x86/topology: Fix function name in documentation
[cris-mirror.git] / drivers / pci / pci.c
blobf6a4dd10d9b0da85a009a1cdd8b6498312573ac3
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * PCI Bus Services, see include/linux/pci.h for further explanation.
5 * Copyright 1993 -- 1997 Drew Eckhardt, Frederic Potter,
6 * David Mosberger-Tang
8 * Copyright 1997 -- 2000 Martin Mares <mj@ucw.cz>
9 */
11 #include <linux/acpi.h>
12 #include <linux/kernel.h>
13 #include <linux/delay.h>
14 #include <linux/dmi.h>
15 #include <linux/init.h>
16 #include <linux/of.h>
17 #include <linux/of_pci.h>
18 #include <linux/pci.h>
19 #include <linux/pm.h>
20 #include <linux/slab.h>
21 #include <linux/module.h>
22 #include <linux/spinlock.h>
23 #include <linux/string.h>
24 #include <linux/log2.h>
25 #include <linux/pci-aspm.h>
26 #include <linux/pm_wakeup.h>
27 #include <linux/interrupt.h>
28 #include <linux/device.h>
29 #include <linux/pm_runtime.h>
30 #include <linux/pci_hotplug.h>
31 #include <linux/vmalloc.h>
32 #include <linux/pci-ats.h>
33 #include <asm/setup.h>
34 #include <asm/dma.h>
35 #include <linux/aer.h>
36 #include "pci.h"
38 const char *pci_power_names[] = {
39 "error", "D0", "D1", "D2", "D3hot", "D3cold", "unknown",
41 EXPORT_SYMBOL_GPL(pci_power_names);
43 int isa_dma_bridge_buggy;
44 EXPORT_SYMBOL(isa_dma_bridge_buggy);
46 int pci_pci_problems;
47 EXPORT_SYMBOL(pci_pci_problems);
49 unsigned int pci_pm_d3_delay;
51 static void pci_pme_list_scan(struct work_struct *work);
53 static LIST_HEAD(pci_pme_list);
54 static DEFINE_MUTEX(pci_pme_list_mutex);
55 static DECLARE_DELAYED_WORK(pci_pme_work, pci_pme_list_scan);
57 struct pci_pme_device {
58 struct list_head list;
59 struct pci_dev *dev;
62 #define PME_TIMEOUT 1000 /* How long between PME checks */
64 static void pci_dev_d3_sleep(struct pci_dev *dev)
66 unsigned int delay = dev->d3_delay;
68 if (delay < pci_pm_d3_delay)
69 delay = pci_pm_d3_delay;
71 if (delay)
72 msleep(delay);
75 #ifdef CONFIG_PCI_DOMAINS
76 int pci_domains_supported = 1;
77 #endif
79 #define DEFAULT_CARDBUS_IO_SIZE (256)
80 #define DEFAULT_CARDBUS_MEM_SIZE (64*1024*1024)
81 /* pci=cbmemsize=nnM,cbiosize=nn can override this */
82 unsigned long pci_cardbus_io_size = DEFAULT_CARDBUS_IO_SIZE;
83 unsigned long pci_cardbus_mem_size = DEFAULT_CARDBUS_MEM_SIZE;
85 #define DEFAULT_HOTPLUG_IO_SIZE (256)
86 #define DEFAULT_HOTPLUG_MEM_SIZE (2*1024*1024)
87 /* pci=hpmemsize=nnM,hpiosize=nn can override this */
88 unsigned long pci_hotplug_io_size = DEFAULT_HOTPLUG_IO_SIZE;
89 unsigned long pci_hotplug_mem_size = DEFAULT_HOTPLUG_MEM_SIZE;
91 #define DEFAULT_HOTPLUG_BUS_SIZE 1
92 unsigned long pci_hotplug_bus_size = DEFAULT_HOTPLUG_BUS_SIZE;
94 enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_DEFAULT;
97 * The default CLS is used if arch didn't set CLS explicitly and not
98 * all pci devices agree on the same value. Arch can override either
99 * the dfl or actual value as it sees fit. Don't forget this is
100 * measured in 32-bit words, not bytes.
102 u8 pci_dfl_cache_line_size = L1_CACHE_BYTES >> 2;
103 u8 pci_cache_line_size;
106 * If we set up a device for bus mastering, we need to check the latency
107 * timer as certain BIOSes forget to set it properly.
109 unsigned int pcibios_max_latency = 255;
111 /* If set, the PCIe ARI capability will not be used. */
112 static bool pcie_ari_disabled;
114 /* Disable bridge_d3 for all PCIe ports */
115 static bool pci_bridge_d3_disable;
116 /* Force bridge_d3 for all PCIe ports */
117 static bool pci_bridge_d3_force;
119 static int __init pcie_port_pm_setup(char *str)
121 if (!strcmp(str, "off"))
122 pci_bridge_d3_disable = true;
123 else if (!strcmp(str, "force"))
124 pci_bridge_d3_force = true;
125 return 1;
127 __setup("pcie_port_pm=", pcie_port_pm_setup);
130 * pci_bus_max_busnr - returns maximum PCI bus number of given bus' children
131 * @bus: pointer to PCI bus structure to search
133 * Given a PCI bus, returns the highest PCI bus number present in the set
134 * including the given PCI bus and its list of child PCI buses.
136 unsigned char pci_bus_max_busnr(struct pci_bus *bus)
138 struct pci_bus *tmp;
139 unsigned char max, n;
141 max = bus->busn_res.end;
142 list_for_each_entry(tmp, &bus->children, node) {
143 n = pci_bus_max_busnr(tmp);
144 if (n > max)
145 max = n;
147 return max;
149 EXPORT_SYMBOL_GPL(pci_bus_max_busnr);
151 #ifdef CONFIG_HAS_IOMEM
152 void __iomem *pci_ioremap_bar(struct pci_dev *pdev, int bar)
154 struct resource *res = &pdev->resource[bar];
157 * Make sure the BAR is actually a memory resource, not an IO resource
159 if (res->flags & IORESOURCE_UNSET || !(res->flags & IORESOURCE_MEM)) {
160 pci_warn(pdev, "can't ioremap BAR %d: %pR\n", bar, res);
161 return NULL;
163 return ioremap_nocache(res->start, resource_size(res));
165 EXPORT_SYMBOL_GPL(pci_ioremap_bar);
167 void __iomem *pci_ioremap_wc_bar(struct pci_dev *pdev, int bar)
170 * Make sure the BAR is actually a memory resource, not an IO resource
172 if (!(pci_resource_flags(pdev, bar) & IORESOURCE_MEM)) {
173 WARN_ON(1);
174 return NULL;
176 return ioremap_wc(pci_resource_start(pdev, bar),
177 pci_resource_len(pdev, bar));
179 EXPORT_SYMBOL_GPL(pci_ioremap_wc_bar);
180 #endif
183 static int __pci_find_next_cap_ttl(struct pci_bus *bus, unsigned int devfn,
184 u8 pos, int cap, int *ttl)
186 u8 id;
187 u16 ent;
189 pci_bus_read_config_byte(bus, devfn, pos, &pos);
191 while ((*ttl)--) {
192 if (pos < 0x40)
193 break;
194 pos &= ~3;
195 pci_bus_read_config_word(bus, devfn, pos, &ent);
197 id = ent & 0xff;
198 if (id == 0xff)
199 break;
200 if (id == cap)
201 return pos;
202 pos = (ent >> 8);
204 return 0;
207 static int __pci_find_next_cap(struct pci_bus *bus, unsigned int devfn,
208 u8 pos, int cap)
210 int ttl = PCI_FIND_CAP_TTL;
212 return __pci_find_next_cap_ttl(bus, devfn, pos, cap, &ttl);
215 int pci_find_next_capability(struct pci_dev *dev, u8 pos, int cap)
217 return __pci_find_next_cap(dev->bus, dev->devfn,
218 pos + PCI_CAP_LIST_NEXT, cap);
220 EXPORT_SYMBOL_GPL(pci_find_next_capability);
222 static int __pci_bus_find_cap_start(struct pci_bus *bus,
223 unsigned int devfn, u8 hdr_type)
225 u16 status;
227 pci_bus_read_config_word(bus, devfn, PCI_STATUS, &status);
228 if (!(status & PCI_STATUS_CAP_LIST))
229 return 0;
231 switch (hdr_type) {
232 case PCI_HEADER_TYPE_NORMAL:
233 case PCI_HEADER_TYPE_BRIDGE:
234 return PCI_CAPABILITY_LIST;
235 case PCI_HEADER_TYPE_CARDBUS:
236 return PCI_CB_CAPABILITY_LIST;
239 return 0;
243 * pci_find_capability - query for devices' capabilities
244 * @dev: PCI device to query
245 * @cap: capability code
247 * Tell if a device supports a given PCI capability.
248 * Returns the address of the requested capability structure within the
249 * device's PCI configuration space or 0 in case the device does not
250 * support it. Possible values for @cap:
252 * %PCI_CAP_ID_PM Power Management
253 * %PCI_CAP_ID_AGP Accelerated Graphics Port
254 * %PCI_CAP_ID_VPD Vital Product Data
255 * %PCI_CAP_ID_SLOTID Slot Identification
256 * %PCI_CAP_ID_MSI Message Signalled Interrupts
257 * %PCI_CAP_ID_CHSWP CompactPCI HotSwap
258 * %PCI_CAP_ID_PCIX PCI-X
259 * %PCI_CAP_ID_EXP PCI Express
261 int pci_find_capability(struct pci_dev *dev, int cap)
263 int pos;
265 pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type);
266 if (pos)
267 pos = __pci_find_next_cap(dev->bus, dev->devfn, pos, cap);
269 return pos;
271 EXPORT_SYMBOL(pci_find_capability);
274 * pci_bus_find_capability - query for devices' capabilities
275 * @bus: the PCI bus to query
276 * @devfn: PCI device to query
277 * @cap: capability code
279 * Like pci_find_capability() but works for pci devices that do not have a
280 * pci_dev structure set up yet.
282 * Returns the address of the requested capability structure within the
283 * device's PCI configuration space or 0 in case the device does not
284 * support it.
286 int pci_bus_find_capability(struct pci_bus *bus, unsigned int devfn, int cap)
288 int pos;
289 u8 hdr_type;
291 pci_bus_read_config_byte(bus, devfn, PCI_HEADER_TYPE, &hdr_type);
293 pos = __pci_bus_find_cap_start(bus, devfn, hdr_type & 0x7f);
294 if (pos)
295 pos = __pci_find_next_cap(bus, devfn, pos, cap);
297 return pos;
299 EXPORT_SYMBOL(pci_bus_find_capability);
302 * pci_find_next_ext_capability - Find an extended capability
303 * @dev: PCI device to query
304 * @start: address at which to start looking (0 to start at beginning of list)
305 * @cap: capability code
307 * Returns the address of the next matching extended capability structure
308 * within the device's PCI configuration space or 0 if the device does
309 * not support it. Some capabilities can occur several times, e.g., the
310 * vendor-specific capability, and this provides a way to find them all.
312 int pci_find_next_ext_capability(struct pci_dev *dev, int start, int cap)
314 u32 header;
315 int ttl;
316 int pos = PCI_CFG_SPACE_SIZE;
318 /* minimum 8 bytes per capability */
319 ttl = (PCI_CFG_SPACE_EXP_SIZE - PCI_CFG_SPACE_SIZE) / 8;
321 if (dev->cfg_size <= PCI_CFG_SPACE_SIZE)
322 return 0;
324 if (start)
325 pos = start;
327 if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL)
328 return 0;
331 * If we have no capabilities, this is indicated by cap ID,
332 * cap version and next pointer all being 0.
334 if (header == 0)
335 return 0;
337 while (ttl-- > 0) {
338 if (PCI_EXT_CAP_ID(header) == cap && pos != start)
339 return pos;
341 pos = PCI_EXT_CAP_NEXT(header);
342 if (pos < PCI_CFG_SPACE_SIZE)
343 break;
345 if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL)
346 break;
349 return 0;
351 EXPORT_SYMBOL_GPL(pci_find_next_ext_capability);
354 * pci_find_ext_capability - Find an extended capability
355 * @dev: PCI device to query
356 * @cap: capability code
358 * Returns the address of the requested extended capability structure
359 * within the device's PCI configuration space or 0 if the device does
360 * not support it. Possible values for @cap:
362 * %PCI_EXT_CAP_ID_ERR Advanced Error Reporting
363 * %PCI_EXT_CAP_ID_VC Virtual Channel
364 * %PCI_EXT_CAP_ID_DSN Device Serial Number
365 * %PCI_EXT_CAP_ID_PWR Power Budgeting
367 int pci_find_ext_capability(struct pci_dev *dev, int cap)
369 return pci_find_next_ext_capability(dev, 0, cap);
371 EXPORT_SYMBOL_GPL(pci_find_ext_capability);
373 static int __pci_find_next_ht_cap(struct pci_dev *dev, int pos, int ht_cap)
375 int rc, ttl = PCI_FIND_CAP_TTL;
376 u8 cap, mask;
378 if (ht_cap == HT_CAPTYPE_SLAVE || ht_cap == HT_CAPTYPE_HOST)
379 mask = HT_3BIT_CAP_MASK;
380 else
381 mask = HT_5BIT_CAP_MASK;
383 pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn, pos,
384 PCI_CAP_ID_HT, &ttl);
385 while (pos) {
386 rc = pci_read_config_byte(dev, pos + 3, &cap);
387 if (rc != PCIBIOS_SUCCESSFUL)
388 return 0;
390 if ((cap & mask) == ht_cap)
391 return pos;
393 pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn,
394 pos + PCI_CAP_LIST_NEXT,
395 PCI_CAP_ID_HT, &ttl);
398 return 0;
401 * pci_find_next_ht_capability - query a device's Hypertransport capabilities
402 * @dev: PCI device to query
403 * @pos: Position from which to continue searching
404 * @ht_cap: Hypertransport capability code
406 * To be used in conjunction with pci_find_ht_capability() to search for
407 * all capabilities matching @ht_cap. @pos should always be a value returned
408 * from pci_find_ht_capability().
410 * NB. To be 100% safe against broken PCI devices, the caller should take
411 * steps to avoid an infinite loop.
413 int pci_find_next_ht_capability(struct pci_dev *dev, int pos, int ht_cap)
415 return __pci_find_next_ht_cap(dev, pos + PCI_CAP_LIST_NEXT, ht_cap);
417 EXPORT_SYMBOL_GPL(pci_find_next_ht_capability);
420 * pci_find_ht_capability - query a device's Hypertransport capabilities
421 * @dev: PCI device to query
422 * @ht_cap: Hypertransport capability code
424 * Tell if a device supports a given Hypertransport capability.
425 * Returns an address within the device's PCI configuration space
426 * or 0 in case the device does not support the request capability.
427 * The address points to the PCI capability, of type PCI_CAP_ID_HT,
428 * which has a Hypertransport capability matching @ht_cap.
430 int pci_find_ht_capability(struct pci_dev *dev, int ht_cap)
432 int pos;
434 pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type);
435 if (pos)
436 pos = __pci_find_next_ht_cap(dev, pos, ht_cap);
438 return pos;
440 EXPORT_SYMBOL_GPL(pci_find_ht_capability);
443 * pci_find_parent_resource - return resource region of parent bus of given region
444 * @dev: PCI device structure contains resources to be searched
445 * @res: child resource record for which parent is sought
447 * For given resource region of given device, return the resource
448 * region of parent bus the given region is contained in.
450 struct resource *pci_find_parent_resource(const struct pci_dev *dev,
451 struct resource *res)
453 const struct pci_bus *bus = dev->bus;
454 struct resource *r;
455 int i;
457 pci_bus_for_each_resource(bus, r, i) {
458 if (!r)
459 continue;
460 if (resource_contains(r, res)) {
463 * If the window is prefetchable but the BAR is
464 * not, the allocator made a mistake.
466 if (r->flags & IORESOURCE_PREFETCH &&
467 !(res->flags & IORESOURCE_PREFETCH))
468 return NULL;
471 * If we're below a transparent bridge, there may
472 * be both a positively-decoded aperture and a
473 * subtractively-decoded region that contain the BAR.
474 * We want the positively-decoded one, so this depends
475 * on pci_bus_for_each_resource() giving us those
476 * first.
478 return r;
481 return NULL;
483 EXPORT_SYMBOL(pci_find_parent_resource);
486 * pci_find_resource - Return matching PCI device resource
487 * @dev: PCI device to query
488 * @res: Resource to look for
490 * Goes over standard PCI resources (BARs) and checks if the given resource
491 * is partially or fully contained in any of them. In that case the
492 * matching resource is returned, %NULL otherwise.
494 struct resource *pci_find_resource(struct pci_dev *dev, struct resource *res)
496 int i;
498 for (i = 0; i < PCI_ROM_RESOURCE; i++) {
499 struct resource *r = &dev->resource[i];
501 if (r->start && resource_contains(r, res))
502 return r;
505 return NULL;
507 EXPORT_SYMBOL(pci_find_resource);
510 * pci_find_pcie_root_port - return PCIe Root Port
511 * @dev: PCI device to query
513 * Traverse up the parent chain and return the PCIe Root Port PCI Device
514 * for a given PCI Device.
516 struct pci_dev *pci_find_pcie_root_port(struct pci_dev *dev)
518 struct pci_dev *bridge, *highest_pcie_bridge = dev;
520 bridge = pci_upstream_bridge(dev);
521 while (bridge && pci_is_pcie(bridge)) {
522 highest_pcie_bridge = bridge;
523 bridge = pci_upstream_bridge(bridge);
526 if (pci_pcie_type(highest_pcie_bridge) != PCI_EXP_TYPE_ROOT_PORT)
527 return NULL;
529 return highest_pcie_bridge;
531 EXPORT_SYMBOL(pci_find_pcie_root_port);
534 * pci_wait_for_pending - wait for @mask bit(s) to clear in status word @pos
535 * @dev: the PCI device to operate on
536 * @pos: config space offset of status word
537 * @mask: mask of bit(s) to care about in status word
539 * Return 1 when mask bit(s) in status word clear, 0 otherwise.
541 int pci_wait_for_pending(struct pci_dev *dev, int pos, u16 mask)
543 int i;
545 /* Wait for Transaction Pending bit clean */
546 for (i = 0; i < 4; i++) {
547 u16 status;
548 if (i)
549 msleep((1 << (i - 1)) * 100);
551 pci_read_config_word(dev, pos, &status);
552 if (!(status & mask))
553 return 1;
556 return 0;
560 * pci_restore_bars - restore a device's BAR values (e.g. after wake-up)
561 * @dev: PCI device to have its BARs restored
563 * Restore the BAR values for a given device, so as to make it
564 * accessible by its driver.
566 static void pci_restore_bars(struct pci_dev *dev)
568 int i;
570 for (i = 0; i < PCI_BRIDGE_RESOURCES; i++)
571 pci_update_resource(dev, i);
574 static const struct pci_platform_pm_ops *pci_platform_pm;
576 int pci_set_platform_pm(const struct pci_platform_pm_ops *ops)
578 if (!ops->is_manageable || !ops->set_state || !ops->get_state ||
579 !ops->choose_state || !ops->set_wakeup || !ops->need_resume)
580 return -EINVAL;
581 pci_platform_pm = ops;
582 return 0;
585 static inline bool platform_pci_power_manageable(struct pci_dev *dev)
587 return pci_platform_pm ? pci_platform_pm->is_manageable(dev) : false;
590 static inline int platform_pci_set_power_state(struct pci_dev *dev,
591 pci_power_t t)
593 return pci_platform_pm ? pci_platform_pm->set_state(dev, t) : -ENOSYS;
596 static inline pci_power_t platform_pci_get_power_state(struct pci_dev *dev)
598 return pci_platform_pm ? pci_platform_pm->get_state(dev) : PCI_UNKNOWN;
601 static inline pci_power_t platform_pci_choose_state(struct pci_dev *dev)
603 return pci_platform_pm ?
604 pci_platform_pm->choose_state(dev) : PCI_POWER_ERROR;
607 static inline int platform_pci_set_wakeup(struct pci_dev *dev, bool enable)
609 return pci_platform_pm ?
610 pci_platform_pm->set_wakeup(dev, enable) : -ENODEV;
613 static inline bool platform_pci_need_resume(struct pci_dev *dev)
615 return pci_platform_pm ? pci_platform_pm->need_resume(dev) : false;
619 * pci_raw_set_power_state - Use PCI PM registers to set the power state of
620 * given PCI device
621 * @dev: PCI device to handle.
622 * @state: PCI power state (D0, D1, D2, D3hot) to put the device into.
624 * RETURN VALUE:
625 * -EINVAL if the requested state is invalid.
626 * -EIO if device does not support PCI PM or its PM capabilities register has a
627 * wrong version, or device doesn't support the requested state.
628 * 0 if device already is in the requested state.
629 * 0 if device's power state has been successfully changed.
631 static int pci_raw_set_power_state(struct pci_dev *dev, pci_power_t state)
633 u16 pmcsr;
634 bool need_restore = false;
636 /* Check if we're already there */
637 if (dev->current_state == state)
638 return 0;
640 if (!dev->pm_cap)
641 return -EIO;
643 if (state < PCI_D0 || state > PCI_D3hot)
644 return -EINVAL;
646 /* Validate current state:
647 * Can enter D0 from any state, but if we can only go deeper
648 * to sleep if we're already in a low power state
650 if (state != PCI_D0 && dev->current_state <= PCI_D3cold
651 && dev->current_state > state) {
652 pci_err(dev, "invalid power transition (from state %d to %d)\n",
653 dev->current_state, state);
654 return -EINVAL;
657 /* check if this device supports the desired state */
658 if ((state == PCI_D1 && !dev->d1_support)
659 || (state == PCI_D2 && !dev->d2_support))
660 return -EIO;
662 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
664 /* If we're (effectively) in D3, force entire word to 0.
665 * This doesn't affect PME_Status, disables PME_En, and
666 * sets PowerState to 0.
668 switch (dev->current_state) {
669 case PCI_D0:
670 case PCI_D1:
671 case PCI_D2:
672 pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
673 pmcsr |= state;
674 break;
675 case PCI_D3hot:
676 case PCI_D3cold:
677 case PCI_UNKNOWN: /* Boot-up */
678 if ((pmcsr & PCI_PM_CTRL_STATE_MASK) == PCI_D3hot
679 && !(pmcsr & PCI_PM_CTRL_NO_SOFT_RESET))
680 need_restore = true;
681 /* Fall-through: force to D0 */
682 default:
683 pmcsr = 0;
684 break;
687 /* enter specified state */
688 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
690 /* Mandatory power management transition delays */
691 /* see PCI PM 1.1 5.6.1 table 18 */
692 if (state == PCI_D3hot || dev->current_state == PCI_D3hot)
693 pci_dev_d3_sleep(dev);
694 else if (state == PCI_D2 || dev->current_state == PCI_D2)
695 udelay(PCI_PM_D2_DELAY);
697 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
698 dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK);
699 if (dev->current_state != state && printk_ratelimit())
700 pci_info(dev, "Refused to change power state, currently in D%d\n",
701 dev->current_state);
704 * According to section 5.4.1 of the "PCI BUS POWER MANAGEMENT
705 * INTERFACE SPECIFICATION, REV. 1.2", a device transitioning
706 * from D3hot to D0 _may_ perform an internal reset, thereby
707 * going to "D0 Uninitialized" rather than "D0 Initialized".
708 * For example, at least some versions of the 3c905B and the
709 * 3c556B exhibit this behaviour.
711 * At least some laptop BIOSen (e.g. the Thinkpad T21) leave
712 * devices in a D3hot state at boot. Consequently, we need to
713 * restore at least the BARs so that the device will be
714 * accessible to its driver.
716 if (need_restore)
717 pci_restore_bars(dev);
719 if (dev->bus->self)
720 pcie_aspm_pm_state_change(dev->bus->self);
722 return 0;
726 * pci_update_current_state - Read power state of given device and cache it
727 * @dev: PCI device to handle.
728 * @state: State to cache in case the device doesn't have the PM capability
730 * The power state is read from the PMCSR register, which however is
731 * inaccessible in D3cold. The platform firmware is therefore queried first
732 * to detect accessibility of the register. In case the platform firmware
733 * reports an incorrect state or the device isn't power manageable by the
734 * platform at all, we try to detect D3cold by testing accessibility of the
735 * vendor ID in config space.
737 void pci_update_current_state(struct pci_dev *dev, pci_power_t state)
739 if (platform_pci_get_power_state(dev) == PCI_D3cold ||
740 !pci_device_is_present(dev)) {
741 dev->current_state = PCI_D3cold;
742 } else if (dev->pm_cap) {
743 u16 pmcsr;
745 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
746 dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK);
747 } else {
748 dev->current_state = state;
753 * pci_power_up - Put the given device into D0 forcibly
754 * @dev: PCI device to power up
756 void pci_power_up(struct pci_dev *dev)
758 if (platform_pci_power_manageable(dev))
759 platform_pci_set_power_state(dev, PCI_D0);
761 pci_raw_set_power_state(dev, PCI_D0);
762 pci_update_current_state(dev, PCI_D0);
766 * pci_platform_power_transition - Use platform to change device power state
767 * @dev: PCI device to handle.
768 * @state: State to put the device into.
770 static int pci_platform_power_transition(struct pci_dev *dev, pci_power_t state)
772 int error;
774 if (platform_pci_power_manageable(dev)) {
775 error = platform_pci_set_power_state(dev, state);
776 if (!error)
777 pci_update_current_state(dev, state);
778 } else
779 error = -ENODEV;
781 if (error && !dev->pm_cap) /* Fall back to PCI_D0 */
782 dev->current_state = PCI_D0;
784 return error;
788 * pci_wakeup - Wake up a PCI device
789 * @pci_dev: Device to handle.
790 * @ign: ignored parameter
792 static int pci_wakeup(struct pci_dev *pci_dev, void *ign)
794 pci_wakeup_event(pci_dev);
795 pm_request_resume(&pci_dev->dev);
796 return 0;
800 * pci_wakeup_bus - Walk given bus and wake up devices on it
801 * @bus: Top bus of the subtree to walk.
803 static void pci_wakeup_bus(struct pci_bus *bus)
805 if (bus)
806 pci_walk_bus(bus, pci_wakeup, NULL);
810 * __pci_start_power_transition - Start power transition of a PCI device
811 * @dev: PCI device to handle.
812 * @state: State to put the device into.
814 static void __pci_start_power_transition(struct pci_dev *dev, pci_power_t state)
816 if (state == PCI_D0) {
817 pci_platform_power_transition(dev, PCI_D0);
819 * Mandatory power management transition delays, see
820 * PCI Express Base Specification Revision 2.0 Section
821 * 6.6.1: Conventional Reset. Do not delay for
822 * devices powered on/off by corresponding bridge,
823 * because have already delayed for the bridge.
825 if (dev->runtime_d3cold) {
826 if (dev->d3cold_delay)
827 msleep(dev->d3cold_delay);
829 * When powering on a bridge from D3cold, the
830 * whole hierarchy may be powered on into
831 * D0uninitialized state, resume them to give
832 * them a chance to suspend again
834 pci_wakeup_bus(dev->subordinate);
840 * __pci_dev_set_current_state - Set current state of a PCI device
841 * @dev: Device to handle
842 * @data: pointer to state to be set
844 static int __pci_dev_set_current_state(struct pci_dev *dev, void *data)
846 pci_power_t state = *(pci_power_t *)data;
848 dev->current_state = state;
849 return 0;
853 * __pci_bus_set_current_state - Walk given bus and set current state of devices
854 * @bus: Top bus of the subtree to walk.
855 * @state: state to be set
857 static void __pci_bus_set_current_state(struct pci_bus *bus, pci_power_t state)
859 if (bus)
860 pci_walk_bus(bus, __pci_dev_set_current_state, &state);
864 * __pci_complete_power_transition - Complete power transition of a PCI device
865 * @dev: PCI device to handle.
866 * @state: State to put the device into.
868 * This function should not be called directly by device drivers.
870 int __pci_complete_power_transition(struct pci_dev *dev, pci_power_t state)
872 int ret;
874 if (state <= PCI_D0)
875 return -EINVAL;
876 ret = pci_platform_power_transition(dev, state);
877 /* Power off the bridge may power off the whole hierarchy */
878 if (!ret && state == PCI_D3cold)
879 __pci_bus_set_current_state(dev->subordinate, PCI_D3cold);
880 return ret;
882 EXPORT_SYMBOL_GPL(__pci_complete_power_transition);
885 * pci_set_power_state - Set the power state of a PCI device
886 * @dev: PCI device to handle.
887 * @state: PCI power state (D0, D1, D2, D3hot) to put the device into.
889 * Transition a device to a new power state, using the platform firmware and/or
890 * the device's PCI PM registers.
892 * RETURN VALUE:
893 * -EINVAL if the requested state is invalid.
894 * -EIO if device does not support PCI PM or its PM capabilities register has a
895 * wrong version, or device doesn't support the requested state.
896 * 0 if the transition is to D1 or D2 but D1 and D2 are not supported.
897 * 0 if device already is in the requested state.
898 * 0 if the transition is to D3 but D3 is not supported.
899 * 0 if device's power state has been successfully changed.
901 int pci_set_power_state(struct pci_dev *dev, pci_power_t state)
903 int error;
905 /* bound the state we're entering */
906 if (state > PCI_D3cold)
907 state = PCI_D3cold;
908 else if (state < PCI_D0)
909 state = PCI_D0;
910 else if ((state == PCI_D1 || state == PCI_D2) && pci_no_d1d2(dev))
912 * If the device or the parent bridge do not support PCI PM,
913 * ignore the request if we're doing anything other than putting
914 * it into D0 (which would only happen on boot).
916 return 0;
918 /* Check if we're already there */
919 if (dev->current_state == state)
920 return 0;
922 __pci_start_power_transition(dev, state);
924 /* This device is quirked not to be put into D3, so
925 don't put it in D3 */
926 if (state >= PCI_D3hot && (dev->dev_flags & PCI_DEV_FLAGS_NO_D3))
927 return 0;
930 * To put device in D3cold, we put device into D3hot in native
931 * way, then put device into D3cold with platform ops
933 error = pci_raw_set_power_state(dev, state > PCI_D3hot ?
934 PCI_D3hot : state);
936 if (!__pci_complete_power_transition(dev, state))
937 error = 0;
939 return error;
941 EXPORT_SYMBOL(pci_set_power_state);
944 * pci_choose_state - Choose the power state of a PCI device
945 * @dev: PCI device to be suspended
946 * @state: target sleep state for the whole system. This is the value
947 * that is passed to suspend() function.
949 * Returns PCI power state suitable for given device and given system
950 * message.
953 pci_power_t pci_choose_state(struct pci_dev *dev, pm_message_t state)
955 pci_power_t ret;
957 if (!dev->pm_cap)
958 return PCI_D0;
960 ret = platform_pci_choose_state(dev);
961 if (ret != PCI_POWER_ERROR)
962 return ret;
964 switch (state.event) {
965 case PM_EVENT_ON:
966 return PCI_D0;
967 case PM_EVENT_FREEZE:
968 case PM_EVENT_PRETHAW:
969 /* REVISIT both freeze and pre-thaw "should" use D0 */
970 case PM_EVENT_SUSPEND:
971 case PM_EVENT_HIBERNATE:
972 return PCI_D3hot;
973 default:
974 pci_info(dev, "unrecognized suspend event %d\n",
975 state.event);
976 BUG();
978 return PCI_D0;
980 EXPORT_SYMBOL(pci_choose_state);
982 #define PCI_EXP_SAVE_REGS 7
984 static struct pci_cap_saved_state *_pci_find_saved_cap(struct pci_dev *pci_dev,
985 u16 cap, bool extended)
987 struct pci_cap_saved_state *tmp;
989 hlist_for_each_entry(tmp, &pci_dev->saved_cap_space, next) {
990 if (tmp->cap.cap_extended == extended && tmp->cap.cap_nr == cap)
991 return tmp;
993 return NULL;
996 struct pci_cap_saved_state *pci_find_saved_cap(struct pci_dev *dev, char cap)
998 return _pci_find_saved_cap(dev, cap, false);
1001 struct pci_cap_saved_state *pci_find_saved_ext_cap(struct pci_dev *dev, u16 cap)
1003 return _pci_find_saved_cap(dev, cap, true);
1006 static int pci_save_pcie_state(struct pci_dev *dev)
1008 int i = 0;
1009 struct pci_cap_saved_state *save_state;
1010 u16 *cap;
1012 if (!pci_is_pcie(dev))
1013 return 0;
1015 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP);
1016 if (!save_state) {
1017 pci_err(dev, "buffer not found in %s\n", __func__);
1018 return -ENOMEM;
1021 cap = (u16 *)&save_state->cap.data[0];
1022 pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &cap[i++]);
1023 pcie_capability_read_word(dev, PCI_EXP_LNKCTL, &cap[i++]);
1024 pcie_capability_read_word(dev, PCI_EXP_SLTCTL, &cap[i++]);
1025 pcie_capability_read_word(dev, PCI_EXP_RTCTL, &cap[i++]);
1026 pcie_capability_read_word(dev, PCI_EXP_DEVCTL2, &cap[i++]);
1027 pcie_capability_read_word(dev, PCI_EXP_LNKCTL2, &cap[i++]);
1028 pcie_capability_read_word(dev, PCI_EXP_SLTCTL2, &cap[i++]);
1030 return 0;
1033 static void pci_restore_pcie_state(struct pci_dev *dev)
1035 int i = 0;
1036 struct pci_cap_saved_state *save_state;
1037 u16 *cap;
1039 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP);
1040 if (!save_state)
1041 return;
1043 cap = (u16 *)&save_state->cap.data[0];
1044 pcie_capability_write_word(dev, PCI_EXP_DEVCTL, cap[i++]);
1045 pcie_capability_write_word(dev, PCI_EXP_LNKCTL, cap[i++]);
1046 pcie_capability_write_word(dev, PCI_EXP_SLTCTL, cap[i++]);
1047 pcie_capability_write_word(dev, PCI_EXP_RTCTL, cap[i++]);
1048 pcie_capability_write_word(dev, PCI_EXP_DEVCTL2, cap[i++]);
1049 pcie_capability_write_word(dev, PCI_EXP_LNKCTL2, cap[i++]);
1050 pcie_capability_write_word(dev, PCI_EXP_SLTCTL2, cap[i++]);
1054 static int pci_save_pcix_state(struct pci_dev *dev)
1056 int pos;
1057 struct pci_cap_saved_state *save_state;
1059 pos = pci_find_capability(dev, PCI_CAP_ID_PCIX);
1060 if (!pos)
1061 return 0;
1063 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX);
1064 if (!save_state) {
1065 pci_err(dev, "buffer not found in %s\n", __func__);
1066 return -ENOMEM;
1069 pci_read_config_word(dev, pos + PCI_X_CMD,
1070 (u16 *)save_state->cap.data);
1072 return 0;
1075 static void pci_restore_pcix_state(struct pci_dev *dev)
1077 int i = 0, pos;
1078 struct pci_cap_saved_state *save_state;
1079 u16 *cap;
1081 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX);
1082 pos = pci_find_capability(dev, PCI_CAP_ID_PCIX);
1083 if (!save_state || !pos)
1084 return;
1085 cap = (u16 *)&save_state->cap.data[0];
1087 pci_write_config_word(dev, pos + PCI_X_CMD, cap[i++]);
1092 * pci_save_state - save the PCI configuration space of a device before suspending
1093 * @dev: - PCI device that we're dealing with
1095 int pci_save_state(struct pci_dev *dev)
1097 int i;
1098 /* XXX: 100% dword access ok here? */
1099 for (i = 0; i < 16; i++)
1100 pci_read_config_dword(dev, i * 4, &dev->saved_config_space[i]);
1101 dev->state_saved = true;
1103 i = pci_save_pcie_state(dev);
1104 if (i != 0)
1105 return i;
1107 i = pci_save_pcix_state(dev);
1108 if (i != 0)
1109 return i;
1111 return pci_save_vc_state(dev);
1113 EXPORT_SYMBOL(pci_save_state);
1115 static void pci_restore_config_dword(struct pci_dev *pdev, int offset,
1116 u32 saved_val, int retry)
1118 u32 val;
1120 pci_read_config_dword(pdev, offset, &val);
1121 if (val == saved_val)
1122 return;
1124 for (;;) {
1125 pci_dbg(pdev, "restoring config space at offset %#x (was %#x, writing %#x)\n",
1126 offset, val, saved_val);
1127 pci_write_config_dword(pdev, offset, saved_val);
1128 if (retry-- <= 0)
1129 return;
1131 pci_read_config_dword(pdev, offset, &val);
1132 if (val == saved_val)
1133 return;
1135 mdelay(1);
1139 static void pci_restore_config_space_range(struct pci_dev *pdev,
1140 int start, int end, int retry)
1142 int index;
1144 for (index = end; index >= start; index--)
1145 pci_restore_config_dword(pdev, 4 * index,
1146 pdev->saved_config_space[index],
1147 retry);
1150 static void pci_restore_config_space(struct pci_dev *pdev)
1152 if (pdev->hdr_type == PCI_HEADER_TYPE_NORMAL) {
1153 pci_restore_config_space_range(pdev, 10, 15, 0);
1154 /* Restore BARs before the command register. */
1155 pci_restore_config_space_range(pdev, 4, 9, 10);
1156 pci_restore_config_space_range(pdev, 0, 3, 0);
1157 } else {
1158 pci_restore_config_space_range(pdev, 0, 15, 0);
1163 * pci_restore_state - Restore the saved state of a PCI device
1164 * @dev: - PCI device that we're dealing with
1166 void pci_restore_state(struct pci_dev *dev)
1168 if (!dev->state_saved)
1169 return;
1171 /* PCI Express register must be restored first */
1172 pci_restore_pcie_state(dev);
1173 pci_restore_pasid_state(dev);
1174 pci_restore_pri_state(dev);
1175 pci_restore_ats_state(dev);
1176 pci_restore_vc_state(dev);
1178 pci_cleanup_aer_error_status_regs(dev);
1180 pci_restore_config_space(dev);
1182 pci_restore_pcix_state(dev);
1183 pci_restore_msi_state(dev);
1185 /* Restore ACS and IOV configuration state */
1186 pci_enable_acs(dev);
1187 pci_restore_iov_state(dev);
1189 dev->state_saved = false;
1191 EXPORT_SYMBOL(pci_restore_state);
1193 struct pci_saved_state {
1194 u32 config_space[16];
1195 struct pci_cap_saved_data cap[0];
1199 * pci_store_saved_state - Allocate and return an opaque struct containing
1200 * the device saved state.
1201 * @dev: PCI device that we're dealing with
1203 * Return NULL if no state or error.
1205 struct pci_saved_state *pci_store_saved_state(struct pci_dev *dev)
1207 struct pci_saved_state *state;
1208 struct pci_cap_saved_state *tmp;
1209 struct pci_cap_saved_data *cap;
1210 size_t size;
1212 if (!dev->state_saved)
1213 return NULL;
1215 size = sizeof(*state) + sizeof(struct pci_cap_saved_data);
1217 hlist_for_each_entry(tmp, &dev->saved_cap_space, next)
1218 size += sizeof(struct pci_cap_saved_data) + tmp->cap.size;
1220 state = kzalloc(size, GFP_KERNEL);
1221 if (!state)
1222 return NULL;
1224 memcpy(state->config_space, dev->saved_config_space,
1225 sizeof(state->config_space));
1227 cap = state->cap;
1228 hlist_for_each_entry(tmp, &dev->saved_cap_space, next) {
1229 size_t len = sizeof(struct pci_cap_saved_data) + tmp->cap.size;
1230 memcpy(cap, &tmp->cap, len);
1231 cap = (struct pci_cap_saved_data *)((u8 *)cap + len);
1233 /* Empty cap_save terminates list */
1235 return state;
1237 EXPORT_SYMBOL_GPL(pci_store_saved_state);
1240 * pci_load_saved_state - Reload the provided save state into struct pci_dev.
1241 * @dev: PCI device that we're dealing with
1242 * @state: Saved state returned from pci_store_saved_state()
1244 int pci_load_saved_state(struct pci_dev *dev,
1245 struct pci_saved_state *state)
1247 struct pci_cap_saved_data *cap;
1249 dev->state_saved = false;
1251 if (!state)
1252 return 0;
1254 memcpy(dev->saved_config_space, state->config_space,
1255 sizeof(state->config_space));
1257 cap = state->cap;
1258 while (cap->size) {
1259 struct pci_cap_saved_state *tmp;
1261 tmp = _pci_find_saved_cap(dev, cap->cap_nr, cap->cap_extended);
1262 if (!tmp || tmp->cap.size != cap->size)
1263 return -EINVAL;
1265 memcpy(tmp->cap.data, cap->data, tmp->cap.size);
1266 cap = (struct pci_cap_saved_data *)((u8 *)cap +
1267 sizeof(struct pci_cap_saved_data) + cap->size);
1270 dev->state_saved = true;
1271 return 0;
1273 EXPORT_SYMBOL_GPL(pci_load_saved_state);
1276 * pci_load_and_free_saved_state - Reload the save state pointed to by state,
1277 * and free the memory allocated for it.
1278 * @dev: PCI device that we're dealing with
1279 * @state: Pointer to saved state returned from pci_store_saved_state()
1281 int pci_load_and_free_saved_state(struct pci_dev *dev,
1282 struct pci_saved_state **state)
1284 int ret = pci_load_saved_state(dev, *state);
1285 kfree(*state);
1286 *state = NULL;
1287 return ret;
1289 EXPORT_SYMBOL_GPL(pci_load_and_free_saved_state);
1291 int __weak pcibios_enable_device(struct pci_dev *dev, int bars)
1293 return pci_enable_resources(dev, bars);
1296 static int do_pci_enable_device(struct pci_dev *dev, int bars)
1298 int err;
1299 struct pci_dev *bridge;
1300 u16 cmd;
1301 u8 pin;
1303 err = pci_set_power_state(dev, PCI_D0);
1304 if (err < 0 && err != -EIO)
1305 return err;
1307 bridge = pci_upstream_bridge(dev);
1308 if (bridge)
1309 pcie_aspm_powersave_config_link(bridge);
1311 err = pcibios_enable_device(dev, bars);
1312 if (err < 0)
1313 return err;
1314 pci_fixup_device(pci_fixup_enable, dev);
1316 if (dev->msi_enabled || dev->msix_enabled)
1317 return 0;
1319 pci_read_config_byte(dev, PCI_INTERRUPT_PIN, &pin);
1320 if (pin) {
1321 pci_read_config_word(dev, PCI_COMMAND, &cmd);
1322 if (cmd & PCI_COMMAND_INTX_DISABLE)
1323 pci_write_config_word(dev, PCI_COMMAND,
1324 cmd & ~PCI_COMMAND_INTX_DISABLE);
1327 return 0;
1331 * pci_reenable_device - Resume abandoned device
1332 * @dev: PCI device to be resumed
1334 * Note this function is a backend of pci_default_resume and is not supposed
1335 * to be called by normal code, write proper resume handler and use it instead.
1337 int pci_reenable_device(struct pci_dev *dev)
1339 if (pci_is_enabled(dev))
1340 return do_pci_enable_device(dev, (1 << PCI_NUM_RESOURCES) - 1);
1341 return 0;
1343 EXPORT_SYMBOL(pci_reenable_device);
1345 static void pci_enable_bridge(struct pci_dev *dev)
1347 struct pci_dev *bridge;
1348 int retval;
1350 bridge = pci_upstream_bridge(dev);
1351 if (bridge)
1352 pci_enable_bridge(bridge);
1354 if (pci_is_enabled(dev)) {
1355 if (!dev->is_busmaster)
1356 pci_set_master(dev);
1357 return;
1360 retval = pci_enable_device(dev);
1361 if (retval)
1362 pci_err(dev, "Error enabling bridge (%d), continuing\n",
1363 retval);
1364 pci_set_master(dev);
1367 static int pci_enable_device_flags(struct pci_dev *dev, unsigned long flags)
1369 struct pci_dev *bridge;
1370 int err;
1371 int i, bars = 0;
1374 * Power state could be unknown at this point, either due to a fresh
1375 * boot or a device removal call. So get the current power state
1376 * so that things like MSI message writing will behave as expected
1377 * (e.g. if the device really is in D0 at enable time).
1379 if (dev->pm_cap) {
1380 u16 pmcsr;
1381 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1382 dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK);
1385 if (atomic_inc_return(&dev->enable_cnt) > 1)
1386 return 0; /* already enabled */
1388 bridge = pci_upstream_bridge(dev);
1389 if (bridge)
1390 pci_enable_bridge(bridge);
1392 /* only skip sriov related */
1393 for (i = 0; i <= PCI_ROM_RESOURCE; i++)
1394 if (dev->resource[i].flags & flags)
1395 bars |= (1 << i);
1396 for (i = PCI_BRIDGE_RESOURCES; i < DEVICE_COUNT_RESOURCE; i++)
1397 if (dev->resource[i].flags & flags)
1398 bars |= (1 << i);
1400 err = do_pci_enable_device(dev, bars);
1401 if (err < 0)
1402 atomic_dec(&dev->enable_cnt);
1403 return err;
1407 * pci_enable_device_io - Initialize a device for use with IO space
1408 * @dev: PCI device to be initialized
1410 * Initialize device before it's used by a driver. Ask low-level code
1411 * to enable I/O resources. Wake up the device if it was suspended.
1412 * Beware, this function can fail.
1414 int pci_enable_device_io(struct pci_dev *dev)
1416 return pci_enable_device_flags(dev, IORESOURCE_IO);
1418 EXPORT_SYMBOL(pci_enable_device_io);
1421 * pci_enable_device_mem - Initialize a device for use with Memory space
1422 * @dev: PCI device to be initialized
1424 * Initialize device before it's used by a driver. Ask low-level code
1425 * to enable Memory resources. Wake up the device if it was suspended.
1426 * Beware, this function can fail.
1428 int pci_enable_device_mem(struct pci_dev *dev)
1430 return pci_enable_device_flags(dev, IORESOURCE_MEM);
1432 EXPORT_SYMBOL(pci_enable_device_mem);
1435 * pci_enable_device - Initialize device before it's used by a driver.
1436 * @dev: PCI device to be initialized
1438 * Initialize device before it's used by a driver. Ask low-level code
1439 * to enable I/O and memory. Wake up the device if it was suspended.
1440 * Beware, this function can fail.
1442 * Note we don't actually enable the device many times if we call
1443 * this function repeatedly (we just increment the count).
1445 int pci_enable_device(struct pci_dev *dev)
1447 return pci_enable_device_flags(dev, IORESOURCE_MEM | IORESOURCE_IO);
1449 EXPORT_SYMBOL(pci_enable_device);
1452 * Managed PCI resources. This manages device on/off, intx/msi/msix
1453 * on/off and BAR regions. pci_dev itself records msi/msix status, so
1454 * there's no need to track it separately. pci_devres is initialized
1455 * when a device is enabled using managed PCI device enable interface.
1457 struct pci_devres {
1458 unsigned int enabled:1;
1459 unsigned int pinned:1;
1460 unsigned int orig_intx:1;
1461 unsigned int restore_intx:1;
1462 unsigned int mwi:1;
1463 u32 region_mask;
1466 static void pcim_release(struct device *gendev, void *res)
1468 struct pci_dev *dev = to_pci_dev(gendev);
1469 struct pci_devres *this = res;
1470 int i;
1472 if (dev->msi_enabled)
1473 pci_disable_msi(dev);
1474 if (dev->msix_enabled)
1475 pci_disable_msix(dev);
1477 for (i = 0; i < DEVICE_COUNT_RESOURCE; i++)
1478 if (this->region_mask & (1 << i))
1479 pci_release_region(dev, i);
1481 if (this->mwi)
1482 pci_clear_mwi(dev);
1484 if (this->restore_intx)
1485 pci_intx(dev, this->orig_intx);
1487 if (this->enabled && !this->pinned)
1488 pci_disable_device(dev);
1491 static struct pci_devres *get_pci_dr(struct pci_dev *pdev)
1493 struct pci_devres *dr, *new_dr;
1495 dr = devres_find(&pdev->dev, pcim_release, NULL, NULL);
1496 if (dr)
1497 return dr;
1499 new_dr = devres_alloc(pcim_release, sizeof(*new_dr), GFP_KERNEL);
1500 if (!new_dr)
1501 return NULL;
1502 return devres_get(&pdev->dev, new_dr, NULL, NULL);
1505 static struct pci_devres *find_pci_dr(struct pci_dev *pdev)
1507 if (pci_is_managed(pdev))
1508 return devres_find(&pdev->dev, pcim_release, NULL, NULL);
1509 return NULL;
1513 * pcim_enable_device - Managed pci_enable_device()
1514 * @pdev: PCI device to be initialized
1516 * Managed pci_enable_device().
1518 int pcim_enable_device(struct pci_dev *pdev)
1520 struct pci_devres *dr;
1521 int rc;
1523 dr = get_pci_dr(pdev);
1524 if (unlikely(!dr))
1525 return -ENOMEM;
1526 if (dr->enabled)
1527 return 0;
1529 rc = pci_enable_device(pdev);
1530 if (!rc) {
1531 pdev->is_managed = 1;
1532 dr->enabled = 1;
1534 return rc;
1536 EXPORT_SYMBOL(pcim_enable_device);
1539 * pcim_pin_device - Pin managed PCI device
1540 * @pdev: PCI device to pin
1542 * Pin managed PCI device @pdev. Pinned device won't be disabled on
1543 * driver detach. @pdev must have been enabled with
1544 * pcim_enable_device().
1546 void pcim_pin_device(struct pci_dev *pdev)
1548 struct pci_devres *dr;
1550 dr = find_pci_dr(pdev);
1551 WARN_ON(!dr || !dr->enabled);
1552 if (dr)
1553 dr->pinned = 1;
1555 EXPORT_SYMBOL(pcim_pin_device);
1558 * pcibios_add_device - provide arch specific hooks when adding device dev
1559 * @dev: the PCI device being added
1561 * Permits the platform to provide architecture specific functionality when
1562 * devices are added. This is the default implementation. Architecture
1563 * implementations can override this.
1565 int __weak pcibios_add_device(struct pci_dev *dev)
1567 return 0;
1571 * pcibios_release_device - provide arch specific hooks when releasing device dev
1572 * @dev: the PCI device being released
1574 * Permits the platform to provide architecture specific functionality when
1575 * devices are released. This is the default implementation. Architecture
1576 * implementations can override this.
1578 void __weak pcibios_release_device(struct pci_dev *dev) {}
1581 * pcibios_disable_device - disable arch specific PCI resources for device dev
1582 * @dev: the PCI device to disable
1584 * Disables architecture specific PCI resources for the device. This
1585 * is the default implementation. Architecture implementations can
1586 * override this.
1588 void __weak pcibios_disable_device(struct pci_dev *dev) {}
1591 * pcibios_penalize_isa_irq - penalize an ISA IRQ
1592 * @irq: ISA IRQ to penalize
1593 * @active: IRQ active or not
1595 * Permits the platform to provide architecture-specific functionality when
1596 * penalizing ISA IRQs. This is the default implementation. Architecture
1597 * implementations can override this.
1599 void __weak pcibios_penalize_isa_irq(int irq, int active) {}
1601 static void do_pci_disable_device(struct pci_dev *dev)
1603 u16 pci_command;
1605 pci_read_config_word(dev, PCI_COMMAND, &pci_command);
1606 if (pci_command & PCI_COMMAND_MASTER) {
1607 pci_command &= ~PCI_COMMAND_MASTER;
1608 pci_write_config_word(dev, PCI_COMMAND, pci_command);
1611 pcibios_disable_device(dev);
1615 * pci_disable_enabled_device - Disable device without updating enable_cnt
1616 * @dev: PCI device to disable
1618 * NOTE: This function is a backend of PCI power management routines and is
1619 * not supposed to be called drivers.
1621 void pci_disable_enabled_device(struct pci_dev *dev)
1623 if (pci_is_enabled(dev))
1624 do_pci_disable_device(dev);
1628 * pci_disable_device - Disable PCI device after use
1629 * @dev: PCI device to be disabled
1631 * Signal to the system that the PCI device is not in use by the system
1632 * anymore. This only involves disabling PCI bus-mastering, if active.
1634 * Note we don't actually disable the device until all callers of
1635 * pci_enable_device() have called pci_disable_device().
1637 void pci_disable_device(struct pci_dev *dev)
1639 struct pci_devres *dr;
1641 dr = find_pci_dr(dev);
1642 if (dr)
1643 dr->enabled = 0;
1645 dev_WARN_ONCE(&dev->dev, atomic_read(&dev->enable_cnt) <= 0,
1646 "disabling already-disabled device");
1648 if (atomic_dec_return(&dev->enable_cnt) != 0)
1649 return;
1651 do_pci_disable_device(dev);
1653 dev->is_busmaster = 0;
1655 EXPORT_SYMBOL(pci_disable_device);
1658 * pcibios_set_pcie_reset_state - set reset state for device dev
1659 * @dev: the PCIe device reset
1660 * @state: Reset state to enter into
1663 * Sets the PCIe reset state for the device. This is the default
1664 * implementation. Architecture implementations can override this.
1666 int __weak pcibios_set_pcie_reset_state(struct pci_dev *dev,
1667 enum pcie_reset_state state)
1669 return -EINVAL;
1673 * pci_set_pcie_reset_state - set reset state for device dev
1674 * @dev: the PCIe device reset
1675 * @state: Reset state to enter into
1678 * Sets the PCI reset state for the device.
1680 int pci_set_pcie_reset_state(struct pci_dev *dev, enum pcie_reset_state state)
1682 return pcibios_set_pcie_reset_state(dev, state);
1684 EXPORT_SYMBOL_GPL(pci_set_pcie_reset_state);
1687 * pci_check_pme_status - Check if given device has generated PME.
1688 * @dev: Device to check.
1690 * Check the PME status of the device and if set, clear it and clear PME enable
1691 * (if set). Return 'true' if PME status and PME enable were both set or
1692 * 'false' otherwise.
1694 bool pci_check_pme_status(struct pci_dev *dev)
1696 int pmcsr_pos;
1697 u16 pmcsr;
1698 bool ret = false;
1700 if (!dev->pm_cap)
1701 return false;
1703 pmcsr_pos = dev->pm_cap + PCI_PM_CTRL;
1704 pci_read_config_word(dev, pmcsr_pos, &pmcsr);
1705 if (!(pmcsr & PCI_PM_CTRL_PME_STATUS))
1706 return false;
1708 /* Clear PME status. */
1709 pmcsr |= PCI_PM_CTRL_PME_STATUS;
1710 if (pmcsr & PCI_PM_CTRL_PME_ENABLE) {
1711 /* Disable PME to avoid interrupt flood. */
1712 pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
1713 ret = true;
1716 pci_write_config_word(dev, pmcsr_pos, pmcsr);
1718 return ret;
1722 * pci_pme_wakeup - Wake up a PCI device if its PME Status bit is set.
1723 * @dev: Device to handle.
1724 * @pme_poll_reset: Whether or not to reset the device's pme_poll flag.
1726 * Check if @dev has generated PME and queue a resume request for it in that
1727 * case.
1729 static int pci_pme_wakeup(struct pci_dev *dev, void *pme_poll_reset)
1731 if (pme_poll_reset && dev->pme_poll)
1732 dev->pme_poll = false;
1734 if (pci_check_pme_status(dev)) {
1735 pci_wakeup_event(dev);
1736 pm_request_resume(&dev->dev);
1738 return 0;
1742 * pci_pme_wakeup_bus - Walk given bus and wake up devices on it, if necessary.
1743 * @bus: Top bus of the subtree to walk.
1745 void pci_pme_wakeup_bus(struct pci_bus *bus)
1747 if (bus)
1748 pci_walk_bus(bus, pci_pme_wakeup, (void *)true);
1753 * pci_pme_capable - check the capability of PCI device to generate PME#
1754 * @dev: PCI device to handle.
1755 * @state: PCI state from which device will issue PME#.
1757 bool pci_pme_capable(struct pci_dev *dev, pci_power_t state)
1759 if (!dev->pm_cap)
1760 return false;
1762 return !!(dev->pme_support & (1 << state));
1764 EXPORT_SYMBOL(pci_pme_capable);
1766 static void pci_pme_list_scan(struct work_struct *work)
1768 struct pci_pme_device *pme_dev, *n;
1770 mutex_lock(&pci_pme_list_mutex);
1771 list_for_each_entry_safe(pme_dev, n, &pci_pme_list, list) {
1772 if (pme_dev->dev->pme_poll) {
1773 struct pci_dev *bridge;
1775 bridge = pme_dev->dev->bus->self;
1777 * If bridge is in low power state, the
1778 * configuration space of subordinate devices
1779 * may be not accessible
1781 if (bridge && bridge->current_state != PCI_D0)
1782 continue;
1783 pci_pme_wakeup(pme_dev->dev, NULL);
1784 } else {
1785 list_del(&pme_dev->list);
1786 kfree(pme_dev);
1789 if (!list_empty(&pci_pme_list))
1790 queue_delayed_work(system_freezable_wq, &pci_pme_work,
1791 msecs_to_jiffies(PME_TIMEOUT));
1792 mutex_unlock(&pci_pme_list_mutex);
1795 static void __pci_pme_active(struct pci_dev *dev, bool enable)
1797 u16 pmcsr;
1799 if (!dev->pme_support)
1800 return;
1802 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1803 /* Clear PME_Status by writing 1 to it and enable PME# */
1804 pmcsr |= PCI_PM_CTRL_PME_STATUS | PCI_PM_CTRL_PME_ENABLE;
1805 if (!enable)
1806 pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
1808 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
1812 * pci_pme_restore - Restore PME configuration after config space restore.
1813 * @dev: PCI device to update.
1815 void pci_pme_restore(struct pci_dev *dev)
1817 u16 pmcsr;
1819 if (!dev->pme_support)
1820 return;
1822 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1823 if (dev->wakeup_prepared) {
1824 pmcsr |= PCI_PM_CTRL_PME_ENABLE;
1825 pmcsr &= ~PCI_PM_CTRL_PME_STATUS;
1826 } else {
1827 pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
1828 pmcsr |= PCI_PM_CTRL_PME_STATUS;
1830 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
1834 * pci_pme_active - enable or disable PCI device's PME# function
1835 * @dev: PCI device to handle.
1836 * @enable: 'true' to enable PME# generation; 'false' to disable it.
1838 * The caller must verify that the device is capable of generating PME# before
1839 * calling this function with @enable equal to 'true'.
1841 void pci_pme_active(struct pci_dev *dev, bool enable)
1843 __pci_pme_active(dev, enable);
1846 * PCI (as opposed to PCIe) PME requires that the device have
1847 * its PME# line hooked up correctly. Not all hardware vendors
1848 * do this, so the PME never gets delivered and the device
1849 * remains asleep. The easiest way around this is to
1850 * periodically walk the list of suspended devices and check
1851 * whether any have their PME flag set. The assumption is that
1852 * we'll wake up often enough anyway that this won't be a huge
1853 * hit, and the power savings from the devices will still be a
1854 * win.
1856 * Although PCIe uses in-band PME message instead of PME# line
1857 * to report PME, PME does not work for some PCIe devices in
1858 * reality. For example, there are devices that set their PME
1859 * status bits, but don't really bother to send a PME message;
1860 * there are PCI Express Root Ports that don't bother to
1861 * trigger interrupts when they receive PME messages from the
1862 * devices below. So PME poll is used for PCIe devices too.
1865 if (dev->pme_poll) {
1866 struct pci_pme_device *pme_dev;
1867 if (enable) {
1868 pme_dev = kmalloc(sizeof(struct pci_pme_device),
1869 GFP_KERNEL);
1870 if (!pme_dev) {
1871 pci_warn(dev, "can't enable PME#\n");
1872 return;
1874 pme_dev->dev = dev;
1875 mutex_lock(&pci_pme_list_mutex);
1876 list_add(&pme_dev->list, &pci_pme_list);
1877 if (list_is_singular(&pci_pme_list))
1878 queue_delayed_work(system_freezable_wq,
1879 &pci_pme_work,
1880 msecs_to_jiffies(PME_TIMEOUT));
1881 mutex_unlock(&pci_pme_list_mutex);
1882 } else {
1883 mutex_lock(&pci_pme_list_mutex);
1884 list_for_each_entry(pme_dev, &pci_pme_list, list) {
1885 if (pme_dev->dev == dev) {
1886 list_del(&pme_dev->list);
1887 kfree(pme_dev);
1888 break;
1891 mutex_unlock(&pci_pme_list_mutex);
1895 pci_dbg(dev, "PME# %s\n", enable ? "enabled" : "disabled");
1897 EXPORT_SYMBOL(pci_pme_active);
1900 * pci_enable_wake - enable PCI device as wakeup event source
1901 * @dev: PCI device affected
1902 * @state: PCI state from which device will issue wakeup events
1903 * @enable: True to enable event generation; false to disable
1905 * This enables the device as a wakeup event source, or disables it.
1906 * When such events involves platform-specific hooks, those hooks are
1907 * called automatically by this routine.
1909 * Devices with legacy power management (no standard PCI PM capabilities)
1910 * always require such platform hooks.
1912 * RETURN VALUE:
1913 * 0 is returned on success
1914 * -EINVAL is returned if device is not supposed to wake up the system
1915 * Error code depending on the platform is returned if both the platform and
1916 * the native mechanism fail to enable the generation of wake-up events
1918 int pci_enable_wake(struct pci_dev *dev, pci_power_t state, bool enable)
1920 int ret = 0;
1923 * Bridges can only signal wakeup on behalf of subordinate devices,
1924 * but that is set up elsewhere, so skip them.
1926 if (pci_has_subordinate(dev))
1927 return 0;
1929 /* Don't do the same thing twice in a row for one device. */
1930 if (!!enable == !!dev->wakeup_prepared)
1931 return 0;
1934 * According to "PCI System Architecture" 4th ed. by Tom Shanley & Don
1935 * Anderson we should be doing PME# wake enable followed by ACPI wake
1936 * enable. To disable wake-up we call the platform first, for symmetry.
1939 if (enable) {
1940 int error;
1942 if (pci_pme_capable(dev, state))
1943 pci_pme_active(dev, true);
1944 else
1945 ret = 1;
1946 error = platform_pci_set_wakeup(dev, true);
1947 if (ret)
1948 ret = error;
1949 if (!ret)
1950 dev->wakeup_prepared = true;
1951 } else {
1952 platform_pci_set_wakeup(dev, false);
1953 pci_pme_active(dev, false);
1954 dev->wakeup_prepared = false;
1957 return ret;
1959 EXPORT_SYMBOL(pci_enable_wake);
1962 * pci_wake_from_d3 - enable/disable device to wake up from D3_hot or D3_cold
1963 * @dev: PCI device to prepare
1964 * @enable: True to enable wake-up event generation; false to disable
1966 * Many drivers want the device to wake up the system from D3_hot or D3_cold
1967 * and this function allows them to set that up cleanly - pci_enable_wake()
1968 * should not be called twice in a row to enable wake-up due to PCI PM vs ACPI
1969 * ordering constraints.
1971 * This function only returns error code if the device is not capable of
1972 * generating PME# from both D3_hot and D3_cold, and the platform is unable to
1973 * enable wake-up power for it.
1975 int pci_wake_from_d3(struct pci_dev *dev, bool enable)
1977 return pci_pme_capable(dev, PCI_D3cold) ?
1978 pci_enable_wake(dev, PCI_D3cold, enable) :
1979 pci_enable_wake(dev, PCI_D3hot, enable);
1981 EXPORT_SYMBOL(pci_wake_from_d3);
1984 * pci_target_state - find an appropriate low power state for a given PCI dev
1985 * @dev: PCI device
1986 * @wakeup: Whether or not wakeup functionality will be enabled for the device.
1988 * Use underlying platform code to find a supported low power state for @dev.
1989 * If the platform can't manage @dev, return the deepest state from which it
1990 * can generate wake events, based on any available PME info.
1992 static pci_power_t pci_target_state(struct pci_dev *dev, bool wakeup)
1994 pci_power_t target_state = PCI_D3hot;
1996 if (platform_pci_power_manageable(dev)) {
1998 * Call the platform to choose the target state of the device
1999 * and enable wake-up from this state if supported.
2001 pci_power_t state = platform_pci_choose_state(dev);
2003 switch (state) {
2004 case PCI_POWER_ERROR:
2005 case PCI_UNKNOWN:
2006 break;
2007 case PCI_D1:
2008 case PCI_D2:
2009 if (pci_no_d1d2(dev))
2010 break;
2011 default:
2012 target_state = state;
2015 return target_state;
2018 if (!dev->pm_cap)
2019 target_state = PCI_D0;
2022 * If the device is in D3cold even though it's not power-manageable by
2023 * the platform, it may have been powered down by non-standard means.
2024 * Best to let it slumber.
2026 if (dev->current_state == PCI_D3cold)
2027 target_state = PCI_D3cold;
2029 if (wakeup) {
2031 * Find the deepest state from which the device can generate
2032 * wake-up events, make it the target state and enable device
2033 * to generate PME#.
2035 if (dev->pme_support) {
2036 while (target_state
2037 && !(dev->pme_support & (1 << target_state)))
2038 target_state--;
2042 return target_state;
2046 * pci_prepare_to_sleep - prepare PCI device for system-wide transition into a sleep state
2047 * @dev: Device to handle.
2049 * Choose the power state appropriate for the device depending on whether
2050 * it can wake up the system and/or is power manageable by the platform
2051 * (PCI_D3hot is the default) and put the device into that state.
2053 int pci_prepare_to_sleep(struct pci_dev *dev)
2055 bool wakeup = device_may_wakeup(&dev->dev);
2056 pci_power_t target_state = pci_target_state(dev, wakeup);
2057 int error;
2059 if (target_state == PCI_POWER_ERROR)
2060 return -EIO;
2062 pci_enable_wake(dev, target_state, wakeup);
2064 error = pci_set_power_state(dev, target_state);
2066 if (error)
2067 pci_enable_wake(dev, target_state, false);
2069 return error;
2071 EXPORT_SYMBOL(pci_prepare_to_sleep);
2074 * pci_back_from_sleep - turn PCI device on during system-wide transition into working state
2075 * @dev: Device to handle.
2077 * Disable device's system wake-up capability and put it into D0.
2079 int pci_back_from_sleep(struct pci_dev *dev)
2081 pci_enable_wake(dev, PCI_D0, false);
2082 return pci_set_power_state(dev, PCI_D0);
2084 EXPORT_SYMBOL(pci_back_from_sleep);
2087 * pci_finish_runtime_suspend - Carry out PCI-specific part of runtime suspend.
2088 * @dev: PCI device being suspended.
2090 * Prepare @dev to generate wake-up events at run time and put it into a low
2091 * power state.
2093 int pci_finish_runtime_suspend(struct pci_dev *dev)
2095 pci_power_t target_state;
2096 int error;
2098 target_state = pci_target_state(dev, device_can_wakeup(&dev->dev));
2099 if (target_state == PCI_POWER_ERROR)
2100 return -EIO;
2102 dev->runtime_d3cold = target_state == PCI_D3cold;
2104 pci_enable_wake(dev, target_state, pci_dev_run_wake(dev));
2106 error = pci_set_power_state(dev, target_state);
2108 if (error) {
2109 pci_enable_wake(dev, target_state, false);
2110 dev->runtime_d3cold = false;
2113 return error;
2117 * pci_dev_run_wake - Check if device can generate run-time wake-up events.
2118 * @dev: Device to check.
2120 * Return true if the device itself is capable of generating wake-up events
2121 * (through the platform or using the native PCIe PME) or if the device supports
2122 * PME and one of its upstream bridges can generate wake-up events.
2124 bool pci_dev_run_wake(struct pci_dev *dev)
2126 struct pci_bus *bus = dev->bus;
2128 if (device_can_wakeup(&dev->dev))
2129 return true;
2131 if (!dev->pme_support)
2132 return false;
2134 /* PME-capable in principle, but not from the target power state */
2135 if (!pci_pme_capable(dev, pci_target_state(dev, false)))
2136 return false;
2138 while (bus->parent) {
2139 struct pci_dev *bridge = bus->self;
2141 if (device_can_wakeup(&bridge->dev))
2142 return true;
2144 bus = bus->parent;
2147 /* We have reached the root bus. */
2148 if (bus->bridge)
2149 return device_can_wakeup(bus->bridge);
2151 return false;
2153 EXPORT_SYMBOL_GPL(pci_dev_run_wake);
2156 * pci_dev_keep_suspended - Check if the device can stay in the suspended state.
2157 * @pci_dev: Device to check.
2159 * Return 'true' if the device is runtime-suspended, it doesn't have to be
2160 * reconfigured due to wakeup settings difference between system and runtime
2161 * suspend and the current power state of it is suitable for the upcoming
2162 * (system) transition.
2164 * If the device is not configured for system wakeup, disable PME for it before
2165 * returning 'true' to prevent it from waking up the system unnecessarily.
2167 bool pci_dev_keep_suspended(struct pci_dev *pci_dev)
2169 struct device *dev = &pci_dev->dev;
2170 bool wakeup = device_may_wakeup(dev);
2172 if (!pm_runtime_suspended(dev)
2173 || pci_target_state(pci_dev, wakeup) != pci_dev->current_state
2174 || platform_pci_need_resume(pci_dev))
2175 return false;
2178 * At this point the device is good to go unless it's been configured
2179 * to generate PME at the runtime suspend time, but it is not supposed
2180 * to wake up the system. In that case, simply disable PME for it
2181 * (it will have to be re-enabled on exit from system resume).
2183 * If the device's power state is D3cold and the platform check above
2184 * hasn't triggered, the device's configuration is suitable and we don't
2185 * need to manipulate it at all.
2187 spin_lock_irq(&dev->power.lock);
2189 if (pm_runtime_suspended(dev) && pci_dev->current_state < PCI_D3cold &&
2190 !wakeup)
2191 __pci_pme_active(pci_dev, false);
2193 spin_unlock_irq(&dev->power.lock);
2194 return true;
2198 * pci_dev_complete_resume - Finalize resume from system sleep for a device.
2199 * @pci_dev: Device to handle.
2201 * If the device is runtime suspended and wakeup-capable, enable PME for it as
2202 * it might have been disabled during the prepare phase of system suspend if
2203 * the device was not configured for system wakeup.
2205 void pci_dev_complete_resume(struct pci_dev *pci_dev)
2207 struct device *dev = &pci_dev->dev;
2209 if (!pci_dev_run_wake(pci_dev))
2210 return;
2212 spin_lock_irq(&dev->power.lock);
2214 if (pm_runtime_suspended(dev) && pci_dev->current_state < PCI_D3cold)
2215 __pci_pme_active(pci_dev, true);
2217 spin_unlock_irq(&dev->power.lock);
2220 void pci_config_pm_runtime_get(struct pci_dev *pdev)
2222 struct device *dev = &pdev->dev;
2223 struct device *parent = dev->parent;
2225 if (parent)
2226 pm_runtime_get_sync(parent);
2227 pm_runtime_get_noresume(dev);
2229 * pdev->current_state is set to PCI_D3cold during suspending,
2230 * so wait until suspending completes
2232 pm_runtime_barrier(dev);
2234 * Only need to resume devices in D3cold, because config
2235 * registers are still accessible for devices suspended but
2236 * not in D3cold.
2238 if (pdev->current_state == PCI_D3cold)
2239 pm_runtime_resume(dev);
2242 void pci_config_pm_runtime_put(struct pci_dev *pdev)
2244 struct device *dev = &pdev->dev;
2245 struct device *parent = dev->parent;
2247 pm_runtime_put(dev);
2248 if (parent)
2249 pm_runtime_put_sync(parent);
2253 * pci_bridge_d3_possible - Is it possible to put the bridge into D3
2254 * @bridge: Bridge to check
2256 * This function checks if it is possible to move the bridge to D3.
2257 * Currently we only allow D3 for recent enough PCIe ports.
2259 bool pci_bridge_d3_possible(struct pci_dev *bridge)
2261 unsigned int year;
2263 if (!pci_is_pcie(bridge))
2264 return false;
2266 switch (pci_pcie_type(bridge)) {
2267 case PCI_EXP_TYPE_ROOT_PORT:
2268 case PCI_EXP_TYPE_UPSTREAM:
2269 case PCI_EXP_TYPE_DOWNSTREAM:
2270 if (pci_bridge_d3_disable)
2271 return false;
2274 * Hotplug interrupts cannot be delivered if the link is down,
2275 * so parents of a hotplug port must stay awake. In addition,
2276 * hotplug ports handled by firmware in System Management Mode
2277 * may not be put into D3 by the OS (Thunderbolt on non-Macs).
2278 * For simplicity, disallow in general for now.
2280 if (bridge->is_hotplug_bridge)
2281 return false;
2283 if (pci_bridge_d3_force)
2284 return true;
2287 * It should be safe to put PCIe ports from 2015 or newer
2288 * to D3.
2290 if (dmi_get_date(DMI_BIOS_DATE, &year, NULL, NULL) &&
2291 year >= 2015) {
2292 return true;
2294 break;
2297 return false;
2300 static int pci_dev_check_d3cold(struct pci_dev *dev, void *data)
2302 bool *d3cold_ok = data;
2304 if (/* The device needs to be allowed to go D3cold ... */
2305 dev->no_d3cold || !dev->d3cold_allowed ||
2307 /* ... and if it is wakeup capable to do so from D3cold. */
2308 (device_may_wakeup(&dev->dev) &&
2309 !pci_pme_capable(dev, PCI_D3cold)) ||
2311 /* If it is a bridge it must be allowed to go to D3. */
2312 !pci_power_manageable(dev))
2314 *d3cold_ok = false;
2316 return !*d3cold_ok;
2320 * pci_bridge_d3_update - Update bridge D3 capabilities
2321 * @dev: PCI device which is changed
2323 * Update upstream bridge PM capabilities accordingly depending on if the
2324 * device PM configuration was changed or the device is being removed. The
2325 * change is also propagated upstream.
2327 void pci_bridge_d3_update(struct pci_dev *dev)
2329 bool remove = !device_is_registered(&dev->dev);
2330 struct pci_dev *bridge;
2331 bool d3cold_ok = true;
2333 bridge = pci_upstream_bridge(dev);
2334 if (!bridge || !pci_bridge_d3_possible(bridge))
2335 return;
2338 * If D3 is currently allowed for the bridge, removing one of its
2339 * children won't change that.
2341 if (remove && bridge->bridge_d3)
2342 return;
2345 * If D3 is currently allowed for the bridge and a child is added or
2346 * changed, disallowance of D3 can only be caused by that child, so
2347 * we only need to check that single device, not any of its siblings.
2349 * If D3 is currently not allowed for the bridge, checking the device
2350 * first may allow us to skip checking its siblings.
2352 if (!remove)
2353 pci_dev_check_d3cold(dev, &d3cold_ok);
2356 * If D3 is currently not allowed for the bridge, this may be caused
2357 * either by the device being changed/removed or any of its siblings,
2358 * so we need to go through all children to find out if one of them
2359 * continues to block D3.
2361 if (d3cold_ok && !bridge->bridge_d3)
2362 pci_walk_bus(bridge->subordinate, pci_dev_check_d3cold,
2363 &d3cold_ok);
2365 if (bridge->bridge_d3 != d3cold_ok) {
2366 bridge->bridge_d3 = d3cold_ok;
2367 /* Propagate change to upstream bridges */
2368 pci_bridge_d3_update(bridge);
2373 * pci_d3cold_enable - Enable D3cold for device
2374 * @dev: PCI device to handle
2376 * This function can be used in drivers to enable D3cold from the device
2377 * they handle. It also updates upstream PCI bridge PM capabilities
2378 * accordingly.
2380 void pci_d3cold_enable(struct pci_dev *dev)
2382 if (dev->no_d3cold) {
2383 dev->no_d3cold = false;
2384 pci_bridge_d3_update(dev);
2387 EXPORT_SYMBOL_GPL(pci_d3cold_enable);
2390 * pci_d3cold_disable - Disable D3cold for device
2391 * @dev: PCI device to handle
2393 * This function can be used in drivers to disable D3cold from the device
2394 * they handle. It also updates upstream PCI bridge PM capabilities
2395 * accordingly.
2397 void pci_d3cold_disable(struct pci_dev *dev)
2399 if (!dev->no_d3cold) {
2400 dev->no_d3cold = true;
2401 pci_bridge_d3_update(dev);
2404 EXPORT_SYMBOL_GPL(pci_d3cold_disable);
2407 * pci_pm_init - Initialize PM functions of given PCI device
2408 * @dev: PCI device to handle.
2410 void pci_pm_init(struct pci_dev *dev)
2412 int pm;
2413 u16 pmc;
2415 pm_runtime_forbid(&dev->dev);
2416 pm_runtime_set_active(&dev->dev);
2417 pm_runtime_enable(&dev->dev);
2418 device_enable_async_suspend(&dev->dev);
2419 dev->wakeup_prepared = false;
2421 dev->pm_cap = 0;
2422 dev->pme_support = 0;
2424 /* find PCI PM capability in list */
2425 pm = pci_find_capability(dev, PCI_CAP_ID_PM);
2426 if (!pm)
2427 return;
2428 /* Check device's ability to generate PME# */
2429 pci_read_config_word(dev, pm + PCI_PM_PMC, &pmc);
2431 if ((pmc & PCI_PM_CAP_VER_MASK) > 3) {
2432 pci_err(dev, "unsupported PM cap regs version (%u)\n",
2433 pmc & PCI_PM_CAP_VER_MASK);
2434 return;
2437 dev->pm_cap = pm;
2438 dev->d3_delay = PCI_PM_D3_WAIT;
2439 dev->d3cold_delay = PCI_PM_D3COLD_WAIT;
2440 dev->bridge_d3 = pci_bridge_d3_possible(dev);
2441 dev->d3cold_allowed = true;
2443 dev->d1_support = false;
2444 dev->d2_support = false;
2445 if (!pci_no_d1d2(dev)) {
2446 if (pmc & PCI_PM_CAP_D1)
2447 dev->d1_support = true;
2448 if (pmc & PCI_PM_CAP_D2)
2449 dev->d2_support = true;
2451 if (dev->d1_support || dev->d2_support)
2452 pci_printk(KERN_DEBUG, dev, "supports%s%s\n",
2453 dev->d1_support ? " D1" : "",
2454 dev->d2_support ? " D2" : "");
2457 pmc &= PCI_PM_CAP_PME_MASK;
2458 if (pmc) {
2459 pci_printk(KERN_DEBUG, dev, "PME# supported from%s%s%s%s%s\n",
2460 (pmc & PCI_PM_CAP_PME_D0) ? " D0" : "",
2461 (pmc & PCI_PM_CAP_PME_D1) ? " D1" : "",
2462 (pmc & PCI_PM_CAP_PME_D2) ? " D2" : "",
2463 (pmc & PCI_PM_CAP_PME_D3) ? " D3hot" : "",
2464 (pmc & PCI_PM_CAP_PME_D3cold) ? " D3cold" : "");
2465 dev->pme_support = pmc >> PCI_PM_CAP_PME_SHIFT;
2466 dev->pme_poll = true;
2468 * Make device's PM flags reflect the wake-up capability, but
2469 * let the user space enable it to wake up the system as needed.
2471 device_set_wakeup_capable(&dev->dev, true);
2472 /* Disable the PME# generation functionality */
2473 pci_pme_active(dev, false);
2477 static unsigned long pci_ea_flags(struct pci_dev *dev, u8 prop)
2479 unsigned long flags = IORESOURCE_PCI_FIXED | IORESOURCE_PCI_EA_BEI;
2481 switch (prop) {
2482 case PCI_EA_P_MEM:
2483 case PCI_EA_P_VF_MEM:
2484 flags |= IORESOURCE_MEM;
2485 break;
2486 case PCI_EA_P_MEM_PREFETCH:
2487 case PCI_EA_P_VF_MEM_PREFETCH:
2488 flags |= IORESOURCE_MEM | IORESOURCE_PREFETCH;
2489 break;
2490 case PCI_EA_P_IO:
2491 flags |= IORESOURCE_IO;
2492 break;
2493 default:
2494 return 0;
2497 return flags;
2500 static struct resource *pci_ea_get_resource(struct pci_dev *dev, u8 bei,
2501 u8 prop)
2503 if (bei <= PCI_EA_BEI_BAR5 && prop <= PCI_EA_P_IO)
2504 return &dev->resource[bei];
2505 #ifdef CONFIG_PCI_IOV
2506 else if (bei >= PCI_EA_BEI_VF_BAR0 && bei <= PCI_EA_BEI_VF_BAR5 &&
2507 (prop == PCI_EA_P_VF_MEM || prop == PCI_EA_P_VF_MEM_PREFETCH))
2508 return &dev->resource[PCI_IOV_RESOURCES +
2509 bei - PCI_EA_BEI_VF_BAR0];
2510 #endif
2511 else if (bei == PCI_EA_BEI_ROM)
2512 return &dev->resource[PCI_ROM_RESOURCE];
2513 else
2514 return NULL;
2517 /* Read an Enhanced Allocation (EA) entry */
2518 static int pci_ea_read(struct pci_dev *dev, int offset)
2520 struct resource *res;
2521 int ent_size, ent_offset = offset;
2522 resource_size_t start, end;
2523 unsigned long flags;
2524 u32 dw0, bei, base, max_offset;
2525 u8 prop;
2526 bool support_64 = (sizeof(resource_size_t) >= 8);
2528 pci_read_config_dword(dev, ent_offset, &dw0);
2529 ent_offset += 4;
2531 /* Entry size field indicates DWORDs after 1st */
2532 ent_size = ((dw0 & PCI_EA_ES) + 1) << 2;
2534 if (!(dw0 & PCI_EA_ENABLE)) /* Entry not enabled */
2535 goto out;
2537 bei = (dw0 & PCI_EA_BEI) >> 4;
2538 prop = (dw0 & PCI_EA_PP) >> 8;
2541 * If the Property is in the reserved range, try the Secondary
2542 * Property instead.
2544 if (prop > PCI_EA_P_BRIDGE_IO && prop < PCI_EA_P_MEM_RESERVED)
2545 prop = (dw0 & PCI_EA_SP) >> 16;
2546 if (prop > PCI_EA_P_BRIDGE_IO)
2547 goto out;
2549 res = pci_ea_get_resource(dev, bei, prop);
2550 if (!res) {
2551 pci_err(dev, "Unsupported EA entry BEI: %u\n", bei);
2552 goto out;
2555 flags = pci_ea_flags(dev, prop);
2556 if (!flags) {
2557 pci_err(dev, "Unsupported EA properties: %#x\n", prop);
2558 goto out;
2561 /* Read Base */
2562 pci_read_config_dword(dev, ent_offset, &base);
2563 start = (base & PCI_EA_FIELD_MASK);
2564 ent_offset += 4;
2566 /* Read MaxOffset */
2567 pci_read_config_dword(dev, ent_offset, &max_offset);
2568 ent_offset += 4;
2570 /* Read Base MSBs (if 64-bit entry) */
2571 if (base & PCI_EA_IS_64) {
2572 u32 base_upper;
2574 pci_read_config_dword(dev, ent_offset, &base_upper);
2575 ent_offset += 4;
2577 flags |= IORESOURCE_MEM_64;
2579 /* entry starts above 32-bit boundary, can't use */
2580 if (!support_64 && base_upper)
2581 goto out;
2583 if (support_64)
2584 start |= ((u64)base_upper << 32);
2587 end = start + (max_offset | 0x03);
2589 /* Read MaxOffset MSBs (if 64-bit entry) */
2590 if (max_offset & PCI_EA_IS_64) {
2591 u32 max_offset_upper;
2593 pci_read_config_dword(dev, ent_offset, &max_offset_upper);
2594 ent_offset += 4;
2596 flags |= IORESOURCE_MEM_64;
2598 /* entry too big, can't use */
2599 if (!support_64 && max_offset_upper)
2600 goto out;
2602 if (support_64)
2603 end += ((u64)max_offset_upper << 32);
2606 if (end < start) {
2607 pci_err(dev, "EA Entry crosses address boundary\n");
2608 goto out;
2611 if (ent_size != ent_offset - offset) {
2612 pci_err(dev, "EA Entry Size (%d) does not match length read (%d)\n",
2613 ent_size, ent_offset - offset);
2614 goto out;
2617 res->name = pci_name(dev);
2618 res->start = start;
2619 res->end = end;
2620 res->flags = flags;
2622 if (bei <= PCI_EA_BEI_BAR5)
2623 pci_printk(KERN_DEBUG, dev, "BAR %d: %pR (from Enhanced Allocation, properties %#02x)\n",
2624 bei, res, prop);
2625 else if (bei == PCI_EA_BEI_ROM)
2626 pci_printk(KERN_DEBUG, dev, "ROM: %pR (from Enhanced Allocation, properties %#02x)\n",
2627 res, prop);
2628 else if (bei >= PCI_EA_BEI_VF_BAR0 && bei <= PCI_EA_BEI_VF_BAR5)
2629 pci_printk(KERN_DEBUG, dev, "VF BAR %d: %pR (from Enhanced Allocation, properties %#02x)\n",
2630 bei - PCI_EA_BEI_VF_BAR0, res, prop);
2631 else
2632 pci_printk(KERN_DEBUG, dev, "BEI %d res: %pR (from Enhanced Allocation, properties %#02x)\n",
2633 bei, res, prop);
2635 out:
2636 return offset + ent_size;
2639 /* Enhanced Allocation Initialization */
2640 void pci_ea_init(struct pci_dev *dev)
2642 int ea;
2643 u8 num_ent;
2644 int offset;
2645 int i;
2647 /* find PCI EA capability in list */
2648 ea = pci_find_capability(dev, PCI_CAP_ID_EA);
2649 if (!ea)
2650 return;
2652 /* determine the number of entries */
2653 pci_bus_read_config_byte(dev->bus, dev->devfn, ea + PCI_EA_NUM_ENT,
2654 &num_ent);
2655 num_ent &= PCI_EA_NUM_ENT_MASK;
2657 offset = ea + PCI_EA_FIRST_ENT;
2659 /* Skip DWORD 2 for type 1 functions */
2660 if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE)
2661 offset += 4;
2663 /* parse each EA entry */
2664 for (i = 0; i < num_ent; ++i)
2665 offset = pci_ea_read(dev, offset);
2668 static void pci_add_saved_cap(struct pci_dev *pci_dev,
2669 struct pci_cap_saved_state *new_cap)
2671 hlist_add_head(&new_cap->next, &pci_dev->saved_cap_space);
2675 * _pci_add_cap_save_buffer - allocate buffer for saving given
2676 * capability registers
2677 * @dev: the PCI device
2678 * @cap: the capability to allocate the buffer for
2679 * @extended: Standard or Extended capability ID
2680 * @size: requested size of the buffer
2682 static int _pci_add_cap_save_buffer(struct pci_dev *dev, u16 cap,
2683 bool extended, unsigned int size)
2685 int pos;
2686 struct pci_cap_saved_state *save_state;
2688 if (extended)
2689 pos = pci_find_ext_capability(dev, cap);
2690 else
2691 pos = pci_find_capability(dev, cap);
2693 if (!pos)
2694 return 0;
2696 save_state = kzalloc(sizeof(*save_state) + size, GFP_KERNEL);
2697 if (!save_state)
2698 return -ENOMEM;
2700 save_state->cap.cap_nr = cap;
2701 save_state->cap.cap_extended = extended;
2702 save_state->cap.size = size;
2703 pci_add_saved_cap(dev, save_state);
2705 return 0;
2708 int pci_add_cap_save_buffer(struct pci_dev *dev, char cap, unsigned int size)
2710 return _pci_add_cap_save_buffer(dev, cap, false, size);
2713 int pci_add_ext_cap_save_buffer(struct pci_dev *dev, u16 cap, unsigned int size)
2715 return _pci_add_cap_save_buffer(dev, cap, true, size);
2719 * pci_allocate_cap_save_buffers - allocate buffers for saving capabilities
2720 * @dev: the PCI device
2722 void pci_allocate_cap_save_buffers(struct pci_dev *dev)
2724 int error;
2726 error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_EXP,
2727 PCI_EXP_SAVE_REGS * sizeof(u16));
2728 if (error)
2729 pci_err(dev, "unable to preallocate PCI Express save buffer\n");
2731 error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_PCIX, sizeof(u16));
2732 if (error)
2733 pci_err(dev, "unable to preallocate PCI-X save buffer\n");
2735 pci_allocate_vc_save_buffers(dev);
2738 void pci_free_cap_save_buffers(struct pci_dev *dev)
2740 struct pci_cap_saved_state *tmp;
2741 struct hlist_node *n;
2743 hlist_for_each_entry_safe(tmp, n, &dev->saved_cap_space, next)
2744 kfree(tmp);
2748 * pci_configure_ari - enable or disable ARI forwarding
2749 * @dev: the PCI device
2751 * If @dev and its upstream bridge both support ARI, enable ARI in the
2752 * bridge. Otherwise, disable ARI in the bridge.
2754 void pci_configure_ari(struct pci_dev *dev)
2756 u32 cap;
2757 struct pci_dev *bridge;
2759 if (pcie_ari_disabled || !pci_is_pcie(dev) || dev->devfn)
2760 return;
2762 bridge = dev->bus->self;
2763 if (!bridge)
2764 return;
2766 pcie_capability_read_dword(bridge, PCI_EXP_DEVCAP2, &cap);
2767 if (!(cap & PCI_EXP_DEVCAP2_ARI))
2768 return;
2770 if (pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ARI)) {
2771 pcie_capability_set_word(bridge, PCI_EXP_DEVCTL2,
2772 PCI_EXP_DEVCTL2_ARI);
2773 bridge->ari_enabled = 1;
2774 } else {
2775 pcie_capability_clear_word(bridge, PCI_EXP_DEVCTL2,
2776 PCI_EXP_DEVCTL2_ARI);
2777 bridge->ari_enabled = 0;
2781 static int pci_acs_enable;
2784 * pci_request_acs - ask for ACS to be enabled if supported
2786 void pci_request_acs(void)
2788 pci_acs_enable = 1;
2792 * pci_std_enable_acs - enable ACS on devices using standard ACS capabilites
2793 * @dev: the PCI device
2795 static void pci_std_enable_acs(struct pci_dev *dev)
2797 int pos;
2798 u16 cap;
2799 u16 ctrl;
2801 pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ACS);
2802 if (!pos)
2803 return;
2805 pci_read_config_word(dev, pos + PCI_ACS_CAP, &cap);
2806 pci_read_config_word(dev, pos + PCI_ACS_CTRL, &ctrl);
2808 /* Source Validation */
2809 ctrl |= (cap & PCI_ACS_SV);
2811 /* P2P Request Redirect */
2812 ctrl |= (cap & PCI_ACS_RR);
2814 /* P2P Completion Redirect */
2815 ctrl |= (cap & PCI_ACS_CR);
2817 /* Upstream Forwarding */
2818 ctrl |= (cap & PCI_ACS_UF);
2820 pci_write_config_word(dev, pos + PCI_ACS_CTRL, ctrl);
2824 * pci_enable_acs - enable ACS if hardware support it
2825 * @dev: the PCI device
2827 void pci_enable_acs(struct pci_dev *dev)
2829 if (!pci_acs_enable)
2830 return;
2832 if (!pci_dev_specific_enable_acs(dev))
2833 return;
2835 pci_std_enable_acs(dev);
2838 static bool pci_acs_flags_enabled(struct pci_dev *pdev, u16 acs_flags)
2840 int pos;
2841 u16 cap, ctrl;
2843 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_ACS);
2844 if (!pos)
2845 return false;
2848 * Except for egress control, capabilities are either required
2849 * or only required if controllable. Features missing from the
2850 * capability field can therefore be assumed as hard-wired enabled.
2852 pci_read_config_word(pdev, pos + PCI_ACS_CAP, &cap);
2853 acs_flags &= (cap | PCI_ACS_EC);
2855 pci_read_config_word(pdev, pos + PCI_ACS_CTRL, &ctrl);
2856 return (ctrl & acs_flags) == acs_flags;
2860 * pci_acs_enabled - test ACS against required flags for a given device
2861 * @pdev: device to test
2862 * @acs_flags: required PCI ACS flags
2864 * Return true if the device supports the provided flags. Automatically
2865 * filters out flags that are not implemented on multifunction devices.
2867 * Note that this interface checks the effective ACS capabilities of the
2868 * device rather than the actual capabilities. For instance, most single
2869 * function endpoints are not required to support ACS because they have no
2870 * opportunity for peer-to-peer access. We therefore return 'true'
2871 * regardless of whether the device exposes an ACS capability. This makes
2872 * it much easier for callers of this function to ignore the actual type
2873 * or topology of the device when testing ACS support.
2875 bool pci_acs_enabled(struct pci_dev *pdev, u16 acs_flags)
2877 int ret;
2879 ret = pci_dev_specific_acs_enabled(pdev, acs_flags);
2880 if (ret >= 0)
2881 return ret > 0;
2884 * Conventional PCI and PCI-X devices never support ACS, either
2885 * effectively or actually. The shared bus topology implies that
2886 * any device on the bus can receive or snoop DMA.
2888 if (!pci_is_pcie(pdev))
2889 return false;
2891 switch (pci_pcie_type(pdev)) {
2893 * PCI/X-to-PCIe bridges are not specifically mentioned by the spec,
2894 * but since their primary interface is PCI/X, we conservatively
2895 * handle them as we would a non-PCIe device.
2897 case PCI_EXP_TYPE_PCIE_BRIDGE:
2899 * PCIe 3.0, 6.12.1 excludes ACS on these devices. "ACS is never
2900 * applicable... must never implement an ACS Extended Capability...".
2901 * This seems arbitrary, but we take a conservative interpretation
2902 * of this statement.
2904 case PCI_EXP_TYPE_PCI_BRIDGE:
2905 case PCI_EXP_TYPE_RC_EC:
2906 return false;
2908 * PCIe 3.0, 6.12.1.1 specifies that downstream and root ports should
2909 * implement ACS in order to indicate their peer-to-peer capabilities,
2910 * regardless of whether they are single- or multi-function devices.
2912 case PCI_EXP_TYPE_DOWNSTREAM:
2913 case PCI_EXP_TYPE_ROOT_PORT:
2914 return pci_acs_flags_enabled(pdev, acs_flags);
2916 * PCIe 3.0, 6.12.1.2 specifies ACS capabilities that should be
2917 * implemented by the remaining PCIe types to indicate peer-to-peer
2918 * capabilities, but only when they are part of a multifunction
2919 * device. The footnote for section 6.12 indicates the specific
2920 * PCIe types included here.
2922 case PCI_EXP_TYPE_ENDPOINT:
2923 case PCI_EXP_TYPE_UPSTREAM:
2924 case PCI_EXP_TYPE_LEG_END:
2925 case PCI_EXP_TYPE_RC_END:
2926 if (!pdev->multifunction)
2927 break;
2929 return pci_acs_flags_enabled(pdev, acs_flags);
2933 * PCIe 3.0, 6.12.1.3 specifies no ACS capabilities are applicable
2934 * to single function devices with the exception of downstream ports.
2936 return true;
2940 * pci_acs_path_enable - test ACS flags from start to end in a hierarchy
2941 * @start: starting downstream device
2942 * @end: ending upstream device or NULL to search to the root bus
2943 * @acs_flags: required flags
2945 * Walk up a device tree from start to end testing PCI ACS support. If
2946 * any step along the way does not support the required flags, return false.
2948 bool pci_acs_path_enabled(struct pci_dev *start,
2949 struct pci_dev *end, u16 acs_flags)
2951 struct pci_dev *pdev, *parent = start;
2953 do {
2954 pdev = parent;
2956 if (!pci_acs_enabled(pdev, acs_flags))
2957 return false;
2959 if (pci_is_root_bus(pdev->bus))
2960 return (end == NULL);
2962 parent = pdev->bus->self;
2963 } while (pdev != end);
2965 return true;
2969 * pci_rebar_find_pos - find position of resize ctrl reg for BAR
2970 * @pdev: PCI device
2971 * @bar: BAR to find
2973 * Helper to find the position of the ctrl register for a BAR.
2974 * Returns -ENOTSUPP if resizable BARs are not supported at all.
2975 * Returns -ENOENT if no ctrl register for the BAR could be found.
2977 static int pci_rebar_find_pos(struct pci_dev *pdev, int bar)
2979 unsigned int pos, nbars, i;
2980 u32 ctrl;
2982 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_REBAR);
2983 if (!pos)
2984 return -ENOTSUPP;
2986 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
2987 nbars = (ctrl & PCI_REBAR_CTRL_NBAR_MASK) >>
2988 PCI_REBAR_CTRL_NBAR_SHIFT;
2990 for (i = 0; i < nbars; i++, pos += 8) {
2991 int bar_idx;
2993 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
2994 bar_idx = ctrl & PCI_REBAR_CTRL_BAR_IDX;
2995 if (bar_idx == bar)
2996 return pos;
2999 return -ENOENT;
3003 * pci_rebar_get_possible_sizes - get possible sizes for BAR
3004 * @pdev: PCI device
3005 * @bar: BAR to query
3007 * Get the possible sizes of a resizable BAR as bitmask defined in the spec
3008 * (bit 0=1MB, bit 19=512GB). Returns 0 if BAR isn't resizable.
3010 u32 pci_rebar_get_possible_sizes(struct pci_dev *pdev, int bar)
3012 int pos;
3013 u32 cap;
3015 pos = pci_rebar_find_pos(pdev, bar);
3016 if (pos < 0)
3017 return 0;
3019 pci_read_config_dword(pdev, pos + PCI_REBAR_CAP, &cap);
3020 return (cap & PCI_REBAR_CAP_SIZES) >> 4;
3024 * pci_rebar_get_current_size - get the current size of a BAR
3025 * @pdev: PCI device
3026 * @bar: BAR to set size to
3028 * Read the size of a BAR from the resizable BAR config.
3029 * Returns size if found or negative error code.
3031 int pci_rebar_get_current_size(struct pci_dev *pdev, int bar)
3033 int pos;
3034 u32 ctrl;
3036 pos = pci_rebar_find_pos(pdev, bar);
3037 if (pos < 0)
3038 return pos;
3040 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
3041 return (ctrl & PCI_REBAR_CTRL_BAR_SIZE) >> 8;
3045 * pci_rebar_set_size - set a new size for a BAR
3046 * @pdev: PCI device
3047 * @bar: BAR to set size to
3048 * @size: new size as defined in the spec (0=1MB, 19=512GB)
3050 * Set the new size of a BAR as defined in the spec.
3051 * Returns zero if resizing was successful, error code otherwise.
3053 int pci_rebar_set_size(struct pci_dev *pdev, int bar, int size)
3055 int pos;
3056 u32 ctrl;
3058 pos = pci_rebar_find_pos(pdev, bar);
3059 if (pos < 0)
3060 return pos;
3062 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
3063 ctrl &= ~PCI_REBAR_CTRL_BAR_SIZE;
3064 ctrl |= size << 8;
3065 pci_write_config_dword(pdev, pos + PCI_REBAR_CTRL, ctrl);
3066 return 0;
3070 * pci_enable_atomic_ops_to_root - enable AtomicOp requests to root port
3071 * @dev: the PCI device
3072 * @cap_mask: mask of desired AtomicOp sizes, including one or more of:
3073 * PCI_EXP_DEVCAP2_ATOMIC_COMP32
3074 * PCI_EXP_DEVCAP2_ATOMIC_COMP64
3075 * PCI_EXP_DEVCAP2_ATOMIC_COMP128
3077 * Return 0 if all upstream bridges support AtomicOp routing, egress
3078 * blocking is disabled on all upstream ports, and the root port supports
3079 * the requested completion capabilities (32-bit, 64-bit and/or 128-bit
3080 * AtomicOp completion), or negative otherwise.
3082 int pci_enable_atomic_ops_to_root(struct pci_dev *dev, u32 cap_mask)
3084 struct pci_bus *bus = dev->bus;
3085 struct pci_dev *bridge;
3086 u32 cap, ctl2;
3088 if (!pci_is_pcie(dev))
3089 return -EINVAL;
3092 * Per PCIe r4.0, sec 6.15, endpoints and root ports may be
3093 * AtomicOp requesters. For now, we only support endpoints as
3094 * requesters and root ports as completers. No endpoints as
3095 * completers, and no peer-to-peer.
3098 switch (pci_pcie_type(dev)) {
3099 case PCI_EXP_TYPE_ENDPOINT:
3100 case PCI_EXP_TYPE_LEG_END:
3101 case PCI_EXP_TYPE_RC_END:
3102 break;
3103 default:
3104 return -EINVAL;
3107 while (bus->parent) {
3108 bridge = bus->self;
3110 pcie_capability_read_dword(bridge, PCI_EXP_DEVCAP2, &cap);
3112 switch (pci_pcie_type(bridge)) {
3113 /* Ensure switch ports support AtomicOp routing */
3114 case PCI_EXP_TYPE_UPSTREAM:
3115 case PCI_EXP_TYPE_DOWNSTREAM:
3116 if (!(cap & PCI_EXP_DEVCAP2_ATOMIC_ROUTE))
3117 return -EINVAL;
3118 break;
3120 /* Ensure root port supports all the sizes we care about */
3121 case PCI_EXP_TYPE_ROOT_PORT:
3122 if ((cap & cap_mask) != cap_mask)
3123 return -EINVAL;
3124 break;
3127 /* Ensure upstream ports don't block AtomicOps on egress */
3128 if (!bridge->has_secondary_link) {
3129 pcie_capability_read_dword(bridge, PCI_EXP_DEVCTL2,
3130 &ctl2);
3131 if (ctl2 & PCI_EXP_DEVCTL2_ATOMIC_EGRESS_BLOCK)
3132 return -EINVAL;
3135 bus = bus->parent;
3138 pcie_capability_set_word(dev, PCI_EXP_DEVCTL2,
3139 PCI_EXP_DEVCTL2_ATOMIC_REQ);
3140 return 0;
3142 EXPORT_SYMBOL(pci_enable_atomic_ops_to_root);
3145 * pci_swizzle_interrupt_pin - swizzle INTx for device behind bridge
3146 * @dev: the PCI device
3147 * @pin: the INTx pin (1=INTA, 2=INTB, 3=INTC, 4=INTD)
3149 * Perform INTx swizzling for a device behind one level of bridge. This is
3150 * required by section 9.1 of the PCI-to-PCI bridge specification for devices
3151 * behind bridges on add-in cards. For devices with ARI enabled, the slot
3152 * number is always 0 (see the Implementation Note in section 2.2.8.1 of
3153 * the PCI Express Base Specification, Revision 2.1)
3155 u8 pci_swizzle_interrupt_pin(const struct pci_dev *dev, u8 pin)
3157 int slot;
3159 if (pci_ari_enabled(dev->bus))
3160 slot = 0;
3161 else
3162 slot = PCI_SLOT(dev->devfn);
3164 return (((pin - 1) + slot) % 4) + 1;
3167 int pci_get_interrupt_pin(struct pci_dev *dev, struct pci_dev **bridge)
3169 u8 pin;
3171 pin = dev->pin;
3172 if (!pin)
3173 return -1;
3175 while (!pci_is_root_bus(dev->bus)) {
3176 pin = pci_swizzle_interrupt_pin(dev, pin);
3177 dev = dev->bus->self;
3179 *bridge = dev;
3180 return pin;
3184 * pci_common_swizzle - swizzle INTx all the way to root bridge
3185 * @dev: the PCI device
3186 * @pinp: pointer to the INTx pin value (1=INTA, 2=INTB, 3=INTD, 4=INTD)
3188 * Perform INTx swizzling for a device. This traverses through all PCI-to-PCI
3189 * bridges all the way up to a PCI root bus.
3191 u8 pci_common_swizzle(struct pci_dev *dev, u8 *pinp)
3193 u8 pin = *pinp;
3195 while (!pci_is_root_bus(dev->bus)) {
3196 pin = pci_swizzle_interrupt_pin(dev, pin);
3197 dev = dev->bus->self;
3199 *pinp = pin;
3200 return PCI_SLOT(dev->devfn);
3202 EXPORT_SYMBOL_GPL(pci_common_swizzle);
3205 * pci_release_region - Release a PCI bar
3206 * @pdev: PCI device whose resources were previously reserved by pci_request_region
3207 * @bar: BAR to release
3209 * Releases the PCI I/O and memory resources previously reserved by a
3210 * successful call to pci_request_region. Call this function only
3211 * after all use of the PCI regions has ceased.
3213 void pci_release_region(struct pci_dev *pdev, int bar)
3215 struct pci_devres *dr;
3217 if (pci_resource_len(pdev, bar) == 0)
3218 return;
3219 if (pci_resource_flags(pdev, bar) & IORESOURCE_IO)
3220 release_region(pci_resource_start(pdev, bar),
3221 pci_resource_len(pdev, bar));
3222 else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM)
3223 release_mem_region(pci_resource_start(pdev, bar),
3224 pci_resource_len(pdev, bar));
3226 dr = find_pci_dr(pdev);
3227 if (dr)
3228 dr->region_mask &= ~(1 << bar);
3230 EXPORT_SYMBOL(pci_release_region);
3233 * __pci_request_region - Reserved PCI I/O and memory resource
3234 * @pdev: PCI device whose resources are to be reserved
3235 * @bar: BAR to be reserved
3236 * @res_name: Name to be associated with resource.
3237 * @exclusive: whether the region access is exclusive or not
3239 * Mark the PCI region associated with PCI device @pdev BR @bar as
3240 * being reserved by owner @res_name. Do not access any
3241 * address inside the PCI regions unless this call returns
3242 * successfully.
3244 * If @exclusive is set, then the region is marked so that userspace
3245 * is explicitly not allowed to map the resource via /dev/mem or
3246 * sysfs MMIO access.
3248 * Returns 0 on success, or %EBUSY on error. A warning
3249 * message is also printed on failure.
3251 static int __pci_request_region(struct pci_dev *pdev, int bar,
3252 const char *res_name, int exclusive)
3254 struct pci_devres *dr;
3256 if (pci_resource_len(pdev, bar) == 0)
3257 return 0;
3259 if (pci_resource_flags(pdev, bar) & IORESOURCE_IO) {
3260 if (!request_region(pci_resource_start(pdev, bar),
3261 pci_resource_len(pdev, bar), res_name))
3262 goto err_out;
3263 } else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM) {
3264 if (!__request_mem_region(pci_resource_start(pdev, bar),
3265 pci_resource_len(pdev, bar), res_name,
3266 exclusive))
3267 goto err_out;
3270 dr = find_pci_dr(pdev);
3271 if (dr)
3272 dr->region_mask |= 1 << bar;
3274 return 0;
3276 err_out:
3277 pci_warn(pdev, "BAR %d: can't reserve %pR\n", bar,
3278 &pdev->resource[bar]);
3279 return -EBUSY;
3283 * pci_request_region - Reserve PCI I/O and memory resource
3284 * @pdev: PCI device whose resources are to be reserved
3285 * @bar: BAR to be reserved
3286 * @res_name: Name to be associated with resource
3288 * Mark the PCI region associated with PCI device @pdev BAR @bar as
3289 * being reserved by owner @res_name. Do not access any
3290 * address inside the PCI regions unless this call returns
3291 * successfully.
3293 * Returns 0 on success, or %EBUSY on error. A warning
3294 * message is also printed on failure.
3296 int pci_request_region(struct pci_dev *pdev, int bar, const char *res_name)
3298 return __pci_request_region(pdev, bar, res_name, 0);
3300 EXPORT_SYMBOL(pci_request_region);
3303 * pci_request_region_exclusive - Reserved PCI I/O and memory resource
3304 * @pdev: PCI device whose resources are to be reserved
3305 * @bar: BAR to be reserved
3306 * @res_name: Name to be associated with resource.
3308 * Mark the PCI region associated with PCI device @pdev BR @bar as
3309 * being reserved by owner @res_name. Do not access any
3310 * address inside the PCI regions unless this call returns
3311 * successfully.
3313 * Returns 0 on success, or %EBUSY on error. A warning
3314 * message is also printed on failure.
3316 * The key difference that _exclusive makes it that userspace is
3317 * explicitly not allowed to map the resource via /dev/mem or
3318 * sysfs.
3320 int pci_request_region_exclusive(struct pci_dev *pdev, int bar,
3321 const char *res_name)
3323 return __pci_request_region(pdev, bar, res_name, IORESOURCE_EXCLUSIVE);
3325 EXPORT_SYMBOL(pci_request_region_exclusive);
3328 * pci_release_selected_regions - Release selected PCI I/O and memory resources
3329 * @pdev: PCI device whose resources were previously reserved
3330 * @bars: Bitmask of BARs to be released
3332 * Release selected PCI I/O and memory resources previously reserved.
3333 * Call this function only after all use of the PCI regions has ceased.
3335 void pci_release_selected_regions(struct pci_dev *pdev, int bars)
3337 int i;
3339 for (i = 0; i < 6; i++)
3340 if (bars & (1 << i))
3341 pci_release_region(pdev, i);
3343 EXPORT_SYMBOL(pci_release_selected_regions);
3345 static int __pci_request_selected_regions(struct pci_dev *pdev, int bars,
3346 const char *res_name, int excl)
3348 int i;
3350 for (i = 0; i < 6; i++)
3351 if (bars & (1 << i))
3352 if (__pci_request_region(pdev, i, res_name, excl))
3353 goto err_out;
3354 return 0;
3356 err_out:
3357 while (--i >= 0)
3358 if (bars & (1 << i))
3359 pci_release_region(pdev, i);
3361 return -EBUSY;
3366 * pci_request_selected_regions - Reserve selected PCI I/O and memory resources
3367 * @pdev: PCI device whose resources are to be reserved
3368 * @bars: Bitmask of BARs to be requested
3369 * @res_name: Name to be associated with resource
3371 int pci_request_selected_regions(struct pci_dev *pdev, int bars,
3372 const char *res_name)
3374 return __pci_request_selected_regions(pdev, bars, res_name, 0);
3376 EXPORT_SYMBOL(pci_request_selected_regions);
3378 int pci_request_selected_regions_exclusive(struct pci_dev *pdev, int bars,
3379 const char *res_name)
3381 return __pci_request_selected_regions(pdev, bars, res_name,
3382 IORESOURCE_EXCLUSIVE);
3384 EXPORT_SYMBOL(pci_request_selected_regions_exclusive);
3387 * pci_release_regions - Release reserved PCI I/O and memory resources
3388 * @pdev: PCI device whose resources were previously reserved by pci_request_regions
3390 * Releases all PCI I/O and memory resources previously reserved by a
3391 * successful call to pci_request_regions. Call this function only
3392 * after all use of the PCI regions has ceased.
3395 void pci_release_regions(struct pci_dev *pdev)
3397 pci_release_selected_regions(pdev, (1 << 6) - 1);
3399 EXPORT_SYMBOL(pci_release_regions);
3402 * pci_request_regions - Reserved PCI I/O and memory resources
3403 * @pdev: PCI device whose resources are to be reserved
3404 * @res_name: Name to be associated with resource.
3406 * Mark all PCI regions associated with PCI device @pdev as
3407 * being reserved by owner @res_name. Do not access any
3408 * address inside the PCI regions unless this call returns
3409 * successfully.
3411 * Returns 0 on success, or %EBUSY on error. A warning
3412 * message is also printed on failure.
3414 int pci_request_regions(struct pci_dev *pdev, const char *res_name)
3416 return pci_request_selected_regions(pdev, ((1 << 6) - 1), res_name);
3418 EXPORT_SYMBOL(pci_request_regions);
3421 * pci_request_regions_exclusive - Reserved PCI I/O and memory resources
3422 * @pdev: PCI device whose resources are to be reserved
3423 * @res_name: Name to be associated with resource.
3425 * Mark all PCI regions associated with PCI device @pdev as
3426 * being reserved by owner @res_name. Do not access any
3427 * address inside the PCI regions unless this call returns
3428 * successfully.
3430 * pci_request_regions_exclusive() will mark the region so that
3431 * /dev/mem and the sysfs MMIO access will not be allowed.
3433 * Returns 0 on success, or %EBUSY on error. A warning
3434 * message is also printed on failure.
3436 int pci_request_regions_exclusive(struct pci_dev *pdev, const char *res_name)
3438 return pci_request_selected_regions_exclusive(pdev,
3439 ((1 << 6) - 1), res_name);
3441 EXPORT_SYMBOL(pci_request_regions_exclusive);
3443 #ifdef PCI_IOBASE
3444 struct io_range {
3445 struct list_head list;
3446 phys_addr_t start;
3447 resource_size_t size;
3450 static LIST_HEAD(io_range_list);
3451 static DEFINE_SPINLOCK(io_range_lock);
3452 #endif
3455 * Record the PCI IO range (expressed as CPU physical address + size).
3456 * Return a negative value if an error has occured, zero otherwise
3458 int __weak pci_register_io_range(phys_addr_t addr, resource_size_t size)
3460 int err = 0;
3462 #ifdef PCI_IOBASE
3463 struct io_range *range;
3464 resource_size_t allocated_size = 0;
3466 /* check if the range hasn't been previously recorded */
3467 spin_lock(&io_range_lock);
3468 list_for_each_entry(range, &io_range_list, list) {
3469 if (addr >= range->start && addr + size <= range->start + size) {
3470 /* range already registered, bail out */
3471 goto end_register;
3473 allocated_size += range->size;
3476 /* range not registed yet, check for available space */
3477 if (allocated_size + size - 1 > IO_SPACE_LIMIT) {
3478 /* if it's too big check if 64K space can be reserved */
3479 if (allocated_size + SZ_64K - 1 > IO_SPACE_LIMIT) {
3480 err = -E2BIG;
3481 goto end_register;
3484 size = SZ_64K;
3485 pr_warn("Requested IO range too big, new size set to 64K\n");
3488 /* add the range to the list */
3489 range = kzalloc(sizeof(*range), GFP_ATOMIC);
3490 if (!range) {
3491 err = -ENOMEM;
3492 goto end_register;
3495 range->start = addr;
3496 range->size = size;
3498 list_add_tail(&range->list, &io_range_list);
3500 end_register:
3501 spin_unlock(&io_range_lock);
3502 #endif
3504 return err;
3507 phys_addr_t pci_pio_to_address(unsigned long pio)
3509 phys_addr_t address = (phys_addr_t)OF_BAD_ADDR;
3511 #ifdef PCI_IOBASE
3512 struct io_range *range;
3513 resource_size_t allocated_size = 0;
3515 if (pio > IO_SPACE_LIMIT)
3516 return address;
3518 spin_lock(&io_range_lock);
3519 list_for_each_entry(range, &io_range_list, list) {
3520 if (pio >= allocated_size && pio < allocated_size + range->size) {
3521 address = range->start + pio - allocated_size;
3522 break;
3524 allocated_size += range->size;
3526 spin_unlock(&io_range_lock);
3527 #endif
3529 return address;
3532 unsigned long __weak pci_address_to_pio(phys_addr_t address)
3534 #ifdef PCI_IOBASE
3535 struct io_range *res;
3536 resource_size_t offset = 0;
3537 unsigned long addr = -1;
3539 spin_lock(&io_range_lock);
3540 list_for_each_entry(res, &io_range_list, list) {
3541 if (address >= res->start && address < res->start + res->size) {
3542 addr = address - res->start + offset;
3543 break;
3545 offset += res->size;
3547 spin_unlock(&io_range_lock);
3549 return addr;
3550 #else
3551 if (address > IO_SPACE_LIMIT)
3552 return (unsigned long)-1;
3554 return (unsigned long) address;
3555 #endif
3559 * pci_remap_iospace - Remap the memory mapped I/O space
3560 * @res: Resource describing the I/O space
3561 * @phys_addr: physical address of range to be mapped
3563 * Remap the memory mapped I/O space described by the @res
3564 * and the CPU physical address @phys_addr into virtual address space.
3565 * Only architectures that have memory mapped IO functions defined
3566 * (and the PCI_IOBASE value defined) should call this function.
3568 int pci_remap_iospace(const struct resource *res, phys_addr_t phys_addr)
3570 #if defined(PCI_IOBASE) && defined(CONFIG_MMU)
3571 unsigned long vaddr = (unsigned long)PCI_IOBASE + res->start;
3573 if (!(res->flags & IORESOURCE_IO))
3574 return -EINVAL;
3576 if (res->end > IO_SPACE_LIMIT)
3577 return -EINVAL;
3579 return ioremap_page_range(vaddr, vaddr + resource_size(res), phys_addr,
3580 pgprot_device(PAGE_KERNEL));
3581 #else
3582 /* this architecture does not have memory mapped I/O space,
3583 so this function should never be called */
3584 WARN_ONCE(1, "This architecture does not support memory mapped I/O\n");
3585 return -ENODEV;
3586 #endif
3588 EXPORT_SYMBOL(pci_remap_iospace);
3591 * pci_unmap_iospace - Unmap the memory mapped I/O space
3592 * @res: resource to be unmapped
3594 * Unmap the CPU virtual address @res from virtual address space.
3595 * Only architectures that have memory mapped IO functions defined
3596 * (and the PCI_IOBASE value defined) should call this function.
3598 void pci_unmap_iospace(struct resource *res)
3600 #if defined(PCI_IOBASE) && defined(CONFIG_MMU)
3601 unsigned long vaddr = (unsigned long)PCI_IOBASE + res->start;
3603 unmap_kernel_range(vaddr, resource_size(res));
3604 #endif
3606 EXPORT_SYMBOL(pci_unmap_iospace);
3609 * devm_pci_remap_cfgspace - Managed pci_remap_cfgspace()
3610 * @dev: Generic device to remap IO address for
3611 * @offset: Resource address to map
3612 * @size: Size of map
3614 * Managed pci_remap_cfgspace(). Map is automatically unmapped on driver
3615 * detach.
3617 void __iomem *devm_pci_remap_cfgspace(struct device *dev,
3618 resource_size_t offset,
3619 resource_size_t size)
3621 void __iomem **ptr, *addr;
3623 ptr = devres_alloc(devm_ioremap_release, sizeof(*ptr), GFP_KERNEL);
3624 if (!ptr)
3625 return NULL;
3627 addr = pci_remap_cfgspace(offset, size);
3628 if (addr) {
3629 *ptr = addr;
3630 devres_add(dev, ptr);
3631 } else
3632 devres_free(ptr);
3634 return addr;
3636 EXPORT_SYMBOL(devm_pci_remap_cfgspace);
3639 * devm_pci_remap_cfg_resource - check, request region and ioremap cfg resource
3640 * @dev: generic device to handle the resource for
3641 * @res: configuration space resource to be handled
3643 * Checks that a resource is a valid memory region, requests the memory
3644 * region and ioremaps with pci_remap_cfgspace() API that ensures the
3645 * proper PCI configuration space memory attributes are guaranteed.
3647 * All operations are managed and will be undone on driver detach.
3649 * Returns a pointer to the remapped memory or an ERR_PTR() encoded error code
3650 * on failure. Usage example::
3652 * res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
3653 * base = devm_pci_remap_cfg_resource(&pdev->dev, res);
3654 * if (IS_ERR(base))
3655 * return PTR_ERR(base);
3657 void __iomem *devm_pci_remap_cfg_resource(struct device *dev,
3658 struct resource *res)
3660 resource_size_t size;
3661 const char *name;
3662 void __iomem *dest_ptr;
3664 BUG_ON(!dev);
3666 if (!res || resource_type(res) != IORESOURCE_MEM) {
3667 dev_err(dev, "invalid resource\n");
3668 return IOMEM_ERR_PTR(-EINVAL);
3671 size = resource_size(res);
3672 name = res->name ?: dev_name(dev);
3674 if (!devm_request_mem_region(dev, res->start, size, name)) {
3675 dev_err(dev, "can't request region for resource %pR\n", res);
3676 return IOMEM_ERR_PTR(-EBUSY);
3679 dest_ptr = devm_pci_remap_cfgspace(dev, res->start, size);
3680 if (!dest_ptr) {
3681 dev_err(dev, "ioremap failed for resource %pR\n", res);
3682 devm_release_mem_region(dev, res->start, size);
3683 dest_ptr = IOMEM_ERR_PTR(-ENOMEM);
3686 return dest_ptr;
3688 EXPORT_SYMBOL(devm_pci_remap_cfg_resource);
3690 static void __pci_set_master(struct pci_dev *dev, bool enable)
3692 u16 old_cmd, cmd;
3694 pci_read_config_word(dev, PCI_COMMAND, &old_cmd);
3695 if (enable)
3696 cmd = old_cmd | PCI_COMMAND_MASTER;
3697 else
3698 cmd = old_cmd & ~PCI_COMMAND_MASTER;
3699 if (cmd != old_cmd) {
3700 pci_dbg(dev, "%s bus mastering\n",
3701 enable ? "enabling" : "disabling");
3702 pci_write_config_word(dev, PCI_COMMAND, cmd);
3704 dev->is_busmaster = enable;
3708 * pcibios_setup - process "pci=" kernel boot arguments
3709 * @str: string used to pass in "pci=" kernel boot arguments
3711 * Process kernel boot arguments. This is the default implementation.
3712 * Architecture specific implementations can override this as necessary.
3714 char * __weak __init pcibios_setup(char *str)
3716 return str;
3720 * pcibios_set_master - enable PCI bus-mastering for device dev
3721 * @dev: the PCI device to enable
3723 * Enables PCI bus-mastering for the device. This is the default
3724 * implementation. Architecture specific implementations can override
3725 * this if necessary.
3727 void __weak pcibios_set_master(struct pci_dev *dev)
3729 u8 lat;
3731 /* The latency timer doesn't apply to PCIe (either Type 0 or Type 1) */
3732 if (pci_is_pcie(dev))
3733 return;
3735 pci_read_config_byte(dev, PCI_LATENCY_TIMER, &lat);
3736 if (lat < 16)
3737 lat = (64 <= pcibios_max_latency) ? 64 : pcibios_max_latency;
3738 else if (lat > pcibios_max_latency)
3739 lat = pcibios_max_latency;
3740 else
3741 return;
3743 pci_write_config_byte(dev, PCI_LATENCY_TIMER, lat);
3747 * pci_set_master - enables bus-mastering for device dev
3748 * @dev: the PCI device to enable
3750 * Enables bus-mastering on the device and calls pcibios_set_master()
3751 * to do the needed arch specific settings.
3753 void pci_set_master(struct pci_dev *dev)
3755 __pci_set_master(dev, true);
3756 pcibios_set_master(dev);
3758 EXPORT_SYMBOL(pci_set_master);
3761 * pci_clear_master - disables bus-mastering for device dev
3762 * @dev: the PCI device to disable
3764 void pci_clear_master(struct pci_dev *dev)
3766 __pci_set_master(dev, false);
3768 EXPORT_SYMBOL(pci_clear_master);
3771 * pci_set_cacheline_size - ensure the CACHE_LINE_SIZE register is programmed
3772 * @dev: the PCI device for which MWI is to be enabled
3774 * Helper function for pci_set_mwi.
3775 * Originally copied from drivers/net/acenic.c.
3776 * Copyright 1998-2001 by Jes Sorensen, <jes@trained-monkey.org>.
3778 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
3780 int pci_set_cacheline_size(struct pci_dev *dev)
3782 u8 cacheline_size;
3784 if (!pci_cache_line_size)
3785 return -EINVAL;
3787 /* Validate current setting: the PCI_CACHE_LINE_SIZE must be
3788 equal to or multiple of the right value. */
3789 pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size);
3790 if (cacheline_size >= pci_cache_line_size &&
3791 (cacheline_size % pci_cache_line_size) == 0)
3792 return 0;
3794 /* Write the correct value. */
3795 pci_write_config_byte(dev, PCI_CACHE_LINE_SIZE, pci_cache_line_size);
3796 /* Read it back. */
3797 pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size);
3798 if (cacheline_size == pci_cache_line_size)
3799 return 0;
3801 pci_printk(KERN_DEBUG, dev, "cache line size of %d is not supported\n",
3802 pci_cache_line_size << 2);
3804 return -EINVAL;
3806 EXPORT_SYMBOL_GPL(pci_set_cacheline_size);
3809 * pci_set_mwi - enables memory-write-invalidate PCI transaction
3810 * @dev: the PCI device for which MWI is enabled
3812 * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND.
3814 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
3816 int pci_set_mwi(struct pci_dev *dev)
3818 #ifdef PCI_DISABLE_MWI
3819 return 0;
3820 #else
3821 int rc;
3822 u16 cmd;
3824 rc = pci_set_cacheline_size(dev);
3825 if (rc)
3826 return rc;
3828 pci_read_config_word(dev, PCI_COMMAND, &cmd);
3829 if (!(cmd & PCI_COMMAND_INVALIDATE)) {
3830 pci_dbg(dev, "enabling Mem-Wr-Inval\n");
3831 cmd |= PCI_COMMAND_INVALIDATE;
3832 pci_write_config_word(dev, PCI_COMMAND, cmd);
3834 return 0;
3835 #endif
3837 EXPORT_SYMBOL(pci_set_mwi);
3840 * pcim_set_mwi - a device-managed pci_set_mwi()
3841 * @dev: the PCI device for which MWI is enabled
3843 * Managed pci_set_mwi().
3845 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
3847 int pcim_set_mwi(struct pci_dev *dev)
3849 struct pci_devres *dr;
3851 dr = find_pci_dr(dev);
3852 if (!dr)
3853 return -ENOMEM;
3855 dr->mwi = 1;
3856 return pci_set_mwi(dev);
3858 EXPORT_SYMBOL(pcim_set_mwi);
3861 * pci_try_set_mwi - enables memory-write-invalidate PCI transaction
3862 * @dev: the PCI device for which MWI is enabled
3864 * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND.
3865 * Callers are not required to check the return value.
3867 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
3869 int pci_try_set_mwi(struct pci_dev *dev)
3871 #ifdef PCI_DISABLE_MWI
3872 return 0;
3873 #else
3874 return pci_set_mwi(dev);
3875 #endif
3877 EXPORT_SYMBOL(pci_try_set_mwi);
3880 * pci_clear_mwi - disables Memory-Write-Invalidate for device dev
3881 * @dev: the PCI device to disable
3883 * Disables PCI Memory-Write-Invalidate transaction on the device
3885 void pci_clear_mwi(struct pci_dev *dev)
3887 #ifndef PCI_DISABLE_MWI
3888 u16 cmd;
3890 pci_read_config_word(dev, PCI_COMMAND, &cmd);
3891 if (cmd & PCI_COMMAND_INVALIDATE) {
3892 cmd &= ~PCI_COMMAND_INVALIDATE;
3893 pci_write_config_word(dev, PCI_COMMAND, cmd);
3895 #endif
3897 EXPORT_SYMBOL(pci_clear_mwi);
3900 * pci_intx - enables/disables PCI INTx for device dev
3901 * @pdev: the PCI device to operate on
3902 * @enable: boolean: whether to enable or disable PCI INTx
3904 * Enables/disables PCI INTx for device dev
3906 void pci_intx(struct pci_dev *pdev, int enable)
3908 u16 pci_command, new;
3910 pci_read_config_word(pdev, PCI_COMMAND, &pci_command);
3912 if (enable)
3913 new = pci_command & ~PCI_COMMAND_INTX_DISABLE;
3914 else
3915 new = pci_command | PCI_COMMAND_INTX_DISABLE;
3917 if (new != pci_command) {
3918 struct pci_devres *dr;
3920 pci_write_config_word(pdev, PCI_COMMAND, new);
3922 dr = find_pci_dr(pdev);
3923 if (dr && !dr->restore_intx) {
3924 dr->restore_intx = 1;
3925 dr->orig_intx = !enable;
3929 EXPORT_SYMBOL_GPL(pci_intx);
3931 static bool pci_check_and_set_intx_mask(struct pci_dev *dev, bool mask)
3933 struct pci_bus *bus = dev->bus;
3934 bool mask_updated = true;
3935 u32 cmd_status_dword;
3936 u16 origcmd, newcmd;
3937 unsigned long flags;
3938 bool irq_pending;
3941 * We do a single dword read to retrieve both command and status.
3942 * Document assumptions that make this possible.
3944 BUILD_BUG_ON(PCI_COMMAND % 4);
3945 BUILD_BUG_ON(PCI_COMMAND + 2 != PCI_STATUS);
3947 raw_spin_lock_irqsave(&pci_lock, flags);
3949 bus->ops->read(bus, dev->devfn, PCI_COMMAND, 4, &cmd_status_dword);
3951 irq_pending = (cmd_status_dword >> 16) & PCI_STATUS_INTERRUPT;
3954 * Check interrupt status register to see whether our device
3955 * triggered the interrupt (when masking) or the next IRQ is
3956 * already pending (when unmasking).
3958 if (mask != irq_pending) {
3959 mask_updated = false;
3960 goto done;
3963 origcmd = cmd_status_dword;
3964 newcmd = origcmd & ~PCI_COMMAND_INTX_DISABLE;
3965 if (mask)
3966 newcmd |= PCI_COMMAND_INTX_DISABLE;
3967 if (newcmd != origcmd)
3968 bus->ops->write(bus, dev->devfn, PCI_COMMAND, 2, newcmd);
3970 done:
3971 raw_spin_unlock_irqrestore(&pci_lock, flags);
3973 return mask_updated;
3977 * pci_check_and_mask_intx - mask INTx on pending interrupt
3978 * @dev: the PCI device to operate on
3980 * Check if the device dev has its INTx line asserted, mask it and
3981 * return true in that case. False is returned if no interrupt was
3982 * pending.
3984 bool pci_check_and_mask_intx(struct pci_dev *dev)
3986 return pci_check_and_set_intx_mask(dev, true);
3988 EXPORT_SYMBOL_GPL(pci_check_and_mask_intx);
3991 * pci_check_and_unmask_intx - unmask INTx if no interrupt is pending
3992 * @dev: the PCI device to operate on
3994 * Check if the device dev has its INTx line asserted, unmask it if not
3995 * and return true. False is returned and the mask remains active if
3996 * there was still an interrupt pending.
3998 bool pci_check_and_unmask_intx(struct pci_dev *dev)
4000 return pci_check_and_set_intx_mask(dev, false);
4002 EXPORT_SYMBOL_GPL(pci_check_and_unmask_intx);
4005 * pci_wait_for_pending_transaction - waits for pending transaction
4006 * @dev: the PCI device to operate on
4008 * Return 0 if transaction is pending 1 otherwise.
4010 int pci_wait_for_pending_transaction(struct pci_dev *dev)
4012 if (!pci_is_pcie(dev))
4013 return 1;
4015 return pci_wait_for_pending(dev, pci_pcie_cap(dev) + PCI_EXP_DEVSTA,
4016 PCI_EXP_DEVSTA_TRPND);
4018 EXPORT_SYMBOL(pci_wait_for_pending_transaction);
4020 static void pci_flr_wait(struct pci_dev *dev)
4022 int delay = 1, timeout = 60000;
4023 u32 id;
4026 * Per PCIe r3.1, sec 6.6.2, a device must complete an FLR within
4027 * 100ms, but may silently discard requests while the FLR is in
4028 * progress. Wait 100ms before trying to access the device.
4030 msleep(100);
4033 * After 100ms, the device should not silently discard config
4034 * requests, but it may still indicate that it needs more time by
4035 * responding to them with CRS completions. The Root Port will
4036 * generally synthesize ~0 data to complete the read (except when
4037 * CRS SV is enabled and the read was for the Vendor ID; in that
4038 * case it synthesizes 0x0001 data).
4040 * Wait for the device to return a non-CRS completion. Read the
4041 * Command register instead of Vendor ID so we don't have to
4042 * contend with the CRS SV value.
4044 pci_read_config_dword(dev, PCI_COMMAND, &id);
4045 while (id == ~0) {
4046 if (delay > timeout) {
4047 pci_warn(dev, "not ready %dms after FLR; giving up\n",
4048 100 + delay - 1);
4049 return;
4052 if (delay > 1000)
4053 pci_info(dev, "not ready %dms after FLR; waiting\n",
4054 100 + delay - 1);
4056 msleep(delay);
4057 delay *= 2;
4058 pci_read_config_dword(dev, PCI_COMMAND, &id);
4061 if (delay > 1000)
4062 pci_info(dev, "ready %dms after FLR\n", 100 + delay - 1);
4066 * pcie_has_flr - check if a device supports function level resets
4067 * @dev: device to check
4069 * Returns true if the device advertises support for PCIe function level
4070 * resets.
4072 static bool pcie_has_flr(struct pci_dev *dev)
4074 u32 cap;
4076 if (dev->dev_flags & PCI_DEV_FLAGS_NO_FLR_RESET)
4077 return false;
4079 pcie_capability_read_dword(dev, PCI_EXP_DEVCAP, &cap);
4080 return cap & PCI_EXP_DEVCAP_FLR;
4084 * pcie_flr - initiate a PCIe function level reset
4085 * @dev: device to reset
4087 * Initiate a function level reset on @dev. The caller should ensure the
4088 * device supports FLR before calling this function, e.g. by using the
4089 * pcie_has_flr() helper.
4091 void pcie_flr(struct pci_dev *dev)
4093 if (!pci_wait_for_pending_transaction(dev))
4094 pci_err(dev, "timed out waiting for pending transaction; performing function level reset anyway\n");
4096 pcie_capability_set_word(dev, PCI_EXP_DEVCTL, PCI_EXP_DEVCTL_BCR_FLR);
4097 pci_flr_wait(dev);
4099 EXPORT_SYMBOL_GPL(pcie_flr);
4101 static int pci_af_flr(struct pci_dev *dev, int probe)
4103 int pos;
4104 u8 cap;
4106 pos = pci_find_capability(dev, PCI_CAP_ID_AF);
4107 if (!pos)
4108 return -ENOTTY;
4110 if (dev->dev_flags & PCI_DEV_FLAGS_NO_FLR_RESET)
4111 return -ENOTTY;
4113 pci_read_config_byte(dev, pos + PCI_AF_CAP, &cap);
4114 if (!(cap & PCI_AF_CAP_TP) || !(cap & PCI_AF_CAP_FLR))
4115 return -ENOTTY;
4117 if (probe)
4118 return 0;
4121 * Wait for Transaction Pending bit to clear. A word-aligned test
4122 * is used, so we use the conrol offset rather than status and shift
4123 * the test bit to match.
4125 if (!pci_wait_for_pending(dev, pos + PCI_AF_CTRL,
4126 PCI_AF_STATUS_TP << 8))
4127 pci_err(dev, "timed out waiting for pending transaction; performing AF function level reset anyway\n");
4129 pci_write_config_byte(dev, pos + PCI_AF_CTRL, PCI_AF_CTRL_FLR);
4130 pci_flr_wait(dev);
4131 return 0;
4135 * pci_pm_reset - Put device into PCI_D3 and back into PCI_D0.
4136 * @dev: Device to reset.
4137 * @probe: If set, only check if the device can be reset this way.
4139 * If @dev supports native PCI PM and its PCI_PM_CTRL_NO_SOFT_RESET flag is
4140 * unset, it will be reinitialized internally when going from PCI_D3hot to
4141 * PCI_D0. If that's the case and the device is not in a low-power state
4142 * already, force it into PCI_D3hot and back to PCI_D0, causing it to be reset.
4144 * NOTE: This causes the caller to sleep for twice the device power transition
4145 * cooldown period, which for the D0->D3hot and D3hot->D0 transitions is 10 ms
4146 * by default (i.e. unless the @dev's d3_delay field has a different value).
4147 * Moreover, only devices in D0 can be reset by this function.
4149 static int pci_pm_reset(struct pci_dev *dev, int probe)
4151 u16 csr;
4153 if (!dev->pm_cap || dev->dev_flags & PCI_DEV_FLAGS_NO_PM_RESET)
4154 return -ENOTTY;
4156 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &csr);
4157 if (csr & PCI_PM_CTRL_NO_SOFT_RESET)
4158 return -ENOTTY;
4160 if (probe)
4161 return 0;
4163 if (dev->current_state != PCI_D0)
4164 return -EINVAL;
4166 csr &= ~PCI_PM_CTRL_STATE_MASK;
4167 csr |= PCI_D3hot;
4168 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr);
4169 pci_dev_d3_sleep(dev);
4171 csr &= ~PCI_PM_CTRL_STATE_MASK;
4172 csr |= PCI_D0;
4173 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr);
4174 pci_dev_d3_sleep(dev);
4176 return 0;
4179 void pci_reset_secondary_bus(struct pci_dev *dev)
4181 u16 ctrl;
4183 pci_read_config_word(dev, PCI_BRIDGE_CONTROL, &ctrl);
4184 ctrl |= PCI_BRIDGE_CTL_BUS_RESET;
4185 pci_write_config_word(dev, PCI_BRIDGE_CONTROL, ctrl);
4187 * PCI spec v3.0 7.6.4.2 requires minimum Trst of 1ms. Double
4188 * this to 2ms to ensure that we meet the minimum requirement.
4190 msleep(2);
4192 ctrl &= ~PCI_BRIDGE_CTL_BUS_RESET;
4193 pci_write_config_word(dev, PCI_BRIDGE_CONTROL, ctrl);
4196 * Trhfa for conventional PCI is 2^25 clock cycles.
4197 * Assuming a minimum 33MHz clock this results in a 1s
4198 * delay before we can consider subordinate devices to
4199 * be re-initialized. PCIe has some ways to shorten this,
4200 * but we don't make use of them yet.
4202 ssleep(1);
4205 void __weak pcibios_reset_secondary_bus(struct pci_dev *dev)
4207 pci_reset_secondary_bus(dev);
4211 * pci_reset_bridge_secondary_bus - Reset the secondary bus on a PCI bridge.
4212 * @dev: Bridge device
4214 * Use the bridge control register to assert reset on the secondary bus.
4215 * Devices on the secondary bus are left in power-on state.
4217 void pci_reset_bridge_secondary_bus(struct pci_dev *dev)
4219 pcibios_reset_secondary_bus(dev);
4221 EXPORT_SYMBOL_GPL(pci_reset_bridge_secondary_bus);
4223 static int pci_parent_bus_reset(struct pci_dev *dev, int probe)
4225 struct pci_dev *pdev;
4227 if (pci_is_root_bus(dev->bus) || dev->subordinate ||
4228 !dev->bus->self || dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET)
4229 return -ENOTTY;
4231 list_for_each_entry(pdev, &dev->bus->devices, bus_list)
4232 if (pdev != dev)
4233 return -ENOTTY;
4235 if (probe)
4236 return 0;
4238 pci_reset_bridge_secondary_bus(dev->bus->self);
4240 return 0;
4243 static int pci_reset_hotplug_slot(struct hotplug_slot *hotplug, int probe)
4245 int rc = -ENOTTY;
4247 if (!hotplug || !try_module_get(hotplug->ops->owner))
4248 return rc;
4250 if (hotplug->ops->reset_slot)
4251 rc = hotplug->ops->reset_slot(hotplug, probe);
4253 module_put(hotplug->ops->owner);
4255 return rc;
4258 static int pci_dev_reset_slot_function(struct pci_dev *dev, int probe)
4260 struct pci_dev *pdev;
4262 if (dev->subordinate || !dev->slot ||
4263 dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET)
4264 return -ENOTTY;
4266 list_for_each_entry(pdev, &dev->bus->devices, bus_list)
4267 if (pdev != dev && pdev->slot == dev->slot)
4268 return -ENOTTY;
4270 return pci_reset_hotplug_slot(dev->slot->hotplug, probe);
4273 static void pci_dev_lock(struct pci_dev *dev)
4275 pci_cfg_access_lock(dev);
4276 /* block PM suspend, driver probe, etc. */
4277 device_lock(&dev->dev);
4280 /* Return 1 on successful lock, 0 on contention */
4281 static int pci_dev_trylock(struct pci_dev *dev)
4283 if (pci_cfg_access_trylock(dev)) {
4284 if (device_trylock(&dev->dev))
4285 return 1;
4286 pci_cfg_access_unlock(dev);
4289 return 0;
4292 static void pci_dev_unlock(struct pci_dev *dev)
4294 device_unlock(&dev->dev);
4295 pci_cfg_access_unlock(dev);
4298 static void pci_dev_save_and_disable(struct pci_dev *dev)
4300 const struct pci_error_handlers *err_handler =
4301 dev->driver ? dev->driver->err_handler : NULL;
4304 * dev->driver->err_handler->reset_prepare() is protected against
4305 * races with ->remove() by the device lock, which must be held by
4306 * the caller.
4308 if (err_handler && err_handler->reset_prepare)
4309 err_handler->reset_prepare(dev);
4312 * Wake-up device prior to save. PM registers default to D0 after
4313 * reset and a simple register restore doesn't reliably return
4314 * to a non-D0 state anyway.
4316 pci_set_power_state(dev, PCI_D0);
4318 pci_save_state(dev);
4320 * Disable the device by clearing the Command register, except for
4321 * INTx-disable which is set. This not only disables MMIO and I/O port
4322 * BARs, but also prevents the device from being Bus Master, preventing
4323 * DMA from the device including MSI/MSI-X interrupts. For PCI 2.3
4324 * compliant devices, INTx-disable prevents legacy interrupts.
4326 pci_write_config_word(dev, PCI_COMMAND, PCI_COMMAND_INTX_DISABLE);
4329 static void pci_dev_restore(struct pci_dev *dev)
4331 const struct pci_error_handlers *err_handler =
4332 dev->driver ? dev->driver->err_handler : NULL;
4334 pci_restore_state(dev);
4337 * dev->driver->err_handler->reset_done() is protected against
4338 * races with ->remove() by the device lock, which must be held by
4339 * the caller.
4341 if (err_handler && err_handler->reset_done)
4342 err_handler->reset_done(dev);
4346 * __pci_reset_function_locked - reset a PCI device function while holding
4347 * the @dev mutex lock.
4348 * @dev: PCI device to reset
4350 * Some devices allow an individual function to be reset without affecting
4351 * other functions in the same device. The PCI device must be responsive
4352 * to PCI config space in order to use this function.
4354 * The device function is presumed to be unused and the caller is holding
4355 * the device mutex lock when this function is called.
4356 * Resetting the device will make the contents of PCI configuration space
4357 * random, so any caller of this must be prepared to reinitialise the
4358 * device including MSI, bus mastering, BARs, decoding IO and memory spaces,
4359 * etc.
4361 * Returns 0 if the device function was successfully reset or negative if the
4362 * device doesn't support resetting a single function.
4364 int __pci_reset_function_locked(struct pci_dev *dev)
4366 int rc;
4368 might_sleep();
4371 * A reset method returns -ENOTTY if it doesn't support this device
4372 * and we should try the next method.
4374 * If it returns 0 (success), we're finished. If it returns any
4375 * other error, we're also finished: this indicates that further
4376 * reset mechanisms might be broken on the device.
4378 rc = pci_dev_specific_reset(dev, 0);
4379 if (rc != -ENOTTY)
4380 return rc;
4381 if (pcie_has_flr(dev)) {
4382 pcie_flr(dev);
4383 return 0;
4385 rc = pci_af_flr(dev, 0);
4386 if (rc != -ENOTTY)
4387 return rc;
4388 rc = pci_pm_reset(dev, 0);
4389 if (rc != -ENOTTY)
4390 return rc;
4391 rc = pci_dev_reset_slot_function(dev, 0);
4392 if (rc != -ENOTTY)
4393 return rc;
4394 return pci_parent_bus_reset(dev, 0);
4396 EXPORT_SYMBOL_GPL(__pci_reset_function_locked);
4399 * pci_probe_reset_function - check whether the device can be safely reset
4400 * @dev: PCI device to reset
4402 * Some devices allow an individual function to be reset without affecting
4403 * other functions in the same device. The PCI device must be responsive
4404 * to PCI config space in order to use this function.
4406 * Returns 0 if the device function can be reset or negative if the
4407 * device doesn't support resetting a single function.
4409 int pci_probe_reset_function(struct pci_dev *dev)
4411 int rc;
4413 might_sleep();
4415 rc = pci_dev_specific_reset(dev, 1);
4416 if (rc != -ENOTTY)
4417 return rc;
4418 if (pcie_has_flr(dev))
4419 return 0;
4420 rc = pci_af_flr(dev, 1);
4421 if (rc != -ENOTTY)
4422 return rc;
4423 rc = pci_pm_reset(dev, 1);
4424 if (rc != -ENOTTY)
4425 return rc;
4426 rc = pci_dev_reset_slot_function(dev, 1);
4427 if (rc != -ENOTTY)
4428 return rc;
4430 return pci_parent_bus_reset(dev, 1);
4434 * pci_reset_function - quiesce and reset a PCI device function
4435 * @dev: PCI device to reset
4437 * Some devices allow an individual function to be reset without affecting
4438 * other functions in the same device. The PCI device must be responsive
4439 * to PCI config space in order to use this function.
4441 * This function does not just reset the PCI portion of a device, but
4442 * clears all the state associated with the device. This function differs
4443 * from __pci_reset_function_locked() in that it saves and restores device state
4444 * over the reset and takes the PCI device lock.
4446 * Returns 0 if the device function was successfully reset or negative if the
4447 * device doesn't support resetting a single function.
4449 int pci_reset_function(struct pci_dev *dev)
4451 int rc;
4453 rc = pci_probe_reset_function(dev);
4454 if (rc)
4455 return rc;
4457 pci_dev_lock(dev);
4458 pci_dev_save_and_disable(dev);
4460 rc = __pci_reset_function_locked(dev);
4462 pci_dev_restore(dev);
4463 pci_dev_unlock(dev);
4465 return rc;
4467 EXPORT_SYMBOL_GPL(pci_reset_function);
4470 * pci_reset_function_locked - quiesce and reset a PCI device function
4471 * @dev: PCI device to reset
4473 * Some devices allow an individual function to be reset without affecting
4474 * other functions in the same device. The PCI device must be responsive
4475 * to PCI config space in order to use this function.
4477 * This function does not just reset the PCI portion of a device, but
4478 * clears all the state associated with the device. This function differs
4479 * from __pci_reset_function_locked() in that it saves and restores device state
4480 * over the reset. It also differs from pci_reset_function() in that it
4481 * requires the PCI device lock to be held.
4483 * Returns 0 if the device function was successfully reset or negative if the
4484 * device doesn't support resetting a single function.
4486 int pci_reset_function_locked(struct pci_dev *dev)
4488 int rc;
4490 rc = pci_probe_reset_function(dev);
4491 if (rc)
4492 return rc;
4494 pci_dev_save_and_disable(dev);
4496 rc = __pci_reset_function_locked(dev);
4498 pci_dev_restore(dev);
4500 return rc;
4502 EXPORT_SYMBOL_GPL(pci_reset_function_locked);
4505 * pci_try_reset_function - quiesce and reset a PCI device function
4506 * @dev: PCI device to reset
4508 * Same as above, except return -EAGAIN if unable to lock device.
4510 int pci_try_reset_function(struct pci_dev *dev)
4512 int rc;
4514 rc = pci_probe_reset_function(dev);
4515 if (rc)
4516 return rc;
4518 if (!pci_dev_trylock(dev))
4519 return -EAGAIN;
4521 pci_dev_save_and_disable(dev);
4522 rc = __pci_reset_function_locked(dev);
4523 pci_dev_unlock(dev);
4525 pci_dev_restore(dev);
4526 return rc;
4528 EXPORT_SYMBOL_GPL(pci_try_reset_function);
4530 /* Do any devices on or below this bus prevent a bus reset? */
4531 static bool pci_bus_resetable(struct pci_bus *bus)
4533 struct pci_dev *dev;
4536 if (bus->self && (bus->self->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET))
4537 return false;
4539 list_for_each_entry(dev, &bus->devices, bus_list) {
4540 if (dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET ||
4541 (dev->subordinate && !pci_bus_resetable(dev->subordinate)))
4542 return false;
4545 return true;
4548 /* Lock devices from the top of the tree down */
4549 static void pci_bus_lock(struct pci_bus *bus)
4551 struct pci_dev *dev;
4553 list_for_each_entry(dev, &bus->devices, bus_list) {
4554 pci_dev_lock(dev);
4555 if (dev->subordinate)
4556 pci_bus_lock(dev->subordinate);
4560 /* Unlock devices from the bottom of the tree up */
4561 static void pci_bus_unlock(struct pci_bus *bus)
4563 struct pci_dev *dev;
4565 list_for_each_entry(dev, &bus->devices, bus_list) {
4566 if (dev->subordinate)
4567 pci_bus_unlock(dev->subordinate);
4568 pci_dev_unlock(dev);
4572 /* Return 1 on successful lock, 0 on contention */
4573 static int pci_bus_trylock(struct pci_bus *bus)
4575 struct pci_dev *dev;
4577 list_for_each_entry(dev, &bus->devices, bus_list) {
4578 if (!pci_dev_trylock(dev))
4579 goto unlock;
4580 if (dev->subordinate) {
4581 if (!pci_bus_trylock(dev->subordinate)) {
4582 pci_dev_unlock(dev);
4583 goto unlock;
4587 return 1;
4589 unlock:
4590 list_for_each_entry_continue_reverse(dev, &bus->devices, bus_list) {
4591 if (dev->subordinate)
4592 pci_bus_unlock(dev->subordinate);
4593 pci_dev_unlock(dev);
4595 return 0;
4598 /* Do any devices on or below this slot prevent a bus reset? */
4599 static bool pci_slot_resetable(struct pci_slot *slot)
4601 struct pci_dev *dev;
4603 if (slot->bus->self &&
4604 (slot->bus->self->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET))
4605 return false;
4607 list_for_each_entry(dev, &slot->bus->devices, bus_list) {
4608 if (!dev->slot || dev->slot != slot)
4609 continue;
4610 if (dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET ||
4611 (dev->subordinate && !pci_bus_resetable(dev->subordinate)))
4612 return false;
4615 return true;
4618 /* Lock devices from the top of the tree down */
4619 static void pci_slot_lock(struct pci_slot *slot)
4621 struct pci_dev *dev;
4623 list_for_each_entry(dev, &slot->bus->devices, bus_list) {
4624 if (!dev->slot || dev->slot != slot)
4625 continue;
4626 pci_dev_lock(dev);
4627 if (dev->subordinate)
4628 pci_bus_lock(dev->subordinate);
4632 /* Unlock devices from the bottom of the tree up */
4633 static void pci_slot_unlock(struct pci_slot *slot)
4635 struct pci_dev *dev;
4637 list_for_each_entry(dev, &slot->bus->devices, bus_list) {
4638 if (!dev->slot || dev->slot != slot)
4639 continue;
4640 if (dev->subordinate)
4641 pci_bus_unlock(dev->subordinate);
4642 pci_dev_unlock(dev);
4646 /* Return 1 on successful lock, 0 on contention */
4647 static int pci_slot_trylock(struct pci_slot *slot)
4649 struct pci_dev *dev;
4651 list_for_each_entry(dev, &slot->bus->devices, bus_list) {
4652 if (!dev->slot || dev->slot != slot)
4653 continue;
4654 if (!pci_dev_trylock(dev))
4655 goto unlock;
4656 if (dev->subordinate) {
4657 if (!pci_bus_trylock(dev->subordinate)) {
4658 pci_dev_unlock(dev);
4659 goto unlock;
4663 return 1;
4665 unlock:
4666 list_for_each_entry_continue_reverse(dev,
4667 &slot->bus->devices, bus_list) {
4668 if (!dev->slot || dev->slot != slot)
4669 continue;
4670 if (dev->subordinate)
4671 pci_bus_unlock(dev->subordinate);
4672 pci_dev_unlock(dev);
4674 return 0;
4677 /* Save and disable devices from the top of the tree down */
4678 static void pci_bus_save_and_disable(struct pci_bus *bus)
4680 struct pci_dev *dev;
4682 list_for_each_entry(dev, &bus->devices, bus_list) {
4683 pci_dev_lock(dev);
4684 pci_dev_save_and_disable(dev);
4685 pci_dev_unlock(dev);
4686 if (dev->subordinate)
4687 pci_bus_save_and_disable(dev->subordinate);
4692 * Restore devices from top of the tree down - parent bridges need to be
4693 * restored before we can get to subordinate devices.
4695 static void pci_bus_restore(struct pci_bus *bus)
4697 struct pci_dev *dev;
4699 list_for_each_entry(dev, &bus->devices, bus_list) {
4700 pci_dev_lock(dev);
4701 pci_dev_restore(dev);
4702 pci_dev_unlock(dev);
4703 if (dev->subordinate)
4704 pci_bus_restore(dev->subordinate);
4708 /* Save and disable devices from the top of the tree down */
4709 static void pci_slot_save_and_disable(struct pci_slot *slot)
4711 struct pci_dev *dev;
4713 list_for_each_entry(dev, &slot->bus->devices, bus_list) {
4714 if (!dev->slot || dev->slot != slot)
4715 continue;
4716 pci_dev_save_and_disable(dev);
4717 if (dev->subordinate)
4718 pci_bus_save_and_disable(dev->subordinate);
4723 * Restore devices from top of the tree down - parent bridges need to be
4724 * restored before we can get to subordinate devices.
4726 static void pci_slot_restore(struct pci_slot *slot)
4728 struct pci_dev *dev;
4730 list_for_each_entry(dev, &slot->bus->devices, bus_list) {
4731 if (!dev->slot || dev->slot != slot)
4732 continue;
4733 pci_dev_restore(dev);
4734 if (dev->subordinate)
4735 pci_bus_restore(dev->subordinate);
4739 static int pci_slot_reset(struct pci_slot *slot, int probe)
4741 int rc;
4743 if (!slot || !pci_slot_resetable(slot))
4744 return -ENOTTY;
4746 if (!probe)
4747 pci_slot_lock(slot);
4749 might_sleep();
4751 rc = pci_reset_hotplug_slot(slot->hotplug, probe);
4753 if (!probe)
4754 pci_slot_unlock(slot);
4756 return rc;
4760 * pci_probe_reset_slot - probe whether a PCI slot can be reset
4761 * @slot: PCI slot to probe
4763 * Return 0 if slot can be reset, negative if a slot reset is not supported.
4765 int pci_probe_reset_slot(struct pci_slot *slot)
4767 return pci_slot_reset(slot, 1);
4769 EXPORT_SYMBOL_GPL(pci_probe_reset_slot);
4772 * pci_reset_slot - reset a PCI slot
4773 * @slot: PCI slot to reset
4775 * A PCI bus may host multiple slots, each slot may support a reset mechanism
4776 * independent of other slots. For instance, some slots may support slot power
4777 * control. In the case of a 1:1 bus to slot architecture, this function may
4778 * wrap the bus reset to avoid spurious slot related events such as hotplug.
4779 * Generally a slot reset should be attempted before a bus reset. All of the
4780 * function of the slot and any subordinate buses behind the slot are reset
4781 * through this function. PCI config space of all devices in the slot and
4782 * behind the slot is saved before and restored after reset.
4784 * Return 0 on success, non-zero on error.
4786 int pci_reset_slot(struct pci_slot *slot)
4788 int rc;
4790 rc = pci_slot_reset(slot, 1);
4791 if (rc)
4792 return rc;
4794 pci_slot_save_and_disable(slot);
4796 rc = pci_slot_reset(slot, 0);
4798 pci_slot_restore(slot);
4800 return rc;
4802 EXPORT_SYMBOL_GPL(pci_reset_slot);
4805 * pci_try_reset_slot - Try to reset a PCI slot
4806 * @slot: PCI slot to reset
4808 * Same as above except return -EAGAIN if the slot cannot be locked
4810 int pci_try_reset_slot(struct pci_slot *slot)
4812 int rc;
4814 rc = pci_slot_reset(slot, 1);
4815 if (rc)
4816 return rc;
4818 pci_slot_save_and_disable(slot);
4820 if (pci_slot_trylock(slot)) {
4821 might_sleep();
4822 rc = pci_reset_hotplug_slot(slot->hotplug, 0);
4823 pci_slot_unlock(slot);
4824 } else
4825 rc = -EAGAIN;
4827 pci_slot_restore(slot);
4829 return rc;
4831 EXPORT_SYMBOL_GPL(pci_try_reset_slot);
4833 static int pci_bus_reset(struct pci_bus *bus, int probe)
4835 if (!bus->self || !pci_bus_resetable(bus))
4836 return -ENOTTY;
4838 if (probe)
4839 return 0;
4841 pci_bus_lock(bus);
4843 might_sleep();
4845 pci_reset_bridge_secondary_bus(bus->self);
4847 pci_bus_unlock(bus);
4849 return 0;
4853 * pci_probe_reset_bus - probe whether a PCI bus can be reset
4854 * @bus: PCI bus to probe
4856 * Return 0 if bus can be reset, negative if a bus reset is not supported.
4858 int pci_probe_reset_bus(struct pci_bus *bus)
4860 return pci_bus_reset(bus, 1);
4862 EXPORT_SYMBOL_GPL(pci_probe_reset_bus);
4865 * pci_reset_bus - reset a PCI bus
4866 * @bus: top level PCI bus to reset
4868 * Do a bus reset on the given bus and any subordinate buses, saving
4869 * and restoring state of all devices.
4871 * Return 0 on success, non-zero on error.
4873 int pci_reset_bus(struct pci_bus *bus)
4875 int rc;
4877 rc = pci_bus_reset(bus, 1);
4878 if (rc)
4879 return rc;
4881 pci_bus_save_and_disable(bus);
4883 rc = pci_bus_reset(bus, 0);
4885 pci_bus_restore(bus);
4887 return rc;
4889 EXPORT_SYMBOL_GPL(pci_reset_bus);
4892 * pci_try_reset_bus - Try to reset a PCI bus
4893 * @bus: top level PCI bus to reset
4895 * Same as above except return -EAGAIN if the bus cannot be locked
4897 int pci_try_reset_bus(struct pci_bus *bus)
4899 int rc;
4901 rc = pci_bus_reset(bus, 1);
4902 if (rc)
4903 return rc;
4905 pci_bus_save_and_disable(bus);
4907 if (pci_bus_trylock(bus)) {
4908 might_sleep();
4909 pci_reset_bridge_secondary_bus(bus->self);
4910 pci_bus_unlock(bus);
4911 } else
4912 rc = -EAGAIN;
4914 pci_bus_restore(bus);
4916 return rc;
4918 EXPORT_SYMBOL_GPL(pci_try_reset_bus);
4921 * pcix_get_max_mmrbc - get PCI-X maximum designed memory read byte count
4922 * @dev: PCI device to query
4924 * Returns mmrbc: maximum designed memory read count in bytes
4925 * or appropriate error value.
4927 int pcix_get_max_mmrbc(struct pci_dev *dev)
4929 int cap;
4930 u32 stat;
4932 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
4933 if (!cap)
4934 return -EINVAL;
4936 if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat))
4937 return -EINVAL;
4939 return 512 << ((stat & PCI_X_STATUS_MAX_READ) >> 21);
4941 EXPORT_SYMBOL(pcix_get_max_mmrbc);
4944 * pcix_get_mmrbc - get PCI-X maximum memory read byte count
4945 * @dev: PCI device to query
4947 * Returns mmrbc: maximum memory read count in bytes
4948 * or appropriate error value.
4950 int pcix_get_mmrbc(struct pci_dev *dev)
4952 int cap;
4953 u16 cmd;
4955 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
4956 if (!cap)
4957 return -EINVAL;
4959 if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd))
4960 return -EINVAL;
4962 return 512 << ((cmd & PCI_X_CMD_MAX_READ) >> 2);
4964 EXPORT_SYMBOL(pcix_get_mmrbc);
4967 * pcix_set_mmrbc - set PCI-X maximum memory read byte count
4968 * @dev: PCI device to query
4969 * @mmrbc: maximum memory read count in bytes
4970 * valid values are 512, 1024, 2048, 4096
4972 * If possible sets maximum memory read byte count, some bridges have erratas
4973 * that prevent this.
4975 int pcix_set_mmrbc(struct pci_dev *dev, int mmrbc)
4977 int cap;
4978 u32 stat, v, o;
4979 u16 cmd;
4981 if (mmrbc < 512 || mmrbc > 4096 || !is_power_of_2(mmrbc))
4982 return -EINVAL;
4984 v = ffs(mmrbc) - 10;
4986 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
4987 if (!cap)
4988 return -EINVAL;
4990 if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat))
4991 return -EINVAL;
4993 if (v > (stat & PCI_X_STATUS_MAX_READ) >> 21)
4994 return -E2BIG;
4996 if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd))
4997 return -EINVAL;
4999 o = (cmd & PCI_X_CMD_MAX_READ) >> 2;
5000 if (o != v) {
5001 if (v > o && (dev->bus->bus_flags & PCI_BUS_FLAGS_NO_MMRBC))
5002 return -EIO;
5004 cmd &= ~PCI_X_CMD_MAX_READ;
5005 cmd |= v << 2;
5006 if (pci_write_config_word(dev, cap + PCI_X_CMD, cmd))
5007 return -EIO;
5009 return 0;
5011 EXPORT_SYMBOL(pcix_set_mmrbc);
5014 * pcie_get_readrq - get PCI Express read request size
5015 * @dev: PCI device to query
5017 * Returns maximum memory read request in bytes
5018 * or appropriate error value.
5020 int pcie_get_readrq(struct pci_dev *dev)
5022 u16 ctl;
5024 pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &ctl);
5026 return 128 << ((ctl & PCI_EXP_DEVCTL_READRQ) >> 12);
5028 EXPORT_SYMBOL(pcie_get_readrq);
5031 * pcie_set_readrq - set PCI Express maximum memory read request
5032 * @dev: PCI device to query
5033 * @rq: maximum memory read count in bytes
5034 * valid values are 128, 256, 512, 1024, 2048, 4096
5036 * If possible sets maximum memory read request in bytes
5038 int pcie_set_readrq(struct pci_dev *dev, int rq)
5040 u16 v;
5042 if (rq < 128 || rq > 4096 || !is_power_of_2(rq))
5043 return -EINVAL;
5046 * If using the "performance" PCIe config, we clamp the
5047 * read rq size to the max packet size to prevent the
5048 * host bridge generating requests larger than we can
5049 * cope with
5051 if (pcie_bus_config == PCIE_BUS_PERFORMANCE) {
5052 int mps = pcie_get_mps(dev);
5054 if (mps < rq)
5055 rq = mps;
5058 v = (ffs(rq) - 8) << 12;
5060 return pcie_capability_clear_and_set_word(dev, PCI_EXP_DEVCTL,
5061 PCI_EXP_DEVCTL_READRQ, v);
5063 EXPORT_SYMBOL(pcie_set_readrq);
5066 * pcie_get_mps - get PCI Express maximum payload size
5067 * @dev: PCI device to query
5069 * Returns maximum payload size in bytes
5071 int pcie_get_mps(struct pci_dev *dev)
5073 u16 ctl;
5075 pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &ctl);
5077 return 128 << ((ctl & PCI_EXP_DEVCTL_PAYLOAD) >> 5);
5079 EXPORT_SYMBOL(pcie_get_mps);
5082 * pcie_set_mps - set PCI Express maximum payload size
5083 * @dev: PCI device to query
5084 * @mps: maximum payload size in bytes
5085 * valid values are 128, 256, 512, 1024, 2048, 4096
5087 * If possible sets maximum payload size
5089 int pcie_set_mps(struct pci_dev *dev, int mps)
5091 u16 v;
5093 if (mps < 128 || mps > 4096 || !is_power_of_2(mps))
5094 return -EINVAL;
5096 v = ffs(mps) - 8;
5097 if (v > dev->pcie_mpss)
5098 return -EINVAL;
5099 v <<= 5;
5101 return pcie_capability_clear_and_set_word(dev, PCI_EXP_DEVCTL,
5102 PCI_EXP_DEVCTL_PAYLOAD, v);
5104 EXPORT_SYMBOL(pcie_set_mps);
5107 * pcie_get_minimum_link - determine minimum link settings of a PCI device
5108 * @dev: PCI device to query
5109 * @speed: storage for minimum speed
5110 * @width: storage for minimum width
5112 * This function will walk up the PCI device chain and determine the minimum
5113 * link width and speed of the device.
5115 int pcie_get_minimum_link(struct pci_dev *dev, enum pci_bus_speed *speed,
5116 enum pcie_link_width *width)
5118 int ret;
5120 *speed = PCI_SPEED_UNKNOWN;
5121 *width = PCIE_LNK_WIDTH_UNKNOWN;
5123 while (dev) {
5124 u16 lnksta;
5125 enum pci_bus_speed next_speed;
5126 enum pcie_link_width next_width;
5128 ret = pcie_capability_read_word(dev, PCI_EXP_LNKSTA, &lnksta);
5129 if (ret)
5130 return ret;
5132 next_speed = pcie_link_speed[lnksta & PCI_EXP_LNKSTA_CLS];
5133 next_width = (lnksta & PCI_EXP_LNKSTA_NLW) >>
5134 PCI_EXP_LNKSTA_NLW_SHIFT;
5136 if (next_speed < *speed)
5137 *speed = next_speed;
5139 if (next_width < *width)
5140 *width = next_width;
5142 dev = dev->bus->self;
5145 return 0;
5147 EXPORT_SYMBOL(pcie_get_minimum_link);
5150 * pci_select_bars - Make BAR mask from the type of resource
5151 * @dev: the PCI device for which BAR mask is made
5152 * @flags: resource type mask to be selected
5154 * This helper routine makes bar mask from the type of resource.
5156 int pci_select_bars(struct pci_dev *dev, unsigned long flags)
5158 int i, bars = 0;
5159 for (i = 0; i < PCI_NUM_RESOURCES; i++)
5160 if (pci_resource_flags(dev, i) & flags)
5161 bars |= (1 << i);
5162 return bars;
5164 EXPORT_SYMBOL(pci_select_bars);
5166 /* Some architectures require additional programming to enable VGA */
5167 static arch_set_vga_state_t arch_set_vga_state;
5169 void __init pci_register_set_vga_state(arch_set_vga_state_t func)
5171 arch_set_vga_state = func; /* NULL disables */
5174 static int pci_set_vga_state_arch(struct pci_dev *dev, bool decode,
5175 unsigned int command_bits, u32 flags)
5177 if (arch_set_vga_state)
5178 return arch_set_vga_state(dev, decode, command_bits,
5179 flags);
5180 return 0;
5184 * pci_set_vga_state - set VGA decode state on device and parents if requested
5185 * @dev: the PCI device
5186 * @decode: true = enable decoding, false = disable decoding
5187 * @command_bits: PCI_COMMAND_IO and/or PCI_COMMAND_MEMORY
5188 * @flags: traverse ancestors and change bridges
5189 * CHANGE_BRIDGE_ONLY / CHANGE_BRIDGE
5191 int pci_set_vga_state(struct pci_dev *dev, bool decode,
5192 unsigned int command_bits, u32 flags)
5194 struct pci_bus *bus;
5195 struct pci_dev *bridge;
5196 u16 cmd;
5197 int rc;
5199 WARN_ON((flags & PCI_VGA_STATE_CHANGE_DECODES) && (command_bits & ~(PCI_COMMAND_IO|PCI_COMMAND_MEMORY)));
5201 /* ARCH specific VGA enables */
5202 rc = pci_set_vga_state_arch(dev, decode, command_bits, flags);
5203 if (rc)
5204 return rc;
5206 if (flags & PCI_VGA_STATE_CHANGE_DECODES) {
5207 pci_read_config_word(dev, PCI_COMMAND, &cmd);
5208 if (decode == true)
5209 cmd |= command_bits;
5210 else
5211 cmd &= ~command_bits;
5212 pci_write_config_word(dev, PCI_COMMAND, cmd);
5215 if (!(flags & PCI_VGA_STATE_CHANGE_BRIDGE))
5216 return 0;
5218 bus = dev->bus;
5219 while (bus) {
5220 bridge = bus->self;
5221 if (bridge) {
5222 pci_read_config_word(bridge, PCI_BRIDGE_CONTROL,
5223 &cmd);
5224 if (decode == true)
5225 cmd |= PCI_BRIDGE_CTL_VGA;
5226 else
5227 cmd &= ~PCI_BRIDGE_CTL_VGA;
5228 pci_write_config_word(bridge, PCI_BRIDGE_CONTROL,
5229 cmd);
5231 bus = bus->parent;
5233 return 0;
5237 * pci_add_dma_alias - Add a DMA devfn alias for a device
5238 * @dev: the PCI device for which alias is added
5239 * @devfn: alias slot and function
5241 * This helper encodes 8-bit devfn as bit number in dma_alias_mask.
5242 * It should be called early, preferably as PCI fixup header quirk.
5244 void pci_add_dma_alias(struct pci_dev *dev, u8 devfn)
5246 if (!dev->dma_alias_mask)
5247 dev->dma_alias_mask = kcalloc(BITS_TO_LONGS(U8_MAX),
5248 sizeof(long), GFP_KERNEL);
5249 if (!dev->dma_alias_mask) {
5250 pci_warn(dev, "Unable to allocate DMA alias mask\n");
5251 return;
5254 set_bit(devfn, dev->dma_alias_mask);
5255 pci_info(dev, "Enabling fixed DMA alias to %02x.%d\n",
5256 PCI_SLOT(devfn), PCI_FUNC(devfn));
5259 bool pci_devs_are_dma_aliases(struct pci_dev *dev1, struct pci_dev *dev2)
5261 return (dev1->dma_alias_mask &&
5262 test_bit(dev2->devfn, dev1->dma_alias_mask)) ||
5263 (dev2->dma_alias_mask &&
5264 test_bit(dev1->devfn, dev2->dma_alias_mask));
5267 bool pci_device_is_present(struct pci_dev *pdev)
5269 u32 v;
5271 if (pci_dev_is_disconnected(pdev))
5272 return false;
5273 return pci_bus_read_dev_vendor_id(pdev->bus, pdev->devfn, &v, 0);
5275 EXPORT_SYMBOL_GPL(pci_device_is_present);
5277 void pci_ignore_hotplug(struct pci_dev *dev)
5279 struct pci_dev *bridge = dev->bus->self;
5281 dev->ignore_hotplug = 1;
5282 /* Propagate the "ignore hotplug" setting to the parent bridge. */
5283 if (bridge)
5284 bridge->ignore_hotplug = 1;
5286 EXPORT_SYMBOL_GPL(pci_ignore_hotplug);
5288 resource_size_t __weak pcibios_default_alignment(void)
5290 return 0;
5293 #define RESOURCE_ALIGNMENT_PARAM_SIZE COMMAND_LINE_SIZE
5294 static char resource_alignment_param[RESOURCE_ALIGNMENT_PARAM_SIZE] = {0};
5295 static DEFINE_SPINLOCK(resource_alignment_lock);
5298 * pci_specified_resource_alignment - get resource alignment specified by user.
5299 * @dev: the PCI device to get
5300 * @resize: whether or not to change resources' size when reassigning alignment
5302 * RETURNS: Resource alignment if it is specified.
5303 * Zero if it is not specified.
5305 static resource_size_t pci_specified_resource_alignment(struct pci_dev *dev,
5306 bool *resize)
5308 int seg, bus, slot, func, align_order, count;
5309 unsigned short vendor, device, subsystem_vendor, subsystem_device;
5310 resource_size_t align = pcibios_default_alignment();
5311 char *p;
5313 spin_lock(&resource_alignment_lock);
5314 p = resource_alignment_param;
5315 if (!*p && !align)
5316 goto out;
5317 if (pci_has_flag(PCI_PROBE_ONLY)) {
5318 align = 0;
5319 pr_info_once("PCI: Ignoring requested alignments (PCI_PROBE_ONLY)\n");
5320 goto out;
5323 while (*p) {
5324 count = 0;
5325 if (sscanf(p, "%d%n", &align_order, &count) == 1 &&
5326 p[count] == '@') {
5327 p += count + 1;
5328 } else {
5329 align_order = -1;
5331 if (strncmp(p, "pci:", 4) == 0) {
5332 /* PCI vendor/device (subvendor/subdevice) ids are specified */
5333 p += 4;
5334 if (sscanf(p, "%hx:%hx:%hx:%hx%n",
5335 &vendor, &device, &subsystem_vendor, &subsystem_device, &count) != 4) {
5336 if (sscanf(p, "%hx:%hx%n", &vendor, &device, &count) != 2) {
5337 printk(KERN_ERR "PCI: Can't parse resource_alignment parameter: pci:%s\n",
5339 break;
5341 subsystem_vendor = subsystem_device = 0;
5343 p += count;
5344 if ((!vendor || (vendor == dev->vendor)) &&
5345 (!device || (device == dev->device)) &&
5346 (!subsystem_vendor || (subsystem_vendor == dev->subsystem_vendor)) &&
5347 (!subsystem_device || (subsystem_device == dev->subsystem_device))) {
5348 *resize = true;
5349 if (align_order == -1)
5350 align = PAGE_SIZE;
5351 else
5352 align = 1 << align_order;
5353 /* Found */
5354 break;
5357 else {
5358 if (sscanf(p, "%x:%x:%x.%x%n",
5359 &seg, &bus, &slot, &func, &count) != 4) {
5360 seg = 0;
5361 if (sscanf(p, "%x:%x.%x%n",
5362 &bus, &slot, &func, &count) != 3) {
5363 /* Invalid format */
5364 printk(KERN_ERR "PCI: Can't parse resource_alignment parameter: %s\n",
5366 break;
5369 p += count;
5370 if (seg == pci_domain_nr(dev->bus) &&
5371 bus == dev->bus->number &&
5372 slot == PCI_SLOT(dev->devfn) &&
5373 func == PCI_FUNC(dev->devfn)) {
5374 *resize = true;
5375 if (align_order == -1)
5376 align = PAGE_SIZE;
5377 else
5378 align = 1 << align_order;
5379 /* Found */
5380 break;
5383 if (*p != ';' && *p != ',') {
5384 /* End of param or invalid format */
5385 break;
5387 p++;
5389 out:
5390 spin_unlock(&resource_alignment_lock);
5391 return align;
5394 static void pci_request_resource_alignment(struct pci_dev *dev, int bar,
5395 resource_size_t align, bool resize)
5397 struct resource *r = &dev->resource[bar];
5398 resource_size_t size;
5400 if (!(r->flags & IORESOURCE_MEM))
5401 return;
5403 if (r->flags & IORESOURCE_PCI_FIXED) {
5404 pci_info(dev, "BAR%d %pR: ignoring requested alignment %#llx\n",
5405 bar, r, (unsigned long long)align);
5406 return;
5409 size = resource_size(r);
5410 if (size >= align)
5411 return;
5414 * Increase the alignment of the resource. There are two ways we
5415 * can do this:
5417 * 1) Increase the size of the resource. BARs are aligned on their
5418 * size, so when we reallocate space for this resource, we'll
5419 * allocate it with the larger alignment. This also prevents
5420 * assignment of any other BARs inside the alignment region, so
5421 * if we're requesting page alignment, this means no other BARs
5422 * will share the page.
5424 * The disadvantage is that this makes the resource larger than
5425 * the hardware BAR, which may break drivers that compute things
5426 * based on the resource size, e.g., to find registers at a
5427 * fixed offset before the end of the BAR.
5429 * 2) Retain the resource size, but use IORESOURCE_STARTALIGN and
5430 * set r->start to the desired alignment. By itself this
5431 * doesn't prevent other BARs being put inside the alignment
5432 * region, but if we realign *every* resource of every device in
5433 * the system, none of them will share an alignment region.
5435 * When the user has requested alignment for only some devices via
5436 * the "pci=resource_alignment" argument, "resize" is true and we
5437 * use the first method. Otherwise we assume we're aligning all
5438 * devices and we use the second.
5441 pci_info(dev, "BAR%d %pR: requesting alignment to %#llx\n",
5442 bar, r, (unsigned long long)align);
5444 if (resize) {
5445 r->start = 0;
5446 r->end = align - 1;
5447 } else {
5448 r->flags &= ~IORESOURCE_SIZEALIGN;
5449 r->flags |= IORESOURCE_STARTALIGN;
5450 r->start = align;
5451 r->end = r->start + size - 1;
5453 r->flags |= IORESOURCE_UNSET;
5457 * This function disables memory decoding and releases memory resources
5458 * of the device specified by kernel's boot parameter 'pci=resource_alignment='.
5459 * It also rounds up size to specified alignment.
5460 * Later on, the kernel will assign page-aligned memory resource back
5461 * to the device.
5463 void pci_reassigndev_resource_alignment(struct pci_dev *dev)
5465 int i;
5466 struct resource *r;
5467 resource_size_t align;
5468 u16 command;
5469 bool resize = false;
5472 * VF BARs are read-only zero according to SR-IOV spec r1.1, sec
5473 * 3.4.1.11. Their resources are allocated from the space
5474 * described by the VF BARx register in the PF's SR-IOV capability.
5475 * We can't influence their alignment here.
5477 if (dev->is_virtfn)
5478 return;
5480 /* check if specified PCI is target device to reassign */
5481 align = pci_specified_resource_alignment(dev, &resize);
5482 if (!align)
5483 return;
5485 if (dev->hdr_type == PCI_HEADER_TYPE_NORMAL &&
5486 (dev->class >> 8) == PCI_CLASS_BRIDGE_HOST) {
5487 pci_warn(dev, "Can't reassign resources to host bridge\n");
5488 return;
5491 pci_info(dev, "Disabling memory decoding and releasing memory resources\n");
5492 pci_read_config_word(dev, PCI_COMMAND, &command);
5493 command &= ~PCI_COMMAND_MEMORY;
5494 pci_write_config_word(dev, PCI_COMMAND, command);
5496 for (i = 0; i <= PCI_ROM_RESOURCE; i++)
5497 pci_request_resource_alignment(dev, i, align, resize);
5500 * Need to disable bridge's resource window,
5501 * to enable the kernel to reassign new resource
5502 * window later on.
5504 if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE &&
5505 (dev->class >> 8) == PCI_CLASS_BRIDGE_PCI) {
5506 for (i = PCI_BRIDGE_RESOURCES; i < PCI_NUM_RESOURCES; i++) {
5507 r = &dev->resource[i];
5508 if (!(r->flags & IORESOURCE_MEM))
5509 continue;
5510 r->flags |= IORESOURCE_UNSET;
5511 r->end = resource_size(r) - 1;
5512 r->start = 0;
5514 pci_disable_bridge_window(dev);
5518 static ssize_t pci_set_resource_alignment_param(const char *buf, size_t count)
5520 if (count > RESOURCE_ALIGNMENT_PARAM_SIZE - 1)
5521 count = RESOURCE_ALIGNMENT_PARAM_SIZE - 1;
5522 spin_lock(&resource_alignment_lock);
5523 strncpy(resource_alignment_param, buf, count);
5524 resource_alignment_param[count] = '\0';
5525 spin_unlock(&resource_alignment_lock);
5526 return count;
5529 static ssize_t pci_get_resource_alignment_param(char *buf, size_t size)
5531 size_t count;
5532 spin_lock(&resource_alignment_lock);
5533 count = snprintf(buf, size, "%s", resource_alignment_param);
5534 spin_unlock(&resource_alignment_lock);
5535 return count;
5538 static ssize_t pci_resource_alignment_show(struct bus_type *bus, char *buf)
5540 return pci_get_resource_alignment_param(buf, PAGE_SIZE);
5543 static ssize_t pci_resource_alignment_store(struct bus_type *bus,
5544 const char *buf, size_t count)
5546 return pci_set_resource_alignment_param(buf, count);
5549 static BUS_ATTR(resource_alignment, 0644, pci_resource_alignment_show,
5550 pci_resource_alignment_store);
5552 static int __init pci_resource_alignment_sysfs_init(void)
5554 return bus_create_file(&pci_bus_type,
5555 &bus_attr_resource_alignment);
5557 late_initcall(pci_resource_alignment_sysfs_init);
5559 static void pci_no_domains(void)
5561 #ifdef CONFIG_PCI_DOMAINS
5562 pci_domains_supported = 0;
5563 #endif
5566 #ifdef CONFIG_PCI_DOMAINS
5567 static atomic_t __domain_nr = ATOMIC_INIT(-1);
5569 int pci_get_new_domain_nr(void)
5571 return atomic_inc_return(&__domain_nr);
5574 #ifdef CONFIG_PCI_DOMAINS_GENERIC
5575 static int of_pci_bus_find_domain_nr(struct device *parent)
5577 static int use_dt_domains = -1;
5578 int domain = -1;
5580 if (parent)
5581 domain = of_get_pci_domain_nr(parent->of_node);
5583 * Check DT domain and use_dt_domains values.
5585 * If DT domain property is valid (domain >= 0) and
5586 * use_dt_domains != 0, the DT assignment is valid since this means
5587 * we have not previously allocated a domain number by using
5588 * pci_get_new_domain_nr(); we should also update use_dt_domains to
5589 * 1, to indicate that we have just assigned a domain number from
5590 * DT.
5592 * If DT domain property value is not valid (ie domain < 0), and we
5593 * have not previously assigned a domain number from DT
5594 * (use_dt_domains != 1) we should assign a domain number by
5595 * using the:
5597 * pci_get_new_domain_nr()
5599 * API and update the use_dt_domains value to keep track of method we
5600 * are using to assign domain numbers (use_dt_domains = 0).
5602 * All other combinations imply we have a platform that is trying
5603 * to mix domain numbers obtained from DT and pci_get_new_domain_nr(),
5604 * which is a recipe for domain mishandling and it is prevented by
5605 * invalidating the domain value (domain = -1) and printing a
5606 * corresponding error.
5608 if (domain >= 0 && use_dt_domains) {
5609 use_dt_domains = 1;
5610 } else if (domain < 0 && use_dt_domains != 1) {
5611 use_dt_domains = 0;
5612 domain = pci_get_new_domain_nr();
5613 } else {
5614 dev_err(parent, "Node %pOF has inconsistent \"linux,pci-domain\" property in DT\n",
5615 parent->of_node);
5616 domain = -1;
5619 return domain;
5622 int pci_bus_find_domain_nr(struct pci_bus *bus, struct device *parent)
5624 return acpi_disabled ? of_pci_bus_find_domain_nr(parent) :
5625 acpi_pci_bus_find_domain_nr(bus);
5627 #endif
5628 #endif
5631 * pci_ext_cfg_avail - can we access extended PCI config space?
5633 * Returns 1 if we can access PCI extended config space (offsets
5634 * greater than 0xff). This is the default implementation. Architecture
5635 * implementations can override this.
5637 int __weak pci_ext_cfg_avail(void)
5639 return 1;
5642 void __weak pci_fixup_cardbus(struct pci_bus *bus)
5645 EXPORT_SYMBOL(pci_fixup_cardbus);
5647 static int __init pci_setup(char *str)
5649 while (str) {
5650 char *k = strchr(str, ',');
5651 if (k)
5652 *k++ = 0;
5653 if (*str && (str = pcibios_setup(str)) && *str) {
5654 if (!strcmp(str, "nomsi")) {
5655 pci_no_msi();
5656 } else if (!strcmp(str, "noaer")) {
5657 pci_no_aer();
5658 } else if (!strncmp(str, "realloc=", 8)) {
5659 pci_realloc_get_opt(str + 8);
5660 } else if (!strncmp(str, "realloc", 7)) {
5661 pci_realloc_get_opt("on");
5662 } else if (!strcmp(str, "nodomains")) {
5663 pci_no_domains();
5664 } else if (!strncmp(str, "noari", 5)) {
5665 pcie_ari_disabled = true;
5666 } else if (!strncmp(str, "cbiosize=", 9)) {
5667 pci_cardbus_io_size = memparse(str + 9, &str);
5668 } else if (!strncmp(str, "cbmemsize=", 10)) {
5669 pci_cardbus_mem_size = memparse(str + 10, &str);
5670 } else if (!strncmp(str, "resource_alignment=", 19)) {
5671 pci_set_resource_alignment_param(str + 19,
5672 strlen(str + 19));
5673 } else if (!strncmp(str, "ecrc=", 5)) {
5674 pcie_ecrc_get_policy(str + 5);
5675 } else if (!strncmp(str, "hpiosize=", 9)) {
5676 pci_hotplug_io_size = memparse(str + 9, &str);
5677 } else if (!strncmp(str, "hpmemsize=", 10)) {
5678 pci_hotplug_mem_size = memparse(str + 10, &str);
5679 } else if (!strncmp(str, "hpbussize=", 10)) {
5680 pci_hotplug_bus_size =
5681 simple_strtoul(str + 10, &str, 0);
5682 if (pci_hotplug_bus_size > 0xff)
5683 pci_hotplug_bus_size = DEFAULT_HOTPLUG_BUS_SIZE;
5684 } else if (!strncmp(str, "pcie_bus_tune_off", 17)) {
5685 pcie_bus_config = PCIE_BUS_TUNE_OFF;
5686 } else if (!strncmp(str, "pcie_bus_safe", 13)) {
5687 pcie_bus_config = PCIE_BUS_SAFE;
5688 } else if (!strncmp(str, "pcie_bus_perf", 13)) {
5689 pcie_bus_config = PCIE_BUS_PERFORMANCE;
5690 } else if (!strncmp(str, "pcie_bus_peer2peer", 18)) {
5691 pcie_bus_config = PCIE_BUS_PEER2PEER;
5692 } else if (!strncmp(str, "pcie_scan_all", 13)) {
5693 pci_add_flags(PCI_SCAN_ALL_PCIE_DEVS);
5694 } else {
5695 printk(KERN_ERR "PCI: Unknown option `%s'\n",
5696 str);
5699 str = k;
5701 return 0;
5703 early_param("pci", pci_setup);