 0, mask, mask);
2493 mvpp2_prs_tcam_data_byte_set(&pe, 1, mask, mask);
2494 mvpp2_prs_tcam_data_byte_set(&pe, 2, mask, mask);
2495 mvpp2_prs_tcam_data_byte_set(&pe, 3, mask, mask);
2496 mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_L3_BCAST,
2497 MVPP2_PRS_RI_L3_ADDR_MASK);
2498 break;
2499 default:
2500 return -EINVAL;
2503 /* Finished: go to flowid generation */
2504 mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_FLOWS);
2505 mvpp2_prs_sram_bits_set(&pe, MVPP2_PRS_SRAM_LU_GEN_BIT, 1);
2507 mvpp2_prs_tcam_ai_update(&pe, MVPP2_PRS_IPV4_DIP_AI_BIT,
2508 MVPP2_PRS_IPV4_DIP_AI_BIT);
2509 /* Unmask all ports */
2510 mvpp2_prs_tcam_port_map_set(&pe, MVPP2_PRS_PORT_MASK);
2512 /* Update shadow table and hw entry */
2513 mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_IP4);
2514 mvpp2_prs_hw_write(priv, &pe);
2516 return 0;
2519 /* Set entries for protocols over IPv6 */
2520 static int mvpp2_prs_ip6_proto(struct mvpp2 *priv, unsigned short proto,
2521 unsigned int ri, unsigned int ri_mask)
2523 struct mvpp2_prs_entry pe;
2524 int tid;
2526 if ((proto != IPPROTO_TCP) && (proto != IPPROTO_UDP) &&
2527 (proto != IPPROTO_ICMPV6) && (proto != IPPROTO_IPIP))
2528 return -EINVAL;
2530 tid = mvpp2_prs_tcam_first_free(priv, MVPP2_PE_FIRST_FREE_TID,
2531 MVPP2_PE_LAST_FREE_TID);
2532 if (tid < 0)
2533 return tid;
2535 memset(&pe, 0, sizeof(pe));
2536 mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_IP6);
2537 pe.index = tid;
2539 /* Finished: go to flowid generation */
2540 mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_FLOWS);
2541 mvpp2_prs_sram_bits_set(&pe, MVPP2_PRS_SRAM_LU_GEN_BIT, 1);
2542 mvpp2_prs_sram_ri_update(&pe, ri, ri_mask);
2543 mvpp2_prs_sram_offset_set(&pe, MVPP2_PRS_SRAM_UDF_TYPE_L4,
2544 sizeof(struct ipv6hdr) - 6,
2545 MVPP2_PRS_SRAM_OP_SEL_UDF_ADD);
2547 mvpp2_prs_tcam_data_byte_set(&pe, 0, proto, MVPP2_PRS_TCAM_PROTO_MASK);
2548 mvpp2_prs_tcam_ai_update(&pe, MVPP2_PRS_IPV6_NO_EXT_AI_BIT,
2549 MVPP2_PRS_IPV6_NO_EXT_AI_BIT);
2550 /* Unmask all ports */
2551 mvpp2_prs_tcam_port_map_set(&pe, MVPP2_PRS_PORT_MASK);
2553 /* Write HW */
2554 mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_IP6);
2555 mvpp2_prs_hw_write(priv, &pe);
2557 return 0;
2560 /* IPv6 L3 multicast entry */
2561 static int mvpp2_prs_ip6_cast(struct mvpp2 *priv, unsigned short l3_cast)
2563 struct mvpp2_prs_entry pe;
2564 int tid;
2566 if (l3_cast != MVPP2_PRS_L3_MULTI_CAST)
2567 return -EINVAL;
2569 tid = mvpp2_prs_tcam_first_free(priv, MVPP2_PE_FIRST_FREE_TID,
2570 MVPP2_PE_LAST_FREE_TID);
2571 if (tid < 0)
2572 return tid;
2574 memset(&pe, 0, sizeof(pe));
2575 mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_IP6);
2576 pe.index = tid;
2578 /* Finished: go to flowid generation */
2579 mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_IP6);
2580 mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_L3_MCAST,
2581 MVPP2_PRS_RI_L3_ADDR_MASK);
2582 mvpp2_prs_sram_ai_update(&pe, MVPP2_PRS_IPV6_NO_EXT_AI_BIT,
2583 MVPP2_PRS_IPV6_NO_EXT_AI_BIT);
2584 /* Shift back to IPv6 NH */
2585 mvpp2_prs_sram_shift_set(&pe, -18, MVPP2_PRS_SRAM_OP_SEL_SHIFT_ADD);
2587 mvpp2_prs_tcam_data_byte_set(&pe, 0, MVPP2_PRS_IPV6_MC,
2588 MVPP2_PRS_IPV6_MC_MASK);
2589 mvpp2_prs_tcam_ai_update(&pe, 0, MVPP2_PRS_IPV6_NO_EXT_AI_BIT);
2590 /* Unmask all ports */
2591 mvpp2_prs_tcam_port_map_set(&pe, MVPP2_PRS_PORT_MASK);
2593 /* Update shadow table and hw entry */
2594 mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_IP6);
2595 mvpp2_prs_hw_write(priv, &pe);
2597 return 0;
2600 /* Parser per-port initialization */
2601 static void mvpp2_prs_hw_port_init(struct mvpp2 *priv, int port, int lu_first,
2602 int lu_max, int offset)
2604 u32 val;
2606 /* Set lookup ID */
2607 val = mvpp2_read(priv, MVPP2_PRS_INIT_LOOKUP_REG);
2608 val &= ~MVPP2_PRS_PORT_LU_MASK(port);
2609 val |= MVPP2_PRS_PORT_LU_VAL(port, lu_first);
2610 mvpp2_write(priv, MVPP2_PRS_INIT_LOOKUP_REG, val);
2612 /* Set maximum number of loops for packet received from port */
2613 val = mvpp2_read(priv, MVPP2_PRS_MAX_LOOP_REG(port));
2614 val &= ~MVPP2_PRS_MAX_LOOP_MASK(port);
2615 val |= MVPP2_PRS_MAX_LOOP_VAL(port, lu_max);
2616 mvpp2_write(priv, MVPP2_PRS_MAX_LOOP_REG(port), val);
2618 /* Set initial offset for packet header extraction for the first
2619 * searching loop
2621 val = mvpp2_read(priv, MVPP2_PRS_INIT_OFFS_REG(port));
2622 val &= ~MVPP2_PRS_INIT_OFF_MASK(port);
2623 val |= MVPP2_PRS_INIT_OFF_VAL(port, offset);
2624 mvpp2_write(priv, MVPP2_PRS_INIT_OFFS_REG(port), val);
2627 /* Default flow entries initialization for all ports */
2628 static void mvpp2_prs_def_flow_init(struct mvpp2 *priv)
2630 struct mvpp2_prs_entry pe;
2631 int port;
2633 for (port = 0; port < MVPP2_MAX_PORTS; port++) {
2634 memset(&pe, 0, sizeof(pe));
2635 mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_FLOWS);
2636 pe.index = MVPP2_PE_FIRST_DEFAULT_FLOW - port;
2638 /* Mask all ports */
2639 mvpp2_prs_tcam_port_map_set(&pe, 0);
2641 /* Set flow ID*/
2642 mvpp2_prs_sram_ai_update(&pe, port, MVPP2_PRS_FLOW_ID_MASK);
2643 mvpp2_prs_sram_bits_set(&pe, MVPP2_PRS_SRAM_LU_DONE_BIT, 1);
2645 /* Update shadow table and hw entry */
2646 mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_FLOWS);
2647 mvpp2_prs_hw_write(priv, &pe);
2651 /* Set default entry for Marvell Header field */
2652 static void mvpp2_prs_mh_init(struct mvpp2 *priv)
2654 struct mvpp2_prs_entry pe;
2656 memset(&pe, 0, sizeof(pe));
2658 pe.index = MVPP2_PE_MH_DEFAULT;
2659 mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_MH);
2660 mvpp2_prs_sram_shift_set(&pe, MVPP2_MH_SIZE,
2661 MVPP2_PRS_SRAM_OP_SEL_SHIFT_ADD);
2662 mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_MAC);
2664 /* Unmask all ports */
2665 mvpp2_prs_tcam_port_map_set(&pe, MVPP2_PRS_PORT_MASK);
2667 /* Update shadow table and hw entry */
2668 mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_MH);
2669 mvpp2_prs_hw_write(priv, &pe);
2672 /* Set default entires (place holder) for promiscuous, non-promiscuous and
2673 * multicast MAC addresses
2675 static void mvpp2_prs_mac_init(struct mvpp2 *priv)
2677 struct mvpp2_prs_entry pe;
2679 memset(&pe, 0, sizeof(pe));
2681 /* Non-promiscuous mode for all ports - DROP unknown packets */
2682 pe.index = MVPP2_PE_MAC_NON_PROMISCUOUS;
2683 mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_MAC);
2685 mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_DROP_MASK,
2686 MVPP2_PRS_RI_DROP_MASK);
2687 mvpp2_prs_sram_bits_set(&pe, MVPP2_PRS_SRAM_LU_GEN_BIT, 1);
2688 mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_FLOWS);
2690 /* Unmask all ports */
2691 mvpp2_prs_tcam_port_map_set(&pe, MVPP2_PRS_PORT_MASK);
2693 /* Update shadow table and hw entry */
2694 mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_MAC);
2695 mvpp2_prs_hw_write(priv, &pe);
2697 /* place holders only - no ports */
2698 mvpp2_prs_mac_drop_all_set(priv, 0, false);
2699 mvpp2_prs_mac_promisc_set(priv, 0, false);
2700 mvpp2_prs_mac_multi_set(priv, 0, MVPP2_PE_MAC_MC_ALL, false);
2701 mvpp2_prs_mac_multi_set(priv, 0, MVPP2_PE_MAC_MC_IP6, false);
2704 /* Set default entries for various types of dsa packets */
2705 static void mvpp2_prs_dsa_init(struct mvpp2 *priv)
2707 struct mvpp2_prs_entry pe;
2709 /* None tagged EDSA entry - place holder */
2710 mvpp2_prs_dsa_tag_set(priv, 0, false, MVPP2_PRS_UNTAGGED,
2711 MVPP2_PRS_EDSA);
2713 /* Tagged EDSA entry - place holder */
2714 mvpp2_prs_dsa_tag_set(priv, 0, false, MVPP2_PRS_TAGGED, MVPP2_PRS_EDSA);
2716 /* None tagged DSA entry - place holder */
2717 mvpp2_prs_dsa_tag_set(priv, 0, false, MVPP2_PRS_UNTAGGED,
2718 MVPP2_PRS_DSA);
2720 /* Tagged DSA entry - place holder */
2721 mvpp2_prs_dsa_tag_set(priv, 0, false, MVPP2_PRS_TAGGED, MVPP2_PRS_DSA);
2723 /* None tagged EDSA ethertype entry - place holder*/
2724 mvpp2_prs_dsa_tag_ethertype_set(priv, 0, false,
2725 MVPP2_PRS_UNTAGGED, MVPP2_PRS_EDSA);
2727 /* Tagged EDSA ethertype entry - place holder*/
2728 mvpp2_prs_dsa_tag_ethertype_set(priv, 0, false,
2729 MVPP2_PRS_TAGGED, MVPP2_PRS_EDSA);
2731 /* None tagged DSA ethertype entry */
2732 mvpp2_prs_dsa_tag_ethertype_set(priv, 0, true,
2733 MVPP2_PRS_UNTAGGED, MVPP2_PRS_DSA);
2735 /* Tagged DSA ethertype entry */
2736 mvpp2_prs_dsa_tag_ethertype_set(priv, 0, true,
2737 MVPP2_PRS_TAGGED, MVPP2_PRS_DSA);
2739 /* Set default entry, in case DSA or EDSA tag not found */
2740 memset(&pe, 0, sizeof(pe));
2741 mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_DSA);
2742 pe.index = MVPP2_PE_DSA_DEFAULT;
2743 mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_VLAN);
2745 /* Shift 0 bytes */
2746 mvpp2_prs_sram_shift_set(&pe, 0, MVPP2_PRS_SRAM_OP_SEL_SHIFT_ADD);
2747 mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_MAC);
2749 /* Clear all sram ai bits for next iteration */
2750 mvpp2_prs_sram_ai_update(&pe, 0, MVPP2_PRS_SRAM_AI_MASK);
2752 /* Unmask all ports */
2753 mvpp2_prs_tcam_port_map_set(&pe, MVPP2_PRS_PORT_MASK);
2755 mvpp2_prs_hw_write(priv, &pe);
2758 /* Match basic ethertypes */
2759 static int mvpp2_prs_etype_init(struct mvpp2 *priv)
2761 struct mvpp2_prs_entry pe;
2762 int tid;
2764 /* Ethertype: PPPoE */
2765 tid = mvpp2_prs_tcam_first_free(priv, MVPP2_PE_FIRST_FREE_TID,
2766 MVPP2_PE_LAST_FREE_TID);
2767 if (tid < 0)
2768 return tid;
2770 memset(&pe, 0, sizeof(pe));
2771 mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_L2);
2772 pe.index = tid;
2774 mvpp2_prs_match_etype(&pe, 0, ETH_P_PPP_SES);
2776 mvpp2_prs_sram_shift_set(&pe, MVPP2_PPPOE_HDR_SIZE,
2777 MVPP2_PRS_SRAM_OP_SEL_SHIFT_ADD);
2778 mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_PPPOE);
2779 mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_PPPOE_MASK,
2780 MVPP2_PRS_RI_PPPOE_MASK);
2782 /* Update shadow table and hw entry */
2783 mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_L2);
2784 priv->prs_shadow[pe.index].udf = MVPP2_PRS_UDF_L2_DEF;
2785 priv->prs_shadow[pe.index].finish = false;
2786 mvpp2_prs_shadow_ri_set(priv, pe.index, MVPP2_PRS_RI_PPPOE_MASK,
2787 MVPP2_PRS_RI_PPPOE_MASK);
2788 mvpp2_prs_hw_write(priv, &pe);
2790 /* Ethertype: ARP */
2791 tid = mvpp2_prs_tcam_first_free(priv, MVPP2_PE_FIRST_FREE_TID,
2792 MVPP2_PE_LAST_FREE_TID);
2793 if (tid < 0)
2794 return tid;
2796 memset(&pe, 0, sizeof(pe));
2797 mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_L2);
2798 pe.index = tid;
2800 mvpp2_prs_match_etype(&pe, 0, ETH_P_ARP);
2802 /* Generate flow in the next iteration*/
2803 mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_FLOWS);
2804 mvpp2_prs_sram_bits_set(&pe, MVPP2_PRS_SRAM_LU_GEN_BIT, 1);
2805 mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_L3_ARP,
2806 MVPP2_PRS_RI_L3_PROTO_MASK);
2807 /* Set L3 offset */
2808 mvpp2_prs_sram_offset_set(&pe, MVPP2_PRS_SRAM_UDF_TYPE_L3,
2809 MVPP2_ETH_TYPE_LEN,
2810 MVPP2_PRS_SRAM_OP_SEL_UDF_ADD);
2812 /* Update shadow table and hw entry */
2813 mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_L2);
2814 priv->prs_shadow[pe.index].udf = MVPP2_PRS_UDF_L2_DEF;
2815 priv->prs_shadow[pe.index].finish = true;
2816 mvpp2_prs_shadow_ri_set(priv, pe.index, MVPP2_PRS_RI_L3_ARP,
2817 MVPP2_PRS_RI_L3_PROTO_MASK);
2818 mvpp2_prs_hw_write(priv, &pe);
2820 /* Ethertype: LBTD */
2821 tid = mvpp2_prs_tcam_first_free(priv, MVPP2_PE_FIRST_FREE_TID,
2822 MVPP2_PE_LAST_FREE_TID);
2823 if (tid < 0)
2824 return tid;
2826 memset(&pe, 0, sizeof(pe));
2827 mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_L2);
2828 pe.index = tid;
2830 mvpp2_prs_match_etype(&pe, 0, MVPP2_IP_LBDT_TYPE);
2832 /* Generate flow in the next iteration*/
2833 mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_FLOWS);
2834 mvpp2_prs_sram_bits_set(&pe, MVPP2_PRS_SRAM_LU_GEN_BIT, 1);
2835 mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_CPU_CODE_RX_SPEC |
2836 MVPP2_PRS_RI_UDF3_RX_SPECIAL,
2837 MVPP2_PRS_RI_CPU_CODE_MASK |
2838 MVPP2_PRS_RI_UDF3_MASK);
2839 /* Set L3 offset */
2840 mvpp2_prs_sram_offset_set(&pe, MVPP2_PRS_SRAM_UDF_TYPE_L3,
2841 MVPP2_ETH_TYPE_LEN,
2842 MVPP2_PRS_SRAM_OP_SEL_UDF_ADD);
2844 /* Update shadow table and hw entry */
2845 mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_L2);
2846 priv->prs_shadow[pe.index].udf = MVPP2_PRS_UDF_L2_DEF;
2847 priv->prs_shadow[pe.index].finish = true;
2848 mvpp2_prs_shadow_ri_set(priv, pe.index, MVPP2_PRS_RI_CPU_CODE_RX_SPEC |
2849 MVPP2_PRS_RI_UDF3_RX_SPECIAL,
2850 MVPP2_PRS_RI_CPU_CODE_MASK |
2851 MVPP2_PRS_RI_UDF3_MASK);
2852 mvpp2_prs_hw_write(priv, &pe);
2854 /* Ethertype: IPv4 without options */
2855 tid = mvpp2_prs_tcam_first_free(priv, MVPP2_PE_FIRST_FREE_TID,
2856 MVPP2_PE_LAST_FREE_TID);
2857 if (tid < 0)
2858 return tid;
2860 memset(&pe, 0, sizeof(pe));
2861 mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_L2);
2862 pe.index = tid;
2864 mvpp2_prs_match_etype(&pe, 0, ETH_P_IP);
2865 mvpp2_prs_tcam_data_byte_set(&pe, MVPP2_ETH_TYPE_LEN,
2866 MVPP2_PRS_IPV4_HEAD | MVPP2_PRS_IPV4_IHL,
2867 MVPP2_PRS_IPV4_HEAD_MASK |
2868 MVPP2_PRS_IPV4_IHL_MASK);
2870 mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_IP4);
2871 mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_L3_IP4,
2872 MVPP2_PRS_RI_L3_PROTO_MASK);
2873 /* Skip eth_type + 4 bytes of IP header */
2874 mvpp2_prs_sram_shift_set(&pe, MVPP2_ETH_TYPE_LEN + 4,
2875 MVPP2_PRS_SRAM_OP_SEL_SHIFT_ADD);
2876 /* Set L3 offset */
2877 mvpp2_prs_sram_offset_set(&pe, MVPP2_PRS_SRAM_UDF_TYPE_L3,
2878 MVPP2_ETH_TYPE_LEN,
2879 MVPP2_PRS_SRAM_OP_SEL_UDF_ADD);
2881 /* Update shadow table and hw entry */
2882 mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_L2);
2883 priv->prs_shadow[pe.index].udf = MVPP2_PRS_UDF_L2_DEF;
2884 priv->prs_shadow[pe.index].finish = false;
2885 mvpp2_prs_shadow_ri_set(priv, pe.index, MVPP2_PRS_RI_L3_IP4,
2886 MVPP2_PRS_RI_L3_PROTO_MASK);
2887 mvpp2_prs_hw_write(priv, &pe);
2889 /* Ethertype: IPv4 with options */
2890 tid = mvpp2_prs_tcam_first_free(priv, MVPP2_PE_FIRST_FREE_TID,
2891 MVPP2_PE_LAST_FREE_TID);
2892 if (tid < 0)
2893 return tid;
2895 pe.index = tid;
2897 /* Clear tcam data before updating */
2898 pe.tcam.byte[MVPP2_PRS_TCAM_DATA_BYTE(MVPP2_ETH_TYPE_LEN)] = 0x0;
2899 pe.tcam.byte[MVPP2_PRS_TCAM_DATA_BYTE_EN(MVPP2_ETH_TYPE_LEN)] = 0x0;
2901 mvpp2_prs_tcam_data_byte_set(&pe, MVPP2_ETH_TYPE_LEN,
2902 MVPP2_PRS_IPV4_HEAD,
2903 MVPP2_PRS_IPV4_HEAD_MASK);
2905 /* Clear ri before updating */
2906 pe.sram.word[MVPP2_PRS_SRAM_RI_WORD] = 0x0;
2907 pe.sram.word[MVPP2_PRS_SRAM_RI_CTRL_WORD] = 0x0;
2908 mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_L3_IP4_OPT,
2909 MVPP2_PRS_RI_L3_PROTO_MASK);
2911 /* Update shadow table and hw entry */
2912 mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_L2);
2913 priv->prs_shadow[pe.index].udf = MVPP2_PRS_UDF_L2_DEF;
2914 priv->prs_shadow[pe.index].finish = false;
2915 mvpp2_prs_shadow_ri_set(priv, pe.index, MVPP2_PRS_RI_L3_IP4_OPT,
2916 MVPP2_PRS_RI_L3_PROTO_MASK);
2917 mvpp2_prs_hw_write(priv, &pe);
2919 /* Ethertype: IPv6 without options */
2920 tid = mvpp2_prs_tcam_first_free(priv, MVPP2_PE_FIRST_FREE_TID,
2921 MVPP2_PE_LAST_FREE_TID);
2922 if (tid < 0)
2923 return tid;
2925 memset(&pe, 0, sizeof(pe));
2926 mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_L2);
2927 pe.index = tid;
2929 mvpp2_prs_match_etype(&pe, 0, ETH_P_IPV6);
2931 /* Skip DIP of IPV6 header */
2932 mvpp2_prs_sram_shift_set(&pe, MVPP2_ETH_TYPE_LEN + 8 +
2933 MVPP2_MAX_L3_ADDR_SIZE,
2934 MVPP2_PRS_SRAM_OP_SEL_SHIFT_ADD);
2935 mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_IP6);
2936 mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_L3_IP6,
2937 MVPP2_PRS_RI_L3_PROTO_MASK);
2938 /* Set L3 offset */
2939 mvpp2_prs_sram_offset_set(&pe, MVPP2_PRS_SRAM_UDF_TYPE_L3,
2940 MVPP2_ETH_TYPE_LEN,
2941 MVPP2_PRS_SRAM_OP_SEL_UDF_ADD);
2943 mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_L2);
2944 priv->prs_shadow[pe.index].udf = MVPP2_PRS_UDF_L2_DEF;
2945 priv->prs_shadow[pe.index].finish = false;
2946 mvpp2_prs_shadow_ri_set(priv, pe.index, MVPP2_PRS_RI_L3_IP6,
2947 MVPP2_PRS_RI_L3_PROTO_MASK);
2948 mvpp2_prs_hw_write(priv, &pe);
2950 /* Default entry for MVPP2_PRS_LU_L2 - Unknown ethtype */
2951 memset(&pe, 0, sizeof(struct mvpp2_prs_entry));
2952 mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_L2);
2953 pe.index = MVPP2_PE_ETH_TYPE_UN;
2955 /* Unmask all ports */
2956 mvpp2_prs_tcam_port_map_set(&pe, MVPP2_PRS_PORT_MASK);
2958 /* Generate flow in the next iteration*/
2959 mvpp2_prs_sram_bits_set(&pe, MVPP2_PRS_SRAM_LU_GEN_BIT, 1);
2960 mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_FLOWS);
2961 mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_L3_UN,
2962 MVPP2_PRS_RI_L3_PROTO_MASK);
2963 /* Set L3 offset even it's unknown L3 */
2964 mvpp2_prs_sram_offset_set(&pe, MVPP2_PRS_SRAM_UDF_TYPE_L3,
2965 MVPP2_ETH_TYPE_LEN,
2966 MVPP2_PRS_SRAM_OP_SEL_UDF_ADD);
2968 /* Update shadow table and hw entry */
2969 mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_L2);
2970 priv->prs_shadow[pe.index].udf = MVPP2_PRS_UDF_L2_DEF;
2971 priv->prs_shadow[pe.index].finish = true;
2972 mvpp2_prs_shadow_ri_set(priv, pe.index, MVPP2_PRS_RI_L3_UN,
2973 MVPP2_PRS_RI_L3_PROTO_MASK);
2974 mvpp2_prs_hw_write(priv, &pe);
2976 return 0;
2979 /* Configure vlan entries and detect up to 2 successive VLAN tags.
2980 * Possible options:
2981 * 0x8100, 0x88A8
2982 * 0x8100, 0x8100
2983 * 0x8100
2984 * 0x88A8
2986 static int mvpp2_prs_vlan_init(struct platform_device *pdev, struct mvpp2 *priv)
2988 struct mvpp2_prs_entry pe;
2989 int err;
2991 priv->prs_double_vlans = devm_kcalloc(&pdev->dev, sizeof(bool),
2992 MVPP2_PRS_DBL_VLANS_MAX,
2993 GFP_KERNEL);
2994 if (!priv->prs_double_vlans)
2995 return -ENOMEM;
2997 /* Double VLAN: 0x8100, 0x88A8 */
2998 err = mvpp2_prs_double_vlan_add(priv, ETH_P_8021Q, ETH_P_8021AD,
2999 MVPP2_PRS_PORT_MASK);
3000 if (err)
3001 return err;
3003 /* Double VLAN: 0x8100, 0x8100 */
3004 err = mvpp2_prs_double_vlan_add(priv, ETH_P_8021Q, ETH_P_8021Q,
3005 MVPP2_PRS_PORT_MASK);
3006 if (err)
3007 return err;
3009 /* Single VLAN: 0x88a8 */
3010 err = mvpp2_prs_vlan_add(priv, ETH_P_8021AD, MVPP2_PRS_SINGLE_VLAN_AI,
3011 MVPP2_PRS_PORT_MASK);
3012 if (err)
3013 return err;
3015 /* Single VLAN: 0x8100 */
3016 err = mvpp2_prs_vlan_add(priv, ETH_P_8021Q, MVPP2_PRS_SINGLE_VLAN_AI,
3017 MVPP2_PRS_PORT_MASK);
3018 if (err)
3019 return err;
3021 /* Set default double vlan entry */
3022 memset(&pe, 0, sizeof(pe));
3023 mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_VLAN);
3024 pe.index = MVPP2_PE_VLAN_DBL;
3026 mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_L2);
3027 /* Clear ai for next iterations */
3028 mvpp2_prs_sram_ai_update(&pe, 0, MVPP2_PRS_SRAM_AI_MASK);
3029 mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_VLAN_DOUBLE,
3030 MVPP2_PRS_RI_VLAN_MASK);
3032 mvpp2_prs_tcam_ai_update(&pe, MVPP2_PRS_DBL_VLAN_AI_BIT,
3033 MVPP2_PRS_DBL_VLAN_AI_BIT);
3034 /* Unmask all ports */
3035 mvpp2_prs_tcam_port_map_set(&pe, MVPP2_PRS_PORT_MASK);
3037 /* Update shadow table and hw entry */
3038 mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_VLAN);
3039 mvpp2_prs_hw_write(priv, &pe);
3041 /* Set default vlan none entry */
3042 memset(&pe, 0, sizeof(pe));
3043 mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_VLAN);
3044 pe.index = MVPP2_PE_VLAN_NONE;
3046 mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_L2);
3047 mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_VLAN_NONE,
3048 MVPP2_PRS_RI_VLAN_MASK);
3050 /* Unmask all ports */
3051 mvpp2_prs_tcam_port_map_set(&pe, MVPP2_PRS_PORT_MASK);
3053 /* Update shadow table and hw entry */
3054 mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_VLAN);
3055 mvpp2_prs_hw_write(priv, &pe);
3057 return 0;
3060 /* Set entries for PPPoE ethertype */
3061 static int mvpp2_prs_pppoe_init(struct mvpp2 *priv)
3063 struct mvpp2_prs_entry pe;
3064 int tid;
3066 /* IPv4 over PPPoE with options */
3067 tid = mvpp2_prs_tcam_first_free(priv, MVPP2_PE_FIRST_FREE_TID,
3068 MVPP2_PE_LAST_FREE_TID);
3069 if (tid < 0)
3070 return tid;
3072 memset(&pe, 0, sizeof(pe));
3073 mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_PPPOE);
3074 pe.index = tid;
3076 mvpp2_prs_match_etype(&pe, 0, PPP_IP);
3078 mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_IP4);
3079 mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_L3_IP4_OPT,
3080 MVPP2_PRS_RI_L3_PROTO_MASK);
3081 /* Skip eth_type + 4 bytes of IP header */
3082 mvpp2_prs_sram_shift_set(&pe, MVPP2_ETH_TYPE_LEN + 4,
3083 MVPP2_PRS_SRAM_OP_SEL_SHIFT_ADD);
3084 /* Set L3 offset */
3085 mvpp2_prs_sram_offset_set(&pe, MVPP2_PRS_SRAM_UDF_TYPE_L3,
3086 MVPP2_ETH_TYPE_LEN,
3087 MVPP2_PRS_SRAM_OP_SEL_UDF_ADD);
3089 /* Update shadow table and hw entry */
3090 mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_PPPOE);
3091 mvpp2_prs_hw_write(priv, &pe);
3093 /* IPv4 over PPPoE without options */
3094 tid = mvpp2_prs_tcam_first_free(priv, MVPP2_PE_FIRST_FREE_TID,
3095 MVPP2_PE_LAST_FREE_TID);
3096 if (tid < 0)
3097 return tid;
3099 pe.index = tid;
3101 mvpp2_prs_tcam_data_byte_set(&pe, MVPP2_ETH_TYPE_LEN,
3102 MVPP2_PRS_IPV4_HEAD | MVPP2_PRS_IPV4_IHL,
3103 MVPP2_PRS_IPV4_HEAD_MASK |
3104 MVPP2_PRS_IPV4_IHL_MASK);
3106 /* Clear ri before updating */
3107 pe.sram.word[MVPP2_PRS_SRAM_RI_WORD] = 0x0;
3108 pe.sram.word[MVPP2_PRS_SRAM_RI_CTRL_WORD] = 0x0;
3109 mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_L3_IP4,
3110 MVPP2_PRS_RI_L3_PROTO_MASK);
3112 /* Update shadow table and hw entry */
3113 mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_PPPOE);
3114 mvpp2_prs_hw_write(priv, &pe);
3116 /* IPv6 over PPPoE */
3117 tid = mvpp2_prs_tcam_first_free(priv, MVPP2_PE_FIRST_FREE_TID,
3118 MVPP2_PE_LAST_FREE_TID);
3119 if (tid < 0)
3120 return tid;
3122 memset(&pe, 0, sizeof(pe));
3123 mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_PPPOE);
3124 pe.index = tid;
3126 mvpp2_prs_match_etype(&pe, 0, PPP_IPV6);
3128 mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_IP6);
3129 mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_L3_IP6,
3130 MVPP2_PRS_RI_L3_PROTO_MASK);
3131 /* Skip eth_type + 4 bytes of IPv6 header */
3132 mvpp2_prs_sram_shift_set(&pe, MVPP2_ETH_TYPE_LEN + 4,
3133 MVPP2_PRS_SRAM_OP_SEL_SHIFT_ADD);
3134 /* Set L3 offset */
3135 mvpp2_prs_sram_offset_set(&pe, MVPP2_PRS_SRAM_UDF_TYPE_L3,
3136 MVPP2_ETH_TYPE_LEN,
3137 MVPP2_PRS_SRAM_OP_SEL_UDF_ADD);
3139 /* Update shadow table and hw entry */
3140 mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_PPPOE);
3141 mvpp2_prs_hw_write(priv, &pe);
3143 /* Non-IP over PPPoE */
3144 tid = mvpp2_prs_tcam_first_free(priv, MVPP2_PE_FIRST_FREE_TID,
3145 MVPP2_PE_LAST_FREE_TID);
3146 if (tid < 0)
3147 return tid;
3149 memset(&pe, 0, sizeof(pe));
3150 mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_PPPOE);
3151 pe.index = tid;
3153 mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_L3_UN,
3154 MVPP2_PRS_RI_L3_PROTO_MASK);
3156 /* Finished: go to flowid generation */
3157 mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_FLOWS);
3158 mvpp2_prs_sram_bits_set(&pe, MVPP2_PRS_SRAM_LU_GEN_BIT, 1);
3159 /* Set L3 offset even if it's unknown L3 */
3160 mvpp2_prs_sram_offset_set(&pe, MVPP2_PRS_SRAM_UDF_TYPE_L3,
3161 MVPP2_ETH_TYPE_LEN,
3162 MVPP2_PRS_SRAM_OP_SEL_UDF_ADD);
3164 /* Update shadow table and hw entry */
3165 mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_PPPOE);
3166 mvpp2_prs_hw_write(priv, &pe);
3168 return 0;
3171 /* Initialize entries for IPv4 */
3172 static int mvpp2_prs_ip4_init(struct mvpp2 *priv)
3174 struct mvpp2_prs_entry pe;
3175 int err;
3177 /* Set entries for TCP, UDP and IGMP over IPv4 */
3178 err = mvpp2_prs_ip4_proto(priv, IPPROTO_TCP, MVPP2_PRS_RI_L4_TCP,
3179 MVPP2_PRS_RI_L4_PROTO_MASK);
3180 if (err)
3181 return err;
3183 err = mvpp2_prs_ip4_proto(priv, IPPROTO_UDP, MVPP2_PRS_RI_L4_UDP,
3184 MVPP2_PRS_RI_L4_PROTO_MASK);
3185 if (err)
3186 return err;
3188 err = mvpp2_prs_ip4_proto(priv, IPPROTO_IGMP,
3189 MVPP2_PRS_RI_CPU_CODE_RX_SPEC |
3190 MVPP2_PRS_RI_UDF3_RX_SPECIAL,
3191 MVPP2_PRS_RI_CPU_CODE_MASK |
3192 MVPP2_PRS_RI_UDF3_MASK);
3193 if (err)
3194 return err;
3196 /* IPv4 Broadcast */
3197 err = mvpp2_prs_ip4_cast(priv, MVPP2_PRS_L3_BROAD_CAST);
3198 if (err)
3199 return err;
3201 /* IPv4 Multicast */
3202 err = mvpp2_prs_ip4_cast(priv, MVPP2_PRS_L3_MULTI_CAST);
3203 if (err)
3204 return err;
3206 /* Default IPv4 entry for unknown protocols */
3207 memset(&pe, 0, sizeof(pe));
3208 mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_IP4);
3209 pe.index = MVPP2_PE_IP4_PROTO_UN;
3211 /* Set next lu to IPv4 */
3212 mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_IP4);
3213 mvpp2_prs_sram_shift_set(&pe, 12, MVPP2_PRS_SRAM_OP_SEL_SHIFT_ADD);
3214 /* Set L4 offset */
3215 mvpp2_prs_sram_offset_set(&pe, MVPP2_PRS_SRAM_UDF_TYPE_L4,
3216 sizeof(struct iphdr) - 4,
3217 MVPP2_PRS_SRAM_OP_SEL_UDF_ADD);
3218 mvpp2_prs_sram_ai_update(&pe, MVPP2_PRS_IPV4_DIP_AI_BIT,
3219 MVPP2_PRS_IPV4_DIP_AI_BIT);
3220 mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_L4_OTHER,
3221 MVPP2_PRS_RI_L4_PROTO_MASK);
3223 mvpp2_prs_tcam_ai_update(&pe, 0, MVPP2_PRS_IPV4_DIP_AI_BIT);
3224 /* Unmask all ports */
3225 mvpp2_prs_tcam_port_map_set(&pe, MVPP2_PRS_PORT_MASK);
3227 /* Update shadow table and hw entry */
3228 mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_IP4);
3229 mvpp2_prs_hw_write(priv, &pe);
3231 /* Default IPv4 entry for unicast address */
3232 memset(&pe, 0, sizeof(pe));
3233 mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_IP4);
3234 pe.index = MVPP2_PE_IP4_ADDR_UN;
3236 /* Finished: go to flowid generation */
3237 mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_FLOWS);
3238 mvpp2_prs_sram_bits_set(&pe, MVPP2_PRS_SRAM_LU_GEN_BIT, 1);
3239 mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_L3_UCAST,
3240 MVPP2_PRS_RI_L3_ADDR_MASK);
3242 mvpp2_prs_tcam_ai_update(&pe, MVPP2_PRS_IPV4_DIP_AI_BIT,
3243 MVPP2_PRS_IPV4_DIP_AI_BIT);
3244 /* Unmask all ports */
3245 mvpp2_prs_tcam_port_map_set(&pe, MVPP2_PRS_PORT_MASK);
3247 /* Update shadow table and hw entry */
3248 mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_IP4);
3249 mvpp2_prs_hw_write(priv, &pe);
3251 return 0;
3254 /* Initialize entries for IPv6 */
3255 static int mvpp2_prs_ip6_init(struct mvpp2 *priv)
3257 struct mvpp2_prs_entry pe;
3258 int tid, err;
3260 /* Set entries for TCP, UDP and ICMP over IPv6 */
3261 err = mvpp2_prs_ip6_proto(priv, IPPROTO_TCP,
3262 MVPP2_PRS_RI_L4_TCP,
3263 MVPP2_PRS_RI_L4_PROTO_MASK);
3264 if (err)
3265 return err;
3267 err = mvpp2_prs_ip6_proto(priv, IPPROTO_UDP,
3268 MVPP2_PRS_RI_L4_UDP,
3269 MVPP2_PRS_RI_L4_PROTO_MASK);
3270 if (err)
3271 return err;
3273 err = mvpp2_prs_ip6_proto(priv, IPPROTO_ICMPV6,
3274 MVPP2_PRS_RI_CPU_CODE_RX_SPEC |
3275 MVPP2_PRS_RI_UDF3_RX_SPECIAL,
3276 MVPP2_PRS_RI_CPU_CODE_MASK |
3277 MVPP2_PRS_RI_UDF3_MASK);
3278 if (err)
3279 return err;
3281 /* IPv4 is the last header. This is similar case as 6-TCP or 17-UDP */
3282 /* Result Info: UDF7=1, DS lite */
3283 err = mvpp2_prs_ip6_proto(priv, IPPROTO_IPIP,
3284 MVPP2_PRS_RI_UDF7_IP6_LITE,
3285 MVPP2_PRS_RI_UDF7_MASK);
3286 if (err)
3287 return err;
3289 /* IPv6 multicast */
3290 err = mvpp2_prs_ip6_cast(priv, MVPP2_PRS_L3_MULTI_CAST);
3291 if (err)
3292 return err;
3294 /* Entry for checking hop limit */
3295 tid = mvpp2_prs_tcam_first_free(priv, MVPP2_PE_FIRST_FREE_TID,
3296 MVPP2_PE_LAST_FREE_TID);
3297 if (tid < 0)
3298 return tid;
3300 memset(&pe, 0, sizeof(pe));
3301 mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_IP6);
3302 pe.index = tid;
3304 /* Finished: go to flowid generation */
3305 mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_FLOWS);
3306 mvpp2_prs_sram_bits_set(&pe, MVPP2_PRS_SRAM_LU_GEN_BIT, 1);
3307 mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_L3_UN |
3308 MVPP2_PRS_RI_DROP_MASK,
3309 MVPP2_PRS_RI_L3_PROTO_MASK |
3310 MVPP2_PRS_RI_DROP_MASK);
3312 mvpp2_prs_tcam_data_byte_set(&pe, 1, 0x00, MVPP2_PRS_IPV6_HOP_MASK);
3313 mvpp2_prs_tcam_ai_update(&pe, MVPP2_PRS_IPV6_NO_EXT_AI_BIT,
3314 MVPP2_PRS_IPV6_NO_EXT_AI_BIT);
3316 /* Update shadow table and hw entry */
3317 mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_IP4);
3318 mvpp2_prs_hw_write(priv, &pe);
3320 /* Default IPv6 entry for unknown protocols */
3321 memset(&pe, 0, sizeof(pe));
3322 mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_IP6);
3323 pe.index = MVPP2_PE_IP6_PROTO_UN;
3325 /* Finished: go to flowid generation */
3326 mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_FLOWS);
3327 mvpp2_prs_sram_bits_set(&pe, MVPP2_PRS_SRAM_LU_GEN_BIT, 1);
3328 mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_L4_OTHER,
3329 MVPP2_PRS_RI_L4_PROTO_MASK);
3330 /* Set L4 offset relatively to our current place */
3331 mvpp2_prs_sram_offset_set(&pe, MVPP2_PRS_SRAM_UDF_TYPE_L4,
3332 sizeof(struct ipv6hdr) - 4,
3333 MVPP2_PRS_SRAM_OP_SEL_UDF_ADD);
3335 mvpp2_prs_tcam_ai_update(&pe, MVPP2_PRS_IPV6_NO_EXT_AI_BIT,
3336 MVPP2_PRS_IPV6_NO_EXT_AI_BIT);
3337 /* Unmask all ports */
3338 mvpp2_prs_tcam_port_map_set(&pe, MVPP2_PRS_PORT_MASK);
3340 /* Update shadow table and hw entry */
3341 mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_IP4);
3342 mvpp2_prs_hw_write(priv, &pe);
3344 /* Default IPv6 entry for unknown ext protocols */
3345 memset(&pe, 0, sizeof(struct mvpp2_prs_entry));
3346 mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_IP6);
3347 pe.index = MVPP2_PE_IP6_EXT_PROTO_UN;
3349 /* Finished: go to flowid generation */
3350 mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_FLOWS);
3351 mvpp2_prs_sram_bits_set(&pe, MVPP2_PRS_SRAM_LU_GEN_BIT, 1);
3352 mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_L4_OTHER,
3353 MVPP2_PRS_RI_L4_PROTO_MASK);
3355 mvpp2_prs_tcam_ai_update(&pe, MVPP2_PRS_IPV6_EXT_AI_BIT,
3356 MVPP2_PRS_IPV6_EXT_AI_BIT);
3357 /* Unmask all ports */
3358 mvpp2_prs_tcam_port_map_set(&pe, MVPP2_PRS_PORT_MASK);
3360 /* Update shadow table and hw entry */
3361 mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_IP4);
3362 mvpp2_prs_hw_write(priv, &pe);
3364 /* Default IPv6 entry for unicast address */
3365 memset(&pe, 0, sizeof(struct mvpp2_prs_entry));
3366 mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_IP6);
3367 pe.index = MVPP2_PE_IP6_ADDR_UN;
3369 /* Finished: go to IPv6 again */
3370 mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_IP6);
3371 mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_L3_UCAST,
3372 MVPP2_PRS_RI_L3_ADDR_MASK);
3373 mvpp2_prs_sram_ai_update(&pe, MVPP2_PRS_IPV6_NO_EXT_AI_BIT,
3374 MVPP2_PRS_IPV6_NO_EXT_AI_BIT);
3375 /* Shift back to IPV6 NH */
3376 mvpp2_prs_sram_shift_set(&pe, -18, MVPP2_PRS_SRAM_OP_SEL_SHIFT_ADD);
3378 mvpp2_prs_tcam_ai_update(&pe, 0, MVPP2_PRS_IPV6_NO_EXT_AI_BIT);
3379 /* Unmask all ports */
3380 mvpp2_prs_tcam_port_map_set(&pe, MVPP2_PRS_PORT_MASK);
3382 /* Update shadow table and hw entry */
3383 mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_IP6);
3384 mvpp2_prs_hw_write(priv, &pe);
3386 return 0;
3389 /* Parser default initialization */
3390 static int mvpp2_prs_default_init(struct platform_device *pdev,
3391 struct mvpp2 *priv)
3393 int err, index, i;
3395 /* Enable tcam table */
3396 mvpp2_write(priv, MVPP2_PRS_TCAM_CTRL_REG, MVPP2_PRS_TCAM_EN_MASK);
3398 /* Clear all tcam and sram entries */
3399 for (index = 0; index < MVPP2_PRS_TCAM_SRAM_SIZE; index++) {
3400 mvpp2_write(priv, MVPP2_PRS_TCAM_IDX_REG, index);
3401 for (i = 0; i < MVPP2_PRS_TCAM_WORDS; i++)
3402 mvpp2_write(priv, MVPP2_PRS_TCAM_DATA_REG(i), 0);
3404 mvpp2_write(priv, MVPP2_PRS_SRAM_IDX_REG, index);
3405 for (i = 0; i < MVPP2_PRS_SRAM_WORDS; i++)
3406 mvpp2_write(priv, MVPP2_PRS_SRAM_DATA_REG(i), 0);
3409 /* Invalidate all tcam entries */
3410 for (index = 0; index < MVPP2_PRS_TCAM_SRAM_SIZE; index++)
3411 mvpp2_prs_hw_inv(priv, index);
3413 priv->prs_shadow = devm_kcalloc(&pdev->dev, MVPP2_PRS_TCAM_SRAM_SIZE,
3414 sizeof(*priv->prs_shadow),
3415 GFP_KERNEL);
3416 if (!priv->prs_shadow)
3417 return -ENOMEM;
3419 /* Always start from lookup = 0 */
3420 for (index = 0; index < MVPP2_MAX_PORTS; index++)
3421 mvpp2_prs_hw_port_init(priv, index, MVPP2_PRS_LU_MH,
3422 MVPP2_PRS_PORT_LU_MAX, 0);
3424 mvpp2_prs_def_flow_init(priv);
3426 mvpp2_prs_mh_init(priv);
3428 mvpp2_prs_mac_init(priv);
3430 mvpp2_prs_dsa_init(priv);
3432 err = mvpp2_prs_etype_init(priv);
3433 if (err)
3434 return err;
3436 err = mvpp2_prs_vlan_init(pdev, priv);
3437 if (err)
3438 return err;
3440 err = mvpp2_prs_pppoe_init(priv);
3441 if (err)
3442 return err;
3444 err = mvpp2_prs_ip6_init(priv);
3445 if (err)
3446 return err;
3448 err = mvpp2_prs_ip4_init(priv);
3449 if (err)
3450 return err;
3452 return 0;
3455 /* Compare MAC DA with tcam entry data */
3456 static bool mvpp2_prs_mac_range_equals(struct mvpp2_prs_entry *pe,
3457 const u8 *da, unsigned char *mask)
3459 unsigned char tcam_byte, tcam_mask;
3460 int index;
3462 for (index = 0; index < ETH_ALEN; index++) {
3463 mvpp2_prs_tcam_data_byte_get(pe, index, &tcam_byte, &tcam_mask);
3464 if (tcam_mask != mask[index])
3465 return false;
3467 if ((tcam_mask & tcam_byte) != (da[index] & mask[index]))
3468 return false;
3471 return true;
3474 /* Find tcam entry with matched pair <MAC DA, port> */
3475 static struct mvpp2_prs_entry *
3476 mvpp2_prs_mac_da_range_find(struct mvpp2 *priv, int pmap, const u8 *da,
3477 unsigned char *mask, int udf_type)
3479 struct mvpp2_prs_entry *pe;
3480 int tid;
3482 pe = kzalloc(sizeof(*pe), GFP_ATOMIC);
3483 if (!pe)
3484 return NULL;
3485 mvpp2_prs_tcam_lu_set(pe, MVPP2_PRS_LU_MAC);
3487 /* Go through the all entires with MVPP2_PRS_LU_MAC */
3488 for (tid = MVPP2_PE_FIRST_FREE_TID;
3489 tid <= MVPP2_PE_LAST_FREE_TID; tid++) {
3490 unsigned int entry_pmap;
3492 if (!priv->prs_shadow[tid].valid ||
3493 (priv->prs_shadow[tid].lu != MVPP2_PRS_LU_MAC) ||
3494 (priv->prs_shadow[tid].udf != udf_type))
3495 continue;
3497 pe->index = tid;
3498 mvpp2_prs_hw_read(priv, pe);
3499 entry_pmap = mvpp2_prs_tcam_port_map_get(pe);
3501 if (mvpp2_prs_mac_range_equals(pe, da, mask) &&
3502 entry_pmap == pmap)
3503 return pe;
3505 kfree(pe);
3507 return NULL;
3510 /* Update parser's mac da entry */
3511 static int mvpp2_prs_mac_da_accept(struct mvpp2 *priv, int port,
3512 const u8 *da, bool add)
3514 struct mvpp2_prs_entry *pe;
3515 unsigned int pmap, len, ri;
3516 unsigned char mask[ETH_ALEN] = { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff };
3517 int tid;
3519 /* Scan TCAM and see if entry with this <MAC DA, port> already exist */
3520 pe = mvpp2_prs_mac_da_range_find(priv, (1 << port), da, mask,
3521 MVPP2_PRS_UDF_MAC_DEF);
3523 /* No such entry */
3524 if (!pe) {
3525 if (!add)
3526 return 0;
3528 /* Create new TCAM entry */
3529 /* Find first range mac entry*/
3530 for (tid = MVPP2_PE_FIRST_FREE_TID;
3531 tid <= MVPP2_PE_LAST_FREE_TID; tid++)
3532 if (priv->prs_shadow[tid].valid &&
3533 (priv->prs_shadow[tid].lu == MVPP2_PRS_LU_MAC) &&
3534 (priv->prs_shadow[tid].udf ==
3535 MVPP2_PRS_UDF_MAC_RANGE))
3536 break;
3538 /* Go through the all entries from first to last */
3539 tid = mvpp2_prs_tcam_first_free(priv, MVPP2_PE_FIRST_FREE_TID,
3540 tid - 1);
3541 if (tid < 0)
3542 return tid;
3544 pe = kzalloc(sizeof(*pe), GFP_ATOMIC);
3545 if (!pe)
3546 return -ENOMEM;
3547 mvpp2_prs_tcam_lu_set(pe, MVPP2_PRS_LU_MAC);
3548 pe->index = tid;
3550 /* Mask all ports */
3551 mvpp2_prs_tcam_port_map_set(pe, 0);
3554 /* Update port mask */
3555 mvpp2_prs_tcam_port_set(pe, port, add);
3557 /* Invalidate the entry if no ports are left enabled */
3558 pmap = mvpp2_prs_tcam_port_map_get(pe);
3559 if (pmap == 0) {
3560 if (add) {
3561 kfree(pe);
3562 return -EINVAL;
3564 mvpp2_prs_hw_inv(priv, pe->index);
3565 priv->prs_shadow[pe->index].valid = false;
3566 kfree(pe);
3567 return 0;
3570 /* Continue - set next lookup */
3571 mvpp2_prs_sram_next_lu_set(pe, MVPP2_PRS_LU_DSA);
3573 /* Set match on DA */
3574 len = ETH_ALEN;
3575 while (len--)
3576 mvpp2_prs_tcam_data_byte_set(pe, len, da[len], 0xff);
3578 /* Set result info bits */
3579 if (is_broadcast_ether_addr(da))
3580 ri = MVPP2_PRS_RI_L2_BCAST;
3581 else if (is_multicast_ether_addr(da))
3582 ri = MVPP2_PRS_RI_L2_MCAST;
3583 else
3584 ri = MVPP2_PRS_RI_L2_UCAST | MVPP2_PRS_RI_MAC_ME_MASK;
3586 mvpp2_prs_sram_ri_update(pe, ri, MVPP2_PRS_RI_L2_CAST_MASK |
3587 MVPP2_PRS_RI_MAC_ME_MASK);
3588 mvpp2_prs_shadow_ri_set(priv, pe->index, ri, MVPP2_PRS_RI_L2_CAST_MASK |
3589 MVPP2_PRS_RI_MAC_ME_MASK);
3591 /* Shift to ethertype */
3592 mvpp2_prs_sram_shift_set(pe, 2 * ETH_ALEN,
3593 MVPP2_PRS_SRAM_OP_SEL_SHIFT_ADD);
3595 /* Update shadow table and hw entry */
3596 priv->prs_shadow[pe->index].udf = MVPP2_PRS_UDF_MAC_DEF;
3597 mvpp2_prs_shadow_set(priv, pe->index, MVPP2_PRS_LU_MAC);
3598 mvpp2_prs_hw_write(priv, pe);
3600 kfree(pe);
3602 return 0;
3605 static int mvpp2_prs_update_mac_da(struct net_device *dev, const u8 *da)
3607 struct mvpp2_port *port = netdev_priv(dev);
3608 int err;
3610 /* Remove old parser entry */
3611 err = mvpp2_prs_mac_da_accept(port->priv, port->id, dev->dev_addr,
3612 false);
3613 if (err)
3614 return err;
3616 /* Add new parser entry */
3617 err = mvpp2_prs_mac_da_accept(port->priv, port->id, da, true);
3618 if (err)
3619 return err;
3621 /* Set addr in the device */
3622 ether_addr_copy(dev->dev_addr, da);
3624 return 0;
3627 /* Delete all port's multicast simple (not range) entries */
3628 static void mvpp2_prs_mcast_del_all(struct mvpp2 *priv, int port)
3630 struct mvpp2_prs_entry pe;
3631 int index, tid;
3633 for (tid = MVPP2_PE_FIRST_FREE_TID;
3634 tid <= MVPP2_PE_LAST_FREE_TID; tid++) {
3635 unsigned char da[ETH_ALEN], da_mask[ETH_ALEN];
3637 if (!priv->prs_shadow[tid].valid ||
3638 (priv->prs_shadow[tid].lu != MVPP2_PRS_LU_MAC) ||
3639 (priv->prs_shadow[tid].udf != MVPP2_PRS_UDF_MAC_DEF))
3640 continue;
3642 /* Only simple mac entries */
3643 pe.index = tid;
3644 mvpp2_prs_hw_read(priv, &pe);
3646 /* Read mac addr from entry */
3647 for (index = 0; index < ETH_ALEN; index++)
3648 mvpp2_prs_tcam_data_byte_get(&pe, index, &da[index],
3649 &da_mask[index]);
3651 if (is_multicast_ether_addr(da) && !is_broadcast_ether_addr(da))
3652 /* Delete this entry */
3653 mvpp2_prs_mac_da_accept(priv, port, da, false);
3657 static int mvpp2_prs_tag_mode_set(struct mvpp2 *priv, int port, int type)
3659 switch (type) {
3660 case MVPP2_TAG_TYPE_EDSA:
3661 /* Add port to EDSA entries */
3662 mvpp2_prs_dsa_tag_set(priv, port, true,
3663 MVPP2_PRS_TAGGED, MVPP2_PRS_EDSA);
3664 mvpp2_prs_dsa_tag_set(priv, port, true,
3665 MVPP2_PRS_UNTAGGED, MVPP2_PRS_EDSA);
3666 /* Remove port from DSA entries */
3667 mvpp2_prs_dsa_tag_set(priv, port, false,
3668 MVPP2_PRS_TAGGED, MVPP2_PRS_DSA);
3669 mvpp2_prs_dsa_tag_set(priv, port, false,
3670 MVPP2_PRS_UNTAGGED, MVPP2_PRS_DSA);
3671 break;
3673 case MVPP2_TAG_TYPE_DSA:
3674 /* Add port to DSA entries */
3675 mvpp2_prs_dsa_tag_set(priv, port, true,
3676 MVPP2_PRS_TAGGED, MVPP2_PRS_DSA);
3677 mvpp2_prs_dsa_tag_set(priv, port, true,
3678 MVPP2_PRS_UNTAGGED, MVPP2_PRS_DSA);
3679 /* Remove port from EDSA entries */
3680 mvpp2_prs_dsa_tag_set(priv, port, false,
3681 MVPP2_PRS_TAGGED, MVPP2_PRS_EDSA);
3682 mvpp2_prs_dsa_tag_set(priv, port, false,
3683 MVPP2_PRS_UNTAGGED, MVPP2_PRS_EDSA);
3684 break;
3686 case MVPP2_TAG_TYPE_MH:
3687 case MVPP2_TAG_TYPE_NONE:
3688 /* Remove port form EDSA and DSA entries */
3689 mvpp2_prs_dsa_tag_set(priv, port, false,
3690 MVPP2_PRS_TAGGED, MVPP2_PRS_DSA);
3691 mvpp2_prs_dsa_tag_set(priv, port, false,
3692 MVPP2_PRS_UNTAGGED, MVPP2_PRS_DSA);
3693 mvpp2_prs_dsa_tag_set(priv, port, false,
3694 MVPP2_PRS_TAGGED, MVPP2_PRS_EDSA);
3695 mvpp2_prs_dsa_tag_set(priv, port, false,
3696 MVPP2_PRS_UNTAGGED, MVPP2_PRS_EDSA);
3697 break;
3699 default:
3700 if ((type < 0) || (type > MVPP2_TAG_TYPE_EDSA))
3701 return -EINVAL;
3704 return 0;
3707 /* Set prs flow for the port */
3708 static int mvpp2_prs_def_flow(struct mvpp2_port *port)
3710 struct mvpp2_prs_entry *pe;
3711 int tid;
3713 pe = mvpp2_prs_flow_find(port->priv, port->id);
3715 /* Such entry not exist */
3716 if (!pe) {
3717 /* Go through the all entires from last to first */
3718 tid = mvpp2_prs_tcam_first_free(port->priv,
3719 MVPP2_PE_LAST_FREE_TID,
3720 MVPP2_PE_FIRST_FREE_TID);
3721 if (tid < 0)
3722 return tid;
3724 pe = kzalloc(sizeof(*pe), GFP_KERNEL);
3725 if (!pe)
3726 return -ENOMEM;
3728 mvpp2_prs_tcam_lu_set(pe, MVPP2_PRS_LU_FLOWS);
3729 pe->index = tid;
3731 /* Set flow ID*/
3732 mvpp2_prs_sram_ai_update(pe, port->id, MVPP2_PRS_FLOW_ID_MASK);
3733 mvpp2_prs_sram_bits_set(pe, MVPP2_PRS_SRAM_LU_DONE_BIT, 1);
3735 /* Update shadow table */
3736 mvpp2_prs_shadow_set(port->priv, pe->index, MVPP2_PRS_LU_FLOWS);
3739 mvpp2_prs_tcam_port_map_set(pe, (1 << port->id));
3740 mvpp2_prs_hw_write(port->priv, pe);
3741 kfree(pe);
3743 return 0;
3746 /* Classifier configuration routines */
3748 /* Update classification flow table registers */
3749 static void mvpp2_cls_flow_write(struct mvpp2 *priv,
3750 struct mvpp2_cls_flow_entry *fe)
3752 mvpp2_write(priv, MVPP2_CLS_FLOW_INDEX_REG, fe->index);
3753 mvpp2_write(priv, MVPP2_CLS_FLOW_TBL0_REG, fe->data[0]);
3754 mvpp2_write(priv, MVPP2_CLS_FLOW_TBL1_REG, fe->data[1]);
3755 mvpp2_write(priv, MVPP2_CLS_FLOW_TBL2_REG, fe->data[2]);
3758 /* Update classification lookup table register */
3759 static void mvpp2_cls_lookup_write(struct mvpp2 *priv,
3760 struct mvpp2_cls_lookup_entry *le)
3762 u32 val;
3764 val = (le->way << MVPP2_CLS_LKP_INDEX_WAY_OFFS) | le->lkpid;
3765 mvpp2_write(priv, MVPP2_CLS_LKP_INDEX_REG, val);
3766 mvpp2_write(priv, MVPP2_CLS_LKP_TBL_REG, le->data);
3769 /* Classifier default initialization */
3770 static void mvpp2_cls_init(struct mvpp2 *priv)
3772 struct mvpp2_cls_lookup_entry le;
3773 struct mvpp2_cls_flow_entry fe;
3774 int index;
3776 /* Enable classifier */
3777 mvpp2_write(priv, MVPP2_CLS_MODE_REG, MVPP2_CLS_MODE_ACTIVE_MASK);
3779 /* Clear classifier flow table */
3780 memset(&fe.data, 0, sizeof(fe.data));
3781 for (index = 0; index < MVPP2_CLS_FLOWS_TBL_SIZE; index++) {
3782 fe.index = index;
3783 mvpp2_cls_flow_write(priv, &fe);
3786 /* Clear classifier lookup table */
3787 le.data = 0;
3788 for (index = 0; index < MVPP2_CLS_LKP_TBL_SIZE; index++) {
3789 le.lkpid = index;
3790 le.way = 0;
3791 mvpp2_cls_lookup_write(priv, &le);
3793 le.way = 1;
3794 mvpp2_cls_lookup_write(priv, &le);
3798 static void mvpp2_cls_port_config(struct mvpp2_port *port)
3800 struct mvpp2_cls_lookup_entry le;
3801 u32 val;
3803 /* Set way for the port */
3804 val = mvpp2_read(port->priv, MVPP2_CLS_PORT_WAY_REG);
3805 val &= ~MVPP2_CLS_PORT_WAY_MASK(port->id);
3806 mvpp2_write(port->priv, MVPP2_CLS_PORT_WAY_REG, val);
3808 /* Pick the entry to be accessed in lookup ID decoding table
3809 * according to the way and lkpid.
3811 le.lkpid = port->id;
3812 le.way = 0;
3813 le.data = 0;
3815 /* Set initial CPU queue for receiving packets */
3816 le.data &= ~MVPP2_CLS_LKP_TBL_RXQ_MASK;
3817 le.data |= port->first_rxq;
3819 /* Disable classification engines */
3820 le.data &= ~MVPP2_CLS_LKP_TBL_LOOKUP_EN_MASK;
3822 /* Update lookup ID table entry */
3823 mvpp2_cls_lookup_write(port->priv, &le);
3826 /* Set CPU queue number for oversize packets */
3827 static void mvpp2_cls_oversize_rxq_set(struct mvpp2_port *port)
3829 u32 val;
3831 mvpp2_write(port->priv, MVPP2_CLS_OVERSIZE_RXQ_LOW_REG(port->id),
3832 port->first_rxq & MVPP2_CLS_OVERSIZE_RXQ_LOW_MASK);
3834 mvpp2_write(port->priv, MVPP2_CLS_SWFWD_P2HQ_REG(port->id),
3835 (port->first_rxq >> MVPP2_CLS_OVERSIZE_RXQ_LOW_BITS));
3837 val = mvpp2_read(port->priv, MVPP2_CLS_SWFWD_PCTRL_REG);
3838 val |= MVPP2_CLS_SWFWD_PCTRL_MASK(port->id);
3839 mvpp2_write(port->priv, MVPP2_CLS_SWFWD_PCTRL_REG, val);
3842 static void *mvpp2_frag_alloc(const struct mvpp2_bm_pool *pool)
3844 if (likely(pool->frag_size <= PAGE_SIZE))
3845 return netdev_alloc_frag(pool->frag_size);
3846 else
3847 return kmalloc(pool->frag_size, GFP_ATOMIC);
3850 static void mvpp2_frag_free(const struct mvpp2_bm_pool *pool, void *data)
3852 if (likely(pool->frag_size <= PAGE_SIZE))
3853 skb_free_frag(data);
3854 else
3855 kfree(data);
3858 /* Buffer Manager configuration routines */
3860 /* Create pool */
3861 static int mvpp2_bm_pool_create(struct platform_device *pdev,
3862 struct mvpp2 *priv,
3863 struct mvpp2_bm_pool *bm_pool, int size)
3865 u32 val;
3867 /* Number of buffer pointers must be a multiple of 16, as per
3868 * hardware constraints
3870 if (!IS_ALIGNED(size, 16))
3871 return -EINVAL;
3873 /* PPv2.1 needs 8 bytes per buffer pointer, PPv2.2 needs 16
3874 * bytes per buffer pointer
3876 if (priv->hw_version == MVPP21)
3877 bm_pool->size_bytes = 2 * sizeof(u32) * size;
3878 else
3879 bm_pool->size_bytes = 2 * sizeof(u64) * size;
3881 bm_pool->virt_addr = dma_alloc_coherent(&pdev->dev, bm_pool->size_bytes,
3882 &bm_pool->dma_addr,
3883 GFP_KERNEL);
3884 if (!bm_pool->virt_addr)
3885 return -ENOMEM;
3887 if (!IS_ALIGNED((unsigned long)bm_pool->virt_addr,
3888 MVPP2_BM_POOL_PTR_ALIGN)) {
3889 dma_free_coherent(&pdev->dev, bm_pool->size_bytes,
3890 bm_pool->virt_addr, bm_pool->dma_addr);
3891 dev_err(&pdev->dev, "BM pool %d is not %d bytes aligned\n",
3892 bm_pool->id, MVPP2_BM_POOL_PTR_ALIGN);
3893 return -ENOMEM;
3896 mvpp2_write(priv, MVPP2_BM_POOL_BASE_REG(bm_pool->id),
3897 lower_32_bits(bm_pool->dma_addr));
3898 mvpp2_write(priv, MVPP2_BM_POOL_SIZE_REG(bm_pool->id), size);
3900 val = mvpp2_read(priv, MVPP2_BM_POOL_CTRL_REG(bm_pool->id));
3901 val |= MVPP2_BM_START_MASK;
3902 mvpp2_write(priv, MVPP2_BM_POOL_CTRL_REG(bm_pool->id), val);
3904 bm_pool->type = MVPP2_BM_FREE;
3905 bm_pool->size = size;
3906 bm_pool->pkt_size = 0;
3907 bm_pool->buf_num = 0;
3909 return 0;
3912 /* Set pool buffer size */
3913 static void mvpp2_bm_pool_bufsize_set(struct mvpp2 *priv,
3914 struct mvpp2_bm_pool *bm_pool,
3915 int buf_size)
3917 u32 val;
3919 bm_pool->buf_size = buf_size;
3921 val = ALIGN(buf_size, 1 << MVPP2_POOL_BUF_SIZE_OFFSET);
3922 mvpp2_write(priv, MVPP2_POOL_BUF_SIZE_REG(bm_pool->id), val);
3925 static void mvpp2_bm_bufs_get_addrs(struct device *dev, struct mvpp2 *priv,
3926 struct mvpp2_bm_pool *bm_pool,
3927 dma_addr_t *dma_addr,
3928 phys_addr_t *phys_addr)
3930 int cpu = get_cpu();
3932 *dma_addr = mvpp2_percpu_read(priv, cpu,
3933 MVPP2_BM_PHY_ALLOC_REG(bm_pool->id));
3934 *phys_addr = mvpp2_percpu_read(priv, cpu, MVPP2_BM_VIRT_ALLOC_REG);
3936 if (priv->hw_version == MVPP22) {
3937 u32 val;
3938 u32 dma_addr_highbits, phys_addr_highbits;
3940 val = mvpp2_percpu_read(priv, cpu, MVPP22_BM_ADDR_HIGH_ALLOC);
3941 dma_addr_highbits = (val & MVPP22_BM_ADDR_HIGH_PHYS_MASK);
3942 phys_addr_highbits = (val & MVPP22_BM_ADDR_HIGH_VIRT_MASK) >>
3943 MVPP22_BM_ADDR_HIGH_VIRT_SHIFT;
3945 if (sizeof(dma_addr_t) == 8)
3946 *dma_addr |= (u64)dma_addr_highbits << 32;
3948 if (sizeof(phys_addr_t) == 8)
3949 *phys_addr |= (u64)phys_addr_highbits << 32;
3952 put_cpu();
3955 /* Free all buffers from the pool */
3956 static void mvpp2_bm_bufs_free(struct device *dev, struct mvpp2 *priv,
3957 struct mvpp2_bm_pool *bm_pool)
3959 int i;
3961 for (i = 0; i < bm_pool->buf_num; i++) {
3962 dma_addr_t buf_dma_addr;
3963 phys_addr_t buf_phys_addr;
3964 void *data;
3966 mvpp2_bm_bufs_get_addrs(dev, priv, bm_pool,
3967 &buf_dma_addr, &buf_phys_addr);
3969 dma_unmap_single(dev, buf_dma_addr,
3970 bm_pool->buf_size, DMA_FROM_DEVICE);
3972 data = (void *)phys_to_virt(buf_phys_addr);
3973 if (!data)
3974 break;
3976 mvpp2_frag_free(bm_pool, data);
3979 /* Update BM driver with number of buffers removed from pool */
3980 bm_pool->buf_num -= i;
3983 /* Cleanup pool */
3984 static int mvpp2_bm_pool_destroy(struct platform_device *pdev,
3985 struct mvpp2 *priv,
3986 struct mvpp2_bm_pool *bm_pool)
3988 u32 val;
3990 mvpp2_bm_bufs_free(&pdev->dev, priv, bm_pool);
3991 if (bm_pool->buf_num) {
3992 WARN(1, "cannot free all buffers in pool %d\n", bm_pool->id);
3993 return 0;
3996 val = mvpp2_read(priv, MVPP2_BM_POOL_CTRL_REG(bm_pool->id));
3997 val |= MVPP2_BM_STOP_MASK;
3998 mvpp2_write(priv, MVPP2_BM_POOL_CTRL_REG(bm_pool->id), val);
4000 dma_free_coherent(&pdev->dev, bm_pool->size_bytes,
4001 bm_pool->virt_addr,
4002 bm_pool->dma_addr);
4003 return 0;
4006 static int mvpp2_bm_pools_init(struct platform_device *pdev,
4007 struct mvpp2 *priv)
4009 int i, err, size;
4010 struct mvpp2_bm_pool *bm_pool;
4012 /* Create all pools with maximum size */
4013 size = MVPP2_BM_POOL_SIZE_MAX;
4014 for (i = 0; i < MVPP2_BM_POOLS_NUM; i++) {
4015 bm_pool = &priv->bm_pools[i];
4016 bm_pool->id = i;
4017 err = mvpp2_bm_pool_create(pdev, priv, bm_pool, size);
4018 if (err)
4019 goto err_unroll_pools;
4020 mvpp2_bm_pool_bufsize_set(priv, bm_pool, 0);
4022 return 0;
4024 err_unroll_pools:
4025 dev_err(&pdev->dev, "failed to create BM pool %d, size %d\n", i, size);
4026 for (i = i - 1; i >= 0; i--)
4027 mvpp2_bm_pool_destroy(pdev, priv, &priv->bm_pools[i]);
4028 return err;
4031 static int mvpp2_bm_init(struct platform_device *pdev, struct mvpp2 *priv)
4033 int i, err;
4035 for (i = 0; i < MVPP2_BM_POOLS_NUM; i++) {
4036 /* Mask BM all interrupts */
4037 mvpp2_write(priv, MVPP2_BM_INTR_MASK_REG(i), 0);
4038 /* Clear BM cause register */
4039 mvpp2_write(priv, MVPP2_BM_INTR_CAUSE_REG(i), 0);
4042 /* Allocate and initialize BM pools */
4043 priv->bm_pools = devm_kcalloc(&pdev->dev, MVPP2_BM_POOLS_NUM,
4044 sizeof(*priv->bm_pools), GFP_KERNEL);
4045 if (!priv->bm_pools)
4046 return -ENOMEM;
4048 err = mvpp2_bm_pools_init(pdev, priv);
4049 if (err < 0)
4050 return err;
4051 return 0;
4054 /* Attach long pool to rxq */
4055 static void mvpp2_rxq_long_pool_set(struct mvpp2_port *port,
4056 int lrxq, int long_pool)
4058 u32 val, mask;
4059 int prxq;
4061 /* Get queue physical ID */
4062 prxq = port->rxqs[lrxq]->id;
4064 if (port->priv->hw_version == MVPP21)
4065 mask = MVPP21_RXQ_POOL_LONG_MASK;
4066 else
4067 mask = MVPP22_RXQ_POOL_LONG_MASK;
4069 val = mvpp2_read(port->priv, MVPP2_RXQ_CONFIG_REG(prxq));
4070 val &= ~mask;
4071 val |= (long_pool << MVPP2_RXQ_POOL_LONG_OFFS) & mask;
4072 mvpp2_write(port->priv, MVPP2_RXQ_CONFIG_REG(prxq), val);
4075 /* Attach short pool to rxq */
4076 static void mvpp2_rxq_short_pool_set(struct mvpp2_port *port,
4077 int lrxq, int short_pool)
4079 u32 val, mask;
4080 int prxq;
4082 /* Get queue physical ID */
4083 prxq = port->rxqs[lrxq]->id;
4085 if (port->priv->hw_version == MVPP21)
4086 mask = MVPP21_RXQ_POOL_SHORT_MASK;
4087 else
4088 mask = MVPP22_RXQ_POOL_SHORT_MASK;
4090 val = mvpp2_read(port->priv, MVPP2_RXQ_CONFIG_REG(prxq));
4091 val &= ~mask;
4092 val |= (short_pool << MVPP2_RXQ_POOL_SHORT_OFFS) & mask;
4093 mvpp2_write(port->priv, MVPP2_RXQ_CONFIG_REG(prxq), val);
4096 static void *mvpp2_buf_alloc(struct mvpp2_port *port,
4097 struct mvpp2_bm_pool *bm_pool,
4098 dma_addr_t *buf_dma_addr,
4099 phys_addr_t *buf_phys_addr,
4100 gfp_t gfp_mask)
4102 dma_addr_t dma_addr;
4103 void *data;
4105 data = mvpp2_frag_alloc(bm_pool);
4106 if (!data)
4107 return NULL;
4109 dma_addr = dma_map_single(port->dev->dev.parent, data,
4110 MVPP2_RX_BUF_SIZE(bm_pool->pkt_size),
4111 DMA_FROM_DEVICE);
4112 if (unlikely(dma_mapping_error(port->dev->dev.parent, dma_addr))) {
4113 mvpp2_frag_free(bm_pool, data);
4114 return NULL;
4116 *buf_dma_addr = dma_addr;
4117 *buf_phys_addr = virt_to_phys(data);
4119 return data;
4122 /* Release buffer to BM */
4123 static inline void mvpp2_bm_pool_put(struct mvpp2_port *port, int pool,
4124 dma_addr_t buf_dma_addr,
4125 phys_addr_t buf_phys_addr)
4127 int cpu = get_cpu();
4129 if (port->priv->hw_version == MVPP22) {
4130 u32 val = 0;
4132 if (sizeof(dma_addr_t) == 8)
4133 val |= upper_32_bits(buf_dma_addr) &
4134 MVPP22_BM_ADDR_HIGH_PHYS_RLS_MASK;
4136 if (sizeof(phys_addr_t) == 8)
4137 val |= (upper_32_bits(buf_phys_addr)
4138 << MVPP22_BM_ADDR_HIGH_VIRT_RLS_SHIFT) &
4139 MVPP22_BM_ADDR_HIGH_VIRT_RLS_MASK;
4141 mvpp2_percpu_write(port->priv, cpu,
4142 MVPP22_BM_ADDR_HIGH_RLS_REG, val);
4145 /* MVPP2_BM_VIRT_RLS_REG is not interpreted by HW, and simply
4146 * returned in the "cookie" field of the RX
4147 * descriptor. Instead of storing the virtual address, we
4148 * store the physical address
4150 mvpp2_percpu_write(port->priv, cpu,
4151 MVPP2_BM_VIRT_RLS_REG, buf_phys_addr);
4152 mvpp2_percpu_write(port->priv, cpu,
4153 MVPP2_BM_PHY_RLS_REG(pool), buf_dma_addr);
4155 put_cpu();
4158 /* Allocate buffers for the pool */
4159 static int mvpp2_bm_bufs_add(struct mvpp2_port *port,
4160 struct mvpp2_bm_pool *bm_pool, int buf_num)
4162 int i, buf_size, total_size;
4163 dma_addr_t dma_addr;
4164 phys_addr_t phys_addr;
4165 void *buf;
4167 buf_size = MVPP2_RX_BUF_SIZE(bm_pool->pkt_size);
4168 total_size = MVPP2_RX_TOTAL_SIZE(buf_size);
4170 if (buf_num < 0 ||
4171 (buf_num + bm_pool->buf_num > bm_pool->size)) {
4172 netdev_err(port->dev,
4173 "cannot allocate %d buffers for pool %d\n",
4174 buf_num, bm_pool->id);
4175 return 0;
4178 for (i = 0; i < buf_num; i++) {
4179 buf = mvpp2_buf_alloc(port, bm_pool, &dma_addr,
4180 &phys_addr, GFP_KERNEL);
4181 if (!buf)
4182 break;
4184 mvpp2_bm_pool_put(port, bm_pool->id, dma_addr,
4185 phys_addr);
4188 /* Update BM driver with number of buffers added to pool */
4189 bm_pool->buf_num += i;
4191 netdev_dbg(port->dev,
4192 "%s pool %d: pkt_size=%4d, buf_size=%4d, total_size=%4d\n",
4193 bm_pool->type == MVPP2_BM_SWF_SHORT ? "short" : " long",
4194 bm_pool->id, bm_pool->pkt_size, buf_size, total_size);
4196 netdev_dbg(port->dev,
4197 "%s pool %d: %d of %d buffers added\n",
4198 bm_pool->type == MVPP2_BM_SWF_SHORT ? "short" : " long",
4199 bm_pool->id, i, buf_num);
4200 return i;
4203 /* Notify the driver that BM pool is being used as specific type and return the
4204 * pool pointer on success
4206 static struct mvpp2_bm_pool *
4207 mvpp2_bm_pool_use(struct mvpp2_port *port, int pool, enum mvpp2_bm_type type,
4208 int pkt_size)
4210 struct mvpp2_bm_pool *new_pool = &port->priv->bm_pools[pool];
4211 int num;
4213 if (new_pool->type != MVPP2_BM_FREE && new_pool->type != type) {
4214 netdev_err(port->dev, "mixing pool types is forbidden\n");
4215 return NULL;
4218 if (new_pool->type == MVPP2_BM_FREE)
4219 new_pool->type = type;
4221 /* Allocate buffers in case BM pool is used as long pool, but packet
4222 * size doesn't match MTU or BM pool hasn't being used yet
4224 if (((type == MVPP2_BM_SWF_LONG) && (pkt_size > new_pool->pkt_size)) ||
4225 (new_pool->pkt_size == 0)) {
4226 int pkts_num;
4228 /* Set default buffer number or free all the buffers in case
4229 * the pool is not empty
4231 pkts_num = new_pool->buf_num;
4232 if (pkts_num == 0)
4233 pkts_num = type == MVPP2_BM_SWF_LONG ?
4234 MVPP2_BM_LONG_BUF_NUM :
4235 MVPP2_BM_SHORT_BUF_NUM;
4236 else
4237 mvpp2_bm_bufs_free(port->dev->dev.parent,
4238 port->priv, new_pool);
4240 new_pool->pkt_size = pkt_size;
4241 new_pool->frag_size =
4242 SKB_DATA_ALIGN(MVPP2_RX_BUF_SIZE(pkt_size)) +
4243 MVPP2_SKB_SHINFO_SIZE;
4245 /* Allocate buffers for this pool */
4246 num = mvpp2_bm_bufs_add(port, new_pool, pkts_num);
4247 if (num != pkts_num) {
4248 WARN(1, "pool %d: %d of %d allocated\n",
4249 new_pool->id, num, pkts_num);
4250 return NULL;
4254 mvpp2_bm_pool_bufsize_set(port->priv, new_pool,
4255 MVPP2_RX_BUF_SIZE(new_pool->pkt_size));
4257 return new_pool;
4260 /* Initialize pools for swf */
4261 static int mvpp2_swf_bm_pool_init(struct mvpp2_port *port)
4263 int rxq;
4265 if (!port->pool_long) {
4266 port->pool_long =
4267 mvpp2_bm_pool_use(port, MVPP2_BM_SWF_LONG_POOL(port->id),
4268 MVPP2_BM_SWF_LONG,
4269 port->pkt_size);
4270 if (!port->pool_long)
4271 return -ENOMEM;
4273 port->pool_long->port_map |= (1 << port->id);
4275 for (rxq = 0; rxq < port->nrxqs; rxq++)
4276 mvpp2_rxq_long_pool_set(port, rxq, port->pool_long->id);
4279 if (!port->pool_short) {
4280 port->pool_short =
4281 mvpp2_bm_pool_use(port, MVPP2_BM_SWF_SHORT_POOL,
4282 MVPP2_BM_SWF_SHORT,
4283 MVPP2_BM_SHORT_PKT_SIZE);
4284 if (!port->pool_short)
4285 return -ENOMEM;
4287 port->pool_short->port_map |= (1 << port->id);
4289 for (rxq = 0; rxq < port->nrxqs; rxq++)
4290 mvpp2_rxq_short_pool_set(port, rxq,
4291 port->pool_short->id);
4294 return 0;
4297 static int mvpp2_bm_update_mtu(struct net_device *dev, int mtu)
4299 struct mvpp2_port *port = netdev_priv(dev);
4300 struct mvpp2_bm_pool *port_pool = port->pool_long;
4301 int num, pkts_num = port_pool->buf_num;
4302 int pkt_size = MVPP2_RX_PKT_SIZE(mtu);
4304 /* Update BM pool with new buffer size */
4305 mvpp2_bm_bufs_free(dev->dev.parent, port->priv, port_pool);
4306 if (port_pool->buf_num) {
4307 WARN(1, "cannot free all buffers in pool %d\n", port_pool->id);
4308 return -EIO;
4311 port_pool->pkt_size = pkt_size;
4312 port_pool->frag_size = SKB_DATA_ALIGN(MVPP2_RX_BUF_SIZE(pkt_size)) +
4313 MVPP2_SKB_SHINFO_SIZE;
4314 num = mvpp2_bm_bufs_add(port, port_pool, pkts_num);
4315 if (num != pkts_num) {
4316 WARN(1, "pool %d: %d of %d allocated\n",
4317 port_pool->id, num, pkts_num);
4318 return -EIO;
4321 mvpp2_bm_pool_bufsize_set(port->priv, port_pool,
4322 MVPP2_RX_BUF_SIZE(port_pool->pkt_size));
4323 dev->mtu = mtu;
4324 netdev_update_features(dev);
4325 return 0;
4328 static inline void mvpp2_interrupts_enable(struct mvpp2_port *port)
4330 int i, sw_thread_mask = 0;
4332 for (i = 0; i < port->nqvecs; i++)
4333 sw_thread_mask |= port->qvecs[i].sw_thread_mask;
4335 mvpp2_write(port->priv, MVPP2_ISR_ENABLE_REG(port->id),
4336 MVPP2_ISR_ENABLE_INTERRUPT(sw_thread_mask));
4339 static inline void mvpp2_interrupts_disable(struct mvpp2_port *port)
4341 int i, sw_thread_mask = 0;
4343 for (i = 0; i < port->nqvecs; i++)
4344 sw_thread_mask |= port->qvecs[i].sw_thread_mask;
4346 mvpp2_write(port->priv, MVPP2_ISR_ENABLE_REG(port->id),
4347 MVPP2_ISR_DISABLE_INTERRUPT(sw_thread_mask));
4350 static inline void mvpp2_qvec_interrupt_enable(struct mvpp2_queue_vector *qvec)
4352 struct mvpp2_port *port = qvec->port;
4354 mvpp2_write(port->priv, MVPP2_ISR_ENABLE_REG(port->id),
4355 MVPP2_ISR_ENABLE_INTERRUPT(qvec->sw_thread_mask));
4358 static inline void mvpp2_qvec_interrupt_disable(struct mvpp2_queue_vector *qvec)
4360 struct mvpp2_port *port = qvec->port;
4362 mvpp2_write(port->priv, MVPP2_ISR_ENABLE_REG(port->id),
4363 MVPP2_ISR_DISABLE_INTERRUPT(qvec->sw_thread_mask));
4366 /* Mask the current CPU's Rx/Tx interrupts
4367 * Called by on_each_cpu(), guaranteed to run with migration disabled,
4368 * using smp_processor_id() is OK.
4370 static void mvpp2_interrupts_mask(void *arg)
4372 struct mvpp2_port *port = arg;
4374 mvpp2_percpu_write(port->priv, smp_processor_id(),
4375 MVPP2_ISR_RX_TX_MASK_REG(port->id), 0);
4378 /* Unmask the current CPU's Rx/Tx interrupts.
4379 * Called by on_each_cpu(), guaranteed to run with migration disabled,
4380 * using smp_processor_id() is OK.
4382 static void mvpp2_interrupts_unmask(void *arg)
4384 struct mvpp2_port *port = arg;
4385 u32 val;
4387 val = MVPP2_CAUSE_MISC_SUM_MASK |
4388 MVPP2_CAUSE_RXQ_OCCUP_DESC_ALL_MASK;
4389 if (port->has_tx_irqs)
4390 val |= MVPP2_CAUSE_TXQ_OCCUP_DESC_ALL_MASK;
4392 mvpp2_percpu_write(port->priv, smp_processor_id(),
4393 MVPP2_ISR_RX_TX_MASK_REG(port->id), val);
4396 static void
4397 mvpp2_shared_interrupt_mask_unmask(struct mvpp2_port *port, bool mask)
4399 u32 val;
4400 int i;
4402 if (port->priv->hw_version != MVPP22)
4403 return;
4405 if (mask)
4406 val = 0;
4407 else
4408 val = MVPP2_CAUSE_RXQ_OCCUP_DESC_ALL_MASK;
4410 for (i = 0; i < port->nqvecs; i++) {
4411 struct mvpp2_queue_vector *v = port->qvecs + i;
4413 if (v->type != MVPP2_QUEUE_VECTOR_SHARED)
4414 continue;
4416 mvpp2_percpu_write(port->priv, v->sw_thread_id,
4417 MVPP2_ISR_RX_TX_MASK_REG(port->id), val);
4421 /* Port configuration routines */
4423 static void mvpp22_gop_init_rgmii(struct mvpp2_port *port)
4425 struct mvpp2 *priv = port->priv;
4426 u32 val;
4428 regmap_read(priv->sysctrl_base, GENCONF_PORT_CTRL0, &val);
4429 val |= GENCONF_PORT_CTRL0_BUS_WIDTH_SELECT;
4430 regmap_write(priv->sysctrl_base, GENCONF_PORT_CTRL0, val);
4432 regmap_read(priv->sysctrl_base, GENCONF_CTRL0, &val);
4433 if (port->gop_id == 2)
4434 val |= GENCONF_CTRL0_PORT0_RGMII | GENCONF_CTRL0_PORT1_RGMII;
4435 else if (port->gop_id == 3)
4436 val |= GENCONF_CTRL0_PORT1_RGMII_MII;
4437 regmap_write(priv->sysctrl_base, GENCONF_CTRL0, val);
4440 static void mvpp22_gop_init_sgmii(struct mvpp2_port *port)
4442 struct mvpp2 *priv = port->priv;
4443 u32 val;
4445 regmap_read(priv->sysctrl_base, GENCONF_PORT_CTRL0, &val);
4446 val |= GENCONF_PORT_CTRL0_BUS_WIDTH_SELECT |
4447 GENCONF_PORT_CTRL0_RX_DATA_SAMPLE;
4448 regmap_write(priv->sysctrl_base, GENCONF_PORT_CTRL0, val);
4450 if (port->gop_id > 1) {
4451 regmap_read(priv->sysctrl_base, GENCONF_CTRL0, &val);
4452 if (port->gop_id == 2)
4453 val &= ~GENCONF_CTRL0_PORT0_RGMII;
4454 else if (port->gop_id == 3)
4455 val &= ~GENCONF_CTRL0_PORT1_RGMII_MII;
4456 regmap_write(priv->sysctrl_base, GENCONF_CTRL0, val);
4460 static void mvpp22_gop_init_10gkr(struct mvpp2_port *port)
4462 struct mvpp2 *priv = port->priv;
4463 void __iomem *mpcs = priv->iface_base + MVPP22_MPCS_BASE(port->gop_id);
4464 void __iomem *xpcs = priv->iface_base + MVPP22_XPCS_BASE(port->gop_id);
4465 u32 val;
4467 /* XPCS */
4468 val = readl(xpcs + MVPP22_XPCS_CFG0);
4469 val &= ~(MVPP22_XPCS_CFG0_PCS_MODE(0x3) |
4470 MVPP22_XPCS_CFG0_ACTIVE_LANE(0x3));
4471 val |= MVPP22_XPCS_CFG0_ACTIVE_LANE(2);
4472 writel(val, xpcs + MVPP22_XPCS_CFG0);
4474 /* MPCS */
4475 val = readl(mpcs + MVPP22_MPCS_CTRL);
4476 val &= ~MVPP22_MPCS_CTRL_FWD_ERR_CONN;
4477 writel(val, mpcs + MVPP22_MPCS_CTRL);
4479 val = readl(mpcs + MVPP22_MPCS_CLK_RESET);
4480 val &= ~(MVPP22_MPCS_CLK_RESET_DIV_RATIO(0x7) | MAC_CLK_RESET_MAC |
4481 MAC_CLK_RESET_SD_RX | MAC_CLK_RESET_SD_TX);
4482 val |= MVPP22_MPCS_CLK_RESET_DIV_RATIO(1);
4483 writel(val, mpcs + MVPP22_MPCS_CLK_RESET);
4485 val &= ~MVPP22_MPCS_CLK_RESET_DIV_SET;
4486 val |= MAC_CLK_RESET_MAC | MAC_CLK_RESET_SD_RX | MAC_CLK_RESET_SD_TX;
4487 writel(val, mpcs + MVPP22_MPCS_CLK_RESET);
4490 static int mvpp22_gop_init(struct mvpp2_port *port)
4492 struct mvpp2 *priv = port->priv;
4493 u32 val;
4495 if (!priv->sysctrl_base)
4496 return 0;
4498 switch (port->phy_interface) {
4499 case PHY_INTERFACE_MODE_RGMII:
4500 case PHY_INTERFACE_MODE_RGMII_ID:
4501 case PHY_INTERFACE_MODE_RGMII_RXID:
4502 case PHY_INTERFACE_MODE_RGMII_TXID:
4503 if (port->gop_id == 0)
4504 goto invalid_conf;
4505 mvpp22_gop_init_rgmii(port);
4506 break;
4507 case PHY_INTERFACE_MODE_SGMII:
4508 mvpp22_gop_init_sgmii(port);
4509 break;
4510 case PHY_INTERFACE_MODE_10GKR:
4511 if (port->gop_id != 0)
4512 goto invalid_conf;
4513 mvpp22_gop_init_10gkr(port);
4514 break;
4515 default:
4516 goto unsupported_conf;
4519 regmap_read(priv->sysctrl_base, GENCONF_PORT_CTRL1, &val);
4520 val |= GENCONF_PORT_CTRL1_RESET(port->gop_id) |
4521 GENCONF_PORT_CTRL1_EN(port->gop_id);
4522 regmap_write(priv->sysctrl_base, GENCONF_PORT_CTRL1, val);
4524 regmap_read(priv->sysctrl_base, GENCONF_PORT_CTRL0, &val);
4525 val |= GENCONF_PORT_CTRL0_CLK_DIV_PHASE_CLR;
4526 regmap_write(priv->sysctrl_base, GENCONF_PORT_CTRL0, val);
4528 regmap_read(priv->sysctrl_base, GENCONF_SOFT_RESET1, &val);
4529 val |= GENCONF_SOFT_RESET1_GOP;
4530 regmap_write(priv->sysctrl_base, GENCONF_SOFT_RESET1, val);
4532 unsupported_conf:
4533 return 0;
4535 invalid_conf:
4536 netdev_err(port->dev, "Invalid port configuration\n");
4537 return -EINVAL;
4540 static void mvpp22_gop_unmask_irq(struct mvpp2_port *port)
4542 u32 val;
4544 if (phy_interface_mode_is_rgmii(port->phy_interface) ||
4545 port->phy_interface == PHY_INTERFACE_MODE_SGMII) {
4546 /* Enable the GMAC link status irq for this port */
4547 val = readl(port->base + MVPP22_GMAC_INT_SUM_MASK);
4548 val |= MVPP22_GMAC_INT_SUM_MASK_LINK_STAT;
4549 writel(val, port->base + MVPP22_GMAC_INT_SUM_MASK);
4552 if (port->gop_id == 0) {
4553 /* Enable the XLG/GIG irqs for this port */
4554 val = readl(port->base + MVPP22_XLG_EXT_INT_MASK);
4555 if (port->phy_interface == PHY_INTERFACE_MODE_10GKR)
4556 val |= MVPP22_XLG_EXT_INT_MASK_XLG;
4557 else
4558 val |= MVPP22_XLG_EXT_INT_MASK_GIG;
4559 writel(val, port->base + MVPP22_XLG_EXT_INT_MASK);
4563 static void mvpp22_gop_mask_irq(struct mvpp2_port *port)
4565 u32 val;
4567 if (port->gop_id == 0) {
4568 val = readl(port->base + MVPP22_XLG_EXT_INT_MASK);
4569 val &= ~(MVPP22_XLG_EXT_INT_MASK_XLG |
4570 MVPP22_XLG_EXT_INT_MASK_GIG);
4571 writel(val, port->base + MVPP22_XLG_EXT_INT_MASK);
4574 if (phy_interface_mode_is_rgmii(port->phy_interface) ||
4575 port->phy_interface == PHY_INTERFACE_MODE_SGMII) {
4576 val = readl(port->base + MVPP22_GMAC_INT_SUM_MASK);
4577 val &= ~MVPP22_GMAC_INT_SUM_MASK_LINK_STAT;
4578 writel(val, port->base + MVPP22_GMAC_INT_SUM_MASK);
4582 static void mvpp22_gop_setup_irq(struct mvpp2_port *port)
4584 u32 val;
4586 if (phy_interface_mode_is_rgmii(port->phy_interface) ||
4587 port->phy_interface == PHY_INTERFACE_MODE_SGMII) {
4588 val = readl(port->base + MVPP22_GMAC_INT_MASK);
4589 val |= MVPP22_GMAC_INT_MASK_LINK_STAT;
4590 writel(val, port->base + MVPP22_GMAC_INT_MASK);
4593 if (port->gop_id == 0) {
4594 val = readl(port->base + MVPP22_XLG_INT_MASK);
4595 val |= MVPP22_XLG_INT_MASK_LINK;
4596 writel(val, port->base + MVPP22_XLG_INT_MASK);
4599 mvpp22_gop_unmask_irq(port);
4602 static int mvpp22_comphy_init(struct mvpp2_port *port)
4604 enum phy_mode mode;
4605 int ret;
4607 if (!port->comphy)
4608 return 0;
4610 switch (port->phy_interface) {
4611 case PHY_INTERFACE_MODE_SGMII:
4612 mode = PHY_MODE_SGMII;
4613 break;
4614 case PHY_INTERFACE_MODE_10GKR:
4615 mode = PHY_MODE_10GKR;
4616 break;
4617 default:
4618 return -EINVAL;
4621 ret = phy_set_mode(port->comphy, mode);
4622 if (ret)
4623 return ret;
4625 return phy_power_on(port->comphy);
4628 static void mvpp2_port_mii_gmac_configure_mode(struct mvpp2_port *port)
4630 u32 val;
4632 if (port->phy_interface == PHY_INTERFACE_MODE_SGMII) {
4633 val = readl(port->base + MVPP22_GMAC_CTRL_4_REG);
4634 val |= MVPP22_CTRL4_SYNC_BYPASS_DIS | MVPP22_CTRL4_DP_CLK_SEL |
4635 MVPP22_CTRL4_QSGMII_BYPASS_ACTIVE;
4636 val &= ~MVPP22_CTRL4_EXT_PIN_GMII_SEL;
4637 writel(val, port->base + MVPP22_GMAC_CTRL_4_REG);
4638 } else if (phy_interface_mode_is_rgmii(port->phy_interface)) {
4639 val = readl(port->base + MVPP22_GMAC_CTRL_4_REG);
4640 val |= MVPP22_CTRL4_EXT_PIN_GMII_SEL |
4641 MVPP22_CTRL4_SYNC_BYPASS_DIS |
4642 MVPP22_CTRL4_QSGMII_BYPASS_ACTIVE;
4643 val &= ~MVPP22_CTRL4_DP_CLK_SEL;
4644 writel(val, port->base + MVPP22_GMAC_CTRL_4_REG);
4647 /* The port is connected to a copper PHY */
4648 val = readl(port->base + MVPP2_GMAC_CTRL_0_REG);
4649 val &= ~MVPP2_GMAC_PORT_TYPE_MASK;
4650 writel(val, port->base + MVPP2_GMAC_CTRL_0_REG);
4652 val = readl(port->base + MVPP2_GMAC_AUTONEG_CONFIG);
4653 val |= MVPP2_GMAC_IN_BAND_AUTONEG_BYPASS |
4654 MVPP2_GMAC_AN_SPEED_EN | MVPP2_GMAC_FLOW_CTRL_AUTONEG |
4655 MVPP2_GMAC_AN_DUPLEX_EN;
4656 if (port->phy_interface == PHY_INTERFACE_MODE_SGMII)
4657 val |= MVPP2_GMAC_IN_BAND_AUTONEG;
4658 writel(val, port->base + MVPP2_GMAC_AUTONEG_CONFIG);
4661 static void mvpp2_port_mii_gmac_configure(struct mvpp2_port *port)
4663 u32 val;
4665 /* Force link down */
4666 val = readl(port->base + MVPP2_GMAC_AUTONEG_CONFIG);
4667 val &= ~MVPP2_GMAC_FORCE_LINK_PASS;
4668 val |= MVPP2_GMAC_FORCE_LINK_DOWN;
4669 writel(val, port->base + MVPP2_GMAC_AUTONEG_CONFIG);
4671 /* Set the GMAC in a reset state */
4672 val = readl(port->base + MVPP2_GMAC_CTRL_2_REG);
4673 val |= MVPP2_GMAC_PORT_RESET_MASK;
4674 writel(val, port->base + MVPP2_GMAC_CTRL_2_REG);
4676 /* Configure the PCS and in-band AN */
4677 val = readl(port->base + MVPP2_GMAC_CTRL_2_REG);
4678 if (port->phy_interface == PHY_INTERFACE_MODE_SGMII) {
4679 val |= MVPP2_GMAC_INBAND_AN_MASK | MVPP2_GMAC_PCS_ENABLE_MASK;
4680 } else if (phy_interface_mode_is_rgmii(port->phy_interface)) {
4681 val &= ~MVPP2_GMAC_PCS_ENABLE_MASK;
4683 writel(val, port->base + MVPP2_GMAC_CTRL_2_REG);
4685 mvpp2_port_mii_gmac_configure_mode(port);
4687 /* Unset the GMAC reset state */
4688 val = readl(port->base + MVPP2_GMAC_CTRL_2_REG);
4689 val &= ~MVPP2_GMAC_PORT_RESET_MASK;
4690 writel(val, port->base + MVPP2_GMAC_CTRL_2_REG);
4692 /* Stop forcing link down */
4693 val = readl(port->base + MVPP2_GMAC_AUTONEG_CONFIG);
4694 val &= ~MVPP2_GMAC_FORCE_LINK_DOWN;
4695 writel(val, port->base + MVPP2_GMAC_AUTONEG_CONFIG);
4698 static void mvpp2_port_mii_xlg_configure(struct mvpp2_port *port)
4700 u32 val;
4702 if (port->gop_id != 0)
4703 return;
4705 val = readl(port->base + MVPP22_XLG_CTRL0_REG);
4706 val |= MVPP22_XLG_CTRL0_RX_FLOW_CTRL_EN;
4707 writel(val, port->base + MVPP22_XLG_CTRL0_REG);
4709 val = readl(port->base + MVPP22_XLG_CTRL4_REG);
4710 val &= ~MVPP22_XLG_CTRL4_MACMODSELECT_GMAC;
4711 val |= MVPP22_XLG_CTRL4_FWD_FC | MVPP22_XLG_CTRL4_FWD_PFC;
4712 writel(val, port->base + MVPP22_XLG_CTRL4_REG);
4715 static void mvpp22_port_mii_set(struct mvpp2_port *port)
4717 u32 val;
4719 /* Only GOP port 0 has an XLG MAC */
4720 if (port->gop_id == 0) {
4721 val = readl(port->base + MVPP22_XLG_CTRL3_REG);
4722 val &= ~MVPP22_XLG_CTRL3_MACMODESELECT_MASK;
4724 if (port->phy_interface == PHY_INTERFACE_MODE_XAUI ||
4725 port->phy_interface == PHY_INTERFACE_MODE_10GKR)
4726 val |= MVPP22_XLG_CTRL3_MACMODESELECT_10G;
4727 else
4728 val |= MVPP22_XLG_CTRL3_MACMODESELECT_GMAC;
4730 writel(val, port->base + MVPP22_XLG_CTRL3_REG);
4734 static void mvpp2_port_mii_set(struct mvpp2_port *port)
4736 if (port->priv->hw_version == MVPP22)
4737 mvpp22_port_mii_set(port);
4739 if (phy_interface_mode_is_rgmii(port->phy_interface) ||
4740 port->phy_interface == PHY_INTERFACE_MODE_SGMII)
4741 mvpp2_port_mii_gmac_configure(port);
4742 else if (port->phy_interface == PHY_INTERFACE_MODE_10GKR)
4743 mvpp2_port_mii_xlg_configure(port);
4746 static void mvpp2_port_fc_adv_enable(struct mvpp2_port *port)
4748 u32 val;
4750 val = readl(port->base + MVPP2_GMAC_AUTONEG_CONFIG);
4751 val |= MVPP2_GMAC_FC_ADV_EN;
4752 writel(val, port->base + MVPP2_GMAC_AUTONEG_CONFIG);
4755 static void mvpp2_port_enable(struct mvpp2_port *port)
4757 u32 val;
4759 /* Only GOP port 0 has an XLG MAC */
4760 if (port->gop_id == 0 &&
4761 (port->phy_interface == PHY_INTERFACE_MODE_XAUI ||
4762 port->phy_interface == PHY_INTERFACE_MODE_10GKR)) {
4763 val = readl(port->base + MVPP22_XLG_CTRL0_REG);
4764 val |= MVPP22_XLG_CTRL0_PORT_EN |
4765 MVPP22_XLG_CTRL0_MAC_RESET_DIS;
4766 val &= ~MVPP22_XLG_CTRL0_MIB_CNT_DIS;
4767 writel(val, port->base + MVPP22_XLG_CTRL0_REG);
4768 } else {
4769 val = readl(port->base + MVPP2_GMAC_CTRL_0_REG);
4770 val |= MVPP2_GMAC_PORT_EN_MASK;
4771 val |= MVPP2_GMAC_MIB_CNTR_EN_MASK;
4772 writel(val, port->base + MVPP2_GMAC_CTRL_0_REG);
4776 static void mvpp2_port_disable(struct mvpp2_port *port)
4778 u32 val;
4780 /* Only GOP port 0 has an XLG MAC */
4781 if (port->gop_id == 0 &&
4782 (port->phy_interface == PHY_INTERFACE_MODE_XAUI ||
4783 port->phy_interface == PHY_INTERFACE_MODE_10GKR)) {
4784 val = readl(port->base + MVPP22_XLG_CTRL0_REG);
4785 val &= ~(MVPP22_XLG_CTRL0_PORT_EN |
4786 MVPP22_XLG_CTRL0_MAC_RESET_DIS);
4787 writel(val, port->base + MVPP22_XLG_CTRL0_REG);
4788 } else {
4789 val = readl(port->base + MVPP2_GMAC_CTRL_0_REG);
4790 val &= ~(MVPP2_GMAC_PORT_EN_MASK);
4791 writel(val, port->base + MVPP2_GMAC_CTRL_0_REG);
4795 /* Set IEEE 802.3x Flow Control Xon Packet Transmission Mode */
4796 static void mvpp2_port_periodic_xon_disable(struct mvpp2_port *port)
4798 u32 val;
4800 val = readl(port->base + MVPP2_GMAC_CTRL_1_REG) &
4801 ~MVPP2_GMAC_PERIODIC_XON_EN_MASK;
4802 writel(val, port->base + MVPP2_GMAC_CTRL_1_REG);
4805 /* Configure loopback port */
4806 static void mvpp2_port_loopback_set(struct mvpp2_port *port)
4808 u32 val;
4810 val = readl(port->base + MVPP2_GMAC_CTRL_1_REG);
4812 if (port->speed == 1000)
4813 val |= MVPP2_GMAC_GMII_LB_EN_MASK;
4814 else
4815 val &= ~MVPP2_GMAC_GMII_LB_EN_MASK;
4817 if (port->phy_interface == PHY_INTERFACE_MODE_SGMII)
4818 val |= MVPP2_GMAC_PCS_LB_EN_MASK;
4819 else
4820 val &= ~MVPP2_GMAC_PCS_LB_EN_MASK;
4822 writel(val, port->base + MVPP2_GMAC_CTRL_1_REG);
4825 struct mvpp2_ethtool_counter {
4826 unsigned int offset;
4827 const char string[ETH_GSTRING_LEN];
4828 bool reg_is_64b;
4831 static u64 mvpp2_read_count(struct mvpp2_port *port,
4832 const struct mvpp2_ethtool_counter *counter)
4834 u64 val;
4836 val = readl(port->stats_base + counter->offset);
4837 if (counter->reg_is_64b)
4838 val += (u64)readl(port->stats_base + counter->offset + 4) << 32;
4840 return val;
4843 /* Due to the fact that software statistics and hardware statistics are, by
4844 * design, incremented at different moments in the chain of packet processing,
4845 * it is very likely that incoming packets could have been dropped after being
4846 * counted by hardware but before reaching software statistics (most probably
4847 * multicast packets), and in the oppposite way, during transmission, FCS bytes
4848 * are added in between as well as TSO skb will be split and header bytes added.
4849 * Hence, statistics gathered from userspace with ifconfig (software) and
4850 * ethtool (hardware) cannot be compared.
4852 static const struct mvpp2_ethtool_counter mvpp2_ethtool_regs[] = {
4853 { MVPP2_MIB_GOOD_OCTETS_RCVD, "good_octets_received", true },
4854 { MVPP2_MIB_BAD_OCTETS_RCVD, "bad_octets_received" },
4855 { MVPP2_MIB_CRC_ERRORS_SENT, "crc_errors_sent" },
4856 { MVPP2_MIB_UNICAST_FRAMES_RCVD, "unicast_frames_received" },
4857 { MVPP2_MIB_BROADCAST_FRAMES_RCVD, "broadcast_frames_received" },
4858 { MVPP2_MIB_MULTICAST_FRAMES_RCVD, "multicast_frames_received" },
4859 { MVPP2_MIB_FRAMES_64_OCTETS, "frames_64_octets" },
4860 { MVPP2_MIB_FRAMES_65_TO_127_OCTETS, "frames_65_to_127_octet" },
4861 { MVPP2_MIB_FRAMES_128_TO_255_OCTETS, "frames_128_to_255_octet" },
4862 { MVPP2_MIB_FRAMES_256_TO_511_OCTETS, "frames_256_to_511_octet" },
4863 { MVPP2_MIB_FRAMES_512_TO_1023_OCTETS, "frames_512_to_1023_octet" },
4864 { MVPP2_MIB_FRAMES_1024_TO_MAX_OCTETS, "frames_1024_to_max_octet" },
4865 { MVPP2_MIB_GOOD_OCTETS_SENT, "good_octets_sent", true },
4866 { MVPP2_MIB_UNICAST_FRAMES_SENT, "unicast_frames_sent" },
4867 { MVPP2_MIB_MULTICAST_FRAMES_SENT, "multicast_frames_sent" },
4868 { MVPP2_MIB_BROADCAST_FRAMES_SENT, "broadcast_frames_sent" },
4869 { MVPP2_MIB_FC_SENT, "fc_sent" },
4870 { MVPP2_MIB_FC_RCVD, "fc_received" },
4871 { MVPP2_MIB_RX_FIFO_OVERRUN, "rx_fifo_overrun" },
4872 { MVPP2_MIB_UNDERSIZE_RCVD, "undersize_received" },
4873 { MVPP2_MIB_FRAGMENTS_RCVD, "fragments_received" },
4874 { MVPP2_MIB_OVERSIZE_RCVD, "oversize_received" },
4875 { MVPP2_MIB_JABBER_RCVD, "jabber_received" },
4876 { MVPP2_MIB_MAC_RCV_ERROR, "mac_receive_error" },
4877 { MVPP2_MIB_BAD_CRC_EVENT, "bad_crc_event" },
4878 { MVPP2_MIB_COLLISION, "collision" },
4879 { MVPP2_MIB_LATE_COLLISION, "late_collision" },
4882 static void mvpp2_ethtool_get_strings(struct net_device *netdev, u32 sset,
4883 u8 *data)
4885 if (sset == ETH_SS_STATS) {
4886 int i;
4888 for (i = 0; i < ARRAY_SIZE(mvpp2_ethtool_regs); i++)
4889 memcpy(data + i * ETH_GSTRING_LEN,
4890 &mvpp2_ethtool_regs[i].string, ETH_GSTRING_LEN);
4894 static void mvpp2_gather_hw_statistics(struct work_struct *work)
4896 struct delayed_work *del_work = to_delayed_work(work);
4897 struct mvpp2_port *port = container_of(del_work, struct mvpp2_port,
4898 stats_work);
4899 u64 *pstats;
4900 int i;
4902 mutex_lock(&port->gather_stats_lock);
4904 pstats = port->ethtool_stats;
4905 for (i = 0; i < ARRAY_SIZE(mvpp2_ethtool_regs); i++)
4906 *pstats++ += mvpp2_read_count(port, &mvpp2_ethtool_regs[i]);
4908 /* No need to read again the counters right after this function if it
4909 * was called asynchronously by the user (ie. use of ethtool).
4911 cancel_delayed_work(&port->stats_work);
4912 queue_delayed_work(port->priv->stats_queue, &port->stats_work,
4913 MVPP2_MIB_COUNTERS_STATS_DELAY);
4915 mutex_unlock(&port->gather_stats_lock);
4918 static void mvpp2_ethtool_get_stats(struct net_device *dev,
4919 struct ethtool_stats *stats, u64 *data)
4921 struct mvpp2_port *port = netdev_priv(dev);
4923 /* Update statistics for the given port, then take the lock to avoid
4924 * concurrent accesses on the ethtool_stats structure during its copy.
4926 mvpp2_gather_hw_statistics(&port->stats_work.work);
4928 mutex_lock(&port->gather_stats_lock);
4929 memcpy(data, port->ethtool_stats,
4930 sizeof(u64) * ARRAY_SIZE(mvpp2_ethtool_regs));
4931 mutex_unlock(&port->gather_stats_lock);
4934 static int mvpp2_ethtool_get_sset_count(struct net_device *dev, int sset)
4936 if (sset == ETH_SS_STATS)
4937 return ARRAY_SIZE(mvpp2_ethtool_regs);
4939 return -EOPNOTSUPP;
4942 static void mvpp2_port_reset(struct mvpp2_port *port)
4944 u32 val;
4945 unsigned int i;
4947 /* Read the GOP statistics to reset the hardware counters */
4948 for (i = 0; i < ARRAY_SIZE(mvpp2_ethtool_regs); i++)
4949 mvpp2_read_count(port, &mvpp2_ethtool_regs[i]);
4951 val = readl(port->base + MVPP2_GMAC_CTRL_2_REG) &
4952 ~MVPP2_GMAC_PORT_RESET_MASK;
4953 writel(val, port->base + MVPP2_GMAC_CTRL_2_REG);
4955 while (readl(port->base + MVPP2_GMAC_CTRL_2_REG) &
4956 MVPP2_GMAC_PORT_RESET_MASK)
4957 continue;
4960 /* Change maximum receive size of the port */
4961 static inline void mvpp2_gmac_max_rx_size_set(struct mvpp2_port *port)
4963 u32 val;
4965 val = readl(port->base + MVPP2_GMAC_CTRL_0_REG);
4966 val &= ~MVPP2_GMAC_MAX_RX_SIZE_MASK;
4967 val |= (((port->pkt_size - MVPP2_MH_SIZE) / 2) <<
4968 MVPP2_GMAC_MAX_RX_SIZE_OFFS);
4969 writel(val, port->base + MVPP2_GMAC_CTRL_0_REG);
4972 /* Change maximum receive size of the port */
4973 static inline void mvpp2_xlg_max_rx_size_set(struct mvpp2_port *port)
4975 u32 val;
4977 val = readl(port->base + MVPP22_XLG_CTRL1_REG);
4978 val &= ~MVPP22_XLG_CTRL1_FRAMESIZELIMIT_MASK;
4979 val |= ((port->pkt_size - MVPP2_MH_SIZE) / 2) <<
4980 MVPP22_XLG_CTRL1_FRAMESIZELIMIT_OFFS;
4981 writel(val, port->base + MVPP22_XLG_CTRL1_REG);
4984 /* Set defaults to the MVPP2 port */
4985 static void mvpp2_defaults_set(struct mvpp2_port *port)
4987 int tx_port_num, val, queue, ptxq, lrxq;
4989 if (port->priv->hw_version == MVPP21) {
4990 /* Configure port to loopback if needed */
4991 if (port->flags & MVPP2_F_LOOPBACK)
4992 mvpp2_port_loopback_set(port);
4994 /* Update TX FIFO MIN Threshold */
4995 val = readl(port->base + MVPP2_GMAC_PORT_FIFO_CFG_1_REG);
4996 val &= ~MVPP2_GMAC_TX_FIFO_MIN_TH_ALL_MASK;
4997 /* Min. TX threshold must be less than minimal packet length */
4998 val |= MVPP2_GMAC_TX_FIFO_MIN_TH_MASK(64 - 4 - 2);
4999 writel(val, port->base + MVPP2_GMAC_PORT_FIFO_CFG_1_REG);
5002 /* Disable Legacy WRR, Disable EJP, Release from reset */
5003 tx_port_num = mvpp2_egress_port(port);
5004 mvpp2_write(port->priv, MVPP2_TXP_SCHED_PORT_INDEX_REG,
5005 tx_port_num);
5006 mvpp2_write(port->priv, MVPP2_TXP_SCHED_CMD_1_REG, 0);
5008 /* Close bandwidth for all queues */
5009 for (queue = 0; queue < MVPP2_MAX_TXQ; queue++) {
5010 ptxq = mvpp2_txq_phys(port->id, queue);
5011 mvpp2_write(port->priv,
5012 MVPP2_TXQ_SCHED_TOKEN_CNTR_REG(ptxq), 0);
5015 /* Set refill period to 1 usec, refill tokens
5016 * and bucket size to maximum
5018 mvpp2_write(port->priv, MVPP2_TXP_SCHED_PERIOD_REG,
5019 port->priv->tclk / USEC_PER_SEC);
5020 val = mvpp2_read(port->priv, MVPP2_TXP_SCHED_REFILL_REG);
5021 val &= ~MVPP2_TXP_REFILL_PERIOD_ALL_MASK;
5022 val |= MVPP2_TXP_REFILL_PERIOD_MASK(1);
5023 val |= MVPP2_TXP_REFILL_TOKENS_ALL_MASK;
5024 mvpp2_write(port->priv, MVPP2_TXP_SCHED_REFILL_REG, val);
5025 val = MVPP2_TXP_TOKEN_SIZE_MAX;
5026 mvpp2_write(port->priv, MVPP2_TXP_SCHED_TOKEN_SIZE_REG, val);
5028 /* Set MaximumLowLatencyPacketSize value to 256 */
5029 mvpp2_write(port->priv, MVPP2_RX_CTRL_REG(port->id),
5030 MVPP2_RX_USE_PSEUDO_FOR_CSUM_MASK |
5031 MVPP2_RX_LOW_LATENCY_PKT_SIZE(256));
5033 /* Enable Rx cache snoop */
5034 for (lrxq = 0; lrxq < port->nrxqs; lrxq++) {
5035 queue = port->rxqs[lrxq]->id;
5036 val = mvpp2_read(port->priv, MVPP2_RXQ_CONFIG_REG(queue));
5037 val |= MVPP2_SNOOP_PKT_SIZE_MASK |
5038 MVPP2_SNOOP_BUF_HDR_MASK;
5039 mvpp2_write(port->priv, MVPP2_RXQ_CONFIG_REG(queue), val);
5042 /* At default, mask all interrupts to all present cpus */
5043 mvpp2_interrupts_disable(port);
5046 /* Enable/disable receiving packets */
5047 static void mvpp2_ingress_enable(struct mvpp2_port *port)
5049 u32 val;
5050 int lrxq, queue;
5052 for (lrxq = 0; lrxq < port->nrxqs; lrxq++) {
5053 queue = port->rxqs[lrxq]->id;
5054 val = mvpp2_read(port->priv, MVPP2_RXQ_CONFIG_REG(queue));
5055 val &= ~MVPP2_RXQ_DISABLE_MASK;
5056 mvpp2_write(port->priv, MVPP2_RXQ_CONFIG_REG(queue), val);
5060 static void mvpp2_ingress_disable(struct mvpp2_port *port)
5062 u32 val;
5063 int lrxq, queue;
5065 for (lrxq = 0; lrxq < port->nrxqs; lrxq++) {
5066 queue = port->rxqs[lrxq]->id;
5067 val = mvpp2_read(port->priv, MVPP2_RXQ_CONFIG_REG(queue));
5068 val |= MVPP2_RXQ_DISABLE_MASK;
5069 mvpp2_write(port->priv, MVPP2_RXQ_CONFIG_REG(queue), val);
5073 /* Enable transmit via physical egress queue
5074 * - HW starts take descriptors from DRAM
5076 static void mvpp2_egress_enable(struct mvpp2_port *port)
5078 u32 qmap;
5079 int queue;
5080 int tx_port_num = mvpp2_egress_port(port);
5082 /* Enable all initialized TXs. */
5083 qmap = 0;
5084 for (queue = 0; queue < port->ntxqs; queue++) {
5085 struct mvpp2_tx_queue *txq = port->txqs[queue];
5087 if (txq->descs)
5088 qmap |= (1 << queue);
5091 mvpp2_write(port->priv, MVPP2_TXP_SCHED_PORT_INDEX_REG, tx_port_num);
5092 mvpp2_write(port->priv, MVPP2_TXP_SCHED_Q_CMD_REG, qmap);
5095 /* Disable transmit via physical egress queue
5096 * - HW doesn't take descriptors from DRAM
5098 static void mvpp2_egress_disable(struct mvpp2_port *port)
5100 u32 reg_data;
5101 int delay;
5102 int tx_port_num = mvpp2_egress_port(port);
5104 /* Issue stop command for active channels only */
5105 mvpp2_write(port->priv, MVPP2_TXP_SCHED_PORT_INDEX_REG, tx_port_num);
5106 reg_data = (mvpp2_read(port->priv, MVPP2_TXP_SCHED_Q_CMD_REG)) &
5107 MVPP2_TXP_SCHED_ENQ_MASK;
5108 if (reg_data != 0)
5109 mvpp2_write(port->priv, MVPP2_TXP_SCHED_Q_CMD_REG,
5110 (reg_data << MVPP2_TXP_SCHED_DISQ_OFFSET));
5112 /* Wait for all Tx activity to terminate. */
5113 delay = 0;
5114 do {
5115 if (delay >= MVPP2_TX_DISABLE_TIMEOUT_MSEC) {
5116 netdev_warn(port->dev,
5117 "Tx stop timed out, status=0x%08x\n",
5118 reg_data);
5119 break;
5121 mdelay(1);
5122 delay++;
5124 /* Check port TX Command register that all
5125 * Tx queues are stopped
5127 reg_data = mvpp2_read(port->priv, MVPP2_TXP_SCHED_Q_CMD_REG);
5128 } while (reg_data & MVPP2_TXP_SCHED_ENQ_MASK);
5131 /* Rx descriptors helper methods */
5133 /* Get number of Rx descriptors occupied by received packets */
5134 static inline int
5135 mvpp2_rxq_received(struct mvpp2_port *port, int rxq_id)
5137 u32 val = mvpp2_read(port->priv, MVPP2_RXQ_STATUS_REG(rxq_id));
5139 return val & MVPP2_RXQ_OCCUPIED_MASK;
5142 /* Update Rx queue status with the number of occupied and available
5143 * Rx descriptor slots.
5145 static inline void
5146 mvpp2_rxq_status_update(struct mvpp2_port *port, int rxq_id,
5147 int used_count, int free_count)
5149 /* Decrement the number of used descriptors and increment count
5150 * increment the number of free descriptors.
5152 u32 val = used_count | (free_count << MVPP2_RXQ_NUM_NEW_OFFSET);
5154 mvpp2_write(port->priv, MVPP2_RXQ_STATUS_UPDATE_REG(rxq_id), val);
5157 /* Get pointer to next RX descriptor to be processed by SW */
5158 static inline struct mvpp2_rx_desc *
5159 mvpp2_rxq_next_desc_get(struct mvpp2_rx_queue *rxq)
5161 int rx_desc = rxq->next_desc_to_proc;
5163 rxq->next_desc_to_proc = MVPP2_QUEUE_NEXT_DESC(rxq, rx_desc);
5164 prefetch(rxq->descs + rxq->next_desc_to_proc);
5165 return rxq->descs + rx_desc;
5168 /* Set rx queue offset */
5169 static void mvpp2_rxq_offset_set(struct mvpp2_port *port,
5170 int prxq, int offset)
5172 u32 val;
5174 /* Convert offset from bytes to units of 32 bytes */
5175 offset = offset >> 5;
5177 val = mvpp2_read(port->priv, MVPP2_RXQ_CONFIG_REG(prxq));
5178 val &= ~MVPP2_RXQ_PACKET_OFFSET_MASK;
5180 /* Offset is in */
5181 val |= ((offset << MVPP2_RXQ_PACKET_OFFSET_OFFS) &
5182 MVPP2_RXQ_PACKET_OFFSET_MASK);
5184 mvpp2_write(port->priv, MVPP2_RXQ_CONFIG_REG(prxq), val);
5187 /* Tx descriptors helper methods */
5189 /* Get pointer to next Tx descriptor to be processed (send) by HW */
5190 static struct mvpp2_tx_desc *
5191 mvpp2_txq_next_desc_get(struct mvpp2_tx_queue *txq)
5193 int tx_desc = txq->next_desc_to_proc;
5195 txq->next_desc_to_proc = MVPP2_QUEUE_NEXT_DESC(txq, tx_desc);
5196 return txq->descs + tx_desc;
5199 /* Update HW with number of aggregated Tx descriptors to be sent
5201 * Called only from mvpp2_tx(), so migration is disabled, using
5202 * smp_processor_id() is OK.
5204 static void mvpp2_aggr_txq_pend_desc_add(struct mvpp2_port *port, int pending)
5206 /* aggregated access - relevant TXQ number is written in TX desc */
5207 mvpp2_percpu_write(port->priv, smp_processor_id(),
5208 MVPP2_AGGR_TXQ_UPDATE_REG, pending);
5212 /* Check if there are enough free descriptors in aggregated txq.
5213 * If not, update the number of occupied descriptors and repeat the check.
5215 * Called only from mvpp2_tx(), so migration is disabled, using
5216 * smp_processor_id() is OK.
5218 static int mvpp2_aggr_desc_num_check(struct mvpp2 *priv,
5219 struct mvpp2_tx_queue *aggr_txq, int num)
5221 if ((aggr_txq->count + num) > MVPP2_AGGR_TXQ_SIZE) {
5222 /* Update number of occupied aggregated Tx descriptors */
5223 int cpu = smp_processor_id();
5224 u32 val = mvpp2_read(priv, MVPP2_AGGR_TXQ_STATUS_REG(cpu));
5226 aggr_txq->count = val & MVPP2_AGGR_TXQ_PENDING_MASK;
5229 if ((aggr_txq->count + num) > MVPP2_AGGR_TXQ_SIZE)
5230 return -ENOMEM;
5232 return 0;
5235 /* Reserved Tx descriptors allocation request
5237 * Called only from mvpp2_txq_reserved_desc_num_proc(), itself called
5238 * only by mvpp2_tx(), so migration is disabled, using
5239 * smp_processor_id() is OK.
5241 static int mvpp2_txq_alloc_reserved_desc(struct mvpp2 *priv,
5242 struct mvpp2_tx_queue *txq, int num)
5244 u32 val;
5245 int cpu = smp_processor_id();
5247 val = (txq->id << MVPP2_TXQ_RSVD_REQ_Q_OFFSET) | num;
5248 mvpp2_percpu_write(priv, cpu, MVPP2_TXQ_RSVD_REQ_REG, val);
5250 val = mvpp2_percpu_read(priv, cpu, MVPP2_TXQ_RSVD_RSLT_REG);
5252 return val & MVPP2_TXQ_RSVD_RSLT_MASK;
5255 /* Check if there are enough reserved descriptors for transmission.
5256 * If not, request chunk of reserved descriptors and check again.
5258 static int mvpp2_txq_reserved_desc_num_proc(struct mvpp2 *priv,
5259 struct mvpp2_tx_queue *txq,
5260 struct mvpp2_txq_pcpu *txq_pcpu,
5261 int num)
5263 int req, cpu, desc_count;
5265 if (txq_pcpu->reserved_num >= num)
5266 return 0;
5268 /* Not enough descriptors reserved! Update the reserved descriptor
5269 * count and check again.
5272 desc_count = 0;
5273 /* Compute total of used descriptors */
5274 for_each_present_cpu(cpu) {
5275 struct mvpp2_txq_pcpu *txq_pcpu_aux;
5277 txq_pcpu_aux = per_cpu_ptr(txq->pcpu, cpu);
5278 desc_count += txq_pcpu_aux->count;
5279 desc_count += txq_pcpu_aux->reserved_num;
5282 req = max(MVPP2_CPU_DESC_CHUNK, num - txq_pcpu->reserved_num);
5283 desc_count += req;
5285 if (desc_count >
5286 (txq->size - (num_present_cpus() * MVPP2_CPU_DESC_CHUNK)))
5287 return -ENOMEM;
5289 txq_pcpu->reserved_num += mvpp2_txq_alloc_reserved_desc(priv, txq, req);
5291 /* OK, the descriptor cound has been updated: check again. */
5292 if (txq_pcpu->reserved_num < num)
5293 return -ENOMEM;
5294 return 0;
5297 /* Release the last allocated Tx descriptor. Useful to handle DMA
5298 * mapping failures in the Tx path.
5300 static void mvpp2_txq_desc_put(struct mvpp2_tx_queue *txq)
5302 if (txq->next_desc_to_proc == 0)
5303 txq->next_desc_to_proc = txq->last_desc - 1;
5304 else
5305 txq->next_desc_to_proc--;
5308 /* Set Tx descriptors fields relevant for CSUM calculation */
5309 static u32 mvpp2_txq_desc_csum(int l3_offs, int l3_proto,
5310 int ip_hdr_len, int l4_proto)
5312 u32 command;
5314 /* fields: L3_offset, IP_hdrlen, L3_type, G_IPv4_chk,
5315 * G_L4_chk, L4_type required only for checksum calculation
5317 command = (l3_offs << MVPP2_TXD_L3_OFF_SHIFT);
5318 command |= (ip_hdr_len << MVPP2_TXD_IP_HLEN_SHIFT);
5319 command |= MVPP2_TXD_IP_CSUM_DISABLE;
5321 if (l3_proto == swab16(ETH_P_IP)) {
5322 command &= ~MVPP2_TXD_IP_CSUM_DISABLE; /* enable IPv4 csum */
5323 command &= ~MVPP2_TXD_L3_IP6; /* enable IPv4 */
5324 } else {
5325 command |= MVPP2_TXD_L3_IP6; /* enable IPv6 */
5328 if (l4_proto == IPPROTO_TCP) {
5329 command &= ~MVPP2_TXD_L4_UDP; /* enable TCP */
5330 command &= ~MVPP2_TXD_L4_CSUM_FRAG; /* generate L4 csum */
5331 } else if (l4_proto == IPPROTO_UDP) {
5332 command |= MVPP2_TXD_L4_UDP; /* enable UDP */
5333 command &= ~MVPP2_TXD_L4_CSUM_FRAG; /* generate L4 csum */
5334 } else {
5335 command |= MVPP2_TXD_L4_CSUM_NOT;
5338 return command;
5341 /* Get number of sent descriptors and decrement counter.
5342 * The number of sent descriptors is returned.
5343 * Per-CPU access
5345 * Called only from mvpp2_txq_done(), called from mvpp2_tx()
5346 * (migration disabled) and from the TX completion tasklet (migration
5347 * disabled) so using smp_processor_id() is OK.
5349 static inline int mvpp2_txq_sent_desc_proc(struct mvpp2_port *port,
5350 struct mvpp2_tx_queue *txq)
5352 u32 val;
5354 /* Reading status reg resets transmitted descriptor counter */
5355 val = mvpp2_percpu_read(port->priv, smp_processor_id(),
5356 MVPP2_TXQ_SENT_REG(txq->id));
5358 return (val & MVPP2_TRANSMITTED_COUNT_MASK) >>
5359 MVPP2_TRANSMITTED_COUNT_OFFSET;
5362 /* Called through on_each_cpu(), so runs on all CPUs, with migration
5363 * disabled, therefore using smp_processor_id() is OK.
5365 static void mvpp2_txq_sent_counter_clear(void *arg)
5367 struct mvpp2_port *port = arg;
5368 int queue;
5370 for (queue = 0; queue < port->ntxqs; queue++) {
5371 int id = port->txqs[queue]->id;
5373 mvpp2_percpu_read(port->priv, smp_processor_id(),
5374 MVPP2_TXQ_SENT_REG(id));
5378 /* Set max sizes for Tx queues */
5379 static void mvpp2_txp_max_tx_size_set(struct mvpp2_port *port)
5381 u32 val, size, mtu;
5382 int txq, tx_port_num;
5384 mtu = port->pkt_size * 8;
5385 if (mtu > MVPP2_TXP_MTU_MAX)
5386 mtu = MVPP2_TXP_MTU_MAX;
5388 /* WA for wrong Token bucket update: Set MTU value = 3*real MTU value */
5389 mtu = 3 * mtu;
5391 /* Indirect access to registers */
5392 tx_port_num = mvpp2_egress_port(port);
5393 mvpp2_write(port->priv, MVPP2_TXP_SCHED_PORT_INDEX_REG, tx_port_num);
5395 /* Set MTU */
5396 val = mvpp2_read(port->priv, MVPP2_TXP_SCHED_MTU_REG);
5397 val &= ~MVPP2_TXP_MTU_MAX;
5398 val |= mtu;
5399 mvpp2_write(port->priv, MVPP2_TXP_SCHED_MTU_REG, val);
5401 /* TXP token size and all TXQs token size must be larger that MTU */
5402 val = mvpp2_read(port->priv, MVPP2_TXP_SCHED_TOKEN_SIZE_REG);
5403 size = val & MVPP2_TXP_TOKEN_SIZE_MAX;
5404 if (size < mtu) {
5405 size = mtu;
5406 val &= ~MVPP2_TXP_TOKEN_SIZE_MAX;
5407 val |= size;
5408 mvpp2_write(port->priv, MVPP2_TXP_SCHED_TOKEN_SIZE_REG, val);
5411 for (txq = 0; txq < port->ntxqs; txq++) {
5412 val = mvpp2_read(port->priv,
5413 MVPP2_TXQ_SCHED_TOKEN_SIZE_REG(txq));
5414 size = val & MVPP2_TXQ_TOKEN_SIZE_MAX;
5416 if (size < mtu) {
5417 size = mtu;
5418 val &= ~MVPP2_TXQ_TOKEN_SIZE_MAX;
5419 val |= size;
5420 mvpp2_write(port->priv,
5421 MVPP2_TXQ_SCHED_TOKEN_SIZE_REG(txq),
5422 val);
5427 /* Set the number of packets that will be received before Rx interrupt
5428 * will be generated by HW.
5430 static void mvpp2_rx_pkts_coal_set(struct mvpp2_port *port,
5431 struct mvpp2_rx_queue *rxq)
5433 int cpu = get_cpu();
5435 if (rxq->pkts_coal > MVPP2_OCCUPIED_THRESH_MASK)
5436 rxq->pkts_coal = MVPP2_OCCUPIED_THRESH_MASK;
5438 mvpp2_percpu_write(port->priv, cpu, MVPP2_RXQ_NUM_REG, rxq->id);
5439 mvpp2_percpu_write(port->priv, cpu, MVPP2_RXQ_THRESH_REG,
5440 rxq->pkts_coal);
5442 put_cpu();
5445 /* For some reason in the LSP this is done on each CPU. Why ? */
5446 static void mvpp2_tx_pkts_coal_set(struct mvpp2_port *port,
5447 struct mvpp2_tx_queue *txq)
5449 int cpu = get_cpu();
5450 u32 val;
5452 if (txq->done_pkts_coal > MVPP2_TXQ_THRESH_MASK)
5453 txq->done_pkts_coal = MVPP2_TXQ_THRESH_MASK;
5455 val = (txq->done_pkts_coal << MVPP2_TXQ_THRESH_OFFSET);
5456 mvpp2_percpu_write(port->priv, cpu, MVPP2_TXQ_NUM_REG, txq->id);
5457 mvpp2_percpu_write(port->priv, cpu, MVPP2_TXQ_THRESH_REG, val);
5459 put_cpu();
5462 static u32 mvpp2_usec_to_cycles(u32 usec, unsigned long clk_hz)
5464 u64 tmp = (u64)clk_hz * usec;
5466 do_div(tmp, USEC_PER_SEC);
5468 return tmp > U32_MAX ? U32_MAX : tmp;
5471 static u32 mvpp2_cycles_to_usec(u32 cycles, unsigned long clk_hz)
5473 u64 tmp = (u64)cycles * USEC_PER_SEC;
5475 do_div(tmp, clk_hz);
5477 return tmp > U32_MAX ? U32_MAX : tmp;
5480 /* Set the time delay in usec before Rx interrupt */
5481 static void mvpp2_rx_time_coal_set(struct mvpp2_port *port,
5482 struct mvpp2_rx_queue *rxq)
5484 unsigned long freq = port->priv->tclk;
5485 u32 val = mvpp2_usec_to_cycles(rxq->time_coal, freq);
5487 if (val > MVPP2_MAX_ISR_RX_THRESHOLD) {
5488 rxq->time_coal =
5489 mvpp2_cycles_to_usec(MVPP2_MAX_ISR_RX_THRESHOLD, freq);
5491 /* re-evaluate to get actual register value */
5492 val = mvpp2_usec_to_cycles(rxq->time_coal, freq);
5495 mvpp2_write(port->priv, MVPP2_ISR_RX_THRESHOLD_REG(rxq->id), val);
5498 static void mvpp2_tx_time_coal_set(struct mvpp2_port *port)
5500 unsigned long freq = port->priv->tclk;
5501 u32 val = mvpp2_usec_to_cycles(port->tx_time_coal, freq);
5503 if (val > MVPP2_MAX_ISR_TX_THRESHOLD) {
5504 port->tx_time_coal =
5505 mvpp2_cycles_to_usec(MVPP2_MAX_ISR_TX_THRESHOLD, freq);
5507 /* re-evaluate to get actual register value */
5508 val = mvpp2_usec_to_cycles(port->tx_time_coal, freq);
5511 mvpp2_write(port->priv, MVPP2_ISR_TX_THRESHOLD_REG(port->id), val);
5514 /* Free Tx queue skbuffs */
5515 static void mvpp2_txq_bufs_free(struct mvpp2_port *port,
5516 struct mvpp2_tx_queue *txq,
5517 struct mvpp2_txq_pcpu *txq_pcpu, int num)
5519 int i;
5521 for (i = 0; i < num; i++) {
5522 struct mvpp2_txq_pcpu_buf *tx_buf =
5523 txq_pcpu->buffs + txq_pcpu->txq_get_index;
5525 if (!IS_TSO_HEADER(txq_pcpu, tx_buf->dma))
5526 dma_unmap_single(port->dev->dev.parent, tx_buf->dma,
5527 tx_buf->size, DMA_TO_DEVICE);
5528 if (tx_buf->skb)
5529 dev_kfree_skb_any(tx_buf->skb);
5531 mvpp2_txq_inc_get(txq_pcpu);
5535 static inline struct mvpp2_rx_queue *mvpp2_get_rx_queue(struct mvpp2_port *port,
5536 u32 cause)
5538 int queue = fls(cause) - 1;
5540 return port->rxqs[queue];
5543 static inline struct mvpp2_tx_queue *mvpp2_get_tx_queue(struct mvpp2_port *port,
5544 u32 cause)
5546 int queue = fls(cause) - 1;
5548 return port->txqs[queue];
5551 /* Handle end of transmission */
5552 static void mvpp2_txq_done(struct mvpp2_port *port, struct mvpp2_tx_queue *txq,
5553 struct mvpp2_txq_pcpu *txq_pcpu)
5555 struct netdev_queue *nq = netdev_get_tx_queue(port->dev, txq->log_id);
5556 int tx_done;
5558 if (txq_pcpu->cpu != smp_processor_id())
5559 netdev_err(port->dev, "wrong cpu on the end of Tx processing\n");
5561 tx_done = mvpp2_txq_sent_desc_proc(port, txq);
5562 if (!tx_done)
5563 return;
5564 mvpp2_txq_bufs_free(port, txq, txq_pcpu, tx_done);
5566 txq_pcpu->count -= tx_done;
5568 if (netif_tx_queue_stopped(nq))
5569 if (txq_pcpu->count <= txq_pcpu->wake_threshold)
5570 netif_tx_wake_queue(nq);
5573 static unsigned int mvpp2_tx_done(struct mvpp2_port *port, u32 cause,
5574 int cpu)
5576 struct mvpp2_tx_queue *txq;
5577 struct mvpp2_txq_pcpu *txq_pcpu;
5578 unsigned int tx_todo = 0;
5580 while (cause) {
5581 txq = mvpp2_get_tx_queue(port, cause);
5582 if (!txq)
5583 break;
5585 txq_pcpu = per_cpu_ptr(txq->pcpu, cpu);
5587 if (txq_pcpu->count) {
5588 mvpp2_txq_done(port, txq, txq_pcpu);
5589 tx_todo += txq_pcpu->count;
5592 cause &= ~(1 << txq->log_id);
5594 return tx_todo;
5597 /* Rx/Tx queue initialization/cleanup methods */
5599 /* Allocate and initialize descriptors for aggr TXQ */
5600 static int mvpp2_aggr_txq_init(struct platform_device *pdev,
5601 struct mvpp2_tx_queue *aggr_txq, int cpu,
5602 struct mvpp2 *priv)
5604 u32 txq_dma;
5606 /* Allocate memory for TX descriptors */
5607 aggr_txq->descs = dma_zalloc_coherent(&pdev->dev,
5608 MVPP2_AGGR_TXQ_SIZE * MVPP2_DESC_ALIGNED_SIZE,
5609 &aggr_txq->descs_dma, GFP_KERNEL);
5610 if (!aggr_txq->descs)
5611 return -ENOMEM;
5613 aggr_txq->last_desc = MVPP2_AGGR_TXQ_SIZE - 1;
5615 /* Aggr TXQ no reset WA */
5616 aggr_txq->next_desc_to_proc = mvpp2_read(priv,
5617 MVPP2_AGGR_TXQ_INDEX_REG(cpu));
5619 /* Set Tx descriptors queue starting address indirect
5620 * access
5622 if (priv->hw_version == MVPP21)
5623 txq_dma = aggr_txq->descs_dma;
5624 else
5625 txq_dma = aggr_txq->descs_dma >>
5626 MVPP22_AGGR_TXQ_DESC_ADDR_OFFS;
5628 mvpp2_write(priv, MVPP2_AGGR_TXQ_DESC_ADDR_REG(cpu), txq_dma);
5629 mvpp2_write(priv, MVPP2_AGGR_TXQ_DESC_SIZE_REG(cpu),
5630 MVPP2_AGGR_TXQ_SIZE);
5632 return 0;
5635 /* Create a specified Rx queue */
5636 static int mvpp2_rxq_init(struct mvpp2_port *port,
5637 struct mvpp2_rx_queue *rxq)
5640 u32 rxq_dma;
5641 int cpu;
5643 rxq->size = port->rx_ring_size;
5645 /* Allocate memory for RX descriptors */
5646 rxq->descs = dma_alloc_coherent(port->dev->dev.parent,
5647 rxq->size * MVPP2_DESC_ALIGNED_SIZE,
5648 &rxq->descs_dma, GFP_KERNEL);
5649 if (!rxq->descs)
5650 return -ENOMEM;
5652 rxq->last_desc = rxq->size - 1;
5654 /* Zero occupied and non-occupied counters - direct access */
5655 mvpp2_write(port->priv, MVPP2_RXQ_STATUS_REG(rxq->id), 0);
5657 /* Set Rx descriptors queue starting address - indirect access */
5658 cpu = get_cpu();
5659 mvpp2_percpu_write(port->priv, cpu, MVPP2_RXQ_NUM_REG, rxq->id);
5660 if (port->priv->hw_version == MVPP21)
5661 rxq_dma = rxq->descs_dma;
5662 else
5663 rxq_dma = rxq->descs_dma >> MVPP22_DESC_ADDR_OFFS;
5664 mvpp2_percpu_write(port->priv, cpu, MVPP2_RXQ_DESC_ADDR_REG, rxq_dma);
5665 mvpp2_percpu_write(port->priv, cpu, MVPP2_RXQ_DESC_SIZE_REG, rxq->size);
5666 mvpp2_percpu_write(port->priv, cpu, MVPP2_RXQ_INDEX_REG, 0);
5667 put_cpu();
5669 /* Set Offset */
5670 mvpp2_rxq_offset_set(port, rxq->id, NET_SKB_PAD);
5672 /* Set coalescing pkts and time */
5673 mvpp2_rx_pkts_coal_set(port, rxq);
5674 mvpp2_rx_time_coal_set(port, rxq);
5676 /* Add number of descriptors ready for receiving packets */
5677 mvpp2_rxq_status_update(port, rxq->id, 0, rxq->size);
5679 return 0;
5682 /* Push packets received by the RXQ to BM pool */
5683 static void mvpp2_rxq_drop_pkts(struct mvpp2_port *port,
5684 struct mvpp2_rx_queue *rxq)
5686 int rx_received, i;
5688 rx_received = mvpp2_rxq_received(port, rxq->id);
5689 if (!rx_received)
5690 return;
5692 for (i = 0; i < rx_received; i++) {
5693 struct mvpp2_rx_desc *rx_desc = mvpp2_rxq_next_desc_get(rxq);
5694 u32 status = mvpp2_rxdesc_status_get(port, rx_desc);
5695 int pool;
5697 pool = (status & MVPP2_RXD_BM_POOL_ID_MASK) >>
5698 MVPP2_RXD_BM_POOL_ID_OFFS;
5700 mvpp2_bm_pool_put(port, pool,
5701 mvpp2_rxdesc_dma_addr_get(port, rx_desc),
5702 mvpp2_rxdesc_cookie_get(port, rx_desc));
5704 mvpp2_rxq_status_update(port, rxq->id, rx_received, rx_received);
5707 /* Cleanup Rx queue */
5708 static void mvpp2_rxq_deinit(struct mvpp2_port *port,
5709 struct mvpp2_rx_queue *rxq)
5711 int cpu;
5713 mvpp2_rxq_drop_pkts(port, rxq);
5715 if (rxq->descs)
5716 dma_free_coherent(port->dev->dev.parent,
5717 rxq->size * MVPP2_DESC_ALIGNED_SIZE,
5718 rxq->descs,
5719 rxq->descs_dma);
5721 rxq->descs = NULL;
5722 rxq->last_desc = 0;
5723 rxq->next_desc_to_proc = 0;
5724 rxq->descs_dma = 0;
5726 /* Clear Rx descriptors queue starting address and size;
5727 * free descriptor number
5729 mvpp2_write(port->priv, MVPP2_RXQ_STATUS_REG(rxq->id), 0);
5730 cpu = get_cpu();
5731 mvpp2_percpu_write(port->priv, cpu, MVPP2_RXQ_NUM_REG, rxq->id);
5732 mvpp2_percpu_write(port->priv, cpu, MVPP2_RXQ_DESC_ADDR_REG, 0);
5733 mvpp2_percpu_write(port->priv, cpu, MVPP2_RXQ_DESC_SIZE_REG, 0);
5734 put_cpu();
5737 /* Create and initialize a Tx queue */
5738 static int mvpp2_txq_init(struct mvpp2_port *port,
5739 struct mvpp2_tx_queue *txq)
5741 u32 val;
5742 int cpu, desc, desc_per_txq, tx_port_num;
5743 struct mvpp2_txq_pcpu *txq_pcpu;
5745 txq->size = port->tx_ring_size;
5747 /* Allocate memory for Tx descriptors */
5748 txq->descs = dma_alloc_coherent(port->dev->dev.parent,
5749 txq->size * MVPP2_DESC_ALIGNED_SIZE,
5750 &txq->descs_dma, GFP_KERNEL);
5751 if (!txq->descs)
5752 return -ENOMEM;
5754 txq->last_desc = txq->size - 1;
5756 /* Set Tx descriptors queue starting address - indirect access */
5757 cpu = get_cpu();
5758 mvpp2_percpu_write(port->priv, cpu, MVPP2_TXQ_NUM_REG, txq->id);
5759 mvpp2_percpu_write(port->priv, cpu, MVPP2_TXQ_DESC_ADDR_REG,
5760 txq->descs_dma);
5761 mvpp2_percpu_write(port->priv, cpu, MVPP2_TXQ_DESC_SIZE_REG,
5762 txq->size & MVPP2_TXQ_DESC_SIZE_MASK);
5763 mvpp2_percpu_write(port->priv, cpu, MVPP2_TXQ_INDEX_REG, 0);
5764 mvpp2_percpu_write(port->priv, cpu, MVPP2_TXQ_RSVD_CLR_REG,
5765 txq->id << MVPP2_TXQ_RSVD_CLR_OFFSET);
5766 val = mvpp2_percpu_read(port->priv, cpu, MVPP2_TXQ_PENDING_REG);
5767 val &= ~MVPP2_TXQ_PENDING_MASK;
5768 mvpp2_percpu_write(port->priv, cpu, MVPP2_TXQ_PENDING_REG, val);
5770 /* Calculate base address in prefetch buffer. We reserve 16 descriptors
5771 * for each existing TXQ.
5772 * TCONTS for PON port must be continuous from 0 to MVPP2_MAX_TCONT
5773 * GBE ports assumed to be continious from 0 to MVPP2_MAX_PORTS
5775 desc_per_txq = 16;
5776 desc = (port->id * MVPP2_MAX_TXQ * desc_per_txq) +
5777 (txq->log_id * desc_per_txq);
5779 mvpp2_percpu_write(port->priv, cpu, MVPP2_TXQ_PREF_BUF_REG,
5780 MVPP2_PREF_BUF_PTR(desc) | MVPP2_PREF_BUF_SIZE_16 |
5781 MVPP2_PREF_BUF_THRESH(desc_per_txq / 2));
5782 put_cpu();
5784 /* WRR / EJP configuration - indirect access */
5785 tx_port_num = mvpp2_egress_port(port);
5786 mvpp2_write(port->priv, MVPP2_TXP_SCHED_PORT_INDEX_REG, tx_port_num);
5788 val = mvpp2_read(port->priv, MVPP2_TXQ_SCHED_REFILL_REG(txq->log_id));
5789 val &= ~MVPP2_TXQ_REFILL_PERIOD_ALL_MASK;
5790 val |= MVPP2_TXQ_REFILL_PERIOD_MASK(1);
5791 val |= MVPP2_TXQ_REFILL_TOKENS_ALL_MASK;
5792 mvpp2_write(port->priv, MVPP2_TXQ_SCHED_REFILL_REG(txq->log_id), val);
5794 val = MVPP2_TXQ_TOKEN_SIZE_MAX;
5795 mvpp2_write(port->priv, MVPP2_TXQ_SCHED_TOKEN_SIZE_REG(txq->log_id),
5796 val);
5798 for_each_present_cpu(cpu) {
5799 txq_pcpu = per_cpu_ptr(txq->pcpu, cpu);
5800 txq_pcpu->size = txq->size;
5801 txq_pcpu->buffs = kmalloc_array(txq_pcpu->size,
5802 sizeof(*txq_pcpu->buffs),
5803 GFP_KERNEL);
5804 if (!txq_pcpu->buffs)
5805 return -ENOMEM;
5807 txq_pcpu->count = 0;
5808 txq_pcpu->reserved_num = 0;
5809 txq_pcpu->txq_put_index = 0;
5810 txq_pcpu->txq_get_index = 0;
5811 txq_pcpu->tso_headers = NULL;
5813 txq_pcpu->stop_threshold = txq->size - MVPP2_MAX_SKB_DESCS;
5814 txq_pcpu->wake_threshold = txq_pcpu->stop_threshold / 2;
5816 txq_pcpu->tso_headers =
5817 dma_alloc_coherent(port->dev->dev.parent,
5818 txq_pcpu->size * TSO_HEADER_SIZE,
5819 &txq_pcpu->tso_headers_dma,
5820 GFP_KERNEL);
5821 if (!txq_pcpu->tso_headers)
5822 return -ENOMEM;
5825 return 0;
5828 /* Free allocated TXQ resources */
5829 static void mvpp2_txq_deinit(struct mvpp2_port *port,
5830 struct mvpp2_tx_queue *txq)
5832 struct mvpp2_txq_pcpu *txq_pcpu;
5833 int cpu;
5835 for_each_present_cpu(cpu) {
5836 txq_pcpu = per_cpu_ptr(txq->pcpu, cpu);
5837 kfree(txq_pcpu->buffs);
5839 if (txq_pcpu->tso_headers)
5840 dma_free_coherent(port->dev->dev.parent,
5841 txq_pcpu->size * TSO_HEADER_SIZE,
5842 txq_pcpu->tso_headers,
5843 txq_pcpu->tso_headers_dma);
5845 txq_pcpu->tso_headers = NULL;
5848 if (txq->descs)
5849 dma_free_coherent(port->dev->dev.parent,
5850 txq->size * MVPP2_DESC_ALIGNED_SIZE,
5851 txq->descs, txq->descs_dma);
5853 txq->descs = NULL;
5854 txq->last_desc = 0;
5855 txq->next_desc_to_proc = 0;
5856 txq->descs_dma = 0;
5858 /* Set minimum bandwidth for disabled TXQs */
5859 mvpp2_write(port->priv, MVPP2_TXQ_SCHED_TOKEN_CNTR_REG(txq->id), 0);
5861 /* Set Tx descriptors queue starting address and size */
5862 cpu = get_cpu();
5863 mvpp2_percpu_write(port->priv, cpu, MVPP2_TXQ_NUM_REG, txq->id);
5864 mvpp2_percpu_write(port->priv, cpu, MVPP2_TXQ_DESC_ADDR_REG, 0);
5865 mvpp2_percpu_write(port->priv, cpu, MVPP2_TXQ_DESC_SIZE_REG, 0);
5866 put_cpu();
5869 /* Cleanup Tx ports */
5870 static void mvpp2_txq_clean(struct mvpp2_port *port, struct mvpp2_tx_queue *txq)
5872 struct mvpp2_txq_pcpu *txq_pcpu;
5873 int delay, pending, cpu;
5874 u32 val;
5876 cpu = get_cpu();
5877 mvpp2_percpu_write(port->priv, cpu, MVPP2_TXQ_NUM_REG, txq->id);
5878 val = mvpp2_percpu_read(port->priv, cpu, MVPP2_TXQ_PREF_BUF_REG);
5879 val |= MVPP2_TXQ_DRAIN_EN_MASK;
5880 mvpp2_percpu_write(port->priv, cpu, MVPP2_TXQ_PREF_BUF_REG, val);
5882 /* The napi queue has been stopped so wait for all packets
5883 * to be transmitted.
5885 delay = 0;
5886 do {
5887 if (delay >= MVPP2_TX_PENDING_TIMEOUT_MSEC) {
5888 netdev_warn(port->dev,
5889 "port %d: cleaning queue %d timed out\n",
5890 port->id, txq->log_id);
5891 break;
5893 mdelay(1);
5894 delay++;
5896 pending = mvpp2_percpu_read(port->priv, cpu,
5897 MVPP2_TXQ_PENDING_REG);
5898 pending &= MVPP2_TXQ_PENDING_MASK;
5899 } while (pending);
5901 val &= ~MVPP2_TXQ_DRAIN_EN_MASK;
5902 mvpp2_percpu_write(port->priv, cpu, MVPP2_TXQ_PREF_BUF_REG, val);
5903 put_cpu();
5905 for_each_present_cpu(cpu) {
5906 txq_pcpu = per_cpu_ptr(txq->pcpu, cpu);
5908 /* Release all packets */
5909 mvpp2_txq_bufs_free(port, txq, txq_pcpu, txq_pcpu->count);
5911 /* Reset queue */
5912 txq_pcpu->count = 0;
5913 txq_pcpu->txq_put_index = 0;
5914 txq_pcpu->txq_get_index = 0;
5918 /* Cleanup all Tx queues */
5919 static void mvpp2_cleanup_txqs(struct mvpp2_port *port)
5921 struct mvpp2_tx_queue *txq;
5922 int queue;
5923 u32 val;
5925 val = mvpp2_read(port->priv, MVPP2_TX_PORT_FLUSH_REG);
5927 /* Reset Tx ports and delete Tx queues */
5928 val |= MVPP2_TX_PORT_FLUSH_MASK(port->id);
5929 mvpp2_write(port->priv, MVPP2_TX_PORT_FLUSH_REG, val);
5931 for (queue = 0; queue < port->ntxqs; queue++) {
5932 txq = port->txqs[queue];
5933 mvpp2_txq_clean(port, txq);
5934 mvpp2_txq_deinit(port, txq);
5937 on_each_cpu(mvpp2_txq_sent_counter_clear, port, 1);
5939 val &= ~MVPP2_TX_PORT_FLUSH_MASK(port->id);
5940 mvpp2_write(port->priv, MVPP2_TX_PORT_FLUSH_REG, val);
5943 /* Cleanup all Rx queues */
5944 static void mvpp2_cleanup_rxqs(struct mvpp2_port *port)
5946 int queue;
5948 for (queue = 0; queue < port->nrxqs; queue++)
5949 mvpp2_rxq_deinit(port, port->rxqs[queue]);
5952 /* Init all Rx queues for port */
5953 static int mvpp2_setup_rxqs(struct mvpp2_port *port)
5955 int queue, err;
5957 for (queue = 0; queue < port->nrxqs; queue++) {
5958 err = mvpp2_rxq_init(port, port->rxqs[queue]);
5959 if (err)
5960 goto err_cleanup;
5962 return 0;
5964 err_cleanup:
5965 mvpp2_cleanup_rxqs(port);
5966 return err;
5969 /* Init all tx queues for port */
5970 static int mvpp2_setup_txqs(struct mvpp2_port *port)
5972 struct mvpp2_tx_queue *txq;
5973 int queue, err;
5975 for (queue = 0; queue < port->ntxqs; queue++) {
5976 txq = port->txqs[queue];
5977 err = mvpp2_txq_init(port, txq);
5978 if (err)
5979 goto err_cleanup;
5982 if (port->has_tx_irqs) {
5983 mvpp2_tx_time_coal_set(port);
5984 for (queue = 0; queue < port->ntxqs; queue++) {
5985 txq = port->txqs[queue];
5986 mvpp2_tx_pkts_coal_set(port, txq);
5990 on_each_cpu(mvpp2_txq_sent_counter_clear, port, 1);
5991 return 0;
5993 err_cleanup:
5994 mvpp2_cleanup_txqs(port);
5995 return err;
5998 /* The callback for per-port interrupt */
5999 static irqreturn_t mvpp2_isr(int irq, void *dev_id)
6001 struct mvpp2_queue_vector *qv = dev_id;
6003 mvpp2_qvec_interrupt_disable(qv);
6005 napi_schedule(&qv->napi);
6007 return IRQ_HANDLED;
6010 /* Per-port interrupt for link status changes */
6011 static irqreturn_t mvpp2_link_status_isr(int irq, void *dev_id)
6013 struct mvpp2_port *port = (struct mvpp2_port *)dev_id;
6014 struct net_device *dev = port->dev;
6015 bool event = false, link = false;
6016 u32 val;
6018 mvpp22_gop_mask_irq(port);
6020 if (port->gop_id == 0 &&
6021 port->phy_interface == PHY_INTERFACE_MODE_10GKR) {
6022 val = readl(port->base + MVPP22_XLG_INT_STAT);
6023 if (val & MVPP22_XLG_INT_STAT_LINK) {
6024 event = true;
6025 val = readl(port->base + MVPP22_XLG_STATUS);
6026 if (val & MVPP22_XLG_STATUS_LINK_UP)
6027 link = true;
6029 } else if (phy_interface_mode_is_rgmii(port->phy_interface) ||
6030 port->phy_interface == PHY_INTERFACE_MODE_SGMII) {
6031 val = readl(port->base + MVPP22_GMAC_INT_STAT);
6032 if (val & MVPP22_GMAC_INT_STAT_LINK) {
6033 event = true;
6034 val = readl(port->base + MVPP2_GMAC_STATUS0);
6035 if (val & MVPP2_GMAC_STATUS0_LINK_UP)
6036 link = true;
6040 if (!netif_running(dev) || !event)
6041 goto handled;
6043 if (link) {
6044 mvpp2_interrupts_enable(port);
6046 mvpp2_egress_enable(port);
6047 mvpp2_ingress_enable(port);
6048 netif_carrier_on(dev);
6049 netif_tx_wake_all_queues(dev);
6050 } else {
6051 netif_tx_stop_all_queues(dev);
6052 netif_carrier_off(dev);
6053 mvpp2_ingress_disable(port);
6054 mvpp2_egress_disable(port);
6056 mvpp2_interrupts_disable(port);
6059 handled:
6060 mvpp22_gop_unmask_irq(port);
6061 return IRQ_HANDLED;
6064 static void mvpp2_gmac_set_autoneg(struct mvpp2_port *port,
6065 struct phy_device *phydev)
6067 u32 val;
6069 if (port->phy_interface != PHY_INTERFACE_MODE_RGMII &&
6070 port->phy_interface != PHY_INTERFACE_MODE_RGMII_ID &&
6071 port->phy_interface != PHY_INTERFACE_MODE_RGMII_RXID &&
6072 port->phy_interface != PHY_INTERFACE_MODE_RGMII_TXID &&
6073 port->phy_interface != PHY_INTERFACE_MODE_SGMII)
6074 return;
6076 val = readl(port->base + MVPP2_GMAC_AUTONEG_CONFIG);
6077 val &= ~(MVPP2_GMAC_CONFIG_MII_SPEED |
6078 MVPP2_GMAC_CONFIG_GMII_SPEED |
6079 MVPP2_GMAC_CONFIG_FULL_DUPLEX |
6080 MVPP2_GMAC_AN_SPEED_EN |
6081 MVPP2_GMAC_AN_DUPLEX_EN);
6083 if (phydev->duplex)
6084 val |= MVPP2_GMAC_CONFIG_FULL_DUPLEX;
6086 if (phydev->speed == SPEED_1000)
6087 val |= MVPP2_GMAC_CONFIG_GMII_SPEED;
6088 else if (phydev->speed == SPEED_100)
6089 val |= MVPP2_GMAC_CONFIG_MII_SPEED;
6091 writel(val, port->base + MVPP2_GMAC_AUTONEG_CONFIG);
6094 /* Adjust link */
6095 static void mvpp2_link_event(struct net_device *dev)
6097 struct mvpp2_port *port = netdev_priv(dev);
6098 struct phy_device *phydev = dev->phydev;
6099 bool link_reconfigured = false;
6100 u32 val;
6102 if (phydev->link) {
6103 if (port->phy_interface != phydev->interface && port->comphy) {
6104 /* disable current port for reconfiguration */
6105 mvpp2_interrupts_disable(port);
6106 netif_carrier_off(port->dev);
6107 mvpp2_port_disable(port);
6108 phy_power_off(port->comphy);
6110 /* comphy reconfiguration */
6111 port->phy_interface = phydev->interface;
6112 mvpp22_comphy_init(port);
6114 /* gop/mac reconfiguration */
6115 mvpp22_gop_init(port);
6116 mvpp2_port_mii_set(port);
6118 link_reconfigured = true;
6121 if ((port->speed != phydev->speed) ||
6122 (port->duplex != phydev->duplex)) {
6123 mvpp2_gmac_set_autoneg(port, phydev);
6125 port->duplex = phydev->duplex;
6126 port->speed = phydev->speed;
6130 if (phydev->link != port->link || link_reconfigured) {
6131 port->link = phydev->link;
6133 if (phydev->link) {
6134 if (port->phy_interface == PHY_INTERFACE_MODE_RGMII ||
6135 port->phy_interface == PHY_INTERFACE_MODE_RGMII_ID ||
6136 port->phy_interface == PHY_INTERFACE_MODE_RGMII_RXID ||
6137 port->phy_interface == PHY_INTERFACE_MODE_RGMII_TXID ||
6138 port->phy_interface == PHY_INTERFACE_MODE_SGMII) {
6139 val = readl(port->base + MVPP2_GMAC_AUTONEG_CONFIG);
6140 val |= (MVPP2_GMAC_FORCE_LINK_PASS |
6141 MVPP2_GMAC_FORCE_LINK_DOWN);
6142 writel(val, port->base + MVPP2_GMAC_AUTONEG_CONFIG);
6145 mvpp2_interrupts_enable(port);
6146 mvpp2_port_enable(port);
6148 mvpp2_egress_enable(port);
6149 mvpp2_ingress_enable(port);
6150 netif_carrier_on(dev);
6151 netif_tx_wake_all_queues(dev);
6152 } else {
6153 port->duplex = -1;
6154 port->speed = 0;
6156 netif_tx_stop_all_queues(dev);
6157 netif_carrier_off(dev);
6158 mvpp2_ingress_disable(port);
6159 mvpp2_egress_disable(port);
6161 mvpp2_port_disable(port);
6162 mvpp2_interrupts_disable(port);
6165 phy_print_status(phydev);
6169 static void mvpp2_timer_set(struct mvpp2_port_pcpu *port_pcpu)
6171 ktime_t interval;
6173 if (!port_pcpu->timer_scheduled) {
6174 port_pcpu->timer_scheduled = true;
6175 interval = MVPP2_TXDONE_HRTIMER_PERIOD_NS;
6176 hrtimer_start(&port_pcpu->tx_done_timer, interval,
6177 HRTIMER_MODE_REL_PINNED);
6181 static void mvpp2_tx_proc_cb(unsigned long data)
6183 struct net_device *dev = (struct net_device *)data;
6184 struct mvpp2_port *port = netdev_priv(dev);
6185 struct mvpp2_port_pcpu *port_pcpu = this_cpu_ptr(port->pcpu);
6186 unsigned int tx_todo, cause;
6188 if (!netif_running(dev))
6189 return;
6190 port_pcpu->timer_scheduled = false;
6192 /* Process all the Tx queues */
6193 cause = (1 << port->ntxqs) - 1;
6194 tx_todo = mvpp2_tx_done(port, cause, smp_processor_id());
6196 /* Set the timer in case not all the packets were processed */
6197 if (tx_todo)
6198 mvpp2_timer_set(port_pcpu);
6201 static enum hrtimer_restart mvpp2_hr_timer_cb(struct hrtimer *timer)
6203 struct mvpp2_port_pcpu *port_pcpu = container_of(timer,
6204 struct mvpp2_port_pcpu,
6205 tx_done_timer);
6207 tasklet_schedule(&port_pcpu->tx_done_tasklet);
6209 return HRTIMER_NORESTART;
6212 /* Main RX/TX processing routines */
6214 /* Display more error info */
6215 static void mvpp2_rx_error(struct mvpp2_port *port,
6216 struct mvpp2_rx_desc *rx_desc)
6218 u32 status = mvpp2_rxdesc_status_get(port, rx_desc);
6219 size_t sz = mvpp2_rxdesc_size_get(port, rx_desc);
6221 switch (status & MVPP2_RXD_ERR_CODE_MASK) {
6222 case MVPP2_RXD_ERR_CRC:
6223 netdev_err(port->dev, "bad rx status %08x (crc error), size=%zu\n",
6224 status, sz);
6225 break;
6226 case MVPP2_RXD_ERR_OVERRUN:
6227 netdev_err(port->dev, "bad rx status %08x (overrun error), size=%zu\n",
6228 status, sz);
6229 break;
6230 case MVPP2_RXD_ERR_RESOURCE:
6231 netdev_err(port->dev, "bad rx status %08x (resource error), size=%zu\n",
6232 status, sz);
6233 break;
6237 /* Handle RX checksum offload */
6238 static void mvpp2_rx_csum(struct mvpp2_port *port, u32 status,
6239 struct sk_buff *skb)
6241 if (((status & MVPP2_RXD_L3_IP4) &&
6242 !(status & MVPP2_RXD_IP4_HEADER_ERR)) ||
6243 (status & MVPP2_RXD_L3_IP6))
6244 if (((status & MVPP2_RXD_L4_UDP) ||
6245 (status & MVPP2_RXD_L4_TCP)) &&
6246 (status & MVPP2_RXD_L4_CSUM_OK)) {
6247 skb->csum = 0;
6248 skb->ip_summed = CHECKSUM_UNNECESSARY;
6249 return;
6252 skb->ip_summed = CHECKSUM_NONE;
6255 /* Reuse skb if possible, or allocate a new skb and add it to BM pool */
6256 static int mvpp2_rx_refill(struct mvpp2_port *port,
6257 struct mvpp2_bm_pool *bm_pool, int pool)
6259 dma_addr_t dma_addr;
6260 phys_addr_t phys_addr;
6261 void *buf;
6263 /* No recycle or too many buffers are in use, so allocate a new skb */
6264 buf = mvpp2_buf_alloc(port, bm_pool, &dma_addr, &phys_addr,
6265 GFP_ATOMIC);
6266 if (!buf)
6267 return -ENOMEM;
6269 mvpp2_bm_pool_put(port, pool, dma_addr, phys_addr);
6271 return 0;
6274 /* Handle tx checksum */
6275 static u32 mvpp2_skb_tx_csum(struct mvpp2_port *port, struct sk_buff *skb)
6277 if (skb->ip_summed == CHECKSUM_PARTIAL) {
6278 int ip_hdr_len = 0;
6279 u8 l4_proto;
6281 if (skb->protocol == htons(ETH_P_IP)) {
6282 struct iphdr *ip4h = ip_hdr(skb);
6284 /* Calculate IPv4 checksum and L4 checksum */
6285 ip_hdr_len = ip4h->ihl;
6286 l4_proto = ip4h->protocol;
6287 } else if (skb->protocol == htons(ETH_P_IPV6)) {
6288 struct ipv6hdr *ip6h = ipv6_hdr(skb);
6290 /* Read l4_protocol from one of IPv6 extra headers */
6291 if (skb_network_header_len(skb) > 0)
6292 ip_hdr_len = (skb_network_header_len(skb) >> 2);
6293 l4_proto = ip6h->nexthdr;
6294 } else {
6295 return MVPP2_TXD_L4_CSUM_NOT;
6298 return mvpp2_txq_desc_csum(skb_network_offset(skb),
6299 skb->protocol, ip_hdr_len, l4_proto);
6302 return MVPP2_TXD_L4_CSUM_NOT | MVPP2_TXD_IP_CSUM_DISABLE;
6305 /* Main rx processing */
6306 static int mvpp2_rx(struct mvpp2_port *port, struct napi_struct *napi,
6307 int rx_todo, struct mvpp2_rx_queue *rxq)
6309 struct net_device *dev = port->dev;
6310 int rx_received;
6311 int rx_done = 0;
6312 u32 rcvd_pkts = 0;
6313 u32 rcvd_bytes = 0;
6315 /* Get number of received packets and clamp the to-do */
6316 rx_received = mvpp2_rxq_received(port, rxq->id);
6317 if (rx_todo > rx_received)
6318 rx_todo = rx_received;
6320 while (rx_done < rx_todo) {
6321 struct mvpp2_rx_desc *rx_desc = mvpp2_rxq_next_desc_get(rxq);
6322 struct mvpp2_bm_pool *bm_pool;
6323 struct sk_buff *skb;
6324 unsigned int frag_size;
6325 dma_addr_t dma_addr;
6326 phys_addr_t phys_addr;
6327 u32 rx_status;
6328 int pool, rx_bytes, err;
6329 void *data;
6331 rx_done++;
6332 rx_status = mvpp2_rxdesc_status_get(port, rx_desc);
6333 rx_bytes = mvpp2_rxdesc_size_get(port, rx_desc);
6334 rx_bytes -= MVPP2_MH_SIZE;
6335 dma_addr = mvpp2_rxdesc_dma_addr_get(port, rx_desc);
6336 phys_addr = mvpp2_rxdesc_cookie_get(port, rx_desc);
6337 data = (void *)phys_to_virt(phys_addr);
6339 pool = (rx_status & MVPP2_RXD_BM_POOL_ID_MASK) >>
6340 MVPP2_RXD_BM_POOL_ID_OFFS;
6341 bm_pool = &port->priv->bm_pools[pool];
6343 /* In case of an error, release the requested buffer pointer
6344 * to the Buffer Manager. This request process is controlled
6345 * by the hardware, and the information about the buffer is
6346 * comprised by the RX descriptor.
6348 if (rx_status & MVPP2_RXD_ERR_SUMMARY) {
6349 err_drop_frame:
6350 dev->stats.rx_errors++;
6351 mvpp2_rx_error(port, rx_desc);
6352 /* Return the buffer to the pool */
6353 mvpp2_bm_pool_put(port, pool, dma_addr, phys_addr);
6354 continue;
6357 if (bm_pool->frag_size > PAGE_SIZE)
6358 frag_size = 0;
6359 else
6360 frag_size = bm_pool->frag_size;
6362 skb = build_skb(data, frag_size);
6363 if (!skb) {
6364 netdev_warn(port->dev, "skb build failed\n");
6365 goto err_drop_frame;
6368 err = mvpp2_rx_refill(port, bm_pool, pool);
6369 if (err) {
6370 netdev_err(port->dev, "failed to refill BM pools\n");
6371 goto err_drop_frame;
6374 dma_unmap_single(dev->dev.parent, dma_addr,
6375 bm_pool->buf_size, DMA_FROM_DEVICE);
6377 rcvd_pkts++;
6378 rcvd_bytes += rx_bytes;
6380 skb_reserve(skb, MVPP2_MH_SIZE + NET_SKB_PAD);
6381 skb_put(skb, rx_bytes);
6382 skb->protocol = eth_type_trans(skb, dev);
6383 mvpp2_rx_csum(port, rx_status, skb);
6385 napi_gro_receive(napi, skb);
6388 if (rcvd_pkts) {
6389 struct mvpp2_pcpu_stats *stats = this_cpu_ptr(port->stats);
6391 u64_stats_update_begin(&stats->syncp);
6392 stats->rx_packets += rcvd_pkts;
6393 stats->rx_bytes += rcvd_bytes;
6394 u64_stats_update_end(&stats->syncp);
6397 /* Update Rx queue management counters */
6398 wmb();
6399 mvpp2_rxq_status_update(port, rxq->id, rx_done, rx_done);
6401 return rx_todo;
6404 static inline void
6405 tx_desc_unmap_put(struct mvpp2_port *port, struct mvpp2_tx_queue *txq,
6406 struct mvpp2_tx_desc *desc)
6408 struct mvpp2_txq_pcpu *txq_pcpu = this_cpu_ptr(txq->pcpu);
6410 dma_addr_t buf_dma_addr =
6411 mvpp2_txdesc_dma_addr_get(port, desc);
6412 size_t buf_sz =
6413 mvpp2_txdesc_size_get(port, desc);
6414 if (!IS_TSO_HEADER(txq_pcpu, buf_dma_addr))
6415 dma_unmap_single(port->dev->dev.parent, buf_dma_addr,
6416 buf_sz, DMA_TO_DEVICE);
6417 mvpp2_txq_desc_put(txq);
6420 /* Handle tx fragmentation processing */
6421 static int mvpp2_tx_frag_process(struct mvpp2_port *port, struct sk_buff *skb,
6422 struct mvpp2_tx_queue *aggr_txq,
6423 struct mvpp2_tx_queue *txq)
6425 struct mvpp2_txq_pcpu *txq_pcpu = this_cpu_ptr(txq->pcpu);
6426 struct mvpp2_tx_desc *tx_desc;
6427 int i;
6428 dma_addr_t buf_dma_addr;
6430 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
6431 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
6432 void *addr = page_address(frag->page.p) + frag->page_offset;
6434 tx_desc = mvpp2_txq_next_desc_get(aggr_txq);
6435 mvpp2_txdesc_txq_set(port, tx_desc, txq->id);
6436 mvpp2_txdesc_size_set(port, tx_desc, frag->size);
6438 buf_dma_addr = dma_map_single(port->dev->dev.parent, addr,
6439 frag->size,
6440 DMA_TO_DEVICE);
6441 if (dma_mapping_error(port->dev->dev.parent, buf_dma_addr)) {
6442 mvpp2_txq_desc_put(txq);
6443 goto cleanup;
6446 mvpp2_txdesc_dma_addr_set(port, tx_desc, buf_dma_addr);
6448 if (i == (skb_shinfo(skb)->nr_frags - 1)) {
6449 /* Last descriptor */
6450 mvpp2_txdesc_cmd_set(port, tx_desc,
6451 MVPP2_TXD_L_DESC);
6452 mvpp2_txq_inc_put(port, txq_pcpu, skb, tx_desc);
6453 } else {
6454 /* Descriptor in the middle: Not First, Not Last */
6455 mvpp2_txdesc_cmd_set(port, tx_desc, 0);
6456 mvpp2_txq_inc_put(port, txq_pcpu, NULL, tx_desc);
6460 return 0;
6461 cleanup:
6462 /* Release all descriptors that were used to map fragments of
6463 * this packet, as well as the corresponding DMA mappings
6465 for (i = i - 1; i >= 0; i--) {
6466 tx_desc = txq->descs + i;
6467 tx_desc_unmap_put(port, txq, tx_desc);
6470 return -ENOMEM;
6473 static inline void mvpp2_tso_put_hdr(struct sk_buff *skb,
6474 struct net_device *dev,
6475 struct mvpp2_tx_queue *txq,
6476 struct mvpp2_tx_queue *aggr_txq,
6477 struct mvpp2_txq_pcpu *txq_pcpu,
6478 int hdr_sz)
6480 struct mvpp2_port *port = netdev_priv(dev);
6481 struct mvpp2_tx_desc *tx_desc = mvpp2_txq_next_desc_get(aggr_txq);
6482 dma_addr_t addr;
6484 mvpp2_txdesc_txq_set(port, tx_desc, txq->id);
6485 mvpp2_txdesc_size_set(port, tx_desc, hdr_sz);
6487 addr = txq_pcpu->tso_headers_dma +
6488 txq_pcpu->txq_put_index * TSO_HEADER_SIZE;
6489 mvpp2_txdesc_dma_addr_set(port, tx_desc, addr);
6491 mvpp2_txdesc_cmd_set(port, tx_desc, mvpp2_skb_tx_csum(port, skb) |
6492 MVPP2_TXD_F_DESC |
6493 MVPP2_TXD_PADDING_DISABLE);
6494 mvpp2_txq_inc_put(port, txq_pcpu, NULL, tx_desc);
6497 static inline int mvpp2_tso_put_data(struct sk_buff *skb,
6498 struct net_device *dev, struct tso_t *tso,
6499 struct mvpp2_tx_queue *txq,
6500 struct mvpp2_tx_queue *aggr_txq,
6501 struct mvpp2_txq_pcpu *txq_pcpu,
6502 int sz, bool left, bool last)
6504 struct mvpp2_port *port = netdev_priv(dev);
6505 struct mvpp2_tx_desc *tx_desc = mvpp2_txq_next_desc_get(aggr_txq);
6506 dma_addr_t buf_dma_addr;
6508 mvpp2_txdesc_txq_set(port, tx_desc, txq->id);
6509 mvpp2_txdesc_size_set(port, tx_desc, sz);
6511 buf_dma_addr = dma_map_single(dev->dev.parent, tso->data, sz,
6512 DMA_TO_DEVICE);
6513 if (unlikely(dma_mapping_error(dev->dev.parent, buf_dma_addr))) {
6514 mvpp2_txq_desc_put(txq);
6515 return -ENOMEM;
6518 mvpp2_txdesc_dma_addr_set(port, tx_desc, buf_dma_addr);
6520 if (!left) {
6521 mvpp2_txdesc_cmd_set(port, tx_desc, MVPP2_TXD_L_DESC);
6522 if (last) {
6523 mvpp2_txq_inc_put(port, txq_pcpu, skb, tx_desc);
6524 return 0;
6526 } else {
6527 mvpp2_txdesc_cmd_set(port, tx_desc, 0);
6530 mvpp2_txq_inc_put(port, txq_pcpu, NULL, tx_desc);
6531 return 0;
6534 static int mvpp2_tx_tso(struct sk_buff *skb, struct net_device *dev,
6535 struct mvpp2_tx_queue *txq,
6536 struct mvpp2_tx_queue *aggr_txq,
6537 struct mvpp2_txq_pcpu *txq_pcpu)
6539 struct mvpp2_port *port = netdev_priv(dev);
6540 struct tso_t tso;
6541 int hdr_sz = skb_transport_offset(skb) + tcp_hdrlen(skb);
6542 int i, len, descs = 0;
6544 /* Check number of available descriptors */
6545 if (mvpp2_aggr_desc_num_check(port->priv, aggr_txq,
6546 tso_count_descs(skb)) ||
6547 mvpp2_txq_reserved_desc_num_proc(port->priv, txq, txq_pcpu,
6548 tso_count_descs(skb)))
6549 return 0;
6551 tso_start(skb, &tso);
6552 len = skb->len - hdr_sz;
6553 while (len > 0) {
6554 int left = min_t(int, skb_shinfo(skb)->gso_size, len);
6555 char *hdr = txq_pcpu->tso_headers +
6556 txq_pcpu->txq_put_index * TSO_HEADER_SIZE;
6558 len -= left;
6559 descs++;
6561 tso_build_hdr(skb, hdr, &tso, left, len == 0);
6562 mvpp2_tso_put_hdr(skb, dev, txq, aggr_txq, txq_pcpu, hdr_sz);
6564 while (left > 0) {
6565 int sz = min_t(int, tso.size, left);
6566 left -= sz;
6567 descs++;
6569 if (mvpp2_tso_put_data(skb, dev, &tso, txq, aggr_txq,
6570 txq_pcpu, sz, left, len == 0))
6571 goto release;
6572 tso_build_data(skb, &tso, sz);
6576 return descs;
6578 release:
6579 for (i = descs - 1; i >= 0; i--) {
6580 struct mvpp2_tx_desc *tx_desc = txq->descs + i;
6581 tx_desc_unmap_put(port, txq, tx_desc);
6583 return 0;
6586 /* Main tx processing */
6587 static int mvpp2_tx(struct sk_buff *skb, struct net_device *dev)
6589 struct mvpp2_port *port = netdev_priv(dev);
6590 struct mvpp2_tx_queue *txq, *aggr_txq;
6591 struct mvpp2_txq_pcpu *txq_pcpu;
6592 struct mvpp2_tx_desc *tx_desc;
6593 dma_addr_t buf_dma_addr;
6594 int frags = 0;
6595 u16 txq_id;
6596 u32 tx_cmd;
6598 txq_id = skb_get_queue_mapping(skb);
6599 txq = port->txqs[txq_id];
6600 txq_pcpu = this_cpu_ptr(txq->pcpu);
6601 aggr_txq = &port->priv->aggr_txqs[smp_processor_id()];
6603 if (skb_is_gso(skb)) {
6604 frags = mvpp2_tx_tso(skb, dev, txq, aggr_txq, txq_pcpu);
6605 goto out;
6607 frags = skb_shinfo(skb)->nr_frags + 1;
6609 /* Check number of available descriptors */
6610 if (mvpp2_aggr_desc_num_check(port->priv, aggr_txq, frags) ||
6611 mvpp2_txq_reserved_desc_num_proc(port->priv, txq,
6612 txq_pcpu, frags)) {
6613 frags = 0;
6614 goto out;
6617 /* Get a descriptor for the first part of the packet */
6618 tx_desc = mvpp2_txq_next_desc_get(aggr_txq);
6619 mvpp2_txdesc_txq_set(port, tx_desc, txq->id);
6620 mvpp2_txdesc_size_set(port, tx_desc, skb_headlen(skb));
6622 buf_dma_addr = dma_map_single(dev->dev.parent, skb->data,
6623 skb_headlen(skb), DMA_TO_DEVICE);
6624 if (unlikely(dma_mapping_error(dev->dev.parent, buf_dma_addr))) {
6625 mvpp2_txq_desc_put(txq);
6626 frags = 0;
6627 goto out;
6630 mvpp2_txdesc_dma_addr_set(port, tx_desc, buf_dma_addr);
6632 tx_cmd = mvpp2_skb_tx_csum(port, skb);
6634 if (frags == 1) {
6635 /* First and Last descriptor */
6636 tx_cmd |= MVPP2_TXD_F_DESC | MVPP2_TXD_L_DESC;
6637 mvpp2_txdesc_cmd_set(port, tx_desc, tx_cmd);
6638 mvpp2_txq_inc_put(port, txq_pcpu, skb, tx_desc);
6639 } else {
6640 /* First but not Last */
6641 tx_cmd |= MVPP2_TXD_F_DESC | MVPP2_TXD_PADDING_DISABLE;
6642 mvpp2_txdesc_cmd_set(port, tx_desc, tx_cmd);
6643 mvpp2_txq_inc_put(port, txq_pcpu, NULL, tx_desc);
6645 /* Continue with other skb fragments */
6646 if (mvpp2_tx_frag_process(port, skb, aggr_txq, txq)) {
6647 tx_desc_unmap_put(port, txq, tx_desc);
6648 frags = 0;
6652 out:
6653 if (frags > 0) {
6654 struct mvpp2_pcpu_stats *stats = this_cpu_ptr(port->stats);
6655 struct netdev_queue *nq = netdev_get_tx_queue(dev, txq_id);
6657 txq_pcpu->reserved_num -= frags;
6658 txq_pcpu->count += frags;
6659 aggr_txq->count += frags;
6661 /* Enable transmit */
6662 wmb();
6663 mvpp2_aggr_txq_pend_desc_add(port, frags);
6665 if (txq_pcpu->count >= txq_pcpu->stop_threshold)
6666 netif_tx_stop_queue(nq);
6668 u64_stats_update_begin(&stats->syncp);
6669 stats->tx_packets++;
6670 stats->tx_bytes += skb->len;
6671 u64_stats_update_end(&stats->syncp);
6672 } else {
6673 dev->stats.tx_dropped++;
6674 dev_kfree_skb_any(skb);
6677 /* Finalize TX processing */
6678 if (!port->has_tx_irqs && txq_pcpu->count >= txq->done_pkts_coal)
6679 mvpp2_txq_done(port, txq, txq_pcpu);
6681 /* Set the timer in case not all frags were processed */
6682 if (!port->has_tx_irqs && txq_pcpu->count <= frags &&
6683 txq_pcpu->count > 0) {
6684 struct mvpp2_port_pcpu *port_pcpu = this_cpu_ptr(port->pcpu);
6686 mvpp2_timer_set(port_pcpu);
6689 return NETDEV_TX_OK;
6692 static inline void mvpp2_cause_error(struct net_device *dev, int cause)
6694 if (cause & MVPP2_CAUSE_FCS_ERR_MASK)
6695 netdev_err(dev, "FCS error\n");
6696 if (cause & MVPP2_CAUSE_RX_FIFO_OVERRUN_MASK)
6697 netdev_err(dev, "rx fifo overrun error\n");
6698 if (cause & MVPP2_CAUSE_TX_FIFO_UNDERRUN_MASK)
6699 netdev_err(dev, "tx fifo underrun error\n");
6702 static int mvpp2_poll(struct napi_struct *napi, int budget)
6704 u32 cause_rx_tx, cause_rx, cause_tx, cause_misc;
6705 int rx_done = 0;
6706 struct mvpp2_port *port = netdev_priv(napi->dev);
6707 struct mvpp2_queue_vector *qv;
6708 int cpu = smp_processor_id();
6710 qv = container_of(napi, struct mvpp2_queue_vector, napi);
6712 /* Rx/Tx cause register
6714 * Bits 0-15: each bit indicates received packets on the Rx queue
6715 * (bit 0 is for Rx queue 0).
6717 * Bits 16-23: each bit indicates transmitted packets on the Tx queue
6718 * (bit 16 is for Tx queue 0).
6720 * Each CPU has its own Rx/Tx cause register
6722 cause_rx_tx = mvpp2_percpu_read(port->priv, qv->sw_thread_id,
6723 MVPP2_ISR_RX_TX_CAUSE_REG(port->id));
6725 cause_misc = cause_rx_tx & MVPP2_CAUSE_MISC_SUM_MASK;
6726 if (cause_misc) {
6727 mvpp2_cause_error(port->dev, cause_misc);
6729 /* Clear the cause register */
6730 mvpp2_write(port->priv, MVPP2_ISR_MISC_CAUSE_REG, 0);
6731 mvpp2_percpu_write(port->priv, cpu,
6732 MVPP2_ISR_RX_TX_CAUSE_REG(port->id),
6733 cause_rx_tx & ~MVPP2_CAUSE_MISC_SUM_MASK);
6736 cause_tx = cause_rx_tx & MVPP2_CAUSE_TXQ_OCCUP_DESC_ALL_MASK;
6737 if (cause_tx) {
6738 cause_tx >>= MVPP2_CAUSE_TXQ_OCCUP_DESC_ALL_OFFSET;
6739 mvpp2_tx_done(port, cause_tx, qv->sw_thread_id);
6742 /* Process RX packets */
6743 cause_rx = cause_rx_tx & MVPP2_CAUSE_RXQ_OCCUP_DESC_ALL_MASK;
6744 cause_rx <<= qv->first_rxq;
6745 cause_rx |= qv->pending_cause_rx;
6746 while (cause_rx && budget > 0) {
6747 int count;
6748 struct mvpp2_rx_queue *rxq;
6750 rxq = mvpp2_get_rx_queue(port, cause_rx);
6751 if (!rxq)
6752 break;
6754 count = mvpp2_rx(port, napi, budget, rxq);
6755 rx_done += count;
6756 budget -= count;
6757 if (budget > 0) {
6758 /* Clear the bit associated to this Rx queue
6759 * so that next iteration will continue from
6760 * the next Rx queue.
6762 cause_rx &= ~(1 << rxq->logic_rxq);
6766 if (budget > 0) {
6767 cause_rx = 0;
6768 napi_complete_done(napi, rx_done);
6770 mvpp2_qvec_interrupt_enable(qv);
6772 qv->pending_cause_rx = cause_rx;
6773 return rx_done;
6776 /* Set hw internals when starting port */
6777 static void mvpp2_start_dev(struct mvpp2_port *port)
6779 struct net_device *ndev = port->dev;
6780 int i;
6782 if (port->gop_id == 0 &&
6783 (port->phy_interface == PHY_INTERFACE_MODE_XAUI ||
6784 port->phy_interface == PHY_INTERFACE_MODE_10GKR))
6785 mvpp2_xlg_max_rx_size_set(port);
6786 else
6787 mvpp2_gmac_max_rx_size_set(port);
6789 mvpp2_txp_max_tx_size_set(port);
6791 for (i = 0; i < port->nqvecs; i++)
6792 napi_enable(&port->qvecs[i].napi);
6794 /* Enable interrupts on all CPUs */
6795 mvpp2_interrupts_enable(port);
6797 if (port->priv->hw_version == MVPP22) {
6798 mvpp22_comphy_init(port);
6799 mvpp22_gop_init(port);
6802 mvpp2_port_mii_set(port);
6803 mvpp2_port_enable(port);
6804 if (ndev->phydev)
6805 phy_start(ndev->phydev);
6806 netif_tx_start_all_queues(port->dev);
6809 /* Set hw internals when stopping port */
6810 static void mvpp2_stop_dev(struct mvpp2_port *port)
6812 struct net_device *ndev = port->dev;
6813 int i;
6815 /* Stop new packets from arriving to RXQs */
6816 mvpp2_ingress_disable(port);
6818 mdelay(10);
6820 /* Disable interrupts on all CPUs */
6821 mvpp2_interrupts_disable(port);
6823 for (i = 0; i < port->nqvecs; i++)
6824 napi_disable(&port->qvecs[i].napi);
6826 netif_carrier_off(port->dev);
6827 netif_tx_stop_all_queues(port->dev);
6829 mvpp2_egress_disable(port);
6830 mvpp2_port_disable(port);
6831 if (ndev->phydev)
6832 phy_stop(ndev->phydev);
6833 phy_power_off(port->comphy);
6836 static int mvpp2_check_ringparam_valid(struct net_device *dev,
6837 struct ethtool_ringparam *ring)
6839 u16 new_rx_pending = ring->rx_pending;
6840 u16 new_tx_pending = ring->tx_pending;
6842 if (ring->rx_pending == 0 || ring->tx_pending == 0)
6843 return -EINVAL;
6845 if (ring->rx_pending > MVPP2_MAX_RXD_MAX)
6846 new_rx_pending = MVPP2_MAX_RXD_MAX;
6847 else if (!IS_ALIGNED(ring->rx_pending, 16))
6848 new_rx_pending = ALIGN(ring->rx_pending, 16);
6850 if (ring->tx_pending > MVPP2_MAX_TXD_MAX)
6851 new_tx_pending = MVPP2_MAX_TXD_MAX;
6852 else if (!IS_ALIGNED(ring->tx_pending, 32))
6853 new_tx_pending = ALIGN(ring->tx_pending, 32);
6855 /* The Tx ring size cannot be smaller than the minimum number of
6856 * descriptors needed for TSO.
6858 if (new_tx_pending < MVPP2_MAX_SKB_DESCS)
6859 new_tx_pending = ALIGN(MVPP2_MAX_SKB_DESCS, 32);
6861 if (ring->rx_pending != new_rx_pending) {
6862 netdev_info(dev, "illegal Rx ring size value %d, round to %d\n",
6863 ring->rx_pending, new_rx_pending);
6864 ring->rx_pending = new_rx_pending;
6867 if (ring->tx_pending != new_tx_pending) {
6868 netdev_info(dev, "illegal Tx ring size value %d, round to %d\n",
6869 ring->tx_pending, new_tx_pending);
6870 ring->tx_pending = new_tx_pending;
6873 return 0;
6876 static void mvpp21_get_mac_address(struct mvpp2_port *port, unsigned char *addr)
6878 u32 mac_addr_l, mac_addr_m, mac_addr_h;
6880 mac_addr_l = readl(port->base + MVPP2_GMAC_CTRL_1_REG);
6881 mac_addr_m = readl(port->priv->lms_base + MVPP2_SRC_ADDR_MIDDLE);
6882 mac_addr_h = readl(port->priv->lms_base + MVPP2_SRC_ADDR_HIGH);
6883 addr[0] = (mac_addr_h >> 24) & 0xFF;
6884 addr[1] = (mac_addr_h >> 16) & 0xFF;
6885 addr[2] = (mac_addr_h >> 8) & 0xFF;
6886 addr[3] = mac_addr_h & 0xFF;
6887 addr[4] = mac_addr_m & 0xFF;
6888 addr[5] = (mac_addr_l >> MVPP2_GMAC_SA_LOW_OFFS) & 0xFF;
6891 static int mvpp2_phy_connect(struct mvpp2_port *port)
6893 struct phy_device *phy_dev;
6895 /* No PHY is attached */
6896 if (!port->phy_node)
6897 return 0;
6899 phy_dev = of_phy_connect(port->dev, port->phy_node, mvpp2_link_event, 0,
6900 port->phy_interface);
6901 if (!phy_dev) {
6902 netdev_err(port->dev, "cannot connect to phy\n");
6903 return -ENODEV;
6905 phy_dev->supported &= PHY_GBIT_FEATURES;
6906 phy_dev->advertising = phy_dev->supported;
6908 port->link = 0;
6909 port->duplex = 0;
6910 port->speed = 0;
6912 return 0;
6915 static void mvpp2_phy_disconnect(struct mvpp2_port *port)
6917 struct net_device *ndev = port->dev;
6919 if (!ndev->phydev)
6920 return;
6922 phy_disconnect(ndev->phydev);
6925 static int mvpp2_irqs_init(struct mvpp2_port *port)
6927 int err, i;
6929 for (i = 0; i < port->nqvecs; i++) {
6930 struct mvpp2_queue_vector *qv = port->qvecs + i;
6932 if (qv->type == MVPP2_QUEUE_VECTOR_PRIVATE)
6933 irq_set_status_flags(qv->irq, IRQ_NO_BALANCING);
6935 err = request_irq(qv->irq, mvpp2_isr, 0, port->dev->name, qv);
6936 if (err)
6937 goto err;
6939 if (qv->type == MVPP2_QUEUE_VECTOR_PRIVATE)
6940 irq_set_affinity_hint(qv->irq,
6941 cpumask_of(qv->sw_thread_id));
6944 return 0;
6945 err:
6946 for (i = 0; i < port->nqvecs; i++) {
6947 struct mvpp2_queue_vector *qv = port->qvecs + i;
6949 irq_set_affinity_hint(qv->irq, NULL);
6950 free_irq(qv->irq, qv);
6953 return err;
6956 static void mvpp2_irqs_deinit(struct mvpp2_port *port)
6958 int i;
6960 for (i = 0; i < port->nqvecs; i++) {
6961 struct mvpp2_queue_vector *qv = port->qvecs + i;
6963 irq_set_affinity_hint(qv->irq, NULL);
6964 irq_clear_status_flags(qv->irq, IRQ_NO_BALANCING);
6965 free_irq(qv->irq, qv);
6969 static void mvpp22_init_rss(struct mvpp2_port *port)
6971 struct mvpp2 *priv = port->priv;
6972 int i;
6974 /* Set the table width: replace the whole classifier Rx queue number
6975 * with the ones configured in RSS table entries.
6977 mvpp2_write(priv, MVPP22_RSS_INDEX, MVPP22_RSS_INDEX_TABLE(0));
6978 mvpp2_write(priv, MVPP22_RSS_WIDTH, 8);
6980 /* Loop through the classifier Rx Queues and map them to a RSS table.
6981 * Map them all to the first table (0) by default.
6983 for (i = 0; i < MVPP2_CLS_RX_QUEUES; i++) {
6984 mvpp2_write(priv, MVPP22_RSS_INDEX, MVPP22_RSS_INDEX_QUEUE(i));
6985 mvpp2_write(priv, MVPP22_RSS_TABLE,
6986 MVPP22_RSS_TABLE_POINTER(0));
6989 /* Configure the first table to evenly distribute the packets across
6990 * real Rx Queues. The table entries map a hash to an port Rx Queue.
6992 for (i = 0; i < MVPP22_RSS_TABLE_ENTRIES; i++) {
6993 u32 sel = MVPP22_RSS_INDEX_TABLE(0) |
6994 MVPP22_RSS_INDEX_TABLE_ENTRY(i);
6995 mvpp2_write(priv, MVPP22_RSS_INDEX, sel);
6997 mvpp2_write(priv, MVPP22_RSS_TABLE_ENTRY, i % port->nrxqs);
7002 static int mvpp2_open(struct net_device *dev)
7004 struct mvpp2_port *port = netdev_priv(dev);
7005 struct mvpp2 *priv = port->priv;
7006 unsigned char mac_bcast[ETH_ALEN] = {
7007 0xff, 0xff, 0xff, 0xff, 0xff, 0xff };
7008 int err;
7010 err = mvpp2_prs_mac_da_accept(port->priv, port->id, mac_bcast, true);
7011 if (err) {
7012 netdev_err(dev, "mvpp2_prs_mac_da_accept BC failed\n");
7013 return err;
7015 err = mvpp2_prs_mac_da_accept(port->priv, port->id,
7016 dev->dev_addr, true);
7017 if (err) {
7018 netdev_err(dev, "mvpp2_prs_mac_da_accept MC failed\n");
7019 return err;
7021 err = mvpp2_prs_tag_mode_set(port->priv, port->id, MVPP2_TAG_TYPE_MH);
7022 if (err) {
7023 netdev_err(dev, "mvpp2_prs_tag_mode_set failed\n");
7024 return err;
7026 err = mvpp2_prs_def_flow(port);
7027 if (err) {
7028 netdev_err(dev, "mvpp2_prs_def_flow failed\n");
7029 return err;
7032 /* Allocate the Rx/Tx queues */
7033 err = mvpp2_setup_rxqs(port);
7034 if (err) {
7035 netdev_err(port->dev, "cannot allocate Rx queues\n");
7036 return err;
7039 err = mvpp2_setup_txqs(port);
7040 if (err) {
7041 netdev_err(port->dev, "cannot allocate Tx queues\n");
7042 goto err_cleanup_rxqs;
7045 err = mvpp2_irqs_init(port);
7046 if (err) {
7047 netdev_err(port->dev, "cannot init IRQs\n");
7048 goto err_cleanup_txqs;
7051 if (priv->hw_version == MVPP22 && !port->phy_node && port->link_irq) {
7052 err = request_irq(port->link_irq, mvpp2_link_status_isr, 0,
7053 dev->name, port);
7054 if (err) {
7055 netdev_err(port->dev, "cannot request link IRQ %d\n",
7056 port->link_irq);
7057 goto err_free_irq;
7060 mvpp22_gop_setup_irq(port);
7063 /* In default link is down */
7064 netif_carrier_off(port->dev);
7066 err = mvpp2_phy_connect(port);
7067 if (err < 0)
7068 goto err_free_link_irq;
7070 /* Unmask interrupts on all CPUs */
7071 on_each_cpu(mvpp2_interrupts_unmask, port, 1);
7072 mvpp2_shared_interrupt_mask_unmask(port, false);
7074 mvpp2_start_dev(port);
7076 if (priv->hw_version == MVPP22)
7077 mvpp22_init_rss(port);
7079 /* Start hardware statistics gathering */
7080 queue_delayed_work(priv->stats_queue, &port->stats_work,
7081 MVPP2_MIB_COUNTERS_STATS_DELAY);
7083 return 0;
7085 err_free_link_irq:
7086 if (priv->hw_version == MVPP22 && !port->phy_node && port->link_irq)
7087 free_irq(port->link_irq, port);
7088 err_free_irq:
7089 mvpp2_irqs_deinit(port);
7090 err_cleanup_txqs:
7091 mvpp2_cleanup_txqs(port);
7092 err_cleanup_rxqs:
7093 mvpp2_cleanup_rxqs(port);
7094 return err;
7097 static int mvpp2_stop(struct net_device *dev)
7099 struct mvpp2_port *port = netdev_priv(dev);
7100 struct mvpp2_port_pcpu *port_pcpu;
7101 struct mvpp2 *priv = port->priv;
7102 int cpu;
7104 mvpp2_stop_dev(port);
7105 mvpp2_phy_disconnect(port);
7107 /* Mask interrupts on all CPUs */
7108 on_each_cpu(mvpp2_interrupts_mask, port, 1);
7109 mvpp2_shared_interrupt_mask_unmask(port, true);
7111 if (priv->hw_version == MVPP22 && !port->phy_node && port->link_irq)
7112 free_irq(port->link_irq, port);
7114 mvpp2_irqs_deinit(port);
7115 if (!port->has_tx_irqs) {
7116 for_each_present_cpu(cpu) {
7117 port_pcpu = per_cpu_ptr(port->pcpu, cpu);
7119 hrtimer_cancel(&port_pcpu->tx_done_timer);
7120 port_pcpu->timer_scheduled = false;
7121 tasklet_kill(&port_pcpu->tx_done_tasklet);
7124 mvpp2_cleanup_rxqs(port);
7125 mvpp2_cleanup_txqs(port);
7127 cancel_delayed_work_sync(&port->stats_work);
7129 return 0;
7132 static void mvpp2_set_rx_mode(struct net_device *dev)
7134 struct mvpp2_port *port = netdev_priv(dev);
7135 struct mvpp2 *priv = port->priv;
7136 struct netdev_hw_addr *ha;
7137 int id = port->id;
7138 bool allmulti = dev->flags & IFF_ALLMULTI;
7140 mvpp2_prs_mac_promisc_set(priv, id, dev->flags & IFF_PROMISC);
7141 mvpp2_prs_mac_multi_set(priv, id, MVPP2_PE_MAC_MC_ALL, allmulti);
7142 mvpp2_prs_mac_multi_set(priv, id, MVPP2_PE_MAC_MC_IP6, allmulti);
7144 /* Remove all port->id's mcast enries */
7145 mvpp2_prs_mcast_del_all(priv, id);
7147 if (allmulti && !netdev_mc_empty(dev)) {
7148 netdev_for_each_mc_addr(ha, dev)
7149 mvpp2_prs_mac_da_accept(priv, id, ha->addr, true);
7153 static int mvpp2_set_mac_address(struct net_device *dev, void *p)
7155 struct mvpp2_port *port = netdev_priv(dev);
7156 const struct sockaddr *addr = p;
7157 int err;
7159 if (!is_valid_ether_addr(addr->sa_data)) {
7160 err = -EADDRNOTAVAIL;
7161 goto log_error;
7164 if (!netif_running(dev)) {
7165 err = mvpp2_prs_update_mac_da(dev, addr->sa_data);
7166 if (!err)
7167 return 0;
7168 /* Reconfigure parser to accept the original MAC address */
7169 err = mvpp2_prs_update_mac_da(dev, dev->dev_addr);
7170 if (err)
7171 goto log_error;
7174 mvpp2_stop_dev(port);
7176 err = mvpp2_prs_update_mac_da(dev, addr->sa_data);
7177 if (!err)
7178 goto out_start;
7180 /* Reconfigure parser accept the original MAC address */
7181 err = mvpp2_prs_update_mac_da(dev, dev->dev_addr);
7182 if (err)
7183 goto log_error;
7184 out_start:
7185 mvpp2_start_dev(port);
7186 mvpp2_egress_enable(port);
7187 mvpp2_ingress_enable(port);
7188 return 0;
7189 log_error:
7190 netdev_err(dev, "failed to change MAC address\n");
7191 return err;
7194 static int mvpp2_change_mtu(struct net_device *dev, int mtu)
7196 struct mvpp2_port *port = netdev_priv(dev);
7197 int err;
7199 if (!IS_ALIGNED(MVPP2_RX_PKT_SIZE(mtu), 8)) {
7200 netdev_info(dev, "illegal MTU value %d, round to %d\n", mtu,
7201 ALIGN(MVPP2_RX_PKT_SIZE(mtu), 8));
7202 mtu = ALIGN(MVPP2_RX_PKT_SIZE(mtu), 8);
7205 if (!netif_running(dev)) {
7206 err = mvpp2_bm_update_mtu(dev, mtu);
7207 if (!err) {
7208 port->pkt_size = MVPP2_RX_PKT_SIZE(mtu);
7209 return 0;
7212 /* Reconfigure BM to the original MTU */
7213 err = mvpp2_bm_update_mtu(dev, dev->mtu);
7214 if (err)
7215 goto log_error;
7218 mvpp2_stop_dev(port);
7220 err = mvpp2_bm_update_mtu(dev, mtu);
7221 if (!err) {
7222 port->pkt_size = MVPP2_RX_PKT_SIZE(mtu);
7223 goto out_start;
7226 /* Reconfigure BM to the original MTU */
7227 err = mvpp2_bm_update_mtu(dev, dev->mtu);
7228 if (err)
7229 goto log_error;
7231 out_start:
7232 mvpp2_start_dev(port);
7233 mvpp2_egress_enable(port);
7234 mvpp2_ingress_enable(port);
7236 return 0;
7237 log_error:
7238 netdev_err(dev, "failed to change MTU\n");
7239 return err;
7242 static void
7243 mvpp2_get_stats64(struct net_device *dev, struct rtnl_link_stats64 *stats)
7245 struct mvpp2_port *port = netdev_priv(dev);
7246 unsigned int start;
7247 int cpu;
7249 for_each_possible_cpu(cpu) {
7250 struct mvpp2_pcpu_stats *cpu_stats;
7251 u64 rx_packets;
7252 u64 rx_bytes;
7253 u64 tx_packets;
7254 u64 tx_bytes;
7256 cpu_stats = per_cpu_ptr(port->stats, cpu);
7257 do {
7258 start = u64_stats_fetch_begin_irq(&cpu_stats->syncp);
7259 rx_packets = cpu_stats->rx_packets;
7260 rx_bytes = cpu_stats->rx_bytes;
7261 tx_packets = cpu_stats->tx_packets;
7262 tx_bytes = cpu_stats->tx_bytes;
7263 } while (u64_stats_fetch_retry_irq(&cpu_stats->syncp, start));
7265 stats->rx_packets += rx_packets;
7266 stats->rx_bytes += rx_bytes;
7267 stats->tx_packets += tx_packets;
7268 stats->tx_bytes += tx_bytes;
7271 stats->rx_errors = dev->stats.rx_errors;
7272 stats->rx_dropped = dev->stats.rx_dropped;
7273 stats->tx_dropped = dev->stats.tx_dropped;
7276 static int mvpp2_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
7278 int ret;
7280 if (!dev->phydev)
7281 return -ENOTSUPP;
7283 ret = phy_mii_ioctl(dev->phydev, ifr, cmd);
7284 if (!ret)
7285 mvpp2_link_event(dev);
7287 return ret;
7290 /* Ethtool methods */
7292 /* Set interrupt coalescing for ethtools */
7293 static int mvpp2_ethtool_set_coalesce(struct net_device *dev,
7294 struct ethtool_coalesce *c)
7296 struct mvpp2_port *port = netdev_priv(dev);
7297 int queue;
7299 for (queue = 0; queue < port->nrxqs; queue++) {
7300 struct mvpp2_rx_queue *rxq = port->rxqs[queue];
7302 rxq->time_coal = c->rx_coalesce_usecs;
7303 rxq->pkts_coal = c->rx_max_coalesced_frames;
7304 mvpp2_rx_pkts_coal_set(port, rxq);
7305 mvpp2_rx_time_coal_set(port, rxq);
7308 if (port->has_tx_irqs) {
7309 port->tx_time_coal = c->tx_coalesce_usecs;
7310 mvpp2_tx_time_coal_set(port);
7313 for (queue = 0; queue < port->ntxqs; queue++) {
7314 struct mvpp2_tx_queue *txq = port->txqs[queue];
7316 txq->done_pkts_coal = c->tx_max_coalesced_frames;
7318 if (port->has_tx_irqs)
7319 mvpp2_tx_pkts_coal_set(port, txq);
7322 return 0;
7325 /* get coalescing for ethtools */
7326 static int mvpp2_ethtool_get_coalesce(struct net_device *dev,
7327 struct ethtool_coalesce *c)
7329 struct mvpp2_port *port = netdev_priv(dev);
7331 c->rx_coalesce_usecs = port->rxqs[0]->time_coal;
7332 c->rx_max_coalesced_frames = port->rxqs[0]->pkts_coal;
7333 c->tx_max_coalesced_frames = port->txqs[0]->done_pkts_coal;
7334 c->tx_coalesce_usecs = port->tx_time_coal;
7335 return 0;
7338 static void mvpp2_ethtool_get_drvinfo(struct net_device *dev,
7339 struct ethtool_drvinfo *drvinfo)
7341 strlcpy(drvinfo->driver, MVPP2_DRIVER_NAME,
7342 sizeof(drvinfo->driver));
7343 strlcpy(drvinfo->version, MVPP2_DRIVER_VERSION,
7344 sizeof(drvinfo->version));
7345 strlcpy(drvinfo->bus_info, dev_name(&dev->dev),
7346 sizeof(drvinfo->bus_info));
7349 static void mvpp2_ethtool_get_ringparam(struct net_device *dev,
7350 struct ethtool_ringparam *ring)
7352 struct mvpp2_port *port = netdev_priv(dev);
7354 ring->rx_max_pending = MVPP2_MAX_RXD_MAX;
7355 ring->tx_max_pending = MVPP2_MAX_TXD_MAX;
7356 ring->rx_pending = port->rx_ring_size;
7357 ring->tx_pending = port->tx_ring_size;
7360 static int mvpp2_ethtool_set_ringparam(struct net_device *dev,
7361 struct ethtool_ringparam *ring)
7363 struct mvpp2_port *port = netdev_priv(dev);
7364 u16 prev_rx_ring_size = port->rx_ring_size;
7365 u16 prev_tx_ring_size = port->tx_ring_size;
7366 int err;
7368 err = mvpp2_check_ringparam_valid(dev, ring);
7369 if (err)
7370 return err;
7372 if (!netif_running(dev)) {
7373 port->rx_ring_size = ring->rx_pending;
7374 port->tx_ring_size = ring->tx_pending;
7375 return 0;
7378 /* The interface is running, so we have to force a
7379 * reallocation of the queues
7381 mvpp2_stop_dev(port);
7382 mvpp2_cleanup_rxqs(port);
7383 mvpp2_cleanup_txqs(port);
7385 port->rx_ring_size = ring->rx_pending;
7386 port->tx_ring_size = ring->tx_pending;
7388 err = mvpp2_setup_rxqs(port);
7389 if (err) {
7390 /* Reallocate Rx queues with the original ring size */
7391 port->rx_ring_size = prev_rx_ring_size;
7392 ring->rx_pending = prev_rx_ring_size;
7393 err = mvpp2_setup_rxqs(port);
7394 if (err)
7395 goto err_out;
7397 err = mvpp2_setup_txqs(port);
7398 if (err) {
7399 /* Reallocate Tx queues with the original ring size */
7400 port->tx_ring_size = prev_tx_ring_size;
7401 ring->tx_pending = prev_tx_ring_size;
7402 err = mvpp2_setup_txqs(port);
7403 if (err)
7404 goto err_clean_rxqs;
7407 mvpp2_start_dev(port);
7408 mvpp2_egress_enable(port);
7409 mvpp2_ingress_enable(port);
7411 return 0;
7413 err_clean_rxqs:
7414 mvpp2_cleanup_rxqs(port);
7415 err_out:
7416 netdev_err(dev, "failed to change ring parameters");
7417 return err;
7420 /* Device ops */
7422 static const struct net_device_ops mvpp2_netdev_ops = {
7423 .ndo_open = mvpp2_open,
7424 .ndo_stop = mvpp2_stop,
7425 .ndo_start_xmit = mvpp2_tx,
7426 .ndo_set_rx_mode = mvpp2_set_rx_mode,
7427 .ndo_set_mac_address = mvpp2_set_mac_address,
7428 .ndo_change_mtu = mvpp2_change_mtu,
7429 .ndo_get_stats64 = mvpp2_get_stats64,
7430 .ndo_do_ioctl = mvpp2_ioctl,
7433 static const struct ethtool_ops mvpp2_eth_tool_ops = {
7434 .nway_reset = phy_ethtool_nway_reset,
7435 .get_link = ethtool_op_get_link,
7436 .set_coalesce = mvpp2_ethtool_set_coalesce,
7437 .get_coalesce = mvpp2_ethtool_get_coalesce,
7438 .get_drvinfo = mvpp2_ethtool_get_drvinfo,
7439 .get_ringparam = mvpp2_ethtool_get_ringparam,
7440 .set_ringparam = mvpp2_ethtool_set_ringparam,
7441 .get_strings = mvpp2_ethtool_get_strings,
7442 .get_ethtool_stats = mvpp2_ethtool_get_stats,
7443 .get_sset_count = mvpp2_ethtool_get_sset_count,
7444 .get_link_ksettings = phy_ethtool_get_link_ksettings,
7445 .set_link_ksettings = phy_ethtool_set_link_ksettings,
7448 /* Used for PPv2.1, or PPv2.2 with the old Device Tree binding that
7449 * had a single IRQ defined per-port.
7451 static int mvpp2_simple_queue_vectors_init(struct mvpp2_port *port,
7452 struct device_node *port_node)
7454 struct mvpp2_queue_vector *v = &port->qvecs[0];
7456 v->first_rxq = 0;
7457 v->nrxqs = port->nrxqs;
7458 v->type = MVPP2_QUEUE_VECTOR_SHARED;
7459 v->sw_thread_id = 0;
7460 v->sw_thread_mask = *cpumask_bits(cpu_online_mask);
7461 v->port = port;
7462 v->irq = irq_of_parse_and_map(port_node, 0);
7463 if (v->irq <= 0)
7464 return -EINVAL;
7465 netif_napi_add(port->dev, &v->napi, mvpp2_poll,
7466 NAPI_POLL_WEIGHT);
7468 port->nqvecs = 1;
7470 return 0;
7473 static int mvpp2_multi_queue_vectors_init(struct mvpp2_port *port,
7474 struct device_node *port_node)
7476 struct mvpp2_queue_vector *v;
7477 int i, ret;
7479 port->nqvecs = num_possible_cpus();
7480 if (queue_mode == MVPP2_QDIST_SINGLE_MODE)
7481 port->nqvecs += 1;
7483 for (i = 0; i < port->nqvecs; i++) {
7484 char irqname[16];
7486 v = port->qvecs + i;
7488 v->port = port;
7489 v->type = MVPP2_QUEUE_VECTOR_PRIVATE;
7490 v->sw_thread_id = i;
7491 v->sw_thread_mask = BIT(i);
7493 snprintf(irqname, sizeof(irqname), "tx-cpu%d", i);
7495 if (queue_mode == MVPP2_QDIST_MULTI_MODE) {
7496 v->first_rxq = i * MVPP2_DEFAULT_RXQ;
7497 v->nrxqs = MVPP2_DEFAULT_RXQ;
7498 } else if (queue_mode == MVPP2_QDIST_SINGLE_MODE &&
7499 i == (port->nqvecs - 1)) {
7500 v->first_rxq = 0;
7501 v->nrxqs = port->nrxqs;
7502 v->type = MVPP2_QUEUE_VECTOR_SHARED;
7503 strncpy(irqname, "rx-shared", sizeof(irqname));
7506 if (port_node)
7507 v->irq = of_irq_get_byname(port_node, irqname);
7508 else
7509 v->irq = fwnode_irq_get(port->fwnode, i);
7510 if (v->irq <= 0) {
7511 ret = -EINVAL;
7512 goto err;
7515 netif_napi_add(port->dev, &v->napi, mvpp2_poll,
7516 NAPI_POLL_WEIGHT);
7519 return 0;
7521 err:
7522 for (i = 0; i < port->nqvecs; i++)
7523 irq_dispose_mapping(port->qvecs[i].irq);
7524 return ret;
7527 static int mvpp2_queue_vectors_init(struct mvpp2_port *port,
7528 struct device_node *port_node)
7530 if (port->has_tx_irqs)
7531 return mvpp2_multi_queue_vectors_init(port, port_node);
7532 else
7533 return mvpp2_simple_queue_vectors_init(port, port_node);
7536 static void mvpp2_queue_vectors_deinit(struct mvpp2_port *port)
7538 int i;
7540 for (i = 0; i < port->nqvecs; i++)
7541 irq_dispose_mapping(port->qvecs[i].irq);
7544 /* Configure Rx queue group interrupt for this port */
7545 static void mvpp2_rx_irqs_setup(struct mvpp2_port *port)
7547 struct mvpp2 *priv = port->priv;
7548 u32 val;
7549 int i;
7551 if (priv->hw_version == MVPP21) {
7552 mvpp2_write(priv, MVPP21_ISR_RXQ_GROUP_REG(port->id),
7553 port->nrxqs);
7554 return;
7557 /* Handle the more complicated PPv2.2 case */
7558 for (i = 0; i < port->nqvecs; i++) {
7559 struct mvpp2_queue_vector *qv = port->qvecs + i;
7561 if (!qv->nrxqs)
7562 continue;
7564 val = qv->sw_thread_id;
7565 val |= port->id << MVPP22_ISR_RXQ_GROUP_INDEX_GROUP_OFFSET;
7566 mvpp2_write(priv, MVPP22_ISR_RXQ_GROUP_INDEX_REG, val);
7568 val = qv->first_rxq;
7569 val |= qv->nrxqs << MVPP22_ISR_RXQ_SUB_GROUP_SIZE_OFFSET;
7570 mvpp2_write(priv, MVPP22_ISR_RXQ_SUB_GROUP_CONFIG_REG, val);
7574 /* Initialize port HW */
7575 static int mvpp2_port_init(struct mvpp2_port *port)
7577 struct device *dev = port->dev->dev.parent;
7578 struct mvpp2 *priv = port->priv;
7579 struct mvpp2_txq_pcpu *txq_pcpu;
7580 int queue, cpu, err;
7582 /* Checks for hardware constraints */
7583 if (port->first_rxq + port->nrxqs >
7584 MVPP2_MAX_PORTS * priv->max_port_rxqs)
7585 return -EINVAL;
7587 if (port->nrxqs % 4 || (port->nrxqs > priv->max_port_rxqs) ||
7588 (port->ntxqs > MVPP2_MAX_TXQ))
7589 return -EINVAL;
7591 /* Disable port */
7592 mvpp2_egress_disable(port);
7593 mvpp2_port_disable(port);
7595 port->tx_time_coal = MVPP2_TXDONE_COAL_USEC;
7597 port->txqs = devm_kcalloc(dev, port->ntxqs, sizeof(*port->txqs),
7598 GFP_KERNEL);
7599 if (!port->txqs)
7600 return -ENOMEM;
7602 /* Associate physical Tx queues to this port and initialize.
7603 * The mapping is predefined.
7605 for (queue = 0; queue < port->ntxqs; queue++) {
7606 int queue_phy_id = mvpp2_txq_phys(port->id, queue);
7607 struct mvpp2_tx_queue *txq;
7609 txq = devm_kzalloc(dev, sizeof(*txq), GFP_KERNEL);
7610 if (!txq) {
7611 err = -ENOMEM;
7612 goto err_free_percpu;
7615 txq->pcpu = alloc_percpu(struct mvpp2_txq_pcpu);
7616 if (!txq->pcpu) {
7617 err = -ENOMEM;
7618 goto err_free_percpu;
7621 txq->id = queue_phy_id;
7622 txq->log_id = queue;
7623 txq->done_pkts_coal = MVPP2_TXDONE_COAL_PKTS_THRESH;
7624 for_each_present_cpu(cpu) {
7625 txq_pcpu = per_cpu_ptr(txq->pcpu, cpu);
7626 txq_pcpu->cpu = cpu;
7629 port->txqs[queue] = txq;
7632 port->rxqs = devm_kcalloc(dev, port->nrxqs, sizeof(*port->rxqs),
7633 GFP_KERNEL);
7634 if (!port->rxqs) {
7635 err = -ENOMEM;
7636 goto err_free_percpu;
7639 /* Allocate and initialize Rx queue for this port */
7640 for (queue = 0; queue < port->nrxqs; queue++) {
7641 struct mvpp2_rx_queue *rxq;
7643 /* Map physical Rx queue to port's logical Rx queue */
7644 rxq = devm_kzalloc(dev, sizeof(*rxq), GFP_KERNEL);
7645 if (!rxq) {
7646 err = -ENOMEM;
7647 goto err_free_percpu;
7649 /* Map this Rx queue to a physical queue */
7650 rxq->id = port->first_rxq + queue;
7651 rxq->port = port->id;
7652 rxq->logic_rxq = queue;
7654 port->rxqs[queue] = rxq;
7657 mvpp2_rx_irqs_setup(port);
7659 /* Create Rx descriptor rings */
7660 for (queue = 0; queue < port->nrxqs; queue++) {
7661 struct mvpp2_rx_queue *rxq = port->rxqs[queue];
7663 rxq->size = port->rx_ring_size;
7664 rxq->pkts_coal = MVPP2_RX_COAL_PKTS;
7665 rxq->time_coal = MVPP2_RX_COAL_USEC;
7668 mvpp2_ingress_disable(port);
7670 /* Port default configuration */
7671 mvpp2_defaults_set(port);
7673 /* Port's classifier configuration */
7674 mvpp2_cls_oversize_rxq_set(port);
7675 mvpp2_cls_port_config(port);
7677 /* Provide an initial Rx packet size */
7678 port->pkt_size = MVPP2_RX_PKT_SIZE(port->dev->mtu);
7680 /* Initialize pools for swf */
7681 err = mvpp2_swf_bm_pool_init(port);
7682 if (err)
7683 goto err_free_percpu;
7685 return 0;
7687 err_free_percpu:
7688 for (queue = 0; queue < port->ntxqs; queue++) {
7689 if (!port->txqs[queue])
7690 continue;
7691 free_percpu(port->txqs[queue]->pcpu);
7693 return err;
7696 /* Checks if the port DT description has the TX interrupts
7697 * described. On PPv2.1, there are no such interrupts. On PPv2.2,
7698 * there are available, but we need to keep support for old DTs.
7700 static bool mvpp2_port_has_tx_irqs(struct mvpp2 *priv,
7701 struct device_node *port_node)
7703 char *irqs[5] = { "rx-shared", "tx-cpu0", "tx-cpu1",
7704 "tx-cpu2", "tx-cpu3" };
7705 int ret, i;
7707 if (priv->hw_version == MVPP21)
7708 return false;
7710 for (i = 0; i < 5; i++) {
7711 ret = of_property_match_string(port_node, "interrupt-names",
7712 irqs[i]);
7713 if (ret < 0)
7714 return false;
7717 return true;
7720 static void mvpp2_port_copy_mac_addr(struct net_device *dev, struct mvpp2 *priv,
7721 struct fwnode_handle *fwnode,
7722 char **mac_from)
7724 struct mvpp2_port *port = netdev_priv(dev);
7725 char hw_mac_addr[ETH_ALEN] = {0};
7726 char fw_mac_addr[ETH_ALEN];
7728 if (fwnode_get_mac_address(fwnode, fw_mac_addr, ETH_ALEN)) {
7729 *mac_from = "firmware node";
7730 ether_addr_copy(dev->dev_addr, fw_mac_addr);
7731 return;
7734 if (priv->hw_version == MVPP21) {
7735 mvpp21_get_mac_address(port, hw_mac_addr);
7736 if (is_valid_ether_addr(hw_mac_addr)) {
7737 *mac_from = "hardware";
7738 ether_addr_copy(dev->dev_addr, hw_mac_addr);
7739 return;
7743 *mac_from = "random";
7744 eth_hw_addr_random(dev);
7747 /* Ports initialization */
7748 static int mvpp2_port_probe(struct platform_device *pdev,
7749 struct fwnode_handle *port_fwnode,
7750 struct mvpp2 *priv)
7752 struct device_node *phy_node;
7753 struct phy *comphy = NULL;
7754 struct mvpp2_port *port;
7755 struct mvpp2_port_pcpu *port_pcpu;
7756 struct device_node *port_node = to_of_node(port_fwnode);
7757 struct net_device *dev;
7758 struct resource *res;
7759 char *mac_from = "";
7760 unsigned int ntxqs, nrxqs;
7761 bool has_tx_irqs;
7762 u32 id;
7763 int features;
7764 int phy_mode;
7765 int err, i, cpu;
7767 if (port_node) {
7768 has_tx_irqs = mvpp2_port_has_tx_irqs(priv, port_node);
7769 } else {
7770 has_tx_irqs = true;
7771 queue_mode = MVPP2_QDIST_MULTI_MODE;
7774 if (!has_tx_irqs)
7775 queue_mode = MVPP2_QDIST_SINGLE_MODE;
7777 ntxqs = MVPP2_MAX_TXQ;
7778 if (priv->hw_version == MVPP22 && queue_mode == MVPP2_QDIST_MULTI_MODE)
7779 nrxqs = MVPP2_DEFAULT_RXQ * num_possible_cpus();
7780 else
7781 nrxqs = MVPP2_DEFAULT_RXQ;
7783 dev = alloc_etherdev_mqs(sizeof(*port), ntxqs, nrxqs);
7784 if (!dev)
7785 return -ENOMEM;
7787 if (port_node)
7788 phy_node = of_parse_phandle(port_node, "phy", 0);
7789 else
7790 phy_node = NULL;
7792 phy_mode = fwnode_get_phy_mode(port_fwnode);
7793 if (phy_mode < 0) {
7794 dev_err(&pdev->dev, "incorrect phy mode\n");
7795 err = phy_mode;
7796 goto err_free_netdev;
7799 if (port_node) {
7800 comphy = devm_of_phy_get(&pdev->dev, port_node, NULL);
7801 if (IS_ERR(comphy)) {
7802 if (PTR_ERR(comphy) == -EPROBE_DEFER) {
7803 err = -EPROBE_DEFER;
7804 goto err_free_netdev;
7806 comphy = NULL;
7810 if (fwnode_property_read_u32(port_fwnode, "port-id", &id)) {
7811 err = -EINVAL;
7812 dev_err(&pdev->dev, "missing port-id value\n");
7813 goto err_free_netdev;
7816 dev->tx_queue_len = MVPP2_MAX_TXD_MAX;
7817 dev->watchdog_timeo = 5 * HZ;
7818 dev->netdev_ops = &mvpp2_netdev_ops;
7819 dev->ethtool_ops = &mvpp2_eth_tool_ops;
7821 port = netdev_priv(dev);
7822 port->dev = dev;
7823 port->fwnode = port_fwnode;
7824 port->ntxqs = ntxqs;
7825 port->nrxqs = nrxqs;
7826 port->priv = priv;
7827 port->has_tx_irqs = has_tx_irqs;
7829 err = mvpp2_queue_vectors_init(port, port_node);
7830 if (err)
7831 goto err_free_netdev;
7833 if (port_node)
7834 port->link_irq = of_irq_get_byname(port_node, "link");
7835 else
7836 port->link_irq = fwnode_irq_get(port_fwnode, port->nqvecs + 1);
7837 if (port->link_irq == -EPROBE_DEFER) {
7838 err = -EPROBE_DEFER;
7839 goto err_deinit_qvecs;
7841 if (port->link_irq <= 0)
7842 /* the link irq is optional */
7843 port->link_irq = 0;
7845 if (fwnode_property_read_bool(port_fwnode, "marvell,loopback"))
7846 port->flags |= MVPP2_F_LOOPBACK;
7848 port->id = id;
7849 if (priv->hw_version == MVPP21)
7850 port->first_rxq = port->id * port->nrxqs;
7851 else
7852 port->first_rxq = port->id * priv->max_port_rxqs;
7854 port->phy_node = phy_node;
7855 port->phy_interface = phy_mode;
7856 port->comphy = comphy;
7858 if (priv->hw_version == MVPP21) {
7859 res = platform_get_resource(pdev, IORESOURCE_MEM, 2 + id);
7860 port->base = devm_ioremap_resource(&pdev->dev, res);
7861 if (IS_ERR(port->base)) {
7862 err = PTR_ERR(port->base);
7863 goto err_free_irq;
7866 port->stats_base = port->priv->lms_base +
7867 MVPP21_MIB_COUNTERS_OFFSET +
7868 port->gop_id * MVPP21_MIB_COUNTERS_PORT_SZ;
7869 } else {
7870 if (fwnode_property_read_u32(port_fwnode, "gop-port-id",
7871 &port->gop_id)) {
7872 err = -EINVAL;
7873 dev_err(&pdev->dev, "missing gop-port-id value\n");
7874 goto err_deinit_qvecs;
7877 port->base = priv->iface_base + MVPP22_GMAC_BASE(port->gop_id);
7878 port->stats_base = port->priv->iface_base +
7879 MVPP22_MIB_COUNTERS_OFFSET +
7880 port->gop_id * MVPP22_MIB_COUNTERS_PORT_SZ;
7883 /* Alloc per-cpu and ethtool stats */
7884 port->stats = netdev_alloc_pcpu_stats(struct mvpp2_pcpu_stats);
7885 if (!port->stats) {
7886 err = -ENOMEM;
7887 goto err_free_irq;
7890 port->ethtool_stats = devm_kcalloc(&pdev->dev,
7891 ARRAY_SIZE(mvpp2_ethtool_regs),
7892 sizeof(u64), GFP_KERNEL);
7893 if (!port->ethtool_stats) {
7894 err = -ENOMEM;
7895 goto err_free_stats;
7898 mutex_init(&port->gather_stats_lock);
7899 INIT_DELAYED_WORK(&port->stats_work, mvpp2_gather_hw_statistics);
7901 mvpp2_port_copy_mac_addr(dev, priv, port_fwnode, &mac_from);
7903 port->tx_ring_size = MVPP2_MAX_TXD_DFLT;
7904 port->rx_ring_size = MVPP2_MAX_RXD_DFLT;
7905 SET_NETDEV_DEV(dev, &pdev->dev);
7907 err = mvpp2_port_init(port);
7908 if (err < 0) {
7909 dev_err(&pdev->dev, "failed to init port %d\n", id);
7910 goto err_free_stats;
7913 mvpp2_port_periodic_xon_disable(port);
7915 if (priv->hw_version == MVPP21)
7916 mvpp2_port_fc_adv_enable(port);
7918 mvpp2_port_reset(port);
7920 port->pcpu = alloc_percpu(struct mvpp2_port_pcpu);
7921 if (!port->pcpu) {
7922 err = -ENOMEM;
7923 goto err_free_txq_pcpu;
7926 if (!port->has_tx_irqs) {
7927 for_each_present_cpu(cpu) {
7928 port_pcpu = per_cpu_ptr(port->pcpu, cpu);
7930 hrtimer_init(&port_pcpu->tx_done_timer, CLOCK_MONOTONIC,
7931 HRTIMER_MODE_REL_PINNED);
7932 port_pcpu->tx_done_timer.function = mvpp2_hr_timer_cb;
7933 port_pcpu->timer_scheduled = false;
7935 tasklet_init(&port_pcpu->tx_done_tasklet,
7936 mvpp2_tx_proc_cb,
7937 (unsigned long)dev);
7941 features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_TSO;
7942 dev->features = features | NETIF_F_RXCSUM;
7943 dev->hw_features |= features | NETIF_F_RXCSUM | NETIF_F_GRO;
7944 dev->vlan_features |= features;
7945 dev->gso_max_segs = MVPP2_MAX_TSO_SEGS;
7947 /* MTU range: 68 - 9676 */
7948 dev->min_mtu = ETH_MIN_MTU;
7949 /* 9676 == 9700 - 20 and rounding to 8 */
7950 dev->max_mtu = 9676;
7952 err = register_netdev(dev);
7953 if (err < 0) {
7954 dev_err(&pdev->dev, "failed to register netdev\n");
7955 goto err_free_port_pcpu;
7957 netdev_info(dev, "Using %s mac address %pM\n", mac_from, dev->dev_addr);
7959 priv->port_list[priv->port_count++] = port;
7961 return 0;
7963 err_free_port_pcpu:
7964 free_percpu(port->pcpu);
7965 err_free_txq_pcpu:
7966 for (i = 0; i < port->ntxqs; i++)
7967 free_percpu(port->txqs[i]->pcpu);
7968 err_free_stats:
7969 free_percpu(port->stats);
7970 err_free_irq:
7971 if (port->link_irq)
7972 irq_dispose_mapping(port->link_irq);
7973 err_deinit_qvecs:
7974 mvpp2_queue_vectors_deinit(port);
7975 err_free_netdev:
7976 of_node_put(phy_node);
7977 free_netdev(dev);
7978 return err;
7981 /* Ports removal routine */
7982 static void mvpp2_port_remove(struct mvpp2_port *port)
7984 int i;
7986 unregister_netdev(port->dev);
7987 of_node_put(port->phy_node);
7988 free_percpu(port->pcpu);
7989 free_percpu(port->stats);
7990 for (i = 0; i < port->ntxqs; i++)
7991 free_percpu(port->txqs[i]->pcpu);
7992 mvpp2_queue_vectors_deinit(port);
7993 if (port->link_irq)
7994 irq_dispose_mapping(port->link_irq);
7995 free_netdev(port->dev);
7998 /* Initialize decoding windows */
7999 static void mvpp2_conf_mbus_windows(const struct mbus_dram_target_info *dram,
8000 struct mvpp2 *priv)
8002 u32 win_enable;
8003 int i;
8005 for (i = 0; i < 6; i++) {
8006 mvpp2_write(priv, MVPP2_WIN_BASE(i), 0);
8007 mvpp2_write(priv, MVPP2_WIN_SIZE(i), 0);
8009 if (i < 4)
8010 mvpp2_write(priv, MVPP2_WIN_REMAP(i), 0);
8013 win_enable = 0;
8015 for (i = 0; i < dram->num_cs; i++) {
8016 const struct mbus_dram_window *cs = dram->cs + i;
8018 mvpp2_write(priv, MVPP2_WIN_BASE(i),
8019 (cs->base & 0xffff0000) | (cs->mbus_attr << 8) |
8020 dram->mbus_dram_target_id);
8022 mvpp2_write(priv, MVPP2_WIN_SIZE(i),
8023 (cs->size - 1) & 0xffff0000);
8025 win_enable |= (1 << i);
8028 mvpp2_write(priv, MVPP2_BASE_ADDR_ENABLE, win_enable);
8031 /* Initialize Rx FIFO's */
8032 static void mvpp2_rx_fifo_init(struct mvpp2 *priv)
8034 int port;
8036 for (port = 0; port < MVPP2_MAX_PORTS; port++) {
8037 mvpp2_write(priv, MVPP2_RX_DATA_FIFO_SIZE_REG(port),
8038 MVPP2_RX_FIFO_PORT_DATA_SIZE_4KB);
8039 mvpp2_write(priv, MVPP2_RX_ATTR_FIFO_SIZE_REG(port),
8040 MVPP2_RX_FIFO_PORT_ATTR_SIZE_4KB);
8043 mvpp2_write(priv, MVPP2_RX_MIN_PKT_SIZE_REG,
8044 MVPP2_RX_FIFO_PORT_MIN_PKT);
8045 mvpp2_write(priv, MVPP2_RX_FIFO_INIT_REG, 0x1);
8048 static void mvpp22_rx_fifo_init(struct mvpp2 *priv)
8050 int port;
8052 /* The FIFO size parameters are set depending on the maximum speed a
8053 * given port can handle:
8054 * - Port 0: 10Gbps
8055 * - Port 1: 2.5Gbps
8056 * - Ports 2 and 3: 1Gbps
8059 mvpp2_write(priv, MVPP2_RX_DATA_FIFO_SIZE_REG(0),
8060 MVPP2_RX_FIFO_PORT_DATA_SIZE_32KB);
8061 mvpp2_write(priv, MVPP2_RX_ATTR_FIFO_SIZE_REG(0),
8062 MVPP2_RX_FIFO_PORT_ATTR_SIZE_32KB);
8064 mvpp2_write(priv, MVPP2_RX_DATA_FIFO_SIZE_REG(1),
8065 MVPP2_RX_FIFO_PORT_DATA_SIZE_8KB);
8066 mvpp2_write(priv, MVPP2_RX_ATTR_FIFO_SIZE_REG(1),
8067 MVPP2_RX_FIFO_PORT_ATTR_SIZE_8KB);
8069 for (port = 2; port < MVPP2_MAX_PORTS; port++) {
8070 mvpp2_write(priv, MVPP2_RX_DATA_FIFO_SIZE_REG(port),
8071 MVPP2_RX_FIFO_PORT_DATA_SIZE_4KB);
8072 mvpp2_write(priv, MVPP2_RX_ATTR_FIFO_SIZE_REG(port),
8073 MVPP2_RX_FIFO_PORT_ATTR_SIZE_4KB);
8076 mvpp2_write(priv, MVPP2_RX_MIN_PKT_SIZE_REG,
8077 MVPP2_RX_FIFO_PORT_MIN_PKT);
8078 mvpp2_write(priv, MVPP2_RX_FIFO_INIT_REG, 0x1);
8081 /* Initialize Tx FIFO's */
8082 static void mvpp22_tx_fifo_init(struct mvpp2 *priv)
8084 int port;
8086 for (port = 0; port < MVPP2_MAX_PORTS; port++)
8087 mvpp2_write(priv, MVPP22_TX_FIFO_SIZE_REG(port),
8088 MVPP22_TX_FIFO_DATA_SIZE_3KB);
8091 static void mvpp2_axi_init(struct mvpp2 *priv)
8093 u32 val, rdval, wrval;
8095 mvpp2_write(priv, MVPP22_BM_ADDR_HIGH_RLS_REG, 0x0);
8097 /* AXI Bridge Configuration */
8099 rdval = MVPP22_AXI_CODE_CACHE_RD_CACHE
8100 << MVPP22_AXI_ATTR_CACHE_OFFS;
8101 rdval |= MVPP22_AXI_CODE_DOMAIN_OUTER_DOM
8102 << MVPP22_AXI_ATTR_DOMAIN_OFFS;
8104 wrval = MVPP22_AXI_CODE_CACHE_WR_CACHE
8105 << MVPP22_AXI_ATTR_CACHE_OFFS;
8106 wrval |= MVPP22_AXI_CODE_DOMAIN_OUTER_DOM
8107 << MVPP22_AXI_ATTR_DOMAIN_OFFS;
8109 /* BM */
8110 mvpp2_write(priv, MVPP22_AXI_BM_WR_ATTR_REG, wrval);
8111 mvpp2_write(priv, MVPP22_AXI_BM_RD_ATTR_REG, rdval);
8113 /* Descriptors */
8114 mvpp2_write(priv, MVPP22_AXI_AGGRQ_DESCR_RD_ATTR_REG, rdval);
8115 mvpp2_write(priv, MVPP22_AXI_TXQ_DESCR_WR_ATTR_REG, wrval);
8116 mvpp2_write(priv, MVPP22_AXI_TXQ_DESCR_RD_ATTR_REG, rdval);
8117 mvpp2_write(priv, MVPP22_AXI_RXQ_DESCR_WR_ATTR_REG, wrval);
8119 /* Buffer Data */
8120 mvpp2_write(priv, MVPP22_AXI_TX_DATA_RD_ATTR_REG, rdval);
8121 mvpp2_write(priv, MVPP22_AXI_RX_DATA_WR_ATTR_REG, wrval);
8123 val = MVPP22_AXI_CODE_CACHE_NON_CACHE
8124 << MVPP22_AXI_CODE_CACHE_OFFS;
8125 val |= MVPP22_AXI_CODE_DOMAIN_SYSTEM
8126 << MVPP22_AXI_CODE_DOMAIN_OFFS;
8127 mvpp2_write(priv, MVPP22_AXI_RD_NORMAL_CODE_REG, val);
8128 mvpp2_write(priv, MVPP22_AXI_WR_NORMAL_CODE_REG, val);
8130 val = MVPP22_AXI_CODE_CACHE_RD_CACHE
8131 << MVPP22_AXI_CODE_CACHE_OFFS;
8132 val |= MVPP22_AXI_CODE_DOMAIN_OUTER_DOM
8133 << MVPP22_AXI_CODE_DOMAIN_OFFS;
8135 mvpp2_write(priv, MVPP22_AXI_RD_SNOOP_CODE_REG, val);
8137 val = MVPP22_AXI_CODE_CACHE_WR_CACHE
8138 << MVPP22_AXI_CODE_CACHE_OFFS;
8139 val |= MVPP22_AXI_CODE_DOMAIN_OUTER_DOM
8140 << MVPP22_AXI_CODE_DOMAIN_OFFS;
8142 mvpp2_write(priv, MVPP22_AXI_WR_SNOOP_CODE_REG, val);
8145 /* Initialize network controller common part HW */
8146 static int mvpp2_init(struct platform_device *pdev, struct mvpp2 *priv)
8148 const struct mbus_dram_target_info *dram_target_info;
8149 int err, i;
8150 u32 val;
8152 /* MBUS windows configuration */
8153 dram_target_info = mv_mbus_dram_info();
8154 if (dram_target_info)
8155 mvpp2_conf_mbus_windows(dram_target_info, priv);
8157 if (priv->hw_version == MVPP22)
8158 mvpp2_axi_init(priv);
8160 /* Disable HW PHY polling */
8161 if (priv->hw_version == MVPP21) {
8162 val = readl(priv->lms_base + MVPP2_PHY_AN_CFG0_REG);
8163 val |= MVPP2_PHY_AN_STOP_SMI0_MASK;
8164 writel(val, priv->lms_base + MVPP2_PHY_AN_CFG0_REG);
8165 } else {
8166 val = readl(priv->iface_base + MVPP22_SMI_MISC_CFG_REG);
8167 val &= ~MVPP22_SMI_POLLING_EN;
8168 writel(val, priv->iface_base + MVPP22_SMI_MISC_CFG_REG);
8171 /* Allocate and initialize aggregated TXQs */
8172 priv->aggr_txqs = devm_kcalloc(&pdev->dev, num_present_cpus(),
8173 sizeof(*priv->aggr_txqs),
8174 GFP_KERNEL);
8175 if (!priv->aggr_txqs)
8176 return -ENOMEM;
8178 for_each_present_cpu(i) {
8179 priv->aggr_txqs[i].id = i;
8180 priv->aggr_txqs[i].size = MVPP2_AGGR_TXQ_SIZE;
8181 err = mvpp2_aggr_txq_init(pdev, &priv->aggr_txqs[i], i, priv);
8182 if (err < 0)
8183 return err;
8186 /* Fifo Init */
8187 if (priv->hw_version == MVPP21) {
8188 mvpp2_rx_fifo_init(priv);
8189 } else {
8190 mvpp22_rx_fifo_init(priv);
8191 mvpp22_tx_fifo_init(priv);
8194 if (priv->hw_version == MVPP21)
8195 writel(MVPP2_EXT_GLOBAL_CTRL_DEFAULT,
8196 priv->lms_base + MVPP2_MNG_EXTENDED_GLOBAL_CTRL_REG);
8198 /* Allow cache snoop when transmiting packets */
8199 mvpp2_write(priv, MVPP2_TX_SNOOP_REG, 0x1);
8201 /* Buffer Manager initialization */
8202 err = mvpp2_bm_init(pdev, priv);
8203 if (err < 0)
8204 return err;
8206 /* Parser default initialization */
8207 err = mvpp2_prs_default_init(pdev, priv);
8208 if (err < 0)
8209 return err;
8211 /* Classifier default initialization */
8212 mvpp2_cls_init(priv);
8214 return 0;
8217 static int mvpp2_probe(struct platform_device *pdev)
8219 const struct acpi_device_id *acpi_id;
8220 struct fwnode_handle *fwnode = pdev->dev.fwnode;
8221 struct fwnode_handle *port_fwnode;
8222 struct mvpp2 *priv;
8223 struct resource *res;
8224 void __iomem *base;
8225 int i;
8226 int err;
8228 priv = devm_kzalloc(&pdev->dev, sizeof(*priv), GFP_KERNEL);
8229 if (!priv)
8230 return -ENOMEM;
8232 if (has_acpi_companion(&pdev->dev)) {
8233 acpi_id = acpi_match_device(pdev->dev.driver->acpi_match_table,
8234 &pdev->dev);
8235 priv->hw_version = (unsigned long)acpi_id->driver_data;
8236 } else {
8237 priv->hw_version =
8238 (unsigned long)of_device_get_match_data(&pdev->dev);
8241 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
8242 base = devm_ioremap_resource(&pdev->dev, res);
8243 if (IS_ERR(base))
8244 return PTR_ERR(base);
8246 if (priv->hw_version == MVPP21) {
8247 res = platform_get_resource(pdev, IORESOURCE_MEM, 1);
8248 priv->lms_base = devm_ioremap_resource(&pdev->dev, res);
8249 if (IS_ERR(priv->lms_base))
8250 return PTR_ERR(priv->lms_base);
8251 } else {
8252 res = platform_get_resource(pdev, IORESOURCE_MEM, 1);
8253 if (has_acpi_companion(&pdev->dev)) {
8254 /* In case the MDIO memory region is declared in
8255 * the ACPI, it can already appear as 'in-use'
8256 * in the OS. Because it is overlapped by second
8257 * region of the network controller, make
8258 * sure it is released, before requesting it again.
8259 * The care is taken by mvpp2 driver to avoid
8260 * concurrent access to this memory region.
8262 release_resource(res);
8264 priv->iface_base = devm_ioremap_resource(&pdev->dev, res);
8265 if (IS_ERR(priv->iface_base))
8266 return PTR_ERR(priv->iface_base);
8269 if (priv->hw_version == MVPP22 && dev_of_node(&pdev->dev)) {
8270 priv->sysctrl_base =
8271 syscon_regmap_lookup_by_phandle(pdev->dev.of_node,
8272 "marvell,system-controller");
8273 if (IS_ERR(priv->sysctrl_base))
8274 /* The system controller regmap is optional for dt
8275 * compatibility reasons. When not provided, the
8276 * configuration of the GoP relies on the
8277 * firmware/bootloader.
8279 priv->sysctrl_base = NULL;
8282 for (i = 0; i < MVPP2_MAX_THREADS; i++) {
8283 u32 addr_space_sz;
8285 addr_space_sz = (priv->hw_version == MVPP21 ?
8286 MVPP21_ADDR_SPACE_SZ : MVPP22_ADDR_SPACE_SZ);
8287 priv->swth_base[i] = base + i * addr_space_sz;
8290 if (priv->hw_version == MVPP21)
8291 priv->max_port_rxqs = 8;
8292 else
8293 priv->max_port_rxqs = 32;
8295 if (dev_of_node(&pdev->dev)) {
8296 priv->pp_clk = devm_clk_get(&pdev->dev, "pp_clk");
8297 if (IS_ERR(priv->pp_clk))
8298 return PTR_ERR(priv->pp_clk);
8299 err = clk_prepare_enable(priv->pp_clk);
8300 if (err < 0)
8301 return err;
8303 priv->gop_clk = devm_clk_get(&pdev->dev, "gop_clk");
8304 if (IS_ERR(priv->gop_clk)) {
8305 err = PTR_ERR(priv->gop_clk);
8306 goto err_pp_clk;
8308 err = clk_prepare_enable(priv->gop_clk);
8309 if (err < 0)
8310 goto err_pp_clk;
8312 if (priv->hw_version == MVPP22) {
8313 priv->mg_clk = devm_clk_get(&pdev->dev, "mg_clk");
8314 if (IS_ERR(priv->mg_clk)) {
8315 err = PTR_ERR(priv->mg_clk);
8316 goto err_gop_clk;
8319 err = clk_prepare_enable(priv->mg_clk);
8320 if (err < 0)
8321 goto err_gop_clk;
8324 priv->axi_clk = devm_clk_get(&pdev->dev, "axi_clk");
8325 if (IS_ERR(priv->axi_clk)) {
8326 err = PTR_ERR(priv->axi_clk);
8327 if (err == -EPROBE_DEFER)
8328 goto err_gop_clk;
8329 priv->axi_clk = NULL;
8330 } else {
8331 err = clk_prepare_enable(priv->axi_clk);
8332 if (err < 0)
8333 goto err_gop_clk;
8336 /* Get system's tclk rate */
8337 priv->tclk = clk_get_rate(priv->pp_clk);
8338 } else if (device_property_read_u32(&pdev->dev, "clock-frequency",
8339 &priv->tclk)) {
8340 dev_err(&pdev->dev, "missing clock-frequency value\n");
8341 return -EINVAL;
8344 if (priv->hw_version == MVPP22) {
8345 err = dma_set_mask(&pdev->dev, DMA_BIT_MASK(40));
8346 if (err)
8347 goto err_mg_clk;
8348 /* Sadly, the BM pools all share the same register to
8349 * store the high 32 bits of their address. So they
8350 * must all have the same high 32 bits, which forces
8351 * us to restrict coherent memory to DMA_BIT_MASK(32).
8353 err = dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(32));
8354 if (err)
8355 goto err_mg_clk;
8358 /* Initialize network controller */
8359 err = mvpp2_init(pdev, priv);
8360 if (err < 0) {
8361 dev_err(&pdev->dev, "failed to initialize controller\n");
8362 goto err_mg_clk;
8365 /* Initialize ports */
8366 fwnode_for_each_available_child_node(fwnode, port_fwnode) {
8367 err = mvpp2_port_probe(pdev, port_fwnode, priv);
8368 if (err < 0)
8369 goto err_port_probe;
8372 if (priv->port_count == 0) {
8373 dev_err(&pdev->dev, "no ports enabled\n");
8374 err = -ENODEV;
8375 goto err_mg_clk;
8378 /* Statistics must be gathered regularly because some of them (like
8379 * packets counters) are 32-bit registers and could overflow quite
8380 * quickly. For instance, a 10Gb link used at full bandwidth with the
8381 * smallest packets (64B) will overflow a 32-bit counter in less than
8382 * 30 seconds. Then, use a workqueue to fill 64-bit counters.
8384 snprintf(priv->queue_name, sizeof(priv->queue_name),
8385 "stats-wq-%s%s", netdev_name(priv->port_list[0]->dev),
8386 priv->port_count > 1 ? "+" : "");
8387 priv->stats_queue = create_singlethread_workqueue(priv->queue_name);
8388 if (!priv->stats_queue) {
8389 err = -ENOMEM;
8390 goto err_port_probe;
8393 platform_set_drvdata(pdev, priv);
8394 return 0;
8396 err_port_probe:
8397 i = 0;
8398 fwnode_for_each_available_child_node(fwnode, port_fwnode) {
8399 if (priv->port_list[i])
8400 mvpp2_port_remove(priv->port_list[i]);
8401 i++;
8403 err_mg_clk:
8404 clk_disable_unprepare(priv->axi_clk);
8405 if (priv->hw_version == MVPP22)
8406 clk_disable_unprepare(priv->mg_clk);
8407 err_gop_clk:
8408 clk_disable_unprepare(priv->gop_clk);
8409 err_pp_clk:
8410 clk_disable_unprepare(priv->pp_clk);
8411 return err;
8414 static int mvpp2_remove(struct platform_device *pdev)
8416 struct mvpp2 *priv = platform_get_drvdata(pdev);
8417 struct fwnode_handle *fwnode = pdev->dev.fwnode;
8418 struct fwnode_handle *port_fwnode;
8419 int i = 0;
8421 flush_workqueue(priv->stats_queue);
8422 destroy_workqueue(priv->stats_queue);
8424 fwnode_for_each_available_child_node(fwnode, port_fwnode) {
8425 if (priv->port_list[i]) {
8426 mutex_destroy(&priv->port_list[i]->gather_stats_lock);
8427 mvpp2_port_remove(priv->port_list[i]);
8429 i++;
8432 for (i = 0; i < MVPP2_BM_POOLS_NUM; i++) {
8433 struct mvpp2_bm_pool *bm_pool = &priv->bm_pools[i];
8435 mvpp2_bm_pool_destroy(pdev, priv, bm_pool);
8438 for_each_present_cpu(i) {
8439 struct mvpp2_tx_queue *aggr_txq = &priv->aggr_txqs[i];
8441 dma_free_coherent(&pdev->dev,
8442 MVPP2_AGGR_TXQ_SIZE * MVPP2_DESC_ALIGNED_SIZE,
8443 aggr_txq->descs,
8444 aggr_txq->descs_dma);
8447 if (is_acpi_node(port_fwnode))
8448 return 0;
8450 clk_disable_unprepare(priv->axi_clk);
8451 clk_disable_unprepare(priv->mg_clk);
8452 clk_disable_unprepare(priv->pp_clk);
8453 clk_disable_unprepare(priv->gop_clk);
8455 return 0;
8458 static const struct of_device_id mvpp2_match[] = {
8460 .compatible = "marvell,armada-375-pp2",
8461 .data = (void *)MVPP21,
8464 .compatible = "marvell,armada-7k-pp22",
8465 .data = (void *)MVPP22,
8469 MODULE_DEVICE_TABLE(of, mvpp2_match);
8471 static const struct acpi_device_id mvpp2_acpi_match[] = {
8472 { "MRVL0110", MVPP22 },
8473 { },
8475 MODULE_DEVICE_TABLE(acpi, mvpp2_acpi_match);
8477 static struct platform_driver mvpp2_driver = {
8478 .probe = mvpp2_probe,
8479 .remove = mvpp2_remove,
8480 .driver = {
8481 .name = MVPP2_DRIVER_NAME,
8482 .of_match_table = mvpp2_match,
8483 .acpi_match_table = ACPI_PTR(mvpp2_acpi_match),
8487 module_platform_driver(mvpp2_driver);
8489 MODULE_DESCRIPTION("Marvell PPv2 Ethernet Driver - www.marvell.com");
8490 MODULE_AUTHOR("Marcin Wojtas <mw@semihalf.com>");
8491 MODULE_LICENSE("GPL v2");