x86/topology: Fix function name in documentation
[cris-mirror.git] / drivers / usb / host / fotg210-hcd.c
blobd8abf401918ac457a5ba6630df1951787a7c9ee4
1 // SPDX-License-Identifier: GPL-2.0+
2 /* Faraday FOTG210 EHCI-like driver
4 * Copyright (c) 2013 Faraday Technology Corporation
6 * Author: Yuan-Hsin Chen <yhchen@faraday-tech.com>
7 * Feng-Hsin Chiang <john453@faraday-tech.com>
8 * Po-Yu Chuang <ratbert.chuang@gmail.com>
10 * Most of code borrowed from the Linux-3.7 EHCI driver
12 #include <linux/module.h>
13 #include <linux/device.h>
14 #include <linux/dmapool.h>
15 #include <linux/kernel.h>
16 #include <linux/delay.h>
17 #include <linux/ioport.h>
18 #include <linux/sched.h>
19 #include <linux/vmalloc.h>
20 #include <linux/errno.h>
21 #include <linux/init.h>
22 #include <linux/hrtimer.h>
23 #include <linux/list.h>
24 #include <linux/interrupt.h>
25 #include <linux/usb.h>
26 #include <linux/usb/hcd.h>
27 #include <linux/moduleparam.h>
28 #include <linux/dma-mapping.h>
29 #include <linux/debugfs.h>
30 #include <linux/slab.h>
31 #include <linux/uaccess.h>
32 #include <linux/platform_device.h>
33 #include <linux/io.h>
35 #include <asm/byteorder.h>
36 #include <asm/irq.h>
37 #include <asm/unaligned.h>
39 #define DRIVER_AUTHOR "Yuan-Hsin Chen"
40 #define DRIVER_DESC "FOTG210 Host Controller (EHCI) Driver"
41 static const char hcd_name[] = "fotg210_hcd";
43 #undef FOTG210_URB_TRACE
44 #define FOTG210_STATS
46 /* magic numbers that can affect system performance */
47 #define FOTG210_TUNE_CERR 3 /* 0-3 qtd retries; 0 == don't stop */
48 #define FOTG210_TUNE_RL_HS 4 /* nak throttle; see 4.9 */
49 #define FOTG210_TUNE_RL_TT 0
50 #define FOTG210_TUNE_MULT_HS 1 /* 1-3 transactions/uframe; 4.10.3 */
51 #define FOTG210_TUNE_MULT_TT 1
53 /* Some drivers think it's safe to schedule isochronous transfers more than 256
54 * ms into the future (partly as a result of an old bug in the scheduling
55 * code). In an attempt to avoid trouble, we will use a minimum scheduling
56 * length of 512 frames instead of 256.
58 #define FOTG210_TUNE_FLS 1 /* (medium) 512-frame schedule */
60 /* Initial IRQ latency: faster than hw default */
61 static int log2_irq_thresh; /* 0 to 6 */
62 module_param(log2_irq_thresh, int, S_IRUGO);
63 MODULE_PARM_DESC(log2_irq_thresh, "log2 IRQ latency, 1-64 microframes");
65 /* initial park setting: slower than hw default */
66 static unsigned park;
67 module_param(park, uint, S_IRUGO);
68 MODULE_PARM_DESC(park, "park setting; 1-3 back-to-back async packets");
70 /* for link power management(LPM) feature */
71 static unsigned int hird;
72 module_param(hird, int, S_IRUGO);
73 MODULE_PARM_DESC(hird, "host initiated resume duration, +1 for each 75us");
75 #define INTR_MASK (STS_IAA | STS_FATAL | STS_PCD | STS_ERR | STS_INT)
77 #include "fotg210.h"
79 #define fotg210_dbg(fotg210, fmt, args...) \
80 dev_dbg(fotg210_to_hcd(fotg210)->self.controller, fmt, ## args)
81 #define fotg210_err(fotg210, fmt, args...) \
82 dev_err(fotg210_to_hcd(fotg210)->self.controller, fmt, ## args)
83 #define fotg210_info(fotg210, fmt, args...) \
84 dev_info(fotg210_to_hcd(fotg210)->self.controller, fmt, ## args)
85 #define fotg210_warn(fotg210, fmt, args...) \
86 dev_warn(fotg210_to_hcd(fotg210)->self.controller, fmt, ## args)
88 /* check the values in the HCSPARAMS register (host controller _Structural_
89 * parameters) see EHCI spec, Table 2-4 for each value
91 static void dbg_hcs_params(struct fotg210_hcd *fotg210, char *label)
93 u32 params = fotg210_readl(fotg210, &fotg210->caps->hcs_params);
95 fotg210_dbg(fotg210, "%s hcs_params 0x%x ports=%d\n", label, params,
96 HCS_N_PORTS(params));
99 /* check the values in the HCCPARAMS register (host controller _Capability_
100 * parameters) see EHCI Spec, Table 2-5 for each value
102 static void dbg_hcc_params(struct fotg210_hcd *fotg210, char *label)
104 u32 params = fotg210_readl(fotg210, &fotg210->caps->hcc_params);
106 fotg210_dbg(fotg210, "%s hcc_params %04x uframes %s%s\n", label,
107 params,
108 HCC_PGM_FRAMELISTLEN(params) ? "256/512/1024" : "1024",
109 HCC_CANPARK(params) ? " park" : "");
112 static void __maybe_unused
113 dbg_qtd(const char *label, struct fotg210_hcd *fotg210, struct fotg210_qtd *qtd)
115 fotg210_dbg(fotg210, "%s td %p n%08x %08x t%08x p0=%08x\n", label, qtd,
116 hc32_to_cpup(fotg210, &qtd->hw_next),
117 hc32_to_cpup(fotg210, &qtd->hw_alt_next),
118 hc32_to_cpup(fotg210, &qtd->hw_token),
119 hc32_to_cpup(fotg210, &qtd->hw_buf[0]));
120 if (qtd->hw_buf[1])
121 fotg210_dbg(fotg210, " p1=%08x p2=%08x p3=%08x p4=%08x\n",
122 hc32_to_cpup(fotg210, &qtd->hw_buf[1]),
123 hc32_to_cpup(fotg210, &qtd->hw_buf[2]),
124 hc32_to_cpup(fotg210, &qtd->hw_buf[3]),
125 hc32_to_cpup(fotg210, &qtd->hw_buf[4]));
128 static void __maybe_unused
129 dbg_qh(const char *label, struct fotg210_hcd *fotg210, struct fotg210_qh *qh)
131 struct fotg210_qh_hw *hw = qh->hw;
133 fotg210_dbg(fotg210, "%s qh %p n%08x info %x %x qtd %x\n", label, qh,
134 hw->hw_next, hw->hw_info1, hw->hw_info2,
135 hw->hw_current);
137 dbg_qtd("overlay", fotg210, (struct fotg210_qtd *) &hw->hw_qtd_next);
140 static void __maybe_unused
141 dbg_itd(const char *label, struct fotg210_hcd *fotg210, struct fotg210_itd *itd)
143 fotg210_dbg(fotg210, "%s[%d] itd %p, next %08x, urb %p\n", label,
144 itd->frame, itd, hc32_to_cpu(fotg210, itd->hw_next),
145 itd->urb);
147 fotg210_dbg(fotg210,
148 " trans: %08x %08x %08x %08x %08x %08x %08x %08x\n",
149 hc32_to_cpu(fotg210, itd->hw_transaction[0]),
150 hc32_to_cpu(fotg210, itd->hw_transaction[1]),
151 hc32_to_cpu(fotg210, itd->hw_transaction[2]),
152 hc32_to_cpu(fotg210, itd->hw_transaction[3]),
153 hc32_to_cpu(fotg210, itd->hw_transaction[4]),
154 hc32_to_cpu(fotg210, itd->hw_transaction[5]),
155 hc32_to_cpu(fotg210, itd->hw_transaction[6]),
156 hc32_to_cpu(fotg210, itd->hw_transaction[7]));
158 fotg210_dbg(fotg210,
159 " buf: %08x %08x %08x %08x %08x %08x %08x\n",
160 hc32_to_cpu(fotg210, itd->hw_bufp[0]),
161 hc32_to_cpu(fotg210, itd->hw_bufp[1]),
162 hc32_to_cpu(fotg210, itd->hw_bufp[2]),
163 hc32_to_cpu(fotg210, itd->hw_bufp[3]),
164 hc32_to_cpu(fotg210, itd->hw_bufp[4]),
165 hc32_to_cpu(fotg210, itd->hw_bufp[5]),
166 hc32_to_cpu(fotg210, itd->hw_bufp[6]));
168 fotg210_dbg(fotg210, " index: %d %d %d %d %d %d %d %d\n",
169 itd->index[0], itd->index[1], itd->index[2],
170 itd->index[3], itd->index[4], itd->index[5],
171 itd->index[6], itd->index[7]);
174 static int __maybe_unused
175 dbg_status_buf(char *buf, unsigned len, const char *label, u32 status)
177 return scnprintf(buf, len, "%s%sstatus %04x%s%s%s%s%s%s%s%s%s%s",
178 label, label[0] ? " " : "", status,
179 (status & STS_ASS) ? " Async" : "",
180 (status & STS_PSS) ? " Periodic" : "",
181 (status & STS_RECL) ? " Recl" : "",
182 (status & STS_HALT) ? " Halt" : "",
183 (status & STS_IAA) ? " IAA" : "",
184 (status & STS_FATAL) ? " FATAL" : "",
185 (status & STS_FLR) ? " FLR" : "",
186 (status & STS_PCD) ? " PCD" : "",
187 (status & STS_ERR) ? " ERR" : "",
188 (status & STS_INT) ? " INT" : "");
191 static int __maybe_unused
192 dbg_intr_buf(char *buf, unsigned len, const char *label, u32 enable)
194 return scnprintf(buf, len, "%s%sintrenable %02x%s%s%s%s%s%s",
195 label, label[0] ? " " : "", enable,
196 (enable & STS_IAA) ? " IAA" : "",
197 (enable & STS_FATAL) ? " FATAL" : "",
198 (enable & STS_FLR) ? " FLR" : "",
199 (enable & STS_PCD) ? " PCD" : "",
200 (enable & STS_ERR) ? " ERR" : "",
201 (enable & STS_INT) ? " INT" : "");
204 static const char *const fls_strings[] = { "1024", "512", "256", "??" };
206 static int dbg_command_buf(char *buf, unsigned len, const char *label,
207 u32 command)
209 return scnprintf(buf, len,
210 "%s%scommand %07x %s=%d ithresh=%d%s%s%s period=%s%s %s",
211 label, label[0] ? " " : "", command,
212 (command & CMD_PARK) ? " park" : "(park)",
213 CMD_PARK_CNT(command),
214 (command >> 16) & 0x3f,
215 (command & CMD_IAAD) ? " IAAD" : "",
216 (command & CMD_ASE) ? " Async" : "",
217 (command & CMD_PSE) ? " Periodic" : "",
218 fls_strings[(command >> 2) & 0x3],
219 (command & CMD_RESET) ? " Reset" : "",
220 (command & CMD_RUN) ? "RUN" : "HALT");
223 static char *dbg_port_buf(char *buf, unsigned len, const char *label, int port,
224 u32 status)
226 char *sig;
228 /* signaling state */
229 switch (status & (3 << 10)) {
230 case 0 << 10:
231 sig = "se0";
232 break;
233 case 1 << 10:
234 sig = "k";
235 break; /* low speed */
236 case 2 << 10:
237 sig = "j";
238 break;
239 default:
240 sig = "?";
241 break;
244 scnprintf(buf, len, "%s%sport:%d status %06x %d sig=%s%s%s%s%s%s%s%s",
245 label, label[0] ? " " : "", port, status,
246 status >> 25, /*device address */
247 sig,
248 (status & PORT_RESET) ? " RESET" : "",
249 (status & PORT_SUSPEND) ? " SUSPEND" : "",
250 (status & PORT_RESUME) ? " RESUME" : "",
251 (status & PORT_PEC) ? " PEC" : "",
252 (status & PORT_PE) ? " PE" : "",
253 (status & PORT_CSC) ? " CSC" : "",
254 (status & PORT_CONNECT) ? " CONNECT" : "");
256 return buf;
259 /* functions have the "wrong" filename when they're output... */
260 #define dbg_status(fotg210, label, status) { \
261 char _buf[80]; \
262 dbg_status_buf(_buf, sizeof(_buf), label, status); \
263 fotg210_dbg(fotg210, "%s\n", _buf); \
266 #define dbg_cmd(fotg210, label, command) { \
267 char _buf[80]; \
268 dbg_command_buf(_buf, sizeof(_buf), label, command); \
269 fotg210_dbg(fotg210, "%s\n", _buf); \
272 #define dbg_port(fotg210, label, port, status) { \
273 char _buf[80]; \
274 fotg210_dbg(fotg210, "%s\n", \
275 dbg_port_buf(_buf, sizeof(_buf), label, port, status));\
278 /* troubleshooting help: expose state in debugfs */
279 static int debug_async_open(struct inode *, struct file *);
280 static int debug_periodic_open(struct inode *, struct file *);
281 static int debug_registers_open(struct inode *, struct file *);
282 static int debug_async_open(struct inode *, struct file *);
284 static ssize_t debug_output(struct file*, char __user*, size_t, loff_t*);
285 static int debug_close(struct inode *, struct file *);
287 static const struct file_operations debug_async_fops = {
288 .owner = THIS_MODULE,
289 .open = debug_async_open,
290 .read = debug_output,
291 .release = debug_close,
292 .llseek = default_llseek,
294 static const struct file_operations debug_periodic_fops = {
295 .owner = THIS_MODULE,
296 .open = debug_periodic_open,
297 .read = debug_output,
298 .release = debug_close,
299 .llseek = default_llseek,
301 static const struct file_operations debug_registers_fops = {
302 .owner = THIS_MODULE,
303 .open = debug_registers_open,
304 .read = debug_output,
305 .release = debug_close,
306 .llseek = default_llseek,
309 static struct dentry *fotg210_debug_root;
311 struct debug_buffer {
312 ssize_t (*fill_func)(struct debug_buffer *); /* fill method */
313 struct usb_bus *bus;
314 struct mutex mutex; /* protect filling of buffer */
315 size_t count; /* number of characters filled into buffer */
316 char *output_buf;
317 size_t alloc_size;
320 static inline char speed_char(u32 scratch)
322 switch (scratch & (3 << 12)) {
323 case QH_FULL_SPEED:
324 return 'f';
326 case QH_LOW_SPEED:
327 return 'l';
329 case QH_HIGH_SPEED:
330 return 'h';
332 default:
333 return '?';
337 static inline char token_mark(struct fotg210_hcd *fotg210, __hc32 token)
339 __u32 v = hc32_to_cpu(fotg210, token);
341 if (v & QTD_STS_ACTIVE)
342 return '*';
343 if (v & QTD_STS_HALT)
344 return '-';
345 if (!IS_SHORT_READ(v))
346 return ' ';
347 /* tries to advance through hw_alt_next */
348 return '/';
351 static void qh_lines(struct fotg210_hcd *fotg210, struct fotg210_qh *qh,
352 char **nextp, unsigned *sizep)
354 u32 scratch;
355 u32 hw_curr;
356 struct fotg210_qtd *td;
357 unsigned temp;
358 unsigned size = *sizep;
359 char *next = *nextp;
360 char mark;
361 __le32 list_end = FOTG210_LIST_END(fotg210);
362 struct fotg210_qh_hw *hw = qh->hw;
364 if (hw->hw_qtd_next == list_end) /* NEC does this */
365 mark = '@';
366 else
367 mark = token_mark(fotg210, hw->hw_token);
368 if (mark == '/') { /* qh_alt_next controls qh advance? */
369 if ((hw->hw_alt_next & QTD_MASK(fotg210)) ==
370 fotg210->async->hw->hw_alt_next)
371 mark = '#'; /* blocked */
372 else if (hw->hw_alt_next == list_end)
373 mark = '.'; /* use hw_qtd_next */
374 /* else alt_next points to some other qtd */
376 scratch = hc32_to_cpup(fotg210, &hw->hw_info1);
377 hw_curr = (mark == '*') ? hc32_to_cpup(fotg210, &hw->hw_current) : 0;
378 temp = scnprintf(next, size,
379 "qh/%p dev%d %cs ep%d %08x %08x(%08x%c %s nak%d)",
380 qh, scratch & 0x007f,
381 speed_char(scratch),
382 (scratch >> 8) & 0x000f,
383 scratch, hc32_to_cpup(fotg210, &hw->hw_info2),
384 hc32_to_cpup(fotg210, &hw->hw_token), mark,
385 (cpu_to_hc32(fotg210, QTD_TOGGLE) & hw->hw_token)
386 ? "data1" : "data0",
387 (hc32_to_cpup(fotg210, &hw->hw_alt_next) >> 1) & 0x0f);
388 size -= temp;
389 next += temp;
391 /* hc may be modifying the list as we read it ... */
392 list_for_each_entry(td, &qh->qtd_list, qtd_list) {
393 scratch = hc32_to_cpup(fotg210, &td->hw_token);
394 mark = ' ';
395 if (hw_curr == td->qtd_dma)
396 mark = '*';
397 else if (hw->hw_qtd_next == cpu_to_hc32(fotg210, td->qtd_dma))
398 mark = '+';
399 else if (QTD_LENGTH(scratch)) {
400 if (td->hw_alt_next == fotg210->async->hw->hw_alt_next)
401 mark = '#';
402 else if (td->hw_alt_next != list_end)
403 mark = '/';
405 temp = snprintf(next, size,
406 "\n\t%p%c%s len=%d %08x urb %p",
407 td, mark, ({ char *tmp;
408 switch ((scratch>>8)&0x03) {
409 case 0:
410 tmp = "out";
411 break;
412 case 1:
413 tmp = "in";
414 break;
415 case 2:
416 tmp = "setup";
417 break;
418 default:
419 tmp = "?";
420 break;
421 } tmp; }),
422 (scratch >> 16) & 0x7fff,
423 scratch,
424 td->urb);
425 if (size < temp)
426 temp = size;
427 size -= temp;
428 next += temp;
429 if (temp == size)
430 goto done;
433 temp = snprintf(next, size, "\n");
434 if (size < temp)
435 temp = size;
437 size -= temp;
438 next += temp;
440 done:
441 *sizep = size;
442 *nextp = next;
445 static ssize_t fill_async_buffer(struct debug_buffer *buf)
447 struct usb_hcd *hcd;
448 struct fotg210_hcd *fotg210;
449 unsigned long flags;
450 unsigned temp, size;
451 char *next;
452 struct fotg210_qh *qh;
454 hcd = bus_to_hcd(buf->bus);
455 fotg210 = hcd_to_fotg210(hcd);
456 next = buf->output_buf;
457 size = buf->alloc_size;
459 *next = 0;
461 /* dumps a snapshot of the async schedule.
462 * usually empty except for long-term bulk reads, or head.
463 * one QH per line, and TDs we know about
465 spin_lock_irqsave(&fotg210->lock, flags);
466 for (qh = fotg210->async->qh_next.qh; size > 0 && qh;
467 qh = qh->qh_next.qh)
468 qh_lines(fotg210, qh, &next, &size);
469 if (fotg210->async_unlink && size > 0) {
470 temp = scnprintf(next, size, "\nunlink =\n");
471 size -= temp;
472 next += temp;
474 for (qh = fotg210->async_unlink; size > 0 && qh;
475 qh = qh->unlink_next)
476 qh_lines(fotg210, qh, &next, &size);
478 spin_unlock_irqrestore(&fotg210->lock, flags);
480 return strlen(buf->output_buf);
483 /* count tds, get ep direction */
484 static unsigned output_buf_tds_dir(char *buf, struct fotg210_hcd *fotg210,
485 struct fotg210_qh_hw *hw, struct fotg210_qh *qh, unsigned size)
487 u32 scratch = hc32_to_cpup(fotg210, &hw->hw_info1);
488 struct fotg210_qtd *qtd;
489 char *type = "";
490 unsigned temp = 0;
492 /* count tds, get ep direction */
493 list_for_each_entry(qtd, &qh->qtd_list, qtd_list) {
494 temp++;
495 switch ((hc32_to_cpu(fotg210, qtd->hw_token) >> 8) & 0x03) {
496 case 0:
497 type = "out";
498 continue;
499 case 1:
500 type = "in";
501 continue;
505 return scnprintf(buf, size, "(%c%d ep%d%s [%d/%d] q%d p%d)",
506 speed_char(scratch), scratch & 0x007f,
507 (scratch >> 8) & 0x000f, type, qh->usecs,
508 qh->c_usecs, temp, (scratch >> 16) & 0x7ff);
511 #define DBG_SCHED_LIMIT 64
512 static ssize_t fill_periodic_buffer(struct debug_buffer *buf)
514 struct usb_hcd *hcd;
515 struct fotg210_hcd *fotg210;
516 unsigned long flags;
517 union fotg210_shadow p, *seen;
518 unsigned temp, size, seen_count;
519 char *next;
520 unsigned i;
521 __hc32 tag;
523 seen = kmalloc_array(DBG_SCHED_LIMIT, sizeof(*seen), GFP_ATOMIC);
524 if (!seen)
525 return 0;
527 seen_count = 0;
529 hcd = bus_to_hcd(buf->bus);
530 fotg210 = hcd_to_fotg210(hcd);
531 next = buf->output_buf;
532 size = buf->alloc_size;
534 temp = scnprintf(next, size, "size = %d\n", fotg210->periodic_size);
535 size -= temp;
536 next += temp;
538 /* dump a snapshot of the periodic schedule.
539 * iso changes, interrupt usually doesn't.
541 spin_lock_irqsave(&fotg210->lock, flags);
542 for (i = 0; i < fotg210->periodic_size; i++) {
543 p = fotg210->pshadow[i];
544 if (likely(!p.ptr))
545 continue;
547 tag = Q_NEXT_TYPE(fotg210, fotg210->periodic[i]);
549 temp = scnprintf(next, size, "%4d: ", i);
550 size -= temp;
551 next += temp;
553 do {
554 struct fotg210_qh_hw *hw;
556 switch (hc32_to_cpu(fotg210, tag)) {
557 case Q_TYPE_QH:
558 hw = p.qh->hw;
559 temp = scnprintf(next, size, " qh%d-%04x/%p",
560 p.qh->period,
561 hc32_to_cpup(fotg210,
562 &hw->hw_info2)
563 /* uframe masks */
564 & (QH_CMASK | QH_SMASK),
565 p.qh);
566 size -= temp;
567 next += temp;
568 /* don't repeat what follows this qh */
569 for (temp = 0; temp < seen_count; temp++) {
570 if (seen[temp].ptr != p.ptr)
571 continue;
572 if (p.qh->qh_next.ptr) {
573 temp = scnprintf(next, size,
574 " ...");
575 size -= temp;
576 next += temp;
578 break;
580 /* show more info the first time around */
581 if (temp == seen_count) {
582 temp = output_buf_tds_dir(next,
583 fotg210, hw,
584 p.qh, size);
586 if (seen_count < DBG_SCHED_LIMIT)
587 seen[seen_count++].qh = p.qh;
588 } else
589 temp = 0;
590 tag = Q_NEXT_TYPE(fotg210, hw->hw_next);
591 p = p.qh->qh_next;
592 break;
593 case Q_TYPE_FSTN:
594 temp = scnprintf(next, size,
595 " fstn-%8x/%p",
596 p.fstn->hw_prev, p.fstn);
597 tag = Q_NEXT_TYPE(fotg210, p.fstn->hw_next);
598 p = p.fstn->fstn_next;
599 break;
600 case Q_TYPE_ITD:
601 temp = scnprintf(next, size,
602 " itd/%p", p.itd);
603 tag = Q_NEXT_TYPE(fotg210, p.itd->hw_next);
604 p = p.itd->itd_next;
605 break;
607 size -= temp;
608 next += temp;
609 } while (p.ptr);
611 temp = scnprintf(next, size, "\n");
612 size -= temp;
613 next += temp;
615 spin_unlock_irqrestore(&fotg210->lock, flags);
616 kfree(seen);
618 return buf->alloc_size - size;
620 #undef DBG_SCHED_LIMIT
622 static const char *rh_state_string(struct fotg210_hcd *fotg210)
624 switch (fotg210->rh_state) {
625 case FOTG210_RH_HALTED:
626 return "halted";
627 case FOTG210_RH_SUSPENDED:
628 return "suspended";
629 case FOTG210_RH_RUNNING:
630 return "running";
631 case FOTG210_RH_STOPPING:
632 return "stopping";
634 return "?";
637 static ssize_t fill_registers_buffer(struct debug_buffer *buf)
639 struct usb_hcd *hcd;
640 struct fotg210_hcd *fotg210;
641 unsigned long flags;
642 unsigned temp, size, i;
643 char *next, scratch[80];
644 static const char fmt[] = "%*s\n";
645 static const char label[] = "";
647 hcd = bus_to_hcd(buf->bus);
648 fotg210 = hcd_to_fotg210(hcd);
649 next = buf->output_buf;
650 size = buf->alloc_size;
652 spin_lock_irqsave(&fotg210->lock, flags);
654 if (!HCD_HW_ACCESSIBLE(hcd)) {
655 size = scnprintf(next, size,
656 "bus %s, device %s\n"
657 "%s\n"
658 "SUSPENDED(no register access)\n",
659 hcd->self.controller->bus->name,
660 dev_name(hcd->self.controller),
661 hcd->product_desc);
662 goto done;
665 /* Capability Registers */
666 i = HC_VERSION(fotg210, fotg210_readl(fotg210,
667 &fotg210->caps->hc_capbase));
668 temp = scnprintf(next, size,
669 "bus %s, device %s\n"
670 "%s\n"
671 "EHCI %x.%02x, rh state %s\n",
672 hcd->self.controller->bus->name,
673 dev_name(hcd->self.controller),
674 hcd->product_desc,
675 i >> 8, i & 0x0ff, rh_state_string(fotg210));
676 size -= temp;
677 next += temp;
679 /* FIXME interpret both types of params */
680 i = fotg210_readl(fotg210, &fotg210->caps->hcs_params);
681 temp = scnprintf(next, size, "structural params 0x%08x\n", i);
682 size -= temp;
683 next += temp;
685 i = fotg210_readl(fotg210, &fotg210->caps->hcc_params);
686 temp = scnprintf(next, size, "capability params 0x%08x\n", i);
687 size -= temp;
688 next += temp;
690 /* Operational Registers */
691 temp = dbg_status_buf(scratch, sizeof(scratch), label,
692 fotg210_readl(fotg210, &fotg210->regs->status));
693 temp = scnprintf(next, size, fmt, temp, scratch);
694 size -= temp;
695 next += temp;
697 temp = dbg_command_buf(scratch, sizeof(scratch), label,
698 fotg210_readl(fotg210, &fotg210->regs->command));
699 temp = scnprintf(next, size, fmt, temp, scratch);
700 size -= temp;
701 next += temp;
703 temp = dbg_intr_buf(scratch, sizeof(scratch), label,
704 fotg210_readl(fotg210, &fotg210->regs->intr_enable));
705 temp = scnprintf(next, size, fmt, temp, scratch);
706 size -= temp;
707 next += temp;
709 temp = scnprintf(next, size, "uframe %04x\n",
710 fotg210_read_frame_index(fotg210));
711 size -= temp;
712 next += temp;
714 if (fotg210->async_unlink) {
715 temp = scnprintf(next, size, "async unlink qh %p\n",
716 fotg210->async_unlink);
717 size -= temp;
718 next += temp;
721 #ifdef FOTG210_STATS
722 temp = scnprintf(next, size,
723 "irq normal %ld err %ld iaa %ld(lost %ld)\n",
724 fotg210->stats.normal, fotg210->stats.error,
725 fotg210->stats.iaa, fotg210->stats.lost_iaa);
726 size -= temp;
727 next += temp;
729 temp = scnprintf(next, size, "complete %ld unlink %ld\n",
730 fotg210->stats.complete, fotg210->stats.unlink);
731 size -= temp;
732 next += temp;
733 #endif
735 done:
736 spin_unlock_irqrestore(&fotg210->lock, flags);
738 return buf->alloc_size - size;
741 static struct debug_buffer
742 *alloc_buffer(struct usb_bus *bus, ssize_t (*fill_func)(struct debug_buffer *))
744 struct debug_buffer *buf;
746 buf = kzalloc(sizeof(struct debug_buffer), GFP_KERNEL);
748 if (buf) {
749 buf->bus = bus;
750 buf->fill_func = fill_func;
751 mutex_init(&buf->mutex);
752 buf->alloc_size = PAGE_SIZE;
755 return buf;
758 static int fill_buffer(struct debug_buffer *buf)
760 int ret = 0;
762 if (!buf->output_buf)
763 buf->output_buf = vmalloc(buf->alloc_size);
765 if (!buf->output_buf) {
766 ret = -ENOMEM;
767 goto out;
770 ret = buf->fill_func(buf);
772 if (ret >= 0) {
773 buf->count = ret;
774 ret = 0;
777 out:
778 return ret;
781 static ssize_t debug_output(struct file *file, char __user *user_buf,
782 size_t len, loff_t *offset)
784 struct debug_buffer *buf = file->private_data;
785 int ret = 0;
787 mutex_lock(&buf->mutex);
788 if (buf->count == 0) {
789 ret = fill_buffer(buf);
790 if (ret != 0) {
791 mutex_unlock(&buf->mutex);
792 goto out;
795 mutex_unlock(&buf->mutex);
797 ret = simple_read_from_buffer(user_buf, len, offset,
798 buf->output_buf, buf->count);
800 out:
801 return ret;
805 static int debug_close(struct inode *inode, struct file *file)
807 struct debug_buffer *buf = file->private_data;
809 if (buf) {
810 vfree(buf->output_buf);
811 kfree(buf);
814 return 0;
816 static int debug_async_open(struct inode *inode, struct file *file)
818 file->private_data = alloc_buffer(inode->i_private, fill_async_buffer);
820 return file->private_data ? 0 : -ENOMEM;
823 static int debug_periodic_open(struct inode *inode, struct file *file)
825 struct debug_buffer *buf;
827 buf = alloc_buffer(inode->i_private, fill_periodic_buffer);
828 if (!buf)
829 return -ENOMEM;
831 buf->alloc_size = (sizeof(void *) == 4 ? 6 : 8)*PAGE_SIZE;
832 file->private_data = buf;
833 return 0;
836 static int debug_registers_open(struct inode *inode, struct file *file)
838 file->private_data = alloc_buffer(inode->i_private,
839 fill_registers_buffer);
841 return file->private_data ? 0 : -ENOMEM;
844 static inline void create_debug_files(struct fotg210_hcd *fotg210)
846 struct usb_bus *bus = &fotg210_to_hcd(fotg210)->self;
848 fotg210->debug_dir = debugfs_create_dir(bus->bus_name,
849 fotg210_debug_root);
850 if (!fotg210->debug_dir)
851 return;
853 if (!debugfs_create_file("async", S_IRUGO, fotg210->debug_dir, bus,
854 &debug_async_fops))
855 goto file_error;
857 if (!debugfs_create_file("periodic", S_IRUGO, fotg210->debug_dir, bus,
858 &debug_periodic_fops))
859 goto file_error;
861 if (!debugfs_create_file("registers", S_IRUGO, fotg210->debug_dir, bus,
862 &debug_registers_fops))
863 goto file_error;
865 return;
867 file_error:
868 debugfs_remove_recursive(fotg210->debug_dir);
871 static inline void remove_debug_files(struct fotg210_hcd *fotg210)
873 debugfs_remove_recursive(fotg210->debug_dir);
876 /* handshake - spin reading hc until handshake completes or fails
877 * @ptr: address of hc register to be read
878 * @mask: bits to look at in result of read
879 * @done: value of those bits when handshake succeeds
880 * @usec: timeout in microseconds
882 * Returns negative errno, or zero on success
884 * Success happens when the "mask" bits have the specified value (hardware
885 * handshake done). There are two failure modes: "usec" have passed (major
886 * hardware flakeout), or the register reads as all-ones (hardware removed).
888 * That last failure should_only happen in cases like physical cardbus eject
889 * before driver shutdown. But it also seems to be caused by bugs in cardbus
890 * bridge shutdown: shutting down the bridge before the devices using it.
892 static int handshake(struct fotg210_hcd *fotg210, void __iomem *ptr,
893 u32 mask, u32 done, int usec)
895 u32 result;
897 do {
898 result = fotg210_readl(fotg210, ptr);
899 if (result == ~(u32)0) /* card removed */
900 return -ENODEV;
901 result &= mask;
902 if (result == done)
903 return 0;
904 udelay(1);
905 usec--;
906 } while (usec > 0);
907 return -ETIMEDOUT;
910 /* Force HC to halt state from unknown (EHCI spec section 2.3).
911 * Must be called with interrupts enabled and the lock not held.
913 static int fotg210_halt(struct fotg210_hcd *fotg210)
915 u32 temp;
917 spin_lock_irq(&fotg210->lock);
919 /* disable any irqs left enabled by previous code */
920 fotg210_writel(fotg210, 0, &fotg210->regs->intr_enable);
923 * This routine gets called during probe before fotg210->command
924 * has been initialized, so we can't rely on its value.
926 fotg210->command &= ~CMD_RUN;
927 temp = fotg210_readl(fotg210, &fotg210->regs->command);
928 temp &= ~(CMD_RUN | CMD_IAAD);
929 fotg210_writel(fotg210, temp, &fotg210->regs->command);
931 spin_unlock_irq(&fotg210->lock);
932 synchronize_irq(fotg210_to_hcd(fotg210)->irq);
934 return handshake(fotg210, &fotg210->regs->status,
935 STS_HALT, STS_HALT, 16 * 125);
938 /* Reset a non-running (STS_HALT == 1) controller.
939 * Must be called with interrupts enabled and the lock not held.
941 static int fotg210_reset(struct fotg210_hcd *fotg210)
943 int retval;
944 u32 command = fotg210_readl(fotg210, &fotg210->regs->command);
946 /* If the EHCI debug controller is active, special care must be
947 * taken before and after a host controller reset
949 if (fotg210->debug && !dbgp_reset_prep(fotg210_to_hcd(fotg210)))
950 fotg210->debug = NULL;
952 command |= CMD_RESET;
953 dbg_cmd(fotg210, "reset", command);
954 fotg210_writel(fotg210, command, &fotg210->regs->command);
955 fotg210->rh_state = FOTG210_RH_HALTED;
956 fotg210->next_statechange = jiffies;
957 retval = handshake(fotg210, &fotg210->regs->command,
958 CMD_RESET, 0, 250 * 1000);
960 if (retval)
961 return retval;
963 if (fotg210->debug)
964 dbgp_external_startup(fotg210_to_hcd(fotg210));
966 fotg210->port_c_suspend = fotg210->suspended_ports =
967 fotg210->resuming_ports = 0;
968 return retval;
971 /* Idle the controller (turn off the schedules).
972 * Must be called with interrupts enabled and the lock not held.
974 static void fotg210_quiesce(struct fotg210_hcd *fotg210)
976 u32 temp;
978 if (fotg210->rh_state != FOTG210_RH_RUNNING)
979 return;
981 /* wait for any schedule enables/disables to take effect */
982 temp = (fotg210->command << 10) & (STS_ASS | STS_PSS);
983 handshake(fotg210, &fotg210->regs->status, STS_ASS | STS_PSS, temp,
984 16 * 125);
986 /* then disable anything that's still active */
987 spin_lock_irq(&fotg210->lock);
988 fotg210->command &= ~(CMD_ASE | CMD_PSE);
989 fotg210_writel(fotg210, fotg210->command, &fotg210->regs->command);
990 spin_unlock_irq(&fotg210->lock);
992 /* hardware can take 16 microframes to turn off ... */
993 handshake(fotg210, &fotg210->regs->status, STS_ASS | STS_PSS, 0,
994 16 * 125);
997 static void end_unlink_async(struct fotg210_hcd *fotg210);
998 static void unlink_empty_async(struct fotg210_hcd *fotg210);
999 static void fotg210_work(struct fotg210_hcd *fotg210);
1000 static void start_unlink_intr(struct fotg210_hcd *fotg210,
1001 struct fotg210_qh *qh);
1002 static void end_unlink_intr(struct fotg210_hcd *fotg210, struct fotg210_qh *qh);
1004 /* Set a bit in the USBCMD register */
1005 static void fotg210_set_command_bit(struct fotg210_hcd *fotg210, u32 bit)
1007 fotg210->command |= bit;
1008 fotg210_writel(fotg210, fotg210->command, &fotg210->regs->command);
1010 /* unblock posted write */
1011 fotg210_readl(fotg210, &fotg210->regs->command);
1014 /* Clear a bit in the USBCMD register */
1015 static void fotg210_clear_command_bit(struct fotg210_hcd *fotg210, u32 bit)
1017 fotg210->command &= ~bit;
1018 fotg210_writel(fotg210, fotg210->command, &fotg210->regs->command);
1020 /* unblock posted write */
1021 fotg210_readl(fotg210, &fotg210->regs->command);
1024 /* EHCI timer support... Now using hrtimers.
1026 * Lots of different events are triggered from fotg210->hrtimer. Whenever
1027 * the timer routine runs, it checks each possible event; events that are
1028 * currently enabled and whose expiration time has passed get handled.
1029 * The set of enabled events is stored as a collection of bitflags in
1030 * fotg210->enabled_hrtimer_events, and they are numbered in order of
1031 * increasing delay values (ranging between 1 ms and 100 ms).
1033 * Rather than implementing a sorted list or tree of all pending events,
1034 * we keep track only of the lowest-numbered pending event, in
1035 * fotg210->next_hrtimer_event. Whenever fotg210->hrtimer gets restarted, its
1036 * expiration time is set to the timeout value for this event.
1038 * As a result, events might not get handled right away; the actual delay
1039 * could be anywhere up to twice the requested delay. This doesn't
1040 * matter, because none of the events are especially time-critical. The
1041 * ones that matter most all have a delay of 1 ms, so they will be
1042 * handled after 2 ms at most, which is okay. In addition to this, we
1043 * allow for an expiration range of 1 ms.
1046 /* Delay lengths for the hrtimer event types.
1047 * Keep this list sorted by delay length, in the same order as
1048 * the event types indexed by enum fotg210_hrtimer_event in fotg210.h.
1050 static unsigned event_delays_ns[] = {
1051 1 * NSEC_PER_MSEC, /* FOTG210_HRTIMER_POLL_ASS */
1052 1 * NSEC_PER_MSEC, /* FOTG210_HRTIMER_POLL_PSS */
1053 1 * NSEC_PER_MSEC, /* FOTG210_HRTIMER_POLL_DEAD */
1054 1125 * NSEC_PER_USEC, /* FOTG210_HRTIMER_UNLINK_INTR */
1055 2 * NSEC_PER_MSEC, /* FOTG210_HRTIMER_FREE_ITDS */
1056 6 * NSEC_PER_MSEC, /* FOTG210_HRTIMER_ASYNC_UNLINKS */
1057 10 * NSEC_PER_MSEC, /* FOTG210_HRTIMER_IAA_WATCHDOG */
1058 10 * NSEC_PER_MSEC, /* FOTG210_HRTIMER_DISABLE_PERIODIC */
1059 15 * NSEC_PER_MSEC, /* FOTG210_HRTIMER_DISABLE_ASYNC */
1060 100 * NSEC_PER_MSEC, /* FOTG210_HRTIMER_IO_WATCHDOG */
1063 /* Enable a pending hrtimer event */
1064 static void fotg210_enable_event(struct fotg210_hcd *fotg210, unsigned event,
1065 bool resched)
1067 ktime_t *timeout = &fotg210->hr_timeouts[event];
1069 if (resched)
1070 *timeout = ktime_add(ktime_get(), event_delays_ns[event]);
1071 fotg210->enabled_hrtimer_events |= (1 << event);
1073 /* Track only the lowest-numbered pending event */
1074 if (event < fotg210->next_hrtimer_event) {
1075 fotg210->next_hrtimer_event = event;
1076 hrtimer_start_range_ns(&fotg210->hrtimer, *timeout,
1077 NSEC_PER_MSEC, HRTIMER_MODE_ABS);
1082 /* Poll the STS_ASS status bit; see when it agrees with CMD_ASE */
1083 static void fotg210_poll_ASS(struct fotg210_hcd *fotg210)
1085 unsigned actual, want;
1087 /* Don't enable anything if the controller isn't running (e.g., died) */
1088 if (fotg210->rh_state != FOTG210_RH_RUNNING)
1089 return;
1091 want = (fotg210->command & CMD_ASE) ? STS_ASS : 0;
1092 actual = fotg210_readl(fotg210, &fotg210->regs->status) & STS_ASS;
1094 if (want != actual) {
1096 /* Poll again later, but give up after about 20 ms */
1097 if (fotg210->ASS_poll_count++ < 20) {
1098 fotg210_enable_event(fotg210, FOTG210_HRTIMER_POLL_ASS,
1099 true);
1100 return;
1102 fotg210_dbg(fotg210, "Waited too long for the async schedule status (%x/%x), giving up\n",
1103 want, actual);
1105 fotg210->ASS_poll_count = 0;
1107 /* The status is up-to-date; restart or stop the schedule as needed */
1108 if (want == 0) { /* Stopped */
1109 if (fotg210->async_count > 0)
1110 fotg210_set_command_bit(fotg210, CMD_ASE);
1112 } else { /* Running */
1113 if (fotg210->async_count == 0) {
1115 /* Turn off the schedule after a while */
1116 fotg210_enable_event(fotg210,
1117 FOTG210_HRTIMER_DISABLE_ASYNC,
1118 true);
1123 /* Turn off the async schedule after a brief delay */
1124 static void fotg210_disable_ASE(struct fotg210_hcd *fotg210)
1126 fotg210_clear_command_bit(fotg210, CMD_ASE);
1130 /* Poll the STS_PSS status bit; see when it agrees with CMD_PSE */
1131 static void fotg210_poll_PSS(struct fotg210_hcd *fotg210)
1133 unsigned actual, want;
1135 /* Don't do anything if the controller isn't running (e.g., died) */
1136 if (fotg210->rh_state != FOTG210_RH_RUNNING)
1137 return;
1139 want = (fotg210->command & CMD_PSE) ? STS_PSS : 0;
1140 actual = fotg210_readl(fotg210, &fotg210->regs->status) & STS_PSS;
1142 if (want != actual) {
1144 /* Poll again later, but give up after about 20 ms */
1145 if (fotg210->PSS_poll_count++ < 20) {
1146 fotg210_enable_event(fotg210, FOTG210_HRTIMER_POLL_PSS,
1147 true);
1148 return;
1150 fotg210_dbg(fotg210, "Waited too long for the periodic schedule status (%x/%x), giving up\n",
1151 want, actual);
1153 fotg210->PSS_poll_count = 0;
1155 /* The status is up-to-date; restart or stop the schedule as needed */
1156 if (want == 0) { /* Stopped */
1157 if (fotg210->periodic_count > 0)
1158 fotg210_set_command_bit(fotg210, CMD_PSE);
1160 } else { /* Running */
1161 if (fotg210->periodic_count == 0) {
1163 /* Turn off the schedule after a while */
1164 fotg210_enable_event(fotg210,
1165 FOTG210_HRTIMER_DISABLE_PERIODIC,
1166 true);
1171 /* Turn off the periodic schedule after a brief delay */
1172 static void fotg210_disable_PSE(struct fotg210_hcd *fotg210)
1174 fotg210_clear_command_bit(fotg210, CMD_PSE);
1178 /* Poll the STS_HALT status bit; see when a dead controller stops */
1179 static void fotg210_handle_controller_death(struct fotg210_hcd *fotg210)
1181 if (!(fotg210_readl(fotg210, &fotg210->regs->status) & STS_HALT)) {
1183 /* Give up after a few milliseconds */
1184 if (fotg210->died_poll_count++ < 5) {
1185 /* Try again later */
1186 fotg210_enable_event(fotg210,
1187 FOTG210_HRTIMER_POLL_DEAD, true);
1188 return;
1190 fotg210_warn(fotg210, "Waited too long for the controller to stop, giving up\n");
1193 /* Clean up the mess */
1194 fotg210->rh_state = FOTG210_RH_HALTED;
1195 fotg210_writel(fotg210, 0, &fotg210->regs->intr_enable);
1196 fotg210_work(fotg210);
1197 end_unlink_async(fotg210);
1199 /* Not in process context, so don't try to reset the controller */
1203 /* Handle unlinked interrupt QHs once they are gone from the hardware */
1204 static void fotg210_handle_intr_unlinks(struct fotg210_hcd *fotg210)
1206 bool stopped = (fotg210->rh_state < FOTG210_RH_RUNNING);
1209 * Process all the QHs on the intr_unlink list that were added
1210 * before the current unlink cycle began. The list is in
1211 * temporal order, so stop when we reach the first entry in the
1212 * current cycle. But if the root hub isn't running then
1213 * process all the QHs on the list.
1215 fotg210->intr_unlinking = true;
1216 while (fotg210->intr_unlink) {
1217 struct fotg210_qh *qh = fotg210->intr_unlink;
1219 if (!stopped && qh->unlink_cycle == fotg210->intr_unlink_cycle)
1220 break;
1221 fotg210->intr_unlink = qh->unlink_next;
1222 qh->unlink_next = NULL;
1223 end_unlink_intr(fotg210, qh);
1226 /* Handle remaining entries later */
1227 if (fotg210->intr_unlink) {
1228 fotg210_enable_event(fotg210, FOTG210_HRTIMER_UNLINK_INTR,
1229 true);
1230 ++fotg210->intr_unlink_cycle;
1232 fotg210->intr_unlinking = false;
1236 /* Start another free-iTDs/siTDs cycle */
1237 static void start_free_itds(struct fotg210_hcd *fotg210)
1239 if (!(fotg210->enabled_hrtimer_events &
1240 BIT(FOTG210_HRTIMER_FREE_ITDS))) {
1241 fotg210->last_itd_to_free = list_entry(
1242 fotg210->cached_itd_list.prev,
1243 struct fotg210_itd, itd_list);
1244 fotg210_enable_event(fotg210, FOTG210_HRTIMER_FREE_ITDS, true);
1248 /* Wait for controller to stop using old iTDs and siTDs */
1249 static void end_free_itds(struct fotg210_hcd *fotg210)
1251 struct fotg210_itd *itd, *n;
1253 if (fotg210->rh_state < FOTG210_RH_RUNNING)
1254 fotg210->last_itd_to_free = NULL;
1256 list_for_each_entry_safe(itd, n, &fotg210->cached_itd_list, itd_list) {
1257 list_del(&itd->itd_list);
1258 dma_pool_free(fotg210->itd_pool, itd, itd->itd_dma);
1259 if (itd == fotg210->last_itd_to_free)
1260 break;
1263 if (!list_empty(&fotg210->cached_itd_list))
1264 start_free_itds(fotg210);
1268 /* Handle lost (or very late) IAA interrupts */
1269 static void fotg210_iaa_watchdog(struct fotg210_hcd *fotg210)
1271 if (fotg210->rh_state != FOTG210_RH_RUNNING)
1272 return;
1275 * Lost IAA irqs wedge things badly; seen first with a vt8235.
1276 * So we need this watchdog, but must protect it against both
1277 * (a) SMP races against real IAA firing and retriggering, and
1278 * (b) clean HC shutdown, when IAA watchdog was pending.
1280 if (fotg210->async_iaa) {
1281 u32 cmd, status;
1283 /* If we get here, IAA is *REALLY* late. It's barely
1284 * conceivable that the system is so busy that CMD_IAAD
1285 * is still legitimately set, so let's be sure it's
1286 * clear before we read STS_IAA. (The HC should clear
1287 * CMD_IAAD when it sets STS_IAA.)
1289 cmd = fotg210_readl(fotg210, &fotg210->regs->command);
1292 * If IAA is set here it either legitimately triggered
1293 * after the watchdog timer expired (_way_ late, so we'll
1294 * still count it as lost) ... or a silicon erratum:
1295 * - VIA seems to set IAA without triggering the IRQ;
1296 * - IAAD potentially cleared without setting IAA.
1298 status = fotg210_readl(fotg210, &fotg210->regs->status);
1299 if ((status & STS_IAA) || !(cmd & CMD_IAAD)) {
1300 COUNT(fotg210->stats.lost_iaa);
1301 fotg210_writel(fotg210, STS_IAA,
1302 &fotg210->regs->status);
1305 fotg210_dbg(fotg210, "IAA watchdog: status %x cmd %x\n",
1306 status, cmd);
1307 end_unlink_async(fotg210);
1312 /* Enable the I/O watchdog, if appropriate */
1313 static void turn_on_io_watchdog(struct fotg210_hcd *fotg210)
1315 /* Not needed if the controller isn't running or it's already enabled */
1316 if (fotg210->rh_state != FOTG210_RH_RUNNING ||
1317 (fotg210->enabled_hrtimer_events &
1318 BIT(FOTG210_HRTIMER_IO_WATCHDOG)))
1319 return;
1322 * Isochronous transfers always need the watchdog.
1323 * For other sorts we use it only if the flag is set.
1325 if (fotg210->isoc_count > 0 || (fotg210->need_io_watchdog &&
1326 fotg210->async_count + fotg210->intr_count > 0))
1327 fotg210_enable_event(fotg210, FOTG210_HRTIMER_IO_WATCHDOG,
1328 true);
1332 /* Handler functions for the hrtimer event types.
1333 * Keep this array in the same order as the event types indexed by
1334 * enum fotg210_hrtimer_event in fotg210.h.
1336 static void (*event_handlers[])(struct fotg210_hcd *) = {
1337 fotg210_poll_ASS, /* FOTG210_HRTIMER_POLL_ASS */
1338 fotg210_poll_PSS, /* FOTG210_HRTIMER_POLL_PSS */
1339 fotg210_handle_controller_death, /* FOTG210_HRTIMER_POLL_DEAD */
1340 fotg210_handle_intr_unlinks, /* FOTG210_HRTIMER_UNLINK_INTR */
1341 end_free_itds, /* FOTG210_HRTIMER_FREE_ITDS */
1342 unlink_empty_async, /* FOTG210_HRTIMER_ASYNC_UNLINKS */
1343 fotg210_iaa_watchdog, /* FOTG210_HRTIMER_IAA_WATCHDOG */
1344 fotg210_disable_PSE, /* FOTG210_HRTIMER_DISABLE_PERIODIC */
1345 fotg210_disable_ASE, /* FOTG210_HRTIMER_DISABLE_ASYNC */
1346 fotg210_work, /* FOTG210_HRTIMER_IO_WATCHDOG */
1349 static enum hrtimer_restart fotg210_hrtimer_func(struct hrtimer *t)
1351 struct fotg210_hcd *fotg210 =
1352 container_of(t, struct fotg210_hcd, hrtimer);
1353 ktime_t now;
1354 unsigned long events;
1355 unsigned long flags;
1356 unsigned e;
1358 spin_lock_irqsave(&fotg210->lock, flags);
1360 events = fotg210->enabled_hrtimer_events;
1361 fotg210->enabled_hrtimer_events = 0;
1362 fotg210->next_hrtimer_event = FOTG210_HRTIMER_NO_EVENT;
1365 * Check each pending event. If its time has expired, handle
1366 * the event; otherwise re-enable it.
1368 now = ktime_get();
1369 for_each_set_bit(e, &events, FOTG210_HRTIMER_NUM_EVENTS) {
1370 if (ktime_compare(now, fotg210->hr_timeouts[e]) >= 0)
1371 event_handlers[e](fotg210);
1372 else
1373 fotg210_enable_event(fotg210, e, false);
1376 spin_unlock_irqrestore(&fotg210->lock, flags);
1377 return HRTIMER_NORESTART;
1380 #define fotg210_bus_suspend NULL
1381 #define fotg210_bus_resume NULL
1383 static int check_reset_complete(struct fotg210_hcd *fotg210, int index,
1384 u32 __iomem *status_reg, int port_status)
1386 if (!(port_status & PORT_CONNECT))
1387 return port_status;
1389 /* if reset finished and it's still not enabled -- handoff */
1390 if (!(port_status & PORT_PE))
1391 /* with integrated TT, there's nobody to hand it to! */
1392 fotg210_dbg(fotg210, "Failed to enable port %d on root hub TT\n",
1393 index + 1);
1394 else
1395 fotg210_dbg(fotg210, "port %d reset complete, port enabled\n",
1396 index + 1);
1398 return port_status;
1402 /* build "status change" packet (one or two bytes) from HC registers */
1404 static int fotg210_hub_status_data(struct usb_hcd *hcd, char *buf)
1406 struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd);
1407 u32 temp, status;
1408 u32 mask;
1409 int retval = 1;
1410 unsigned long flags;
1412 /* init status to no-changes */
1413 buf[0] = 0;
1415 /* Inform the core about resumes-in-progress by returning
1416 * a non-zero value even if there are no status changes.
1418 status = fotg210->resuming_ports;
1420 mask = PORT_CSC | PORT_PEC;
1421 /* PORT_RESUME from hardware ~= PORT_STAT_C_SUSPEND */
1423 /* no hub change reports (bit 0) for now (power, ...) */
1425 /* port N changes (bit N)? */
1426 spin_lock_irqsave(&fotg210->lock, flags);
1428 temp = fotg210_readl(fotg210, &fotg210->regs->port_status);
1431 * Return status information even for ports with OWNER set.
1432 * Otherwise hub_wq wouldn't see the disconnect event when a
1433 * high-speed device is switched over to the companion
1434 * controller by the user.
1437 if ((temp & mask) != 0 || test_bit(0, &fotg210->port_c_suspend) ||
1438 (fotg210->reset_done[0] &&
1439 time_after_eq(jiffies, fotg210->reset_done[0]))) {
1440 buf[0] |= 1 << 1;
1441 status = STS_PCD;
1443 /* FIXME autosuspend idle root hubs */
1444 spin_unlock_irqrestore(&fotg210->lock, flags);
1445 return status ? retval : 0;
1448 static void fotg210_hub_descriptor(struct fotg210_hcd *fotg210,
1449 struct usb_hub_descriptor *desc)
1451 int ports = HCS_N_PORTS(fotg210->hcs_params);
1452 u16 temp;
1454 desc->bDescriptorType = USB_DT_HUB;
1455 desc->bPwrOn2PwrGood = 10; /* fotg210 1.0, 2.3.9 says 20ms max */
1456 desc->bHubContrCurrent = 0;
1458 desc->bNbrPorts = ports;
1459 temp = 1 + (ports / 8);
1460 desc->bDescLength = 7 + 2 * temp;
1462 /* two bitmaps: ports removable, and usb 1.0 legacy PortPwrCtrlMask */
1463 memset(&desc->u.hs.DeviceRemovable[0], 0, temp);
1464 memset(&desc->u.hs.DeviceRemovable[temp], 0xff, temp);
1466 temp = HUB_CHAR_INDV_PORT_OCPM; /* per-port overcurrent reporting */
1467 temp |= HUB_CHAR_NO_LPSM; /* no power switching */
1468 desc->wHubCharacteristics = cpu_to_le16(temp);
1471 static int fotg210_hub_control(struct usb_hcd *hcd, u16 typeReq, u16 wValue,
1472 u16 wIndex, char *buf, u16 wLength)
1474 struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd);
1475 int ports = HCS_N_PORTS(fotg210->hcs_params);
1476 u32 __iomem *status_reg = &fotg210->regs->port_status;
1477 u32 temp, temp1, status;
1478 unsigned long flags;
1479 int retval = 0;
1480 unsigned selector;
1483 * FIXME: support SetPortFeatures USB_PORT_FEAT_INDICATOR.
1484 * HCS_INDICATOR may say we can change LEDs to off/amber/green.
1485 * (track current state ourselves) ... blink for diagnostics,
1486 * power, "this is the one", etc. EHCI spec supports this.
1489 spin_lock_irqsave(&fotg210->lock, flags);
1490 switch (typeReq) {
1491 case ClearHubFeature:
1492 switch (wValue) {
1493 case C_HUB_LOCAL_POWER:
1494 case C_HUB_OVER_CURRENT:
1495 /* no hub-wide feature/status flags */
1496 break;
1497 default:
1498 goto error;
1500 break;
1501 case ClearPortFeature:
1502 if (!wIndex || wIndex > ports)
1503 goto error;
1504 wIndex--;
1505 temp = fotg210_readl(fotg210, status_reg);
1506 temp &= ~PORT_RWC_BITS;
1509 * Even if OWNER is set, so the port is owned by the
1510 * companion controller, hub_wq needs to be able to clear
1511 * the port-change status bits (especially
1512 * USB_PORT_STAT_C_CONNECTION).
1515 switch (wValue) {
1516 case USB_PORT_FEAT_ENABLE:
1517 fotg210_writel(fotg210, temp & ~PORT_PE, status_reg);
1518 break;
1519 case USB_PORT_FEAT_C_ENABLE:
1520 fotg210_writel(fotg210, temp | PORT_PEC, status_reg);
1521 break;
1522 case USB_PORT_FEAT_SUSPEND:
1523 if (temp & PORT_RESET)
1524 goto error;
1525 if (!(temp & PORT_SUSPEND))
1526 break;
1527 if ((temp & PORT_PE) == 0)
1528 goto error;
1530 /* resume signaling for 20 msec */
1531 fotg210_writel(fotg210, temp | PORT_RESUME, status_reg);
1532 fotg210->reset_done[wIndex] = jiffies
1533 + msecs_to_jiffies(USB_RESUME_TIMEOUT);
1534 break;
1535 case USB_PORT_FEAT_C_SUSPEND:
1536 clear_bit(wIndex, &fotg210->port_c_suspend);
1537 break;
1538 case USB_PORT_FEAT_C_CONNECTION:
1539 fotg210_writel(fotg210, temp | PORT_CSC, status_reg);
1540 break;
1541 case USB_PORT_FEAT_C_OVER_CURRENT:
1542 fotg210_writel(fotg210, temp | OTGISR_OVC,
1543 &fotg210->regs->otgisr);
1544 break;
1545 case USB_PORT_FEAT_C_RESET:
1546 /* GetPortStatus clears reset */
1547 break;
1548 default:
1549 goto error;
1551 fotg210_readl(fotg210, &fotg210->regs->command);
1552 break;
1553 case GetHubDescriptor:
1554 fotg210_hub_descriptor(fotg210, (struct usb_hub_descriptor *)
1555 buf);
1556 break;
1557 case GetHubStatus:
1558 /* no hub-wide feature/status flags */
1559 memset(buf, 0, 4);
1560 /*cpu_to_le32s ((u32 *) buf); */
1561 break;
1562 case GetPortStatus:
1563 if (!wIndex || wIndex > ports)
1564 goto error;
1565 wIndex--;
1566 status = 0;
1567 temp = fotg210_readl(fotg210, status_reg);
1569 /* wPortChange bits */
1570 if (temp & PORT_CSC)
1571 status |= USB_PORT_STAT_C_CONNECTION << 16;
1572 if (temp & PORT_PEC)
1573 status |= USB_PORT_STAT_C_ENABLE << 16;
1575 temp1 = fotg210_readl(fotg210, &fotg210->regs->otgisr);
1576 if (temp1 & OTGISR_OVC)
1577 status |= USB_PORT_STAT_C_OVERCURRENT << 16;
1579 /* whoever resumes must GetPortStatus to complete it!! */
1580 if (temp & PORT_RESUME) {
1582 /* Remote Wakeup received? */
1583 if (!fotg210->reset_done[wIndex]) {
1584 /* resume signaling for 20 msec */
1585 fotg210->reset_done[wIndex] = jiffies
1586 + msecs_to_jiffies(20);
1587 /* check the port again */
1588 mod_timer(&fotg210_to_hcd(fotg210)->rh_timer,
1589 fotg210->reset_done[wIndex]);
1592 /* resume completed? */
1593 else if (time_after_eq(jiffies,
1594 fotg210->reset_done[wIndex])) {
1595 clear_bit(wIndex, &fotg210->suspended_ports);
1596 set_bit(wIndex, &fotg210->port_c_suspend);
1597 fotg210->reset_done[wIndex] = 0;
1599 /* stop resume signaling */
1600 temp = fotg210_readl(fotg210, status_reg);
1601 fotg210_writel(fotg210, temp &
1602 ~(PORT_RWC_BITS | PORT_RESUME),
1603 status_reg);
1604 clear_bit(wIndex, &fotg210->resuming_ports);
1605 retval = handshake(fotg210, status_reg,
1606 PORT_RESUME, 0, 2000);/* 2ms */
1607 if (retval != 0) {
1608 fotg210_err(fotg210,
1609 "port %d resume error %d\n",
1610 wIndex + 1, retval);
1611 goto error;
1613 temp &= ~(PORT_SUSPEND|PORT_RESUME|(3<<10));
1617 /* whoever resets must GetPortStatus to complete it!! */
1618 if ((temp & PORT_RESET) && time_after_eq(jiffies,
1619 fotg210->reset_done[wIndex])) {
1620 status |= USB_PORT_STAT_C_RESET << 16;
1621 fotg210->reset_done[wIndex] = 0;
1622 clear_bit(wIndex, &fotg210->resuming_ports);
1624 /* force reset to complete */
1625 fotg210_writel(fotg210,
1626 temp & ~(PORT_RWC_BITS | PORT_RESET),
1627 status_reg);
1628 /* REVISIT: some hardware needs 550+ usec to clear
1629 * this bit; seems too long to spin routinely...
1631 retval = handshake(fotg210, status_reg,
1632 PORT_RESET, 0, 1000);
1633 if (retval != 0) {
1634 fotg210_err(fotg210, "port %d reset error %d\n",
1635 wIndex + 1, retval);
1636 goto error;
1639 /* see what we found out */
1640 temp = check_reset_complete(fotg210, wIndex, status_reg,
1641 fotg210_readl(fotg210, status_reg));
1644 if (!(temp & (PORT_RESUME|PORT_RESET))) {
1645 fotg210->reset_done[wIndex] = 0;
1646 clear_bit(wIndex, &fotg210->resuming_ports);
1649 /* transfer dedicated ports to the companion hc */
1650 if ((temp & PORT_CONNECT) &&
1651 test_bit(wIndex, &fotg210->companion_ports)) {
1652 temp &= ~PORT_RWC_BITS;
1653 fotg210_writel(fotg210, temp, status_reg);
1654 fotg210_dbg(fotg210, "port %d --> companion\n",
1655 wIndex + 1);
1656 temp = fotg210_readl(fotg210, status_reg);
1660 * Even if OWNER is set, there's no harm letting hub_wq
1661 * see the wPortStatus values (they should all be 0 except
1662 * for PORT_POWER anyway).
1665 if (temp & PORT_CONNECT) {
1666 status |= USB_PORT_STAT_CONNECTION;
1667 status |= fotg210_port_speed(fotg210, temp);
1669 if (temp & PORT_PE)
1670 status |= USB_PORT_STAT_ENABLE;
1672 /* maybe the port was unsuspended without our knowledge */
1673 if (temp & (PORT_SUSPEND|PORT_RESUME)) {
1674 status |= USB_PORT_STAT_SUSPEND;
1675 } else if (test_bit(wIndex, &fotg210->suspended_ports)) {
1676 clear_bit(wIndex, &fotg210->suspended_ports);
1677 clear_bit(wIndex, &fotg210->resuming_ports);
1678 fotg210->reset_done[wIndex] = 0;
1679 if (temp & PORT_PE)
1680 set_bit(wIndex, &fotg210->port_c_suspend);
1683 temp1 = fotg210_readl(fotg210, &fotg210->regs->otgisr);
1684 if (temp1 & OTGISR_OVC)
1685 status |= USB_PORT_STAT_OVERCURRENT;
1686 if (temp & PORT_RESET)
1687 status |= USB_PORT_STAT_RESET;
1688 if (test_bit(wIndex, &fotg210->port_c_suspend))
1689 status |= USB_PORT_STAT_C_SUSPEND << 16;
1691 if (status & ~0xffff) /* only if wPortChange is interesting */
1692 dbg_port(fotg210, "GetStatus", wIndex + 1, temp);
1693 put_unaligned_le32(status, buf);
1694 break;
1695 case SetHubFeature:
1696 switch (wValue) {
1697 case C_HUB_LOCAL_POWER:
1698 case C_HUB_OVER_CURRENT:
1699 /* no hub-wide feature/status flags */
1700 break;
1701 default:
1702 goto error;
1704 break;
1705 case SetPortFeature:
1706 selector = wIndex >> 8;
1707 wIndex &= 0xff;
1709 if (!wIndex || wIndex > ports)
1710 goto error;
1711 wIndex--;
1712 temp = fotg210_readl(fotg210, status_reg);
1713 temp &= ~PORT_RWC_BITS;
1714 switch (wValue) {
1715 case USB_PORT_FEAT_SUSPEND:
1716 if ((temp & PORT_PE) == 0
1717 || (temp & PORT_RESET) != 0)
1718 goto error;
1720 /* After above check the port must be connected.
1721 * Set appropriate bit thus could put phy into low power
1722 * mode if we have hostpc feature
1724 fotg210_writel(fotg210, temp | PORT_SUSPEND,
1725 status_reg);
1726 set_bit(wIndex, &fotg210->suspended_ports);
1727 break;
1728 case USB_PORT_FEAT_RESET:
1729 if (temp & PORT_RESUME)
1730 goto error;
1731 /* line status bits may report this as low speed,
1732 * which can be fine if this root hub has a
1733 * transaction translator built in.
1735 fotg210_dbg(fotg210, "port %d reset\n", wIndex + 1);
1736 temp |= PORT_RESET;
1737 temp &= ~PORT_PE;
1740 * caller must wait, then call GetPortStatus
1741 * usb 2.0 spec says 50 ms resets on root
1743 fotg210->reset_done[wIndex] = jiffies
1744 + msecs_to_jiffies(50);
1745 fotg210_writel(fotg210, temp, status_reg);
1746 break;
1748 /* For downstream facing ports (these): one hub port is put
1749 * into test mode according to USB2 11.24.2.13, then the hub
1750 * must be reset (which for root hub now means rmmod+modprobe,
1751 * or else system reboot). See EHCI 2.3.9 and 4.14 for info
1752 * about the EHCI-specific stuff.
1754 case USB_PORT_FEAT_TEST:
1755 if (!selector || selector > 5)
1756 goto error;
1757 spin_unlock_irqrestore(&fotg210->lock, flags);
1758 fotg210_quiesce(fotg210);
1759 spin_lock_irqsave(&fotg210->lock, flags);
1761 /* Put all enabled ports into suspend */
1762 temp = fotg210_readl(fotg210, status_reg) &
1763 ~PORT_RWC_BITS;
1764 if (temp & PORT_PE)
1765 fotg210_writel(fotg210, temp | PORT_SUSPEND,
1766 status_reg);
1768 spin_unlock_irqrestore(&fotg210->lock, flags);
1769 fotg210_halt(fotg210);
1770 spin_lock_irqsave(&fotg210->lock, flags);
1772 temp = fotg210_readl(fotg210, status_reg);
1773 temp |= selector << 16;
1774 fotg210_writel(fotg210, temp, status_reg);
1775 break;
1777 default:
1778 goto error;
1780 fotg210_readl(fotg210, &fotg210->regs->command);
1781 break;
1783 default:
1784 error:
1785 /* "stall" on error */
1786 retval = -EPIPE;
1788 spin_unlock_irqrestore(&fotg210->lock, flags);
1789 return retval;
1792 static void __maybe_unused fotg210_relinquish_port(struct usb_hcd *hcd,
1793 int portnum)
1795 return;
1798 static int __maybe_unused fotg210_port_handed_over(struct usb_hcd *hcd,
1799 int portnum)
1801 return 0;
1804 /* There's basically three types of memory:
1805 * - data used only by the HCD ... kmalloc is fine
1806 * - async and periodic schedules, shared by HC and HCD ... these
1807 * need to use dma_pool or dma_alloc_coherent
1808 * - driver buffers, read/written by HC ... single shot DMA mapped
1810 * There's also "register" data (e.g. PCI or SOC), which is memory mapped.
1811 * No memory seen by this driver is pageable.
1814 /* Allocate the key transfer structures from the previously allocated pool */
1815 static inline void fotg210_qtd_init(struct fotg210_hcd *fotg210,
1816 struct fotg210_qtd *qtd, dma_addr_t dma)
1818 memset(qtd, 0, sizeof(*qtd));
1819 qtd->qtd_dma = dma;
1820 qtd->hw_token = cpu_to_hc32(fotg210, QTD_STS_HALT);
1821 qtd->hw_next = FOTG210_LIST_END(fotg210);
1822 qtd->hw_alt_next = FOTG210_LIST_END(fotg210);
1823 INIT_LIST_HEAD(&qtd->qtd_list);
1826 static struct fotg210_qtd *fotg210_qtd_alloc(struct fotg210_hcd *fotg210,
1827 gfp_t flags)
1829 struct fotg210_qtd *qtd;
1830 dma_addr_t dma;
1832 qtd = dma_pool_alloc(fotg210->qtd_pool, flags, &dma);
1833 if (qtd != NULL)
1834 fotg210_qtd_init(fotg210, qtd, dma);
1836 return qtd;
1839 static inline void fotg210_qtd_free(struct fotg210_hcd *fotg210,
1840 struct fotg210_qtd *qtd)
1842 dma_pool_free(fotg210->qtd_pool, qtd, qtd->qtd_dma);
1846 static void qh_destroy(struct fotg210_hcd *fotg210, struct fotg210_qh *qh)
1848 /* clean qtds first, and know this is not linked */
1849 if (!list_empty(&qh->qtd_list) || qh->qh_next.ptr) {
1850 fotg210_dbg(fotg210, "unused qh not empty!\n");
1851 BUG();
1853 if (qh->dummy)
1854 fotg210_qtd_free(fotg210, qh->dummy);
1855 dma_pool_free(fotg210->qh_pool, qh->hw, qh->qh_dma);
1856 kfree(qh);
1859 static struct fotg210_qh *fotg210_qh_alloc(struct fotg210_hcd *fotg210,
1860 gfp_t flags)
1862 struct fotg210_qh *qh;
1863 dma_addr_t dma;
1865 qh = kzalloc(sizeof(*qh), GFP_ATOMIC);
1866 if (!qh)
1867 goto done;
1868 qh->hw = dma_pool_zalloc(fotg210->qh_pool, flags, &dma);
1869 if (!qh->hw)
1870 goto fail;
1871 qh->qh_dma = dma;
1872 INIT_LIST_HEAD(&qh->qtd_list);
1874 /* dummy td enables safe urb queuing */
1875 qh->dummy = fotg210_qtd_alloc(fotg210, flags);
1876 if (qh->dummy == NULL) {
1877 fotg210_dbg(fotg210, "no dummy td\n");
1878 goto fail1;
1880 done:
1881 return qh;
1882 fail1:
1883 dma_pool_free(fotg210->qh_pool, qh->hw, qh->qh_dma);
1884 fail:
1885 kfree(qh);
1886 return NULL;
1889 /* The queue heads and transfer descriptors are managed from pools tied
1890 * to each of the "per device" structures.
1891 * This is the initialisation and cleanup code.
1894 static void fotg210_mem_cleanup(struct fotg210_hcd *fotg210)
1896 if (fotg210->async)
1897 qh_destroy(fotg210, fotg210->async);
1898 fotg210->async = NULL;
1900 if (fotg210->dummy)
1901 qh_destroy(fotg210, fotg210->dummy);
1902 fotg210->dummy = NULL;
1904 /* DMA consistent memory and pools */
1905 dma_pool_destroy(fotg210->qtd_pool);
1906 fotg210->qtd_pool = NULL;
1908 dma_pool_destroy(fotg210->qh_pool);
1909 fotg210->qh_pool = NULL;
1911 dma_pool_destroy(fotg210->itd_pool);
1912 fotg210->itd_pool = NULL;
1914 if (fotg210->periodic)
1915 dma_free_coherent(fotg210_to_hcd(fotg210)->self.controller,
1916 fotg210->periodic_size * sizeof(u32),
1917 fotg210->periodic, fotg210->periodic_dma);
1918 fotg210->periodic = NULL;
1920 /* shadow periodic table */
1921 kfree(fotg210->pshadow);
1922 fotg210->pshadow = NULL;
1925 /* remember to add cleanup code (above) if you add anything here */
1926 static int fotg210_mem_init(struct fotg210_hcd *fotg210, gfp_t flags)
1928 int i;
1930 /* QTDs for control/bulk/intr transfers */
1931 fotg210->qtd_pool = dma_pool_create("fotg210_qtd",
1932 fotg210_to_hcd(fotg210)->self.controller,
1933 sizeof(struct fotg210_qtd),
1934 32 /* byte alignment (for hw parts) */,
1935 4096 /* can't cross 4K */);
1936 if (!fotg210->qtd_pool)
1937 goto fail;
1939 /* QHs for control/bulk/intr transfers */
1940 fotg210->qh_pool = dma_pool_create("fotg210_qh",
1941 fotg210_to_hcd(fotg210)->self.controller,
1942 sizeof(struct fotg210_qh_hw),
1943 32 /* byte alignment (for hw parts) */,
1944 4096 /* can't cross 4K */);
1945 if (!fotg210->qh_pool)
1946 goto fail;
1948 fotg210->async = fotg210_qh_alloc(fotg210, flags);
1949 if (!fotg210->async)
1950 goto fail;
1952 /* ITD for high speed ISO transfers */
1953 fotg210->itd_pool = dma_pool_create("fotg210_itd",
1954 fotg210_to_hcd(fotg210)->self.controller,
1955 sizeof(struct fotg210_itd),
1956 64 /* byte alignment (for hw parts) */,
1957 4096 /* can't cross 4K */);
1958 if (!fotg210->itd_pool)
1959 goto fail;
1961 /* Hardware periodic table */
1962 fotg210->periodic = (__le32 *)
1963 dma_alloc_coherent(fotg210_to_hcd(fotg210)->self.controller,
1964 fotg210->periodic_size * sizeof(__le32),
1965 &fotg210->periodic_dma, 0);
1966 if (fotg210->periodic == NULL)
1967 goto fail;
1969 for (i = 0; i < fotg210->periodic_size; i++)
1970 fotg210->periodic[i] = FOTG210_LIST_END(fotg210);
1972 /* software shadow of hardware table */
1973 fotg210->pshadow = kcalloc(fotg210->periodic_size, sizeof(void *),
1974 flags);
1975 if (fotg210->pshadow != NULL)
1976 return 0;
1978 fail:
1979 fotg210_dbg(fotg210, "couldn't init memory\n");
1980 fotg210_mem_cleanup(fotg210);
1981 return -ENOMEM;
1983 /* EHCI hardware queue manipulation ... the core. QH/QTD manipulation.
1985 * Control, bulk, and interrupt traffic all use "qh" lists. They list "qtd"
1986 * entries describing USB transactions, max 16-20kB/entry (with 4kB-aligned
1987 * buffers needed for the larger number). We use one QH per endpoint, queue
1988 * multiple urbs (all three types) per endpoint. URBs may need several qtds.
1990 * ISO traffic uses "ISO TD" (itd) records, and (along with
1991 * interrupts) needs careful scheduling. Performance improvements can be
1992 * an ongoing challenge. That's in "ehci-sched.c".
1994 * USB 1.1 devices are handled (a) by "companion" OHCI or UHCI root hubs,
1995 * or otherwise through transaction translators (TTs) in USB 2.0 hubs using
1996 * (b) special fields in qh entries or (c) split iso entries. TTs will
1997 * buffer low/full speed data so the host collects it at high speed.
2000 /* fill a qtd, returning how much of the buffer we were able to queue up */
2001 static int qtd_fill(struct fotg210_hcd *fotg210, struct fotg210_qtd *qtd,
2002 dma_addr_t buf, size_t len, int token, int maxpacket)
2004 int i, count;
2005 u64 addr = buf;
2007 /* one buffer entry per 4K ... first might be short or unaligned */
2008 qtd->hw_buf[0] = cpu_to_hc32(fotg210, (u32)addr);
2009 qtd->hw_buf_hi[0] = cpu_to_hc32(fotg210, (u32)(addr >> 32));
2010 count = 0x1000 - (buf & 0x0fff); /* rest of that page */
2011 if (likely(len < count)) /* ... iff needed */
2012 count = len;
2013 else {
2014 buf += 0x1000;
2015 buf &= ~0x0fff;
2017 /* per-qtd limit: from 16K to 20K (best alignment) */
2018 for (i = 1; count < len && i < 5; i++) {
2019 addr = buf;
2020 qtd->hw_buf[i] = cpu_to_hc32(fotg210, (u32)addr);
2021 qtd->hw_buf_hi[i] = cpu_to_hc32(fotg210,
2022 (u32)(addr >> 32));
2023 buf += 0x1000;
2024 if ((count + 0x1000) < len)
2025 count += 0x1000;
2026 else
2027 count = len;
2030 /* short packets may only terminate transfers */
2031 if (count != len)
2032 count -= (count % maxpacket);
2034 qtd->hw_token = cpu_to_hc32(fotg210, (count << 16) | token);
2035 qtd->length = count;
2037 return count;
2040 static inline void qh_update(struct fotg210_hcd *fotg210,
2041 struct fotg210_qh *qh, struct fotg210_qtd *qtd)
2043 struct fotg210_qh_hw *hw = qh->hw;
2045 /* writes to an active overlay are unsafe */
2046 BUG_ON(qh->qh_state != QH_STATE_IDLE);
2048 hw->hw_qtd_next = QTD_NEXT(fotg210, qtd->qtd_dma);
2049 hw->hw_alt_next = FOTG210_LIST_END(fotg210);
2051 /* Except for control endpoints, we make hardware maintain data
2052 * toggle (like OHCI) ... here (re)initialize the toggle in the QH,
2053 * and set the pseudo-toggle in udev. Only usb_clear_halt() will
2054 * ever clear it.
2056 if (!(hw->hw_info1 & cpu_to_hc32(fotg210, QH_TOGGLE_CTL))) {
2057 unsigned is_out, epnum;
2059 is_out = qh->is_out;
2060 epnum = (hc32_to_cpup(fotg210, &hw->hw_info1) >> 8) & 0x0f;
2061 if (unlikely(!usb_gettoggle(qh->dev, epnum, is_out))) {
2062 hw->hw_token &= ~cpu_to_hc32(fotg210, QTD_TOGGLE);
2063 usb_settoggle(qh->dev, epnum, is_out, 1);
2067 hw->hw_token &= cpu_to_hc32(fotg210, QTD_TOGGLE | QTD_STS_PING);
2070 /* if it weren't for a common silicon quirk (writing the dummy into the qh
2071 * overlay, so qh->hw_token wrongly becomes inactive/halted), only fault
2072 * recovery (including urb dequeue) would need software changes to a QH...
2074 static void qh_refresh(struct fotg210_hcd *fotg210, struct fotg210_qh *qh)
2076 struct fotg210_qtd *qtd;
2078 if (list_empty(&qh->qtd_list))
2079 qtd = qh->dummy;
2080 else {
2081 qtd = list_entry(qh->qtd_list.next,
2082 struct fotg210_qtd, qtd_list);
2084 * first qtd may already be partially processed.
2085 * If we come here during unlink, the QH overlay region
2086 * might have reference to the just unlinked qtd. The
2087 * qtd is updated in qh_completions(). Update the QH
2088 * overlay here.
2090 if (cpu_to_hc32(fotg210, qtd->qtd_dma) == qh->hw->hw_current) {
2091 qh->hw->hw_qtd_next = qtd->hw_next;
2092 qtd = NULL;
2096 if (qtd)
2097 qh_update(fotg210, qh, qtd);
2100 static void qh_link_async(struct fotg210_hcd *fotg210, struct fotg210_qh *qh);
2102 static void fotg210_clear_tt_buffer_complete(struct usb_hcd *hcd,
2103 struct usb_host_endpoint *ep)
2105 struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd);
2106 struct fotg210_qh *qh = ep->hcpriv;
2107 unsigned long flags;
2109 spin_lock_irqsave(&fotg210->lock, flags);
2110 qh->clearing_tt = 0;
2111 if (qh->qh_state == QH_STATE_IDLE && !list_empty(&qh->qtd_list)
2112 && fotg210->rh_state == FOTG210_RH_RUNNING)
2113 qh_link_async(fotg210, qh);
2114 spin_unlock_irqrestore(&fotg210->lock, flags);
2117 static void fotg210_clear_tt_buffer(struct fotg210_hcd *fotg210,
2118 struct fotg210_qh *qh, struct urb *urb, u32 token)
2121 /* If an async split transaction gets an error or is unlinked,
2122 * the TT buffer may be left in an indeterminate state. We
2123 * have to clear the TT buffer.
2125 * Note: this routine is never called for Isochronous transfers.
2127 if (urb->dev->tt && !usb_pipeint(urb->pipe) && !qh->clearing_tt) {
2128 struct usb_device *tt = urb->dev->tt->hub;
2130 dev_dbg(&tt->dev,
2131 "clear tt buffer port %d, a%d ep%d t%08x\n",
2132 urb->dev->ttport, urb->dev->devnum,
2133 usb_pipeendpoint(urb->pipe), token);
2135 if (urb->dev->tt->hub !=
2136 fotg210_to_hcd(fotg210)->self.root_hub) {
2137 if (usb_hub_clear_tt_buffer(urb) == 0)
2138 qh->clearing_tt = 1;
2143 static int qtd_copy_status(struct fotg210_hcd *fotg210, struct urb *urb,
2144 size_t length, u32 token)
2146 int status = -EINPROGRESS;
2148 /* count IN/OUT bytes, not SETUP (even short packets) */
2149 if (likely(QTD_PID(token) != 2))
2150 urb->actual_length += length - QTD_LENGTH(token);
2152 /* don't modify error codes */
2153 if (unlikely(urb->unlinked))
2154 return status;
2156 /* force cleanup after short read; not always an error */
2157 if (unlikely(IS_SHORT_READ(token)))
2158 status = -EREMOTEIO;
2160 /* serious "can't proceed" faults reported by the hardware */
2161 if (token & QTD_STS_HALT) {
2162 if (token & QTD_STS_BABBLE) {
2163 /* FIXME "must" disable babbling device's port too */
2164 status = -EOVERFLOW;
2165 /* CERR nonzero + halt --> stall */
2166 } else if (QTD_CERR(token)) {
2167 status = -EPIPE;
2169 /* In theory, more than one of the following bits can be set
2170 * since they are sticky and the transaction is retried.
2171 * Which to test first is rather arbitrary.
2173 } else if (token & QTD_STS_MMF) {
2174 /* fs/ls interrupt xfer missed the complete-split */
2175 status = -EPROTO;
2176 } else if (token & QTD_STS_DBE) {
2177 status = (QTD_PID(token) == 1) /* IN ? */
2178 ? -ENOSR /* hc couldn't read data */
2179 : -ECOMM; /* hc couldn't write data */
2180 } else if (token & QTD_STS_XACT) {
2181 /* timeout, bad CRC, wrong PID, etc */
2182 fotg210_dbg(fotg210, "devpath %s ep%d%s 3strikes\n",
2183 urb->dev->devpath,
2184 usb_pipeendpoint(urb->pipe),
2185 usb_pipein(urb->pipe) ? "in" : "out");
2186 status = -EPROTO;
2187 } else { /* unknown */
2188 status = -EPROTO;
2191 fotg210_dbg(fotg210,
2192 "dev%d ep%d%s qtd token %08x --> status %d\n",
2193 usb_pipedevice(urb->pipe),
2194 usb_pipeendpoint(urb->pipe),
2195 usb_pipein(urb->pipe) ? "in" : "out",
2196 token, status);
2199 return status;
2202 static void fotg210_urb_done(struct fotg210_hcd *fotg210, struct urb *urb,
2203 int status)
2204 __releases(fotg210->lock)
2205 __acquires(fotg210->lock)
2207 if (likely(urb->hcpriv != NULL)) {
2208 struct fotg210_qh *qh = (struct fotg210_qh *) urb->hcpriv;
2210 /* S-mask in a QH means it's an interrupt urb */
2211 if ((qh->hw->hw_info2 & cpu_to_hc32(fotg210, QH_SMASK)) != 0) {
2213 /* ... update hc-wide periodic stats (for usbfs) */
2214 fotg210_to_hcd(fotg210)->self.bandwidth_int_reqs--;
2218 if (unlikely(urb->unlinked)) {
2219 COUNT(fotg210->stats.unlink);
2220 } else {
2221 /* report non-error and short read status as zero */
2222 if (status == -EINPROGRESS || status == -EREMOTEIO)
2223 status = 0;
2224 COUNT(fotg210->stats.complete);
2227 #ifdef FOTG210_URB_TRACE
2228 fotg210_dbg(fotg210,
2229 "%s %s urb %p ep%d%s status %d len %d/%d\n",
2230 __func__, urb->dev->devpath, urb,
2231 usb_pipeendpoint(urb->pipe),
2232 usb_pipein(urb->pipe) ? "in" : "out",
2233 status,
2234 urb->actual_length, urb->transfer_buffer_length);
2235 #endif
2237 /* complete() can reenter this HCD */
2238 usb_hcd_unlink_urb_from_ep(fotg210_to_hcd(fotg210), urb);
2239 spin_unlock(&fotg210->lock);
2240 usb_hcd_giveback_urb(fotg210_to_hcd(fotg210), urb, status);
2241 spin_lock(&fotg210->lock);
2244 static int qh_schedule(struct fotg210_hcd *fotg210, struct fotg210_qh *qh);
2246 /* Process and free completed qtds for a qh, returning URBs to drivers.
2247 * Chases up to qh->hw_current. Returns number of completions called,
2248 * indicating how much "real" work we did.
2250 static unsigned qh_completions(struct fotg210_hcd *fotg210,
2251 struct fotg210_qh *qh)
2253 struct fotg210_qtd *last, *end = qh->dummy;
2254 struct fotg210_qtd *qtd, *tmp;
2255 int last_status;
2256 int stopped;
2257 unsigned count = 0;
2258 u8 state;
2259 struct fotg210_qh_hw *hw = qh->hw;
2261 if (unlikely(list_empty(&qh->qtd_list)))
2262 return count;
2264 /* completions (or tasks on other cpus) must never clobber HALT
2265 * till we've gone through and cleaned everything up, even when
2266 * they add urbs to this qh's queue or mark them for unlinking.
2268 * NOTE: unlinking expects to be done in queue order.
2270 * It's a bug for qh->qh_state to be anything other than
2271 * QH_STATE_IDLE, unless our caller is scan_async() or
2272 * scan_intr().
2274 state = qh->qh_state;
2275 qh->qh_state = QH_STATE_COMPLETING;
2276 stopped = (state == QH_STATE_IDLE);
2278 rescan:
2279 last = NULL;
2280 last_status = -EINPROGRESS;
2281 qh->needs_rescan = 0;
2283 /* remove de-activated QTDs from front of queue.
2284 * after faults (including short reads), cleanup this urb
2285 * then let the queue advance.
2286 * if queue is stopped, handles unlinks.
2288 list_for_each_entry_safe(qtd, tmp, &qh->qtd_list, qtd_list) {
2289 struct urb *urb;
2290 u32 token = 0;
2292 urb = qtd->urb;
2294 /* clean up any state from previous QTD ...*/
2295 if (last) {
2296 if (likely(last->urb != urb)) {
2297 fotg210_urb_done(fotg210, last->urb,
2298 last_status);
2299 count++;
2300 last_status = -EINPROGRESS;
2302 fotg210_qtd_free(fotg210, last);
2303 last = NULL;
2306 /* ignore urbs submitted during completions we reported */
2307 if (qtd == end)
2308 break;
2310 /* hardware copies qtd out of qh overlay */
2311 rmb();
2312 token = hc32_to_cpu(fotg210, qtd->hw_token);
2314 /* always clean up qtds the hc de-activated */
2315 retry_xacterr:
2316 if ((token & QTD_STS_ACTIVE) == 0) {
2318 /* Report Data Buffer Error: non-fatal but useful */
2319 if (token & QTD_STS_DBE)
2320 fotg210_dbg(fotg210,
2321 "detected DataBufferErr for urb %p ep%d%s len %d, qtd %p [qh %p]\n",
2322 urb, usb_endpoint_num(&urb->ep->desc),
2323 usb_endpoint_dir_in(&urb->ep->desc)
2324 ? "in" : "out",
2325 urb->transfer_buffer_length, qtd, qh);
2327 /* on STALL, error, and short reads this urb must
2328 * complete and all its qtds must be recycled.
2330 if ((token & QTD_STS_HALT) != 0) {
2332 /* retry transaction errors until we
2333 * reach the software xacterr limit
2335 if ((token & QTD_STS_XACT) &&
2336 QTD_CERR(token) == 0 &&
2337 ++qh->xacterrs < QH_XACTERR_MAX &&
2338 !urb->unlinked) {
2339 fotg210_dbg(fotg210,
2340 "detected XactErr len %zu/%zu retry %d\n",
2341 qtd->length - QTD_LENGTH(token),
2342 qtd->length,
2343 qh->xacterrs);
2345 /* reset the token in the qtd and the
2346 * qh overlay (which still contains
2347 * the qtd) so that we pick up from
2348 * where we left off
2350 token &= ~QTD_STS_HALT;
2351 token |= QTD_STS_ACTIVE |
2352 (FOTG210_TUNE_CERR << 10);
2353 qtd->hw_token = cpu_to_hc32(fotg210,
2354 token);
2355 wmb();
2356 hw->hw_token = cpu_to_hc32(fotg210,
2357 token);
2358 goto retry_xacterr;
2360 stopped = 1;
2362 /* magic dummy for some short reads; qh won't advance.
2363 * that silicon quirk can kick in with this dummy too.
2365 * other short reads won't stop the queue, including
2366 * control transfers (status stage handles that) or
2367 * most other single-qtd reads ... the queue stops if
2368 * URB_SHORT_NOT_OK was set so the driver submitting
2369 * the urbs could clean it up.
2371 } else if (IS_SHORT_READ(token) &&
2372 !(qtd->hw_alt_next &
2373 FOTG210_LIST_END(fotg210))) {
2374 stopped = 1;
2377 /* stop scanning when we reach qtds the hc is using */
2378 } else if (likely(!stopped
2379 && fotg210->rh_state >= FOTG210_RH_RUNNING)) {
2380 break;
2382 /* scan the whole queue for unlinks whenever it stops */
2383 } else {
2384 stopped = 1;
2386 /* cancel everything if we halt, suspend, etc */
2387 if (fotg210->rh_state < FOTG210_RH_RUNNING)
2388 last_status = -ESHUTDOWN;
2390 /* this qtd is active; skip it unless a previous qtd
2391 * for its urb faulted, or its urb was canceled.
2393 else if (last_status == -EINPROGRESS && !urb->unlinked)
2394 continue;
2396 /* qh unlinked; token in overlay may be most current */
2397 if (state == QH_STATE_IDLE &&
2398 cpu_to_hc32(fotg210, qtd->qtd_dma)
2399 == hw->hw_current) {
2400 token = hc32_to_cpu(fotg210, hw->hw_token);
2402 /* An unlink may leave an incomplete
2403 * async transaction in the TT buffer.
2404 * We have to clear it.
2406 fotg210_clear_tt_buffer(fotg210, qh, urb,
2407 token);
2411 /* unless we already know the urb's status, collect qtd status
2412 * and update count of bytes transferred. in common short read
2413 * cases with only one data qtd (including control transfers),
2414 * queue processing won't halt. but with two or more qtds (for
2415 * example, with a 32 KB transfer), when the first qtd gets a
2416 * short read the second must be removed by hand.
2418 if (last_status == -EINPROGRESS) {
2419 last_status = qtd_copy_status(fotg210, urb,
2420 qtd->length, token);
2421 if (last_status == -EREMOTEIO &&
2422 (qtd->hw_alt_next &
2423 FOTG210_LIST_END(fotg210)))
2424 last_status = -EINPROGRESS;
2426 /* As part of low/full-speed endpoint-halt processing
2427 * we must clear the TT buffer (11.17.5).
2429 if (unlikely(last_status != -EINPROGRESS &&
2430 last_status != -EREMOTEIO)) {
2431 /* The TT's in some hubs malfunction when they
2432 * receive this request following a STALL (they
2433 * stop sending isochronous packets). Since a
2434 * STALL can't leave the TT buffer in a busy
2435 * state (if you believe Figures 11-48 - 11-51
2436 * in the USB 2.0 spec), we won't clear the TT
2437 * buffer in this case. Strictly speaking this
2438 * is a violation of the spec.
2440 if (last_status != -EPIPE)
2441 fotg210_clear_tt_buffer(fotg210, qh,
2442 urb, token);
2446 /* if we're removing something not at the queue head,
2447 * patch the hardware queue pointer.
2449 if (stopped && qtd->qtd_list.prev != &qh->qtd_list) {
2450 last = list_entry(qtd->qtd_list.prev,
2451 struct fotg210_qtd, qtd_list);
2452 last->hw_next = qtd->hw_next;
2455 /* remove qtd; it's recycled after possible urb completion */
2456 list_del(&qtd->qtd_list);
2457 last = qtd;
2459 /* reinit the xacterr counter for the next qtd */
2460 qh->xacterrs = 0;
2463 /* last urb's completion might still need calling */
2464 if (likely(last != NULL)) {
2465 fotg210_urb_done(fotg210, last->urb, last_status);
2466 count++;
2467 fotg210_qtd_free(fotg210, last);
2470 /* Do we need to rescan for URBs dequeued during a giveback? */
2471 if (unlikely(qh->needs_rescan)) {
2472 /* If the QH is already unlinked, do the rescan now. */
2473 if (state == QH_STATE_IDLE)
2474 goto rescan;
2476 /* Otherwise we have to wait until the QH is fully unlinked.
2477 * Our caller will start an unlink if qh->needs_rescan is
2478 * set. But if an unlink has already started, nothing needs
2479 * to be done.
2481 if (state != QH_STATE_LINKED)
2482 qh->needs_rescan = 0;
2485 /* restore original state; caller must unlink or relink */
2486 qh->qh_state = state;
2488 /* be sure the hardware's done with the qh before refreshing
2489 * it after fault cleanup, or recovering from silicon wrongly
2490 * overlaying the dummy qtd (which reduces DMA chatter).
2492 if (stopped != 0 || hw->hw_qtd_next == FOTG210_LIST_END(fotg210)) {
2493 switch (state) {
2494 case QH_STATE_IDLE:
2495 qh_refresh(fotg210, qh);
2496 break;
2497 case QH_STATE_LINKED:
2498 /* We won't refresh a QH that's linked (after the HC
2499 * stopped the queue). That avoids a race:
2500 * - HC reads first part of QH;
2501 * - CPU updates that first part and the token;
2502 * - HC reads rest of that QH, including token
2503 * Result: HC gets an inconsistent image, and then
2504 * DMAs to/from the wrong memory (corrupting it).
2506 * That should be rare for interrupt transfers,
2507 * except maybe high bandwidth ...
2510 /* Tell the caller to start an unlink */
2511 qh->needs_rescan = 1;
2512 break;
2513 /* otherwise, unlink already started */
2517 return count;
2520 /* high bandwidth multiplier, as encoded in highspeed endpoint descriptors */
2521 #define hb_mult(wMaxPacketSize) (1 + (((wMaxPacketSize) >> 11) & 0x03))
2522 /* ... and packet size, for any kind of endpoint descriptor */
2523 #define max_packet(wMaxPacketSize) ((wMaxPacketSize) & 0x07ff)
2525 /* reverse of qh_urb_transaction: free a list of TDs.
2526 * used for cleanup after errors, before HC sees an URB's TDs.
2528 static void qtd_list_free(struct fotg210_hcd *fotg210, struct urb *urb,
2529 struct list_head *head)
2531 struct fotg210_qtd *qtd, *temp;
2533 list_for_each_entry_safe(qtd, temp, head, qtd_list) {
2534 list_del(&qtd->qtd_list);
2535 fotg210_qtd_free(fotg210, qtd);
2539 /* create a list of filled qtds for this URB; won't link into qh.
2541 static struct list_head *qh_urb_transaction(struct fotg210_hcd *fotg210,
2542 struct urb *urb, struct list_head *head, gfp_t flags)
2544 struct fotg210_qtd *qtd, *qtd_prev;
2545 dma_addr_t buf;
2546 int len, this_sg_len, maxpacket;
2547 int is_input;
2548 u32 token;
2549 int i;
2550 struct scatterlist *sg;
2553 * URBs map to sequences of QTDs: one logical transaction
2555 qtd = fotg210_qtd_alloc(fotg210, flags);
2556 if (unlikely(!qtd))
2557 return NULL;
2558 list_add_tail(&qtd->qtd_list, head);
2559 qtd->urb = urb;
2561 token = QTD_STS_ACTIVE;
2562 token |= (FOTG210_TUNE_CERR << 10);
2563 /* for split transactions, SplitXState initialized to zero */
2565 len = urb->transfer_buffer_length;
2566 is_input = usb_pipein(urb->pipe);
2567 if (usb_pipecontrol(urb->pipe)) {
2568 /* SETUP pid */
2569 qtd_fill(fotg210, qtd, urb->setup_dma,
2570 sizeof(struct usb_ctrlrequest),
2571 token | (2 /* "setup" */ << 8), 8);
2573 /* ... and always at least one more pid */
2574 token ^= QTD_TOGGLE;
2575 qtd_prev = qtd;
2576 qtd = fotg210_qtd_alloc(fotg210, flags);
2577 if (unlikely(!qtd))
2578 goto cleanup;
2579 qtd->urb = urb;
2580 qtd_prev->hw_next = QTD_NEXT(fotg210, qtd->qtd_dma);
2581 list_add_tail(&qtd->qtd_list, head);
2583 /* for zero length DATA stages, STATUS is always IN */
2584 if (len == 0)
2585 token |= (1 /* "in" */ << 8);
2589 * data transfer stage: buffer setup
2591 i = urb->num_mapped_sgs;
2592 if (len > 0 && i > 0) {
2593 sg = urb->sg;
2594 buf = sg_dma_address(sg);
2596 /* urb->transfer_buffer_length may be smaller than the
2597 * size of the scatterlist (or vice versa)
2599 this_sg_len = min_t(int, sg_dma_len(sg), len);
2600 } else {
2601 sg = NULL;
2602 buf = urb->transfer_dma;
2603 this_sg_len = len;
2606 if (is_input)
2607 token |= (1 /* "in" */ << 8);
2608 /* else it's already initted to "out" pid (0 << 8) */
2610 maxpacket = max_packet(usb_maxpacket(urb->dev, urb->pipe, !is_input));
2613 * buffer gets wrapped in one or more qtds;
2614 * last one may be "short" (including zero len)
2615 * and may serve as a control status ack
2617 for (;;) {
2618 int this_qtd_len;
2620 this_qtd_len = qtd_fill(fotg210, qtd, buf, this_sg_len, token,
2621 maxpacket);
2622 this_sg_len -= this_qtd_len;
2623 len -= this_qtd_len;
2624 buf += this_qtd_len;
2627 * short reads advance to a "magic" dummy instead of the next
2628 * qtd ... that forces the queue to stop, for manual cleanup.
2629 * (this will usually be overridden later.)
2631 if (is_input)
2632 qtd->hw_alt_next = fotg210->async->hw->hw_alt_next;
2634 /* qh makes control packets use qtd toggle; maybe switch it */
2635 if ((maxpacket & (this_qtd_len + (maxpacket - 1))) == 0)
2636 token ^= QTD_TOGGLE;
2638 if (likely(this_sg_len <= 0)) {
2639 if (--i <= 0 || len <= 0)
2640 break;
2641 sg = sg_next(sg);
2642 buf = sg_dma_address(sg);
2643 this_sg_len = min_t(int, sg_dma_len(sg), len);
2646 qtd_prev = qtd;
2647 qtd = fotg210_qtd_alloc(fotg210, flags);
2648 if (unlikely(!qtd))
2649 goto cleanup;
2650 qtd->urb = urb;
2651 qtd_prev->hw_next = QTD_NEXT(fotg210, qtd->qtd_dma);
2652 list_add_tail(&qtd->qtd_list, head);
2656 * unless the caller requires manual cleanup after short reads,
2657 * have the alt_next mechanism keep the queue running after the
2658 * last data qtd (the only one, for control and most other cases).
2660 if (likely((urb->transfer_flags & URB_SHORT_NOT_OK) == 0 ||
2661 usb_pipecontrol(urb->pipe)))
2662 qtd->hw_alt_next = FOTG210_LIST_END(fotg210);
2665 * control requests may need a terminating data "status" ack;
2666 * other OUT ones may need a terminating short packet
2667 * (zero length).
2669 if (likely(urb->transfer_buffer_length != 0)) {
2670 int one_more = 0;
2672 if (usb_pipecontrol(urb->pipe)) {
2673 one_more = 1;
2674 token ^= 0x0100; /* "in" <--> "out" */
2675 token |= QTD_TOGGLE; /* force DATA1 */
2676 } else if (usb_pipeout(urb->pipe)
2677 && (urb->transfer_flags & URB_ZERO_PACKET)
2678 && !(urb->transfer_buffer_length % maxpacket)) {
2679 one_more = 1;
2681 if (one_more) {
2682 qtd_prev = qtd;
2683 qtd = fotg210_qtd_alloc(fotg210, flags);
2684 if (unlikely(!qtd))
2685 goto cleanup;
2686 qtd->urb = urb;
2687 qtd_prev->hw_next = QTD_NEXT(fotg210, qtd->qtd_dma);
2688 list_add_tail(&qtd->qtd_list, head);
2690 /* never any data in such packets */
2691 qtd_fill(fotg210, qtd, 0, 0, token, 0);
2695 /* by default, enable interrupt on urb completion */
2696 if (likely(!(urb->transfer_flags & URB_NO_INTERRUPT)))
2697 qtd->hw_token |= cpu_to_hc32(fotg210, QTD_IOC);
2698 return head;
2700 cleanup:
2701 qtd_list_free(fotg210, urb, head);
2702 return NULL;
2705 /* Would be best to create all qh's from config descriptors,
2706 * when each interface/altsetting is established. Unlink
2707 * any previous qh and cancel its urbs first; endpoints are
2708 * implicitly reset then (data toggle too).
2709 * That'd mean updating how usbcore talks to HCDs. (2.7?)
2713 /* Each QH holds a qtd list; a QH is used for everything except iso.
2715 * For interrupt urbs, the scheduler must set the microframe scheduling
2716 * mask(s) each time the QH gets scheduled. For highspeed, that's
2717 * just one microframe in the s-mask. For split interrupt transactions
2718 * there are additional complications: c-mask, maybe FSTNs.
2720 static struct fotg210_qh *qh_make(struct fotg210_hcd *fotg210, struct urb *urb,
2721 gfp_t flags)
2723 struct fotg210_qh *qh = fotg210_qh_alloc(fotg210, flags);
2724 u32 info1 = 0, info2 = 0;
2725 int is_input, type;
2726 int maxp = 0;
2727 struct usb_tt *tt = urb->dev->tt;
2728 struct fotg210_qh_hw *hw;
2730 if (!qh)
2731 return qh;
2734 * init endpoint/device data for this QH
2736 info1 |= usb_pipeendpoint(urb->pipe) << 8;
2737 info1 |= usb_pipedevice(urb->pipe) << 0;
2739 is_input = usb_pipein(urb->pipe);
2740 type = usb_pipetype(urb->pipe);
2741 maxp = usb_maxpacket(urb->dev, urb->pipe, !is_input);
2743 /* 1024 byte maxpacket is a hardware ceiling. High bandwidth
2744 * acts like up to 3KB, but is built from smaller packets.
2746 if (max_packet(maxp) > 1024) {
2747 fotg210_dbg(fotg210, "bogus qh maxpacket %d\n",
2748 max_packet(maxp));
2749 goto done;
2752 /* Compute interrupt scheduling parameters just once, and save.
2753 * - allowing for high bandwidth, how many nsec/uframe are used?
2754 * - split transactions need a second CSPLIT uframe; same question
2755 * - splits also need a schedule gap (for full/low speed I/O)
2756 * - qh has a polling interval
2758 * For control/bulk requests, the HC or TT handles these.
2760 if (type == PIPE_INTERRUPT) {
2761 qh->usecs = NS_TO_US(usb_calc_bus_time(USB_SPEED_HIGH,
2762 is_input, 0,
2763 hb_mult(maxp) * max_packet(maxp)));
2764 qh->start = NO_FRAME;
2766 if (urb->dev->speed == USB_SPEED_HIGH) {
2767 qh->c_usecs = 0;
2768 qh->gap_uf = 0;
2770 qh->period = urb->interval >> 3;
2771 if (qh->period == 0 && urb->interval != 1) {
2772 /* NOTE interval 2 or 4 uframes could work.
2773 * But interval 1 scheduling is simpler, and
2774 * includes high bandwidth.
2776 urb->interval = 1;
2777 } else if (qh->period > fotg210->periodic_size) {
2778 qh->period = fotg210->periodic_size;
2779 urb->interval = qh->period << 3;
2781 } else {
2782 int think_time;
2784 /* gap is f(FS/LS transfer times) */
2785 qh->gap_uf = 1 + usb_calc_bus_time(urb->dev->speed,
2786 is_input, 0, maxp) / (125 * 1000);
2788 /* FIXME this just approximates SPLIT/CSPLIT times */
2789 if (is_input) { /* SPLIT, gap, CSPLIT+DATA */
2790 qh->c_usecs = qh->usecs + HS_USECS(0);
2791 qh->usecs = HS_USECS(1);
2792 } else { /* SPLIT+DATA, gap, CSPLIT */
2793 qh->usecs += HS_USECS(1);
2794 qh->c_usecs = HS_USECS(0);
2797 think_time = tt ? tt->think_time : 0;
2798 qh->tt_usecs = NS_TO_US(think_time +
2799 usb_calc_bus_time(urb->dev->speed,
2800 is_input, 0, max_packet(maxp)));
2801 qh->period = urb->interval;
2802 if (qh->period > fotg210->periodic_size) {
2803 qh->period = fotg210->periodic_size;
2804 urb->interval = qh->period;
2809 /* support for tt scheduling, and access to toggles */
2810 qh->dev = urb->dev;
2812 /* using TT? */
2813 switch (urb->dev->speed) {
2814 case USB_SPEED_LOW:
2815 info1 |= QH_LOW_SPEED;
2816 /* FALL THROUGH */
2818 case USB_SPEED_FULL:
2819 /* EPS 0 means "full" */
2820 if (type != PIPE_INTERRUPT)
2821 info1 |= (FOTG210_TUNE_RL_TT << 28);
2822 if (type == PIPE_CONTROL) {
2823 info1 |= QH_CONTROL_EP; /* for TT */
2824 info1 |= QH_TOGGLE_CTL; /* toggle from qtd */
2826 info1 |= maxp << 16;
2828 info2 |= (FOTG210_TUNE_MULT_TT << 30);
2830 /* Some Freescale processors have an erratum in which the
2831 * port number in the queue head was 0..N-1 instead of 1..N.
2833 if (fotg210_has_fsl_portno_bug(fotg210))
2834 info2 |= (urb->dev->ttport-1) << 23;
2835 else
2836 info2 |= urb->dev->ttport << 23;
2838 /* set the address of the TT; for TDI's integrated
2839 * root hub tt, leave it zeroed.
2841 if (tt && tt->hub != fotg210_to_hcd(fotg210)->self.root_hub)
2842 info2 |= tt->hub->devnum << 16;
2844 /* NOTE: if (PIPE_INTERRUPT) { scheduler sets c-mask } */
2846 break;
2848 case USB_SPEED_HIGH: /* no TT involved */
2849 info1 |= QH_HIGH_SPEED;
2850 if (type == PIPE_CONTROL) {
2851 info1 |= (FOTG210_TUNE_RL_HS << 28);
2852 info1 |= 64 << 16; /* usb2 fixed maxpacket */
2853 info1 |= QH_TOGGLE_CTL; /* toggle from qtd */
2854 info2 |= (FOTG210_TUNE_MULT_HS << 30);
2855 } else if (type == PIPE_BULK) {
2856 info1 |= (FOTG210_TUNE_RL_HS << 28);
2857 /* The USB spec says that high speed bulk endpoints
2858 * always use 512 byte maxpacket. But some device
2859 * vendors decided to ignore that, and MSFT is happy
2860 * to help them do so. So now people expect to use
2861 * such nonconformant devices with Linux too; sigh.
2863 info1 |= max_packet(maxp) << 16;
2864 info2 |= (FOTG210_TUNE_MULT_HS << 30);
2865 } else { /* PIPE_INTERRUPT */
2866 info1 |= max_packet(maxp) << 16;
2867 info2 |= hb_mult(maxp) << 30;
2869 break;
2870 default:
2871 fotg210_dbg(fotg210, "bogus dev %p speed %d\n", urb->dev,
2872 urb->dev->speed);
2873 done:
2874 qh_destroy(fotg210, qh);
2875 return NULL;
2878 /* NOTE: if (PIPE_INTERRUPT) { scheduler sets s-mask } */
2880 /* init as live, toggle clear, advance to dummy */
2881 qh->qh_state = QH_STATE_IDLE;
2882 hw = qh->hw;
2883 hw->hw_info1 = cpu_to_hc32(fotg210, info1);
2884 hw->hw_info2 = cpu_to_hc32(fotg210, info2);
2885 qh->is_out = !is_input;
2886 usb_settoggle(urb->dev, usb_pipeendpoint(urb->pipe), !is_input, 1);
2887 qh_refresh(fotg210, qh);
2888 return qh;
2891 static void enable_async(struct fotg210_hcd *fotg210)
2893 if (fotg210->async_count++)
2894 return;
2896 /* Stop waiting to turn off the async schedule */
2897 fotg210->enabled_hrtimer_events &= ~BIT(FOTG210_HRTIMER_DISABLE_ASYNC);
2899 /* Don't start the schedule until ASS is 0 */
2900 fotg210_poll_ASS(fotg210);
2901 turn_on_io_watchdog(fotg210);
2904 static void disable_async(struct fotg210_hcd *fotg210)
2906 if (--fotg210->async_count)
2907 return;
2909 /* The async schedule and async_unlink list are supposed to be empty */
2910 WARN_ON(fotg210->async->qh_next.qh || fotg210->async_unlink);
2912 /* Don't turn off the schedule until ASS is 1 */
2913 fotg210_poll_ASS(fotg210);
2916 /* move qh (and its qtds) onto async queue; maybe enable queue. */
2918 static void qh_link_async(struct fotg210_hcd *fotg210, struct fotg210_qh *qh)
2920 __hc32 dma = QH_NEXT(fotg210, qh->qh_dma);
2921 struct fotg210_qh *head;
2923 /* Don't link a QH if there's a Clear-TT-Buffer pending */
2924 if (unlikely(qh->clearing_tt))
2925 return;
2927 WARN_ON(qh->qh_state != QH_STATE_IDLE);
2929 /* clear halt and/or toggle; and maybe recover from silicon quirk */
2930 qh_refresh(fotg210, qh);
2932 /* splice right after start */
2933 head = fotg210->async;
2934 qh->qh_next = head->qh_next;
2935 qh->hw->hw_next = head->hw->hw_next;
2936 wmb();
2938 head->qh_next.qh = qh;
2939 head->hw->hw_next = dma;
2941 qh->xacterrs = 0;
2942 qh->qh_state = QH_STATE_LINKED;
2943 /* qtd completions reported later by interrupt */
2945 enable_async(fotg210);
2948 /* For control/bulk/interrupt, return QH with these TDs appended.
2949 * Allocates and initializes the QH if necessary.
2950 * Returns null if it can't allocate a QH it needs to.
2951 * If the QH has TDs (urbs) already, that's great.
2953 static struct fotg210_qh *qh_append_tds(struct fotg210_hcd *fotg210,
2954 struct urb *urb, struct list_head *qtd_list,
2955 int epnum, void **ptr)
2957 struct fotg210_qh *qh = NULL;
2958 __hc32 qh_addr_mask = cpu_to_hc32(fotg210, 0x7f);
2960 qh = (struct fotg210_qh *) *ptr;
2961 if (unlikely(qh == NULL)) {
2962 /* can't sleep here, we have fotg210->lock... */
2963 qh = qh_make(fotg210, urb, GFP_ATOMIC);
2964 *ptr = qh;
2966 if (likely(qh != NULL)) {
2967 struct fotg210_qtd *qtd;
2969 if (unlikely(list_empty(qtd_list)))
2970 qtd = NULL;
2971 else
2972 qtd = list_entry(qtd_list->next, struct fotg210_qtd,
2973 qtd_list);
2975 /* control qh may need patching ... */
2976 if (unlikely(epnum == 0)) {
2977 /* usb_reset_device() briefly reverts to address 0 */
2978 if (usb_pipedevice(urb->pipe) == 0)
2979 qh->hw->hw_info1 &= ~qh_addr_mask;
2982 /* just one way to queue requests: swap with the dummy qtd.
2983 * only hc or qh_refresh() ever modify the overlay.
2985 if (likely(qtd != NULL)) {
2986 struct fotg210_qtd *dummy;
2987 dma_addr_t dma;
2988 __hc32 token;
2990 /* to avoid racing the HC, use the dummy td instead of
2991 * the first td of our list (becomes new dummy). both
2992 * tds stay deactivated until we're done, when the
2993 * HC is allowed to fetch the old dummy (4.10.2).
2995 token = qtd->hw_token;
2996 qtd->hw_token = HALT_BIT(fotg210);
2998 dummy = qh->dummy;
3000 dma = dummy->qtd_dma;
3001 *dummy = *qtd;
3002 dummy->qtd_dma = dma;
3004 list_del(&qtd->qtd_list);
3005 list_add(&dummy->qtd_list, qtd_list);
3006 list_splice_tail(qtd_list, &qh->qtd_list);
3008 fotg210_qtd_init(fotg210, qtd, qtd->qtd_dma);
3009 qh->dummy = qtd;
3011 /* hc must see the new dummy at list end */
3012 dma = qtd->qtd_dma;
3013 qtd = list_entry(qh->qtd_list.prev,
3014 struct fotg210_qtd, qtd_list);
3015 qtd->hw_next = QTD_NEXT(fotg210, dma);
3017 /* let the hc process these next qtds */
3018 wmb();
3019 dummy->hw_token = token;
3021 urb->hcpriv = qh;
3024 return qh;
3027 static int submit_async(struct fotg210_hcd *fotg210, struct urb *urb,
3028 struct list_head *qtd_list, gfp_t mem_flags)
3030 int epnum;
3031 unsigned long flags;
3032 struct fotg210_qh *qh = NULL;
3033 int rc;
3035 epnum = urb->ep->desc.bEndpointAddress;
3037 #ifdef FOTG210_URB_TRACE
3039 struct fotg210_qtd *qtd;
3041 qtd = list_entry(qtd_list->next, struct fotg210_qtd, qtd_list);
3042 fotg210_dbg(fotg210,
3043 "%s %s urb %p ep%d%s len %d, qtd %p [qh %p]\n",
3044 __func__, urb->dev->devpath, urb,
3045 epnum & 0x0f, (epnum & USB_DIR_IN)
3046 ? "in" : "out",
3047 urb->transfer_buffer_length,
3048 qtd, urb->ep->hcpriv);
3050 #endif
3052 spin_lock_irqsave(&fotg210->lock, flags);
3053 if (unlikely(!HCD_HW_ACCESSIBLE(fotg210_to_hcd(fotg210)))) {
3054 rc = -ESHUTDOWN;
3055 goto done;
3057 rc = usb_hcd_link_urb_to_ep(fotg210_to_hcd(fotg210), urb);
3058 if (unlikely(rc))
3059 goto done;
3061 qh = qh_append_tds(fotg210, urb, qtd_list, epnum, &urb->ep->hcpriv);
3062 if (unlikely(qh == NULL)) {
3063 usb_hcd_unlink_urb_from_ep(fotg210_to_hcd(fotg210), urb);
3064 rc = -ENOMEM;
3065 goto done;
3068 /* Control/bulk operations through TTs don't need scheduling,
3069 * the HC and TT handle it when the TT has a buffer ready.
3071 if (likely(qh->qh_state == QH_STATE_IDLE))
3072 qh_link_async(fotg210, qh);
3073 done:
3074 spin_unlock_irqrestore(&fotg210->lock, flags);
3075 if (unlikely(qh == NULL))
3076 qtd_list_free(fotg210, urb, qtd_list);
3077 return rc;
3080 static void single_unlink_async(struct fotg210_hcd *fotg210,
3081 struct fotg210_qh *qh)
3083 struct fotg210_qh *prev;
3085 /* Add to the end of the list of QHs waiting for the next IAAD */
3086 qh->qh_state = QH_STATE_UNLINK;
3087 if (fotg210->async_unlink)
3088 fotg210->async_unlink_last->unlink_next = qh;
3089 else
3090 fotg210->async_unlink = qh;
3091 fotg210->async_unlink_last = qh;
3093 /* Unlink it from the schedule */
3094 prev = fotg210->async;
3095 while (prev->qh_next.qh != qh)
3096 prev = prev->qh_next.qh;
3098 prev->hw->hw_next = qh->hw->hw_next;
3099 prev->qh_next = qh->qh_next;
3100 if (fotg210->qh_scan_next == qh)
3101 fotg210->qh_scan_next = qh->qh_next.qh;
3104 static void start_iaa_cycle(struct fotg210_hcd *fotg210, bool nested)
3107 * Do nothing if an IAA cycle is already running or
3108 * if one will be started shortly.
3110 if (fotg210->async_iaa || fotg210->async_unlinking)
3111 return;
3113 /* Do all the waiting QHs at once */
3114 fotg210->async_iaa = fotg210->async_unlink;
3115 fotg210->async_unlink = NULL;
3117 /* If the controller isn't running, we don't have to wait for it */
3118 if (unlikely(fotg210->rh_state < FOTG210_RH_RUNNING)) {
3119 if (!nested) /* Avoid recursion */
3120 end_unlink_async(fotg210);
3122 /* Otherwise start a new IAA cycle */
3123 } else if (likely(fotg210->rh_state == FOTG210_RH_RUNNING)) {
3124 /* Make sure the unlinks are all visible to the hardware */
3125 wmb();
3127 fotg210_writel(fotg210, fotg210->command | CMD_IAAD,
3128 &fotg210->regs->command);
3129 fotg210_readl(fotg210, &fotg210->regs->command);
3130 fotg210_enable_event(fotg210, FOTG210_HRTIMER_IAA_WATCHDOG,
3131 true);
3135 /* the async qh for the qtds being unlinked are now gone from the HC */
3137 static void end_unlink_async(struct fotg210_hcd *fotg210)
3139 struct fotg210_qh *qh;
3141 /* Process the idle QHs */
3142 restart:
3143 fotg210->async_unlinking = true;
3144 while (fotg210->async_iaa) {
3145 qh = fotg210->async_iaa;
3146 fotg210->async_iaa = qh->unlink_next;
3147 qh->unlink_next = NULL;
3149 qh->qh_state = QH_STATE_IDLE;
3150 qh->qh_next.qh = NULL;
3152 qh_completions(fotg210, qh);
3153 if (!list_empty(&qh->qtd_list) &&
3154 fotg210->rh_state == FOTG210_RH_RUNNING)
3155 qh_link_async(fotg210, qh);
3156 disable_async(fotg210);
3158 fotg210->async_unlinking = false;
3160 /* Start a new IAA cycle if any QHs are waiting for it */
3161 if (fotg210->async_unlink) {
3162 start_iaa_cycle(fotg210, true);
3163 if (unlikely(fotg210->rh_state < FOTG210_RH_RUNNING))
3164 goto restart;
3168 static void unlink_empty_async(struct fotg210_hcd *fotg210)
3170 struct fotg210_qh *qh, *next;
3171 bool stopped = (fotg210->rh_state < FOTG210_RH_RUNNING);
3172 bool check_unlinks_later = false;
3174 /* Unlink all the async QHs that have been empty for a timer cycle */
3175 next = fotg210->async->qh_next.qh;
3176 while (next) {
3177 qh = next;
3178 next = qh->qh_next.qh;
3180 if (list_empty(&qh->qtd_list) &&
3181 qh->qh_state == QH_STATE_LINKED) {
3182 if (!stopped && qh->unlink_cycle ==
3183 fotg210->async_unlink_cycle)
3184 check_unlinks_later = true;
3185 else
3186 single_unlink_async(fotg210, qh);
3190 /* Start a new IAA cycle if any QHs are waiting for it */
3191 if (fotg210->async_unlink)
3192 start_iaa_cycle(fotg210, false);
3194 /* QHs that haven't been empty for long enough will be handled later */
3195 if (check_unlinks_later) {
3196 fotg210_enable_event(fotg210, FOTG210_HRTIMER_ASYNC_UNLINKS,
3197 true);
3198 ++fotg210->async_unlink_cycle;
3202 /* makes sure the async qh will become idle */
3203 /* caller must own fotg210->lock */
3205 static void start_unlink_async(struct fotg210_hcd *fotg210,
3206 struct fotg210_qh *qh)
3209 * If the QH isn't linked then there's nothing we can do
3210 * unless we were called during a giveback, in which case
3211 * qh_completions() has to deal with it.
3213 if (qh->qh_state != QH_STATE_LINKED) {
3214 if (qh->qh_state == QH_STATE_COMPLETING)
3215 qh->needs_rescan = 1;
3216 return;
3219 single_unlink_async(fotg210, qh);
3220 start_iaa_cycle(fotg210, false);
3223 static void scan_async(struct fotg210_hcd *fotg210)
3225 struct fotg210_qh *qh;
3226 bool check_unlinks_later = false;
3228 fotg210->qh_scan_next = fotg210->async->qh_next.qh;
3229 while (fotg210->qh_scan_next) {
3230 qh = fotg210->qh_scan_next;
3231 fotg210->qh_scan_next = qh->qh_next.qh;
3232 rescan:
3233 /* clean any finished work for this qh */
3234 if (!list_empty(&qh->qtd_list)) {
3235 int temp;
3238 * Unlinks could happen here; completion reporting
3239 * drops the lock. That's why fotg210->qh_scan_next
3240 * always holds the next qh to scan; if the next qh
3241 * gets unlinked then fotg210->qh_scan_next is adjusted
3242 * in single_unlink_async().
3244 temp = qh_completions(fotg210, qh);
3245 if (qh->needs_rescan) {
3246 start_unlink_async(fotg210, qh);
3247 } else if (list_empty(&qh->qtd_list)
3248 && qh->qh_state == QH_STATE_LINKED) {
3249 qh->unlink_cycle = fotg210->async_unlink_cycle;
3250 check_unlinks_later = true;
3251 } else if (temp != 0)
3252 goto rescan;
3257 * Unlink empty entries, reducing DMA usage as well
3258 * as HCD schedule-scanning costs. Delay for any qh
3259 * we just scanned, there's a not-unusual case that it
3260 * doesn't stay idle for long.
3262 if (check_unlinks_later && fotg210->rh_state == FOTG210_RH_RUNNING &&
3263 !(fotg210->enabled_hrtimer_events &
3264 BIT(FOTG210_HRTIMER_ASYNC_UNLINKS))) {
3265 fotg210_enable_event(fotg210,
3266 FOTG210_HRTIMER_ASYNC_UNLINKS, true);
3267 ++fotg210->async_unlink_cycle;
3270 /* EHCI scheduled transaction support: interrupt, iso, split iso
3271 * These are called "periodic" transactions in the EHCI spec.
3273 * Note that for interrupt transfers, the QH/QTD manipulation is shared
3274 * with the "asynchronous" transaction support (control/bulk transfers).
3275 * The only real difference is in how interrupt transfers are scheduled.
3277 * For ISO, we make an "iso_stream" head to serve the same role as a QH.
3278 * It keeps track of every ITD (or SITD) that's linked, and holds enough
3279 * pre-calculated schedule data to make appending to the queue be quick.
3281 static int fotg210_get_frame(struct usb_hcd *hcd);
3283 /* periodic_next_shadow - return "next" pointer on shadow list
3284 * @periodic: host pointer to qh/itd
3285 * @tag: hardware tag for type of this record
3287 static union fotg210_shadow *periodic_next_shadow(struct fotg210_hcd *fotg210,
3288 union fotg210_shadow *periodic, __hc32 tag)
3290 switch (hc32_to_cpu(fotg210, tag)) {
3291 case Q_TYPE_QH:
3292 return &periodic->qh->qh_next;
3293 case Q_TYPE_FSTN:
3294 return &periodic->fstn->fstn_next;
3295 default:
3296 return &periodic->itd->itd_next;
3300 static __hc32 *shadow_next_periodic(struct fotg210_hcd *fotg210,
3301 union fotg210_shadow *periodic, __hc32 tag)
3303 switch (hc32_to_cpu(fotg210, tag)) {
3304 /* our fotg210_shadow.qh is actually software part */
3305 case Q_TYPE_QH:
3306 return &periodic->qh->hw->hw_next;
3307 /* others are hw parts */
3308 default:
3309 return periodic->hw_next;
3313 /* caller must hold fotg210->lock */
3314 static void periodic_unlink(struct fotg210_hcd *fotg210, unsigned frame,
3315 void *ptr)
3317 union fotg210_shadow *prev_p = &fotg210->pshadow[frame];
3318 __hc32 *hw_p = &fotg210->periodic[frame];
3319 union fotg210_shadow here = *prev_p;
3321 /* find predecessor of "ptr"; hw and shadow lists are in sync */
3322 while (here.ptr && here.ptr != ptr) {
3323 prev_p = periodic_next_shadow(fotg210, prev_p,
3324 Q_NEXT_TYPE(fotg210, *hw_p));
3325 hw_p = shadow_next_periodic(fotg210, &here,
3326 Q_NEXT_TYPE(fotg210, *hw_p));
3327 here = *prev_p;
3329 /* an interrupt entry (at list end) could have been shared */
3330 if (!here.ptr)
3331 return;
3333 /* update shadow and hardware lists ... the old "next" pointers
3334 * from ptr may still be in use, the caller updates them.
3336 *prev_p = *periodic_next_shadow(fotg210, &here,
3337 Q_NEXT_TYPE(fotg210, *hw_p));
3339 *hw_p = *shadow_next_periodic(fotg210, &here,
3340 Q_NEXT_TYPE(fotg210, *hw_p));
3343 /* how many of the uframe's 125 usecs are allocated? */
3344 static unsigned short periodic_usecs(struct fotg210_hcd *fotg210,
3345 unsigned frame, unsigned uframe)
3347 __hc32 *hw_p = &fotg210->periodic[frame];
3348 union fotg210_shadow *q = &fotg210->pshadow[frame];
3349 unsigned usecs = 0;
3350 struct fotg210_qh_hw *hw;
3352 while (q->ptr) {
3353 switch (hc32_to_cpu(fotg210, Q_NEXT_TYPE(fotg210, *hw_p))) {
3354 case Q_TYPE_QH:
3355 hw = q->qh->hw;
3356 /* is it in the S-mask? */
3357 if (hw->hw_info2 & cpu_to_hc32(fotg210, 1 << uframe))
3358 usecs += q->qh->usecs;
3359 /* ... or C-mask? */
3360 if (hw->hw_info2 & cpu_to_hc32(fotg210,
3361 1 << (8 + uframe)))
3362 usecs += q->qh->c_usecs;
3363 hw_p = &hw->hw_next;
3364 q = &q->qh->qh_next;
3365 break;
3366 /* case Q_TYPE_FSTN: */
3367 default:
3368 /* for "save place" FSTNs, count the relevant INTR
3369 * bandwidth from the previous frame
3371 if (q->fstn->hw_prev != FOTG210_LIST_END(fotg210))
3372 fotg210_dbg(fotg210, "ignoring FSTN cost ...\n");
3374 hw_p = &q->fstn->hw_next;
3375 q = &q->fstn->fstn_next;
3376 break;
3377 case Q_TYPE_ITD:
3378 if (q->itd->hw_transaction[uframe])
3379 usecs += q->itd->stream->usecs;
3380 hw_p = &q->itd->hw_next;
3381 q = &q->itd->itd_next;
3382 break;
3385 if (usecs > fotg210->uframe_periodic_max)
3386 fotg210_err(fotg210, "uframe %d sched overrun: %d usecs\n",
3387 frame * 8 + uframe, usecs);
3388 return usecs;
3391 static int same_tt(struct usb_device *dev1, struct usb_device *dev2)
3393 if (!dev1->tt || !dev2->tt)
3394 return 0;
3395 if (dev1->tt != dev2->tt)
3396 return 0;
3397 if (dev1->tt->multi)
3398 return dev1->ttport == dev2->ttport;
3399 else
3400 return 1;
3403 /* return true iff the device's transaction translator is available
3404 * for a periodic transfer starting at the specified frame, using
3405 * all the uframes in the mask.
3407 static int tt_no_collision(struct fotg210_hcd *fotg210, unsigned period,
3408 struct usb_device *dev, unsigned frame, u32 uf_mask)
3410 if (period == 0) /* error */
3411 return 0;
3413 /* note bandwidth wastage: split never follows csplit
3414 * (different dev or endpoint) until the next uframe.
3415 * calling convention doesn't make that distinction.
3417 for (; frame < fotg210->periodic_size; frame += period) {
3418 union fotg210_shadow here;
3419 __hc32 type;
3420 struct fotg210_qh_hw *hw;
3422 here = fotg210->pshadow[frame];
3423 type = Q_NEXT_TYPE(fotg210, fotg210->periodic[frame]);
3424 while (here.ptr) {
3425 switch (hc32_to_cpu(fotg210, type)) {
3426 case Q_TYPE_ITD:
3427 type = Q_NEXT_TYPE(fotg210, here.itd->hw_next);
3428 here = here.itd->itd_next;
3429 continue;
3430 case Q_TYPE_QH:
3431 hw = here.qh->hw;
3432 if (same_tt(dev, here.qh->dev)) {
3433 u32 mask;
3435 mask = hc32_to_cpu(fotg210,
3436 hw->hw_info2);
3437 /* "knows" no gap is needed */
3438 mask |= mask >> 8;
3439 if (mask & uf_mask)
3440 break;
3442 type = Q_NEXT_TYPE(fotg210, hw->hw_next);
3443 here = here.qh->qh_next;
3444 continue;
3445 /* case Q_TYPE_FSTN: */
3446 default:
3447 fotg210_dbg(fotg210,
3448 "periodic frame %d bogus type %d\n",
3449 frame, type);
3452 /* collision or error */
3453 return 0;
3457 /* no collision */
3458 return 1;
3461 static void enable_periodic(struct fotg210_hcd *fotg210)
3463 if (fotg210->periodic_count++)
3464 return;
3466 /* Stop waiting to turn off the periodic schedule */
3467 fotg210->enabled_hrtimer_events &=
3468 ~BIT(FOTG210_HRTIMER_DISABLE_PERIODIC);
3470 /* Don't start the schedule until PSS is 0 */
3471 fotg210_poll_PSS(fotg210);
3472 turn_on_io_watchdog(fotg210);
3475 static void disable_periodic(struct fotg210_hcd *fotg210)
3477 if (--fotg210->periodic_count)
3478 return;
3480 /* Don't turn off the schedule until PSS is 1 */
3481 fotg210_poll_PSS(fotg210);
3484 /* periodic schedule slots have iso tds (normal or split) first, then a
3485 * sparse tree for active interrupt transfers.
3487 * this just links in a qh; caller guarantees uframe masks are set right.
3488 * no FSTN support (yet; fotg210 0.96+)
3490 static void qh_link_periodic(struct fotg210_hcd *fotg210, struct fotg210_qh *qh)
3492 unsigned i;
3493 unsigned period = qh->period;
3495 dev_dbg(&qh->dev->dev,
3496 "link qh%d-%04x/%p start %d [%d/%d us]\n", period,
3497 hc32_to_cpup(fotg210, &qh->hw->hw_info2) &
3498 (QH_CMASK | QH_SMASK), qh, qh->start, qh->usecs,
3499 qh->c_usecs);
3501 /* high bandwidth, or otherwise every microframe */
3502 if (period == 0)
3503 period = 1;
3505 for (i = qh->start; i < fotg210->periodic_size; i += period) {
3506 union fotg210_shadow *prev = &fotg210->pshadow[i];
3507 __hc32 *hw_p = &fotg210->periodic[i];
3508 union fotg210_shadow here = *prev;
3509 __hc32 type = 0;
3511 /* skip the iso nodes at list head */
3512 while (here.ptr) {
3513 type = Q_NEXT_TYPE(fotg210, *hw_p);
3514 if (type == cpu_to_hc32(fotg210, Q_TYPE_QH))
3515 break;
3516 prev = periodic_next_shadow(fotg210, prev, type);
3517 hw_p = shadow_next_periodic(fotg210, &here, type);
3518 here = *prev;
3521 /* sorting each branch by period (slow-->fast)
3522 * enables sharing interior tree nodes
3524 while (here.ptr && qh != here.qh) {
3525 if (qh->period > here.qh->period)
3526 break;
3527 prev = &here.qh->qh_next;
3528 hw_p = &here.qh->hw->hw_next;
3529 here = *prev;
3531 /* link in this qh, unless some earlier pass did that */
3532 if (qh != here.qh) {
3533 qh->qh_next = here;
3534 if (here.qh)
3535 qh->hw->hw_next = *hw_p;
3536 wmb();
3537 prev->qh = qh;
3538 *hw_p = QH_NEXT(fotg210, qh->qh_dma);
3541 qh->qh_state = QH_STATE_LINKED;
3542 qh->xacterrs = 0;
3544 /* update per-qh bandwidth for usbfs */
3545 fotg210_to_hcd(fotg210)->self.bandwidth_allocated += qh->period
3546 ? ((qh->usecs + qh->c_usecs) / qh->period)
3547 : (qh->usecs * 8);
3549 list_add(&qh->intr_node, &fotg210->intr_qh_list);
3551 /* maybe enable periodic schedule processing */
3552 ++fotg210->intr_count;
3553 enable_periodic(fotg210);
3556 static void qh_unlink_periodic(struct fotg210_hcd *fotg210,
3557 struct fotg210_qh *qh)
3559 unsigned i;
3560 unsigned period;
3563 * If qh is for a low/full-speed device, simply unlinking it
3564 * could interfere with an ongoing split transaction. To unlink
3565 * it safely would require setting the QH_INACTIVATE bit and
3566 * waiting at least one frame, as described in EHCI 4.12.2.5.
3568 * We won't bother with any of this. Instead, we assume that the
3569 * only reason for unlinking an interrupt QH while the current URB
3570 * is still active is to dequeue all the URBs (flush the whole
3571 * endpoint queue).
3573 * If rebalancing the periodic schedule is ever implemented, this
3574 * approach will no longer be valid.
3577 /* high bandwidth, or otherwise part of every microframe */
3578 period = qh->period;
3579 if (!period)
3580 period = 1;
3582 for (i = qh->start; i < fotg210->periodic_size; i += period)
3583 periodic_unlink(fotg210, i, qh);
3585 /* update per-qh bandwidth for usbfs */
3586 fotg210_to_hcd(fotg210)->self.bandwidth_allocated -= qh->period
3587 ? ((qh->usecs + qh->c_usecs) / qh->period)
3588 : (qh->usecs * 8);
3590 dev_dbg(&qh->dev->dev,
3591 "unlink qh%d-%04x/%p start %d [%d/%d us]\n",
3592 qh->period, hc32_to_cpup(fotg210, &qh->hw->hw_info2) &
3593 (QH_CMASK | QH_SMASK), qh, qh->start, qh->usecs,
3594 qh->c_usecs);
3596 /* qh->qh_next still "live" to HC */
3597 qh->qh_state = QH_STATE_UNLINK;
3598 qh->qh_next.ptr = NULL;
3600 if (fotg210->qh_scan_next == qh)
3601 fotg210->qh_scan_next = list_entry(qh->intr_node.next,
3602 struct fotg210_qh, intr_node);
3603 list_del(&qh->intr_node);
3606 static void start_unlink_intr(struct fotg210_hcd *fotg210,
3607 struct fotg210_qh *qh)
3609 /* If the QH isn't linked then there's nothing we can do
3610 * unless we were called during a giveback, in which case
3611 * qh_completions() has to deal with it.
3613 if (qh->qh_state != QH_STATE_LINKED) {
3614 if (qh->qh_state == QH_STATE_COMPLETING)
3615 qh->needs_rescan = 1;
3616 return;
3619 qh_unlink_periodic(fotg210, qh);
3621 /* Make sure the unlinks are visible before starting the timer */
3622 wmb();
3625 * The EHCI spec doesn't say how long it takes the controller to
3626 * stop accessing an unlinked interrupt QH. The timer delay is
3627 * 9 uframes; presumably that will be long enough.
3629 qh->unlink_cycle = fotg210->intr_unlink_cycle;
3631 /* New entries go at the end of the intr_unlink list */
3632 if (fotg210->intr_unlink)
3633 fotg210->intr_unlink_last->unlink_next = qh;
3634 else
3635 fotg210->intr_unlink = qh;
3636 fotg210->intr_unlink_last = qh;
3638 if (fotg210->intr_unlinking)
3639 ; /* Avoid recursive calls */
3640 else if (fotg210->rh_state < FOTG210_RH_RUNNING)
3641 fotg210_handle_intr_unlinks(fotg210);
3642 else if (fotg210->intr_unlink == qh) {
3643 fotg210_enable_event(fotg210, FOTG210_HRTIMER_UNLINK_INTR,
3644 true);
3645 ++fotg210->intr_unlink_cycle;
3649 static void end_unlink_intr(struct fotg210_hcd *fotg210, struct fotg210_qh *qh)
3651 struct fotg210_qh_hw *hw = qh->hw;
3652 int rc;
3654 qh->qh_state = QH_STATE_IDLE;
3655 hw->hw_next = FOTG210_LIST_END(fotg210);
3657 qh_completions(fotg210, qh);
3659 /* reschedule QH iff another request is queued */
3660 if (!list_empty(&qh->qtd_list) &&
3661 fotg210->rh_state == FOTG210_RH_RUNNING) {
3662 rc = qh_schedule(fotg210, qh);
3664 /* An error here likely indicates handshake failure
3665 * or no space left in the schedule. Neither fault
3666 * should happen often ...
3668 * FIXME kill the now-dysfunctional queued urbs
3670 if (rc != 0)
3671 fotg210_err(fotg210, "can't reschedule qh %p, err %d\n",
3672 qh, rc);
3675 /* maybe turn off periodic schedule */
3676 --fotg210->intr_count;
3677 disable_periodic(fotg210);
3680 static int check_period(struct fotg210_hcd *fotg210, unsigned frame,
3681 unsigned uframe, unsigned period, unsigned usecs)
3683 int claimed;
3685 /* complete split running into next frame?
3686 * given FSTN support, we could sometimes check...
3688 if (uframe >= 8)
3689 return 0;
3691 /* convert "usecs we need" to "max already claimed" */
3692 usecs = fotg210->uframe_periodic_max - usecs;
3694 /* we "know" 2 and 4 uframe intervals were rejected; so
3695 * for period 0, check _every_ microframe in the schedule.
3697 if (unlikely(period == 0)) {
3698 do {
3699 for (uframe = 0; uframe < 7; uframe++) {
3700 claimed = periodic_usecs(fotg210, frame,
3701 uframe);
3702 if (claimed > usecs)
3703 return 0;
3705 } while ((frame += 1) < fotg210->periodic_size);
3707 /* just check the specified uframe, at that period */
3708 } else {
3709 do {
3710 claimed = periodic_usecs(fotg210, frame, uframe);
3711 if (claimed > usecs)
3712 return 0;
3713 } while ((frame += period) < fotg210->periodic_size);
3716 /* success! */
3717 return 1;
3720 static int check_intr_schedule(struct fotg210_hcd *fotg210, unsigned frame,
3721 unsigned uframe, const struct fotg210_qh *qh, __hc32 *c_maskp)
3723 int retval = -ENOSPC;
3724 u8 mask = 0;
3726 if (qh->c_usecs && uframe >= 6) /* FSTN territory? */
3727 goto done;
3729 if (!check_period(fotg210, frame, uframe, qh->period, qh->usecs))
3730 goto done;
3731 if (!qh->c_usecs) {
3732 retval = 0;
3733 *c_maskp = 0;
3734 goto done;
3737 /* Make sure this tt's buffer is also available for CSPLITs.
3738 * We pessimize a bit; probably the typical full speed case
3739 * doesn't need the second CSPLIT.
3741 * NOTE: both SPLIT and CSPLIT could be checked in just
3742 * one smart pass...
3744 mask = 0x03 << (uframe + qh->gap_uf);
3745 *c_maskp = cpu_to_hc32(fotg210, mask << 8);
3747 mask |= 1 << uframe;
3748 if (tt_no_collision(fotg210, qh->period, qh->dev, frame, mask)) {
3749 if (!check_period(fotg210, frame, uframe + qh->gap_uf + 1,
3750 qh->period, qh->c_usecs))
3751 goto done;
3752 if (!check_period(fotg210, frame, uframe + qh->gap_uf,
3753 qh->period, qh->c_usecs))
3754 goto done;
3755 retval = 0;
3757 done:
3758 return retval;
3761 /* "first fit" scheduling policy used the first time through,
3762 * or when the previous schedule slot can't be re-used.
3764 static int qh_schedule(struct fotg210_hcd *fotg210, struct fotg210_qh *qh)
3766 int status;
3767 unsigned uframe;
3768 __hc32 c_mask;
3769 unsigned frame; /* 0..(qh->period - 1), or NO_FRAME */
3770 struct fotg210_qh_hw *hw = qh->hw;
3772 qh_refresh(fotg210, qh);
3773 hw->hw_next = FOTG210_LIST_END(fotg210);
3774 frame = qh->start;
3776 /* reuse the previous schedule slots, if we can */
3777 if (frame < qh->period) {
3778 uframe = ffs(hc32_to_cpup(fotg210, &hw->hw_info2) & QH_SMASK);
3779 status = check_intr_schedule(fotg210, frame, --uframe,
3780 qh, &c_mask);
3781 } else {
3782 uframe = 0;
3783 c_mask = 0;
3784 status = -ENOSPC;
3787 /* else scan the schedule to find a group of slots such that all
3788 * uframes have enough periodic bandwidth available.
3790 if (status) {
3791 /* "normal" case, uframing flexible except with splits */
3792 if (qh->period) {
3793 int i;
3795 for (i = qh->period; status && i > 0; --i) {
3796 frame = ++fotg210->random_frame % qh->period;
3797 for (uframe = 0; uframe < 8; uframe++) {
3798 status = check_intr_schedule(fotg210,
3799 frame, uframe, qh,
3800 &c_mask);
3801 if (status == 0)
3802 break;
3806 /* qh->period == 0 means every uframe */
3807 } else {
3808 frame = 0;
3809 status = check_intr_schedule(fotg210, 0, 0, qh,
3810 &c_mask);
3812 if (status)
3813 goto done;
3814 qh->start = frame;
3816 /* reset S-frame and (maybe) C-frame masks */
3817 hw->hw_info2 &= cpu_to_hc32(fotg210, ~(QH_CMASK | QH_SMASK));
3818 hw->hw_info2 |= qh->period
3819 ? cpu_to_hc32(fotg210, 1 << uframe)
3820 : cpu_to_hc32(fotg210, QH_SMASK);
3821 hw->hw_info2 |= c_mask;
3822 } else
3823 fotg210_dbg(fotg210, "reused qh %p schedule\n", qh);
3825 /* stuff into the periodic schedule */
3826 qh_link_periodic(fotg210, qh);
3827 done:
3828 return status;
3831 static int intr_submit(struct fotg210_hcd *fotg210, struct urb *urb,
3832 struct list_head *qtd_list, gfp_t mem_flags)
3834 unsigned epnum;
3835 unsigned long flags;
3836 struct fotg210_qh *qh;
3837 int status;
3838 struct list_head empty;
3840 /* get endpoint and transfer/schedule data */
3841 epnum = urb->ep->desc.bEndpointAddress;
3843 spin_lock_irqsave(&fotg210->lock, flags);
3845 if (unlikely(!HCD_HW_ACCESSIBLE(fotg210_to_hcd(fotg210)))) {
3846 status = -ESHUTDOWN;
3847 goto done_not_linked;
3849 status = usb_hcd_link_urb_to_ep(fotg210_to_hcd(fotg210), urb);
3850 if (unlikely(status))
3851 goto done_not_linked;
3853 /* get qh and force any scheduling errors */
3854 INIT_LIST_HEAD(&empty);
3855 qh = qh_append_tds(fotg210, urb, &empty, epnum, &urb->ep->hcpriv);
3856 if (qh == NULL) {
3857 status = -ENOMEM;
3858 goto done;
3860 if (qh->qh_state == QH_STATE_IDLE) {
3861 status = qh_schedule(fotg210, qh);
3862 if (status)
3863 goto done;
3866 /* then queue the urb's tds to the qh */
3867 qh = qh_append_tds(fotg210, urb, qtd_list, epnum, &urb->ep->hcpriv);
3868 BUG_ON(qh == NULL);
3870 /* ... update usbfs periodic stats */
3871 fotg210_to_hcd(fotg210)->self.bandwidth_int_reqs++;
3873 done:
3874 if (unlikely(status))
3875 usb_hcd_unlink_urb_from_ep(fotg210_to_hcd(fotg210), urb);
3876 done_not_linked:
3877 spin_unlock_irqrestore(&fotg210->lock, flags);
3878 if (status)
3879 qtd_list_free(fotg210, urb, qtd_list);
3881 return status;
3884 static void scan_intr(struct fotg210_hcd *fotg210)
3886 struct fotg210_qh *qh;
3888 list_for_each_entry_safe(qh, fotg210->qh_scan_next,
3889 &fotg210->intr_qh_list, intr_node) {
3890 rescan:
3891 /* clean any finished work for this qh */
3892 if (!list_empty(&qh->qtd_list)) {
3893 int temp;
3896 * Unlinks could happen here; completion reporting
3897 * drops the lock. That's why fotg210->qh_scan_next
3898 * always holds the next qh to scan; if the next qh
3899 * gets unlinked then fotg210->qh_scan_next is adjusted
3900 * in qh_unlink_periodic().
3902 temp = qh_completions(fotg210, qh);
3903 if (unlikely(qh->needs_rescan ||
3904 (list_empty(&qh->qtd_list) &&
3905 qh->qh_state == QH_STATE_LINKED)))
3906 start_unlink_intr(fotg210, qh);
3907 else if (temp != 0)
3908 goto rescan;
3913 /* fotg210_iso_stream ops work with both ITD and SITD */
3915 static struct fotg210_iso_stream *iso_stream_alloc(gfp_t mem_flags)
3917 struct fotg210_iso_stream *stream;
3919 stream = kzalloc(sizeof(*stream), mem_flags);
3920 if (likely(stream != NULL)) {
3921 INIT_LIST_HEAD(&stream->td_list);
3922 INIT_LIST_HEAD(&stream->free_list);
3923 stream->next_uframe = -1;
3925 return stream;
3928 static void iso_stream_init(struct fotg210_hcd *fotg210,
3929 struct fotg210_iso_stream *stream, struct usb_device *dev,
3930 int pipe, unsigned interval)
3932 u32 buf1;
3933 unsigned epnum, maxp;
3934 int is_input;
3935 long bandwidth;
3936 unsigned multi;
3939 * this might be a "high bandwidth" highspeed endpoint,
3940 * as encoded in the ep descriptor's wMaxPacket field
3942 epnum = usb_pipeendpoint(pipe);
3943 is_input = usb_pipein(pipe) ? USB_DIR_IN : 0;
3944 maxp = usb_maxpacket(dev, pipe, !is_input);
3945 if (is_input)
3946 buf1 = (1 << 11);
3947 else
3948 buf1 = 0;
3950 maxp = max_packet(maxp);
3951 multi = hb_mult(maxp);
3952 buf1 |= maxp;
3953 maxp *= multi;
3955 stream->buf0 = cpu_to_hc32(fotg210, (epnum << 8) | dev->devnum);
3956 stream->buf1 = cpu_to_hc32(fotg210, buf1);
3957 stream->buf2 = cpu_to_hc32(fotg210, multi);
3959 /* usbfs wants to report the average usecs per frame tied up
3960 * when transfers on this endpoint are scheduled ...
3962 if (dev->speed == USB_SPEED_FULL) {
3963 interval <<= 3;
3964 stream->usecs = NS_TO_US(usb_calc_bus_time(dev->speed,
3965 is_input, 1, maxp));
3966 stream->usecs /= 8;
3967 } else {
3968 stream->highspeed = 1;
3969 stream->usecs = HS_USECS_ISO(maxp);
3971 bandwidth = stream->usecs * 8;
3972 bandwidth /= interval;
3974 stream->bandwidth = bandwidth;
3975 stream->udev = dev;
3976 stream->bEndpointAddress = is_input | epnum;
3977 stream->interval = interval;
3978 stream->maxp = maxp;
3981 static struct fotg210_iso_stream *iso_stream_find(struct fotg210_hcd *fotg210,
3982 struct urb *urb)
3984 unsigned epnum;
3985 struct fotg210_iso_stream *stream;
3986 struct usb_host_endpoint *ep;
3987 unsigned long flags;
3989 epnum = usb_pipeendpoint(urb->pipe);
3990 if (usb_pipein(urb->pipe))
3991 ep = urb->dev->ep_in[epnum];
3992 else
3993 ep = urb->dev->ep_out[epnum];
3995 spin_lock_irqsave(&fotg210->lock, flags);
3996 stream = ep->hcpriv;
3998 if (unlikely(stream == NULL)) {
3999 stream = iso_stream_alloc(GFP_ATOMIC);
4000 if (likely(stream != NULL)) {
4001 ep->hcpriv = stream;
4002 stream->ep = ep;
4003 iso_stream_init(fotg210, stream, urb->dev, urb->pipe,
4004 urb->interval);
4007 /* if dev->ep[epnum] is a QH, hw is set */
4008 } else if (unlikely(stream->hw != NULL)) {
4009 fotg210_dbg(fotg210, "dev %s ep%d%s, not iso??\n",
4010 urb->dev->devpath, epnum,
4011 usb_pipein(urb->pipe) ? "in" : "out");
4012 stream = NULL;
4015 spin_unlock_irqrestore(&fotg210->lock, flags);
4016 return stream;
4019 /* fotg210_iso_sched ops can be ITD-only or SITD-only */
4021 static struct fotg210_iso_sched *iso_sched_alloc(unsigned packets,
4022 gfp_t mem_flags)
4024 struct fotg210_iso_sched *iso_sched;
4025 int size = sizeof(*iso_sched);
4027 size += packets * sizeof(struct fotg210_iso_packet);
4028 iso_sched = kzalloc(size, mem_flags);
4029 if (likely(iso_sched != NULL))
4030 INIT_LIST_HEAD(&iso_sched->td_list);
4032 return iso_sched;
4035 static inline void itd_sched_init(struct fotg210_hcd *fotg210,
4036 struct fotg210_iso_sched *iso_sched,
4037 struct fotg210_iso_stream *stream, struct urb *urb)
4039 unsigned i;
4040 dma_addr_t dma = urb->transfer_dma;
4042 /* how many uframes are needed for these transfers */
4043 iso_sched->span = urb->number_of_packets * stream->interval;
4045 /* figure out per-uframe itd fields that we'll need later
4046 * when we fit new itds into the schedule.
4048 for (i = 0; i < urb->number_of_packets; i++) {
4049 struct fotg210_iso_packet *uframe = &iso_sched->packet[i];
4050 unsigned length;
4051 dma_addr_t buf;
4052 u32 trans;
4054 length = urb->iso_frame_desc[i].length;
4055 buf = dma + urb->iso_frame_desc[i].offset;
4057 trans = FOTG210_ISOC_ACTIVE;
4058 trans |= buf & 0x0fff;
4059 if (unlikely(((i + 1) == urb->number_of_packets))
4060 && !(urb->transfer_flags & URB_NO_INTERRUPT))
4061 trans |= FOTG210_ITD_IOC;
4062 trans |= length << 16;
4063 uframe->transaction = cpu_to_hc32(fotg210, trans);
4065 /* might need to cross a buffer page within a uframe */
4066 uframe->bufp = (buf & ~(u64)0x0fff);
4067 buf += length;
4068 if (unlikely((uframe->bufp != (buf & ~(u64)0x0fff))))
4069 uframe->cross = 1;
4073 static void iso_sched_free(struct fotg210_iso_stream *stream,
4074 struct fotg210_iso_sched *iso_sched)
4076 if (!iso_sched)
4077 return;
4078 /* caller must hold fotg210->lock!*/
4079 list_splice(&iso_sched->td_list, &stream->free_list);
4080 kfree(iso_sched);
4083 static int itd_urb_transaction(struct fotg210_iso_stream *stream,
4084 struct fotg210_hcd *fotg210, struct urb *urb, gfp_t mem_flags)
4086 struct fotg210_itd *itd;
4087 dma_addr_t itd_dma;
4088 int i;
4089 unsigned num_itds;
4090 struct fotg210_iso_sched *sched;
4091 unsigned long flags;
4093 sched = iso_sched_alloc(urb->number_of_packets, mem_flags);
4094 if (unlikely(sched == NULL))
4095 return -ENOMEM;
4097 itd_sched_init(fotg210, sched, stream, urb);
4099 if (urb->interval < 8)
4100 num_itds = 1 + (sched->span + 7) / 8;
4101 else
4102 num_itds = urb->number_of_packets;
4104 /* allocate/init ITDs */
4105 spin_lock_irqsave(&fotg210->lock, flags);
4106 for (i = 0; i < num_itds; i++) {
4109 * Use iTDs from the free list, but not iTDs that may
4110 * still be in use by the hardware.
4112 if (likely(!list_empty(&stream->free_list))) {
4113 itd = list_first_entry(&stream->free_list,
4114 struct fotg210_itd, itd_list);
4115 if (itd->frame == fotg210->now_frame)
4116 goto alloc_itd;
4117 list_del(&itd->itd_list);
4118 itd_dma = itd->itd_dma;
4119 } else {
4120 alloc_itd:
4121 spin_unlock_irqrestore(&fotg210->lock, flags);
4122 itd = dma_pool_zalloc(fotg210->itd_pool, mem_flags,
4123 &itd_dma);
4124 spin_lock_irqsave(&fotg210->lock, flags);
4125 if (!itd) {
4126 iso_sched_free(stream, sched);
4127 spin_unlock_irqrestore(&fotg210->lock, flags);
4128 return -ENOMEM;
4132 itd->itd_dma = itd_dma;
4133 list_add(&itd->itd_list, &sched->td_list);
4135 spin_unlock_irqrestore(&fotg210->lock, flags);
4137 /* temporarily store schedule info in hcpriv */
4138 urb->hcpriv = sched;
4139 urb->error_count = 0;
4140 return 0;
4143 static inline int itd_slot_ok(struct fotg210_hcd *fotg210, u32 mod, u32 uframe,
4144 u8 usecs, u32 period)
4146 uframe %= period;
4147 do {
4148 /* can't commit more than uframe_periodic_max usec */
4149 if (periodic_usecs(fotg210, uframe >> 3, uframe & 0x7)
4150 > (fotg210->uframe_periodic_max - usecs))
4151 return 0;
4153 /* we know urb->interval is 2^N uframes */
4154 uframe += period;
4155 } while (uframe < mod);
4156 return 1;
4159 /* This scheduler plans almost as far into the future as it has actual
4160 * periodic schedule slots. (Affected by TUNE_FLS, which defaults to
4161 * "as small as possible" to be cache-friendlier.) That limits the size
4162 * transfers you can stream reliably; avoid more than 64 msec per urb.
4163 * Also avoid queue depths of less than fotg210's worst irq latency (affected
4164 * by the per-urb URB_NO_INTERRUPT hint, the log2_irq_thresh module parameter,
4165 * and other factors); or more than about 230 msec total (for portability,
4166 * given FOTG210_TUNE_FLS and the slop). Or, write a smarter scheduler!
4169 #define SCHEDULE_SLOP 80 /* microframes */
4171 static int iso_stream_schedule(struct fotg210_hcd *fotg210, struct urb *urb,
4172 struct fotg210_iso_stream *stream)
4174 u32 now, next, start, period, span;
4175 int status;
4176 unsigned mod = fotg210->periodic_size << 3;
4177 struct fotg210_iso_sched *sched = urb->hcpriv;
4179 period = urb->interval;
4180 span = sched->span;
4182 if (span > mod - SCHEDULE_SLOP) {
4183 fotg210_dbg(fotg210, "iso request %p too long\n", urb);
4184 status = -EFBIG;
4185 goto fail;
4188 now = fotg210_read_frame_index(fotg210) & (mod - 1);
4190 /* Typical case: reuse current schedule, stream is still active.
4191 * Hopefully there are no gaps from the host falling behind
4192 * (irq delays etc), but if there are we'll take the next
4193 * slot in the schedule, implicitly assuming URB_ISO_ASAP.
4195 if (likely(!list_empty(&stream->td_list))) {
4196 u32 excess;
4198 /* For high speed devices, allow scheduling within the
4199 * isochronous scheduling threshold. For full speed devices
4200 * and Intel PCI-based controllers, don't (work around for
4201 * Intel ICH9 bug).
4203 if (!stream->highspeed && fotg210->fs_i_thresh)
4204 next = now + fotg210->i_thresh;
4205 else
4206 next = now;
4208 /* Fell behind (by up to twice the slop amount)?
4209 * We decide based on the time of the last currently-scheduled
4210 * slot, not the time of the next available slot.
4212 excess = (stream->next_uframe - period - next) & (mod - 1);
4213 if (excess >= mod - 2 * SCHEDULE_SLOP)
4214 start = next + excess - mod + period *
4215 DIV_ROUND_UP(mod - excess, period);
4216 else
4217 start = next + excess + period;
4218 if (start - now >= mod) {
4219 fotg210_dbg(fotg210, "request %p would overflow (%d+%d >= %d)\n",
4220 urb, start - now - period, period,
4221 mod);
4222 status = -EFBIG;
4223 goto fail;
4227 /* need to schedule; when's the next (u)frame we could start?
4228 * this is bigger than fotg210->i_thresh allows; scheduling itself
4229 * isn't free, the slop should handle reasonably slow cpus. it
4230 * can also help high bandwidth if the dma and irq loads don't
4231 * jump until after the queue is primed.
4233 else {
4234 int done = 0;
4236 start = SCHEDULE_SLOP + (now & ~0x07);
4238 /* NOTE: assumes URB_ISO_ASAP, to limit complexity/bugs */
4240 /* find a uframe slot with enough bandwidth.
4241 * Early uframes are more precious because full-speed
4242 * iso IN transfers can't use late uframes,
4243 * and therefore they should be allocated last.
4245 next = start;
4246 start += period;
4247 do {
4248 start--;
4249 /* check schedule: enough space? */
4250 if (itd_slot_ok(fotg210, mod, start,
4251 stream->usecs, period))
4252 done = 1;
4253 } while (start > next && !done);
4255 /* no room in the schedule */
4256 if (!done) {
4257 fotg210_dbg(fotg210, "iso resched full %p (now %d max %d)\n",
4258 urb, now, now + mod);
4259 status = -ENOSPC;
4260 goto fail;
4264 /* Tried to schedule too far into the future? */
4265 if (unlikely(start - now + span - period >=
4266 mod - 2 * SCHEDULE_SLOP)) {
4267 fotg210_dbg(fotg210, "request %p would overflow (%d+%d >= %d)\n",
4268 urb, start - now, span - period,
4269 mod - 2 * SCHEDULE_SLOP);
4270 status = -EFBIG;
4271 goto fail;
4274 stream->next_uframe = start & (mod - 1);
4276 /* report high speed start in uframes; full speed, in frames */
4277 urb->start_frame = stream->next_uframe;
4278 if (!stream->highspeed)
4279 urb->start_frame >>= 3;
4281 /* Make sure scan_isoc() sees these */
4282 if (fotg210->isoc_count == 0)
4283 fotg210->next_frame = now >> 3;
4284 return 0;
4286 fail:
4287 iso_sched_free(stream, sched);
4288 urb->hcpriv = NULL;
4289 return status;
4292 static inline void itd_init(struct fotg210_hcd *fotg210,
4293 struct fotg210_iso_stream *stream, struct fotg210_itd *itd)
4295 int i;
4297 /* it's been recently zeroed */
4298 itd->hw_next = FOTG210_LIST_END(fotg210);
4299 itd->hw_bufp[0] = stream->buf0;
4300 itd->hw_bufp[1] = stream->buf1;
4301 itd->hw_bufp[2] = stream->buf2;
4303 for (i = 0; i < 8; i++)
4304 itd->index[i] = -1;
4306 /* All other fields are filled when scheduling */
4309 static inline void itd_patch(struct fotg210_hcd *fotg210,
4310 struct fotg210_itd *itd, struct fotg210_iso_sched *iso_sched,
4311 unsigned index, u16 uframe)
4313 struct fotg210_iso_packet *uf = &iso_sched->packet[index];
4314 unsigned pg = itd->pg;
4316 uframe &= 0x07;
4317 itd->index[uframe] = index;
4319 itd->hw_transaction[uframe] = uf->transaction;
4320 itd->hw_transaction[uframe] |= cpu_to_hc32(fotg210, pg << 12);
4321 itd->hw_bufp[pg] |= cpu_to_hc32(fotg210, uf->bufp & ~(u32)0);
4322 itd->hw_bufp_hi[pg] |= cpu_to_hc32(fotg210, (u32)(uf->bufp >> 32));
4324 /* iso_frame_desc[].offset must be strictly increasing */
4325 if (unlikely(uf->cross)) {
4326 u64 bufp = uf->bufp + 4096;
4328 itd->pg = ++pg;
4329 itd->hw_bufp[pg] |= cpu_to_hc32(fotg210, bufp & ~(u32)0);
4330 itd->hw_bufp_hi[pg] |= cpu_to_hc32(fotg210, (u32)(bufp >> 32));
4334 static inline void itd_link(struct fotg210_hcd *fotg210, unsigned frame,
4335 struct fotg210_itd *itd)
4337 union fotg210_shadow *prev = &fotg210->pshadow[frame];
4338 __hc32 *hw_p = &fotg210->periodic[frame];
4339 union fotg210_shadow here = *prev;
4340 __hc32 type = 0;
4342 /* skip any iso nodes which might belong to previous microframes */
4343 while (here.ptr) {
4344 type = Q_NEXT_TYPE(fotg210, *hw_p);
4345 if (type == cpu_to_hc32(fotg210, Q_TYPE_QH))
4346 break;
4347 prev = periodic_next_shadow(fotg210, prev, type);
4348 hw_p = shadow_next_periodic(fotg210, &here, type);
4349 here = *prev;
4352 itd->itd_next = here;
4353 itd->hw_next = *hw_p;
4354 prev->itd = itd;
4355 itd->frame = frame;
4356 wmb();
4357 *hw_p = cpu_to_hc32(fotg210, itd->itd_dma | Q_TYPE_ITD);
4360 /* fit urb's itds into the selected schedule slot; activate as needed */
4361 static void itd_link_urb(struct fotg210_hcd *fotg210, struct urb *urb,
4362 unsigned mod, struct fotg210_iso_stream *stream)
4364 int packet;
4365 unsigned next_uframe, uframe, frame;
4366 struct fotg210_iso_sched *iso_sched = urb->hcpriv;
4367 struct fotg210_itd *itd;
4369 next_uframe = stream->next_uframe & (mod - 1);
4371 if (unlikely(list_empty(&stream->td_list))) {
4372 fotg210_to_hcd(fotg210)->self.bandwidth_allocated
4373 += stream->bandwidth;
4374 fotg210_dbg(fotg210,
4375 "schedule devp %s ep%d%s-iso period %d start %d.%d\n",
4376 urb->dev->devpath, stream->bEndpointAddress & 0x0f,
4377 (stream->bEndpointAddress & USB_DIR_IN) ? "in" : "out",
4378 urb->interval,
4379 next_uframe >> 3, next_uframe & 0x7);
4382 /* fill iTDs uframe by uframe */
4383 for (packet = 0, itd = NULL; packet < urb->number_of_packets;) {
4384 if (itd == NULL) {
4385 /* ASSERT: we have all necessary itds */
4387 /* ASSERT: no itds for this endpoint in this uframe */
4389 itd = list_entry(iso_sched->td_list.next,
4390 struct fotg210_itd, itd_list);
4391 list_move_tail(&itd->itd_list, &stream->td_list);
4392 itd->stream = stream;
4393 itd->urb = urb;
4394 itd_init(fotg210, stream, itd);
4397 uframe = next_uframe & 0x07;
4398 frame = next_uframe >> 3;
4400 itd_patch(fotg210, itd, iso_sched, packet, uframe);
4402 next_uframe += stream->interval;
4403 next_uframe &= mod - 1;
4404 packet++;
4406 /* link completed itds into the schedule */
4407 if (((next_uframe >> 3) != frame)
4408 || packet == urb->number_of_packets) {
4409 itd_link(fotg210, frame & (fotg210->periodic_size - 1),
4410 itd);
4411 itd = NULL;
4414 stream->next_uframe = next_uframe;
4416 /* don't need that schedule data any more */
4417 iso_sched_free(stream, iso_sched);
4418 urb->hcpriv = NULL;
4420 ++fotg210->isoc_count;
4421 enable_periodic(fotg210);
4424 #define ISO_ERRS (FOTG210_ISOC_BUF_ERR | FOTG210_ISOC_BABBLE |\
4425 FOTG210_ISOC_XACTERR)
4427 /* Process and recycle a completed ITD. Return true iff its urb completed,
4428 * and hence its completion callback probably added things to the hardware
4429 * schedule.
4431 * Note that we carefully avoid recycling this descriptor until after any
4432 * completion callback runs, so that it won't be reused quickly. That is,
4433 * assuming (a) no more than two urbs per frame on this endpoint, and also
4434 * (b) only this endpoint's completions submit URBs. It seems some silicon
4435 * corrupts things if you reuse completed descriptors very quickly...
4437 static bool itd_complete(struct fotg210_hcd *fotg210, struct fotg210_itd *itd)
4439 struct urb *urb = itd->urb;
4440 struct usb_iso_packet_descriptor *desc;
4441 u32 t;
4442 unsigned uframe;
4443 int urb_index = -1;
4444 struct fotg210_iso_stream *stream = itd->stream;
4445 struct usb_device *dev;
4446 bool retval = false;
4448 /* for each uframe with a packet */
4449 for (uframe = 0; uframe < 8; uframe++) {
4450 if (likely(itd->index[uframe] == -1))
4451 continue;
4452 urb_index = itd->index[uframe];
4453 desc = &urb->iso_frame_desc[urb_index];
4455 t = hc32_to_cpup(fotg210, &itd->hw_transaction[uframe]);
4456 itd->hw_transaction[uframe] = 0;
4458 /* report transfer status */
4459 if (unlikely(t & ISO_ERRS)) {
4460 urb->error_count++;
4461 if (t & FOTG210_ISOC_BUF_ERR)
4462 desc->status = usb_pipein(urb->pipe)
4463 ? -ENOSR /* hc couldn't read */
4464 : -ECOMM; /* hc couldn't write */
4465 else if (t & FOTG210_ISOC_BABBLE)
4466 desc->status = -EOVERFLOW;
4467 else /* (t & FOTG210_ISOC_XACTERR) */
4468 desc->status = -EPROTO;
4470 /* HC need not update length with this error */
4471 if (!(t & FOTG210_ISOC_BABBLE)) {
4472 desc->actual_length =
4473 fotg210_itdlen(urb, desc, t);
4474 urb->actual_length += desc->actual_length;
4476 } else if (likely((t & FOTG210_ISOC_ACTIVE) == 0)) {
4477 desc->status = 0;
4478 desc->actual_length = fotg210_itdlen(urb, desc, t);
4479 urb->actual_length += desc->actual_length;
4480 } else {
4481 /* URB was too late */
4482 desc->status = -EXDEV;
4486 /* handle completion now? */
4487 if (likely((urb_index + 1) != urb->number_of_packets))
4488 goto done;
4490 /* ASSERT: it's really the last itd for this urb
4491 * list_for_each_entry (itd, &stream->td_list, itd_list)
4492 * BUG_ON (itd->urb == urb);
4495 /* give urb back to the driver; completion often (re)submits */
4496 dev = urb->dev;
4497 fotg210_urb_done(fotg210, urb, 0);
4498 retval = true;
4499 urb = NULL;
4501 --fotg210->isoc_count;
4502 disable_periodic(fotg210);
4504 if (unlikely(list_is_singular(&stream->td_list))) {
4505 fotg210_to_hcd(fotg210)->self.bandwidth_allocated
4506 -= stream->bandwidth;
4507 fotg210_dbg(fotg210,
4508 "deschedule devp %s ep%d%s-iso\n",
4509 dev->devpath, stream->bEndpointAddress & 0x0f,
4510 (stream->bEndpointAddress & USB_DIR_IN) ? "in" : "out");
4513 done:
4514 itd->urb = NULL;
4516 /* Add to the end of the free list for later reuse */
4517 list_move_tail(&itd->itd_list, &stream->free_list);
4519 /* Recycle the iTDs when the pipeline is empty (ep no longer in use) */
4520 if (list_empty(&stream->td_list)) {
4521 list_splice_tail_init(&stream->free_list,
4522 &fotg210->cached_itd_list);
4523 start_free_itds(fotg210);
4526 return retval;
4529 static int itd_submit(struct fotg210_hcd *fotg210, struct urb *urb,
4530 gfp_t mem_flags)
4532 int status = -EINVAL;
4533 unsigned long flags;
4534 struct fotg210_iso_stream *stream;
4536 /* Get iso_stream head */
4537 stream = iso_stream_find(fotg210, urb);
4538 if (unlikely(stream == NULL)) {
4539 fotg210_dbg(fotg210, "can't get iso stream\n");
4540 return -ENOMEM;
4542 if (unlikely(urb->interval != stream->interval &&
4543 fotg210_port_speed(fotg210, 0) ==
4544 USB_PORT_STAT_HIGH_SPEED)) {
4545 fotg210_dbg(fotg210, "can't change iso interval %d --> %d\n",
4546 stream->interval, urb->interval);
4547 goto done;
4550 #ifdef FOTG210_URB_TRACE
4551 fotg210_dbg(fotg210,
4552 "%s %s urb %p ep%d%s len %d, %d pkts %d uframes[%p]\n",
4553 __func__, urb->dev->devpath, urb,
4554 usb_pipeendpoint(urb->pipe),
4555 usb_pipein(urb->pipe) ? "in" : "out",
4556 urb->transfer_buffer_length,
4557 urb->number_of_packets, urb->interval,
4558 stream);
4559 #endif
4561 /* allocate ITDs w/o locking anything */
4562 status = itd_urb_transaction(stream, fotg210, urb, mem_flags);
4563 if (unlikely(status < 0)) {
4564 fotg210_dbg(fotg210, "can't init itds\n");
4565 goto done;
4568 /* schedule ... need to lock */
4569 spin_lock_irqsave(&fotg210->lock, flags);
4570 if (unlikely(!HCD_HW_ACCESSIBLE(fotg210_to_hcd(fotg210)))) {
4571 status = -ESHUTDOWN;
4572 goto done_not_linked;
4574 status = usb_hcd_link_urb_to_ep(fotg210_to_hcd(fotg210), urb);
4575 if (unlikely(status))
4576 goto done_not_linked;
4577 status = iso_stream_schedule(fotg210, urb, stream);
4578 if (likely(status == 0))
4579 itd_link_urb(fotg210, urb, fotg210->periodic_size << 3, stream);
4580 else
4581 usb_hcd_unlink_urb_from_ep(fotg210_to_hcd(fotg210), urb);
4582 done_not_linked:
4583 spin_unlock_irqrestore(&fotg210->lock, flags);
4584 done:
4585 return status;
4588 static inline int scan_frame_queue(struct fotg210_hcd *fotg210, unsigned frame,
4589 unsigned now_frame, bool live)
4591 unsigned uf;
4592 bool modified;
4593 union fotg210_shadow q, *q_p;
4594 __hc32 type, *hw_p;
4596 /* scan each element in frame's queue for completions */
4597 q_p = &fotg210->pshadow[frame];
4598 hw_p = &fotg210->periodic[frame];
4599 q.ptr = q_p->ptr;
4600 type = Q_NEXT_TYPE(fotg210, *hw_p);
4601 modified = false;
4603 while (q.ptr) {
4604 switch (hc32_to_cpu(fotg210, type)) {
4605 case Q_TYPE_ITD:
4606 /* If this ITD is still active, leave it for
4607 * later processing ... check the next entry.
4608 * No need to check for activity unless the
4609 * frame is current.
4611 if (frame == now_frame && live) {
4612 rmb();
4613 for (uf = 0; uf < 8; uf++) {
4614 if (q.itd->hw_transaction[uf] &
4615 ITD_ACTIVE(fotg210))
4616 break;
4618 if (uf < 8) {
4619 q_p = &q.itd->itd_next;
4620 hw_p = &q.itd->hw_next;
4621 type = Q_NEXT_TYPE(fotg210,
4622 q.itd->hw_next);
4623 q = *q_p;
4624 break;
4628 /* Take finished ITDs out of the schedule
4629 * and process them: recycle, maybe report
4630 * URB completion. HC won't cache the
4631 * pointer for much longer, if at all.
4633 *q_p = q.itd->itd_next;
4634 *hw_p = q.itd->hw_next;
4635 type = Q_NEXT_TYPE(fotg210, q.itd->hw_next);
4636 wmb();
4637 modified = itd_complete(fotg210, q.itd);
4638 q = *q_p;
4639 break;
4640 default:
4641 fotg210_dbg(fotg210, "corrupt type %d frame %d shadow %p\n",
4642 type, frame, q.ptr);
4643 /* FALL THROUGH */
4644 case Q_TYPE_QH:
4645 case Q_TYPE_FSTN:
4646 /* End of the iTDs and siTDs */
4647 q.ptr = NULL;
4648 break;
4651 /* assume completion callbacks modify the queue */
4652 if (unlikely(modified && fotg210->isoc_count > 0))
4653 return -EINVAL;
4655 return 0;
4658 static void scan_isoc(struct fotg210_hcd *fotg210)
4660 unsigned uf, now_frame, frame, ret;
4661 unsigned fmask = fotg210->periodic_size - 1;
4662 bool live;
4665 * When running, scan from last scan point up to "now"
4666 * else clean up by scanning everything that's left.
4667 * Touches as few pages as possible: cache-friendly.
4669 if (fotg210->rh_state >= FOTG210_RH_RUNNING) {
4670 uf = fotg210_read_frame_index(fotg210);
4671 now_frame = (uf >> 3) & fmask;
4672 live = true;
4673 } else {
4674 now_frame = (fotg210->next_frame - 1) & fmask;
4675 live = false;
4677 fotg210->now_frame = now_frame;
4679 frame = fotg210->next_frame;
4680 for (;;) {
4681 ret = 1;
4682 while (ret != 0)
4683 ret = scan_frame_queue(fotg210, frame,
4684 now_frame, live);
4686 /* Stop when we have reached the current frame */
4687 if (frame == now_frame)
4688 break;
4689 frame = (frame + 1) & fmask;
4691 fotg210->next_frame = now_frame;
4694 /* Display / Set uframe_periodic_max
4696 static ssize_t uframe_periodic_max_show(struct device *dev,
4697 struct device_attribute *attr, char *buf)
4699 struct fotg210_hcd *fotg210;
4700 int n;
4702 fotg210 = hcd_to_fotg210(bus_to_hcd(dev_get_drvdata(dev)));
4703 n = scnprintf(buf, PAGE_SIZE, "%d\n", fotg210->uframe_periodic_max);
4704 return n;
4708 static ssize_t uframe_periodic_max_store(struct device *dev,
4709 struct device_attribute *attr, const char *buf, size_t count)
4711 struct fotg210_hcd *fotg210;
4712 unsigned uframe_periodic_max;
4713 unsigned frame, uframe;
4714 unsigned short allocated_max;
4715 unsigned long flags;
4716 ssize_t ret;
4718 fotg210 = hcd_to_fotg210(bus_to_hcd(dev_get_drvdata(dev)));
4719 if (kstrtouint(buf, 0, &uframe_periodic_max) < 0)
4720 return -EINVAL;
4722 if (uframe_periodic_max < 100 || uframe_periodic_max >= 125) {
4723 fotg210_info(fotg210, "rejecting invalid request for uframe_periodic_max=%u\n",
4724 uframe_periodic_max);
4725 return -EINVAL;
4728 ret = -EINVAL;
4731 * lock, so that our checking does not race with possible periodic
4732 * bandwidth allocation through submitting new urbs.
4734 spin_lock_irqsave(&fotg210->lock, flags);
4737 * for request to decrease max periodic bandwidth, we have to check
4738 * every microframe in the schedule to see whether the decrease is
4739 * possible.
4741 if (uframe_periodic_max < fotg210->uframe_periodic_max) {
4742 allocated_max = 0;
4744 for (frame = 0; frame < fotg210->periodic_size; ++frame)
4745 for (uframe = 0; uframe < 7; ++uframe)
4746 allocated_max = max(allocated_max,
4747 periodic_usecs(fotg210, frame,
4748 uframe));
4750 if (allocated_max > uframe_periodic_max) {
4751 fotg210_info(fotg210,
4752 "cannot decrease uframe_periodic_max because periodic bandwidth is already allocated (%u > %u)\n",
4753 allocated_max, uframe_periodic_max);
4754 goto out_unlock;
4758 /* increasing is always ok */
4760 fotg210_info(fotg210,
4761 "setting max periodic bandwidth to %u%% (== %u usec/uframe)\n",
4762 100 * uframe_periodic_max/125, uframe_periodic_max);
4764 if (uframe_periodic_max != 100)
4765 fotg210_warn(fotg210, "max periodic bandwidth set is non-standard\n");
4767 fotg210->uframe_periodic_max = uframe_periodic_max;
4768 ret = count;
4770 out_unlock:
4771 spin_unlock_irqrestore(&fotg210->lock, flags);
4772 return ret;
4775 static DEVICE_ATTR_RW(uframe_periodic_max);
4777 static inline int create_sysfs_files(struct fotg210_hcd *fotg210)
4779 struct device *controller = fotg210_to_hcd(fotg210)->self.controller;
4781 return device_create_file(controller, &dev_attr_uframe_periodic_max);
4784 static inline void remove_sysfs_files(struct fotg210_hcd *fotg210)
4786 struct device *controller = fotg210_to_hcd(fotg210)->self.controller;
4788 device_remove_file(controller, &dev_attr_uframe_periodic_max);
4790 /* On some systems, leaving remote wakeup enabled prevents system shutdown.
4791 * The firmware seems to think that powering off is a wakeup event!
4792 * This routine turns off remote wakeup and everything else, on all ports.
4794 static void fotg210_turn_off_all_ports(struct fotg210_hcd *fotg210)
4796 u32 __iomem *status_reg = &fotg210->regs->port_status;
4798 fotg210_writel(fotg210, PORT_RWC_BITS, status_reg);
4801 /* Halt HC, turn off all ports, and let the BIOS use the companion controllers.
4802 * Must be called with interrupts enabled and the lock not held.
4804 static void fotg210_silence_controller(struct fotg210_hcd *fotg210)
4806 fotg210_halt(fotg210);
4808 spin_lock_irq(&fotg210->lock);
4809 fotg210->rh_state = FOTG210_RH_HALTED;
4810 fotg210_turn_off_all_ports(fotg210);
4811 spin_unlock_irq(&fotg210->lock);
4814 /* fotg210_shutdown kick in for silicon on any bus (not just pci, etc).
4815 * This forcibly disables dma and IRQs, helping kexec and other cases
4816 * where the next system software may expect clean state.
4818 static void fotg210_shutdown(struct usb_hcd *hcd)
4820 struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd);
4822 spin_lock_irq(&fotg210->lock);
4823 fotg210->shutdown = true;
4824 fotg210->rh_state = FOTG210_RH_STOPPING;
4825 fotg210->enabled_hrtimer_events = 0;
4826 spin_unlock_irq(&fotg210->lock);
4828 fotg210_silence_controller(fotg210);
4830 hrtimer_cancel(&fotg210->hrtimer);
4833 /* fotg210_work is called from some interrupts, timers, and so on.
4834 * it calls driver completion functions, after dropping fotg210->lock.
4836 static void fotg210_work(struct fotg210_hcd *fotg210)
4838 /* another CPU may drop fotg210->lock during a schedule scan while
4839 * it reports urb completions. this flag guards against bogus
4840 * attempts at re-entrant schedule scanning.
4842 if (fotg210->scanning) {
4843 fotg210->need_rescan = true;
4844 return;
4846 fotg210->scanning = true;
4848 rescan:
4849 fotg210->need_rescan = false;
4850 if (fotg210->async_count)
4851 scan_async(fotg210);
4852 if (fotg210->intr_count > 0)
4853 scan_intr(fotg210);
4854 if (fotg210->isoc_count > 0)
4855 scan_isoc(fotg210);
4856 if (fotg210->need_rescan)
4857 goto rescan;
4858 fotg210->scanning = false;
4860 /* the IO watchdog guards against hardware or driver bugs that
4861 * misplace IRQs, and should let us run completely without IRQs.
4862 * such lossage has been observed on both VT6202 and VT8235.
4864 turn_on_io_watchdog(fotg210);
4867 /* Called when the fotg210_hcd module is removed.
4869 static void fotg210_stop(struct usb_hcd *hcd)
4871 struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd);
4873 fotg210_dbg(fotg210, "stop\n");
4875 /* no more interrupts ... */
4877 spin_lock_irq(&fotg210->lock);
4878 fotg210->enabled_hrtimer_events = 0;
4879 spin_unlock_irq(&fotg210->lock);
4881 fotg210_quiesce(fotg210);
4882 fotg210_silence_controller(fotg210);
4883 fotg210_reset(fotg210);
4885 hrtimer_cancel(&fotg210->hrtimer);
4886 remove_sysfs_files(fotg210);
4887 remove_debug_files(fotg210);
4889 /* root hub is shut down separately (first, when possible) */
4890 spin_lock_irq(&fotg210->lock);
4891 end_free_itds(fotg210);
4892 spin_unlock_irq(&fotg210->lock);
4893 fotg210_mem_cleanup(fotg210);
4895 #ifdef FOTG210_STATS
4896 fotg210_dbg(fotg210, "irq normal %ld err %ld iaa %ld (lost %ld)\n",
4897 fotg210->stats.normal, fotg210->stats.error,
4898 fotg210->stats.iaa, fotg210->stats.lost_iaa);
4899 fotg210_dbg(fotg210, "complete %ld unlink %ld\n",
4900 fotg210->stats.complete, fotg210->stats.unlink);
4901 #endif
4903 dbg_status(fotg210, "fotg210_stop completed",
4904 fotg210_readl(fotg210, &fotg210->regs->status));
4907 /* one-time init, only for memory state */
4908 static int hcd_fotg210_init(struct usb_hcd *hcd)
4910 struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd);
4911 u32 temp;
4912 int retval;
4913 u32 hcc_params;
4914 struct fotg210_qh_hw *hw;
4916 spin_lock_init(&fotg210->lock);
4919 * keep io watchdog by default, those good HCDs could turn off it later
4921 fotg210->need_io_watchdog = 1;
4923 hrtimer_init(&fotg210->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
4924 fotg210->hrtimer.function = fotg210_hrtimer_func;
4925 fotg210->next_hrtimer_event = FOTG210_HRTIMER_NO_EVENT;
4927 hcc_params = fotg210_readl(fotg210, &fotg210->caps->hcc_params);
4930 * by default set standard 80% (== 100 usec/uframe) max periodic
4931 * bandwidth as required by USB 2.0
4933 fotg210->uframe_periodic_max = 100;
4936 * hw default: 1K periodic list heads, one per frame.
4937 * periodic_size can shrink by USBCMD update if hcc_params allows.
4939 fotg210->periodic_size = DEFAULT_I_TDPS;
4940 INIT_LIST_HEAD(&fotg210->intr_qh_list);
4941 INIT_LIST_HEAD(&fotg210->cached_itd_list);
4943 if (HCC_PGM_FRAMELISTLEN(hcc_params)) {
4944 /* periodic schedule size can be smaller than default */
4945 switch (FOTG210_TUNE_FLS) {
4946 case 0:
4947 fotg210->periodic_size = 1024;
4948 break;
4949 case 1:
4950 fotg210->periodic_size = 512;
4951 break;
4952 case 2:
4953 fotg210->periodic_size = 256;
4954 break;
4955 default:
4956 BUG();
4959 retval = fotg210_mem_init(fotg210, GFP_KERNEL);
4960 if (retval < 0)
4961 return retval;
4963 /* controllers may cache some of the periodic schedule ... */
4964 fotg210->i_thresh = 2;
4967 * dedicate a qh for the async ring head, since we couldn't unlink
4968 * a 'real' qh without stopping the async schedule [4.8]. use it
4969 * as the 'reclamation list head' too.
4970 * its dummy is used in hw_alt_next of many tds, to prevent the qh
4971 * from automatically advancing to the next td after short reads.
4973 fotg210->async->qh_next.qh = NULL;
4974 hw = fotg210->async->hw;
4975 hw->hw_next = QH_NEXT(fotg210, fotg210->async->qh_dma);
4976 hw->hw_info1 = cpu_to_hc32(fotg210, QH_HEAD);
4977 hw->hw_token = cpu_to_hc32(fotg210, QTD_STS_HALT);
4978 hw->hw_qtd_next = FOTG210_LIST_END(fotg210);
4979 fotg210->async->qh_state = QH_STATE_LINKED;
4980 hw->hw_alt_next = QTD_NEXT(fotg210, fotg210->async->dummy->qtd_dma);
4982 /* clear interrupt enables, set irq latency */
4983 if (log2_irq_thresh < 0 || log2_irq_thresh > 6)
4984 log2_irq_thresh = 0;
4985 temp = 1 << (16 + log2_irq_thresh);
4986 if (HCC_CANPARK(hcc_params)) {
4987 /* HW default park == 3, on hardware that supports it (like
4988 * NVidia and ALI silicon), maximizes throughput on the async
4989 * schedule by avoiding QH fetches between transfers.
4991 * With fast usb storage devices and NForce2, "park" seems to
4992 * make problems: throughput reduction (!), data errors...
4994 if (park) {
4995 park = min_t(unsigned, park, 3);
4996 temp |= CMD_PARK;
4997 temp |= park << 8;
4999 fotg210_dbg(fotg210, "park %d\n", park);
5001 if (HCC_PGM_FRAMELISTLEN(hcc_params)) {
5002 /* periodic schedule size can be smaller than default */
5003 temp &= ~(3 << 2);
5004 temp |= (FOTG210_TUNE_FLS << 2);
5006 fotg210->command = temp;
5008 /* Accept arbitrarily long scatter-gather lists */
5009 if (!(hcd->driver->flags & HCD_LOCAL_MEM))
5010 hcd->self.sg_tablesize = ~0;
5011 return 0;
5014 /* start HC running; it's halted, hcd_fotg210_init() has been run (once) */
5015 static int fotg210_run(struct usb_hcd *hcd)
5017 struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd);
5018 u32 temp;
5019 u32 hcc_params;
5021 hcd->uses_new_polling = 1;
5023 /* EHCI spec section 4.1 */
5025 fotg210_writel(fotg210, fotg210->periodic_dma,
5026 &fotg210->regs->frame_list);
5027 fotg210_writel(fotg210, (u32)fotg210->async->qh_dma,
5028 &fotg210->regs->async_next);
5031 * hcc_params controls whether fotg210->regs->segment must (!!!)
5032 * be used; it constrains QH/ITD/SITD and QTD locations.
5033 * dma_pool consistent memory always uses segment zero.
5034 * streaming mappings for I/O buffers, like pci_map_single(),
5035 * can return segments above 4GB, if the device allows.
5037 * NOTE: the dma mask is visible through dev->dma_mask, so
5038 * drivers can pass this info along ... like NETIF_F_HIGHDMA,
5039 * Scsi_Host.highmem_io, and so forth. It's readonly to all
5040 * host side drivers though.
5042 hcc_params = fotg210_readl(fotg210, &fotg210->caps->hcc_params);
5045 * Philips, Intel, and maybe others need CMD_RUN before the
5046 * root hub will detect new devices (why?); NEC doesn't
5048 fotg210->command &= ~(CMD_IAAD|CMD_PSE|CMD_ASE|CMD_RESET);
5049 fotg210->command |= CMD_RUN;
5050 fotg210_writel(fotg210, fotg210->command, &fotg210->regs->command);
5051 dbg_cmd(fotg210, "init", fotg210->command);
5054 * Start, enabling full USB 2.0 functionality ... usb 1.1 devices
5055 * are explicitly handed to companion controller(s), so no TT is
5056 * involved with the root hub. (Except where one is integrated,
5057 * and there's no companion controller unless maybe for USB OTG.)
5059 * Turning on the CF flag will transfer ownership of all ports
5060 * from the companions to the EHCI controller. If any of the
5061 * companions are in the middle of a port reset at the time, it
5062 * could cause trouble. Write-locking ehci_cf_port_reset_rwsem
5063 * guarantees that no resets are in progress. After we set CF,
5064 * a short delay lets the hardware catch up; new resets shouldn't
5065 * be started before the port switching actions could complete.
5067 down_write(&ehci_cf_port_reset_rwsem);
5068 fotg210->rh_state = FOTG210_RH_RUNNING;
5069 /* unblock posted writes */
5070 fotg210_readl(fotg210, &fotg210->regs->command);
5071 usleep_range(5000, 10000);
5072 up_write(&ehci_cf_port_reset_rwsem);
5073 fotg210->last_periodic_enable = ktime_get_real();
5075 temp = HC_VERSION(fotg210,
5076 fotg210_readl(fotg210, &fotg210->caps->hc_capbase));
5077 fotg210_info(fotg210,
5078 "USB %x.%x started, EHCI %x.%02x\n",
5079 ((fotg210->sbrn & 0xf0) >> 4), (fotg210->sbrn & 0x0f),
5080 temp >> 8, temp & 0xff);
5082 fotg210_writel(fotg210, INTR_MASK,
5083 &fotg210->regs->intr_enable); /* Turn On Interrupts */
5085 /* GRR this is run-once init(), being done every time the HC starts.
5086 * So long as they're part of class devices, we can't do it init()
5087 * since the class device isn't created that early.
5089 create_debug_files(fotg210);
5090 create_sysfs_files(fotg210);
5092 return 0;
5095 static int fotg210_setup(struct usb_hcd *hcd)
5097 struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd);
5098 int retval;
5100 fotg210->regs = (void __iomem *)fotg210->caps +
5101 HC_LENGTH(fotg210,
5102 fotg210_readl(fotg210, &fotg210->caps->hc_capbase));
5103 dbg_hcs_params(fotg210, "reset");
5104 dbg_hcc_params(fotg210, "reset");
5106 /* cache this readonly data; minimize chip reads */
5107 fotg210->hcs_params = fotg210_readl(fotg210,
5108 &fotg210->caps->hcs_params);
5110 fotg210->sbrn = HCD_USB2;
5112 /* data structure init */
5113 retval = hcd_fotg210_init(hcd);
5114 if (retval)
5115 return retval;
5117 retval = fotg210_halt(fotg210);
5118 if (retval)
5119 return retval;
5121 fotg210_reset(fotg210);
5123 return 0;
5126 static irqreturn_t fotg210_irq(struct usb_hcd *hcd)
5128 struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd);
5129 u32 status, masked_status, pcd_status = 0, cmd;
5130 int bh;
5132 spin_lock(&fotg210->lock);
5134 status = fotg210_readl(fotg210, &fotg210->regs->status);
5136 /* e.g. cardbus physical eject */
5137 if (status == ~(u32) 0) {
5138 fotg210_dbg(fotg210, "device removed\n");
5139 goto dead;
5143 * We don't use STS_FLR, but some controllers don't like it to
5144 * remain on, so mask it out along with the other status bits.
5146 masked_status = status & (INTR_MASK | STS_FLR);
5148 /* Shared IRQ? */
5149 if (!masked_status ||
5150 unlikely(fotg210->rh_state == FOTG210_RH_HALTED)) {
5151 spin_unlock(&fotg210->lock);
5152 return IRQ_NONE;
5155 /* clear (just) interrupts */
5156 fotg210_writel(fotg210, masked_status, &fotg210->regs->status);
5157 cmd = fotg210_readl(fotg210, &fotg210->regs->command);
5158 bh = 0;
5160 /* unrequested/ignored: Frame List Rollover */
5161 dbg_status(fotg210, "irq", status);
5163 /* INT, ERR, and IAA interrupt rates can be throttled */
5165 /* normal [4.15.1.2] or error [4.15.1.1] completion */
5166 if (likely((status & (STS_INT|STS_ERR)) != 0)) {
5167 if (likely((status & STS_ERR) == 0))
5168 COUNT(fotg210->stats.normal);
5169 else
5170 COUNT(fotg210->stats.error);
5171 bh = 1;
5174 /* complete the unlinking of some qh [4.15.2.3] */
5175 if (status & STS_IAA) {
5177 /* Turn off the IAA watchdog */
5178 fotg210->enabled_hrtimer_events &=
5179 ~BIT(FOTG210_HRTIMER_IAA_WATCHDOG);
5182 * Mild optimization: Allow another IAAD to reset the
5183 * hrtimer, if one occurs before the next expiration.
5184 * In theory we could always cancel the hrtimer, but
5185 * tests show that about half the time it will be reset
5186 * for some other event anyway.
5188 if (fotg210->next_hrtimer_event == FOTG210_HRTIMER_IAA_WATCHDOG)
5189 ++fotg210->next_hrtimer_event;
5191 /* guard against (alleged) silicon errata */
5192 if (cmd & CMD_IAAD)
5193 fotg210_dbg(fotg210, "IAA with IAAD still set?\n");
5194 if (fotg210->async_iaa) {
5195 COUNT(fotg210->stats.iaa);
5196 end_unlink_async(fotg210);
5197 } else
5198 fotg210_dbg(fotg210, "IAA with nothing unlinked?\n");
5201 /* remote wakeup [4.3.1] */
5202 if (status & STS_PCD) {
5203 int pstatus;
5204 u32 __iomem *status_reg = &fotg210->regs->port_status;
5206 /* kick root hub later */
5207 pcd_status = status;
5209 /* resume root hub? */
5210 if (fotg210->rh_state == FOTG210_RH_SUSPENDED)
5211 usb_hcd_resume_root_hub(hcd);
5213 pstatus = fotg210_readl(fotg210, status_reg);
5215 if (test_bit(0, &fotg210->suspended_ports) &&
5216 ((pstatus & PORT_RESUME) ||
5217 !(pstatus & PORT_SUSPEND)) &&
5218 (pstatus & PORT_PE) &&
5219 fotg210->reset_done[0] == 0) {
5221 /* start 20 msec resume signaling from this port,
5222 * and make hub_wq collect PORT_STAT_C_SUSPEND to
5223 * stop that signaling. Use 5 ms extra for safety,
5224 * like usb_port_resume() does.
5226 fotg210->reset_done[0] = jiffies + msecs_to_jiffies(25);
5227 set_bit(0, &fotg210->resuming_ports);
5228 fotg210_dbg(fotg210, "port 1 remote wakeup\n");
5229 mod_timer(&hcd->rh_timer, fotg210->reset_done[0]);
5233 /* PCI errors [4.15.2.4] */
5234 if (unlikely((status & STS_FATAL) != 0)) {
5235 fotg210_err(fotg210, "fatal error\n");
5236 dbg_cmd(fotg210, "fatal", cmd);
5237 dbg_status(fotg210, "fatal", status);
5238 dead:
5239 usb_hc_died(hcd);
5241 /* Don't let the controller do anything more */
5242 fotg210->shutdown = true;
5243 fotg210->rh_state = FOTG210_RH_STOPPING;
5244 fotg210->command &= ~(CMD_RUN | CMD_ASE | CMD_PSE);
5245 fotg210_writel(fotg210, fotg210->command,
5246 &fotg210->regs->command);
5247 fotg210_writel(fotg210, 0, &fotg210->regs->intr_enable);
5248 fotg210_handle_controller_death(fotg210);
5250 /* Handle completions when the controller stops */
5251 bh = 0;
5254 if (bh)
5255 fotg210_work(fotg210);
5256 spin_unlock(&fotg210->lock);
5257 if (pcd_status)
5258 usb_hcd_poll_rh_status(hcd);
5259 return IRQ_HANDLED;
5262 /* non-error returns are a promise to giveback() the urb later
5263 * we drop ownership so next owner (or urb unlink) can get it
5265 * urb + dev is in hcd.self.controller.urb_list
5266 * we're queueing TDs onto software and hardware lists
5268 * hcd-specific init for hcpriv hasn't been done yet
5270 * NOTE: control, bulk, and interrupt share the same code to append TDs
5271 * to a (possibly active) QH, and the same QH scanning code.
5273 static int fotg210_urb_enqueue(struct usb_hcd *hcd, struct urb *urb,
5274 gfp_t mem_flags)
5276 struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd);
5277 struct list_head qtd_list;
5279 INIT_LIST_HEAD(&qtd_list);
5281 switch (usb_pipetype(urb->pipe)) {
5282 case PIPE_CONTROL:
5283 /* qh_completions() code doesn't handle all the fault cases
5284 * in multi-TD control transfers. Even 1KB is rare anyway.
5286 if (urb->transfer_buffer_length > (16 * 1024))
5287 return -EMSGSIZE;
5288 /* FALLTHROUGH */
5289 /* case PIPE_BULK: */
5290 default:
5291 if (!qh_urb_transaction(fotg210, urb, &qtd_list, mem_flags))
5292 return -ENOMEM;
5293 return submit_async(fotg210, urb, &qtd_list, mem_flags);
5295 case PIPE_INTERRUPT:
5296 if (!qh_urb_transaction(fotg210, urb, &qtd_list, mem_flags))
5297 return -ENOMEM;
5298 return intr_submit(fotg210, urb, &qtd_list, mem_flags);
5300 case PIPE_ISOCHRONOUS:
5301 return itd_submit(fotg210, urb, mem_flags);
5305 /* remove from hardware lists
5306 * completions normally happen asynchronously
5309 static int fotg210_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status)
5311 struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd);
5312 struct fotg210_qh *qh;
5313 unsigned long flags;
5314 int rc;
5316 spin_lock_irqsave(&fotg210->lock, flags);
5317 rc = usb_hcd_check_unlink_urb(hcd, urb, status);
5318 if (rc)
5319 goto done;
5321 switch (usb_pipetype(urb->pipe)) {
5322 /* case PIPE_CONTROL: */
5323 /* case PIPE_BULK:*/
5324 default:
5325 qh = (struct fotg210_qh *) urb->hcpriv;
5326 if (!qh)
5327 break;
5328 switch (qh->qh_state) {
5329 case QH_STATE_LINKED:
5330 case QH_STATE_COMPLETING:
5331 start_unlink_async(fotg210, qh);
5332 break;
5333 case QH_STATE_UNLINK:
5334 case QH_STATE_UNLINK_WAIT:
5335 /* already started */
5336 break;
5337 case QH_STATE_IDLE:
5338 /* QH might be waiting for a Clear-TT-Buffer */
5339 qh_completions(fotg210, qh);
5340 break;
5342 break;
5344 case PIPE_INTERRUPT:
5345 qh = (struct fotg210_qh *) urb->hcpriv;
5346 if (!qh)
5347 break;
5348 switch (qh->qh_state) {
5349 case QH_STATE_LINKED:
5350 case QH_STATE_COMPLETING:
5351 start_unlink_intr(fotg210, qh);
5352 break;
5353 case QH_STATE_IDLE:
5354 qh_completions(fotg210, qh);
5355 break;
5356 default:
5357 fotg210_dbg(fotg210, "bogus qh %p state %d\n",
5358 qh, qh->qh_state);
5359 goto done;
5361 break;
5363 case PIPE_ISOCHRONOUS:
5364 /* itd... */
5366 /* wait till next completion, do it then. */
5367 /* completion irqs can wait up to 1024 msec, */
5368 break;
5370 done:
5371 spin_unlock_irqrestore(&fotg210->lock, flags);
5372 return rc;
5375 /* bulk qh holds the data toggle */
5377 static void fotg210_endpoint_disable(struct usb_hcd *hcd,
5378 struct usb_host_endpoint *ep)
5380 struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd);
5381 unsigned long flags;
5382 struct fotg210_qh *qh, *tmp;
5384 /* ASSERT: any requests/urbs are being unlinked */
5385 /* ASSERT: nobody can be submitting urbs for this any more */
5387 rescan:
5388 spin_lock_irqsave(&fotg210->lock, flags);
5389 qh = ep->hcpriv;
5390 if (!qh)
5391 goto done;
5393 /* endpoints can be iso streams. for now, we don't
5394 * accelerate iso completions ... so spin a while.
5396 if (qh->hw == NULL) {
5397 struct fotg210_iso_stream *stream = ep->hcpriv;
5399 if (!list_empty(&stream->td_list))
5400 goto idle_timeout;
5402 /* BUG_ON(!list_empty(&stream->free_list)); */
5403 kfree(stream);
5404 goto done;
5407 if (fotg210->rh_state < FOTG210_RH_RUNNING)
5408 qh->qh_state = QH_STATE_IDLE;
5409 switch (qh->qh_state) {
5410 case QH_STATE_LINKED:
5411 case QH_STATE_COMPLETING:
5412 for (tmp = fotg210->async->qh_next.qh;
5413 tmp && tmp != qh;
5414 tmp = tmp->qh_next.qh)
5415 continue;
5416 /* periodic qh self-unlinks on empty, and a COMPLETING qh
5417 * may already be unlinked.
5419 if (tmp)
5420 start_unlink_async(fotg210, qh);
5421 /* FALL THROUGH */
5422 case QH_STATE_UNLINK: /* wait for hw to finish? */
5423 case QH_STATE_UNLINK_WAIT:
5424 idle_timeout:
5425 spin_unlock_irqrestore(&fotg210->lock, flags);
5426 schedule_timeout_uninterruptible(1);
5427 goto rescan;
5428 case QH_STATE_IDLE: /* fully unlinked */
5429 if (qh->clearing_tt)
5430 goto idle_timeout;
5431 if (list_empty(&qh->qtd_list)) {
5432 qh_destroy(fotg210, qh);
5433 break;
5435 /* fall through */
5436 default:
5437 /* caller was supposed to have unlinked any requests;
5438 * that's not our job. just leak this memory.
5440 fotg210_err(fotg210, "qh %p (#%02x) state %d%s\n",
5441 qh, ep->desc.bEndpointAddress, qh->qh_state,
5442 list_empty(&qh->qtd_list) ? "" : "(has tds)");
5443 break;
5445 done:
5446 ep->hcpriv = NULL;
5447 spin_unlock_irqrestore(&fotg210->lock, flags);
5450 static void fotg210_endpoint_reset(struct usb_hcd *hcd,
5451 struct usb_host_endpoint *ep)
5453 struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd);
5454 struct fotg210_qh *qh;
5455 int eptype = usb_endpoint_type(&ep->desc);
5456 int epnum = usb_endpoint_num(&ep->desc);
5457 int is_out = usb_endpoint_dir_out(&ep->desc);
5458 unsigned long flags;
5460 if (eptype != USB_ENDPOINT_XFER_BULK && eptype != USB_ENDPOINT_XFER_INT)
5461 return;
5463 spin_lock_irqsave(&fotg210->lock, flags);
5464 qh = ep->hcpriv;
5466 /* For Bulk and Interrupt endpoints we maintain the toggle state
5467 * in the hardware; the toggle bits in udev aren't used at all.
5468 * When an endpoint is reset by usb_clear_halt() we must reset
5469 * the toggle bit in the QH.
5471 if (qh) {
5472 usb_settoggle(qh->dev, epnum, is_out, 0);
5473 if (!list_empty(&qh->qtd_list)) {
5474 WARN_ONCE(1, "clear_halt for a busy endpoint\n");
5475 } else if (qh->qh_state == QH_STATE_LINKED ||
5476 qh->qh_state == QH_STATE_COMPLETING) {
5478 /* The toggle value in the QH can't be updated
5479 * while the QH is active. Unlink it now;
5480 * re-linking will call qh_refresh().
5482 if (eptype == USB_ENDPOINT_XFER_BULK)
5483 start_unlink_async(fotg210, qh);
5484 else
5485 start_unlink_intr(fotg210, qh);
5488 spin_unlock_irqrestore(&fotg210->lock, flags);
5491 static int fotg210_get_frame(struct usb_hcd *hcd)
5493 struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd);
5495 return (fotg210_read_frame_index(fotg210) >> 3) %
5496 fotg210->periodic_size;
5499 /* The EHCI in ChipIdea HDRC cannot be a separate module or device,
5500 * because its registers (and irq) are shared between host/gadget/otg
5501 * functions and in order to facilitate role switching we cannot
5502 * give the fotg210 driver exclusive access to those.
5504 MODULE_DESCRIPTION(DRIVER_DESC);
5505 MODULE_AUTHOR(DRIVER_AUTHOR);
5506 MODULE_LICENSE("GPL");
5508 static const struct hc_driver fotg210_fotg210_hc_driver = {
5509 .description = hcd_name,
5510 .product_desc = "Faraday USB2.0 Host Controller",
5511 .hcd_priv_size = sizeof(struct fotg210_hcd),
5514 * generic hardware linkage
5516 .irq = fotg210_irq,
5517 .flags = HCD_MEMORY | HCD_USB2,
5520 * basic lifecycle operations
5522 .reset = hcd_fotg210_init,
5523 .start = fotg210_run,
5524 .stop = fotg210_stop,
5525 .shutdown = fotg210_shutdown,
5528 * managing i/o requests and associated device resources
5530 .urb_enqueue = fotg210_urb_enqueue,
5531 .urb_dequeue = fotg210_urb_dequeue,
5532 .endpoint_disable = fotg210_endpoint_disable,
5533 .endpoint_reset = fotg210_endpoint_reset,
5536 * scheduling support
5538 .get_frame_number = fotg210_get_frame,
5541 * root hub support
5543 .hub_status_data = fotg210_hub_status_data,
5544 .hub_control = fotg210_hub_control,
5545 .bus_suspend = fotg210_bus_suspend,
5546 .bus_resume = fotg210_bus_resume,
5548 .relinquish_port = fotg210_relinquish_port,
5549 .port_handed_over = fotg210_port_handed_over,
5551 .clear_tt_buffer_complete = fotg210_clear_tt_buffer_complete,
5554 static void fotg210_init(struct fotg210_hcd *fotg210)
5556 u32 value;
5558 iowrite32(GMIR_MDEV_INT | GMIR_MOTG_INT | GMIR_INT_POLARITY,
5559 &fotg210->regs->gmir);
5561 value = ioread32(&fotg210->regs->otgcsr);
5562 value &= ~OTGCSR_A_BUS_DROP;
5563 value |= OTGCSR_A_BUS_REQ;
5564 iowrite32(value, &fotg210->regs->otgcsr);
5568 * fotg210_hcd_probe - initialize faraday FOTG210 HCDs
5570 * Allocates basic resources for this USB host controller, and
5571 * then invokes the start() method for the HCD associated with it
5572 * through the hotplug entry's driver_data.
5574 static int fotg210_hcd_probe(struct platform_device *pdev)
5576 struct device *dev = &pdev->dev;
5577 struct usb_hcd *hcd;
5578 struct resource *res;
5579 int irq;
5580 int retval = -ENODEV;
5581 struct fotg210_hcd *fotg210;
5583 if (usb_disabled())
5584 return -ENODEV;
5586 pdev->dev.power.power_state = PMSG_ON;
5588 res = platform_get_resource(pdev, IORESOURCE_IRQ, 0);
5589 if (!res) {
5590 dev_err(dev, "Found HC with no IRQ. Check %s setup!\n",
5591 dev_name(dev));
5592 return -ENODEV;
5595 irq = res->start;
5597 hcd = usb_create_hcd(&fotg210_fotg210_hc_driver, dev,
5598 dev_name(dev));
5599 if (!hcd) {
5600 dev_err(dev, "failed to create hcd with err %d\n", retval);
5601 retval = -ENOMEM;
5602 goto fail_create_hcd;
5605 hcd->has_tt = 1;
5607 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
5608 hcd->regs = devm_ioremap_resource(&pdev->dev, res);
5609 if (IS_ERR(hcd->regs)) {
5610 retval = PTR_ERR(hcd->regs);
5611 goto failed;
5614 hcd->rsrc_start = res->start;
5615 hcd->rsrc_len = resource_size(res);
5617 fotg210 = hcd_to_fotg210(hcd);
5619 fotg210->caps = hcd->regs;
5621 retval = fotg210_setup(hcd);
5622 if (retval)
5623 goto failed;
5625 fotg210_init(fotg210);
5627 retval = usb_add_hcd(hcd, irq, IRQF_SHARED);
5628 if (retval) {
5629 dev_err(dev, "failed to add hcd with err %d\n", retval);
5630 goto failed;
5632 device_wakeup_enable(hcd->self.controller);
5634 return retval;
5636 failed:
5637 usb_put_hcd(hcd);
5638 fail_create_hcd:
5639 dev_err(dev, "init %s fail, %d\n", dev_name(dev), retval);
5640 return retval;
5644 * fotg210_hcd_remove - shutdown processing for EHCI HCDs
5645 * @dev: USB Host Controller being removed
5648 static int fotg210_hcd_remove(struct platform_device *pdev)
5650 struct device *dev = &pdev->dev;
5651 struct usb_hcd *hcd = dev_get_drvdata(dev);
5653 if (!hcd)
5654 return 0;
5656 usb_remove_hcd(hcd);
5657 usb_put_hcd(hcd);
5659 return 0;
5662 static struct platform_driver fotg210_hcd_driver = {
5663 .driver = {
5664 .name = "fotg210-hcd",
5666 .probe = fotg210_hcd_probe,
5667 .remove = fotg210_hcd_remove,
5670 static int __init fotg210_hcd_init(void)
5672 int retval = 0;
5674 if (usb_disabled())
5675 return -ENODEV;
5677 pr_info("%s: " DRIVER_DESC "\n", hcd_name);
5678 set_bit(USB_EHCI_LOADED, &usb_hcds_loaded);
5679 if (test_bit(USB_UHCI_LOADED, &usb_hcds_loaded) ||
5680 test_bit(USB_OHCI_LOADED, &usb_hcds_loaded))
5681 pr_warn("Warning! fotg210_hcd should always be loaded before uhci_hcd and ohci_hcd, not after\n");
5683 pr_debug("%s: block sizes: qh %zd qtd %zd itd %zd\n",
5684 hcd_name, sizeof(struct fotg210_qh),
5685 sizeof(struct fotg210_qtd),
5686 sizeof(struct fotg210_itd));
5688 fotg210_debug_root = debugfs_create_dir("fotg210", usb_debug_root);
5689 if (!fotg210_debug_root) {
5690 retval = -ENOENT;
5691 goto err_debug;
5694 retval = platform_driver_register(&fotg210_hcd_driver);
5695 if (retval < 0)
5696 goto clean;
5697 return retval;
5699 clean:
5700 debugfs_remove(fotg210_debug_root);
5701 fotg210_debug_root = NULL;
5702 err_debug:
5703 clear_bit(USB_EHCI_LOADED, &usb_hcds_loaded);
5704 return retval;
5706 module_init(fotg210_hcd_init);
5708 static void __exit fotg210_hcd_cleanup(void)
5710 platform_driver_unregister(&fotg210_hcd_driver);
5711 debugfs_remove(fotg210_debug_root);
5712 clear_bit(USB_EHCI_LOADED, &usb_hcds_loaded);
5714 module_exit(fotg210_hcd_cleanup);