2 * core.c -- Voltage/Current Regulator framework.
4 * Copyright 2007, 2008 Wolfson Microelectronics PLC.
5 * Copyright 2008 SlimLogic Ltd.
7 * Author: Liam Girdwood <lrg@slimlogic.co.uk>
9 * This program is free software; you can redistribute it and/or modify it
10 * under the terms of the GNU General Public License as published by the
11 * Free Software Foundation; either version 2 of the License, or (at your
12 * option) any later version.
16 #include <linux/kernel.h>
17 #include <linux/init.h>
18 #include <linux/debugfs.h>
19 #include <linux/device.h>
20 #include <linux/slab.h>
21 #include <linux/async.h>
22 #include <linux/err.h>
23 #include <linux/mutex.h>
24 #include <linux/suspend.h>
25 #include <linux/delay.h>
26 #include <linux/gpio.h>
27 #include <linux/gpio/consumer.h>
29 #include <linux/regmap.h>
30 #include <linux/regulator/of_regulator.h>
31 #include <linux/regulator/consumer.h>
32 #include <linux/regulator/driver.h>
33 #include <linux/regulator/machine.h>
34 #include <linux/module.h>
36 #define CREATE_TRACE_POINTS
37 #include <trace/events/regulator.h>
42 #define rdev_crit(rdev, fmt, ...) \
43 pr_crit("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
44 #define rdev_err(rdev, fmt, ...) \
45 pr_err("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
46 #define rdev_warn(rdev, fmt, ...) \
47 pr_warn("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
48 #define rdev_info(rdev, fmt, ...) \
49 pr_info("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
50 #define rdev_dbg(rdev, fmt, ...) \
51 pr_debug("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
53 static DEFINE_MUTEX(regulator_list_mutex
);
54 static LIST_HEAD(regulator_map_list
);
55 static LIST_HEAD(regulator_ena_gpio_list
);
56 static LIST_HEAD(regulator_supply_alias_list
);
57 static bool has_full_constraints
;
59 static struct dentry
*debugfs_root
;
62 * struct regulator_map
64 * Used to provide symbolic supply names to devices.
66 struct regulator_map
{
67 struct list_head list
;
68 const char *dev_name
; /* The dev_name() for the consumer */
70 struct regulator_dev
*regulator
;
74 * struct regulator_enable_gpio
76 * Management for shared enable GPIO pin
78 struct regulator_enable_gpio
{
79 struct list_head list
;
80 struct gpio_desc
*gpiod
;
81 u32 enable_count
; /* a number of enabled shared GPIO */
82 u32 request_count
; /* a number of requested shared GPIO */
83 unsigned int ena_gpio_invert
:1;
87 * struct regulator_supply_alias
89 * Used to map lookups for a supply onto an alternative device.
91 struct regulator_supply_alias
{
92 struct list_head list
;
93 struct device
*src_dev
;
94 const char *src_supply
;
95 struct device
*alias_dev
;
96 const char *alias_supply
;
99 static int _regulator_is_enabled(struct regulator_dev
*rdev
);
100 static int _regulator_disable(struct regulator_dev
*rdev
);
101 static int _regulator_get_voltage(struct regulator_dev
*rdev
);
102 static int _regulator_get_current_limit(struct regulator_dev
*rdev
);
103 static unsigned int _regulator_get_mode(struct regulator_dev
*rdev
);
104 static int _notifier_call_chain(struct regulator_dev
*rdev
,
105 unsigned long event
, void *data
);
106 static int _regulator_do_set_voltage(struct regulator_dev
*rdev
,
107 int min_uV
, int max_uV
);
108 static struct regulator
*create_regulator(struct regulator_dev
*rdev
,
110 const char *supply_name
);
111 static void _regulator_put(struct regulator
*regulator
);
113 static const char *rdev_get_name(struct regulator_dev
*rdev
)
115 if (rdev
->constraints
&& rdev
->constraints
->name
)
116 return rdev
->constraints
->name
;
117 else if (rdev
->desc
->name
)
118 return rdev
->desc
->name
;
123 static bool have_full_constraints(void)
125 return has_full_constraints
|| of_have_populated_dt();
128 static bool regulator_ops_is_valid(struct regulator_dev
*rdev
, int ops
)
130 if (!rdev
->constraints
) {
131 rdev_err(rdev
, "no constraints\n");
135 if (rdev
->constraints
->valid_ops_mask
& ops
)
141 static inline struct regulator_dev
*rdev_get_supply(struct regulator_dev
*rdev
)
143 if (rdev
&& rdev
->supply
)
144 return rdev
->supply
->rdev
;
150 * regulator_lock_supply - lock a regulator and its supplies
151 * @rdev: regulator source
153 static void regulator_lock_supply(struct regulator_dev
*rdev
)
157 for (i
= 0; rdev
; rdev
= rdev_get_supply(rdev
), i
++)
158 mutex_lock_nested(&rdev
->mutex
, i
);
162 * regulator_unlock_supply - unlock a regulator and its supplies
163 * @rdev: regulator source
165 static void regulator_unlock_supply(struct regulator_dev
*rdev
)
167 struct regulator
*supply
;
170 mutex_unlock(&rdev
->mutex
);
171 supply
= rdev
->supply
;
181 * of_get_regulator - get a regulator device node based on supply name
182 * @dev: Device pointer for the consumer (of regulator) device
183 * @supply: regulator supply name
185 * Extract the regulator device node corresponding to the supply name.
186 * returns the device node corresponding to the regulator if found, else
189 static struct device_node
*of_get_regulator(struct device
*dev
, const char *supply
)
191 struct device_node
*regnode
= NULL
;
192 char prop_name
[32]; /* 32 is max size of property name */
194 dev_dbg(dev
, "Looking up %s-supply from device tree\n", supply
);
196 snprintf(prop_name
, 32, "%s-supply", supply
);
197 regnode
= of_parse_phandle(dev
->of_node
, prop_name
, 0);
200 dev_dbg(dev
, "Looking up %s property in node %pOF failed\n",
201 prop_name
, dev
->of_node
);
207 /* Platform voltage constraint check */
208 static int regulator_check_voltage(struct regulator_dev
*rdev
,
209 int *min_uV
, int *max_uV
)
211 BUG_ON(*min_uV
> *max_uV
);
213 if (!regulator_ops_is_valid(rdev
, REGULATOR_CHANGE_VOLTAGE
)) {
214 rdev_err(rdev
, "voltage operation not allowed\n");
218 if (*max_uV
> rdev
->constraints
->max_uV
)
219 *max_uV
= rdev
->constraints
->max_uV
;
220 if (*min_uV
< rdev
->constraints
->min_uV
)
221 *min_uV
= rdev
->constraints
->min_uV
;
223 if (*min_uV
> *max_uV
) {
224 rdev_err(rdev
, "unsupportable voltage range: %d-%duV\n",
232 /* return 0 if the state is valid */
233 static int regulator_check_states(suspend_state_t state
)
235 return (state
> PM_SUSPEND_MAX
|| state
== PM_SUSPEND_TO_IDLE
);
238 /* Make sure we select a voltage that suits the needs of all
239 * regulator consumers
241 static int regulator_check_consumers(struct regulator_dev
*rdev
,
242 int *min_uV
, int *max_uV
,
243 suspend_state_t state
)
245 struct regulator
*regulator
;
246 struct regulator_voltage
*voltage
;
248 list_for_each_entry(regulator
, &rdev
->consumer_list
, list
) {
249 voltage
= ®ulator
->voltage
[state
];
251 * Assume consumers that didn't say anything are OK
252 * with anything in the constraint range.
254 if (!voltage
->min_uV
&& !voltage
->max_uV
)
257 if (*max_uV
> voltage
->max_uV
)
258 *max_uV
= voltage
->max_uV
;
259 if (*min_uV
< voltage
->min_uV
)
260 *min_uV
= voltage
->min_uV
;
263 if (*min_uV
> *max_uV
) {
264 rdev_err(rdev
, "Restricting voltage, %u-%uuV\n",
272 /* current constraint check */
273 static int regulator_check_current_limit(struct regulator_dev
*rdev
,
274 int *min_uA
, int *max_uA
)
276 BUG_ON(*min_uA
> *max_uA
);
278 if (!regulator_ops_is_valid(rdev
, REGULATOR_CHANGE_CURRENT
)) {
279 rdev_err(rdev
, "current operation not allowed\n");
283 if (*max_uA
> rdev
->constraints
->max_uA
)
284 *max_uA
= rdev
->constraints
->max_uA
;
285 if (*min_uA
< rdev
->constraints
->min_uA
)
286 *min_uA
= rdev
->constraints
->min_uA
;
288 if (*min_uA
> *max_uA
) {
289 rdev_err(rdev
, "unsupportable current range: %d-%duA\n",
297 /* operating mode constraint check */
298 static int regulator_mode_constrain(struct regulator_dev
*rdev
,
302 case REGULATOR_MODE_FAST
:
303 case REGULATOR_MODE_NORMAL
:
304 case REGULATOR_MODE_IDLE
:
305 case REGULATOR_MODE_STANDBY
:
308 rdev_err(rdev
, "invalid mode %x specified\n", *mode
);
312 if (!regulator_ops_is_valid(rdev
, REGULATOR_CHANGE_MODE
)) {
313 rdev_err(rdev
, "mode operation not allowed\n");
317 /* The modes are bitmasks, the most power hungry modes having
318 * the lowest values. If the requested mode isn't supported
319 * try higher modes. */
321 if (rdev
->constraints
->valid_modes_mask
& *mode
)
329 static inline struct regulator_state
*
330 regulator_get_suspend_state(struct regulator_dev
*rdev
, suspend_state_t state
)
332 if (rdev
->constraints
== NULL
)
336 case PM_SUSPEND_STANDBY
:
337 return &rdev
->constraints
->state_standby
;
339 return &rdev
->constraints
->state_mem
;
341 return &rdev
->constraints
->state_disk
;
347 static ssize_t
regulator_uV_show(struct device
*dev
,
348 struct device_attribute
*attr
, char *buf
)
350 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
353 mutex_lock(&rdev
->mutex
);
354 ret
= sprintf(buf
, "%d\n", _regulator_get_voltage(rdev
));
355 mutex_unlock(&rdev
->mutex
);
359 static DEVICE_ATTR(microvolts
, 0444, regulator_uV_show
, NULL
);
361 static ssize_t
regulator_uA_show(struct device
*dev
,
362 struct device_attribute
*attr
, char *buf
)
364 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
366 return sprintf(buf
, "%d\n", _regulator_get_current_limit(rdev
));
368 static DEVICE_ATTR(microamps
, 0444, regulator_uA_show
, NULL
);
370 static ssize_t
name_show(struct device
*dev
, struct device_attribute
*attr
,
373 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
375 return sprintf(buf
, "%s\n", rdev_get_name(rdev
));
377 static DEVICE_ATTR_RO(name
);
379 static ssize_t
regulator_print_opmode(char *buf
, int mode
)
382 case REGULATOR_MODE_FAST
:
383 return sprintf(buf
, "fast\n");
384 case REGULATOR_MODE_NORMAL
:
385 return sprintf(buf
, "normal\n");
386 case REGULATOR_MODE_IDLE
:
387 return sprintf(buf
, "idle\n");
388 case REGULATOR_MODE_STANDBY
:
389 return sprintf(buf
, "standby\n");
391 return sprintf(buf
, "unknown\n");
394 static ssize_t
regulator_opmode_show(struct device
*dev
,
395 struct device_attribute
*attr
, char *buf
)
397 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
399 return regulator_print_opmode(buf
, _regulator_get_mode(rdev
));
401 static DEVICE_ATTR(opmode
, 0444, regulator_opmode_show
, NULL
);
403 static ssize_t
regulator_print_state(char *buf
, int state
)
406 return sprintf(buf
, "enabled\n");
408 return sprintf(buf
, "disabled\n");
410 return sprintf(buf
, "unknown\n");
413 static ssize_t
regulator_state_show(struct device
*dev
,
414 struct device_attribute
*attr
, char *buf
)
416 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
419 mutex_lock(&rdev
->mutex
);
420 ret
= regulator_print_state(buf
, _regulator_is_enabled(rdev
));
421 mutex_unlock(&rdev
->mutex
);
425 static DEVICE_ATTR(state
, 0444, regulator_state_show
, NULL
);
427 static ssize_t
regulator_status_show(struct device
*dev
,
428 struct device_attribute
*attr
, char *buf
)
430 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
434 status
= rdev
->desc
->ops
->get_status(rdev
);
439 case REGULATOR_STATUS_OFF
:
442 case REGULATOR_STATUS_ON
:
445 case REGULATOR_STATUS_ERROR
:
448 case REGULATOR_STATUS_FAST
:
451 case REGULATOR_STATUS_NORMAL
:
454 case REGULATOR_STATUS_IDLE
:
457 case REGULATOR_STATUS_STANDBY
:
460 case REGULATOR_STATUS_BYPASS
:
463 case REGULATOR_STATUS_UNDEFINED
:
470 return sprintf(buf
, "%s\n", label
);
472 static DEVICE_ATTR(status
, 0444, regulator_status_show
, NULL
);
474 static ssize_t
regulator_min_uA_show(struct device
*dev
,
475 struct device_attribute
*attr
, char *buf
)
477 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
479 if (!rdev
->constraints
)
480 return sprintf(buf
, "constraint not defined\n");
482 return sprintf(buf
, "%d\n", rdev
->constraints
->min_uA
);
484 static DEVICE_ATTR(min_microamps
, 0444, regulator_min_uA_show
, NULL
);
486 static ssize_t
regulator_max_uA_show(struct device
*dev
,
487 struct device_attribute
*attr
, char *buf
)
489 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
491 if (!rdev
->constraints
)
492 return sprintf(buf
, "constraint not defined\n");
494 return sprintf(buf
, "%d\n", rdev
->constraints
->max_uA
);
496 static DEVICE_ATTR(max_microamps
, 0444, regulator_max_uA_show
, NULL
);
498 static ssize_t
regulator_min_uV_show(struct device
*dev
,
499 struct device_attribute
*attr
, char *buf
)
501 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
503 if (!rdev
->constraints
)
504 return sprintf(buf
, "constraint not defined\n");
506 return sprintf(buf
, "%d\n", rdev
->constraints
->min_uV
);
508 static DEVICE_ATTR(min_microvolts
, 0444, regulator_min_uV_show
, NULL
);
510 static ssize_t
regulator_max_uV_show(struct device
*dev
,
511 struct device_attribute
*attr
, char *buf
)
513 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
515 if (!rdev
->constraints
)
516 return sprintf(buf
, "constraint not defined\n");
518 return sprintf(buf
, "%d\n", rdev
->constraints
->max_uV
);
520 static DEVICE_ATTR(max_microvolts
, 0444, regulator_max_uV_show
, NULL
);
522 static ssize_t
regulator_total_uA_show(struct device
*dev
,
523 struct device_attribute
*attr
, char *buf
)
525 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
526 struct regulator
*regulator
;
529 mutex_lock(&rdev
->mutex
);
530 list_for_each_entry(regulator
, &rdev
->consumer_list
, list
)
531 uA
+= regulator
->uA_load
;
532 mutex_unlock(&rdev
->mutex
);
533 return sprintf(buf
, "%d\n", uA
);
535 static DEVICE_ATTR(requested_microamps
, 0444, regulator_total_uA_show
, NULL
);
537 static ssize_t
num_users_show(struct device
*dev
, struct device_attribute
*attr
,
540 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
541 return sprintf(buf
, "%d\n", rdev
->use_count
);
543 static DEVICE_ATTR_RO(num_users
);
545 static ssize_t
type_show(struct device
*dev
, struct device_attribute
*attr
,
548 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
550 switch (rdev
->desc
->type
) {
551 case REGULATOR_VOLTAGE
:
552 return sprintf(buf
, "voltage\n");
553 case REGULATOR_CURRENT
:
554 return sprintf(buf
, "current\n");
556 return sprintf(buf
, "unknown\n");
558 static DEVICE_ATTR_RO(type
);
560 static ssize_t
regulator_suspend_mem_uV_show(struct device
*dev
,
561 struct device_attribute
*attr
, char *buf
)
563 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
565 return sprintf(buf
, "%d\n", rdev
->constraints
->state_mem
.uV
);
567 static DEVICE_ATTR(suspend_mem_microvolts
, 0444,
568 regulator_suspend_mem_uV_show
, NULL
);
570 static ssize_t
regulator_suspend_disk_uV_show(struct device
*dev
,
571 struct device_attribute
*attr
, char *buf
)
573 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
575 return sprintf(buf
, "%d\n", rdev
->constraints
->state_disk
.uV
);
577 static DEVICE_ATTR(suspend_disk_microvolts
, 0444,
578 regulator_suspend_disk_uV_show
, NULL
);
580 static ssize_t
regulator_suspend_standby_uV_show(struct device
*dev
,
581 struct device_attribute
*attr
, char *buf
)
583 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
585 return sprintf(buf
, "%d\n", rdev
->constraints
->state_standby
.uV
);
587 static DEVICE_ATTR(suspend_standby_microvolts
, 0444,
588 regulator_suspend_standby_uV_show
, NULL
);
590 static ssize_t
regulator_suspend_mem_mode_show(struct device
*dev
,
591 struct device_attribute
*attr
, char *buf
)
593 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
595 return regulator_print_opmode(buf
,
596 rdev
->constraints
->state_mem
.mode
);
598 static DEVICE_ATTR(suspend_mem_mode
, 0444,
599 regulator_suspend_mem_mode_show
, NULL
);
601 static ssize_t
regulator_suspend_disk_mode_show(struct device
*dev
,
602 struct device_attribute
*attr
, char *buf
)
604 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
606 return regulator_print_opmode(buf
,
607 rdev
->constraints
->state_disk
.mode
);
609 static DEVICE_ATTR(suspend_disk_mode
, 0444,
610 regulator_suspend_disk_mode_show
, NULL
);
612 static ssize_t
regulator_suspend_standby_mode_show(struct device
*dev
,
613 struct device_attribute
*attr
, char *buf
)
615 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
617 return regulator_print_opmode(buf
,
618 rdev
->constraints
->state_standby
.mode
);
620 static DEVICE_ATTR(suspend_standby_mode
, 0444,
621 regulator_suspend_standby_mode_show
, NULL
);
623 static ssize_t
regulator_suspend_mem_state_show(struct device
*dev
,
624 struct device_attribute
*attr
, char *buf
)
626 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
628 return regulator_print_state(buf
,
629 rdev
->constraints
->state_mem
.enabled
);
631 static DEVICE_ATTR(suspend_mem_state
, 0444,
632 regulator_suspend_mem_state_show
, NULL
);
634 static ssize_t
regulator_suspend_disk_state_show(struct device
*dev
,
635 struct device_attribute
*attr
, char *buf
)
637 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
639 return regulator_print_state(buf
,
640 rdev
->constraints
->state_disk
.enabled
);
642 static DEVICE_ATTR(suspend_disk_state
, 0444,
643 regulator_suspend_disk_state_show
, NULL
);
645 static ssize_t
regulator_suspend_standby_state_show(struct device
*dev
,
646 struct device_attribute
*attr
, char *buf
)
648 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
650 return regulator_print_state(buf
,
651 rdev
->constraints
->state_standby
.enabled
);
653 static DEVICE_ATTR(suspend_standby_state
, 0444,
654 regulator_suspend_standby_state_show
, NULL
);
656 static ssize_t
regulator_bypass_show(struct device
*dev
,
657 struct device_attribute
*attr
, char *buf
)
659 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
664 ret
= rdev
->desc
->ops
->get_bypass(rdev
, &bypass
);
673 return sprintf(buf
, "%s\n", report
);
675 static DEVICE_ATTR(bypass
, 0444,
676 regulator_bypass_show
, NULL
);
678 /* Calculate the new optimum regulator operating mode based on the new total
679 * consumer load. All locks held by caller */
680 static int drms_uA_update(struct regulator_dev
*rdev
)
682 struct regulator
*sibling
;
683 int current_uA
= 0, output_uV
, input_uV
, err
;
686 lockdep_assert_held_once(&rdev
->mutex
);
689 * first check to see if we can set modes at all, otherwise just
690 * tell the consumer everything is OK.
692 if (!regulator_ops_is_valid(rdev
, REGULATOR_CHANGE_DRMS
))
695 if (!rdev
->desc
->ops
->get_optimum_mode
&&
696 !rdev
->desc
->ops
->set_load
)
699 if (!rdev
->desc
->ops
->set_mode
&&
700 !rdev
->desc
->ops
->set_load
)
703 /* calc total requested load */
704 list_for_each_entry(sibling
, &rdev
->consumer_list
, list
)
705 current_uA
+= sibling
->uA_load
;
707 current_uA
+= rdev
->constraints
->system_load
;
709 if (rdev
->desc
->ops
->set_load
) {
710 /* set the optimum mode for our new total regulator load */
711 err
= rdev
->desc
->ops
->set_load(rdev
, current_uA
);
713 rdev_err(rdev
, "failed to set load %d\n", current_uA
);
715 /* get output voltage */
716 output_uV
= _regulator_get_voltage(rdev
);
717 if (output_uV
<= 0) {
718 rdev_err(rdev
, "invalid output voltage found\n");
722 /* get input voltage */
725 input_uV
= regulator_get_voltage(rdev
->supply
);
727 input_uV
= rdev
->constraints
->input_uV
;
729 rdev_err(rdev
, "invalid input voltage found\n");
733 /* now get the optimum mode for our new total regulator load */
734 mode
= rdev
->desc
->ops
->get_optimum_mode(rdev
, input_uV
,
735 output_uV
, current_uA
);
737 /* check the new mode is allowed */
738 err
= regulator_mode_constrain(rdev
, &mode
);
740 rdev_err(rdev
, "failed to get optimum mode @ %d uA %d -> %d uV\n",
741 current_uA
, input_uV
, output_uV
);
745 err
= rdev
->desc
->ops
->set_mode(rdev
, mode
);
747 rdev_err(rdev
, "failed to set optimum mode %x\n", mode
);
753 static int suspend_set_state(struct regulator_dev
*rdev
,
754 suspend_state_t state
)
757 struct regulator_state
*rstate
;
759 rstate
= regulator_get_suspend_state(rdev
, state
);
763 /* If we have no suspend mode configration don't set anything;
764 * only warn if the driver implements set_suspend_voltage or
765 * set_suspend_mode callback.
767 if (rstate
->enabled
!= ENABLE_IN_SUSPEND
&&
768 rstate
->enabled
!= DISABLE_IN_SUSPEND
) {
769 if (rdev
->desc
->ops
->set_suspend_voltage
||
770 rdev
->desc
->ops
->set_suspend_mode
)
771 rdev_warn(rdev
, "No configuration\n");
775 if (rstate
->enabled
== ENABLE_IN_SUSPEND
&&
776 rdev
->desc
->ops
->set_suspend_enable
)
777 ret
= rdev
->desc
->ops
->set_suspend_enable(rdev
);
778 else if (rstate
->enabled
== DISABLE_IN_SUSPEND
&&
779 rdev
->desc
->ops
->set_suspend_disable
)
780 ret
= rdev
->desc
->ops
->set_suspend_disable(rdev
);
781 else /* OK if set_suspend_enable or set_suspend_disable is NULL */
785 rdev_err(rdev
, "failed to enabled/disable\n");
789 if (rdev
->desc
->ops
->set_suspend_voltage
&& rstate
->uV
> 0) {
790 ret
= rdev
->desc
->ops
->set_suspend_voltage(rdev
, rstate
->uV
);
792 rdev_err(rdev
, "failed to set voltage\n");
797 if (rdev
->desc
->ops
->set_suspend_mode
&& rstate
->mode
> 0) {
798 ret
= rdev
->desc
->ops
->set_suspend_mode(rdev
, rstate
->mode
);
800 rdev_err(rdev
, "failed to set mode\n");
808 static void print_constraints(struct regulator_dev
*rdev
)
810 struct regulation_constraints
*constraints
= rdev
->constraints
;
812 size_t len
= sizeof(buf
) - 1;
816 if (constraints
->min_uV
&& constraints
->max_uV
) {
817 if (constraints
->min_uV
== constraints
->max_uV
)
818 count
+= scnprintf(buf
+ count
, len
- count
, "%d mV ",
819 constraints
->min_uV
/ 1000);
821 count
+= scnprintf(buf
+ count
, len
- count
,
823 constraints
->min_uV
/ 1000,
824 constraints
->max_uV
/ 1000);
827 if (!constraints
->min_uV
||
828 constraints
->min_uV
!= constraints
->max_uV
) {
829 ret
= _regulator_get_voltage(rdev
);
831 count
+= scnprintf(buf
+ count
, len
- count
,
832 "at %d mV ", ret
/ 1000);
835 if (constraints
->uV_offset
)
836 count
+= scnprintf(buf
+ count
, len
- count
, "%dmV offset ",
837 constraints
->uV_offset
/ 1000);
839 if (constraints
->min_uA
&& constraints
->max_uA
) {
840 if (constraints
->min_uA
== constraints
->max_uA
)
841 count
+= scnprintf(buf
+ count
, len
- count
, "%d mA ",
842 constraints
->min_uA
/ 1000);
844 count
+= scnprintf(buf
+ count
, len
- count
,
846 constraints
->min_uA
/ 1000,
847 constraints
->max_uA
/ 1000);
850 if (!constraints
->min_uA
||
851 constraints
->min_uA
!= constraints
->max_uA
) {
852 ret
= _regulator_get_current_limit(rdev
);
854 count
+= scnprintf(buf
+ count
, len
- count
,
855 "at %d mA ", ret
/ 1000);
858 if (constraints
->valid_modes_mask
& REGULATOR_MODE_FAST
)
859 count
+= scnprintf(buf
+ count
, len
- count
, "fast ");
860 if (constraints
->valid_modes_mask
& REGULATOR_MODE_NORMAL
)
861 count
+= scnprintf(buf
+ count
, len
- count
, "normal ");
862 if (constraints
->valid_modes_mask
& REGULATOR_MODE_IDLE
)
863 count
+= scnprintf(buf
+ count
, len
- count
, "idle ");
864 if (constraints
->valid_modes_mask
& REGULATOR_MODE_STANDBY
)
865 count
+= scnprintf(buf
+ count
, len
- count
, "standby");
868 scnprintf(buf
, len
, "no parameters");
870 rdev_dbg(rdev
, "%s\n", buf
);
872 if ((constraints
->min_uV
!= constraints
->max_uV
) &&
873 !regulator_ops_is_valid(rdev
, REGULATOR_CHANGE_VOLTAGE
))
875 "Voltage range but no REGULATOR_CHANGE_VOLTAGE\n");
878 static int machine_constraints_voltage(struct regulator_dev
*rdev
,
879 struct regulation_constraints
*constraints
)
881 const struct regulator_ops
*ops
= rdev
->desc
->ops
;
884 /* do we need to apply the constraint voltage */
885 if (rdev
->constraints
->apply_uV
&&
886 rdev
->constraints
->min_uV
&& rdev
->constraints
->max_uV
) {
887 int target_min
, target_max
;
888 int current_uV
= _regulator_get_voltage(rdev
);
889 if (current_uV
< 0) {
891 "failed to get the current voltage(%d)\n",
897 * If we're below the minimum voltage move up to the
898 * minimum voltage, if we're above the maximum voltage
899 * then move down to the maximum.
901 target_min
= current_uV
;
902 target_max
= current_uV
;
904 if (current_uV
< rdev
->constraints
->min_uV
) {
905 target_min
= rdev
->constraints
->min_uV
;
906 target_max
= rdev
->constraints
->min_uV
;
909 if (current_uV
> rdev
->constraints
->max_uV
) {
910 target_min
= rdev
->constraints
->max_uV
;
911 target_max
= rdev
->constraints
->max_uV
;
914 if (target_min
!= current_uV
|| target_max
!= current_uV
) {
915 rdev_info(rdev
, "Bringing %duV into %d-%duV\n",
916 current_uV
, target_min
, target_max
);
917 ret
= _regulator_do_set_voltage(
918 rdev
, target_min
, target_max
);
921 "failed to apply %d-%duV constraint(%d)\n",
922 target_min
, target_max
, ret
);
928 /* constrain machine-level voltage specs to fit
929 * the actual range supported by this regulator.
931 if (ops
->list_voltage
&& rdev
->desc
->n_voltages
) {
932 int count
= rdev
->desc
->n_voltages
;
934 int min_uV
= INT_MAX
;
935 int max_uV
= INT_MIN
;
936 int cmin
= constraints
->min_uV
;
937 int cmax
= constraints
->max_uV
;
939 /* it's safe to autoconfigure fixed-voltage supplies
940 and the constraints are used by list_voltage. */
941 if (count
== 1 && !cmin
) {
944 constraints
->min_uV
= cmin
;
945 constraints
->max_uV
= cmax
;
948 /* voltage constraints are optional */
949 if ((cmin
== 0) && (cmax
== 0))
952 /* else require explicit machine-level constraints */
953 if (cmin
<= 0 || cmax
<= 0 || cmax
< cmin
) {
954 rdev_err(rdev
, "invalid voltage constraints\n");
958 /* initial: [cmin..cmax] valid, [min_uV..max_uV] not */
959 for (i
= 0; i
< count
; i
++) {
962 value
= ops
->list_voltage(rdev
, i
);
966 /* maybe adjust [min_uV..max_uV] */
967 if (value
>= cmin
&& value
< min_uV
)
969 if (value
<= cmax
&& value
> max_uV
)
973 /* final: [min_uV..max_uV] valid iff constraints valid */
974 if (max_uV
< min_uV
) {
976 "unsupportable voltage constraints %u-%uuV\n",
981 /* use regulator's subset of machine constraints */
982 if (constraints
->min_uV
< min_uV
) {
983 rdev_dbg(rdev
, "override min_uV, %d -> %d\n",
984 constraints
->min_uV
, min_uV
);
985 constraints
->min_uV
= min_uV
;
987 if (constraints
->max_uV
> max_uV
) {
988 rdev_dbg(rdev
, "override max_uV, %d -> %d\n",
989 constraints
->max_uV
, max_uV
);
990 constraints
->max_uV
= max_uV
;
997 static int machine_constraints_current(struct regulator_dev
*rdev
,
998 struct regulation_constraints
*constraints
)
1000 const struct regulator_ops
*ops
= rdev
->desc
->ops
;
1003 if (!constraints
->min_uA
&& !constraints
->max_uA
)
1006 if (constraints
->min_uA
> constraints
->max_uA
) {
1007 rdev_err(rdev
, "Invalid current constraints\n");
1011 if (!ops
->set_current_limit
|| !ops
->get_current_limit
) {
1012 rdev_warn(rdev
, "Operation of current configuration missing\n");
1016 /* Set regulator current in constraints range */
1017 ret
= ops
->set_current_limit(rdev
, constraints
->min_uA
,
1018 constraints
->max_uA
);
1020 rdev_err(rdev
, "Failed to set current constraint, %d\n", ret
);
1027 static int _regulator_do_enable(struct regulator_dev
*rdev
);
1030 * set_machine_constraints - sets regulator constraints
1031 * @rdev: regulator source
1032 * @constraints: constraints to apply
1034 * Allows platform initialisation code to define and constrain
1035 * regulator circuits e.g. valid voltage/current ranges, etc. NOTE:
1036 * Constraints *must* be set by platform code in order for some
1037 * regulator operations to proceed i.e. set_voltage, set_current_limit,
1040 static int set_machine_constraints(struct regulator_dev
*rdev
,
1041 const struct regulation_constraints
*constraints
)
1044 const struct regulator_ops
*ops
= rdev
->desc
->ops
;
1047 rdev
->constraints
= kmemdup(constraints
, sizeof(*constraints
),
1050 rdev
->constraints
= kzalloc(sizeof(*constraints
),
1052 if (!rdev
->constraints
)
1055 ret
= machine_constraints_voltage(rdev
, rdev
->constraints
);
1059 ret
= machine_constraints_current(rdev
, rdev
->constraints
);
1063 if (rdev
->constraints
->ilim_uA
&& ops
->set_input_current_limit
) {
1064 ret
= ops
->set_input_current_limit(rdev
,
1065 rdev
->constraints
->ilim_uA
);
1067 rdev_err(rdev
, "failed to set input limit\n");
1072 /* do we need to setup our suspend state */
1073 if (rdev
->constraints
->initial_state
) {
1074 ret
= suspend_set_state(rdev
, rdev
->constraints
->initial_state
);
1076 rdev_err(rdev
, "failed to set suspend state\n");
1081 if (rdev
->constraints
->initial_mode
) {
1082 if (!ops
->set_mode
) {
1083 rdev_err(rdev
, "no set_mode operation\n");
1087 ret
= ops
->set_mode(rdev
, rdev
->constraints
->initial_mode
);
1089 rdev_err(rdev
, "failed to set initial mode: %d\n", ret
);
1094 /* If the constraints say the regulator should be on at this point
1095 * and we have control then make sure it is enabled.
1097 if (rdev
->constraints
->always_on
|| rdev
->constraints
->boot_on
) {
1098 ret
= _regulator_do_enable(rdev
);
1099 if (ret
< 0 && ret
!= -EINVAL
) {
1100 rdev_err(rdev
, "failed to enable\n");
1105 if ((rdev
->constraints
->ramp_delay
|| rdev
->constraints
->ramp_disable
)
1106 && ops
->set_ramp_delay
) {
1107 ret
= ops
->set_ramp_delay(rdev
, rdev
->constraints
->ramp_delay
);
1109 rdev_err(rdev
, "failed to set ramp_delay\n");
1114 if (rdev
->constraints
->pull_down
&& ops
->set_pull_down
) {
1115 ret
= ops
->set_pull_down(rdev
);
1117 rdev_err(rdev
, "failed to set pull down\n");
1122 if (rdev
->constraints
->soft_start
&& ops
->set_soft_start
) {
1123 ret
= ops
->set_soft_start(rdev
);
1125 rdev_err(rdev
, "failed to set soft start\n");
1130 if (rdev
->constraints
->over_current_protection
1131 && ops
->set_over_current_protection
) {
1132 ret
= ops
->set_over_current_protection(rdev
);
1134 rdev_err(rdev
, "failed to set over current protection\n");
1139 if (rdev
->constraints
->active_discharge
&& ops
->set_active_discharge
) {
1140 bool ad_state
= (rdev
->constraints
->active_discharge
==
1141 REGULATOR_ACTIVE_DISCHARGE_ENABLE
) ? true : false;
1143 ret
= ops
->set_active_discharge(rdev
, ad_state
);
1145 rdev_err(rdev
, "failed to set active discharge\n");
1150 print_constraints(rdev
);
1155 * set_supply - set regulator supply regulator
1156 * @rdev: regulator name
1157 * @supply_rdev: supply regulator name
1159 * Called by platform initialisation code to set the supply regulator for this
1160 * regulator. This ensures that a regulators supply will also be enabled by the
1161 * core if it's child is enabled.
1163 static int set_supply(struct regulator_dev
*rdev
,
1164 struct regulator_dev
*supply_rdev
)
1168 rdev_info(rdev
, "supplied by %s\n", rdev_get_name(supply_rdev
));
1170 if (!try_module_get(supply_rdev
->owner
))
1173 rdev
->supply
= create_regulator(supply_rdev
, &rdev
->dev
, "SUPPLY");
1174 if (rdev
->supply
== NULL
) {
1178 supply_rdev
->open_count
++;
1184 * set_consumer_device_supply - Bind a regulator to a symbolic supply
1185 * @rdev: regulator source
1186 * @consumer_dev_name: dev_name() string for device supply applies to
1187 * @supply: symbolic name for supply
1189 * Allows platform initialisation code to map physical regulator
1190 * sources to symbolic names for supplies for use by devices. Devices
1191 * should use these symbolic names to request regulators, avoiding the
1192 * need to provide board-specific regulator names as platform data.
1194 static int set_consumer_device_supply(struct regulator_dev
*rdev
,
1195 const char *consumer_dev_name
,
1198 struct regulator_map
*node
;
1204 if (consumer_dev_name
!= NULL
)
1209 list_for_each_entry(node
, ®ulator_map_list
, list
) {
1210 if (node
->dev_name
&& consumer_dev_name
) {
1211 if (strcmp(node
->dev_name
, consumer_dev_name
) != 0)
1213 } else if (node
->dev_name
|| consumer_dev_name
) {
1217 if (strcmp(node
->supply
, supply
) != 0)
1220 pr_debug("%s: %s/%s is '%s' supply; fail %s/%s\n",
1222 dev_name(&node
->regulator
->dev
),
1223 node
->regulator
->desc
->name
,
1225 dev_name(&rdev
->dev
), rdev_get_name(rdev
));
1229 node
= kzalloc(sizeof(struct regulator_map
), GFP_KERNEL
);
1233 node
->regulator
= rdev
;
1234 node
->supply
= supply
;
1237 node
->dev_name
= kstrdup(consumer_dev_name
, GFP_KERNEL
);
1238 if (node
->dev_name
== NULL
) {
1244 list_add(&node
->list
, ®ulator_map_list
);
1248 static void unset_regulator_supplies(struct regulator_dev
*rdev
)
1250 struct regulator_map
*node
, *n
;
1252 list_for_each_entry_safe(node
, n
, ®ulator_map_list
, list
) {
1253 if (rdev
== node
->regulator
) {
1254 list_del(&node
->list
);
1255 kfree(node
->dev_name
);
1261 #ifdef CONFIG_DEBUG_FS
1262 static ssize_t
constraint_flags_read_file(struct file
*file
,
1263 char __user
*user_buf
,
1264 size_t count
, loff_t
*ppos
)
1266 const struct regulator
*regulator
= file
->private_data
;
1267 const struct regulation_constraints
*c
= regulator
->rdev
->constraints
;
1274 buf
= kmalloc(PAGE_SIZE
, GFP_KERNEL
);
1278 ret
= snprintf(buf
, PAGE_SIZE
,
1282 "ramp_disable: %u\n"
1285 "over_current_protection: %u\n",
1292 c
->over_current_protection
);
1294 ret
= simple_read_from_buffer(user_buf
, count
, ppos
, buf
, ret
);
1302 static const struct file_operations constraint_flags_fops
= {
1303 #ifdef CONFIG_DEBUG_FS
1304 .open
= simple_open
,
1305 .read
= constraint_flags_read_file
,
1306 .llseek
= default_llseek
,
1310 #define REG_STR_SIZE 64
1312 static struct regulator
*create_regulator(struct regulator_dev
*rdev
,
1314 const char *supply_name
)
1316 struct regulator
*regulator
;
1317 char buf
[REG_STR_SIZE
];
1320 regulator
= kzalloc(sizeof(*regulator
), GFP_KERNEL
);
1321 if (regulator
== NULL
)
1324 mutex_lock(&rdev
->mutex
);
1325 regulator
->rdev
= rdev
;
1326 list_add(®ulator
->list
, &rdev
->consumer_list
);
1329 regulator
->dev
= dev
;
1331 /* Add a link to the device sysfs entry */
1332 size
= snprintf(buf
, REG_STR_SIZE
, "%s-%s",
1333 dev
->kobj
.name
, supply_name
);
1334 if (size
>= REG_STR_SIZE
)
1337 regulator
->supply_name
= kstrdup(buf
, GFP_KERNEL
);
1338 if (regulator
->supply_name
== NULL
)
1341 err
= sysfs_create_link_nowarn(&rdev
->dev
.kobj
, &dev
->kobj
,
1344 rdev_dbg(rdev
, "could not add device link %s err %d\n",
1345 dev
->kobj
.name
, err
);
1349 regulator
->supply_name
= kstrdup_const(supply_name
, GFP_KERNEL
);
1350 if (regulator
->supply_name
== NULL
)
1354 regulator
->debugfs
= debugfs_create_dir(regulator
->supply_name
,
1356 if (!regulator
->debugfs
) {
1357 rdev_dbg(rdev
, "Failed to create debugfs directory\n");
1359 debugfs_create_u32("uA_load", 0444, regulator
->debugfs
,
1360 ®ulator
->uA_load
);
1361 debugfs_create_u32("min_uV", 0444, regulator
->debugfs
,
1362 ®ulator
->voltage
[PM_SUSPEND_ON
].min_uV
);
1363 debugfs_create_u32("max_uV", 0444, regulator
->debugfs
,
1364 ®ulator
->voltage
[PM_SUSPEND_ON
].max_uV
);
1365 debugfs_create_file("constraint_flags", 0444,
1366 regulator
->debugfs
, regulator
,
1367 &constraint_flags_fops
);
1371 * Check now if the regulator is an always on regulator - if
1372 * it is then we don't need to do nearly so much work for
1373 * enable/disable calls.
1375 if (!regulator_ops_is_valid(rdev
, REGULATOR_CHANGE_STATUS
) &&
1376 _regulator_is_enabled(rdev
))
1377 regulator
->always_on
= true;
1379 mutex_unlock(&rdev
->mutex
);
1382 list_del(®ulator
->list
);
1384 mutex_unlock(&rdev
->mutex
);
1388 static int _regulator_get_enable_time(struct regulator_dev
*rdev
)
1390 if (rdev
->constraints
&& rdev
->constraints
->enable_time
)
1391 return rdev
->constraints
->enable_time
;
1392 if (!rdev
->desc
->ops
->enable_time
)
1393 return rdev
->desc
->enable_time
;
1394 return rdev
->desc
->ops
->enable_time(rdev
);
1397 static struct regulator_supply_alias
*regulator_find_supply_alias(
1398 struct device
*dev
, const char *supply
)
1400 struct regulator_supply_alias
*map
;
1402 list_for_each_entry(map
, ®ulator_supply_alias_list
, list
)
1403 if (map
->src_dev
== dev
&& strcmp(map
->src_supply
, supply
) == 0)
1409 static void regulator_supply_alias(struct device
**dev
, const char **supply
)
1411 struct regulator_supply_alias
*map
;
1413 map
= regulator_find_supply_alias(*dev
, *supply
);
1415 dev_dbg(*dev
, "Mapping supply %s to %s,%s\n",
1416 *supply
, map
->alias_supply
,
1417 dev_name(map
->alias_dev
));
1418 *dev
= map
->alias_dev
;
1419 *supply
= map
->alias_supply
;
1423 static int regulator_match(struct device
*dev
, const void *data
)
1425 struct regulator_dev
*r
= dev_to_rdev(dev
);
1427 return strcmp(rdev_get_name(r
), data
) == 0;
1430 static struct regulator_dev
*regulator_lookup_by_name(const char *name
)
1434 dev
= class_find_device(®ulator_class
, NULL
, name
, regulator_match
);
1436 return dev
? dev_to_rdev(dev
) : NULL
;
1440 * regulator_dev_lookup - lookup a regulator device.
1441 * @dev: device for regulator "consumer".
1442 * @supply: Supply name or regulator ID.
1444 * If successful, returns a struct regulator_dev that corresponds to the name
1445 * @supply and with the embedded struct device refcount incremented by one.
1446 * The refcount must be dropped by calling put_device().
1447 * On failure one of the following ERR-PTR-encoded values is returned:
1448 * -ENODEV if lookup fails permanently, -EPROBE_DEFER if lookup could succeed
1451 static struct regulator_dev
*regulator_dev_lookup(struct device
*dev
,
1454 struct regulator_dev
*r
= NULL
;
1455 struct device_node
*node
;
1456 struct regulator_map
*map
;
1457 const char *devname
= NULL
;
1459 regulator_supply_alias(&dev
, &supply
);
1461 /* first do a dt based lookup */
1462 if (dev
&& dev
->of_node
) {
1463 node
= of_get_regulator(dev
, supply
);
1465 r
= of_find_regulator_by_node(node
);
1470 * We have a node, but there is no device.
1471 * assume it has not registered yet.
1473 return ERR_PTR(-EPROBE_DEFER
);
1477 /* if not found, try doing it non-dt way */
1479 devname
= dev_name(dev
);
1481 mutex_lock(®ulator_list_mutex
);
1482 list_for_each_entry(map
, ®ulator_map_list
, list
) {
1483 /* If the mapping has a device set up it must match */
1484 if (map
->dev_name
&&
1485 (!devname
|| strcmp(map
->dev_name
, devname
)))
1488 if (strcmp(map
->supply
, supply
) == 0 &&
1489 get_device(&map
->regulator
->dev
)) {
1494 mutex_unlock(®ulator_list_mutex
);
1499 r
= regulator_lookup_by_name(supply
);
1503 return ERR_PTR(-ENODEV
);
1506 static int regulator_resolve_supply(struct regulator_dev
*rdev
)
1508 struct regulator_dev
*r
;
1509 struct device
*dev
= rdev
->dev
.parent
;
1512 /* No supply to resovle? */
1513 if (!rdev
->supply_name
)
1516 /* Supply already resolved? */
1520 r
= regulator_dev_lookup(dev
, rdev
->supply_name
);
1524 /* Did the lookup explicitly defer for us? */
1525 if (ret
== -EPROBE_DEFER
)
1528 if (have_full_constraints()) {
1529 r
= dummy_regulator_rdev
;
1530 get_device(&r
->dev
);
1532 dev_err(dev
, "Failed to resolve %s-supply for %s\n",
1533 rdev
->supply_name
, rdev
->desc
->name
);
1534 return -EPROBE_DEFER
;
1539 * If the supply's parent device is not the same as the
1540 * regulator's parent device, then ensure the parent device
1541 * is bound before we resolve the supply, in case the parent
1542 * device get probe deferred and unregisters the supply.
1544 if (r
->dev
.parent
&& r
->dev
.parent
!= rdev
->dev
.parent
) {
1545 if (!device_is_bound(r
->dev
.parent
)) {
1546 put_device(&r
->dev
);
1547 return -EPROBE_DEFER
;
1551 /* Recursively resolve the supply of the supply */
1552 ret
= regulator_resolve_supply(r
);
1554 put_device(&r
->dev
);
1558 ret
= set_supply(rdev
, r
);
1560 put_device(&r
->dev
);
1564 /* Cascade always-on state to supply */
1565 if (_regulator_is_enabled(rdev
)) {
1566 ret
= regulator_enable(rdev
->supply
);
1568 _regulator_put(rdev
->supply
);
1569 rdev
->supply
= NULL
;
1577 /* Internal regulator request function */
1578 struct regulator
*_regulator_get(struct device
*dev
, const char *id
,
1579 enum regulator_get_type get_type
)
1581 struct regulator_dev
*rdev
;
1582 struct regulator
*regulator
;
1583 const char *devname
= dev
? dev_name(dev
) : "deviceless";
1586 if (get_type
>= MAX_GET_TYPE
) {
1587 dev_err(dev
, "invalid type %d in %s\n", get_type
, __func__
);
1588 return ERR_PTR(-EINVAL
);
1592 pr_err("get() with no identifier\n");
1593 return ERR_PTR(-EINVAL
);
1596 rdev
= regulator_dev_lookup(dev
, id
);
1598 ret
= PTR_ERR(rdev
);
1601 * If regulator_dev_lookup() fails with error other
1602 * than -ENODEV our job here is done, we simply return it.
1605 return ERR_PTR(ret
);
1607 if (!have_full_constraints()) {
1609 "incomplete constraints, dummy supplies not allowed\n");
1610 return ERR_PTR(-ENODEV
);
1616 * Assume that a regulator is physically present and
1617 * enabled, even if it isn't hooked up, and just
1621 "%s supply %s not found, using dummy regulator\n",
1623 rdev
= dummy_regulator_rdev
;
1624 get_device(&rdev
->dev
);
1629 "dummy supplies not allowed for exclusive requests\n");
1633 return ERR_PTR(-ENODEV
);
1637 if (rdev
->exclusive
) {
1638 regulator
= ERR_PTR(-EPERM
);
1639 put_device(&rdev
->dev
);
1643 if (get_type
== EXCLUSIVE_GET
&& rdev
->open_count
) {
1644 regulator
= ERR_PTR(-EBUSY
);
1645 put_device(&rdev
->dev
);
1649 ret
= regulator_resolve_supply(rdev
);
1651 regulator
= ERR_PTR(ret
);
1652 put_device(&rdev
->dev
);
1656 if (!try_module_get(rdev
->owner
)) {
1657 regulator
= ERR_PTR(-EPROBE_DEFER
);
1658 put_device(&rdev
->dev
);
1662 regulator
= create_regulator(rdev
, dev
, id
);
1663 if (regulator
== NULL
) {
1664 regulator
= ERR_PTR(-ENOMEM
);
1665 put_device(&rdev
->dev
);
1666 module_put(rdev
->owner
);
1671 if (get_type
== EXCLUSIVE_GET
) {
1672 rdev
->exclusive
= 1;
1674 ret
= _regulator_is_enabled(rdev
);
1676 rdev
->use_count
= 1;
1678 rdev
->use_count
= 0;
1685 * regulator_get - lookup and obtain a reference to a regulator.
1686 * @dev: device for regulator "consumer"
1687 * @id: Supply name or regulator ID.
1689 * Returns a struct regulator corresponding to the regulator producer,
1690 * or IS_ERR() condition containing errno.
1692 * Use of supply names configured via regulator_set_device_supply() is
1693 * strongly encouraged. It is recommended that the supply name used
1694 * should match the name used for the supply and/or the relevant
1695 * device pins in the datasheet.
1697 struct regulator
*regulator_get(struct device
*dev
, const char *id
)
1699 return _regulator_get(dev
, id
, NORMAL_GET
);
1701 EXPORT_SYMBOL_GPL(regulator_get
);
1704 * regulator_get_exclusive - obtain exclusive access to a regulator.
1705 * @dev: device for regulator "consumer"
1706 * @id: Supply name or regulator ID.
1708 * Returns a struct regulator corresponding to the regulator producer,
1709 * or IS_ERR() condition containing errno. Other consumers will be
1710 * unable to obtain this regulator while this reference is held and the
1711 * use count for the regulator will be initialised to reflect the current
1712 * state of the regulator.
1714 * This is intended for use by consumers which cannot tolerate shared
1715 * use of the regulator such as those which need to force the
1716 * regulator off for correct operation of the hardware they are
1719 * Use of supply names configured via regulator_set_device_supply() is
1720 * strongly encouraged. It is recommended that the supply name used
1721 * should match the name used for the supply and/or the relevant
1722 * device pins in the datasheet.
1724 struct regulator
*regulator_get_exclusive(struct device
*dev
, const char *id
)
1726 return _regulator_get(dev
, id
, EXCLUSIVE_GET
);
1728 EXPORT_SYMBOL_GPL(regulator_get_exclusive
);
1731 * regulator_get_optional - obtain optional access to a regulator.
1732 * @dev: device for regulator "consumer"
1733 * @id: Supply name or regulator ID.
1735 * Returns a struct regulator corresponding to the regulator producer,
1736 * or IS_ERR() condition containing errno.
1738 * This is intended for use by consumers for devices which can have
1739 * some supplies unconnected in normal use, such as some MMC devices.
1740 * It can allow the regulator core to provide stub supplies for other
1741 * supplies requested using normal regulator_get() calls without
1742 * disrupting the operation of drivers that can handle absent
1745 * Use of supply names configured via regulator_set_device_supply() is
1746 * strongly encouraged. It is recommended that the supply name used
1747 * should match the name used for the supply and/or the relevant
1748 * device pins in the datasheet.
1750 struct regulator
*regulator_get_optional(struct device
*dev
, const char *id
)
1752 return _regulator_get(dev
, id
, OPTIONAL_GET
);
1754 EXPORT_SYMBOL_GPL(regulator_get_optional
);
1756 /* regulator_list_mutex lock held by regulator_put() */
1757 static void _regulator_put(struct regulator
*regulator
)
1759 struct regulator_dev
*rdev
;
1761 if (IS_ERR_OR_NULL(regulator
))
1764 lockdep_assert_held_once(®ulator_list_mutex
);
1766 rdev
= regulator
->rdev
;
1768 debugfs_remove_recursive(regulator
->debugfs
);
1770 /* remove any sysfs entries */
1772 sysfs_remove_link(&rdev
->dev
.kobj
, regulator
->supply_name
);
1773 mutex_lock(&rdev
->mutex
);
1774 list_del(®ulator
->list
);
1777 rdev
->exclusive
= 0;
1778 put_device(&rdev
->dev
);
1779 mutex_unlock(&rdev
->mutex
);
1781 kfree_const(regulator
->supply_name
);
1784 module_put(rdev
->owner
);
1788 * regulator_put - "free" the regulator source
1789 * @regulator: regulator source
1791 * Note: drivers must ensure that all regulator_enable calls made on this
1792 * regulator source are balanced by regulator_disable calls prior to calling
1795 void regulator_put(struct regulator
*regulator
)
1797 mutex_lock(®ulator_list_mutex
);
1798 _regulator_put(regulator
);
1799 mutex_unlock(®ulator_list_mutex
);
1801 EXPORT_SYMBOL_GPL(regulator_put
);
1804 * regulator_register_supply_alias - Provide device alias for supply lookup
1806 * @dev: device that will be given as the regulator "consumer"
1807 * @id: Supply name or regulator ID
1808 * @alias_dev: device that should be used to lookup the supply
1809 * @alias_id: Supply name or regulator ID that should be used to lookup the
1812 * All lookups for id on dev will instead be conducted for alias_id on
1815 int regulator_register_supply_alias(struct device
*dev
, const char *id
,
1816 struct device
*alias_dev
,
1817 const char *alias_id
)
1819 struct regulator_supply_alias
*map
;
1821 map
= regulator_find_supply_alias(dev
, id
);
1825 map
= kzalloc(sizeof(struct regulator_supply_alias
), GFP_KERNEL
);
1830 map
->src_supply
= id
;
1831 map
->alias_dev
= alias_dev
;
1832 map
->alias_supply
= alias_id
;
1834 list_add(&map
->list
, ®ulator_supply_alias_list
);
1836 pr_info("Adding alias for supply %s,%s -> %s,%s\n",
1837 id
, dev_name(dev
), alias_id
, dev_name(alias_dev
));
1841 EXPORT_SYMBOL_GPL(regulator_register_supply_alias
);
1844 * regulator_unregister_supply_alias - Remove device alias
1846 * @dev: device that will be given as the regulator "consumer"
1847 * @id: Supply name or regulator ID
1849 * Remove a lookup alias if one exists for id on dev.
1851 void regulator_unregister_supply_alias(struct device
*dev
, const char *id
)
1853 struct regulator_supply_alias
*map
;
1855 map
= regulator_find_supply_alias(dev
, id
);
1857 list_del(&map
->list
);
1861 EXPORT_SYMBOL_GPL(regulator_unregister_supply_alias
);
1864 * regulator_bulk_register_supply_alias - register multiple aliases
1866 * @dev: device that will be given as the regulator "consumer"
1867 * @id: List of supply names or regulator IDs
1868 * @alias_dev: device that should be used to lookup the supply
1869 * @alias_id: List of supply names or regulator IDs that should be used to
1871 * @num_id: Number of aliases to register
1873 * @return 0 on success, an errno on failure.
1875 * This helper function allows drivers to register several supply
1876 * aliases in one operation. If any of the aliases cannot be
1877 * registered any aliases that were registered will be removed
1878 * before returning to the caller.
1880 int regulator_bulk_register_supply_alias(struct device
*dev
,
1881 const char *const *id
,
1882 struct device
*alias_dev
,
1883 const char *const *alias_id
,
1889 for (i
= 0; i
< num_id
; ++i
) {
1890 ret
= regulator_register_supply_alias(dev
, id
[i
], alias_dev
,
1900 "Failed to create supply alias %s,%s -> %s,%s\n",
1901 id
[i
], dev_name(dev
), alias_id
[i
], dev_name(alias_dev
));
1904 regulator_unregister_supply_alias(dev
, id
[i
]);
1908 EXPORT_SYMBOL_GPL(regulator_bulk_register_supply_alias
);
1911 * regulator_bulk_unregister_supply_alias - unregister multiple aliases
1913 * @dev: device that will be given as the regulator "consumer"
1914 * @id: List of supply names or regulator IDs
1915 * @num_id: Number of aliases to unregister
1917 * This helper function allows drivers to unregister several supply
1918 * aliases in one operation.
1920 void regulator_bulk_unregister_supply_alias(struct device
*dev
,
1921 const char *const *id
,
1926 for (i
= 0; i
< num_id
; ++i
)
1927 regulator_unregister_supply_alias(dev
, id
[i
]);
1929 EXPORT_SYMBOL_GPL(regulator_bulk_unregister_supply_alias
);
1932 /* Manage enable GPIO list. Same GPIO pin can be shared among regulators */
1933 static int regulator_ena_gpio_request(struct regulator_dev
*rdev
,
1934 const struct regulator_config
*config
)
1936 struct regulator_enable_gpio
*pin
;
1937 struct gpio_desc
*gpiod
;
1940 gpiod
= gpio_to_desc(config
->ena_gpio
);
1942 list_for_each_entry(pin
, ®ulator_ena_gpio_list
, list
) {
1943 if (pin
->gpiod
== gpiod
) {
1944 rdev_dbg(rdev
, "GPIO %d is already used\n",
1946 goto update_ena_gpio_to_rdev
;
1950 ret
= gpio_request_one(config
->ena_gpio
,
1951 GPIOF_DIR_OUT
| config
->ena_gpio_flags
,
1952 rdev_get_name(rdev
));
1956 pin
= kzalloc(sizeof(struct regulator_enable_gpio
), GFP_KERNEL
);
1958 gpio_free(config
->ena_gpio
);
1963 pin
->ena_gpio_invert
= config
->ena_gpio_invert
;
1964 list_add(&pin
->list
, ®ulator_ena_gpio_list
);
1966 update_ena_gpio_to_rdev
:
1967 pin
->request_count
++;
1968 rdev
->ena_pin
= pin
;
1972 static void regulator_ena_gpio_free(struct regulator_dev
*rdev
)
1974 struct regulator_enable_gpio
*pin
, *n
;
1979 /* Free the GPIO only in case of no use */
1980 list_for_each_entry_safe(pin
, n
, ®ulator_ena_gpio_list
, list
) {
1981 if (pin
->gpiod
== rdev
->ena_pin
->gpiod
) {
1982 if (pin
->request_count
<= 1) {
1983 pin
->request_count
= 0;
1984 gpiod_put(pin
->gpiod
);
1985 list_del(&pin
->list
);
1987 rdev
->ena_pin
= NULL
;
1990 pin
->request_count
--;
1997 * regulator_ena_gpio_ctrl - balance enable_count of each GPIO and actual GPIO pin control
1998 * @rdev: regulator_dev structure
1999 * @enable: enable GPIO at initial use?
2001 * GPIO is enabled in case of initial use. (enable_count is 0)
2002 * GPIO is disabled when it is not shared any more. (enable_count <= 1)
2004 static int regulator_ena_gpio_ctrl(struct regulator_dev
*rdev
, bool enable
)
2006 struct regulator_enable_gpio
*pin
= rdev
->ena_pin
;
2012 /* Enable GPIO at initial use */
2013 if (pin
->enable_count
== 0)
2014 gpiod_set_value_cansleep(pin
->gpiod
,
2015 !pin
->ena_gpio_invert
);
2017 pin
->enable_count
++;
2019 if (pin
->enable_count
> 1) {
2020 pin
->enable_count
--;
2024 /* Disable GPIO if not used */
2025 if (pin
->enable_count
<= 1) {
2026 gpiod_set_value_cansleep(pin
->gpiod
,
2027 pin
->ena_gpio_invert
);
2028 pin
->enable_count
= 0;
2036 * _regulator_enable_delay - a delay helper function
2037 * @delay: time to delay in microseconds
2039 * Delay for the requested amount of time as per the guidelines in:
2041 * Documentation/timers/timers-howto.txt
2043 * The assumption here is that regulators will never be enabled in
2044 * atomic context and therefore sleeping functions can be used.
2046 static void _regulator_enable_delay(unsigned int delay
)
2048 unsigned int ms
= delay
/ 1000;
2049 unsigned int us
= delay
% 1000;
2053 * For small enough values, handle super-millisecond
2054 * delays in the usleep_range() call below.
2063 * Give the scheduler some room to coalesce with any other
2064 * wakeup sources. For delays shorter than 10 us, don't even
2065 * bother setting up high-resolution timers and just busy-
2069 usleep_range(us
, us
+ 100);
2074 static int _regulator_do_enable(struct regulator_dev
*rdev
)
2078 /* Query before enabling in case configuration dependent. */
2079 ret
= _regulator_get_enable_time(rdev
);
2083 rdev_warn(rdev
, "enable_time() failed: %d\n", ret
);
2087 trace_regulator_enable(rdev_get_name(rdev
));
2089 if (rdev
->desc
->off_on_delay
) {
2090 /* if needed, keep a distance of off_on_delay from last time
2091 * this regulator was disabled.
2093 unsigned long start_jiffy
= jiffies
;
2094 unsigned long intended
, max_delay
, remaining
;
2096 max_delay
= usecs_to_jiffies(rdev
->desc
->off_on_delay
);
2097 intended
= rdev
->last_off_jiffy
+ max_delay
;
2099 if (time_before(start_jiffy
, intended
)) {
2100 /* calc remaining jiffies to deal with one-time
2102 * in case of multiple timer wrapping, either it can be
2103 * detected by out-of-range remaining, or it cannot be
2104 * detected and we gets a panelty of
2105 * _regulator_enable_delay().
2107 remaining
= intended
- start_jiffy
;
2108 if (remaining
<= max_delay
)
2109 _regulator_enable_delay(
2110 jiffies_to_usecs(remaining
));
2114 if (rdev
->ena_pin
) {
2115 if (!rdev
->ena_gpio_state
) {
2116 ret
= regulator_ena_gpio_ctrl(rdev
, true);
2119 rdev
->ena_gpio_state
= 1;
2121 } else if (rdev
->desc
->ops
->enable
) {
2122 ret
= rdev
->desc
->ops
->enable(rdev
);
2129 /* Allow the regulator to ramp; it would be useful to extend
2130 * this for bulk operations so that the regulators can ramp
2132 trace_regulator_enable_delay(rdev_get_name(rdev
));
2134 _regulator_enable_delay(delay
);
2136 trace_regulator_enable_complete(rdev_get_name(rdev
));
2141 /* locks held by regulator_enable() */
2142 static int _regulator_enable(struct regulator_dev
*rdev
)
2146 lockdep_assert_held_once(&rdev
->mutex
);
2148 /* check voltage and requested load before enabling */
2149 if (regulator_ops_is_valid(rdev
, REGULATOR_CHANGE_DRMS
))
2150 drms_uA_update(rdev
);
2152 if (rdev
->use_count
== 0) {
2153 /* The regulator may on if it's not switchable or left on */
2154 ret
= _regulator_is_enabled(rdev
);
2155 if (ret
== -EINVAL
|| ret
== 0) {
2156 if (!regulator_ops_is_valid(rdev
,
2157 REGULATOR_CHANGE_STATUS
))
2160 ret
= _regulator_do_enable(rdev
);
2164 _notifier_call_chain(rdev
, REGULATOR_EVENT_ENABLE
,
2166 } else if (ret
< 0) {
2167 rdev_err(rdev
, "is_enabled() failed: %d\n", ret
);
2170 /* Fallthrough on positive return values - already enabled */
2179 * regulator_enable - enable regulator output
2180 * @regulator: regulator source
2182 * Request that the regulator be enabled with the regulator output at
2183 * the predefined voltage or current value. Calls to regulator_enable()
2184 * must be balanced with calls to regulator_disable().
2186 * NOTE: the output value can be set by other drivers, boot loader or may be
2187 * hardwired in the regulator.
2189 int regulator_enable(struct regulator
*regulator
)
2191 struct regulator_dev
*rdev
= regulator
->rdev
;
2194 if (regulator
->always_on
)
2198 ret
= regulator_enable(rdev
->supply
);
2203 mutex_lock(&rdev
->mutex
);
2204 ret
= _regulator_enable(rdev
);
2205 mutex_unlock(&rdev
->mutex
);
2207 if (ret
!= 0 && rdev
->supply
)
2208 regulator_disable(rdev
->supply
);
2212 EXPORT_SYMBOL_GPL(regulator_enable
);
2214 static int _regulator_do_disable(struct regulator_dev
*rdev
)
2218 trace_regulator_disable(rdev_get_name(rdev
));
2220 if (rdev
->ena_pin
) {
2221 if (rdev
->ena_gpio_state
) {
2222 ret
= regulator_ena_gpio_ctrl(rdev
, false);
2225 rdev
->ena_gpio_state
= 0;
2228 } else if (rdev
->desc
->ops
->disable
) {
2229 ret
= rdev
->desc
->ops
->disable(rdev
);
2234 /* cares about last_off_jiffy only if off_on_delay is required by
2237 if (rdev
->desc
->off_on_delay
)
2238 rdev
->last_off_jiffy
= jiffies
;
2240 trace_regulator_disable_complete(rdev_get_name(rdev
));
2245 /* locks held by regulator_disable() */
2246 static int _regulator_disable(struct regulator_dev
*rdev
)
2250 lockdep_assert_held_once(&rdev
->mutex
);
2252 if (WARN(rdev
->use_count
<= 0,
2253 "unbalanced disables for %s\n", rdev_get_name(rdev
)))
2256 /* are we the last user and permitted to disable ? */
2257 if (rdev
->use_count
== 1 &&
2258 (rdev
->constraints
&& !rdev
->constraints
->always_on
)) {
2260 /* we are last user */
2261 if (regulator_ops_is_valid(rdev
, REGULATOR_CHANGE_STATUS
)) {
2262 ret
= _notifier_call_chain(rdev
,
2263 REGULATOR_EVENT_PRE_DISABLE
,
2265 if (ret
& NOTIFY_STOP_MASK
)
2268 ret
= _regulator_do_disable(rdev
);
2270 rdev_err(rdev
, "failed to disable\n");
2271 _notifier_call_chain(rdev
,
2272 REGULATOR_EVENT_ABORT_DISABLE
,
2276 _notifier_call_chain(rdev
, REGULATOR_EVENT_DISABLE
,
2280 rdev
->use_count
= 0;
2281 } else if (rdev
->use_count
> 1) {
2282 if (regulator_ops_is_valid(rdev
, REGULATOR_CHANGE_DRMS
))
2283 drms_uA_update(rdev
);
2292 * regulator_disable - disable regulator output
2293 * @regulator: regulator source
2295 * Disable the regulator output voltage or current. Calls to
2296 * regulator_enable() must be balanced with calls to
2297 * regulator_disable().
2299 * NOTE: this will only disable the regulator output if no other consumer
2300 * devices have it enabled, the regulator device supports disabling and
2301 * machine constraints permit this operation.
2303 int regulator_disable(struct regulator
*regulator
)
2305 struct regulator_dev
*rdev
= regulator
->rdev
;
2308 if (regulator
->always_on
)
2311 mutex_lock(&rdev
->mutex
);
2312 ret
= _regulator_disable(rdev
);
2313 mutex_unlock(&rdev
->mutex
);
2315 if (ret
== 0 && rdev
->supply
)
2316 regulator_disable(rdev
->supply
);
2320 EXPORT_SYMBOL_GPL(regulator_disable
);
2322 /* locks held by regulator_force_disable() */
2323 static int _regulator_force_disable(struct regulator_dev
*rdev
)
2327 lockdep_assert_held_once(&rdev
->mutex
);
2329 ret
= _notifier_call_chain(rdev
, REGULATOR_EVENT_FORCE_DISABLE
|
2330 REGULATOR_EVENT_PRE_DISABLE
, NULL
);
2331 if (ret
& NOTIFY_STOP_MASK
)
2334 ret
= _regulator_do_disable(rdev
);
2336 rdev_err(rdev
, "failed to force disable\n");
2337 _notifier_call_chain(rdev
, REGULATOR_EVENT_FORCE_DISABLE
|
2338 REGULATOR_EVENT_ABORT_DISABLE
, NULL
);
2342 _notifier_call_chain(rdev
, REGULATOR_EVENT_FORCE_DISABLE
|
2343 REGULATOR_EVENT_DISABLE
, NULL
);
2349 * regulator_force_disable - force disable regulator output
2350 * @regulator: regulator source
2352 * Forcibly disable the regulator output voltage or current.
2353 * NOTE: this *will* disable the regulator output even if other consumer
2354 * devices have it enabled. This should be used for situations when device
2355 * damage will likely occur if the regulator is not disabled (e.g. over temp).
2357 int regulator_force_disable(struct regulator
*regulator
)
2359 struct regulator_dev
*rdev
= regulator
->rdev
;
2362 mutex_lock(&rdev
->mutex
);
2363 regulator
->uA_load
= 0;
2364 ret
= _regulator_force_disable(regulator
->rdev
);
2365 mutex_unlock(&rdev
->mutex
);
2368 while (rdev
->open_count
--)
2369 regulator_disable(rdev
->supply
);
2373 EXPORT_SYMBOL_GPL(regulator_force_disable
);
2375 static void regulator_disable_work(struct work_struct
*work
)
2377 struct regulator_dev
*rdev
= container_of(work
, struct regulator_dev
,
2381 mutex_lock(&rdev
->mutex
);
2383 BUG_ON(!rdev
->deferred_disables
);
2385 count
= rdev
->deferred_disables
;
2386 rdev
->deferred_disables
= 0;
2389 * Workqueue functions queue the new work instance while the previous
2390 * work instance is being processed. Cancel the queued work instance
2391 * as the work instance under processing does the job of the queued
2394 cancel_delayed_work(&rdev
->disable_work
);
2396 for (i
= 0; i
< count
; i
++) {
2397 ret
= _regulator_disable(rdev
);
2399 rdev_err(rdev
, "Deferred disable failed: %d\n", ret
);
2402 mutex_unlock(&rdev
->mutex
);
2405 for (i
= 0; i
< count
; i
++) {
2406 ret
= regulator_disable(rdev
->supply
);
2409 "Supply disable failed: %d\n", ret
);
2416 * regulator_disable_deferred - disable regulator output with delay
2417 * @regulator: regulator source
2418 * @ms: miliseconds until the regulator is disabled
2420 * Execute regulator_disable() on the regulator after a delay. This
2421 * is intended for use with devices that require some time to quiesce.
2423 * NOTE: this will only disable the regulator output if no other consumer
2424 * devices have it enabled, the regulator device supports disabling and
2425 * machine constraints permit this operation.
2427 int regulator_disable_deferred(struct regulator
*regulator
, int ms
)
2429 struct regulator_dev
*rdev
= regulator
->rdev
;
2431 if (regulator
->always_on
)
2435 return regulator_disable(regulator
);
2437 mutex_lock(&rdev
->mutex
);
2438 rdev
->deferred_disables
++;
2439 mod_delayed_work(system_power_efficient_wq
, &rdev
->disable_work
,
2440 msecs_to_jiffies(ms
));
2441 mutex_unlock(&rdev
->mutex
);
2445 EXPORT_SYMBOL_GPL(regulator_disable_deferred
);
2447 static int _regulator_is_enabled(struct regulator_dev
*rdev
)
2449 /* A GPIO control always takes precedence */
2451 return rdev
->ena_gpio_state
;
2453 /* If we don't know then assume that the regulator is always on */
2454 if (!rdev
->desc
->ops
->is_enabled
)
2457 return rdev
->desc
->ops
->is_enabled(rdev
);
2460 static int _regulator_list_voltage(struct regulator_dev
*rdev
,
2461 unsigned selector
, int lock
)
2463 const struct regulator_ops
*ops
= rdev
->desc
->ops
;
2466 if (rdev
->desc
->fixed_uV
&& rdev
->desc
->n_voltages
== 1 && !selector
)
2467 return rdev
->desc
->fixed_uV
;
2469 if (ops
->list_voltage
) {
2470 if (selector
>= rdev
->desc
->n_voltages
)
2473 mutex_lock(&rdev
->mutex
);
2474 ret
= ops
->list_voltage(rdev
, selector
);
2476 mutex_unlock(&rdev
->mutex
);
2477 } else if (rdev
->is_switch
&& rdev
->supply
) {
2478 ret
= _regulator_list_voltage(rdev
->supply
->rdev
,
2485 if (ret
< rdev
->constraints
->min_uV
)
2487 else if (ret
> rdev
->constraints
->max_uV
)
2495 * regulator_is_enabled - is the regulator output enabled
2496 * @regulator: regulator source
2498 * Returns positive if the regulator driver backing the source/client
2499 * has requested that the device be enabled, zero if it hasn't, else a
2500 * negative errno code.
2502 * Note that the device backing this regulator handle can have multiple
2503 * users, so it might be enabled even if regulator_enable() was never
2504 * called for this particular source.
2506 int regulator_is_enabled(struct regulator
*regulator
)
2510 if (regulator
->always_on
)
2513 mutex_lock(®ulator
->rdev
->mutex
);
2514 ret
= _regulator_is_enabled(regulator
->rdev
);
2515 mutex_unlock(®ulator
->rdev
->mutex
);
2519 EXPORT_SYMBOL_GPL(regulator_is_enabled
);
2522 * regulator_count_voltages - count regulator_list_voltage() selectors
2523 * @regulator: regulator source
2525 * Returns number of selectors, or negative errno. Selectors are
2526 * numbered starting at zero, and typically correspond to bitfields
2527 * in hardware registers.
2529 int regulator_count_voltages(struct regulator
*regulator
)
2531 struct regulator_dev
*rdev
= regulator
->rdev
;
2533 if (rdev
->desc
->n_voltages
)
2534 return rdev
->desc
->n_voltages
;
2536 if (!rdev
->is_switch
|| !rdev
->supply
)
2539 return regulator_count_voltages(rdev
->supply
);
2541 EXPORT_SYMBOL_GPL(regulator_count_voltages
);
2544 * regulator_list_voltage - enumerate supported voltages
2545 * @regulator: regulator source
2546 * @selector: identify voltage to list
2547 * Context: can sleep
2549 * Returns a voltage that can be passed to @regulator_set_voltage(),
2550 * zero if this selector code can't be used on this system, or a
2553 int regulator_list_voltage(struct regulator
*regulator
, unsigned selector
)
2555 return _regulator_list_voltage(regulator
->rdev
, selector
, 1);
2557 EXPORT_SYMBOL_GPL(regulator_list_voltage
);
2560 * regulator_get_regmap - get the regulator's register map
2561 * @regulator: regulator source
2563 * Returns the register map for the given regulator, or an ERR_PTR value
2564 * if the regulator doesn't use regmap.
2566 struct regmap
*regulator_get_regmap(struct regulator
*regulator
)
2568 struct regmap
*map
= regulator
->rdev
->regmap
;
2570 return map
? map
: ERR_PTR(-EOPNOTSUPP
);
2574 * regulator_get_hardware_vsel_register - get the HW voltage selector register
2575 * @regulator: regulator source
2576 * @vsel_reg: voltage selector register, output parameter
2577 * @vsel_mask: mask for voltage selector bitfield, output parameter
2579 * Returns the hardware register offset and bitmask used for setting the
2580 * regulator voltage. This might be useful when configuring voltage-scaling
2581 * hardware or firmware that can make I2C requests behind the kernel's back,
2584 * On success, the output parameters @vsel_reg and @vsel_mask are filled in
2585 * and 0 is returned, otherwise a negative errno is returned.
2587 int regulator_get_hardware_vsel_register(struct regulator
*regulator
,
2589 unsigned *vsel_mask
)
2591 struct regulator_dev
*rdev
= regulator
->rdev
;
2592 const struct regulator_ops
*ops
= rdev
->desc
->ops
;
2594 if (ops
->set_voltage_sel
!= regulator_set_voltage_sel_regmap
)
2597 *vsel_reg
= rdev
->desc
->vsel_reg
;
2598 *vsel_mask
= rdev
->desc
->vsel_mask
;
2602 EXPORT_SYMBOL_GPL(regulator_get_hardware_vsel_register
);
2605 * regulator_list_hardware_vsel - get the HW-specific register value for a selector
2606 * @regulator: regulator source
2607 * @selector: identify voltage to list
2609 * Converts the selector to a hardware-specific voltage selector that can be
2610 * directly written to the regulator registers. The address of the voltage
2611 * register can be determined by calling @regulator_get_hardware_vsel_register.
2613 * On error a negative errno is returned.
2615 int regulator_list_hardware_vsel(struct regulator
*regulator
,
2618 struct regulator_dev
*rdev
= regulator
->rdev
;
2619 const struct regulator_ops
*ops
= rdev
->desc
->ops
;
2621 if (selector
>= rdev
->desc
->n_voltages
)
2623 if (ops
->set_voltage_sel
!= regulator_set_voltage_sel_regmap
)
2628 EXPORT_SYMBOL_GPL(regulator_list_hardware_vsel
);
2631 * regulator_get_linear_step - return the voltage step size between VSEL values
2632 * @regulator: regulator source
2634 * Returns the voltage step size between VSEL values for linear
2635 * regulators, or return 0 if the regulator isn't a linear regulator.
2637 unsigned int regulator_get_linear_step(struct regulator
*regulator
)
2639 struct regulator_dev
*rdev
= regulator
->rdev
;
2641 return rdev
->desc
->uV_step
;
2643 EXPORT_SYMBOL_GPL(regulator_get_linear_step
);
2646 * regulator_is_supported_voltage - check if a voltage range can be supported
2648 * @regulator: Regulator to check.
2649 * @min_uV: Minimum required voltage in uV.
2650 * @max_uV: Maximum required voltage in uV.
2652 * Returns a boolean or a negative error code.
2654 int regulator_is_supported_voltage(struct regulator
*regulator
,
2655 int min_uV
, int max_uV
)
2657 struct regulator_dev
*rdev
= regulator
->rdev
;
2658 int i
, voltages
, ret
;
2660 /* If we can't change voltage check the current voltage */
2661 if (!regulator_ops_is_valid(rdev
, REGULATOR_CHANGE_VOLTAGE
)) {
2662 ret
= regulator_get_voltage(regulator
);
2664 return min_uV
<= ret
&& ret
<= max_uV
;
2669 /* Any voltage within constrains range is fine? */
2670 if (rdev
->desc
->continuous_voltage_range
)
2671 return min_uV
>= rdev
->constraints
->min_uV
&&
2672 max_uV
<= rdev
->constraints
->max_uV
;
2674 ret
= regulator_count_voltages(regulator
);
2679 for (i
= 0; i
< voltages
; i
++) {
2680 ret
= regulator_list_voltage(regulator
, i
);
2682 if (ret
>= min_uV
&& ret
<= max_uV
)
2688 EXPORT_SYMBOL_GPL(regulator_is_supported_voltage
);
2690 static int regulator_map_voltage(struct regulator_dev
*rdev
, int min_uV
,
2693 const struct regulator_desc
*desc
= rdev
->desc
;
2695 if (desc
->ops
->map_voltage
)
2696 return desc
->ops
->map_voltage(rdev
, min_uV
, max_uV
);
2698 if (desc
->ops
->list_voltage
== regulator_list_voltage_linear
)
2699 return regulator_map_voltage_linear(rdev
, min_uV
, max_uV
);
2701 if (desc
->ops
->list_voltage
== regulator_list_voltage_linear_range
)
2702 return regulator_map_voltage_linear_range(rdev
, min_uV
, max_uV
);
2704 return regulator_map_voltage_iterate(rdev
, min_uV
, max_uV
);
2707 static int _regulator_call_set_voltage(struct regulator_dev
*rdev
,
2708 int min_uV
, int max_uV
,
2711 struct pre_voltage_change_data data
;
2714 data
.old_uV
= _regulator_get_voltage(rdev
);
2715 data
.min_uV
= min_uV
;
2716 data
.max_uV
= max_uV
;
2717 ret
= _notifier_call_chain(rdev
, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE
,
2719 if (ret
& NOTIFY_STOP_MASK
)
2722 ret
= rdev
->desc
->ops
->set_voltage(rdev
, min_uV
, max_uV
, selector
);
2726 _notifier_call_chain(rdev
, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE
,
2727 (void *)data
.old_uV
);
2732 static int _regulator_call_set_voltage_sel(struct regulator_dev
*rdev
,
2733 int uV
, unsigned selector
)
2735 struct pre_voltage_change_data data
;
2738 data
.old_uV
= _regulator_get_voltage(rdev
);
2741 ret
= _notifier_call_chain(rdev
, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE
,
2743 if (ret
& NOTIFY_STOP_MASK
)
2746 ret
= rdev
->desc
->ops
->set_voltage_sel(rdev
, selector
);
2750 _notifier_call_chain(rdev
, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE
,
2751 (void *)data
.old_uV
);
2756 static int _regulator_set_voltage_time(struct regulator_dev
*rdev
,
2757 int old_uV
, int new_uV
)
2759 unsigned int ramp_delay
= 0;
2761 if (rdev
->constraints
->ramp_delay
)
2762 ramp_delay
= rdev
->constraints
->ramp_delay
;
2763 else if (rdev
->desc
->ramp_delay
)
2764 ramp_delay
= rdev
->desc
->ramp_delay
;
2765 else if (rdev
->constraints
->settling_time
)
2766 return rdev
->constraints
->settling_time
;
2767 else if (rdev
->constraints
->settling_time_up
&&
2769 return rdev
->constraints
->settling_time_up
;
2770 else if (rdev
->constraints
->settling_time_down
&&
2772 return rdev
->constraints
->settling_time_down
;
2774 if (ramp_delay
== 0) {
2775 rdev_dbg(rdev
, "ramp_delay not set\n");
2779 return DIV_ROUND_UP(abs(new_uV
- old_uV
), ramp_delay
);
2782 static int _regulator_do_set_voltage(struct regulator_dev
*rdev
,
2783 int min_uV
, int max_uV
)
2788 unsigned int selector
;
2789 int old_selector
= -1;
2790 const struct regulator_ops
*ops
= rdev
->desc
->ops
;
2791 int old_uV
= _regulator_get_voltage(rdev
);
2793 trace_regulator_set_voltage(rdev_get_name(rdev
), min_uV
, max_uV
);
2795 min_uV
+= rdev
->constraints
->uV_offset
;
2796 max_uV
+= rdev
->constraints
->uV_offset
;
2799 * If we can't obtain the old selector there is not enough
2800 * info to call set_voltage_time_sel().
2802 if (_regulator_is_enabled(rdev
) &&
2803 ops
->set_voltage_time_sel
&& ops
->get_voltage_sel
) {
2804 old_selector
= ops
->get_voltage_sel(rdev
);
2805 if (old_selector
< 0)
2806 return old_selector
;
2809 if (ops
->set_voltage
) {
2810 ret
= _regulator_call_set_voltage(rdev
, min_uV
, max_uV
,
2814 if (ops
->list_voltage
)
2815 best_val
= ops
->list_voltage(rdev
,
2818 best_val
= _regulator_get_voltage(rdev
);
2821 } else if (ops
->set_voltage_sel
) {
2822 ret
= regulator_map_voltage(rdev
, min_uV
, max_uV
);
2824 best_val
= ops
->list_voltage(rdev
, ret
);
2825 if (min_uV
<= best_val
&& max_uV
>= best_val
) {
2827 if (old_selector
== selector
)
2830 ret
= _regulator_call_set_voltage_sel(
2831 rdev
, best_val
, selector
);
2843 if (ops
->set_voltage_time_sel
) {
2845 * Call set_voltage_time_sel if successfully obtained
2848 if (old_selector
>= 0 && old_selector
!= selector
)
2849 delay
= ops
->set_voltage_time_sel(rdev
, old_selector
,
2852 if (old_uV
!= best_val
) {
2853 if (ops
->set_voltage_time
)
2854 delay
= ops
->set_voltage_time(rdev
, old_uV
,
2857 delay
= _regulator_set_voltage_time(rdev
,
2864 rdev_warn(rdev
, "failed to get delay: %d\n", delay
);
2868 /* Insert any necessary delays */
2869 if (delay
>= 1000) {
2870 mdelay(delay
/ 1000);
2871 udelay(delay
% 1000);
2876 if (best_val
>= 0) {
2877 unsigned long data
= best_val
;
2879 _notifier_call_chain(rdev
, REGULATOR_EVENT_VOLTAGE_CHANGE
,
2884 trace_regulator_set_voltage_complete(rdev_get_name(rdev
), best_val
);
2889 static int _regulator_do_set_suspend_voltage(struct regulator_dev
*rdev
,
2890 int min_uV
, int max_uV
, suspend_state_t state
)
2892 struct regulator_state
*rstate
;
2895 rstate
= regulator_get_suspend_state(rdev
, state
);
2899 if (min_uV
< rstate
->min_uV
)
2900 min_uV
= rstate
->min_uV
;
2901 if (max_uV
> rstate
->max_uV
)
2902 max_uV
= rstate
->max_uV
;
2904 sel
= regulator_map_voltage(rdev
, min_uV
, max_uV
);
2908 uV
= rdev
->desc
->ops
->list_voltage(rdev
, sel
);
2909 if (uV
>= min_uV
&& uV
<= max_uV
)
2915 static int regulator_set_voltage_unlocked(struct regulator
*regulator
,
2916 int min_uV
, int max_uV
,
2917 suspend_state_t state
)
2919 struct regulator_dev
*rdev
= regulator
->rdev
;
2920 struct regulator_voltage
*voltage
= ®ulator
->voltage
[state
];
2922 int old_min_uV
, old_max_uV
;
2924 int best_supply_uV
= 0;
2925 int supply_change_uV
= 0;
2927 /* If we're setting the same range as last time the change
2928 * should be a noop (some cpufreq implementations use the same
2929 * voltage for multiple frequencies, for example).
2931 if (voltage
->min_uV
== min_uV
&& voltage
->max_uV
== max_uV
)
2934 /* If we're trying to set a range that overlaps the current voltage,
2935 * return successfully even though the regulator does not support
2936 * changing the voltage.
2938 if (!regulator_ops_is_valid(rdev
, REGULATOR_CHANGE_VOLTAGE
)) {
2939 current_uV
= _regulator_get_voltage(rdev
);
2940 if (min_uV
<= current_uV
&& current_uV
<= max_uV
) {
2941 voltage
->min_uV
= min_uV
;
2942 voltage
->max_uV
= max_uV
;
2948 if (!rdev
->desc
->ops
->set_voltage
&&
2949 !rdev
->desc
->ops
->set_voltage_sel
) {
2954 /* constraints check */
2955 ret
= regulator_check_voltage(rdev
, &min_uV
, &max_uV
);
2959 /* restore original values in case of error */
2960 old_min_uV
= voltage
->min_uV
;
2961 old_max_uV
= voltage
->max_uV
;
2962 voltage
->min_uV
= min_uV
;
2963 voltage
->max_uV
= max_uV
;
2965 ret
= regulator_check_consumers(rdev
, &min_uV
, &max_uV
, state
);
2970 regulator_ops_is_valid(rdev
->supply
->rdev
,
2971 REGULATOR_CHANGE_VOLTAGE
) &&
2972 (rdev
->desc
->min_dropout_uV
|| !(rdev
->desc
->ops
->get_voltage
||
2973 rdev
->desc
->ops
->get_voltage_sel
))) {
2974 int current_supply_uV
;
2977 selector
= regulator_map_voltage(rdev
, min_uV
, max_uV
);
2983 best_supply_uV
= _regulator_list_voltage(rdev
, selector
, 0);
2984 if (best_supply_uV
< 0) {
2985 ret
= best_supply_uV
;
2989 best_supply_uV
+= rdev
->desc
->min_dropout_uV
;
2991 current_supply_uV
= _regulator_get_voltage(rdev
->supply
->rdev
);
2992 if (current_supply_uV
< 0) {
2993 ret
= current_supply_uV
;
2997 supply_change_uV
= best_supply_uV
- current_supply_uV
;
3000 if (supply_change_uV
> 0) {
3001 ret
= regulator_set_voltage_unlocked(rdev
->supply
,
3002 best_supply_uV
, INT_MAX
, state
);
3004 dev_err(&rdev
->dev
, "Failed to increase supply voltage: %d\n",
3010 if (state
== PM_SUSPEND_ON
)
3011 ret
= _regulator_do_set_voltage(rdev
, min_uV
, max_uV
);
3013 ret
= _regulator_do_set_suspend_voltage(rdev
, min_uV
,
3018 if (supply_change_uV
< 0) {
3019 ret
= regulator_set_voltage_unlocked(rdev
->supply
,
3020 best_supply_uV
, INT_MAX
, state
);
3022 dev_warn(&rdev
->dev
, "Failed to decrease supply voltage: %d\n",
3024 /* No need to fail here */
3031 voltage
->min_uV
= old_min_uV
;
3032 voltage
->max_uV
= old_max_uV
;
3038 * regulator_set_voltage - set regulator output voltage
3039 * @regulator: regulator source
3040 * @min_uV: Minimum required voltage in uV
3041 * @max_uV: Maximum acceptable voltage in uV
3043 * Sets a voltage regulator to the desired output voltage. This can be set
3044 * during any regulator state. IOW, regulator can be disabled or enabled.
3046 * If the regulator is enabled then the voltage will change to the new value
3047 * immediately otherwise if the regulator is disabled the regulator will
3048 * output at the new voltage when enabled.
3050 * NOTE: If the regulator is shared between several devices then the lowest
3051 * request voltage that meets the system constraints will be used.
3052 * Regulator system constraints must be set for this regulator before
3053 * calling this function otherwise this call will fail.
3055 int regulator_set_voltage(struct regulator
*regulator
, int min_uV
, int max_uV
)
3059 regulator_lock_supply(regulator
->rdev
);
3061 ret
= regulator_set_voltage_unlocked(regulator
, min_uV
, max_uV
,
3064 regulator_unlock_supply(regulator
->rdev
);
3068 EXPORT_SYMBOL_GPL(regulator_set_voltage
);
3070 static inline int regulator_suspend_toggle(struct regulator_dev
*rdev
,
3071 suspend_state_t state
, bool en
)
3073 struct regulator_state
*rstate
;
3075 rstate
= regulator_get_suspend_state(rdev
, state
);
3079 if (!rstate
->changeable
)
3082 rstate
->enabled
= en
;
3087 int regulator_suspend_enable(struct regulator_dev
*rdev
,
3088 suspend_state_t state
)
3090 return regulator_suspend_toggle(rdev
, state
, true);
3092 EXPORT_SYMBOL_GPL(regulator_suspend_enable
);
3094 int regulator_suspend_disable(struct regulator_dev
*rdev
,
3095 suspend_state_t state
)
3097 struct regulator
*regulator
;
3098 struct regulator_voltage
*voltage
;
3101 * if any consumer wants this regulator device keeping on in
3102 * suspend states, don't set it as disabled.
3104 list_for_each_entry(regulator
, &rdev
->consumer_list
, list
) {
3105 voltage
= ®ulator
->voltage
[state
];
3106 if (voltage
->min_uV
|| voltage
->max_uV
)
3110 return regulator_suspend_toggle(rdev
, state
, false);
3112 EXPORT_SYMBOL_GPL(regulator_suspend_disable
);
3114 static int _regulator_set_suspend_voltage(struct regulator
*regulator
,
3115 int min_uV
, int max_uV
,
3116 suspend_state_t state
)
3118 struct regulator_dev
*rdev
= regulator
->rdev
;
3119 struct regulator_state
*rstate
;
3121 rstate
= regulator_get_suspend_state(rdev
, state
);
3125 if (rstate
->min_uV
== rstate
->max_uV
) {
3126 rdev_err(rdev
, "The suspend voltage can't be changed!\n");
3130 return regulator_set_voltage_unlocked(regulator
, min_uV
, max_uV
, state
);
3133 int regulator_set_suspend_voltage(struct regulator
*regulator
, int min_uV
,
3134 int max_uV
, suspend_state_t state
)
3138 /* PM_SUSPEND_ON is handled by regulator_set_voltage() */
3139 if (regulator_check_states(state
) || state
== PM_SUSPEND_ON
)
3142 regulator_lock_supply(regulator
->rdev
);
3144 ret
= _regulator_set_suspend_voltage(regulator
, min_uV
,
3147 regulator_unlock_supply(regulator
->rdev
);
3151 EXPORT_SYMBOL_GPL(regulator_set_suspend_voltage
);
3154 * regulator_set_voltage_time - get raise/fall time
3155 * @regulator: regulator source
3156 * @old_uV: starting voltage in microvolts
3157 * @new_uV: target voltage in microvolts
3159 * Provided with the starting and ending voltage, this function attempts to
3160 * calculate the time in microseconds required to rise or fall to this new
3163 int regulator_set_voltage_time(struct regulator
*regulator
,
3164 int old_uV
, int new_uV
)
3166 struct regulator_dev
*rdev
= regulator
->rdev
;
3167 const struct regulator_ops
*ops
= rdev
->desc
->ops
;
3173 if (ops
->set_voltage_time
)
3174 return ops
->set_voltage_time(rdev
, old_uV
, new_uV
);
3175 else if (!ops
->set_voltage_time_sel
)
3176 return _regulator_set_voltage_time(rdev
, old_uV
, new_uV
);
3178 /* Currently requires operations to do this */
3179 if (!ops
->list_voltage
|| !rdev
->desc
->n_voltages
)
3182 for (i
= 0; i
< rdev
->desc
->n_voltages
; i
++) {
3183 /* We only look for exact voltage matches here */
3184 voltage
= regulator_list_voltage(regulator
, i
);
3189 if (voltage
== old_uV
)
3191 if (voltage
== new_uV
)
3195 if (old_sel
< 0 || new_sel
< 0)
3198 return ops
->set_voltage_time_sel(rdev
, old_sel
, new_sel
);
3200 EXPORT_SYMBOL_GPL(regulator_set_voltage_time
);
3203 * regulator_set_voltage_time_sel - get raise/fall time
3204 * @rdev: regulator source device
3205 * @old_selector: selector for starting voltage
3206 * @new_selector: selector for target voltage
3208 * Provided with the starting and target voltage selectors, this function
3209 * returns time in microseconds required to rise or fall to this new voltage
3211 * Drivers providing ramp_delay in regulation_constraints can use this as their
3212 * set_voltage_time_sel() operation.
3214 int regulator_set_voltage_time_sel(struct regulator_dev
*rdev
,
3215 unsigned int old_selector
,
3216 unsigned int new_selector
)
3218 int old_volt
, new_volt
;
3221 if (!rdev
->desc
->ops
->list_voltage
)
3224 old_volt
= rdev
->desc
->ops
->list_voltage(rdev
, old_selector
);
3225 new_volt
= rdev
->desc
->ops
->list_voltage(rdev
, new_selector
);
3227 if (rdev
->desc
->ops
->set_voltage_time
)
3228 return rdev
->desc
->ops
->set_voltage_time(rdev
, old_volt
,
3231 return _regulator_set_voltage_time(rdev
, old_volt
, new_volt
);
3233 EXPORT_SYMBOL_GPL(regulator_set_voltage_time_sel
);
3236 * regulator_sync_voltage - re-apply last regulator output voltage
3237 * @regulator: regulator source
3239 * Re-apply the last configured voltage. This is intended to be used
3240 * where some external control source the consumer is cooperating with
3241 * has caused the configured voltage to change.
3243 int regulator_sync_voltage(struct regulator
*regulator
)
3245 struct regulator_dev
*rdev
= regulator
->rdev
;
3246 struct regulator_voltage
*voltage
= ®ulator
->voltage
[PM_SUSPEND_ON
];
3247 int ret
, min_uV
, max_uV
;
3249 mutex_lock(&rdev
->mutex
);
3251 if (!rdev
->desc
->ops
->set_voltage
&&
3252 !rdev
->desc
->ops
->set_voltage_sel
) {
3257 /* This is only going to work if we've had a voltage configured. */
3258 if (!voltage
->min_uV
&& !voltage
->max_uV
) {
3263 min_uV
= voltage
->min_uV
;
3264 max_uV
= voltage
->max_uV
;
3266 /* This should be a paranoia check... */
3267 ret
= regulator_check_voltage(rdev
, &min_uV
, &max_uV
);
3271 ret
= regulator_check_consumers(rdev
, &min_uV
, &max_uV
, 0);
3275 ret
= _regulator_do_set_voltage(rdev
, min_uV
, max_uV
);
3278 mutex_unlock(&rdev
->mutex
);
3281 EXPORT_SYMBOL_GPL(regulator_sync_voltage
);
3283 static int _regulator_get_voltage(struct regulator_dev
*rdev
)
3288 if (rdev
->desc
->ops
->get_bypass
) {
3289 ret
= rdev
->desc
->ops
->get_bypass(rdev
, &bypassed
);
3293 /* if bypassed the regulator must have a supply */
3294 if (!rdev
->supply
) {
3296 "bypassed regulator has no supply!\n");
3297 return -EPROBE_DEFER
;
3300 return _regulator_get_voltage(rdev
->supply
->rdev
);
3304 if (rdev
->desc
->ops
->get_voltage_sel
) {
3305 sel
= rdev
->desc
->ops
->get_voltage_sel(rdev
);
3308 ret
= rdev
->desc
->ops
->list_voltage(rdev
, sel
);
3309 } else if (rdev
->desc
->ops
->get_voltage
) {
3310 ret
= rdev
->desc
->ops
->get_voltage(rdev
);
3311 } else if (rdev
->desc
->ops
->list_voltage
) {
3312 ret
= rdev
->desc
->ops
->list_voltage(rdev
, 0);
3313 } else if (rdev
->desc
->fixed_uV
&& (rdev
->desc
->n_voltages
== 1)) {
3314 ret
= rdev
->desc
->fixed_uV
;
3315 } else if (rdev
->supply
) {
3316 ret
= _regulator_get_voltage(rdev
->supply
->rdev
);
3323 return ret
- rdev
->constraints
->uV_offset
;
3327 * regulator_get_voltage - get regulator output voltage
3328 * @regulator: regulator source
3330 * This returns the current regulator voltage in uV.
3332 * NOTE: If the regulator is disabled it will return the voltage value. This
3333 * function should not be used to determine regulator state.
3335 int regulator_get_voltage(struct regulator
*regulator
)
3339 regulator_lock_supply(regulator
->rdev
);
3341 ret
= _regulator_get_voltage(regulator
->rdev
);
3343 regulator_unlock_supply(regulator
->rdev
);
3347 EXPORT_SYMBOL_GPL(regulator_get_voltage
);
3350 * regulator_set_current_limit - set regulator output current limit
3351 * @regulator: regulator source
3352 * @min_uA: Minimum supported current in uA
3353 * @max_uA: Maximum supported current in uA
3355 * Sets current sink to the desired output current. This can be set during
3356 * any regulator state. IOW, regulator can be disabled or enabled.
3358 * If the regulator is enabled then the current will change to the new value
3359 * immediately otherwise if the regulator is disabled the regulator will
3360 * output at the new current when enabled.
3362 * NOTE: Regulator system constraints must be set for this regulator before
3363 * calling this function otherwise this call will fail.
3365 int regulator_set_current_limit(struct regulator
*regulator
,
3366 int min_uA
, int max_uA
)
3368 struct regulator_dev
*rdev
= regulator
->rdev
;
3371 mutex_lock(&rdev
->mutex
);
3374 if (!rdev
->desc
->ops
->set_current_limit
) {
3379 /* constraints check */
3380 ret
= regulator_check_current_limit(rdev
, &min_uA
, &max_uA
);
3384 ret
= rdev
->desc
->ops
->set_current_limit(rdev
, min_uA
, max_uA
);
3386 mutex_unlock(&rdev
->mutex
);
3389 EXPORT_SYMBOL_GPL(regulator_set_current_limit
);
3391 static int _regulator_get_current_limit(struct regulator_dev
*rdev
)
3395 mutex_lock(&rdev
->mutex
);
3398 if (!rdev
->desc
->ops
->get_current_limit
) {
3403 ret
= rdev
->desc
->ops
->get_current_limit(rdev
);
3405 mutex_unlock(&rdev
->mutex
);
3410 * regulator_get_current_limit - get regulator output current
3411 * @regulator: regulator source
3413 * This returns the current supplied by the specified current sink in uA.
3415 * NOTE: If the regulator is disabled it will return the current value. This
3416 * function should not be used to determine regulator state.
3418 int regulator_get_current_limit(struct regulator
*regulator
)
3420 return _regulator_get_current_limit(regulator
->rdev
);
3422 EXPORT_SYMBOL_GPL(regulator_get_current_limit
);
3425 * regulator_set_mode - set regulator operating mode
3426 * @regulator: regulator source
3427 * @mode: operating mode - one of the REGULATOR_MODE constants
3429 * Set regulator operating mode to increase regulator efficiency or improve
3430 * regulation performance.
3432 * NOTE: Regulator system constraints must be set for this regulator before
3433 * calling this function otherwise this call will fail.
3435 int regulator_set_mode(struct regulator
*regulator
, unsigned int mode
)
3437 struct regulator_dev
*rdev
= regulator
->rdev
;
3439 int regulator_curr_mode
;
3441 mutex_lock(&rdev
->mutex
);
3444 if (!rdev
->desc
->ops
->set_mode
) {
3449 /* return if the same mode is requested */
3450 if (rdev
->desc
->ops
->get_mode
) {
3451 regulator_curr_mode
= rdev
->desc
->ops
->get_mode(rdev
);
3452 if (regulator_curr_mode
== mode
) {
3458 /* constraints check */
3459 ret
= regulator_mode_constrain(rdev
, &mode
);
3463 ret
= rdev
->desc
->ops
->set_mode(rdev
, mode
);
3465 mutex_unlock(&rdev
->mutex
);
3468 EXPORT_SYMBOL_GPL(regulator_set_mode
);
3470 static unsigned int _regulator_get_mode(struct regulator_dev
*rdev
)
3474 mutex_lock(&rdev
->mutex
);
3477 if (!rdev
->desc
->ops
->get_mode
) {
3482 ret
= rdev
->desc
->ops
->get_mode(rdev
);
3484 mutex_unlock(&rdev
->mutex
);
3489 * regulator_get_mode - get regulator operating mode
3490 * @regulator: regulator source
3492 * Get the current regulator operating mode.
3494 unsigned int regulator_get_mode(struct regulator
*regulator
)
3496 return _regulator_get_mode(regulator
->rdev
);
3498 EXPORT_SYMBOL_GPL(regulator_get_mode
);
3500 static int _regulator_get_error_flags(struct regulator_dev
*rdev
,
3501 unsigned int *flags
)
3505 mutex_lock(&rdev
->mutex
);
3508 if (!rdev
->desc
->ops
->get_error_flags
) {
3513 ret
= rdev
->desc
->ops
->get_error_flags(rdev
, flags
);
3515 mutex_unlock(&rdev
->mutex
);
3520 * regulator_get_error_flags - get regulator error information
3521 * @regulator: regulator source
3522 * @flags: pointer to store error flags
3524 * Get the current regulator error information.
3526 int regulator_get_error_flags(struct regulator
*regulator
,
3527 unsigned int *flags
)
3529 return _regulator_get_error_flags(regulator
->rdev
, flags
);
3531 EXPORT_SYMBOL_GPL(regulator_get_error_flags
);
3534 * regulator_set_load - set regulator load
3535 * @regulator: regulator source
3536 * @uA_load: load current
3538 * Notifies the regulator core of a new device load. This is then used by
3539 * DRMS (if enabled by constraints) to set the most efficient regulator
3540 * operating mode for the new regulator loading.
3542 * Consumer devices notify their supply regulator of the maximum power
3543 * they will require (can be taken from device datasheet in the power
3544 * consumption tables) when they change operational status and hence power
3545 * state. Examples of operational state changes that can affect power
3546 * consumption are :-
3548 * o Device is opened / closed.
3549 * o Device I/O is about to begin or has just finished.
3550 * o Device is idling in between work.
3552 * This information is also exported via sysfs to userspace.
3554 * DRMS will sum the total requested load on the regulator and change
3555 * to the most efficient operating mode if platform constraints allow.
3557 * On error a negative errno is returned.
3559 int regulator_set_load(struct regulator
*regulator
, int uA_load
)
3561 struct regulator_dev
*rdev
= regulator
->rdev
;
3564 mutex_lock(&rdev
->mutex
);
3565 regulator
->uA_load
= uA_load
;
3566 ret
= drms_uA_update(rdev
);
3567 mutex_unlock(&rdev
->mutex
);
3571 EXPORT_SYMBOL_GPL(regulator_set_load
);
3574 * regulator_allow_bypass - allow the regulator to go into bypass mode
3576 * @regulator: Regulator to configure
3577 * @enable: enable or disable bypass mode
3579 * Allow the regulator to go into bypass mode if all other consumers
3580 * for the regulator also enable bypass mode and the machine
3581 * constraints allow this. Bypass mode means that the regulator is
3582 * simply passing the input directly to the output with no regulation.
3584 int regulator_allow_bypass(struct regulator
*regulator
, bool enable
)
3586 struct regulator_dev
*rdev
= regulator
->rdev
;
3589 if (!rdev
->desc
->ops
->set_bypass
)
3592 if (!regulator_ops_is_valid(rdev
, REGULATOR_CHANGE_BYPASS
))
3595 mutex_lock(&rdev
->mutex
);
3597 if (enable
&& !regulator
->bypass
) {
3598 rdev
->bypass_count
++;
3600 if (rdev
->bypass_count
== rdev
->open_count
) {
3601 ret
= rdev
->desc
->ops
->set_bypass(rdev
, enable
);
3603 rdev
->bypass_count
--;
3606 } else if (!enable
&& regulator
->bypass
) {
3607 rdev
->bypass_count
--;
3609 if (rdev
->bypass_count
!= rdev
->open_count
) {
3610 ret
= rdev
->desc
->ops
->set_bypass(rdev
, enable
);
3612 rdev
->bypass_count
++;
3617 regulator
->bypass
= enable
;
3619 mutex_unlock(&rdev
->mutex
);
3623 EXPORT_SYMBOL_GPL(regulator_allow_bypass
);
3626 * regulator_register_notifier - register regulator event notifier
3627 * @regulator: regulator source
3628 * @nb: notifier block
3630 * Register notifier block to receive regulator events.
3632 int regulator_register_notifier(struct regulator
*regulator
,
3633 struct notifier_block
*nb
)
3635 return blocking_notifier_chain_register(®ulator
->rdev
->notifier
,
3638 EXPORT_SYMBOL_GPL(regulator_register_notifier
);
3641 * regulator_unregister_notifier - unregister regulator event notifier
3642 * @regulator: regulator source
3643 * @nb: notifier block
3645 * Unregister regulator event notifier block.
3647 int regulator_unregister_notifier(struct regulator
*regulator
,
3648 struct notifier_block
*nb
)
3650 return blocking_notifier_chain_unregister(®ulator
->rdev
->notifier
,
3653 EXPORT_SYMBOL_GPL(regulator_unregister_notifier
);
3655 /* notify regulator consumers and downstream regulator consumers.
3656 * Note mutex must be held by caller.
3658 static int _notifier_call_chain(struct regulator_dev
*rdev
,
3659 unsigned long event
, void *data
)
3661 /* call rdev chain first */
3662 return blocking_notifier_call_chain(&rdev
->notifier
, event
, data
);
3666 * regulator_bulk_get - get multiple regulator consumers
3668 * @dev: Device to supply
3669 * @num_consumers: Number of consumers to register
3670 * @consumers: Configuration of consumers; clients are stored here.
3672 * @return 0 on success, an errno on failure.
3674 * This helper function allows drivers to get several regulator
3675 * consumers in one operation. If any of the regulators cannot be
3676 * acquired then any regulators that were allocated will be freed
3677 * before returning to the caller.
3679 int regulator_bulk_get(struct device
*dev
, int num_consumers
,
3680 struct regulator_bulk_data
*consumers
)
3685 for (i
= 0; i
< num_consumers
; i
++)
3686 consumers
[i
].consumer
= NULL
;
3688 for (i
= 0; i
< num_consumers
; i
++) {
3689 consumers
[i
].consumer
= regulator_get(dev
,
3690 consumers
[i
].supply
);
3691 if (IS_ERR(consumers
[i
].consumer
)) {
3692 ret
= PTR_ERR(consumers
[i
].consumer
);
3693 dev_err(dev
, "Failed to get supply '%s': %d\n",
3694 consumers
[i
].supply
, ret
);
3695 consumers
[i
].consumer
= NULL
;
3704 regulator_put(consumers
[i
].consumer
);
3708 EXPORT_SYMBOL_GPL(regulator_bulk_get
);
3710 static void regulator_bulk_enable_async(void *data
, async_cookie_t cookie
)
3712 struct regulator_bulk_data
*bulk
= data
;
3714 bulk
->ret
= regulator_enable(bulk
->consumer
);
3718 * regulator_bulk_enable - enable multiple regulator consumers
3720 * @num_consumers: Number of consumers
3721 * @consumers: Consumer data; clients are stored here.
3722 * @return 0 on success, an errno on failure
3724 * This convenience API allows consumers to enable multiple regulator
3725 * clients in a single API call. If any consumers cannot be enabled
3726 * then any others that were enabled will be disabled again prior to
3729 int regulator_bulk_enable(int num_consumers
,
3730 struct regulator_bulk_data
*consumers
)
3732 ASYNC_DOMAIN_EXCLUSIVE(async_domain
);
3736 for (i
= 0; i
< num_consumers
; i
++) {
3737 if (consumers
[i
].consumer
->always_on
)
3738 consumers
[i
].ret
= 0;
3740 async_schedule_domain(regulator_bulk_enable_async
,
3741 &consumers
[i
], &async_domain
);
3744 async_synchronize_full_domain(&async_domain
);
3746 /* If any consumer failed we need to unwind any that succeeded */
3747 for (i
= 0; i
< num_consumers
; i
++) {
3748 if (consumers
[i
].ret
!= 0) {
3749 ret
= consumers
[i
].ret
;
3757 for (i
= 0; i
< num_consumers
; i
++) {
3758 if (consumers
[i
].ret
< 0)
3759 pr_err("Failed to enable %s: %d\n", consumers
[i
].supply
,
3762 regulator_disable(consumers
[i
].consumer
);
3767 EXPORT_SYMBOL_GPL(regulator_bulk_enable
);
3770 * regulator_bulk_disable - disable multiple regulator consumers
3772 * @num_consumers: Number of consumers
3773 * @consumers: Consumer data; clients are stored here.
3774 * @return 0 on success, an errno on failure
3776 * This convenience API allows consumers to disable multiple regulator
3777 * clients in a single API call. If any consumers cannot be disabled
3778 * then any others that were disabled will be enabled again prior to
3781 int regulator_bulk_disable(int num_consumers
,
3782 struct regulator_bulk_data
*consumers
)
3787 for (i
= num_consumers
- 1; i
>= 0; --i
) {
3788 ret
= regulator_disable(consumers
[i
].consumer
);
3796 pr_err("Failed to disable %s: %d\n", consumers
[i
].supply
, ret
);
3797 for (++i
; i
< num_consumers
; ++i
) {
3798 r
= regulator_enable(consumers
[i
].consumer
);
3800 pr_err("Failed to re-enable %s: %d\n",
3801 consumers
[i
].supply
, r
);
3806 EXPORT_SYMBOL_GPL(regulator_bulk_disable
);
3809 * regulator_bulk_force_disable - force disable multiple regulator consumers
3811 * @num_consumers: Number of consumers
3812 * @consumers: Consumer data; clients are stored here.
3813 * @return 0 on success, an errno on failure
3815 * This convenience API allows consumers to forcibly disable multiple regulator
3816 * clients in a single API call.
3817 * NOTE: This should be used for situations when device damage will
3818 * likely occur if the regulators are not disabled (e.g. over temp).
3819 * Although regulator_force_disable function call for some consumers can
3820 * return error numbers, the function is called for all consumers.
3822 int regulator_bulk_force_disable(int num_consumers
,
3823 struct regulator_bulk_data
*consumers
)
3828 for (i
= 0; i
< num_consumers
; i
++) {
3830 regulator_force_disable(consumers
[i
].consumer
);
3832 /* Store first error for reporting */
3833 if (consumers
[i
].ret
&& !ret
)
3834 ret
= consumers
[i
].ret
;
3839 EXPORT_SYMBOL_GPL(regulator_bulk_force_disable
);
3842 * regulator_bulk_free - free multiple regulator consumers
3844 * @num_consumers: Number of consumers
3845 * @consumers: Consumer data; clients are stored here.
3847 * This convenience API allows consumers to free multiple regulator
3848 * clients in a single API call.
3850 void regulator_bulk_free(int num_consumers
,
3851 struct regulator_bulk_data
*consumers
)
3855 for (i
= 0; i
< num_consumers
; i
++) {
3856 regulator_put(consumers
[i
].consumer
);
3857 consumers
[i
].consumer
= NULL
;
3860 EXPORT_SYMBOL_GPL(regulator_bulk_free
);
3863 * regulator_notifier_call_chain - call regulator event notifier
3864 * @rdev: regulator source
3865 * @event: notifier block
3866 * @data: callback-specific data.
3868 * Called by regulator drivers to notify clients a regulator event has
3869 * occurred. We also notify regulator clients downstream.
3870 * Note lock must be held by caller.
3872 int regulator_notifier_call_chain(struct regulator_dev
*rdev
,
3873 unsigned long event
, void *data
)
3875 lockdep_assert_held_once(&rdev
->mutex
);
3877 _notifier_call_chain(rdev
, event
, data
);
3881 EXPORT_SYMBOL_GPL(regulator_notifier_call_chain
);
3884 * regulator_mode_to_status - convert a regulator mode into a status
3886 * @mode: Mode to convert
3888 * Convert a regulator mode into a status.
3890 int regulator_mode_to_status(unsigned int mode
)
3893 case REGULATOR_MODE_FAST
:
3894 return REGULATOR_STATUS_FAST
;
3895 case REGULATOR_MODE_NORMAL
:
3896 return REGULATOR_STATUS_NORMAL
;
3897 case REGULATOR_MODE_IDLE
:
3898 return REGULATOR_STATUS_IDLE
;
3899 case REGULATOR_MODE_STANDBY
:
3900 return REGULATOR_STATUS_STANDBY
;
3902 return REGULATOR_STATUS_UNDEFINED
;
3905 EXPORT_SYMBOL_GPL(regulator_mode_to_status
);
3907 static struct attribute
*regulator_dev_attrs
[] = {
3908 &dev_attr_name
.attr
,
3909 &dev_attr_num_users
.attr
,
3910 &dev_attr_type
.attr
,
3911 &dev_attr_microvolts
.attr
,
3912 &dev_attr_microamps
.attr
,
3913 &dev_attr_opmode
.attr
,
3914 &dev_attr_state
.attr
,
3915 &dev_attr_status
.attr
,
3916 &dev_attr_bypass
.attr
,
3917 &dev_attr_requested_microamps
.attr
,
3918 &dev_attr_min_microvolts
.attr
,
3919 &dev_attr_max_microvolts
.attr
,
3920 &dev_attr_min_microamps
.attr
,
3921 &dev_attr_max_microamps
.attr
,
3922 &dev_attr_suspend_standby_state
.attr
,
3923 &dev_attr_suspend_mem_state
.attr
,
3924 &dev_attr_suspend_disk_state
.attr
,
3925 &dev_attr_suspend_standby_microvolts
.attr
,
3926 &dev_attr_suspend_mem_microvolts
.attr
,
3927 &dev_attr_suspend_disk_microvolts
.attr
,
3928 &dev_attr_suspend_standby_mode
.attr
,
3929 &dev_attr_suspend_mem_mode
.attr
,
3930 &dev_attr_suspend_disk_mode
.attr
,
3935 * To avoid cluttering sysfs (and memory) with useless state, only
3936 * create attributes that can be meaningfully displayed.
3938 static umode_t
regulator_attr_is_visible(struct kobject
*kobj
,
3939 struct attribute
*attr
, int idx
)
3941 struct device
*dev
= kobj_to_dev(kobj
);
3942 struct regulator_dev
*rdev
= dev_to_rdev(dev
);
3943 const struct regulator_ops
*ops
= rdev
->desc
->ops
;
3944 umode_t mode
= attr
->mode
;
3946 /* these three are always present */
3947 if (attr
== &dev_attr_name
.attr
||
3948 attr
== &dev_attr_num_users
.attr
||
3949 attr
== &dev_attr_type
.attr
)
3952 /* some attributes need specific methods to be displayed */
3953 if (attr
== &dev_attr_microvolts
.attr
) {
3954 if ((ops
->get_voltage
&& ops
->get_voltage(rdev
) >= 0) ||
3955 (ops
->get_voltage_sel
&& ops
->get_voltage_sel(rdev
) >= 0) ||
3956 (ops
->list_voltage
&& ops
->list_voltage(rdev
, 0) >= 0) ||
3957 (rdev
->desc
->fixed_uV
&& rdev
->desc
->n_voltages
== 1))
3962 if (attr
== &dev_attr_microamps
.attr
)
3963 return ops
->get_current_limit
? mode
: 0;
3965 if (attr
== &dev_attr_opmode
.attr
)
3966 return ops
->get_mode
? mode
: 0;
3968 if (attr
== &dev_attr_state
.attr
)
3969 return (rdev
->ena_pin
|| ops
->is_enabled
) ? mode
: 0;
3971 if (attr
== &dev_attr_status
.attr
)
3972 return ops
->get_status
? mode
: 0;
3974 if (attr
== &dev_attr_bypass
.attr
)
3975 return ops
->get_bypass
? mode
: 0;
3977 /* some attributes are type-specific */
3978 if (attr
== &dev_attr_requested_microamps
.attr
)
3979 return rdev
->desc
->type
== REGULATOR_CURRENT
? mode
: 0;
3981 /* constraints need specific supporting methods */
3982 if (attr
== &dev_attr_min_microvolts
.attr
||
3983 attr
== &dev_attr_max_microvolts
.attr
)
3984 return (ops
->set_voltage
|| ops
->set_voltage_sel
) ? mode
: 0;
3986 if (attr
== &dev_attr_min_microamps
.attr
||
3987 attr
== &dev_attr_max_microamps
.attr
)
3988 return ops
->set_current_limit
? mode
: 0;
3990 if (attr
== &dev_attr_suspend_standby_state
.attr
||
3991 attr
== &dev_attr_suspend_mem_state
.attr
||
3992 attr
== &dev_attr_suspend_disk_state
.attr
)
3995 if (attr
== &dev_attr_suspend_standby_microvolts
.attr
||
3996 attr
== &dev_attr_suspend_mem_microvolts
.attr
||
3997 attr
== &dev_attr_suspend_disk_microvolts
.attr
)
3998 return ops
->set_suspend_voltage
? mode
: 0;
4000 if (attr
== &dev_attr_suspend_standby_mode
.attr
||
4001 attr
== &dev_attr_suspend_mem_mode
.attr
||
4002 attr
== &dev_attr_suspend_disk_mode
.attr
)
4003 return ops
->set_suspend_mode
? mode
: 0;
4008 static const struct attribute_group regulator_dev_group
= {
4009 .attrs
= regulator_dev_attrs
,
4010 .is_visible
= regulator_attr_is_visible
,
4013 static const struct attribute_group
*regulator_dev_groups
[] = {
4014 ®ulator_dev_group
,
4018 static void regulator_dev_release(struct device
*dev
)
4020 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
4022 kfree(rdev
->constraints
);
4023 of_node_put(rdev
->dev
.of_node
);
4027 static void rdev_init_debugfs(struct regulator_dev
*rdev
)
4029 struct device
*parent
= rdev
->dev
.parent
;
4030 const char *rname
= rdev_get_name(rdev
);
4031 char name
[NAME_MAX
];
4033 /* Avoid duplicate debugfs directory names */
4034 if (parent
&& rname
== rdev
->desc
->name
) {
4035 snprintf(name
, sizeof(name
), "%s-%s", dev_name(parent
),
4040 rdev
->debugfs
= debugfs_create_dir(rname
, debugfs_root
);
4041 if (!rdev
->debugfs
) {
4042 rdev_warn(rdev
, "Failed to create debugfs directory\n");
4046 debugfs_create_u32("use_count", 0444, rdev
->debugfs
,
4048 debugfs_create_u32("open_count", 0444, rdev
->debugfs
,
4050 debugfs_create_u32("bypass_count", 0444, rdev
->debugfs
,
4051 &rdev
->bypass_count
);
4054 static int regulator_register_resolve_supply(struct device
*dev
, void *data
)
4056 struct regulator_dev
*rdev
= dev_to_rdev(dev
);
4058 if (regulator_resolve_supply(rdev
))
4059 rdev_dbg(rdev
, "unable to resolve supply\n");
4065 * regulator_register - register regulator
4066 * @regulator_desc: regulator to register
4067 * @cfg: runtime configuration for regulator
4069 * Called by regulator drivers to register a regulator.
4070 * Returns a valid pointer to struct regulator_dev on success
4071 * or an ERR_PTR() on error.
4073 struct regulator_dev
*
4074 regulator_register(const struct regulator_desc
*regulator_desc
,
4075 const struct regulator_config
*cfg
)
4077 const struct regulation_constraints
*constraints
= NULL
;
4078 const struct regulator_init_data
*init_data
;
4079 struct regulator_config
*config
= NULL
;
4080 static atomic_t regulator_no
= ATOMIC_INIT(-1);
4081 struct regulator_dev
*rdev
;
4085 if (regulator_desc
== NULL
|| cfg
== NULL
)
4086 return ERR_PTR(-EINVAL
);
4091 if (regulator_desc
->name
== NULL
|| regulator_desc
->ops
== NULL
)
4092 return ERR_PTR(-EINVAL
);
4094 if (regulator_desc
->type
!= REGULATOR_VOLTAGE
&&
4095 regulator_desc
->type
!= REGULATOR_CURRENT
)
4096 return ERR_PTR(-EINVAL
);
4098 /* Only one of each should be implemented */
4099 WARN_ON(regulator_desc
->ops
->get_voltage
&&
4100 regulator_desc
->ops
->get_voltage_sel
);
4101 WARN_ON(regulator_desc
->ops
->set_voltage
&&
4102 regulator_desc
->ops
->set_voltage_sel
);
4104 /* If we're using selectors we must implement list_voltage. */
4105 if (regulator_desc
->ops
->get_voltage_sel
&&
4106 !regulator_desc
->ops
->list_voltage
) {
4107 return ERR_PTR(-EINVAL
);
4109 if (regulator_desc
->ops
->set_voltage_sel
&&
4110 !regulator_desc
->ops
->list_voltage
) {
4111 return ERR_PTR(-EINVAL
);
4114 rdev
= kzalloc(sizeof(struct regulator_dev
), GFP_KERNEL
);
4116 return ERR_PTR(-ENOMEM
);
4119 * Duplicate the config so the driver could override it after
4120 * parsing init data.
4122 config
= kmemdup(cfg
, sizeof(*cfg
), GFP_KERNEL
);
4123 if (config
== NULL
) {
4125 return ERR_PTR(-ENOMEM
);
4128 init_data
= regulator_of_get_init_data(dev
, regulator_desc
, config
,
4129 &rdev
->dev
.of_node
);
4131 init_data
= config
->init_data
;
4132 rdev
->dev
.of_node
= of_node_get(config
->of_node
);
4135 mutex_init(&rdev
->mutex
);
4136 rdev
->reg_data
= config
->driver_data
;
4137 rdev
->owner
= regulator_desc
->owner
;
4138 rdev
->desc
= regulator_desc
;
4140 rdev
->regmap
= config
->regmap
;
4141 else if (dev_get_regmap(dev
, NULL
))
4142 rdev
->regmap
= dev_get_regmap(dev
, NULL
);
4143 else if (dev
->parent
)
4144 rdev
->regmap
= dev_get_regmap(dev
->parent
, NULL
);
4145 INIT_LIST_HEAD(&rdev
->consumer_list
);
4146 INIT_LIST_HEAD(&rdev
->list
);
4147 BLOCKING_INIT_NOTIFIER_HEAD(&rdev
->notifier
);
4148 INIT_DELAYED_WORK(&rdev
->disable_work
, regulator_disable_work
);
4150 /* preform any regulator specific init */
4151 if (init_data
&& init_data
->regulator_init
) {
4152 ret
= init_data
->regulator_init(rdev
->reg_data
);
4157 if ((config
->ena_gpio
|| config
->ena_gpio_initialized
) &&
4158 gpio_is_valid(config
->ena_gpio
)) {
4159 mutex_lock(®ulator_list_mutex
);
4160 ret
= regulator_ena_gpio_request(rdev
, config
);
4161 mutex_unlock(®ulator_list_mutex
);
4163 rdev_err(rdev
, "Failed to request enable GPIO%d: %d\n",
4164 config
->ena_gpio
, ret
);
4169 /* register with sysfs */
4170 rdev
->dev
.class = ®ulator_class
;
4171 rdev
->dev
.parent
= dev
;
4172 dev_set_name(&rdev
->dev
, "regulator.%lu",
4173 (unsigned long) atomic_inc_return(®ulator_no
));
4175 /* set regulator constraints */
4177 constraints
= &init_data
->constraints
;
4179 if (init_data
&& init_data
->supply_regulator
)
4180 rdev
->supply_name
= init_data
->supply_regulator
;
4181 else if (regulator_desc
->supply_name
)
4182 rdev
->supply_name
= regulator_desc
->supply_name
;
4185 * Attempt to resolve the regulator supply, if specified,
4186 * but don't return an error if we fail because we will try
4187 * to resolve it again later as more regulators are added.
4189 if (regulator_resolve_supply(rdev
))
4190 rdev_dbg(rdev
, "unable to resolve supply\n");
4192 ret
= set_machine_constraints(rdev
, constraints
);
4196 /* add consumers devices */
4198 mutex_lock(®ulator_list_mutex
);
4199 for (i
= 0; i
< init_data
->num_consumer_supplies
; i
++) {
4200 ret
= set_consumer_device_supply(rdev
,
4201 init_data
->consumer_supplies
[i
].dev_name
,
4202 init_data
->consumer_supplies
[i
].supply
);
4204 mutex_unlock(®ulator_list_mutex
);
4205 dev_err(dev
, "Failed to set supply %s\n",
4206 init_data
->consumer_supplies
[i
].supply
);
4207 goto unset_supplies
;
4210 mutex_unlock(®ulator_list_mutex
);
4213 if (!rdev
->desc
->ops
->get_voltage
&&
4214 !rdev
->desc
->ops
->list_voltage
&&
4215 !rdev
->desc
->fixed_uV
)
4216 rdev
->is_switch
= true;
4218 ret
= device_register(&rdev
->dev
);
4220 put_device(&rdev
->dev
);
4221 goto unset_supplies
;
4224 dev_set_drvdata(&rdev
->dev
, rdev
);
4225 rdev_init_debugfs(rdev
);
4227 /* try to resolve regulators supply since a new one was registered */
4228 class_for_each_device(®ulator_class
, NULL
, NULL
,
4229 regulator_register_resolve_supply
);
4234 mutex_lock(®ulator_list_mutex
);
4235 unset_regulator_supplies(rdev
);
4236 mutex_unlock(®ulator_list_mutex
);
4238 kfree(rdev
->constraints
);
4239 mutex_lock(®ulator_list_mutex
);
4240 regulator_ena_gpio_free(rdev
);
4241 mutex_unlock(®ulator_list_mutex
);
4245 return ERR_PTR(ret
);
4247 EXPORT_SYMBOL_GPL(regulator_register
);
4250 * regulator_unregister - unregister regulator
4251 * @rdev: regulator to unregister
4253 * Called by regulator drivers to unregister a regulator.
4255 void regulator_unregister(struct regulator_dev
*rdev
)
4261 while (rdev
->use_count
--)
4262 regulator_disable(rdev
->supply
);
4263 regulator_put(rdev
->supply
);
4265 mutex_lock(®ulator_list_mutex
);
4266 debugfs_remove_recursive(rdev
->debugfs
);
4267 flush_work(&rdev
->disable_work
.work
);
4268 WARN_ON(rdev
->open_count
);
4269 unset_regulator_supplies(rdev
);
4270 list_del(&rdev
->list
);
4271 regulator_ena_gpio_free(rdev
);
4272 mutex_unlock(®ulator_list_mutex
);
4273 device_unregister(&rdev
->dev
);
4275 EXPORT_SYMBOL_GPL(regulator_unregister
);
4277 #ifdef CONFIG_SUSPEND
4278 static int _regulator_suspend_late(struct device
*dev
, void *data
)
4280 struct regulator_dev
*rdev
= dev_to_rdev(dev
);
4281 suspend_state_t
*state
= data
;
4284 mutex_lock(&rdev
->mutex
);
4285 ret
= suspend_set_state(rdev
, *state
);
4286 mutex_unlock(&rdev
->mutex
);
4292 * regulator_suspend_late - prepare regulators for system wide suspend
4293 * @state: system suspend state
4295 * Configure each regulator with it's suspend operating parameters for state.
4297 static int regulator_suspend_late(struct device
*dev
)
4299 suspend_state_t state
= pm_suspend_target_state
;
4301 return class_for_each_device(®ulator_class
, NULL
, &state
,
4302 _regulator_suspend_late
);
4304 static int _regulator_resume_early(struct device
*dev
, void *data
)
4307 struct regulator_dev
*rdev
= dev_to_rdev(dev
);
4308 suspend_state_t
*state
= data
;
4309 struct regulator_state
*rstate
;
4311 rstate
= regulator_get_suspend_state(rdev
, *state
);
4315 mutex_lock(&rdev
->mutex
);
4317 if (rdev
->desc
->ops
->resume_early
&&
4318 (rstate
->enabled
== ENABLE_IN_SUSPEND
||
4319 rstate
->enabled
== DISABLE_IN_SUSPEND
))
4320 ret
= rdev
->desc
->ops
->resume_early(rdev
);
4322 mutex_unlock(&rdev
->mutex
);
4327 static int regulator_resume_early(struct device
*dev
)
4329 suspend_state_t state
= pm_suspend_target_state
;
4331 return class_for_each_device(®ulator_class
, NULL
, &state
,
4332 _regulator_resume_early
);
4335 #else /* !CONFIG_SUSPEND */
4337 #define regulator_suspend_late NULL
4338 #define regulator_resume_early NULL
4340 #endif /* !CONFIG_SUSPEND */
4343 static const struct dev_pm_ops __maybe_unused regulator_pm_ops
= {
4344 .suspend_late
= regulator_suspend_late
,
4345 .resume_early
= regulator_resume_early
,
4349 struct class regulator_class
= {
4350 .name
= "regulator",
4351 .dev_release
= regulator_dev_release
,
4352 .dev_groups
= regulator_dev_groups
,
4354 .pm
= ®ulator_pm_ops
,
4358 * regulator_has_full_constraints - the system has fully specified constraints
4360 * Calling this function will cause the regulator API to disable all
4361 * regulators which have a zero use count and don't have an always_on
4362 * constraint in a late_initcall.
4364 * The intention is that this will become the default behaviour in a
4365 * future kernel release so users are encouraged to use this facility
4368 void regulator_has_full_constraints(void)
4370 has_full_constraints
= 1;
4372 EXPORT_SYMBOL_GPL(regulator_has_full_constraints
);
4375 * rdev_get_drvdata - get rdev regulator driver data
4378 * Get rdev regulator driver private data. This call can be used in the
4379 * regulator driver context.
4381 void *rdev_get_drvdata(struct regulator_dev
*rdev
)
4383 return rdev
->reg_data
;
4385 EXPORT_SYMBOL_GPL(rdev_get_drvdata
);
4388 * regulator_get_drvdata - get regulator driver data
4389 * @regulator: regulator
4391 * Get regulator driver private data. This call can be used in the consumer
4392 * driver context when non API regulator specific functions need to be called.
4394 void *regulator_get_drvdata(struct regulator
*regulator
)
4396 return regulator
->rdev
->reg_data
;
4398 EXPORT_SYMBOL_GPL(regulator_get_drvdata
);
4401 * regulator_set_drvdata - set regulator driver data
4402 * @regulator: regulator
4405 void regulator_set_drvdata(struct regulator
*regulator
, void *data
)
4407 regulator
->rdev
->reg_data
= data
;
4409 EXPORT_SYMBOL_GPL(regulator_set_drvdata
);
4412 * regulator_get_id - get regulator ID
4415 int rdev_get_id(struct regulator_dev
*rdev
)
4417 return rdev
->desc
->id
;
4419 EXPORT_SYMBOL_GPL(rdev_get_id
);
4421 struct device
*rdev_get_dev(struct regulator_dev
*rdev
)
4425 EXPORT_SYMBOL_GPL(rdev_get_dev
);
4427 void *regulator_get_init_drvdata(struct regulator_init_data
*reg_init_data
)
4429 return reg_init_data
->driver_data
;
4431 EXPORT_SYMBOL_GPL(regulator_get_init_drvdata
);
4433 #ifdef CONFIG_DEBUG_FS
4434 static int supply_map_show(struct seq_file
*sf
, void *data
)
4436 struct regulator_map
*map
;
4438 list_for_each_entry(map
, ®ulator_map_list
, list
) {
4439 seq_printf(sf
, "%s -> %s.%s\n",
4440 rdev_get_name(map
->regulator
), map
->dev_name
,
4447 static int supply_map_open(struct inode
*inode
, struct file
*file
)
4449 return single_open(file
, supply_map_show
, inode
->i_private
);
4453 static const struct file_operations supply_map_fops
= {
4454 #ifdef CONFIG_DEBUG_FS
4455 .open
= supply_map_open
,
4457 .llseek
= seq_lseek
,
4458 .release
= single_release
,
4462 #ifdef CONFIG_DEBUG_FS
4463 struct summary_data
{
4465 struct regulator_dev
*parent
;
4469 static void regulator_summary_show_subtree(struct seq_file
*s
,
4470 struct regulator_dev
*rdev
,
4473 static int regulator_summary_show_children(struct device
*dev
, void *data
)
4475 struct regulator_dev
*rdev
= dev_to_rdev(dev
);
4476 struct summary_data
*summary_data
= data
;
4478 if (rdev
->supply
&& rdev
->supply
->rdev
== summary_data
->parent
)
4479 regulator_summary_show_subtree(summary_data
->s
, rdev
,
4480 summary_data
->level
+ 1);
4485 static void regulator_summary_show_subtree(struct seq_file
*s
,
4486 struct regulator_dev
*rdev
,
4489 struct regulation_constraints
*c
;
4490 struct regulator
*consumer
;
4491 struct summary_data summary_data
;
4496 seq_printf(s
, "%*s%-*s %3d %4d %6d ",
4498 30 - level
* 3, rdev_get_name(rdev
),
4499 rdev
->use_count
, rdev
->open_count
, rdev
->bypass_count
);
4501 seq_printf(s
, "%5dmV ", _regulator_get_voltage(rdev
) / 1000);
4502 seq_printf(s
, "%5dmA ", _regulator_get_current_limit(rdev
) / 1000);
4504 c
= rdev
->constraints
;
4506 switch (rdev
->desc
->type
) {
4507 case REGULATOR_VOLTAGE
:
4508 seq_printf(s
, "%5dmV %5dmV ",
4509 c
->min_uV
/ 1000, c
->max_uV
/ 1000);
4511 case REGULATOR_CURRENT
:
4512 seq_printf(s
, "%5dmA %5dmA ",
4513 c
->min_uA
/ 1000, c
->max_uA
/ 1000);
4520 list_for_each_entry(consumer
, &rdev
->consumer_list
, list
) {
4521 if (consumer
->dev
&& consumer
->dev
->class == ®ulator_class
)
4524 seq_printf(s
, "%*s%-*s ",
4525 (level
+ 1) * 3 + 1, "",
4526 30 - (level
+ 1) * 3,
4527 consumer
->dev
? dev_name(consumer
->dev
) : "deviceless");
4529 switch (rdev
->desc
->type
) {
4530 case REGULATOR_VOLTAGE
:
4531 seq_printf(s
, "%37dmV %5dmV",
4532 consumer
->voltage
[PM_SUSPEND_ON
].min_uV
/ 1000,
4533 consumer
->voltage
[PM_SUSPEND_ON
].max_uV
/ 1000);
4535 case REGULATOR_CURRENT
:
4543 summary_data
.level
= level
;
4544 summary_data
.parent
= rdev
;
4546 class_for_each_device(®ulator_class
, NULL
, &summary_data
,
4547 regulator_summary_show_children
);
4550 static int regulator_summary_show_roots(struct device
*dev
, void *data
)
4552 struct regulator_dev
*rdev
= dev_to_rdev(dev
);
4553 struct seq_file
*s
= data
;
4556 regulator_summary_show_subtree(s
, rdev
, 0);
4561 static int regulator_summary_show(struct seq_file
*s
, void *data
)
4563 seq_puts(s
, " regulator use open bypass voltage current min max\n");
4564 seq_puts(s
, "-------------------------------------------------------------------------------\n");
4566 class_for_each_device(®ulator_class
, NULL
, s
,
4567 regulator_summary_show_roots
);
4572 static int regulator_summary_open(struct inode
*inode
, struct file
*file
)
4574 return single_open(file
, regulator_summary_show
, inode
->i_private
);
4578 static const struct file_operations regulator_summary_fops
= {
4579 #ifdef CONFIG_DEBUG_FS
4580 .open
= regulator_summary_open
,
4582 .llseek
= seq_lseek
,
4583 .release
= single_release
,
4587 static int __init
regulator_init(void)
4591 ret
= class_register(®ulator_class
);
4593 debugfs_root
= debugfs_create_dir("regulator", NULL
);
4595 pr_warn("regulator: Failed to create debugfs directory\n");
4597 debugfs_create_file("supply_map", 0444, debugfs_root
, NULL
,
4600 debugfs_create_file("regulator_summary", 0444, debugfs_root
,
4601 NULL
, ®ulator_summary_fops
);
4603 regulator_dummy_init();
4608 /* init early to allow our consumers to complete system booting */
4609 core_initcall(regulator_init
);
4611 static int __init
regulator_late_cleanup(struct device
*dev
, void *data
)
4613 struct regulator_dev
*rdev
= dev_to_rdev(dev
);
4614 const struct regulator_ops
*ops
= rdev
->desc
->ops
;
4615 struct regulation_constraints
*c
= rdev
->constraints
;
4618 if (c
&& c
->always_on
)
4621 if (!regulator_ops_is_valid(rdev
, REGULATOR_CHANGE_STATUS
))
4624 mutex_lock(&rdev
->mutex
);
4626 if (rdev
->use_count
)
4629 /* If we can't read the status assume it's on. */
4630 if (ops
->is_enabled
)
4631 enabled
= ops
->is_enabled(rdev
);
4638 if (have_full_constraints()) {
4639 /* We log since this may kill the system if it goes
4641 rdev_info(rdev
, "disabling\n");
4642 ret
= _regulator_do_disable(rdev
);
4644 rdev_err(rdev
, "couldn't disable: %d\n", ret
);
4646 /* The intention is that in future we will
4647 * assume that full constraints are provided
4648 * so warn even if we aren't going to do
4651 rdev_warn(rdev
, "incomplete constraints, leaving on\n");
4655 mutex_unlock(&rdev
->mutex
);
4660 static int __init
regulator_init_complete(void)
4663 * Since DT doesn't provide an idiomatic mechanism for
4664 * enabling full constraints and since it's much more natural
4665 * with DT to provide them just assume that a DT enabled
4666 * system has full constraints.
4668 if (of_have_populated_dt())
4669 has_full_constraints
= true;
4672 * Regulators may had failed to resolve their input supplies
4673 * when were registered, either because the input supply was
4674 * not registered yet or because its parent device was not
4675 * bound yet. So attempt to resolve the input supplies for
4676 * pending regulators before trying to disable unused ones.
4678 class_for_each_device(®ulator_class
, NULL
, NULL
,
4679 regulator_register_resolve_supply
);
4681 /* If we have a full configuration then disable any regulators
4682 * we have permission to change the status for and which are
4683 * not in use or always_on. This is effectively the default
4684 * for DT and ACPI as they have full constraints.
4686 class_for_each_device(®ulator_class
, NULL
, NULL
,
4687 regulator_late_cleanup
);
4691 late_initcall_sync(regulator_init_complete
);