x86/topology: Fix function name in documentation
[cris-mirror.git] / drivers / pinctrl / core.c
blob2c0dbfcff3e6c7aeca93f3db3b3ceb4387a6f478
1 /*
2 * Core driver for the pin control subsystem
4 * Copyright (C) 2011-2012 ST-Ericsson SA
5 * Written on behalf of Linaro for ST-Ericsson
6 * Based on bits of regulator core, gpio core and clk core
8 * Author: Linus Walleij <linus.walleij@linaro.org>
10 * Copyright (C) 2012 NVIDIA CORPORATION. All rights reserved.
12 * License terms: GNU General Public License (GPL) version 2
14 #define pr_fmt(fmt) "pinctrl core: " fmt
16 #include <linux/kernel.h>
17 #include <linux/kref.h>
18 #include <linux/export.h>
19 #include <linux/init.h>
20 #include <linux/device.h>
21 #include <linux/slab.h>
22 #include <linux/err.h>
23 #include <linux/list.h>
24 #include <linux/sysfs.h>
25 #include <linux/debugfs.h>
26 #include <linux/seq_file.h>
27 #include <linux/pinctrl/consumer.h>
28 #include <linux/pinctrl/pinctrl.h>
29 #include <linux/pinctrl/machine.h>
31 #ifdef CONFIG_GPIOLIB
32 #include <asm-generic/gpio.h>
33 #endif
35 #include "core.h"
36 #include "devicetree.h"
37 #include "pinmux.h"
38 #include "pinconf.h"
41 static bool pinctrl_dummy_state;
43 /* Mutex taken to protect pinctrl_list */
44 static DEFINE_MUTEX(pinctrl_list_mutex);
46 /* Mutex taken to protect pinctrl_maps */
47 DEFINE_MUTEX(pinctrl_maps_mutex);
49 /* Mutex taken to protect pinctrldev_list */
50 static DEFINE_MUTEX(pinctrldev_list_mutex);
52 /* Global list of pin control devices (struct pinctrl_dev) */
53 static LIST_HEAD(pinctrldev_list);
55 /* List of pin controller handles (struct pinctrl) */
56 static LIST_HEAD(pinctrl_list);
58 /* List of pinctrl maps (struct pinctrl_maps) */
59 LIST_HEAD(pinctrl_maps);
62 /**
63 * pinctrl_provide_dummies() - indicate if pinctrl provides dummy state support
65 * Usually this function is called by platforms without pinctrl driver support
66 * but run with some shared drivers using pinctrl APIs.
67 * After calling this function, the pinctrl core will return successfully
68 * with creating a dummy state for the driver to keep going smoothly.
70 void pinctrl_provide_dummies(void)
72 pinctrl_dummy_state = true;
75 const char *pinctrl_dev_get_name(struct pinctrl_dev *pctldev)
77 /* We're not allowed to register devices without name */
78 return pctldev->desc->name;
80 EXPORT_SYMBOL_GPL(pinctrl_dev_get_name);
82 const char *pinctrl_dev_get_devname(struct pinctrl_dev *pctldev)
84 return dev_name(pctldev->dev);
86 EXPORT_SYMBOL_GPL(pinctrl_dev_get_devname);
88 void *pinctrl_dev_get_drvdata(struct pinctrl_dev *pctldev)
90 return pctldev->driver_data;
92 EXPORT_SYMBOL_GPL(pinctrl_dev_get_drvdata);
94 /**
95 * get_pinctrl_dev_from_devname() - look up pin controller device
96 * @devname: the name of a device instance, as returned by dev_name()
98 * Looks up a pin control device matching a certain device name or pure device
99 * pointer, the pure device pointer will take precedence.
101 struct pinctrl_dev *get_pinctrl_dev_from_devname(const char *devname)
103 struct pinctrl_dev *pctldev = NULL;
105 if (!devname)
106 return NULL;
108 mutex_lock(&pinctrldev_list_mutex);
110 list_for_each_entry(pctldev, &pinctrldev_list, node) {
111 if (!strcmp(dev_name(pctldev->dev), devname)) {
112 /* Matched on device name */
113 mutex_unlock(&pinctrldev_list_mutex);
114 return pctldev;
118 mutex_unlock(&pinctrldev_list_mutex);
120 return NULL;
123 struct pinctrl_dev *get_pinctrl_dev_from_of_node(struct device_node *np)
125 struct pinctrl_dev *pctldev;
127 mutex_lock(&pinctrldev_list_mutex);
129 list_for_each_entry(pctldev, &pinctrldev_list, node)
130 if (pctldev->dev->of_node == np) {
131 mutex_unlock(&pinctrldev_list_mutex);
132 return pctldev;
135 mutex_unlock(&pinctrldev_list_mutex);
137 return NULL;
141 * pin_get_from_name() - look up a pin number from a name
142 * @pctldev: the pin control device to lookup the pin on
143 * @name: the name of the pin to look up
145 int pin_get_from_name(struct pinctrl_dev *pctldev, const char *name)
147 unsigned i, pin;
149 /* The pin number can be retrived from the pin controller descriptor */
150 for (i = 0; i < pctldev->desc->npins; i++) {
151 struct pin_desc *desc;
153 pin = pctldev->desc->pins[i].number;
154 desc = pin_desc_get(pctldev, pin);
155 /* Pin space may be sparse */
156 if (desc && !strcmp(name, desc->name))
157 return pin;
160 return -EINVAL;
164 * pin_get_name_from_id() - look up a pin name from a pin id
165 * @pctldev: the pin control device to lookup the pin on
166 * @name: the name of the pin to look up
168 const char *pin_get_name(struct pinctrl_dev *pctldev, const unsigned pin)
170 const struct pin_desc *desc;
172 desc = pin_desc_get(pctldev, pin);
173 if (!desc) {
174 dev_err(pctldev->dev, "failed to get pin(%d) name\n",
175 pin);
176 return NULL;
179 return desc->name;
183 * pin_is_valid() - check if pin exists on controller
184 * @pctldev: the pin control device to check the pin on
185 * @pin: pin to check, use the local pin controller index number
187 * This tells us whether a certain pin exist on a certain pin controller or
188 * not. Pin lists may be sparse, so some pins may not exist.
190 bool pin_is_valid(struct pinctrl_dev *pctldev, int pin)
192 struct pin_desc *pindesc;
194 if (pin < 0)
195 return false;
197 mutex_lock(&pctldev->mutex);
198 pindesc = pin_desc_get(pctldev, pin);
199 mutex_unlock(&pctldev->mutex);
201 return pindesc != NULL;
203 EXPORT_SYMBOL_GPL(pin_is_valid);
205 /* Deletes a range of pin descriptors */
206 static void pinctrl_free_pindescs(struct pinctrl_dev *pctldev,
207 const struct pinctrl_pin_desc *pins,
208 unsigned num_pins)
210 int i;
212 for (i = 0; i < num_pins; i++) {
213 struct pin_desc *pindesc;
215 pindesc = radix_tree_lookup(&pctldev->pin_desc_tree,
216 pins[i].number);
217 if (pindesc) {
218 radix_tree_delete(&pctldev->pin_desc_tree,
219 pins[i].number);
220 if (pindesc->dynamic_name)
221 kfree(pindesc->name);
223 kfree(pindesc);
227 static int pinctrl_register_one_pin(struct pinctrl_dev *pctldev,
228 const struct pinctrl_pin_desc *pin)
230 struct pin_desc *pindesc;
232 pindesc = pin_desc_get(pctldev, pin->number);
233 if (pindesc) {
234 dev_err(pctldev->dev, "pin %d already registered\n",
235 pin->number);
236 return -EINVAL;
239 pindesc = kzalloc(sizeof(*pindesc), GFP_KERNEL);
240 if (!pindesc)
241 return -ENOMEM;
243 /* Set owner */
244 pindesc->pctldev = pctldev;
246 /* Copy basic pin info */
247 if (pin->name) {
248 pindesc->name = pin->name;
249 } else {
250 pindesc->name = kasprintf(GFP_KERNEL, "PIN%u", pin->number);
251 if (!pindesc->name) {
252 kfree(pindesc);
253 return -ENOMEM;
255 pindesc->dynamic_name = true;
258 pindesc->drv_data = pin->drv_data;
260 radix_tree_insert(&pctldev->pin_desc_tree, pin->number, pindesc);
261 pr_debug("registered pin %d (%s) on %s\n",
262 pin->number, pindesc->name, pctldev->desc->name);
263 return 0;
266 static int pinctrl_register_pins(struct pinctrl_dev *pctldev,
267 const struct pinctrl_pin_desc *pins,
268 unsigned num_descs)
270 unsigned i;
271 int ret = 0;
273 for (i = 0; i < num_descs; i++) {
274 ret = pinctrl_register_one_pin(pctldev, &pins[i]);
275 if (ret)
276 return ret;
279 return 0;
283 * gpio_to_pin() - GPIO range GPIO number to pin number translation
284 * @range: GPIO range used for the translation
285 * @gpio: gpio pin to translate to a pin number
287 * Finds the pin number for a given GPIO using the specified GPIO range
288 * as a base for translation. The distinction between linear GPIO ranges
289 * and pin list based GPIO ranges is managed correctly by this function.
291 * This function assumes the gpio is part of the specified GPIO range, use
292 * only after making sure this is the case (e.g. by calling it on the
293 * result of successful pinctrl_get_device_gpio_range calls)!
295 static inline int gpio_to_pin(struct pinctrl_gpio_range *range,
296 unsigned int gpio)
298 unsigned int offset = gpio - range->base;
299 if (range->pins)
300 return range->pins[offset];
301 else
302 return range->pin_base + offset;
306 * pinctrl_match_gpio_range() - check if a certain GPIO pin is in range
307 * @pctldev: pin controller device to check
308 * @gpio: gpio pin to check taken from the global GPIO pin space
310 * Tries to match a GPIO pin number to the ranges handled by a certain pin
311 * controller, return the range or NULL
313 static struct pinctrl_gpio_range *
314 pinctrl_match_gpio_range(struct pinctrl_dev *pctldev, unsigned gpio)
316 struct pinctrl_gpio_range *range = NULL;
318 mutex_lock(&pctldev->mutex);
319 /* Loop over the ranges */
320 list_for_each_entry(range, &pctldev->gpio_ranges, node) {
321 /* Check if we're in the valid range */
322 if (gpio >= range->base &&
323 gpio < range->base + range->npins) {
324 mutex_unlock(&pctldev->mutex);
325 return range;
328 mutex_unlock(&pctldev->mutex);
329 return NULL;
333 * pinctrl_ready_for_gpio_range() - check if other GPIO pins of
334 * the same GPIO chip are in range
335 * @gpio: gpio pin to check taken from the global GPIO pin space
337 * This function is complement of pinctrl_match_gpio_range(). If the return
338 * value of pinctrl_match_gpio_range() is NULL, this function could be used
339 * to check whether pinctrl device is ready or not. Maybe some GPIO pins
340 * of the same GPIO chip don't have back-end pinctrl interface.
341 * If the return value is true, it means that pinctrl device is ready & the
342 * certain GPIO pin doesn't have back-end pinctrl device. If the return value
343 * is false, it means that pinctrl device may not be ready.
345 #ifdef CONFIG_GPIOLIB
346 static bool pinctrl_ready_for_gpio_range(unsigned gpio)
348 struct pinctrl_dev *pctldev;
349 struct pinctrl_gpio_range *range = NULL;
350 struct gpio_chip *chip = gpio_to_chip(gpio);
352 if (WARN(!chip, "no gpio_chip for gpio%i?", gpio))
353 return false;
355 mutex_lock(&pinctrldev_list_mutex);
357 /* Loop over the pin controllers */
358 list_for_each_entry(pctldev, &pinctrldev_list, node) {
359 /* Loop over the ranges */
360 mutex_lock(&pctldev->mutex);
361 list_for_each_entry(range, &pctldev->gpio_ranges, node) {
362 /* Check if any gpio range overlapped with gpio chip */
363 if (range->base + range->npins - 1 < chip->base ||
364 range->base > chip->base + chip->ngpio - 1)
365 continue;
366 mutex_unlock(&pctldev->mutex);
367 mutex_unlock(&pinctrldev_list_mutex);
368 return true;
370 mutex_unlock(&pctldev->mutex);
373 mutex_unlock(&pinctrldev_list_mutex);
375 return false;
377 #else
378 static bool pinctrl_ready_for_gpio_range(unsigned gpio) { return true; }
379 #endif
382 * pinctrl_get_device_gpio_range() - find device for GPIO range
383 * @gpio: the pin to locate the pin controller for
384 * @outdev: the pin control device if found
385 * @outrange: the GPIO range if found
387 * Find the pin controller handling a certain GPIO pin from the pinspace of
388 * the GPIO subsystem, return the device and the matching GPIO range. Returns
389 * -EPROBE_DEFER if the GPIO range could not be found in any device since it
390 * may still have not been registered.
392 static int pinctrl_get_device_gpio_range(unsigned gpio,
393 struct pinctrl_dev **outdev,
394 struct pinctrl_gpio_range **outrange)
396 struct pinctrl_dev *pctldev = NULL;
398 mutex_lock(&pinctrldev_list_mutex);
400 /* Loop over the pin controllers */
401 list_for_each_entry(pctldev, &pinctrldev_list, node) {
402 struct pinctrl_gpio_range *range;
404 range = pinctrl_match_gpio_range(pctldev, gpio);
405 if (range) {
406 *outdev = pctldev;
407 *outrange = range;
408 mutex_unlock(&pinctrldev_list_mutex);
409 return 0;
413 mutex_unlock(&pinctrldev_list_mutex);
415 return -EPROBE_DEFER;
419 * pinctrl_add_gpio_range() - register a GPIO range for a controller
420 * @pctldev: pin controller device to add the range to
421 * @range: the GPIO range to add
423 * This adds a range of GPIOs to be handled by a certain pin controller. Call
424 * this to register handled ranges after registering your pin controller.
426 void pinctrl_add_gpio_range(struct pinctrl_dev *pctldev,
427 struct pinctrl_gpio_range *range)
429 mutex_lock(&pctldev->mutex);
430 list_add_tail(&range->node, &pctldev->gpio_ranges);
431 mutex_unlock(&pctldev->mutex);
433 EXPORT_SYMBOL_GPL(pinctrl_add_gpio_range);
435 void pinctrl_add_gpio_ranges(struct pinctrl_dev *pctldev,
436 struct pinctrl_gpio_range *ranges,
437 unsigned nranges)
439 int i;
441 for (i = 0; i < nranges; i++)
442 pinctrl_add_gpio_range(pctldev, &ranges[i]);
444 EXPORT_SYMBOL_GPL(pinctrl_add_gpio_ranges);
446 struct pinctrl_dev *pinctrl_find_and_add_gpio_range(const char *devname,
447 struct pinctrl_gpio_range *range)
449 struct pinctrl_dev *pctldev;
451 pctldev = get_pinctrl_dev_from_devname(devname);
454 * If we can't find this device, let's assume that is because
455 * it has not probed yet, so the driver trying to register this
456 * range need to defer probing.
458 if (!pctldev) {
459 return ERR_PTR(-EPROBE_DEFER);
461 pinctrl_add_gpio_range(pctldev, range);
463 return pctldev;
465 EXPORT_SYMBOL_GPL(pinctrl_find_and_add_gpio_range);
467 int pinctrl_get_group_pins(struct pinctrl_dev *pctldev, const char *pin_group,
468 const unsigned **pins, unsigned *num_pins)
470 const struct pinctrl_ops *pctlops = pctldev->desc->pctlops;
471 int gs;
473 if (!pctlops->get_group_pins)
474 return -EINVAL;
476 gs = pinctrl_get_group_selector(pctldev, pin_group);
477 if (gs < 0)
478 return gs;
480 return pctlops->get_group_pins(pctldev, gs, pins, num_pins);
482 EXPORT_SYMBOL_GPL(pinctrl_get_group_pins);
484 struct pinctrl_gpio_range *
485 pinctrl_find_gpio_range_from_pin_nolock(struct pinctrl_dev *pctldev,
486 unsigned int pin)
488 struct pinctrl_gpio_range *range;
490 /* Loop over the ranges */
491 list_for_each_entry(range, &pctldev->gpio_ranges, node) {
492 /* Check if we're in the valid range */
493 if (range->pins) {
494 int a;
495 for (a = 0; a < range->npins; a++) {
496 if (range->pins[a] == pin)
497 return range;
499 } else if (pin >= range->pin_base &&
500 pin < range->pin_base + range->npins)
501 return range;
504 return NULL;
506 EXPORT_SYMBOL_GPL(pinctrl_find_gpio_range_from_pin_nolock);
509 * pinctrl_find_gpio_range_from_pin() - locate the GPIO range for a pin
510 * @pctldev: the pin controller device to look in
511 * @pin: a controller-local number to find the range for
513 struct pinctrl_gpio_range *
514 pinctrl_find_gpio_range_from_pin(struct pinctrl_dev *pctldev,
515 unsigned int pin)
517 struct pinctrl_gpio_range *range;
519 mutex_lock(&pctldev->mutex);
520 range = pinctrl_find_gpio_range_from_pin_nolock(pctldev, pin);
521 mutex_unlock(&pctldev->mutex);
523 return range;
525 EXPORT_SYMBOL_GPL(pinctrl_find_gpio_range_from_pin);
528 * pinctrl_remove_gpio_range() - remove a range of GPIOs from a pin controller
529 * @pctldev: pin controller device to remove the range from
530 * @range: the GPIO range to remove
532 void pinctrl_remove_gpio_range(struct pinctrl_dev *pctldev,
533 struct pinctrl_gpio_range *range)
535 mutex_lock(&pctldev->mutex);
536 list_del(&range->node);
537 mutex_unlock(&pctldev->mutex);
539 EXPORT_SYMBOL_GPL(pinctrl_remove_gpio_range);
541 #ifdef CONFIG_GENERIC_PINCTRL_GROUPS
544 * pinctrl_generic_get_group_count() - returns the number of pin groups
545 * @pctldev: pin controller device
547 int pinctrl_generic_get_group_count(struct pinctrl_dev *pctldev)
549 return pctldev->num_groups;
551 EXPORT_SYMBOL_GPL(pinctrl_generic_get_group_count);
554 * pinctrl_generic_get_group_name() - returns the name of a pin group
555 * @pctldev: pin controller device
556 * @selector: group number
558 const char *pinctrl_generic_get_group_name(struct pinctrl_dev *pctldev,
559 unsigned int selector)
561 struct group_desc *group;
563 group = radix_tree_lookup(&pctldev->pin_group_tree,
564 selector);
565 if (!group)
566 return NULL;
568 return group->name;
570 EXPORT_SYMBOL_GPL(pinctrl_generic_get_group_name);
573 * pinctrl_generic_get_group_pins() - gets the pin group pins
574 * @pctldev: pin controller device
575 * @selector: group number
576 * @pins: pins in the group
577 * @num_pins: number of pins in the group
579 int pinctrl_generic_get_group_pins(struct pinctrl_dev *pctldev,
580 unsigned int selector,
581 const unsigned int **pins,
582 unsigned int *num_pins)
584 struct group_desc *group;
586 group = radix_tree_lookup(&pctldev->pin_group_tree,
587 selector);
588 if (!group) {
589 dev_err(pctldev->dev, "%s could not find pingroup%i\n",
590 __func__, selector);
591 return -EINVAL;
594 *pins = group->pins;
595 *num_pins = group->num_pins;
597 return 0;
599 EXPORT_SYMBOL_GPL(pinctrl_generic_get_group_pins);
602 * pinctrl_generic_get_group() - returns a pin group based on the number
603 * @pctldev: pin controller device
604 * @gselector: group number
606 struct group_desc *pinctrl_generic_get_group(struct pinctrl_dev *pctldev,
607 unsigned int selector)
609 struct group_desc *group;
611 group = radix_tree_lookup(&pctldev->pin_group_tree,
612 selector);
613 if (!group)
614 return NULL;
616 return group;
618 EXPORT_SYMBOL_GPL(pinctrl_generic_get_group);
621 * pinctrl_generic_add_group() - adds a new pin group
622 * @pctldev: pin controller device
623 * @name: name of the pin group
624 * @pins: pins in the pin group
625 * @num_pins: number of pins in the pin group
626 * @data: pin controller driver specific data
628 * Note that the caller must take care of locking.
630 int pinctrl_generic_add_group(struct pinctrl_dev *pctldev, const char *name,
631 int *pins, int num_pins, void *data)
633 struct group_desc *group;
635 group = devm_kzalloc(pctldev->dev, sizeof(*group), GFP_KERNEL);
636 if (!group)
637 return -ENOMEM;
639 group->name = name;
640 group->pins = pins;
641 group->num_pins = num_pins;
642 group->data = data;
644 radix_tree_insert(&pctldev->pin_group_tree, pctldev->num_groups,
645 group);
647 pctldev->num_groups++;
649 return 0;
651 EXPORT_SYMBOL_GPL(pinctrl_generic_add_group);
654 * pinctrl_generic_remove_group() - removes a numbered pin group
655 * @pctldev: pin controller device
656 * @selector: group number
658 * Note that the caller must take care of locking.
660 int pinctrl_generic_remove_group(struct pinctrl_dev *pctldev,
661 unsigned int selector)
663 struct group_desc *group;
665 group = radix_tree_lookup(&pctldev->pin_group_tree,
666 selector);
667 if (!group)
668 return -ENOENT;
670 radix_tree_delete(&pctldev->pin_group_tree, selector);
671 devm_kfree(pctldev->dev, group);
673 pctldev->num_groups--;
675 return 0;
677 EXPORT_SYMBOL_GPL(pinctrl_generic_remove_group);
680 * pinctrl_generic_free_groups() - removes all pin groups
681 * @pctldev: pin controller device
683 * Note that the caller must take care of locking. The pinctrl groups
684 * are allocated with devm_kzalloc() so no need to free them here.
686 static void pinctrl_generic_free_groups(struct pinctrl_dev *pctldev)
688 struct radix_tree_iter iter;
689 void __rcu **slot;
691 radix_tree_for_each_slot(slot, &pctldev->pin_group_tree, &iter, 0)
692 radix_tree_delete(&pctldev->pin_group_tree, iter.index);
694 pctldev->num_groups = 0;
697 #else
698 static inline void pinctrl_generic_free_groups(struct pinctrl_dev *pctldev)
701 #endif /* CONFIG_GENERIC_PINCTRL_GROUPS */
704 * pinctrl_get_group_selector() - returns the group selector for a group
705 * @pctldev: the pin controller handling the group
706 * @pin_group: the pin group to look up
708 int pinctrl_get_group_selector(struct pinctrl_dev *pctldev,
709 const char *pin_group)
711 const struct pinctrl_ops *pctlops = pctldev->desc->pctlops;
712 unsigned ngroups = pctlops->get_groups_count(pctldev);
713 unsigned group_selector = 0;
715 while (group_selector < ngroups) {
716 const char *gname = pctlops->get_group_name(pctldev,
717 group_selector);
718 if (!strcmp(gname, pin_group)) {
719 dev_dbg(pctldev->dev,
720 "found group selector %u for %s\n",
721 group_selector,
722 pin_group);
723 return group_selector;
726 group_selector++;
729 dev_err(pctldev->dev, "does not have pin group %s\n",
730 pin_group);
732 return -EINVAL;
736 * pinctrl_gpio_request() - request a single pin to be used as GPIO
737 * @gpio: the GPIO pin number from the GPIO subsystem number space
739 * This function should *ONLY* be used from gpiolib-based GPIO drivers,
740 * as part of their gpio_request() semantics, platforms and individual drivers
741 * shall *NOT* request GPIO pins to be muxed in.
743 int pinctrl_gpio_request(unsigned gpio)
745 struct pinctrl_dev *pctldev;
746 struct pinctrl_gpio_range *range;
747 int ret;
748 int pin;
750 ret = pinctrl_get_device_gpio_range(gpio, &pctldev, &range);
751 if (ret) {
752 if (pinctrl_ready_for_gpio_range(gpio))
753 ret = 0;
754 return ret;
757 mutex_lock(&pctldev->mutex);
759 /* Convert to the pin controllers number space */
760 pin = gpio_to_pin(range, gpio);
762 ret = pinmux_request_gpio(pctldev, range, pin, gpio);
764 mutex_unlock(&pctldev->mutex);
766 return ret;
768 EXPORT_SYMBOL_GPL(pinctrl_gpio_request);
771 * pinctrl_gpio_free() - free control on a single pin, currently used as GPIO
772 * @gpio: the GPIO pin number from the GPIO subsystem number space
774 * This function should *ONLY* be used from gpiolib-based GPIO drivers,
775 * as part of their gpio_free() semantics, platforms and individual drivers
776 * shall *NOT* request GPIO pins to be muxed out.
778 void pinctrl_gpio_free(unsigned gpio)
780 struct pinctrl_dev *pctldev;
781 struct pinctrl_gpio_range *range;
782 int ret;
783 int pin;
785 ret = pinctrl_get_device_gpio_range(gpio, &pctldev, &range);
786 if (ret) {
787 return;
789 mutex_lock(&pctldev->mutex);
791 /* Convert to the pin controllers number space */
792 pin = gpio_to_pin(range, gpio);
794 pinmux_free_gpio(pctldev, pin, range);
796 mutex_unlock(&pctldev->mutex);
798 EXPORT_SYMBOL_GPL(pinctrl_gpio_free);
800 static int pinctrl_gpio_direction(unsigned gpio, bool input)
802 struct pinctrl_dev *pctldev;
803 struct pinctrl_gpio_range *range;
804 int ret;
805 int pin;
807 ret = pinctrl_get_device_gpio_range(gpio, &pctldev, &range);
808 if (ret) {
809 return ret;
812 mutex_lock(&pctldev->mutex);
814 /* Convert to the pin controllers number space */
815 pin = gpio_to_pin(range, gpio);
816 ret = pinmux_gpio_direction(pctldev, range, pin, input);
818 mutex_unlock(&pctldev->mutex);
820 return ret;
824 * pinctrl_gpio_direction_input() - request a GPIO pin to go into input mode
825 * @gpio: the GPIO pin number from the GPIO subsystem number space
827 * This function should *ONLY* be used from gpiolib-based GPIO drivers,
828 * as part of their gpio_direction_input() semantics, platforms and individual
829 * drivers shall *NOT* touch pin control GPIO calls.
831 int pinctrl_gpio_direction_input(unsigned gpio)
833 return pinctrl_gpio_direction(gpio, true);
835 EXPORT_SYMBOL_GPL(pinctrl_gpio_direction_input);
838 * pinctrl_gpio_direction_output() - request a GPIO pin to go into output mode
839 * @gpio: the GPIO pin number from the GPIO subsystem number space
841 * This function should *ONLY* be used from gpiolib-based GPIO drivers,
842 * as part of their gpio_direction_output() semantics, platforms and individual
843 * drivers shall *NOT* touch pin control GPIO calls.
845 int pinctrl_gpio_direction_output(unsigned gpio)
847 return pinctrl_gpio_direction(gpio, false);
849 EXPORT_SYMBOL_GPL(pinctrl_gpio_direction_output);
852 * pinctrl_gpio_set_config() - Apply config to given GPIO pin
853 * @gpio: the GPIO pin number from the GPIO subsystem number space
854 * @config: the configuration to apply to the GPIO
856 * This function should *ONLY* be used from gpiolib-based GPIO drivers, if
857 * they need to call the underlying pin controller to change GPIO config
858 * (for example set debounce time).
860 int pinctrl_gpio_set_config(unsigned gpio, unsigned long config)
862 unsigned long configs[] = { config };
863 struct pinctrl_gpio_range *range;
864 struct pinctrl_dev *pctldev;
865 int ret, pin;
867 ret = pinctrl_get_device_gpio_range(gpio, &pctldev, &range);
868 if (ret)
869 return ret;
871 mutex_lock(&pctldev->mutex);
872 pin = gpio_to_pin(range, gpio);
873 ret = pinconf_set_config(pctldev, pin, configs, ARRAY_SIZE(configs));
874 mutex_unlock(&pctldev->mutex);
876 return ret;
878 EXPORT_SYMBOL_GPL(pinctrl_gpio_set_config);
880 static struct pinctrl_state *find_state(struct pinctrl *p,
881 const char *name)
883 struct pinctrl_state *state;
885 list_for_each_entry(state, &p->states, node)
886 if (!strcmp(state->name, name))
887 return state;
889 return NULL;
892 static struct pinctrl_state *create_state(struct pinctrl *p,
893 const char *name)
895 struct pinctrl_state *state;
897 state = kzalloc(sizeof(*state), GFP_KERNEL);
898 if (!state)
899 return ERR_PTR(-ENOMEM);
901 state->name = name;
902 INIT_LIST_HEAD(&state->settings);
904 list_add_tail(&state->node, &p->states);
906 return state;
909 static int add_setting(struct pinctrl *p, struct pinctrl_dev *pctldev,
910 const struct pinctrl_map *map)
912 struct pinctrl_state *state;
913 struct pinctrl_setting *setting;
914 int ret;
916 state = find_state(p, map->name);
917 if (!state)
918 state = create_state(p, map->name);
919 if (IS_ERR(state))
920 return PTR_ERR(state);
922 if (map->type == PIN_MAP_TYPE_DUMMY_STATE)
923 return 0;
925 setting = kzalloc(sizeof(*setting), GFP_KERNEL);
926 if (!setting)
927 return -ENOMEM;
929 setting->type = map->type;
931 if (pctldev)
932 setting->pctldev = pctldev;
933 else
934 setting->pctldev =
935 get_pinctrl_dev_from_devname(map->ctrl_dev_name);
936 if (!setting->pctldev) {
937 kfree(setting);
938 /* Do not defer probing of hogs (circular loop) */
939 if (!strcmp(map->ctrl_dev_name, map->dev_name))
940 return -ENODEV;
942 * OK let us guess that the driver is not there yet, and
943 * let's defer obtaining this pinctrl handle to later...
945 dev_info(p->dev, "unknown pinctrl device %s in map entry, deferring probe",
946 map->ctrl_dev_name);
947 return -EPROBE_DEFER;
950 setting->dev_name = map->dev_name;
952 switch (map->type) {
953 case PIN_MAP_TYPE_MUX_GROUP:
954 ret = pinmux_map_to_setting(map, setting);
955 break;
956 case PIN_MAP_TYPE_CONFIGS_PIN:
957 case PIN_MAP_TYPE_CONFIGS_GROUP:
958 ret = pinconf_map_to_setting(map, setting);
959 break;
960 default:
961 ret = -EINVAL;
962 break;
964 if (ret < 0) {
965 kfree(setting);
966 return ret;
969 list_add_tail(&setting->node, &state->settings);
971 return 0;
974 static struct pinctrl *find_pinctrl(struct device *dev)
976 struct pinctrl *p;
978 mutex_lock(&pinctrl_list_mutex);
979 list_for_each_entry(p, &pinctrl_list, node)
980 if (p->dev == dev) {
981 mutex_unlock(&pinctrl_list_mutex);
982 return p;
985 mutex_unlock(&pinctrl_list_mutex);
986 return NULL;
989 static void pinctrl_free(struct pinctrl *p, bool inlist);
991 static struct pinctrl *create_pinctrl(struct device *dev,
992 struct pinctrl_dev *pctldev)
994 struct pinctrl *p;
995 const char *devname;
996 struct pinctrl_maps *maps_node;
997 int i;
998 const struct pinctrl_map *map;
999 int ret;
1002 * create the state cookie holder struct pinctrl for each
1003 * mapping, this is what consumers will get when requesting
1004 * a pin control handle with pinctrl_get()
1006 p = kzalloc(sizeof(*p), GFP_KERNEL);
1007 if (!p)
1008 return ERR_PTR(-ENOMEM);
1009 p->dev = dev;
1010 INIT_LIST_HEAD(&p->states);
1011 INIT_LIST_HEAD(&p->dt_maps);
1013 ret = pinctrl_dt_to_map(p, pctldev);
1014 if (ret < 0) {
1015 kfree(p);
1016 return ERR_PTR(ret);
1019 devname = dev_name(dev);
1021 mutex_lock(&pinctrl_maps_mutex);
1022 /* Iterate over the pin control maps to locate the right ones */
1023 for_each_maps(maps_node, i, map) {
1024 /* Map must be for this device */
1025 if (strcmp(map->dev_name, devname))
1026 continue;
1028 * If pctldev is not null, we are claiming hog for it,
1029 * that means, setting that is served by pctldev by itself.
1031 * Thus we must skip map that is for this device but is served
1032 * by other device.
1034 if (pctldev &&
1035 strcmp(dev_name(pctldev->dev), map->ctrl_dev_name))
1036 continue;
1038 ret = add_setting(p, pctldev, map);
1040 * At this point the adding of a setting may:
1042 * - Defer, if the pinctrl device is not yet available
1043 * - Fail, if the pinctrl device is not yet available,
1044 * AND the setting is a hog. We cannot defer that, since
1045 * the hog will kick in immediately after the device
1046 * is registered.
1048 * If the error returned was not -EPROBE_DEFER then we
1049 * accumulate the errors to see if we end up with
1050 * an -EPROBE_DEFER later, as that is the worst case.
1052 if (ret == -EPROBE_DEFER) {
1053 pinctrl_free(p, false);
1054 mutex_unlock(&pinctrl_maps_mutex);
1055 return ERR_PTR(ret);
1058 mutex_unlock(&pinctrl_maps_mutex);
1060 if (ret < 0) {
1061 /* If some other error than deferral occurred, return here */
1062 pinctrl_free(p, false);
1063 return ERR_PTR(ret);
1066 kref_init(&p->users);
1068 /* Add the pinctrl handle to the global list */
1069 mutex_lock(&pinctrl_list_mutex);
1070 list_add_tail(&p->node, &pinctrl_list);
1071 mutex_unlock(&pinctrl_list_mutex);
1073 return p;
1077 * pinctrl_get() - retrieves the pinctrl handle for a device
1078 * @dev: the device to obtain the handle for
1080 struct pinctrl *pinctrl_get(struct device *dev)
1082 struct pinctrl *p;
1084 if (WARN_ON(!dev))
1085 return ERR_PTR(-EINVAL);
1088 * See if somebody else (such as the device core) has already
1089 * obtained a handle to the pinctrl for this device. In that case,
1090 * return another pointer to it.
1092 p = find_pinctrl(dev);
1093 if (p) {
1094 dev_dbg(dev, "obtain a copy of previously claimed pinctrl\n");
1095 kref_get(&p->users);
1096 return p;
1099 return create_pinctrl(dev, NULL);
1101 EXPORT_SYMBOL_GPL(pinctrl_get);
1103 static void pinctrl_free_setting(bool disable_setting,
1104 struct pinctrl_setting *setting)
1106 switch (setting->type) {
1107 case PIN_MAP_TYPE_MUX_GROUP:
1108 if (disable_setting)
1109 pinmux_disable_setting(setting);
1110 pinmux_free_setting(setting);
1111 break;
1112 case PIN_MAP_TYPE_CONFIGS_PIN:
1113 case PIN_MAP_TYPE_CONFIGS_GROUP:
1114 pinconf_free_setting(setting);
1115 break;
1116 default:
1117 break;
1121 static void pinctrl_free(struct pinctrl *p, bool inlist)
1123 struct pinctrl_state *state, *n1;
1124 struct pinctrl_setting *setting, *n2;
1126 mutex_lock(&pinctrl_list_mutex);
1127 list_for_each_entry_safe(state, n1, &p->states, node) {
1128 list_for_each_entry_safe(setting, n2, &state->settings, node) {
1129 pinctrl_free_setting(state == p->state, setting);
1130 list_del(&setting->node);
1131 kfree(setting);
1133 list_del(&state->node);
1134 kfree(state);
1137 pinctrl_dt_free_maps(p);
1139 if (inlist)
1140 list_del(&p->node);
1141 kfree(p);
1142 mutex_unlock(&pinctrl_list_mutex);
1146 * pinctrl_release() - release the pinctrl handle
1147 * @kref: the kref in the pinctrl being released
1149 static void pinctrl_release(struct kref *kref)
1151 struct pinctrl *p = container_of(kref, struct pinctrl, users);
1153 pinctrl_free(p, true);
1157 * pinctrl_put() - decrease use count on a previously claimed pinctrl handle
1158 * @p: the pinctrl handle to release
1160 void pinctrl_put(struct pinctrl *p)
1162 kref_put(&p->users, pinctrl_release);
1164 EXPORT_SYMBOL_GPL(pinctrl_put);
1167 * pinctrl_lookup_state() - retrieves a state handle from a pinctrl handle
1168 * @p: the pinctrl handle to retrieve the state from
1169 * @name: the state name to retrieve
1171 struct pinctrl_state *pinctrl_lookup_state(struct pinctrl *p,
1172 const char *name)
1174 struct pinctrl_state *state;
1176 state = find_state(p, name);
1177 if (!state) {
1178 if (pinctrl_dummy_state) {
1179 /* create dummy state */
1180 dev_dbg(p->dev, "using pinctrl dummy state (%s)\n",
1181 name);
1182 state = create_state(p, name);
1183 } else
1184 state = ERR_PTR(-ENODEV);
1187 return state;
1189 EXPORT_SYMBOL_GPL(pinctrl_lookup_state);
1192 * pinctrl_commit_state() - select/activate/program a pinctrl state to HW
1193 * @p: the pinctrl handle for the device that requests configuration
1194 * @state: the state handle to select/activate/program
1196 static int pinctrl_commit_state(struct pinctrl *p, struct pinctrl_state *state)
1198 struct pinctrl_setting *setting, *setting2;
1199 struct pinctrl_state *old_state = p->state;
1200 int ret;
1202 if (p->state) {
1204 * For each pinmux setting in the old state, forget SW's record
1205 * of mux owner for that pingroup. Any pingroups which are
1206 * still owned by the new state will be re-acquired by the call
1207 * to pinmux_enable_setting() in the loop below.
1209 list_for_each_entry(setting, &p->state->settings, node) {
1210 if (setting->type != PIN_MAP_TYPE_MUX_GROUP)
1211 continue;
1212 pinmux_disable_setting(setting);
1216 p->state = NULL;
1218 /* Apply all the settings for the new state */
1219 list_for_each_entry(setting, &state->settings, node) {
1220 switch (setting->type) {
1221 case PIN_MAP_TYPE_MUX_GROUP:
1222 ret = pinmux_enable_setting(setting);
1223 break;
1224 case PIN_MAP_TYPE_CONFIGS_PIN:
1225 case PIN_MAP_TYPE_CONFIGS_GROUP:
1226 ret = pinconf_apply_setting(setting);
1227 break;
1228 default:
1229 ret = -EINVAL;
1230 break;
1233 if (ret < 0) {
1234 goto unapply_new_state;
1238 p->state = state;
1240 return 0;
1242 unapply_new_state:
1243 dev_err(p->dev, "Error applying setting, reverse things back\n");
1245 list_for_each_entry(setting2, &state->settings, node) {
1246 if (&setting2->node == &setting->node)
1247 break;
1249 * All we can do here is pinmux_disable_setting.
1250 * That means that some pins are muxed differently now
1251 * than they were before applying the setting (We can't
1252 * "unmux a pin"!), but it's not a big deal since the pins
1253 * are free to be muxed by another apply_setting.
1255 if (setting2->type == PIN_MAP_TYPE_MUX_GROUP)
1256 pinmux_disable_setting(setting2);
1259 /* There's no infinite recursive loop here because p->state is NULL */
1260 if (old_state)
1261 pinctrl_select_state(p, old_state);
1263 return ret;
1267 * pinctrl_select_state() - select/activate/program a pinctrl state to HW
1268 * @p: the pinctrl handle for the device that requests configuration
1269 * @state: the state handle to select/activate/program
1271 int pinctrl_select_state(struct pinctrl *p, struct pinctrl_state *state)
1273 if (p->state == state)
1274 return 0;
1276 return pinctrl_commit_state(p, state);
1278 EXPORT_SYMBOL_GPL(pinctrl_select_state);
1280 static void devm_pinctrl_release(struct device *dev, void *res)
1282 pinctrl_put(*(struct pinctrl **)res);
1286 * struct devm_pinctrl_get() - Resource managed pinctrl_get()
1287 * @dev: the device to obtain the handle for
1289 * If there is a need to explicitly destroy the returned struct pinctrl,
1290 * devm_pinctrl_put() should be used, rather than plain pinctrl_put().
1292 struct pinctrl *devm_pinctrl_get(struct device *dev)
1294 struct pinctrl **ptr, *p;
1296 ptr = devres_alloc(devm_pinctrl_release, sizeof(*ptr), GFP_KERNEL);
1297 if (!ptr)
1298 return ERR_PTR(-ENOMEM);
1300 p = pinctrl_get(dev);
1301 if (!IS_ERR(p)) {
1302 *ptr = p;
1303 devres_add(dev, ptr);
1304 } else {
1305 devres_free(ptr);
1308 return p;
1310 EXPORT_SYMBOL_GPL(devm_pinctrl_get);
1312 static int devm_pinctrl_match(struct device *dev, void *res, void *data)
1314 struct pinctrl **p = res;
1316 return *p == data;
1320 * devm_pinctrl_put() - Resource managed pinctrl_put()
1321 * @p: the pinctrl handle to release
1323 * Deallocate a struct pinctrl obtained via devm_pinctrl_get(). Normally
1324 * this function will not need to be called and the resource management
1325 * code will ensure that the resource is freed.
1327 void devm_pinctrl_put(struct pinctrl *p)
1329 WARN_ON(devres_release(p->dev, devm_pinctrl_release,
1330 devm_pinctrl_match, p));
1332 EXPORT_SYMBOL_GPL(devm_pinctrl_put);
1334 int pinctrl_register_map(const struct pinctrl_map *maps, unsigned num_maps,
1335 bool dup)
1337 int i, ret;
1338 struct pinctrl_maps *maps_node;
1340 pr_debug("add %u pinctrl maps\n", num_maps);
1342 /* First sanity check the new mapping */
1343 for (i = 0; i < num_maps; i++) {
1344 if (!maps[i].dev_name) {
1345 pr_err("failed to register map %s (%d): no device given\n",
1346 maps[i].name, i);
1347 return -EINVAL;
1350 if (!maps[i].name) {
1351 pr_err("failed to register map %d: no map name given\n",
1353 return -EINVAL;
1356 if (maps[i].type != PIN_MAP_TYPE_DUMMY_STATE &&
1357 !maps[i].ctrl_dev_name) {
1358 pr_err("failed to register map %s (%d): no pin control device given\n",
1359 maps[i].name, i);
1360 return -EINVAL;
1363 switch (maps[i].type) {
1364 case PIN_MAP_TYPE_DUMMY_STATE:
1365 break;
1366 case PIN_MAP_TYPE_MUX_GROUP:
1367 ret = pinmux_validate_map(&maps[i], i);
1368 if (ret < 0)
1369 return ret;
1370 break;
1371 case PIN_MAP_TYPE_CONFIGS_PIN:
1372 case PIN_MAP_TYPE_CONFIGS_GROUP:
1373 ret = pinconf_validate_map(&maps[i], i);
1374 if (ret < 0)
1375 return ret;
1376 break;
1377 default:
1378 pr_err("failed to register map %s (%d): invalid type given\n",
1379 maps[i].name, i);
1380 return -EINVAL;
1384 maps_node = kzalloc(sizeof(*maps_node), GFP_KERNEL);
1385 if (!maps_node)
1386 return -ENOMEM;
1388 maps_node->num_maps = num_maps;
1389 if (dup) {
1390 maps_node->maps = kmemdup(maps, sizeof(*maps) * num_maps,
1391 GFP_KERNEL);
1392 if (!maps_node->maps) {
1393 kfree(maps_node);
1394 return -ENOMEM;
1396 } else {
1397 maps_node->maps = maps;
1400 mutex_lock(&pinctrl_maps_mutex);
1401 list_add_tail(&maps_node->node, &pinctrl_maps);
1402 mutex_unlock(&pinctrl_maps_mutex);
1404 return 0;
1408 * pinctrl_register_mappings() - register a set of pin controller mappings
1409 * @maps: the pincontrol mappings table to register. This should probably be
1410 * marked with __initdata so it can be discarded after boot. This
1411 * function will perform a shallow copy for the mapping entries.
1412 * @num_maps: the number of maps in the mapping table
1414 int pinctrl_register_mappings(const struct pinctrl_map *maps,
1415 unsigned num_maps)
1417 return pinctrl_register_map(maps, num_maps, true);
1420 void pinctrl_unregister_map(const struct pinctrl_map *map)
1422 struct pinctrl_maps *maps_node;
1424 mutex_lock(&pinctrl_maps_mutex);
1425 list_for_each_entry(maps_node, &pinctrl_maps, node) {
1426 if (maps_node->maps == map) {
1427 list_del(&maps_node->node);
1428 kfree(maps_node);
1429 mutex_unlock(&pinctrl_maps_mutex);
1430 return;
1433 mutex_unlock(&pinctrl_maps_mutex);
1437 * pinctrl_force_sleep() - turn a given controller device into sleep state
1438 * @pctldev: pin controller device
1440 int pinctrl_force_sleep(struct pinctrl_dev *pctldev)
1442 if (!IS_ERR(pctldev->p) && !IS_ERR(pctldev->hog_sleep))
1443 return pinctrl_commit_state(pctldev->p, pctldev->hog_sleep);
1444 return 0;
1446 EXPORT_SYMBOL_GPL(pinctrl_force_sleep);
1449 * pinctrl_force_default() - turn a given controller device into default state
1450 * @pctldev: pin controller device
1452 int pinctrl_force_default(struct pinctrl_dev *pctldev)
1454 if (!IS_ERR(pctldev->p) && !IS_ERR(pctldev->hog_default))
1455 return pinctrl_commit_state(pctldev->p, pctldev->hog_default);
1456 return 0;
1458 EXPORT_SYMBOL_GPL(pinctrl_force_default);
1461 * pinctrl_init_done() - tell pinctrl probe is done
1463 * We'll use this time to switch the pins from "init" to "default" unless the
1464 * driver selected some other state.
1466 * @dev: device to that's done probing
1468 int pinctrl_init_done(struct device *dev)
1470 struct dev_pin_info *pins = dev->pins;
1471 int ret;
1473 if (!pins)
1474 return 0;
1476 if (IS_ERR(pins->init_state))
1477 return 0; /* No such state */
1479 if (pins->p->state != pins->init_state)
1480 return 0; /* Not at init anyway */
1482 if (IS_ERR(pins->default_state))
1483 return 0; /* No default state */
1485 ret = pinctrl_select_state(pins->p, pins->default_state);
1486 if (ret)
1487 dev_err(dev, "failed to activate default pinctrl state\n");
1489 return ret;
1492 #ifdef CONFIG_PM
1495 * pinctrl_pm_select_state() - select pinctrl state for PM
1496 * @dev: device to select default state for
1497 * @state: state to set
1499 static int pinctrl_pm_select_state(struct device *dev,
1500 struct pinctrl_state *state)
1502 struct dev_pin_info *pins = dev->pins;
1503 int ret;
1505 if (IS_ERR(state))
1506 return 0; /* No such state */
1507 ret = pinctrl_select_state(pins->p, state);
1508 if (ret)
1509 dev_err(dev, "failed to activate pinctrl state %s\n",
1510 state->name);
1511 return ret;
1515 * pinctrl_pm_select_default_state() - select default pinctrl state for PM
1516 * @dev: device to select default state for
1518 int pinctrl_pm_select_default_state(struct device *dev)
1520 if (!dev->pins)
1521 return 0;
1523 return pinctrl_pm_select_state(dev, dev->pins->default_state);
1525 EXPORT_SYMBOL_GPL(pinctrl_pm_select_default_state);
1528 * pinctrl_pm_select_sleep_state() - select sleep pinctrl state for PM
1529 * @dev: device to select sleep state for
1531 int pinctrl_pm_select_sleep_state(struct device *dev)
1533 if (!dev->pins)
1534 return 0;
1536 return pinctrl_pm_select_state(dev, dev->pins->sleep_state);
1538 EXPORT_SYMBOL_GPL(pinctrl_pm_select_sleep_state);
1541 * pinctrl_pm_select_idle_state() - select idle pinctrl state for PM
1542 * @dev: device to select idle state for
1544 int pinctrl_pm_select_idle_state(struct device *dev)
1546 if (!dev->pins)
1547 return 0;
1549 return pinctrl_pm_select_state(dev, dev->pins->idle_state);
1551 EXPORT_SYMBOL_GPL(pinctrl_pm_select_idle_state);
1552 #endif
1554 #ifdef CONFIG_DEBUG_FS
1556 static int pinctrl_pins_show(struct seq_file *s, void *what)
1558 struct pinctrl_dev *pctldev = s->private;
1559 const struct pinctrl_ops *ops = pctldev->desc->pctlops;
1560 unsigned i, pin;
1562 seq_printf(s, "registered pins: %d\n", pctldev->desc->npins);
1564 mutex_lock(&pctldev->mutex);
1566 /* The pin number can be retrived from the pin controller descriptor */
1567 for (i = 0; i < pctldev->desc->npins; i++) {
1568 struct pin_desc *desc;
1570 pin = pctldev->desc->pins[i].number;
1571 desc = pin_desc_get(pctldev, pin);
1572 /* Pin space may be sparse */
1573 if (!desc)
1574 continue;
1576 seq_printf(s, "pin %d (%s) ", pin, desc->name);
1578 /* Driver-specific info per pin */
1579 if (ops->pin_dbg_show)
1580 ops->pin_dbg_show(pctldev, s, pin);
1582 seq_puts(s, "\n");
1585 mutex_unlock(&pctldev->mutex);
1587 return 0;
1590 static int pinctrl_groups_show(struct seq_file *s, void *what)
1592 struct pinctrl_dev *pctldev = s->private;
1593 const struct pinctrl_ops *ops = pctldev->desc->pctlops;
1594 unsigned ngroups, selector = 0;
1596 mutex_lock(&pctldev->mutex);
1598 ngroups = ops->get_groups_count(pctldev);
1600 seq_puts(s, "registered pin groups:\n");
1601 while (selector < ngroups) {
1602 const unsigned *pins = NULL;
1603 unsigned num_pins = 0;
1604 const char *gname = ops->get_group_name(pctldev, selector);
1605 const char *pname;
1606 int ret = 0;
1607 int i;
1609 if (ops->get_group_pins)
1610 ret = ops->get_group_pins(pctldev, selector,
1611 &pins, &num_pins);
1612 if (ret)
1613 seq_printf(s, "%s [ERROR GETTING PINS]\n",
1614 gname);
1615 else {
1616 seq_printf(s, "group: %s\n", gname);
1617 for (i = 0; i < num_pins; i++) {
1618 pname = pin_get_name(pctldev, pins[i]);
1619 if (WARN_ON(!pname)) {
1620 mutex_unlock(&pctldev->mutex);
1621 return -EINVAL;
1623 seq_printf(s, "pin %d (%s)\n", pins[i], pname);
1625 seq_puts(s, "\n");
1627 selector++;
1630 mutex_unlock(&pctldev->mutex);
1632 return 0;
1635 static int pinctrl_gpioranges_show(struct seq_file *s, void *what)
1637 struct pinctrl_dev *pctldev = s->private;
1638 struct pinctrl_gpio_range *range = NULL;
1640 seq_puts(s, "GPIO ranges handled:\n");
1642 mutex_lock(&pctldev->mutex);
1644 /* Loop over the ranges */
1645 list_for_each_entry(range, &pctldev->gpio_ranges, node) {
1646 if (range->pins) {
1647 int a;
1648 seq_printf(s, "%u: %s GPIOS [%u - %u] PINS {",
1649 range->id, range->name,
1650 range->base, (range->base + range->npins - 1));
1651 for (a = 0; a < range->npins - 1; a++)
1652 seq_printf(s, "%u, ", range->pins[a]);
1653 seq_printf(s, "%u}\n", range->pins[a]);
1655 else
1656 seq_printf(s, "%u: %s GPIOS [%u - %u] PINS [%u - %u]\n",
1657 range->id, range->name,
1658 range->base, (range->base + range->npins - 1),
1659 range->pin_base,
1660 (range->pin_base + range->npins - 1));
1663 mutex_unlock(&pctldev->mutex);
1665 return 0;
1668 static int pinctrl_devices_show(struct seq_file *s, void *what)
1670 struct pinctrl_dev *pctldev;
1672 seq_puts(s, "name [pinmux] [pinconf]\n");
1674 mutex_lock(&pinctrldev_list_mutex);
1676 list_for_each_entry(pctldev, &pinctrldev_list, node) {
1677 seq_printf(s, "%s ", pctldev->desc->name);
1678 if (pctldev->desc->pmxops)
1679 seq_puts(s, "yes ");
1680 else
1681 seq_puts(s, "no ");
1682 if (pctldev->desc->confops)
1683 seq_puts(s, "yes");
1684 else
1685 seq_puts(s, "no");
1686 seq_puts(s, "\n");
1689 mutex_unlock(&pinctrldev_list_mutex);
1691 return 0;
1694 static inline const char *map_type(enum pinctrl_map_type type)
1696 static const char * const names[] = {
1697 "INVALID",
1698 "DUMMY_STATE",
1699 "MUX_GROUP",
1700 "CONFIGS_PIN",
1701 "CONFIGS_GROUP",
1704 if (type >= ARRAY_SIZE(names))
1705 return "UNKNOWN";
1707 return names[type];
1710 static int pinctrl_maps_show(struct seq_file *s, void *what)
1712 struct pinctrl_maps *maps_node;
1713 int i;
1714 const struct pinctrl_map *map;
1716 seq_puts(s, "Pinctrl maps:\n");
1718 mutex_lock(&pinctrl_maps_mutex);
1719 for_each_maps(maps_node, i, map) {
1720 seq_printf(s, "device %s\nstate %s\ntype %s (%d)\n",
1721 map->dev_name, map->name, map_type(map->type),
1722 map->type);
1724 if (map->type != PIN_MAP_TYPE_DUMMY_STATE)
1725 seq_printf(s, "controlling device %s\n",
1726 map->ctrl_dev_name);
1728 switch (map->type) {
1729 case PIN_MAP_TYPE_MUX_GROUP:
1730 pinmux_show_map(s, map);
1731 break;
1732 case PIN_MAP_TYPE_CONFIGS_PIN:
1733 case PIN_MAP_TYPE_CONFIGS_GROUP:
1734 pinconf_show_map(s, map);
1735 break;
1736 default:
1737 break;
1740 seq_putc(s, '\n');
1742 mutex_unlock(&pinctrl_maps_mutex);
1744 return 0;
1747 static int pinctrl_show(struct seq_file *s, void *what)
1749 struct pinctrl *p;
1750 struct pinctrl_state *state;
1751 struct pinctrl_setting *setting;
1753 seq_puts(s, "Requested pin control handlers their pinmux maps:\n");
1755 mutex_lock(&pinctrl_list_mutex);
1757 list_for_each_entry(p, &pinctrl_list, node) {
1758 seq_printf(s, "device: %s current state: %s\n",
1759 dev_name(p->dev),
1760 p->state ? p->state->name : "none");
1762 list_for_each_entry(state, &p->states, node) {
1763 seq_printf(s, " state: %s\n", state->name);
1765 list_for_each_entry(setting, &state->settings, node) {
1766 struct pinctrl_dev *pctldev = setting->pctldev;
1768 seq_printf(s, " type: %s controller %s ",
1769 map_type(setting->type),
1770 pinctrl_dev_get_name(pctldev));
1772 switch (setting->type) {
1773 case PIN_MAP_TYPE_MUX_GROUP:
1774 pinmux_show_setting(s, setting);
1775 break;
1776 case PIN_MAP_TYPE_CONFIGS_PIN:
1777 case PIN_MAP_TYPE_CONFIGS_GROUP:
1778 pinconf_show_setting(s, setting);
1779 break;
1780 default:
1781 break;
1787 mutex_unlock(&pinctrl_list_mutex);
1789 return 0;
1792 static int pinctrl_pins_open(struct inode *inode, struct file *file)
1794 return single_open(file, pinctrl_pins_show, inode->i_private);
1797 static int pinctrl_groups_open(struct inode *inode, struct file *file)
1799 return single_open(file, pinctrl_groups_show, inode->i_private);
1802 static int pinctrl_gpioranges_open(struct inode *inode, struct file *file)
1804 return single_open(file, pinctrl_gpioranges_show, inode->i_private);
1807 static int pinctrl_devices_open(struct inode *inode, struct file *file)
1809 return single_open(file, pinctrl_devices_show, NULL);
1812 static int pinctrl_maps_open(struct inode *inode, struct file *file)
1814 return single_open(file, pinctrl_maps_show, NULL);
1817 static int pinctrl_open(struct inode *inode, struct file *file)
1819 return single_open(file, pinctrl_show, NULL);
1822 static const struct file_operations pinctrl_pins_ops = {
1823 .open = pinctrl_pins_open,
1824 .read = seq_read,
1825 .llseek = seq_lseek,
1826 .release = single_release,
1829 static const struct file_operations pinctrl_groups_ops = {
1830 .open = pinctrl_groups_open,
1831 .read = seq_read,
1832 .llseek = seq_lseek,
1833 .release = single_release,
1836 static const struct file_operations pinctrl_gpioranges_ops = {
1837 .open = pinctrl_gpioranges_open,
1838 .read = seq_read,
1839 .llseek = seq_lseek,
1840 .release = single_release,
1843 static const struct file_operations pinctrl_devices_ops = {
1844 .open = pinctrl_devices_open,
1845 .read = seq_read,
1846 .llseek = seq_lseek,
1847 .release = single_release,
1850 static const struct file_operations pinctrl_maps_ops = {
1851 .open = pinctrl_maps_open,
1852 .read = seq_read,
1853 .llseek = seq_lseek,
1854 .release = single_release,
1857 static const struct file_operations pinctrl_ops = {
1858 .open = pinctrl_open,
1859 .read = seq_read,
1860 .llseek = seq_lseek,
1861 .release = single_release,
1864 static struct dentry *debugfs_root;
1866 static void pinctrl_init_device_debugfs(struct pinctrl_dev *pctldev)
1868 struct dentry *device_root;
1870 device_root = debugfs_create_dir(dev_name(pctldev->dev),
1871 debugfs_root);
1872 pctldev->device_root = device_root;
1874 if (IS_ERR(device_root) || !device_root) {
1875 pr_warn("failed to create debugfs directory for %s\n",
1876 dev_name(pctldev->dev));
1877 return;
1879 debugfs_create_file("pins", S_IFREG | S_IRUGO,
1880 device_root, pctldev, &pinctrl_pins_ops);
1881 debugfs_create_file("pingroups", S_IFREG | S_IRUGO,
1882 device_root, pctldev, &pinctrl_groups_ops);
1883 debugfs_create_file("gpio-ranges", S_IFREG | S_IRUGO,
1884 device_root, pctldev, &pinctrl_gpioranges_ops);
1885 if (pctldev->desc->pmxops)
1886 pinmux_init_device_debugfs(device_root, pctldev);
1887 if (pctldev->desc->confops)
1888 pinconf_init_device_debugfs(device_root, pctldev);
1891 static void pinctrl_remove_device_debugfs(struct pinctrl_dev *pctldev)
1893 debugfs_remove_recursive(pctldev->device_root);
1896 static void pinctrl_init_debugfs(void)
1898 debugfs_root = debugfs_create_dir("pinctrl", NULL);
1899 if (IS_ERR(debugfs_root) || !debugfs_root) {
1900 pr_warn("failed to create debugfs directory\n");
1901 debugfs_root = NULL;
1902 return;
1905 debugfs_create_file("pinctrl-devices", S_IFREG | S_IRUGO,
1906 debugfs_root, NULL, &pinctrl_devices_ops);
1907 debugfs_create_file("pinctrl-maps", S_IFREG | S_IRUGO,
1908 debugfs_root, NULL, &pinctrl_maps_ops);
1909 debugfs_create_file("pinctrl-handles", S_IFREG | S_IRUGO,
1910 debugfs_root, NULL, &pinctrl_ops);
1913 #else /* CONFIG_DEBUG_FS */
1915 static void pinctrl_init_device_debugfs(struct pinctrl_dev *pctldev)
1919 static void pinctrl_init_debugfs(void)
1923 static void pinctrl_remove_device_debugfs(struct pinctrl_dev *pctldev)
1927 #endif
1929 static int pinctrl_check_ops(struct pinctrl_dev *pctldev)
1931 const struct pinctrl_ops *ops = pctldev->desc->pctlops;
1933 if (!ops ||
1934 !ops->get_groups_count ||
1935 !ops->get_group_name)
1936 return -EINVAL;
1938 return 0;
1942 * pinctrl_init_controller() - init a pin controller device
1943 * @pctldesc: descriptor for this pin controller
1944 * @dev: parent device for this pin controller
1945 * @driver_data: private pin controller data for this pin controller
1947 static struct pinctrl_dev *
1948 pinctrl_init_controller(struct pinctrl_desc *pctldesc, struct device *dev,
1949 void *driver_data)
1951 struct pinctrl_dev *pctldev;
1952 int ret;
1954 if (!pctldesc)
1955 return ERR_PTR(-EINVAL);
1956 if (!pctldesc->name)
1957 return ERR_PTR(-EINVAL);
1959 pctldev = kzalloc(sizeof(*pctldev), GFP_KERNEL);
1960 if (!pctldev)
1961 return ERR_PTR(-ENOMEM);
1963 /* Initialize pin control device struct */
1964 pctldev->owner = pctldesc->owner;
1965 pctldev->desc = pctldesc;
1966 pctldev->driver_data = driver_data;
1967 INIT_RADIX_TREE(&pctldev->pin_desc_tree, GFP_KERNEL);
1968 #ifdef CONFIG_GENERIC_PINCTRL_GROUPS
1969 INIT_RADIX_TREE(&pctldev->pin_group_tree, GFP_KERNEL);
1970 #endif
1971 #ifdef CONFIG_GENERIC_PINMUX_FUNCTIONS
1972 INIT_RADIX_TREE(&pctldev->pin_function_tree, GFP_KERNEL);
1973 #endif
1974 INIT_LIST_HEAD(&pctldev->gpio_ranges);
1975 INIT_LIST_HEAD(&pctldev->node);
1976 pctldev->dev = dev;
1977 mutex_init(&pctldev->mutex);
1979 /* check core ops for sanity */
1980 ret = pinctrl_check_ops(pctldev);
1981 if (ret) {
1982 dev_err(dev, "pinctrl ops lacks necessary functions\n");
1983 goto out_err;
1986 /* If we're implementing pinmuxing, check the ops for sanity */
1987 if (pctldesc->pmxops) {
1988 ret = pinmux_check_ops(pctldev);
1989 if (ret)
1990 goto out_err;
1993 /* If we're implementing pinconfig, check the ops for sanity */
1994 if (pctldesc->confops) {
1995 ret = pinconf_check_ops(pctldev);
1996 if (ret)
1997 goto out_err;
2000 /* Register all the pins */
2001 dev_dbg(dev, "try to register %d pins ...\n", pctldesc->npins);
2002 ret = pinctrl_register_pins(pctldev, pctldesc->pins, pctldesc->npins);
2003 if (ret) {
2004 dev_err(dev, "error during pin registration\n");
2005 pinctrl_free_pindescs(pctldev, pctldesc->pins,
2006 pctldesc->npins);
2007 goto out_err;
2010 return pctldev;
2012 out_err:
2013 mutex_destroy(&pctldev->mutex);
2014 kfree(pctldev);
2015 return ERR_PTR(ret);
2018 static int pinctrl_claim_hogs(struct pinctrl_dev *pctldev)
2020 pctldev->p = create_pinctrl(pctldev->dev, pctldev);
2021 if (PTR_ERR(pctldev->p) == -ENODEV) {
2022 dev_dbg(pctldev->dev, "no hogs found\n");
2024 return 0;
2027 if (IS_ERR(pctldev->p)) {
2028 dev_err(pctldev->dev, "error claiming hogs: %li\n",
2029 PTR_ERR(pctldev->p));
2031 return PTR_ERR(pctldev->p);
2034 kref_get(&pctldev->p->users);
2035 pctldev->hog_default =
2036 pinctrl_lookup_state(pctldev->p, PINCTRL_STATE_DEFAULT);
2037 if (IS_ERR(pctldev->hog_default)) {
2038 dev_dbg(pctldev->dev,
2039 "failed to lookup the default state\n");
2040 } else {
2041 if (pinctrl_select_state(pctldev->p,
2042 pctldev->hog_default))
2043 dev_err(pctldev->dev,
2044 "failed to select default state\n");
2047 pctldev->hog_sleep =
2048 pinctrl_lookup_state(pctldev->p,
2049 PINCTRL_STATE_SLEEP);
2050 if (IS_ERR(pctldev->hog_sleep))
2051 dev_dbg(pctldev->dev,
2052 "failed to lookup the sleep state\n");
2054 return 0;
2057 int pinctrl_enable(struct pinctrl_dev *pctldev)
2059 int error;
2061 error = pinctrl_claim_hogs(pctldev);
2062 if (error) {
2063 dev_err(pctldev->dev, "could not claim hogs: %i\n",
2064 error);
2065 mutex_destroy(&pctldev->mutex);
2066 kfree(pctldev);
2068 return error;
2071 mutex_lock(&pinctrldev_list_mutex);
2072 list_add_tail(&pctldev->node, &pinctrldev_list);
2073 mutex_unlock(&pinctrldev_list_mutex);
2075 pinctrl_init_device_debugfs(pctldev);
2077 return 0;
2079 EXPORT_SYMBOL_GPL(pinctrl_enable);
2082 * pinctrl_register() - register a pin controller device
2083 * @pctldesc: descriptor for this pin controller
2084 * @dev: parent device for this pin controller
2085 * @driver_data: private pin controller data for this pin controller
2087 * Note that pinctrl_register() is known to have problems as the pin
2088 * controller driver functions are called before the driver has a
2089 * struct pinctrl_dev handle. To avoid issues later on, please use the
2090 * new pinctrl_register_and_init() below instead.
2092 struct pinctrl_dev *pinctrl_register(struct pinctrl_desc *pctldesc,
2093 struct device *dev, void *driver_data)
2095 struct pinctrl_dev *pctldev;
2096 int error;
2098 pctldev = pinctrl_init_controller(pctldesc, dev, driver_data);
2099 if (IS_ERR(pctldev))
2100 return pctldev;
2102 error = pinctrl_enable(pctldev);
2103 if (error)
2104 return ERR_PTR(error);
2106 return pctldev;
2109 EXPORT_SYMBOL_GPL(pinctrl_register);
2112 * pinctrl_register_and_init() - register and init pin controller device
2113 * @pctldesc: descriptor for this pin controller
2114 * @dev: parent device for this pin controller
2115 * @driver_data: private pin controller data for this pin controller
2116 * @pctldev: pin controller device
2118 * Note that pinctrl_enable() still needs to be manually called after
2119 * this once the driver is ready.
2121 int pinctrl_register_and_init(struct pinctrl_desc *pctldesc,
2122 struct device *dev, void *driver_data,
2123 struct pinctrl_dev **pctldev)
2125 struct pinctrl_dev *p;
2127 p = pinctrl_init_controller(pctldesc, dev, driver_data);
2128 if (IS_ERR(p))
2129 return PTR_ERR(p);
2132 * We have pinctrl_start() call functions in the pin controller
2133 * driver with create_pinctrl() for at least dt_node_to_map(). So
2134 * let's make sure pctldev is properly initialized for the
2135 * pin controller driver before we do anything.
2137 *pctldev = p;
2139 return 0;
2141 EXPORT_SYMBOL_GPL(pinctrl_register_and_init);
2144 * pinctrl_unregister() - unregister pinmux
2145 * @pctldev: pin controller to unregister
2147 * Called by pinmux drivers to unregister a pinmux.
2149 void pinctrl_unregister(struct pinctrl_dev *pctldev)
2151 struct pinctrl_gpio_range *range, *n;
2153 if (!pctldev)
2154 return;
2156 mutex_lock(&pctldev->mutex);
2157 pinctrl_remove_device_debugfs(pctldev);
2158 mutex_unlock(&pctldev->mutex);
2160 if (!IS_ERR_OR_NULL(pctldev->p))
2161 pinctrl_put(pctldev->p);
2163 mutex_lock(&pinctrldev_list_mutex);
2164 mutex_lock(&pctldev->mutex);
2165 /* TODO: check that no pinmuxes are still active? */
2166 list_del(&pctldev->node);
2167 pinmux_generic_free_functions(pctldev);
2168 pinctrl_generic_free_groups(pctldev);
2169 /* Destroy descriptor tree */
2170 pinctrl_free_pindescs(pctldev, pctldev->desc->pins,
2171 pctldev->desc->npins);
2172 /* remove gpio ranges map */
2173 list_for_each_entry_safe(range, n, &pctldev->gpio_ranges, node)
2174 list_del(&range->node);
2176 mutex_unlock(&pctldev->mutex);
2177 mutex_destroy(&pctldev->mutex);
2178 kfree(pctldev);
2179 mutex_unlock(&pinctrldev_list_mutex);
2181 EXPORT_SYMBOL_GPL(pinctrl_unregister);
2183 static void devm_pinctrl_dev_release(struct device *dev, void *res)
2185 struct pinctrl_dev *pctldev = *(struct pinctrl_dev **)res;
2187 pinctrl_unregister(pctldev);
2190 static int devm_pinctrl_dev_match(struct device *dev, void *res, void *data)
2192 struct pctldev **r = res;
2194 if (WARN_ON(!r || !*r))
2195 return 0;
2197 return *r == data;
2201 * devm_pinctrl_register() - Resource managed version of pinctrl_register().
2202 * @dev: parent device for this pin controller
2203 * @pctldesc: descriptor for this pin controller
2204 * @driver_data: private pin controller data for this pin controller
2206 * Returns an error pointer if pincontrol register failed. Otherwise
2207 * it returns valid pinctrl handle.
2209 * The pinctrl device will be automatically released when the device is unbound.
2211 struct pinctrl_dev *devm_pinctrl_register(struct device *dev,
2212 struct pinctrl_desc *pctldesc,
2213 void *driver_data)
2215 struct pinctrl_dev **ptr, *pctldev;
2217 ptr = devres_alloc(devm_pinctrl_dev_release, sizeof(*ptr), GFP_KERNEL);
2218 if (!ptr)
2219 return ERR_PTR(-ENOMEM);
2221 pctldev = pinctrl_register(pctldesc, dev, driver_data);
2222 if (IS_ERR(pctldev)) {
2223 devres_free(ptr);
2224 return pctldev;
2227 *ptr = pctldev;
2228 devres_add(dev, ptr);
2230 return pctldev;
2232 EXPORT_SYMBOL_GPL(devm_pinctrl_register);
2235 * devm_pinctrl_register_and_init() - Resource managed pinctrl register and init
2236 * @dev: parent device for this pin controller
2237 * @pctldesc: descriptor for this pin controller
2238 * @driver_data: private pin controller data for this pin controller
2240 * Returns an error pointer if pincontrol register failed. Otherwise
2241 * it returns valid pinctrl handle.
2243 * The pinctrl device will be automatically released when the device is unbound.
2245 int devm_pinctrl_register_and_init(struct device *dev,
2246 struct pinctrl_desc *pctldesc,
2247 void *driver_data,
2248 struct pinctrl_dev **pctldev)
2250 struct pinctrl_dev **ptr;
2251 int error;
2253 ptr = devres_alloc(devm_pinctrl_dev_release, sizeof(*ptr), GFP_KERNEL);
2254 if (!ptr)
2255 return -ENOMEM;
2257 error = pinctrl_register_and_init(pctldesc, dev, driver_data, pctldev);
2258 if (error) {
2259 devres_free(ptr);
2260 return error;
2263 *ptr = *pctldev;
2264 devres_add(dev, ptr);
2266 return 0;
2268 EXPORT_SYMBOL_GPL(devm_pinctrl_register_and_init);
2271 * devm_pinctrl_unregister() - Resource managed version of pinctrl_unregister().
2272 * @dev: device for which which resource was allocated
2273 * @pctldev: the pinctrl device to unregister.
2275 void devm_pinctrl_unregister(struct device *dev, struct pinctrl_dev *pctldev)
2277 WARN_ON(devres_release(dev, devm_pinctrl_dev_release,
2278 devm_pinctrl_dev_match, pctldev));
2280 EXPORT_SYMBOL_GPL(devm_pinctrl_unregister);
2282 static int __init pinctrl_init(void)
2284 pr_info("initialized pinctrl subsystem\n");
2285 pinctrl_init_debugfs();
2286 return 0;
2289 /* init early since many drivers really need to initialized pinmux early */
2290 core_initcall(pinctrl_init);