x86/topology: Fix function name in documentation
[cris-mirror.git] / drivers / usb / host / xhci-ring.c
blobdaa94c3aed8053145890f0dc81e1ec1b70d5e825
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * xHCI host controller driver
5 * Copyright (C) 2008 Intel Corp.
7 * Author: Sarah Sharp
8 * Some code borrowed from the Linux EHCI driver.
9 */
12 * Ring initialization rules:
13 * 1. Each segment is initialized to zero, except for link TRBs.
14 * 2. Ring cycle state = 0. This represents Producer Cycle State (PCS) or
15 * Consumer Cycle State (CCS), depending on ring function.
16 * 3. Enqueue pointer = dequeue pointer = address of first TRB in the segment.
18 * Ring behavior rules:
19 * 1. A ring is empty if enqueue == dequeue. This means there will always be at
20 * least one free TRB in the ring. This is useful if you want to turn that
21 * into a link TRB and expand the ring.
22 * 2. When incrementing an enqueue or dequeue pointer, if the next TRB is a
23 * link TRB, then load the pointer with the address in the link TRB. If the
24 * link TRB had its toggle bit set, you may need to update the ring cycle
25 * state (see cycle bit rules). You may have to do this multiple times
26 * until you reach a non-link TRB.
27 * 3. A ring is full if enqueue++ (for the definition of increment above)
28 * equals the dequeue pointer.
30 * Cycle bit rules:
31 * 1. When a consumer increments a dequeue pointer and encounters a toggle bit
32 * in a link TRB, it must toggle the ring cycle state.
33 * 2. When a producer increments an enqueue pointer and encounters a toggle bit
34 * in a link TRB, it must toggle the ring cycle state.
36 * Producer rules:
37 * 1. Check if ring is full before you enqueue.
38 * 2. Write the ring cycle state to the cycle bit in the TRB you're enqueuing.
39 * Update enqueue pointer between each write (which may update the ring
40 * cycle state).
41 * 3. Notify consumer. If SW is producer, it rings the doorbell for command
42 * and endpoint rings. If HC is the producer for the event ring,
43 * and it generates an interrupt according to interrupt modulation rules.
45 * Consumer rules:
46 * 1. Check if TRB belongs to you. If the cycle bit == your ring cycle state,
47 * the TRB is owned by the consumer.
48 * 2. Update dequeue pointer (which may update the ring cycle state) and
49 * continue processing TRBs until you reach a TRB which is not owned by you.
50 * 3. Notify the producer. SW is the consumer for the event ring, and it
51 * updates event ring dequeue pointer. HC is the consumer for the command and
52 * endpoint rings; it generates events on the event ring for these.
55 #include <linux/scatterlist.h>
56 #include <linux/slab.h>
57 #include <linux/dma-mapping.h>
58 #include "xhci.h"
59 #include "xhci-trace.h"
60 #include "xhci-mtk.h"
63 * Returns zero if the TRB isn't in this segment, otherwise it returns the DMA
64 * address of the TRB.
66 dma_addr_t xhci_trb_virt_to_dma(struct xhci_segment *seg,
67 union xhci_trb *trb)
69 unsigned long segment_offset;
71 if (!seg || !trb || trb < seg->trbs)
72 return 0;
73 /* offset in TRBs */
74 segment_offset = trb - seg->trbs;
75 if (segment_offset >= TRBS_PER_SEGMENT)
76 return 0;
77 return seg->dma + (segment_offset * sizeof(*trb));
80 static bool trb_is_noop(union xhci_trb *trb)
82 return TRB_TYPE_NOOP_LE32(trb->generic.field[3]);
85 static bool trb_is_link(union xhci_trb *trb)
87 return TRB_TYPE_LINK_LE32(trb->link.control);
90 static bool last_trb_on_seg(struct xhci_segment *seg, union xhci_trb *trb)
92 return trb == &seg->trbs[TRBS_PER_SEGMENT - 1];
95 static bool last_trb_on_ring(struct xhci_ring *ring,
96 struct xhci_segment *seg, union xhci_trb *trb)
98 return last_trb_on_seg(seg, trb) && (seg->next == ring->first_seg);
101 static bool link_trb_toggles_cycle(union xhci_trb *trb)
103 return le32_to_cpu(trb->link.control) & LINK_TOGGLE;
106 static bool last_td_in_urb(struct xhci_td *td)
108 struct urb_priv *urb_priv = td->urb->hcpriv;
110 return urb_priv->num_tds_done == urb_priv->num_tds;
113 static void inc_td_cnt(struct urb *urb)
115 struct urb_priv *urb_priv = urb->hcpriv;
117 urb_priv->num_tds_done++;
120 static void trb_to_noop(union xhci_trb *trb, u32 noop_type)
122 if (trb_is_link(trb)) {
123 /* unchain chained link TRBs */
124 trb->link.control &= cpu_to_le32(~TRB_CHAIN);
125 } else {
126 trb->generic.field[0] = 0;
127 trb->generic.field[1] = 0;
128 trb->generic.field[2] = 0;
129 /* Preserve only the cycle bit of this TRB */
130 trb->generic.field[3] &= cpu_to_le32(TRB_CYCLE);
131 trb->generic.field[3] |= cpu_to_le32(TRB_TYPE(noop_type));
135 /* Updates trb to point to the next TRB in the ring, and updates seg if the next
136 * TRB is in a new segment. This does not skip over link TRBs, and it does not
137 * effect the ring dequeue or enqueue pointers.
139 static void next_trb(struct xhci_hcd *xhci,
140 struct xhci_ring *ring,
141 struct xhci_segment **seg,
142 union xhci_trb **trb)
144 if (trb_is_link(*trb)) {
145 *seg = (*seg)->next;
146 *trb = ((*seg)->trbs);
147 } else {
148 (*trb)++;
153 * See Cycle bit rules. SW is the consumer for the event ring only.
154 * Don't make a ring full of link TRBs. That would be dumb and this would loop.
156 void inc_deq(struct xhci_hcd *xhci, struct xhci_ring *ring)
158 /* event ring doesn't have link trbs, check for last trb */
159 if (ring->type == TYPE_EVENT) {
160 if (!last_trb_on_seg(ring->deq_seg, ring->dequeue)) {
161 ring->dequeue++;
162 goto out;
164 if (last_trb_on_ring(ring, ring->deq_seg, ring->dequeue))
165 ring->cycle_state ^= 1;
166 ring->deq_seg = ring->deq_seg->next;
167 ring->dequeue = ring->deq_seg->trbs;
168 goto out;
171 /* All other rings have link trbs */
172 if (!trb_is_link(ring->dequeue)) {
173 ring->dequeue++;
174 ring->num_trbs_free++;
176 while (trb_is_link(ring->dequeue)) {
177 ring->deq_seg = ring->deq_seg->next;
178 ring->dequeue = ring->deq_seg->trbs;
181 out:
182 trace_xhci_inc_deq(ring);
184 return;
188 * See Cycle bit rules. SW is the consumer for the event ring only.
189 * Don't make a ring full of link TRBs. That would be dumb and this would loop.
191 * If we've just enqueued a TRB that is in the middle of a TD (meaning the
192 * chain bit is set), then set the chain bit in all the following link TRBs.
193 * If we've enqueued the last TRB in a TD, make sure the following link TRBs
194 * have their chain bit cleared (so that each Link TRB is a separate TD).
196 * Section 6.4.4.1 of the 0.95 spec says link TRBs cannot have the chain bit
197 * set, but other sections talk about dealing with the chain bit set. This was
198 * fixed in the 0.96 specification errata, but we have to assume that all 0.95
199 * xHCI hardware can't handle the chain bit being cleared on a link TRB.
201 * @more_trbs_coming: Will you enqueue more TRBs before calling
202 * prepare_transfer()?
204 static void inc_enq(struct xhci_hcd *xhci, struct xhci_ring *ring,
205 bool more_trbs_coming)
207 u32 chain;
208 union xhci_trb *next;
210 chain = le32_to_cpu(ring->enqueue->generic.field[3]) & TRB_CHAIN;
211 /* If this is not event ring, there is one less usable TRB */
212 if (!trb_is_link(ring->enqueue))
213 ring->num_trbs_free--;
214 next = ++(ring->enqueue);
216 /* Update the dequeue pointer further if that was a link TRB */
217 while (trb_is_link(next)) {
220 * If the caller doesn't plan on enqueueing more TDs before
221 * ringing the doorbell, then we don't want to give the link TRB
222 * to the hardware just yet. We'll give the link TRB back in
223 * prepare_ring() just before we enqueue the TD at the top of
224 * the ring.
226 if (!chain && !more_trbs_coming)
227 break;
229 /* If we're not dealing with 0.95 hardware or isoc rings on
230 * AMD 0.96 host, carry over the chain bit of the previous TRB
231 * (which may mean the chain bit is cleared).
233 if (!(ring->type == TYPE_ISOC &&
234 (xhci->quirks & XHCI_AMD_0x96_HOST)) &&
235 !xhci_link_trb_quirk(xhci)) {
236 next->link.control &= cpu_to_le32(~TRB_CHAIN);
237 next->link.control |= cpu_to_le32(chain);
239 /* Give this link TRB to the hardware */
240 wmb();
241 next->link.control ^= cpu_to_le32(TRB_CYCLE);
243 /* Toggle the cycle bit after the last ring segment. */
244 if (link_trb_toggles_cycle(next))
245 ring->cycle_state ^= 1;
247 ring->enq_seg = ring->enq_seg->next;
248 ring->enqueue = ring->enq_seg->trbs;
249 next = ring->enqueue;
252 trace_xhci_inc_enq(ring);
256 * Check to see if there's room to enqueue num_trbs on the ring and make sure
257 * enqueue pointer will not advance into dequeue segment. See rules above.
259 static inline int room_on_ring(struct xhci_hcd *xhci, struct xhci_ring *ring,
260 unsigned int num_trbs)
262 int num_trbs_in_deq_seg;
264 if (ring->num_trbs_free < num_trbs)
265 return 0;
267 if (ring->type != TYPE_COMMAND && ring->type != TYPE_EVENT) {
268 num_trbs_in_deq_seg = ring->dequeue - ring->deq_seg->trbs;
269 if (ring->num_trbs_free < num_trbs + num_trbs_in_deq_seg)
270 return 0;
273 return 1;
276 /* Ring the host controller doorbell after placing a command on the ring */
277 void xhci_ring_cmd_db(struct xhci_hcd *xhci)
279 if (!(xhci->cmd_ring_state & CMD_RING_STATE_RUNNING))
280 return;
282 xhci_dbg(xhci, "// Ding dong!\n");
283 writel(DB_VALUE_HOST, &xhci->dba->doorbell[0]);
284 /* Flush PCI posted writes */
285 readl(&xhci->dba->doorbell[0]);
288 static bool xhci_mod_cmd_timer(struct xhci_hcd *xhci, unsigned long delay)
290 return mod_delayed_work(system_wq, &xhci->cmd_timer, delay);
293 static struct xhci_command *xhci_next_queued_cmd(struct xhci_hcd *xhci)
295 return list_first_entry_or_null(&xhci->cmd_list, struct xhci_command,
296 cmd_list);
300 * Turn all commands on command ring with status set to "aborted" to no-op trbs.
301 * If there are other commands waiting then restart the ring and kick the timer.
302 * This must be called with command ring stopped and xhci->lock held.
304 static void xhci_handle_stopped_cmd_ring(struct xhci_hcd *xhci,
305 struct xhci_command *cur_cmd)
307 struct xhci_command *i_cmd;
309 /* Turn all aborted commands in list to no-ops, then restart */
310 list_for_each_entry(i_cmd, &xhci->cmd_list, cmd_list) {
312 if (i_cmd->status != COMP_COMMAND_ABORTED)
313 continue;
315 i_cmd->status = COMP_COMMAND_RING_STOPPED;
317 xhci_dbg(xhci, "Turn aborted command %p to no-op\n",
318 i_cmd->command_trb);
320 trb_to_noop(i_cmd->command_trb, TRB_CMD_NOOP);
323 * caller waiting for completion is called when command
324 * completion event is received for these no-op commands
328 xhci->cmd_ring_state = CMD_RING_STATE_RUNNING;
330 /* ring command ring doorbell to restart the command ring */
331 if ((xhci->cmd_ring->dequeue != xhci->cmd_ring->enqueue) &&
332 !(xhci->xhc_state & XHCI_STATE_DYING)) {
333 xhci->current_cmd = cur_cmd;
334 xhci_mod_cmd_timer(xhci, XHCI_CMD_DEFAULT_TIMEOUT);
335 xhci_ring_cmd_db(xhci);
339 /* Must be called with xhci->lock held, releases and aquires lock back */
340 static int xhci_abort_cmd_ring(struct xhci_hcd *xhci, unsigned long flags)
342 u64 temp_64;
343 int ret;
345 xhci_dbg(xhci, "Abort command ring\n");
347 reinit_completion(&xhci->cmd_ring_stop_completion);
349 temp_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
350 xhci_write_64(xhci, temp_64 | CMD_RING_ABORT,
351 &xhci->op_regs->cmd_ring);
353 /* Section 4.6.1.2 of xHCI 1.0 spec says software should also time the
354 * completion of the Command Abort operation. If CRR is not negated in 5
355 * seconds then driver handles it as if host died (-ENODEV).
356 * In the future we should distinguish between -ENODEV and -ETIMEDOUT
357 * and try to recover a -ETIMEDOUT with a host controller reset.
359 ret = xhci_handshake(&xhci->op_regs->cmd_ring,
360 CMD_RING_RUNNING, 0, 5 * 1000 * 1000);
361 if (ret < 0) {
362 xhci_err(xhci, "Abort failed to stop command ring: %d\n", ret);
363 xhci_halt(xhci);
364 xhci_hc_died(xhci);
365 return ret;
368 * Writing the CMD_RING_ABORT bit should cause a cmd completion event,
369 * however on some host hw the CMD_RING_RUNNING bit is correctly cleared
370 * but the completion event in never sent. Wait 2 secs (arbitrary
371 * number) to handle those cases after negation of CMD_RING_RUNNING.
373 spin_unlock_irqrestore(&xhci->lock, flags);
374 ret = wait_for_completion_timeout(&xhci->cmd_ring_stop_completion,
375 msecs_to_jiffies(2000));
376 spin_lock_irqsave(&xhci->lock, flags);
377 if (!ret) {
378 xhci_dbg(xhci, "No stop event for abort, ring start fail?\n");
379 xhci_cleanup_command_queue(xhci);
380 } else {
381 xhci_handle_stopped_cmd_ring(xhci, xhci_next_queued_cmd(xhci));
383 return 0;
386 void xhci_ring_ep_doorbell(struct xhci_hcd *xhci,
387 unsigned int slot_id,
388 unsigned int ep_index,
389 unsigned int stream_id)
391 __le32 __iomem *db_addr = &xhci->dba->doorbell[slot_id];
392 struct xhci_virt_ep *ep = &xhci->devs[slot_id]->eps[ep_index];
393 unsigned int ep_state = ep->ep_state;
395 /* Don't ring the doorbell for this endpoint if there are pending
396 * cancellations because we don't want to interrupt processing.
397 * We don't want to restart any stream rings if there's a set dequeue
398 * pointer command pending because the device can choose to start any
399 * stream once the endpoint is on the HW schedule.
401 if ((ep_state & EP_STOP_CMD_PENDING) || (ep_state & SET_DEQ_PENDING) ||
402 (ep_state & EP_HALTED))
403 return;
404 writel(DB_VALUE(ep_index, stream_id), db_addr);
405 /* The CPU has better things to do at this point than wait for a
406 * write-posting flush. It'll get there soon enough.
410 /* Ring the doorbell for any rings with pending URBs */
411 static void ring_doorbell_for_active_rings(struct xhci_hcd *xhci,
412 unsigned int slot_id,
413 unsigned int ep_index)
415 unsigned int stream_id;
416 struct xhci_virt_ep *ep;
418 ep = &xhci->devs[slot_id]->eps[ep_index];
420 /* A ring has pending URBs if its TD list is not empty */
421 if (!(ep->ep_state & EP_HAS_STREAMS)) {
422 if (ep->ring && !(list_empty(&ep->ring->td_list)))
423 xhci_ring_ep_doorbell(xhci, slot_id, ep_index, 0);
424 return;
427 for (stream_id = 1; stream_id < ep->stream_info->num_streams;
428 stream_id++) {
429 struct xhci_stream_info *stream_info = ep->stream_info;
430 if (!list_empty(&stream_info->stream_rings[stream_id]->td_list))
431 xhci_ring_ep_doorbell(xhci, slot_id, ep_index,
432 stream_id);
436 /* Get the right ring for the given slot_id, ep_index and stream_id.
437 * If the endpoint supports streams, boundary check the URB's stream ID.
438 * If the endpoint doesn't support streams, return the singular endpoint ring.
440 struct xhci_ring *xhci_triad_to_transfer_ring(struct xhci_hcd *xhci,
441 unsigned int slot_id, unsigned int ep_index,
442 unsigned int stream_id)
444 struct xhci_virt_ep *ep;
446 ep = &xhci->devs[slot_id]->eps[ep_index];
447 /* Common case: no streams */
448 if (!(ep->ep_state & EP_HAS_STREAMS))
449 return ep->ring;
451 if (stream_id == 0) {
452 xhci_warn(xhci,
453 "WARN: Slot ID %u, ep index %u has streams, "
454 "but URB has no stream ID.\n",
455 slot_id, ep_index);
456 return NULL;
459 if (stream_id < ep->stream_info->num_streams)
460 return ep->stream_info->stream_rings[stream_id];
462 xhci_warn(xhci,
463 "WARN: Slot ID %u, ep index %u has "
464 "stream IDs 1 to %u allocated, "
465 "but stream ID %u is requested.\n",
466 slot_id, ep_index,
467 ep->stream_info->num_streams - 1,
468 stream_id);
469 return NULL;
474 * Get the hw dequeue pointer xHC stopped on, either directly from the
475 * endpoint context, or if streams are in use from the stream context.
476 * The returned hw_dequeue contains the lowest four bits with cycle state
477 * and possbile stream context type.
479 static u64 xhci_get_hw_deq(struct xhci_hcd *xhci, struct xhci_virt_device *vdev,
480 unsigned int ep_index, unsigned int stream_id)
482 struct xhci_ep_ctx *ep_ctx;
483 struct xhci_stream_ctx *st_ctx;
484 struct xhci_virt_ep *ep;
486 ep = &vdev->eps[ep_index];
488 if (ep->ep_state & EP_HAS_STREAMS) {
489 st_ctx = &ep->stream_info->stream_ctx_array[stream_id];
490 return le64_to_cpu(st_ctx->stream_ring);
492 ep_ctx = xhci_get_ep_ctx(xhci, vdev->out_ctx, ep_index);
493 return le64_to_cpu(ep_ctx->deq);
497 * Move the xHC's endpoint ring dequeue pointer past cur_td.
498 * Record the new state of the xHC's endpoint ring dequeue segment,
499 * dequeue pointer, stream id, and new consumer cycle state in state.
500 * Update our internal representation of the ring's dequeue pointer.
502 * We do this in three jumps:
503 * - First we update our new ring state to be the same as when the xHC stopped.
504 * - Then we traverse the ring to find the segment that contains
505 * the last TRB in the TD. We toggle the xHC's new cycle state when we pass
506 * any link TRBs with the toggle cycle bit set.
507 * - Finally we move the dequeue state one TRB further, toggling the cycle bit
508 * if we've moved it past a link TRB with the toggle cycle bit set.
510 * Some of the uses of xhci_generic_trb are grotty, but if they're done
511 * with correct __le32 accesses they should work fine. Only users of this are
512 * in here.
514 void xhci_find_new_dequeue_state(struct xhci_hcd *xhci,
515 unsigned int slot_id, unsigned int ep_index,
516 unsigned int stream_id, struct xhci_td *cur_td,
517 struct xhci_dequeue_state *state)
519 struct xhci_virt_device *dev = xhci->devs[slot_id];
520 struct xhci_virt_ep *ep = &dev->eps[ep_index];
521 struct xhci_ring *ep_ring;
522 struct xhci_segment *new_seg;
523 union xhci_trb *new_deq;
524 dma_addr_t addr;
525 u64 hw_dequeue;
526 bool cycle_found = false;
527 bool td_last_trb_found = false;
529 ep_ring = xhci_triad_to_transfer_ring(xhci, slot_id,
530 ep_index, stream_id);
531 if (!ep_ring) {
532 xhci_warn(xhci, "WARN can't find new dequeue state "
533 "for invalid stream ID %u.\n",
534 stream_id);
535 return;
537 /* Dig out the cycle state saved by the xHC during the stop ep cmd */
538 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
539 "Finding endpoint context");
541 hw_dequeue = xhci_get_hw_deq(xhci, dev, ep_index, stream_id);
542 new_seg = ep_ring->deq_seg;
543 new_deq = ep_ring->dequeue;
544 state->new_cycle_state = hw_dequeue & 0x1;
545 state->stream_id = stream_id;
548 * We want to find the pointer, segment and cycle state of the new trb
549 * (the one after current TD's last_trb). We know the cycle state at
550 * hw_dequeue, so walk the ring until both hw_dequeue and last_trb are
551 * found.
553 do {
554 if (!cycle_found && xhci_trb_virt_to_dma(new_seg, new_deq)
555 == (dma_addr_t)(hw_dequeue & ~0xf)) {
556 cycle_found = true;
557 if (td_last_trb_found)
558 break;
560 if (new_deq == cur_td->last_trb)
561 td_last_trb_found = true;
563 if (cycle_found && trb_is_link(new_deq) &&
564 link_trb_toggles_cycle(new_deq))
565 state->new_cycle_state ^= 0x1;
567 next_trb(xhci, ep_ring, &new_seg, &new_deq);
569 /* Search wrapped around, bail out */
570 if (new_deq == ep->ring->dequeue) {
571 xhci_err(xhci, "Error: Failed finding new dequeue state\n");
572 state->new_deq_seg = NULL;
573 state->new_deq_ptr = NULL;
574 return;
577 } while (!cycle_found || !td_last_trb_found);
579 state->new_deq_seg = new_seg;
580 state->new_deq_ptr = new_deq;
582 /* Don't update the ring cycle state for the producer (us). */
583 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
584 "Cycle state = 0x%x", state->new_cycle_state);
586 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
587 "New dequeue segment = %p (virtual)",
588 state->new_deq_seg);
589 addr = xhci_trb_virt_to_dma(state->new_deq_seg, state->new_deq_ptr);
590 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
591 "New dequeue pointer = 0x%llx (DMA)",
592 (unsigned long long) addr);
595 /* flip_cycle means flip the cycle bit of all but the first and last TRB.
596 * (The last TRB actually points to the ring enqueue pointer, which is not part
597 * of this TD.) This is used to remove partially enqueued isoc TDs from a ring.
599 static void td_to_noop(struct xhci_hcd *xhci, struct xhci_ring *ep_ring,
600 struct xhci_td *td, bool flip_cycle)
602 struct xhci_segment *seg = td->start_seg;
603 union xhci_trb *trb = td->first_trb;
605 while (1) {
606 trb_to_noop(trb, TRB_TR_NOOP);
608 /* flip cycle if asked to */
609 if (flip_cycle && trb != td->first_trb && trb != td->last_trb)
610 trb->generic.field[3] ^= cpu_to_le32(TRB_CYCLE);
612 if (trb == td->last_trb)
613 break;
615 next_trb(xhci, ep_ring, &seg, &trb);
619 static void xhci_stop_watchdog_timer_in_irq(struct xhci_hcd *xhci,
620 struct xhci_virt_ep *ep)
622 ep->ep_state &= ~EP_STOP_CMD_PENDING;
623 /* Can't del_timer_sync in interrupt */
624 del_timer(&ep->stop_cmd_timer);
628 * Must be called with xhci->lock held in interrupt context,
629 * releases and re-acquires xhci->lock
631 static void xhci_giveback_urb_in_irq(struct xhci_hcd *xhci,
632 struct xhci_td *cur_td, int status)
634 struct urb *urb = cur_td->urb;
635 struct urb_priv *urb_priv = urb->hcpriv;
636 struct usb_hcd *hcd = bus_to_hcd(urb->dev->bus);
638 if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS) {
639 xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs--;
640 if (xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs == 0) {
641 if (xhci->quirks & XHCI_AMD_PLL_FIX)
642 usb_amd_quirk_pll_enable();
645 xhci_urb_free_priv(urb_priv);
646 usb_hcd_unlink_urb_from_ep(hcd, urb);
647 spin_unlock(&xhci->lock);
648 trace_xhci_urb_giveback(urb);
649 usb_hcd_giveback_urb(hcd, urb, status);
650 spin_lock(&xhci->lock);
653 static void xhci_unmap_td_bounce_buffer(struct xhci_hcd *xhci,
654 struct xhci_ring *ring, struct xhci_td *td)
656 struct device *dev = xhci_to_hcd(xhci)->self.controller;
657 struct xhci_segment *seg = td->bounce_seg;
658 struct urb *urb = td->urb;
660 if (!ring || !seg || !urb)
661 return;
663 if (usb_urb_dir_out(urb)) {
664 dma_unmap_single(dev, seg->bounce_dma, ring->bounce_buf_len,
665 DMA_TO_DEVICE);
666 return;
669 /* for in tranfers we need to copy the data from bounce to sg */
670 sg_pcopy_from_buffer(urb->sg, urb->num_mapped_sgs, seg->bounce_buf,
671 seg->bounce_len, seg->bounce_offs);
672 dma_unmap_single(dev, seg->bounce_dma, ring->bounce_buf_len,
673 DMA_FROM_DEVICE);
674 seg->bounce_len = 0;
675 seg->bounce_offs = 0;
679 * When we get a command completion for a Stop Endpoint Command, we need to
680 * unlink any cancelled TDs from the ring. There are two ways to do that:
682 * 1. If the HW was in the middle of processing the TD that needs to be
683 * cancelled, then we must move the ring's dequeue pointer past the last TRB
684 * in the TD with a Set Dequeue Pointer Command.
685 * 2. Otherwise, we turn all the TRBs in the TD into No-op TRBs (with the chain
686 * bit cleared) so that the HW will skip over them.
688 static void xhci_handle_cmd_stop_ep(struct xhci_hcd *xhci, int slot_id,
689 union xhci_trb *trb, struct xhci_event_cmd *event)
691 unsigned int ep_index;
692 struct xhci_ring *ep_ring;
693 struct xhci_virt_ep *ep;
694 struct xhci_td *cur_td = NULL;
695 struct xhci_td *last_unlinked_td;
696 struct xhci_ep_ctx *ep_ctx;
697 struct xhci_virt_device *vdev;
698 u64 hw_deq;
699 struct xhci_dequeue_state deq_state;
701 if (unlikely(TRB_TO_SUSPEND_PORT(le32_to_cpu(trb->generic.field[3])))) {
702 if (!xhci->devs[slot_id])
703 xhci_warn(xhci, "Stop endpoint command "
704 "completion for disabled slot %u\n",
705 slot_id);
706 return;
709 memset(&deq_state, 0, sizeof(deq_state));
710 ep_index = TRB_TO_EP_INDEX(le32_to_cpu(trb->generic.field[3]));
712 vdev = xhci->devs[slot_id];
713 ep_ctx = xhci_get_ep_ctx(xhci, vdev->out_ctx, ep_index);
714 trace_xhci_handle_cmd_stop_ep(ep_ctx);
716 ep = &xhci->devs[slot_id]->eps[ep_index];
717 last_unlinked_td = list_last_entry(&ep->cancelled_td_list,
718 struct xhci_td, cancelled_td_list);
720 if (list_empty(&ep->cancelled_td_list)) {
721 xhci_stop_watchdog_timer_in_irq(xhci, ep);
722 ring_doorbell_for_active_rings(xhci, slot_id, ep_index);
723 return;
726 /* Fix up the ep ring first, so HW stops executing cancelled TDs.
727 * We have the xHCI lock, so nothing can modify this list until we drop
728 * it. We're also in the event handler, so we can't get re-interrupted
729 * if another Stop Endpoint command completes
731 list_for_each_entry(cur_td, &ep->cancelled_td_list, cancelled_td_list) {
732 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
733 "Removing canceled TD starting at 0x%llx (dma).",
734 (unsigned long long)xhci_trb_virt_to_dma(
735 cur_td->start_seg, cur_td->first_trb));
736 ep_ring = xhci_urb_to_transfer_ring(xhci, cur_td->urb);
737 if (!ep_ring) {
738 /* This shouldn't happen unless a driver is mucking
739 * with the stream ID after submission. This will
740 * leave the TD on the hardware ring, and the hardware
741 * will try to execute it, and may access a buffer
742 * that has already been freed. In the best case, the
743 * hardware will execute it, and the event handler will
744 * ignore the completion event for that TD, since it was
745 * removed from the td_list for that endpoint. In
746 * short, don't muck with the stream ID after
747 * submission.
749 xhci_warn(xhci, "WARN Cancelled URB %p "
750 "has invalid stream ID %u.\n",
751 cur_td->urb,
752 cur_td->urb->stream_id);
753 goto remove_finished_td;
756 * If we stopped on the TD we need to cancel, then we have to
757 * move the xHC endpoint ring dequeue pointer past this TD.
759 hw_deq = xhci_get_hw_deq(xhci, vdev, ep_index,
760 cur_td->urb->stream_id);
761 hw_deq &= ~0xf;
763 if (trb_in_td(xhci, cur_td->start_seg, cur_td->first_trb,
764 cur_td->last_trb, hw_deq, false)) {
765 xhci_find_new_dequeue_state(xhci, slot_id, ep_index,
766 cur_td->urb->stream_id,
767 cur_td, &deq_state);
768 } else {
769 td_to_noop(xhci, ep_ring, cur_td, false);
772 remove_finished_td:
774 * The event handler won't see a completion for this TD anymore,
775 * so remove it from the endpoint ring's TD list. Keep it in
776 * the cancelled TD list for URB completion later.
778 list_del_init(&cur_td->td_list);
781 xhci_stop_watchdog_timer_in_irq(xhci, ep);
783 /* If necessary, queue a Set Transfer Ring Dequeue Pointer command */
784 if (deq_state.new_deq_ptr && deq_state.new_deq_seg) {
785 xhci_queue_new_dequeue_state(xhci, slot_id, ep_index,
786 &deq_state);
787 xhci_ring_cmd_db(xhci);
788 } else {
789 /* Otherwise ring the doorbell(s) to restart queued transfers */
790 ring_doorbell_for_active_rings(xhci, slot_id, ep_index);
794 * Drop the lock and complete the URBs in the cancelled TD list.
795 * New TDs to be cancelled might be added to the end of the list before
796 * we can complete all the URBs for the TDs we already unlinked.
797 * So stop when we've completed the URB for the last TD we unlinked.
799 do {
800 cur_td = list_first_entry(&ep->cancelled_td_list,
801 struct xhci_td, cancelled_td_list);
802 list_del_init(&cur_td->cancelled_td_list);
804 /* Clean up the cancelled URB */
805 /* Doesn't matter what we pass for status, since the core will
806 * just overwrite it (because the URB has been unlinked).
808 ep_ring = xhci_urb_to_transfer_ring(xhci, cur_td->urb);
809 xhci_unmap_td_bounce_buffer(xhci, ep_ring, cur_td);
810 inc_td_cnt(cur_td->urb);
811 if (last_td_in_urb(cur_td))
812 xhci_giveback_urb_in_irq(xhci, cur_td, 0);
814 /* Stop processing the cancelled list if the watchdog timer is
815 * running.
817 if (xhci->xhc_state & XHCI_STATE_DYING)
818 return;
819 } while (cur_td != last_unlinked_td);
821 /* Return to the event handler with xhci->lock re-acquired */
824 static void xhci_kill_ring_urbs(struct xhci_hcd *xhci, struct xhci_ring *ring)
826 struct xhci_td *cur_td;
827 struct xhci_td *tmp;
829 list_for_each_entry_safe(cur_td, tmp, &ring->td_list, td_list) {
830 list_del_init(&cur_td->td_list);
832 if (!list_empty(&cur_td->cancelled_td_list))
833 list_del_init(&cur_td->cancelled_td_list);
835 xhci_unmap_td_bounce_buffer(xhci, ring, cur_td);
837 inc_td_cnt(cur_td->urb);
838 if (last_td_in_urb(cur_td))
839 xhci_giveback_urb_in_irq(xhci, cur_td, -ESHUTDOWN);
843 static void xhci_kill_endpoint_urbs(struct xhci_hcd *xhci,
844 int slot_id, int ep_index)
846 struct xhci_td *cur_td;
847 struct xhci_td *tmp;
848 struct xhci_virt_ep *ep;
849 struct xhci_ring *ring;
851 ep = &xhci->devs[slot_id]->eps[ep_index];
852 if ((ep->ep_state & EP_HAS_STREAMS) ||
853 (ep->ep_state & EP_GETTING_NO_STREAMS)) {
854 int stream_id;
856 for (stream_id = 1; stream_id < ep->stream_info->num_streams;
857 stream_id++) {
858 ring = ep->stream_info->stream_rings[stream_id];
859 if (!ring)
860 continue;
862 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
863 "Killing URBs for slot ID %u, ep index %u, stream %u",
864 slot_id, ep_index, stream_id);
865 xhci_kill_ring_urbs(xhci, ring);
867 } else {
868 ring = ep->ring;
869 if (!ring)
870 return;
871 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
872 "Killing URBs for slot ID %u, ep index %u",
873 slot_id, ep_index);
874 xhci_kill_ring_urbs(xhci, ring);
877 list_for_each_entry_safe(cur_td, tmp, &ep->cancelled_td_list,
878 cancelled_td_list) {
879 list_del_init(&cur_td->cancelled_td_list);
880 inc_td_cnt(cur_td->urb);
882 if (last_td_in_urb(cur_td))
883 xhci_giveback_urb_in_irq(xhci, cur_td, -ESHUTDOWN);
888 * host controller died, register read returns 0xffffffff
889 * Complete pending commands, mark them ABORTED.
890 * URBs need to be given back as usb core might be waiting with device locks
891 * held for the URBs to finish during device disconnect, blocking host remove.
893 * Call with xhci->lock held.
894 * lock is relased and re-acquired while giving back urb.
896 void xhci_hc_died(struct xhci_hcd *xhci)
898 int i, j;
900 if (xhci->xhc_state & XHCI_STATE_DYING)
901 return;
903 xhci_err(xhci, "xHCI host controller not responding, assume dead\n");
904 xhci->xhc_state |= XHCI_STATE_DYING;
906 xhci_cleanup_command_queue(xhci);
908 /* return any pending urbs, remove may be waiting for them */
909 for (i = 0; i <= HCS_MAX_SLOTS(xhci->hcs_params1); i++) {
910 if (!xhci->devs[i])
911 continue;
912 for (j = 0; j < 31; j++)
913 xhci_kill_endpoint_urbs(xhci, i, j);
916 /* inform usb core hc died if PCI remove isn't already handling it */
917 if (!(xhci->xhc_state & XHCI_STATE_REMOVING))
918 usb_hc_died(xhci_to_hcd(xhci));
921 /* Watchdog timer function for when a stop endpoint command fails to complete.
922 * In this case, we assume the host controller is broken or dying or dead. The
923 * host may still be completing some other events, so we have to be careful to
924 * let the event ring handler and the URB dequeueing/enqueueing functions know
925 * through xhci->state.
927 * The timer may also fire if the host takes a very long time to respond to the
928 * command, and the stop endpoint command completion handler cannot delete the
929 * timer before the timer function is called. Another endpoint cancellation may
930 * sneak in before the timer function can grab the lock, and that may queue
931 * another stop endpoint command and add the timer back. So we cannot use a
932 * simple flag to say whether there is a pending stop endpoint command for a
933 * particular endpoint.
935 * Instead we use a combination of that flag and checking if a new timer is
936 * pending.
938 void xhci_stop_endpoint_command_watchdog(struct timer_list *t)
940 struct xhci_virt_ep *ep = from_timer(ep, t, stop_cmd_timer);
941 struct xhci_hcd *xhci = ep->xhci;
942 unsigned long flags;
944 spin_lock_irqsave(&xhci->lock, flags);
946 /* bail out if cmd completed but raced with stop ep watchdog timer.*/
947 if (!(ep->ep_state & EP_STOP_CMD_PENDING) ||
948 timer_pending(&ep->stop_cmd_timer)) {
949 spin_unlock_irqrestore(&xhci->lock, flags);
950 xhci_dbg(xhci, "Stop EP timer raced with cmd completion, exit");
951 return;
954 xhci_warn(xhci, "xHCI host not responding to stop endpoint command.\n");
955 ep->ep_state &= ~EP_STOP_CMD_PENDING;
957 xhci_halt(xhci);
960 * handle a stop endpoint cmd timeout as if host died (-ENODEV).
961 * In the future we could distinguish between -ENODEV and -ETIMEDOUT
962 * and try to recover a -ETIMEDOUT with a host controller reset
964 xhci_hc_died(xhci);
966 spin_unlock_irqrestore(&xhci->lock, flags);
967 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
968 "xHCI host controller is dead.");
971 static void update_ring_for_set_deq_completion(struct xhci_hcd *xhci,
972 struct xhci_virt_device *dev,
973 struct xhci_ring *ep_ring,
974 unsigned int ep_index)
976 union xhci_trb *dequeue_temp;
977 int num_trbs_free_temp;
978 bool revert = false;
980 num_trbs_free_temp = ep_ring->num_trbs_free;
981 dequeue_temp = ep_ring->dequeue;
983 /* If we get two back-to-back stalls, and the first stalled transfer
984 * ends just before a link TRB, the dequeue pointer will be left on
985 * the link TRB by the code in the while loop. So we have to update
986 * the dequeue pointer one segment further, or we'll jump off
987 * the segment into la-la-land.
989 if (trb_is_link(ep_ring->dequeue)) {
990 ep_ring->deq_seg = ep_ring->deq_seg->next;
991 ep_ring->dequeue = ep_ring->deq_seg->trbs;
994 while (ep_ring->dequeue != dev->eps[ep_index].queued_deq_ptr) {
995 /* We have more usable TRBs */
996 ep_ring->num_trbs_free++;
997 ep_ring->dequeue++;
998 if (trb_is_link(ep_ring->dequeue)) {
999 if (ep_ring->dequeue ==
1000 dev->eps[ep_index].queued_deq_ptr)
1001 break;
1002 ep_ring->deq_seg = ep_ring->deq_seg->next;
1003 ep_ring->dequeue = ep_ring->deq_seg->trbs;
1005 if (ep_ring->dequeue == dequeue_temp) {
1006 revert = true;
1007 break;
1011 if (revert) {
1012 xhci_dbg(xhci, "Unable to find new dequeue pointer\n");
1013 ep_ring->num_trbs_free = num_trbs_free_temp;
1018 * When we get a completion for a Set Transfer Ring Dequeue Pointer command,
1019 * we need to clear the set deq pending flag in the endpoint ring state, so that
1020 * the TD queueing code can ring the doorbell again. We also need to ring the
1021 * endpoint doorbell to restart the ring, but only if there aren't more
1022 * cancellations pending.
1024 static void xhci_handle_cmd_set_deq(struct xhci_hcd *xhci, int slot_id,
1025 union xhci_trb *trb, u32 cmd_comp_code)
1027 unsigned int ep_index;
1028 unsigned int stream_id;
1029 struct xhci_ring *ep_ring;
1030 struct xhci_virt_device *dev;
1031 struct xhci_virt_ep *ep;
1032 struct xhci_ep_ctx *ep_ctx;
1033 struct xhci_slot_ctx *slot_ctx;
1035 ep_index = TRB_TO_EP_INDEX(le32_to_cpu(trb->generic.field[3]));
1036 stream_id = TRB_TO_STREAM_ID(le32_to_cpu(trb->generic.field[2]));
1037 dev = xhci->devs[slot_id];
1038 ep = &dev->eps[ep_index];
1040 ep_ring = xhci_stream_id_to_ring(dev, ep_index, stream_id);
1041 if (!ep_ring) {
1042 xhci_warn(xhci, "WARN Set TR deq ptr command for freed stream ID %u\n",
1043 stream_id);
1044 /* XXX: Harmless??? */
1045 goto cleanup;
1048 ep_ctx = xhci_get_ep_ctx(xhci, dev->out_ctx, ep_index);
1049 slot_ctx = xhci_get_slot_ctx(xhci, dev->out_ctx);
1050 trace_xhci_handle_cmd_set_deq(slot_ctx);
1051 trace_xhci_handle_cmd_set_deq_ep(ep_ctx);
1053 if (cmd_comp_code != COMP_SUCCESS) {
1054 unsigned int ep_state;
1055 unsigned int slot_state;
1057 switch (cmd_comp_code) {
1058 case COMP_TRB_ERROR:
1059 xhci_warn(xhci, "WARN Set TR Deq Ptr cmd invalid because of stream ID configuration\n");
1060 break;
1061 case COMP_CONTEXT_STATE_ERROR:
1062 xhci_warn(xhci, "WARN Set TR Deq Ptr cmd failed due to incorrect slot or ep state.\n");
1063 ep_state = GET_EP_CTX_STATE(ep_ctx);
1064 slot_state = le32_to_cpu(slot_ctx->dev_state);
1065 slot_state = GET_SLOT_STATE(slot_state);
1066 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1067 "Slot state = %u, EP state = %u",
1068 slot_state, ep_state);
1069 break;
1070 case COMP_SLOT_NOT_ENABLED_ERROR:
1071 xhci_warn(xhci, "WARN Set TR Deq Ptr cmd failed because slot %u was not enabled.\n",
1072 slot_id);
1073 break;
1074 default:
1075 xhci_warn(xhci, "WARN Set TR Deq Ptr cmd with unknown completion code of %u.\n",
1076 cmd_comp_code);
1077 break;
1079 /* OK what do we do now? The endpoint state is hosed, and we
1080 * should never get to this point if the synchronization between
1081 * queueing, and endpoint state are correct. This might happen
1082 * if the device gets disconnected after we've finished
1083 * cancelling URBs, which might not be an error...
1085 } else {
1086 u64 deq;
1087 /* 4.6.10 deq ptr is written to the stream ctx for streams */
1088 if (ep->ep_state & EP_HAS_STREAMS) {
1089 struct xhci_stream_ctx *ctx =
1090 &ep->stream_info->stream_ctx_array[stream_id];
1091 deq = le64_to_cpu(ctx->stream_ring) & SCTX_DEQ_MASK;
1092 } else {
1093 deq = le64_to_cpu(ep_ctx->deq) & ~EP_CTX_CYCLE_MASK;
1095 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1096 "Successful Set TR Deq Ptr cmd, deq = @%08llx", deq);
1097 if (xhci_trb_virt_to_dma(ep->queued_deq_seg,
1098 ep->queued_deq_ptr) == deq) {
1099 /* Update the ring's dequeue segment and dequeue pointer
1100 * to reflect the new position.
1102 update_ring_for_set_deq_completion(xhci, dev,
1103 ep_ring, ep_index);
1104 } else {
1105 xhci_warn(xhci, "Mismatch between completed Set TR Deq Ptr command & xHCI internal state.\n");
1106 xhci_warn(xhci, "ep deq seg = %p, deq ptr = %p\n",
1107 ep->queued_deq_seg, ep->queued_deq_ptr);
1111 cleanup:
1112 dev->eps[ep_index].ep_state &= ~SET_DEQ_PENDING;
1113 dev->eps[ep_index].queued_deq_seg = NULL;
1114 dev->eps[ep_index].queued_deq_ptr = NULL;
1115 /* Restart any rings with pending URBs */
1116 ring_doorbell_for_active_rings(xhci, slot_id, ep_index);
1119 static void xhci_handle_cmd_reset_ep(struct xhci_hcd *xhci, int slot_id,
1120 union xhci_trb *trb, u32 cmd_comp_code)
1122 struct xhci_virt_device *vdev;
1123 struct xhci_ep_ctx *ep_ctx;
1124 unsigned int ep_index;
1126 ep_index = TRB_TO_EP_INDEX(le32_to_cpu(trb->generic.field[3]));
1127 vdev = xhci->devs[slot_id];
1128 ep_ctx = xhci_get_ep_ctx(xhci, vdev->out_ctx, ep_index);
1129 trace_xhci_handle_cmd_reset_ep(ep_ctx);
1131 /* This command will only fail if the endpoint wasn't halted,
1132 * but we don't care.
1134 xhci_dbg_trace(xhci, trace_xhci_dbg_reset_ep,
1135 "Ignoring reset ep completion code of %u", cmd_comp_code);
1137 /* HW with the reset endpoint quirk needs to have a configure endpoint
1138 * command complete before the endpoint can be used. Queue that here
1139 * because the HW can't handle two commands being queued in a row.
1141 if (xhci->quirks & XHCI_RESET_EP_QUIRK) {
1142 struct xhci_command *command;
1144 command = xhci_alloc_command(xhci, false, GFP_ATOMIC);
1145 if (!command)
1146 return;
1148 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1149 "Queueing configure endpoint command");
1150 xhci_queue_configure_endpoint(xhci, command,
1151 xhci->devs[slot_id]->in_ctx->dma, slot_id,
1152 false);
1153 xhci_ring_cmd_db(xhci);
1154 } else {
1155 /* Clear our internal halted state */
1156 xhci->devs[slot_id]->eps[ep_index].ep_state &= ~EP_HALTED;
1160 static void xhci_handle_cmd_enable_slot(struct xhci_hcd *xhci, int slot_id,
1161 struct xhci_command *command, u32 cmd_comp_code)
1163 if (cmd_comp_code == COMP_SUCCESS)
1164 command->slot_id = slot_id;
1165 else
1166 command->slot_id = 0;
1169 static void xhci_handle_cmd_disable_slot(struct xhci_hcd *xhci, int slot_id)
1171 struct xhci_virt_device *virt_dev;
1172 struct xhci_slot_ctx *slot_ctx;
1174 virt_dev = xhci->devs[slot_id];
1175 if (!virt_dev)
1176 return;
1178 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
1179 trace_xhci_handle_cmd_disable_slot(slot_ctx);
1181 if (xhci->quirks & XHCI_EP_LIMIT_QUIRK)
1182 /* Delete default control endpoint resources */
1183 xhci_free_device_endpoint_resources(xhci, virt_dev, true);
1184 xhci_free_virt_device(xhci, slot_id);
1187 static void xhci_handle_cmd_config_ep(struct xhci_hcd *xhci, int slot_id,
1188 struct xhci_event_cmd *event, u32 cmd_comp_code)
1190 struct xhci_virt_device *virt_dev;
1191 struct xhci_input_control_ctx *ctrl_ctx;
1192 struct xhci_ep_ctx *ep_ctx;
1193 unsigned int ep_index;
1194 unsigned int ep_state;
1195 u32 add_flags, drop_flags;
1198 * Configure endpoint commands can come from the USB core
1199 * configuration or alt setting changes, or because the HW
1200 * needed an extra configure endpoint command after a reset
1201 * endpoint command or streams were being configured.
1202 * If the command was for a halted endpoint, the xHCI driver
1203 * is not waiting on the configure endpoint command.
1205 virt_dev = xhci->devs[slot_id];
1206 ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx);
1207 if (!ctrl_ctx) {
1208 xhci_warn(xhci, "Could not get input context, bad type.\n");
1209 return;
1212 add_flags = le32_to_cpu(ctrl_ctx->add_flags);
1213 drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
1214 /* Input ctx add_flags are the endpoint index plus one */
1215 ep_index = xhci_last_valid_endpoint(add_flags) - 1;
1217 ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->out_ctx, ep_index);
1218 trace_xhci_handle_cmd_config_ep(ep_ctx);
1220 /* A usb_set_interface() call directly after clearing a halted
1221 * condition may race on this quirky hardware. Not worth
1222 * worrying about, since this is prototype hardware. Not sure
1223 * if this will work for streams, but streams support was
1224 * untested on this prototype.
1226 if (xhci->quirks & XHCI_RESET_EP_QUIRK &&
1227 ep_index != (unsigned int) -1 &&
1228 add_flags - SLOT_FLAG == drop_flags) {
1229 ep_state = virt_dev->eps[ep_index].ep_state;
1230 if (!(ep_state & EP_HALTED))
1231 return;
1232 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1233 "Completed config ep cmd - "
1234 "last ep index = %d, state = %d",
1235 ep_index, ep_state);
1236 /* Clear internal halted state and restart ring(s) */
1237 virt_dev->eps[ep_index].ep_state &= ~EP_HALTED;
1238 ring_doorbell_for_active_rings(xhci, slot_id, ep_index);
1239 return;
1241 return;
1244 static void xhci_handle_cmd_addr_dev(struct xhci_hcd *xhci, int slot_id)
1246 struct xhci_virt_device *vdev;
1247 struct xhci_slot_ctx *slot_ctx;
1249 vdev = xhci->devs[slot_id];
1250 slot_ctx = xhci_get_slot_ctx(xhci, vdev->out_ctx);
1251 trace_xhci_handle_cmd_addr_dev(slot_ctx);
1254 static void xhci_handle_cmd_reset_dev(struct xhci_hcd *xhci, int slot_id,
1255 struct xhci_event_cmd *event)
1257 struct xhci_virt_device *vdev;
1258 struct xhci_slot_ctx *slot_ctx;
1260 vdev = xhci->devs[slot_id];
1261 slot_ctx = xhci_get_slot_ctx(xhci, vdev->out_ctx);
1262 trace_xhci_handle_cmd_reset_dev(slot_ctx);
1264 xhci_dbg(xhci, "Completed reset device command.\n");
1265 if (!xhci->devs[slot_id])
1266 xhci_warn(xhci, "Reset device command completion "
1267 "for disabled slot %u\n", slot_id);
1270 static void xhci_handle_cmd_nec_get_fw(struct xhci_hcd *xhci,
1271 struct xhci_event_cmd *event)
1273 if (!(xhci->quirks & XHCI_NEC_HOST)) {
1274 xhci_warn(xhci, "WARN NEC_GET_FW command on non-NEC host\n");
1275 return;
1277 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1278 "NEC firmware version %2x.%02x",
1279 NEC_FW_MAJOR(le32_to_cpu(event->status)),
1280 NEC_FW_MINOR(le32_to_cpu(event->status)));
1283 static void xhci_complete_del_and_free_cmd(struct xhci_command *cmd, u32 status)
1285 list_del(&cmd->cmd_list);
1287 if (cmd->completion) {
1288 cmd->status = status;
1289 complete(cmd->completion);
1290 } else {
1291 kfree(cmd);
1295 void xhci_cleanup_command_queue(struct xhci_hcd *xhci)
1297 struct xhci_command *cur_cmd, *tmp_cmd;
1298 xhci->current_cmd = NULL;
1299 list_for_each_entry_safe(cur_cmd, tmp_cmd, &xhci->cmd_list, cmd_list)
1300 xhci_complete_del_and_free_cmd(cur_cmd, COMP_COMMAND_ABORTED);
1303 void xhci_handle_command_timeout(struct work_struct *work)
1305 struct xhci_hcd *xhci;
1306 unsigned long flags;
1307 u64 hw_ring_state;
1309 xhci = container_of(to_delayed_work(work), struct xhci_hcd, cmd_timer);
1311 spin_lock_irqsave(&xhci->lock, flags);
1314 * If timeout work is pending, or current_cmd is NULL, it means we
1315 * raced with command completion. Command is handled so just return.
1317 if (!xhci->current_cmd || delayed_work_pending(&xhci->cmd_timer)) {
1318 spin_unlock_irqrestore(&xhci->lock, flags);
1319 return;
1321 /* mark this command to be cancelled */
1322 xhci->current_cmd->status = COMP_COMMAND_ABORTED;
1324 /* Make sure command ring is running before aborting it */
1325 hw_ring_state = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
1326 if (hw_ring_state == ~(u64)0) {
1327 xhci_hc_died(xhci);
1328 goto time_out_completed;
1331 if ((xhci->cmd_ring_state & CMD_RING_STATE_RUNNING) &&
1332 (hw_ring_state & CMD_RING_RUNNING)) {
1333 /* Prevent new doorbell, and start command abort */
1334 xhci->cmd_ring_state = CMD_RING_STATE_ABORTED;
1335 xhci_dbg(xhci, "Command timeout\n");
1336 xhci_abort_cmd_ring(xhci, flags);
1337 goto time_out_completed;
1340 /* host removed. Bail out */
1341 if (xhci->xhc_state & XHCI_STATE_REMOVING) {
1342 xhci_dbg(xhci, "host removed, ring start fail?\n");
1343 xhci_cleanup_command_queue(xhci);
1345 goto time_out_completed;
1348 /* command timeout on stopped ring, ring can't be aborted */
1349 xhci_dbg(xhci, "Command timeout on stopped ring\n");
1350 xhci_handle_stopped_cmd_ring(xhci, xhci->current_cmd);
1352 time_out_completed:
1353 spin_unlock_irqrestore(&xhci->lock, flags);
1354 return;
1357 static void handle_cmd_completion(struct xhci_hcd *xhci,
1358 struct xhci_event_cmd *event)
1360 int slot_id = TRB_TO_SLOT_ID(le32_to_cpu(event->flags));
1361 u64 cmd_dma;
1362 dma_addr_t cmd_dequeue_dma;
1363 u32 cmd_comp_code;
1364 union xhci_trb *cmd_trb;
1365 struct xhci_command *cmd;
1366 u32 cmd_type;
1368 cmd_dma = le64_to_cpu(event->cmd_trb);
1369 cmd_trb = xhci->cmd_ring->dequeue;
1371 trace_xhci_handle_command(xhci->cmd_ring, &cmd_trb->generic);
1373 cmd_dequeue_dma = xhci_trb_virt_to_dma(xhci->cmd_ring->deq_seg,
1374 cmd_trb);
1376 * Check whether the completion event is for our internal kept
1377 * command.
1379 if (!cmd_dequeue_dma || cmd_dma != (u64)cmd_dequeue_dma) {
1380 xhci_warn(xhci,
1381 "ERROR mismatched command completion event\n");
1382 return;
1385 cmd = list_first_entry(&xhci->cmd_list, struct xhci_command, cmd_list);
1387 cancel_delayed_work(&xhci->cmd_timer);
1389 cmd_comp_code = GET_COMP_CODE(le32_to_cpu(event->status));
1391 /* If CMD ring stopped we own the trbs between enqueue and dequeue */
1392 if (cmd_comp_code == COMP_COMMAND_RING_STOPPED) {
1393 complete_all(&xhci->cmd_ring_stop_completion);
1394 return;
1397 if (cmd->command_trb != xhci->cmd_ring->dequeue) {
1398 xhci_err(xhci,
1399 "Command completion event does not match command\n");
1400 return;
1404 * Host aborted the command ring, check if the current command was
1405 * supposed to be aborted, otherwise continue normally.
1406 * The command ring is stopped now, but the xHC will issue a Command
1407 * Ring Stopped event which will cause us to restart it.
1409 if (cmd_comp_code == COMP_COMMAND_ABORTED) {
1410 xhci->cmd_ring_state = CMD_RING_STATE_STOPPED;
1411 if (cmd->status == COMP_COMMAND_ABORTED) {
1412 if (xhci->current_cmd == cmd)
1413 xhci->current_cmd = NULL;
1414 goto event_handled;
1418 cmd_type = TRB_FIELD_TO_TYPE(le32_to_cpu(cmd_trb->generic.field[3]));
1419 switch (cmd_type) {
1420 case TRB_ENABLE_SLOT:
1421 xhci_handle_cmd_enable_slot(xhci, slot_id, cmd, cmd_comp_code);
1422 break;
1423 case TRB_DISABLE_SLOT:
1424 xhci_handle_cmd_disable_slot(xhci, slot_id);
1425 break;
1426 case TRB_CONFIG_EP:
1427 if (!cmd->completion)
1428 xhci_handle_cmd_config_ep(xhci, slot_id, event,
1429 cmd_comp_code);
1430 break;
1431 case TRB_EVAL_CONTEXT:
1432 break;
1433 case TRB_ADDR_DEV:
1434 xhci_handle_cmd_addr_dev(xhci, slot_id);
1435 break;
1436 case TRB_STOP_RING:
1437 WARN_ON(slot_id != TRB_TO_SLOT_ID(
1438 le32_to_cpu(cmd_trb->generic.field[3])));
1439 xhci_handle_cmd_stop_ep(xhci, slot_id, cmd_trb, event);
1440 break;
1441 case TRB_SET_DEQ:
1442 WARN_ON(slot_id != TRB_TO_SLOT_ID(
1443 le32_to_cpu(cmd_trb->generic.field[3])));
1444 xhci_handle_cmd_set_deq(xhci, slot_id, cmd_trb, cmd_comp_code);
1445 break;
1446 case TRB_CMD_NOOP:
1447 /* Is this an aborted command turned to NO-OP? */
1448 if (cmd->status == COMP_COMMAND_RING_STOPPED)
1449 cmd_comp_code = COMP_COMMAND_RING_STOPPED;
1450 break;
1451 case TRB_RESET_EP:
1452 WARN_ON(slot_id != TRB_TO_SLOT_ID(
1453 le32_to_cpu(cmd_trb->generic.field[3])));
1454 xhci_handle_cmd_reset_ep(xhci, slot_id, cmd_trb, cmd_comp_code);
1455 break;
1456 case TRB_RESET_DEV:
1457 /* SLOT_ID field in reset device cmd completion event TRB is 0.
1458 * Use the SLOT_ID from the command TRB instead (xhci 4.6.11)
1460 slot_id = TRB_TO_SLOT_ID(
1461 le32_to_cpu(cmd_trb->generic.field[3]));
1462 xhci_handle_cmd_reset_dev(xhci, slot_id, event);
1463 break;
1464 case TRB_NEC_GET_FW:
1465 xhci_handle_cmd_nec_get_fw(xhci, event);
1466 break;
1467 default:
1468 /* Skip over unknown commands on the event ring */
1469 xhci_info(xhci, "INFO unknown command type %d\n", cmd_type);
1470 break;
1473 /* restart timer if this wasn't the last command */
1474 if (!list_is_singular(&xhci->cmd_list)) {
1475 xhci->current_cmd = list_first_entry(&cmd->cmd_list,
1476 struct xhci_command, cmd_list);
1477 xhci_mod_cmd_timer(xhci, XHCI_CMD_DEFAULT_TIMEOUT);
1478 } else if (xhci->current_cmd == cmd) {
1479 xhci->current_cmd = NULL;
1482 event_handled:
1483 xhci_complete_del_and_free_cmd(cmd, cmd_comp_code);
1485 inc_deq(xhci, xhci->cmd_ring);
1488 static void handle_vendor_event(struct xhci_hcd *xhci,
1489 union xhci_trb *event)
1491 u32 trb_type;
1493 trb_type = TRB_FIELD_TO_TYPE(le32_to_cpu(event->generic.field[3]));
1494 xhci_dbg(xhci, "Vendor specific event TRB type = %u\n", trb_type);
1495 if (trb_type == TRB_NEC_CMD_COMP && (xhci->quirks & XHCI_NEC_HOST))
1496 handle_cmd_completion(xhci, &event->event_cmd);
1499 /* @port_id: the one-based port ID from the hardware (indexed from array of all
1500 * port registers -- USB 3.0 and USB 2.0).
1502 * Returns a zero-based port number, which is suitable for indexing into each of
1503 * the split roothubs' port arrays and bus state arrays.
1504 * Add one to it in order to call xhci_find_slot_id_by_port.
1506 static unsigned int find_faked_portnum_from_hw_portnum(struct usb_hcd *hcd,
1507 struct xhci_hcd *xhci, u32 port_id)
1509 unsigned int i;
1510 unsigned int num_similar_speed_ports = 0;
1512 /* port_id from the hardware is 1-based, but port_array[], usb3_ports[],
1513 * and usb2_ports are 0-based indexes. Count the number of similar
1514 * speed ports, up to 1 port before this port.
1516 for (i = 0; i < (port_id - 1); i++) {
1517 u8 port_speed = xhci->port_array[i];
1520 * Skip ports that don't have known speeds, or have duplicate
1521 * Extended Capabilities port speed entries.
1523 if (port_speed == 0 || port_speed == DUPLICATE_ENTRY)
1524 continue;
1527 * USB 3.0 ports are always under a USB 3.0 hub. USB 2.0 and
1528 * 1.1 ports are under the USB 2.0 hub. If the port speed
1529 * matches the device speed, it's a similar speed port.
1531 if ((port_speed == 0x03) == (hcd->speed >= HCD_USB3))
1532 num_similar_speed_ports++;
1534 return num_similar_speed_ports;
1537 static void handle_device_notification(struct xhci_hcd *xhci,
1538 union xhci_trb *event)
1540 u32 slot_id;
1541 struct usb_device *udev;
1543 slot_id = TRB_TO_SLOT_ID(le32_to_cpu(event->generic.field[3]));
1544 if (!xhci->devs[slot_id]) {
1545 xhci_warn(xhci, "Device Notification event for "
1546 "unused slot %u\n", slot_id);
1547 return;
1550 xhci_dbg(xhci, "Device Wake Notification event for slot ID %u\n",
1551 slot_id);
1552 udev = xhci->devs[slot_id]->udev;
1553 if (udev && udev->parent)
1554 usb_wakeup_notification(udev->parent, udev->portnum);
1557 static void handle_port_status(struct xhci_hcd *xhci,
1558 union xhci_trb *event)
1560 struct usb_hcd *hcd;
1561 u32 port_id;
1562 u32 portsc, cmd_reg;
1563 int max_ports;
1564 int slot_id;
1565 unsigned int faked_port_index;
1566 u8 major_revision;
1567 struct xhci_bus_state *bus_state;
1568 __le32 __iomem **port_array;
1569 bool bogus_port_status = false;
1571 /* Port status change events always have a successful completion code */
1572 if (GET_COMP_CODE(le32_to_cpu(event->generic.field[2])) != COMP_SUCCESS)
1573 xhci_warn(xhci,
1574 "WARN: xHC returned failed port status event\n");
1576 port_id = GET_PORT_ID(le32_to_cpu(event->generic.field[0]));
1577 xhci_dbg(xhci, "Port Status Change Event for port %d\n", port_id);
1579 max_ports = HCS_MAX_PORTS(xhci->hcs_params1);
1580 if ((port_id <= 0) || (port_id > max_ports)) {
1581 xhci_warn(xhci, "Invalid port id %d\n", port_id);
1582 inc_deq(xhci, xhci->event_ring);
1583 return;
1586 /* Figure out which usb_hcd this port is attached to:
1587 * is it a USB 3.0 port or a USB 2.0/1.1 port?
1589 major_revision = xhci->port_array[port_id - 1];
1591 /* Find the right roothub. */
1592 hcd = xhci_to_hcd(xhci);
1593 if ((major_revision == 0x03) != (hcd->speed >= HCD_USB3))
1594 hcd = xhci->shared_hcd;
1596 if (major_revision == 0) {
1597 xhci_warn(xhci, "Event for port %u not in "
1598 "Extended Capabilities, ignoring.\n",
1599 port_id);
1600 bogus_port_status = true;
1601 goto cleanup;
1603 if (major_revision == DUPLICATE_ENTRY) {
1604 xhci_warn(xhci, "Event for port %u duplicated in"
1605 "Extended Capabilities, ignoring.\n",
1606 port_id);
1607 bogus_port_status = true;
1608 goto cleanup;
1612 * Hardware port IDs reported by a Port Status Change Event include USB
1613 * 3.0 and USB 2.0 ports. We want to check if the port has reported a
1614 * resume event, but we first need to translate the hardware port ID
1615 * into the index into the ports on the correct split roothub, and the
1616 * correct bus_state structure.
1618 bus_state = &xhci->bus_state[hcd_index(hcd)];
1619 if (hcd->speed >= HCD_USB3)
1620 port_array = xhci->usb3_ports;
1621 else
1622 port_array = xhci->usb2_ports;
1623 /* Find the faked port hub number */
1624 faked_port_index = find_faked_portnum_from_hw_portnum(hcd, xhci,
1625 port_id);
1626 portsc = readl(port_array[faked_port_index]);
1628 trace_xhci_handle_port_status(faked_port_index, portsc);
1630 if (hcd->state == HC_STATE_SUSPENDED) {
1631 xhci_dbg(xhci, "resume root hub\n");
1632 usb_hcd_resume_root_hub(hcd);
1635 if (hcd->speed >= HCD_USB3 && (portsc & PORT_PLS_MASK) == XDEV_INACTIVE)
1636 bus_state->port_remote_wakeup &= ~(1 << faked_port_index);
1638 if ((portsc & PORT_PLC) && (portsc & PORT_PLS_MASK) == XDEV_RESUME) {
1639 xhci_dbg(xhci, "port resume event for port %d\n", port_id);
1641 cmd_reg = readl(&xhci->op_regs->command);
1642 if (!(cmd_reg & CMD_RUN)) {
1643 xhci_warn(xhci, "xHC is not running.\n");
1644 goto cleanup;
1647 if (DEV_SUPERSPEED_ANY(portsc)) {
1648 xhci_dbg(xhci, "remote wake SS port %d\n", port_id);
1649 /* Set a flag to say the port signaled remote wakeup,
1650 * so we can tell the difference between the end of
1651 * device and host initiated resume.
1653 bus_state->port_remote_wakeup |= 1 << faked_port_index;
1654 xhci_test_and_clear_bit(xhci, port_array,
1655 faked_port_index, PORT_PLC);
1656 xhci_set_link_state(xhci, port_array, faked_port_index,
1657 XDEV_U0);
1658 /* Need to wait until the next link state change
1659 * indicates the device is actually in U0.
1661 bogus_port_status = true;
1662 goto cleanup;
1663 } else if (!test_bit(faked_port_index,
1664 &bus_state->resuming_ports)) {
1665 xhci_dbg(xhci, "resume HS port %d\n", port_id);
1666 bus_state->resume_done[faked_port_index] = jiffies +
1667 msecs_to_jiffies(USB_RESUME_TIMEOUT);
1668 set_bit(faked_port_index, &bus_state->resuming_ports);
1669 /* Do the rest in GetPortStatus after resume time delay.
1670 * Avoid polling roothub status before that so that a
1671 * usb device auto-resume latency around ~40ms.
1673 set_bit(HCD_FLAG_POLL_RH, &hcd->flags);
1674 mod_timer(&hcd->rh_timer,
1675 bus_state->resume_done[faked_port_index]);
1676 bogus_port_status = true;
1680 if ((portsc & PORT_PLC) && (portsc & PORT_PLS_MASK) == XDEV_U0 &&
1681 DEV_SUPERSPEED_ANY(portsc)) {
1682 xhci_dbg(xhci, "resume SS port %d finished\n", port_id);
1683 /* We've just brought the device into U0 through either the
1684 * Resume state after a device remote wakeup, or through the
1685 * U3Exit state after a host-initiated resume. If it's a device
1686 * initiated remote wake, don't pass up the link state change,
1687 * so the roothub behavior is consistent with external
1688 * USB 3.0 hub behavior.
1690 slot_id = xhci_find_slot_id_by_port(hcd, xhci,
1691 faked_port_index + 1);
1692 if (slot_id && xhci->devs[slot_id])
1693 xhci_ring_device(xhci, slot_id);
1694 if (bus_state->port_remote_wakeup & (1 << faked_port_index)) {
1695 bus_state->port_remote_wakeup &=
1696 ~(1 << faked_port_index);
1697 xhci_test_and_clear_bit(xhci, port_array,
1698 faked_port_index, PORT_PLC);
1699 usb_wakeup_notification(hcd->self.root_hub,
1700 faked_port_index + 1);
1701 bogus_port_status = true;
1702 goto cleanup;
1707 * Check to see if xhci-hub.c is waiting on RExit to U0 transition (or
1708 * RExit to a disconnect state). If so, let the the driver know it's
1709 * out of the RExit state.
1711 if (!DEV_SUPERSPEED_ANY(portsc) &&
1712 test_and_clear_bit(faked_port_index,
1713 &bus_state->rexit_ports)) {
1714 complete(&bus_state->rexit_done[faked_port_index]);
1715 bogus_port_status = true;
1716 goto cleanup;
1719 if (hcd->speed < HCD_USB3)
1720 xhci_test_and_clear_bit(xhci, port_array, faked_port_index,
1721 PORT_PLC);
1723 cleanup:
1724 /* Update event ring dequeue pointer before dropping the lock */
1725 inc_deq(xhci, xhci->event_ring);
1727 /* Don't make the USB core poll the roothub if we got a bad port status
1728 * change event. Besides, at that point we can't tell which roothub
1729 * (USB 2.0 or USB 3.0) to kick.
1731 if (bogus_port_status)
1732 return;
1735 * xHCI port-status-change events occur when the "or" of all the
1736 * status-change bits in the portsc register changes from 0 to 1.
1737 * New status changes won't cause an event if any other change
1738 * bits are still set. When an event occurs, switch over to
1739 * polling to avoid losing status changes.
1741 xhci_dbg(xhci, "%s: starting port polling.\n", __func__);
1742 set_bit(HCD_FLAG_POLL_RH, &hcd->flags);
1743 spin_unlock(&xhci->lock);
1744 /* Pass this up to the core */
1745 usb_hcd_poll_rh_status(hcd);
1746 spin_lock(&xhci->lock);
1750 * This TD is defined by the TRBs starting at start_trb in start_seg and ending
1751 * at end_trb, which may be in another segment. If the suspect DMA address is a
1752 * TRB in this TD, this function returns that TRB's segment. Otherwise it
1753 * returns 0.
1755 struct xhci_segment *trb_in_td(struct xhci_hcd *xhci,
1756 struct xhci_segment *start_seg,
1757 union xhci_trb *start_trb,
1758 union xhci_trb *end_trb,
1759 dma_addr_t suspect_dma,
1760 bool debug)
1762 dma_addr_t start_dma;
1763 dma_addr_t end_seg_dma;
1764 dma_addr_t end_trb_dma;
1765 struct xhci_segment *cur_seg;
1767 start_dma = xhci_trb_virt_to_dma(start_seg, start_trb);
1768 cur_seg = start_seg;
1770 do {
1771 if (start_dma == 0)
1772 return NULL;
1773 /* We may get an event for a Link TRB in the middle of a TD */
1774 end_seg_dma = xhci_trb_virt_to_dma(cur_seg,
1775 &cur_seg->trbs[TRBS_PER_SEGMENT - 1]);
1776 /* If the end TRB isn't in this segment, this is set to 0 */
1777 end_trb_dma = xhci_trb_virt_to_dma(cur_seg, end_trb);
1779 if (debug)
1780 xhci_warn(xhci,
1781 "Looking for event-dma %016llx trb-start %016llx trb-end %016llx seg-start %016llx seg-end %016llx\n",
1782 (unsigned long long)suspect_dma,
1783 (unsigned long long)start_dma,
1784 (unsigned long long)end_trb_dma,
1785 (unsigned long long)cur_seg->dma,
1786 (unsigned long long)end_seg_dma);
1788 if (end_trb_dma > 0) {
1789 /* The end TRB is in this segment, so suspect should be here */
1790 if (start_dma <= end_trb_dma) {
1791 if (suspect_dma >= start_dma && suspect_dma <= end_trb_dma)
1792 return cur_seg;
1793 } else {
1794 /* Case for one segment with
1795 * a TD wrapped around to the top
1797 if ((suspect_dma >= start_dma &&
1798 suspect_dma <= end_seg_dma) ||
1799 (suspect_dma >= cur_seg->dma &&
1800 suspect_dma <= end_trb_dma))
1801 return cur_seg;
1803 return NULL;
1804 } else {
1805 /* Might still be somewhere in this segment */
1806 if (suspect_dma >= start_dma && suspect_dma <= end_seg_dma)
1807 return cur_seg;
1809 cur_seg = cur_seg->next;
1810 start_dma = xhci_trb_virt_to_dma(cur_seg, &cur_seg->trbs[0]);
1811 } while (cur_seg != start_seg);
1813 return NULL;
1816 static void xhci_cleanup_halted_endpoint(struct xhci_hcd *xhci,
1817 unsigned int slot_id, unsigned int ep_index,
1818 unsigned int stream_id,
1819 struct xhci_td *td, union xhci_trb *ep_trb,
1820 enum xhci_ep_reset_type reset_type)
1822 struct xhci_virt_ep *ep = &xhci->devs[slot_id]->eps[ep_index];
1823 struct xhci_command *command;
1824 command = xhci_alloc_command(xhci, false, GFP_ATOMIC);
1825 if (!command)
1826 return;
1828 ep->ep_state |= EP_HALTED;
1830 xhci_queue_reset_ep(xhci, command, slot_id, ep_index, reset_type);
1832 if (reset_type == EP_HARD_RESET)
1833 xhci_cleanup_stalled_ring(xhci, ep_index, stream_id, td);
1835 xhci_ring_cmd_db(xhci);
1838 /* Check if an error has halted the endpoint ring. The class driver will
1839 * cleanup the halt for a non-default control endpoint if we indicate a stall.
1840 * However, a babble and other errors also halt the endpoint ring, and the class
1841 * driver won't clear the halt in that case, so we need to issue a Set Transfer
1842 * Ring Dequeue Pointer command manually.
1844 static int xhci_requires_manual_halt_cleanup(struct xhci_hcd *xhci,
1845 struct xhci_ep_ctx *ep_ctx,
1846 unsigned int trb_comp_code)
1848 /* TRB completion codes that may require a manual halt cleanup */
1849 if (trb_comp_code == COMP_USB_TRANSACTION_ERROR ||
1850 trb_comp_code == COMP_BABBLE_DETECTED_ERROR ||
1851 trb_comp_code == COMP_SPLIT_TRANSACTION_ERROR)
1852 /* The 0.95 spec says a babbling control endpoint
1853 * is not halted. The 0.96 spec says it is. Some HW
1854 * claims to be 0.95 compliant, but it halts the control
1855 * endpoint anyway. Check if a babble halted the
1856 * endpoint.
1858 if (GET_EP_CTX_STATE(ep_ctx) == EP_STATE_HALTED)
1859 return 1;
1861 return 0;
1864 int xhci_is_vendor_info_code(struct xhci_hcd *xhci, unsigned int trb_comp_code)
1866 if (trb_comp_code >= 224 && trb_comp_code <= 255) {
1867 /* Vendor defined "informational" completion code,
1868 * treat as not-an-error.
1870 xhci_dbg(xhci, "Vendor defined info completion code %u\n",
1871 trb_comp_code);
1872 xhci_dbg(xhci, "Treating code as success.\n");
1873 return 1;
1875 return 0;
1878 static int xhci_td_cleanup(struct xhci_hcd *xhci, struct xhci_td *td,
1879 struct xhci_ring *ep_ring, int *status)
1881 struct urb *urb = NULL;
1883 /* Clean up the endpoint's TD list */
1884 urb = td->urb;
1886 /* if a bounce buffer was used to align this td then unmap it */
1887 xhci_unmap_td_bounce_buffer(xhci, ep_ring, td);
1889 /* Do one last check of the actual transfer length.
1890 * If the host controller said we transferred more data than the buffer
1891 * length, urb->actual_length will be a very big number (since it's
1892 * unsigned). Play it safe and say we didn't transfer anything.
1894 if (urb->actual_length > urb->transfer_buffer_length) {
1895 xhci_warn(xhci, "URB req %u and actual %u transfer length mismatch\n",
1896 urb->transfer_buffer_length, urb->actual_length);
1897 urb->actual_length = 0;
1898 *status = 0;
1900 list_del_init(&td->td_list);
1901 /* Was this TD slated to be cancelled but completed anyway? */
1902 if (!list_empty(&td->cancelled_td_list))
1903 list_del_init(&td->cancelled_td_list);
1905 inc_td_cnt(urb);
1906 /* Giveback the urb when all the tds are completed */
1907 if (last_td_in_urb(td)) {
1908 if ((urb->actual_length != urb->transfer_buffer_length &&
1909 (urb->transfer_flags & URB_SHORT_NOT_OK)) ||
1910 (*status != 0 && !usb_endpoint_xfer_isoc(&urb->ep->desc)))
1911 xhci_dbg(xhci, "Giveback URB %p, len = %d, expected = %d, status = %d\n",
1912 urb, urb->actual_length,
1913 urb->transfer_buffer_length, *status);
1915 /* set isoc urb status to 0 just as EHCI, UHCI, and OHCI */
1916 if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS)
1917 *status = 0;
1918 xhci_giveback_urb_in_irq(xhci, td, *status);
1921 return 0;
1924 static int finish_td(struct xhci_hcd *xhci, struct xhci_td *td,
1925 union xhci_trb *ep_trb, struct xhci_transfer_event *event,
1926 struct xhci_virt_ep *ep, int *status)
1928 struct xhci_virt_device *xdev;
1929 struct xhci_ep_ctx *ep_ctx;
1930 struct xhci_ring *ep_ring;
1931 unsigned int slot_id;
1932 u32 trb_comp_code;
1933 int ep_index;
1935 slot_id = TRB_TO_SLOT_ID(le32_to_cpu(event->flags));
1936 xdev = xhci->devs[slot_id];
1937 ep_index = TRB_TO_EP_ID(le32_to_cpu(event->flags)) - 1;
1938 ep_ring = xhci_dma_to_transfer_ring(ep, le64_to_cpu(event->buffer));
1939 ep_ctx = xhci_get_ep_ctx(xhci, xdev->out_ctx, ep_index);
1940 trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len));
1942 if (trb_comp_code == COMP_STOPPED_LENGTH_INVALID ||
1943 trb_comp_code == COMP_STOPPED ||
1944 trb_comp_code == COMP_STOPPED_SHORT_PACKET) {
1945 /* The Endpoint Stop Command completion will take care of any
1946 * stopped TDs. A stopped TD may be restarted, so don't update
1947 * the ring dequeue pointer or take this TD off any lists yet.
1949 return 0;
1951 if (trb_comp_code == COMP_STALL_ERROR ||
1952 xhci_requires_manual_halt_cleanup(xhci, ep_ctx,
1953 trb_comp_code)) {
1954 /* Issue a reset endpoint command to clear the host side
1955 * halt, followed by a set dequeue command to move the
1956 * dequeue pointer past the TD.
1957 * The class driver clears the device side halt later.
1959 xhci_cleanup_halted_endpoint(xhci, slot_id, ep_index,
1960 ep_ring->stream_id, td, ep_trb,
1961 EP_HARD_RESET);
1962 } else {
1963 /* Update ring dequeue pointer */
1964 while (ep_ring->dequeue != td->last_trb)
1965 inc_deq(xhci, ep_ring);
1966 inc_deq(xhci, ep_ring);
1969 return xhci_td_cleanup(xhci, td, ep_ring, status);
1972 /* sum trb lengths from ring dequeue up to stop_trb, _excluding_ stop_trb */
1973 static int sum_trb_lengths(struct xhci_hcd *xhci, struct xhci_ring *ring,
1974 union xhci_trb *stop_trb)
1976 u32 sum;
1977 union xhci_trb *trb = ring->dequeue;
1978 struct xhci_segment *seg = ring->deq_seg;
1980 for (sum = 0; trb != stop_trb; next_trb(xhci, ring, &seg, &trb)) {
1981 if (!trb_is_noop(trb) && !trb_is_link(trb))
1982 sum += TRB_LEN(le32_to_cpu(trb->generic.field[2]));
1984 return sum;
1988 * Process control tds, update urb status and actual_length.
1990 static int process_ctrl_td(struct xhci_hcd *xhci, struct xhci_td *td,
1991 union xhci_trb *ep_trb, struct xhci_transfer_event *event,
1992 struct xhci_virt_ep *ep, int *status)
1994 struct xhci_virt_device *xdev;
1995 unsigned int slot_id;
1996 int ep_index;
1997 struct xhci_ep_ctx *ep_ctx;
1998 u32 trb_comp_code;
1999 u32 remaining, requested;
2000 u32 trb_type;
2002 trb_type = TRB_FIELD_TO_TYPE(le32_to_cpu(ep_trb->generic.field[3]));
2003 slot_id = TRB_TO_SLOT_ID(le32_to_cpu(event->flags));
2004 xdev = xhci->devs[slot_id];
2005 ep_index = TRB_TO_EP_ID(le32_to_cpu(event->flags)) - 1;
2006 ep_ctx = xhci_get_ep_ctx(xhci, xdev->out_ctx, ep_index);
2007 trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len));
2008 requested = td->urb->transfer_buffer_length;
2009 remaining = EVENT_TRB_LEN(le32_to_cpu(event->transfer_len));
2011 switch (trb_comp_code) {
2012 case COMP_SUCCESS:
2013 if (trb_type != TRB_STATUS) {
2014 xhci_warn(xhci, "WARN: Success on ctrl %s TRB without IOC set?\n",
2015 (trb_type == TRB_DATA) ? "data" : "setup");
2016 *status = -ESHUTDOWN;
2017 break;
2019 *status = 0;
2020 break;
2021 case COMP_SHORT_PACKET:
2022 *status = 0;
2023 break;
2024 case COMP_STOPPED_SHORT_PACKET:
2025 if (trb_type == TRB_DATA || trb_type == TRB_NORMAL)
2026 td->urb->actual_length = remaining;
2027 else
2028 xhci_warn(xhci, "WARN: Stopped Short Packet on ctrl setup or status TRB\n");
2029 goto finish_td;
2030 case COMP_STOPPED:
2031 switch (trb_type) {
2032 case TRB_SETUP:
2033 td->urb->actual_length = 0;
2034 goto finish_td;
2035 case TRB_DATA:
2036 case TRB_NORMAL:
2037 td->urb->actual_length = requested - remaining;
2038 goto finish_td;
2039 case TRB_STATUS:
2040 td->urb->actual_length = requested;
2041 goto finish_td;
2042 default:
2043 xhci_warn(xhci, "WARN: unexpected TRB Type %d\n",
2044 trb_type);
2045 goto finish_td;
2047 case COMP_STOPPED_LENGTH_INVALID:
2048 goto finish_td;
2049 default:
2050 if (!xhci_requires_manual_halt_cleanup(xhci,
2051 ep_ctx, trb_comp_code))
2052 break;
2053 xhci_dbg(xhci, "TRB error %u, halted endpoint index = %u\n",
2054 trb_comp_code, ep_index);
2055 /* else fall through */
2056 case COMP_STALL_ERROR:
2057 /* Did we transfer part of the data (middle) phase? */
2058 if (trb_type == TRB_DATA || trb_type == TRB_NORMAL)
2059 td->urb->actual_length = requested - remaining;
2060 else if (!td->urb_length_set)
2061 td->urb->actual_length = 0;
2062 goto finish_td;
2065 /* stopped at setup stage, no data transferred */
2066 if (trb_type == TRB_SETUP)
2067 goto finish_td;
2070 * if on data stage then update the actual_length of the URB and flag it
2071 * as set, so it won't be overwritten in the event for the last TRB.
2073 if (trb_type == TRB_DATA ||
2074 trb_type == TRB_NORMAL) {
2075 td->urb_length_set = true;
2076 td->urb->actual_length = requested - remaining;
2077 xhci_dbg(xhci, "Waiting for status stage event\n");
2078 return 0;
2081 /* at status stage */
2082 if (!td->urb_length_set)
2083 td->urb->actual_length = requested;
2085 finish_td:
2086 return finish_td(xhci, td, ep_trb, event, ep, status);
2090 * Process isochronous tds, update urb packet status and actual_length.
2092 static int process_isoc_td(struct xhci_hcd *xhci, struct xhci_td *td,
2093 union xhci_trb *ep_trb, struct xhci_transfer_event *event,
2094 struct xhci_virt_ep *ep, int *status)
2096 struct xhci_ring *ep_ring;
2097 struct urb_priv *urb_priv;
2098 int idx;
2099 struct usb_iso_packet_descriptor *frame;
2100 u32 trb_comp_code;
2101 bool sum_trbs_for_length = false;
2102 u32 remaining, requested, ep_trb_len;
2103 int short_framestatus;
2105 ep_ring = xhci_dma_to_transfer_ring(ep, le64_to_cpu(event->buffer));
2106 trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len));
2107 urb_priv = td->urb->hcpriv;
2108 idx = urb_priv->num_tds_done;
2109 frame = &td->urb->iso_frame_desc[idx];
2110 requested = frame->length;
2111 remaining = EVENT_TRB_LEN(le32_to_cpu(event->transfer_len));
2112 ep_trb_len = TRB_LEN(le32_to_cpu(ep_trb->generic.field[2]));
2113 short_framestatus = td->urb->transfer_flags & URB_SHORT_NOT_OK ?
2114 -EREMOTEIO : 0;
2116 /* handle completion code */
2117 switch (trb_comp_code) {
2118 case COMP_SUCCESS:
2119 if (remaining) {
2120 frame->status = short_framestatus;
2121 if (xhci->quirks & XHCI_TRUST_TX_LENGTH)
2122 sum_trbs_for_length = true;
2123 break;
2125 frame->status = 0;
2126 break;
2127 case COMP_SHORT_PACKET:
2128 frame->status = short_framestatus;
2129 sum_trbs_for_length = true;
2130 break;
2131 case COMP_BANDWIDTH_OVERRUN_ERROR:
2132 frame->status = -ECOMM;
2133 break;
2134 case COMP_ISOCH_BUFFER_OVERRUN:
2135 case COMP_BABBLE_DETECTED_ERROR:
2136 frame->status = -EOVERFLOW;
2137 break;
2138 case COMP_INCOMPATIBLE_DEVICE_ERROR:
2139 case COMP_STALL_ERROR:
2140 frame->status = -EPROTO;
2141 break;
2142 case COMP_USB_TRANSACTION_ERROR:
2143 frame->status = -EPROTO;
2144 if (ep_trb != td->last_trb)
2145 return 0;
2146 break;
2147 case COMP_STOPPED:
2148 sum_trbs_for_length = true;
2149 break;
2150 case COMP_STOPPED_SHORT_PACKET:
2151 /* field normally containing residue now contains tranferred */
2152 frame->status = short_framestatus;
2153 requested = remaining;
2154 break;
2155 case COMP_STOPPED_LENGTH_INVALID:
2156 requested = 0;
2157 remaining = 0;
2158 break;
2159 default:
2160 sum_trbs_for_length = true;
2161 frame->status = -1;
2162 break;
2165 if (sum_trbs_for_length)
2166 frame->actual_length = sum_trb_lengths(xhci, ep_ring, ep_trb) +
2167 ep_trb_len - remaining;
2168 else
2169 frame->actual_length = requested;
2171 td->urb->actual_length += frame->actual_length;
2173 return finish_td(xhci, td, ep_trb, event, ep, status);
2176 static int skip_isoc_td(struct xhci_hcd *xhci, struct xhci_td *td,
2177 struct xhci_transfer_event *event,
2178 struct xhci_virt_ep *ep, int *status)
2180 struct xhci_ring *ep_ring;
2181 struct urb_priv *urb_priv;
2182 struct usb_iso_packet_descriptor *frame;
2183 int idx;
2185 ep_ring = xhci_dma_to_transfer_ring(ep, le64_to_cpu(event->buffer));
2186 urb_priv = td->urb->hcpriv;
2187 idx = urb_priv->num_tds_done;
2188 frame = &td->urb->iso_frame_desc[idx];
2190 /* The transfer is partly done. */
2191 frame->status = -EXDEV;
2193 /* calc actual length */
2194 frame->actual_length = 0;
2196 /* Update ring dequeue pointer */
2197 while (ep_ring->dequeue != td->last_trb)
2198 inc_deq(xhci, ep_ring);
2199 inc_deq(xhci, ep_ring);
2201 return xhci_td_cleanup(xhci, td, ep_ring, status);
2205 * Process bulk and interrupt tds, update urb status and actual_length.
2207 static int process_bulk_intr_td(struct xhci_hcd *xhci, struct xhci_td *td,
2208 union xhci_trb *ep_trb, struct xhci_transfer_event *event,
2209 struct xhci_virt_ep *ep, int *status)
2211 struct xhci_ring *ep_ring;
2212 u32 trb_comp_code;
2213 u32 remaining, requested, ep_trb_len;
2215 ep_ring = xhci_dma_to_transfer_ring(ep, le64_to_cpu(event->buffer));
2216 trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len));
2217 remaining = EVENT_TRB_LEN(le32_to_cpu(event->transfer_len));
2218 ep_trb_len = TRB_LEN(le32_to_cpu(ep_trb->generic.field[2]));
2219 requested = td->urb->transfer_buffer_length;
2221 switch (trb_comp_code) {
2222 case COMP_SUCCESS:
2223 /* handle success with untransferred data as short packet */
2224 if (ep_trb != td->last_trb || remaining) {
2225 xhci_warn(xhci, "WARN Successful completion on short TX\n");
2226 xhci_dbg(xhci, "ep %#x - asked for %d bytes, %d bytes untransferred\n",
2227 td->urb->ep->desc.bEndpointAddress,
2228 requested, remaining);
2230 *status = 0;
2231 break;
2232 case COMP_SHORT_PACKET:
2233 xhci_dbg(xhci, "ep %#x - asked for %d bytes, %d bytes untransferred\n",
2234 td->urb->ep->desc.bEndpointAddress,
2235 requested, remaining);
2236 *status = 0;
2237 break;
2238 case COMP_STOPPED_SHORT_PACKET:
2239 td->urb->actual_length = remaining;
2240 goto finish_td;
2241 case COMP_STOPPED_LENGTH_INVALID:
2242 /* stopped on ep trb with invalid length, exclude it */
2243 ep_trb_len = 0;
2244 remaining = 0;
2245 break;
2246 default:
2247 /* do nothing */
2248 break;
2251 if (ep_trb == td->last_trb)
2252 td->urb->actual_length = requested - remaining;
2253 else
2254 td->urb->actual_length =
2255 sum_trb_lengths(xhci, ep_ring, ep_trb) +
2256 ep_trb_len - remaining;
2257 finish_td:
2258 if (remaining > requested) {
2259 xhci_warn(xhci, "bad transfer trb length %d in event trb\n",
2260 remaining);
2261 td->urb->actual_length = 0;
2263 return finish_td(xhci, td, ep_trb, event, ep, status);
2267 * If this function returns an error condition, it means it got a Transfer
2268 * event with a corrupted Slot ID, Endpoint ID, or TRB DMA address.
2269 * At this point, the host controller is probably hosed and should be reset.
2271 static int handle_tx_event(struct xhci_hcd *xhci,
2272 struct xhci_transfer_event *event)
2274 struct xhci_virt_device *xdev;
2275 struct xhci_virt_ep *ep;
2276 struct xhci_ring *ep_ring;
2277 unsigned int slot_id;
2278 int ep_index;
2279 struct xhci_td *td = NULL;
2280 dma_addr_t ep_trb_dma;
2281 struct xhci_segment *ep_seg;
2282 union xhci_trb *ep_trb;
2283 int status = -EINPROGRESS;
2284 struct xhci_ep_ctx *ep_ctx;
2285 struct list_head *tmp;
2286 u32 trb_comp_code;
2287 int td_num = 0;
2288 bool handling_skipped_tds = false;
2290 slot_id = TRB_TO_SLOT_ID(le32_to_cpu(event->flags));
2291 ep_index = TRB_TO_EP_ID(le32_to_cpu(event->flags)) - 1;
2292 trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len));
2293 ep_trb_dma = le64_to_cpu(event->buffer);
2295 xdev = xhci->devs[slot_id];
2296 if (!xdev) {
2297 xhci_err(xhci, "ERROR Transfer event pointed to bad slot %u\n",
2298 slot_id);
2299 goto err_out;
2302 ep = &xdev->eps[ep_index];
2303 ep_ring = xhci_dma_to_transfer_ring(ep, ep_trb_dma);
2304 ep_ctx = xhci_get_ep_ctx(xhci, xdev->out_ctx, ep_index);
2306 if (GET_EP_CTX_STATE(ep_ctx) == EP_STATE_DISABLED) {
2307 xhci_err(xhci,
2308 "ERROR Transfer event for disabled endpoint slot %u ep %u\n",
2309 slot_id, ep_index);
2310 goto err_out;
2313 /* Some transfer events don't always point to a trb, see xhci 4.17.4 */
2314 if (!ep_ring) {
2315 switch (trb_comp_code) {
2316 case COMP_STALL_ERROR:
2317 case COMP_USB_TRANSACTION_ERROR:
2318 case COMP_INVALID_STREAM_TYPE_ERROR:
2319 case COMP_INVALID_STREAM_ID_ERROR:
2320 xhci_cleanup_halted_endpoint(xhci, slot_id, ep_index, 0,
2321 NULL, NULL, EP_SOFT_RESET);
2322 goto cleanup;
2323 case COMP_RING_UNDERRUN:
2324 case COMP_RING_OVERRUN:
2325 goto cleanup;
2326 default:
2327 xhci_err(xhci, "ERROR Transfer event for unknown stream ring slot %u ep %u\n",
2328 slot_id, ep_index);
2329 goto err_out;
2333 /* Count current td numbers if ep->skip is set */
2334 if (ep->skip) {
2335 list_for_each(tmp, &ep_ring->td_list)
2336 td_num++;
2339 /* Look for common error cases */
2340 switch (trb_comp_code) {
2341 /* Skip codes that require special handling depending on
2342 * transfer type
2344 case COMP_SUCCESS:
2345 if (EVENT_TRB_LEN(le32_to_cpu(event->transfer_len)) == 0)
2346 break;
2347 if (xhci->quirks & XHCI_TRUST_TX_LENGTH)
2348 trb_comp_code = COMP_SHORT_PACKET;
2349 else
2350 xhci_warn_ratelimited(xhci,
2351 "WARN Successful completion on short TX for slot %u ep %u: needs XHCI_TRUST_TX_LENGTH quirk?\n",
2352 slot_id, ep_index);
2353 case COMP_SHORT_PACKET:
2354 break;
2355 /* Completion codes for endpoint stopped state */
2356 case COMP_STOPPED:
2357 xhci_dbg(xhci, "Stopped on Transfer TRB for slot %u ep %u\n",
2358 slot_id, ep_index);
2359 break;
2360 case COMP_STOPPED_LENGTH_INVALID:
2361 xhci_dbg(xhci,
2362 "Stopped on No-op or Link TRB for slot %u ep %u\n",
2363 slot_id, ep_index);
2364 break;
2365 case COMP_STOPPED_SHORT_PACKET:
2366 xhci_dbg(xhci,
2367 "Stopped with short packet transfer detected for slot %u ep %u\n",
2368 slot_id, ep_index);
2369 break;
2370 /* Completion codes for endpoint halted state */
2371 case COMP_STALL_ERROR:
2372 xhci_dbg(xhci, "Stalled endpoint for slot %u ep %u\n", slot_id,
2373 ep_index);
2374 ep->ep_state |= EP_HALTED;
2375 status = -EPIPE;
2376 break;
2377 case COMP_SPLIT_TRANSACTION_ERROR:
2378 case COMP_USB_TRANSACTION_ERROR:
2379 xhci_dbg(xhci, "Transfer error for slot %u ep %u on endpoint\n",
2380 slot_id, ep_index);
2381 status = -EPROTO;
2382 break;
2383 case COMP_BABBLE_DETECTED_ERROR:
2384 xhci_dbg(xhci, "Babble error for slot %u ep %u on endpoint\n",
2385 slot_id, ep_index);
2386 status = -EOVERFLOW;
2387 break;
2388 /* Completion codes for endpoint error state */
2389 case COMP_TRB_ERROR:
2390 xhci_warn(xhci,
2391 "WARN: TRB error for slot %u ep %u on endpoint\n",
2392 slot_id, ep_index);
2393 status = -EILSEQ;
2394 break;
2395 /* completion codes not indicating endpoint state change */
2396 case COMP_DATA_BUFFER_ERROR:
2397 xhci_warn(xhci,
2398 "WARN: HC couldn't access mem fast enough for slot %u ep %u\n",
2399 slot_id, ep_index);
2400 status = -ENOSR;
2401 break;
2402 case COMP_BANDWIDTH_OVERRUN_ERROR:
2403 xhci_warn(xhci,
2404 "WARN: bandwidth overrun event for slot %u ep %u on endpoint\n",
2405 slot_id, ep_index);
2406 break;
2407 case COMP_ISOCH_BUFFER_OVERRUN:
2408 xhci_warn(xhci,
2409 "WARN: buffer overrun event for slot %u ep %u on endpoint",
2410 slot_id, ep_index);
2411 break;
2412 case COMP_RING_UNDERRUN:
2414 * When the Isoch ring is empty, the xHC will generate
2415 * a Ring Overrun Event for IN Isoch endpoint or Ring
2416 * Underrun Event for OUT Isoch endpoint.
2418 xhci_dbg(xhci, "underrun event on endpoint\n");
2419 if (!list_empty(&ep_ring->td_list))
2420 xhci_dbg(xhci, "Underrun Event for slot %d ep %d "
2421 "still with TDs queued?\n",
2422 TRB_TO_SLOT_ID(le32_to_cpu(event->flags)),
2423 ep_index);
2424 goto cleanup;
2425 case COMP_RING_OVERRUN:
2426 xhci_dbg(xhci, "overrun event on endpoint\n");
2427 if (!list_empty(&ep_ring->td_list))
2428 xhci_dbg(xhci, "Overrun Event for slot %d ep %d "
2429 "still with TDs queued?\n",
2430 TRB_TO_SLOT_ID(le32_to_cpu(event->flags)),
2431 ep_index);
2432 goto cleanup;
2433 case COMP_MISSED_SERVICE_ERROR:
2435 * When encounter missed service error, one or more isoc tds
2436 * may be missed by xHC.
2437 * Set skip flag of the ep_ring; Complete the missed tds as
2438 * short transfer when process the ep_ring next time.
2440 ep->skip = true;
2441 xhci_dbg(xhci,
2442 "Miss service interval error for slot %u ep %u, set skip flag\n",
2443 slot_id, ep_index);
2444 goto cleanup;
2445 case COMP_NO_PING_RESPONSE_ERROR:
2446 ep->skip = true;
2447 xhci_dbg(xhci,
2448 "No Ping response error for slot %u ep %u, Skip one Isoc TD\n",
2449 slot_id, ep_index);
2450 goto cleanup;
2452 case COMP_INCOMPATIBLE_DEVICE_ERROR:
2453 /* needs disable slot command to recover */
2454 xhci_warn(xhci,
2455 "WARN: detect an incompatible device for slot %u ep %u",
2456 slot_id, ep_index);
2457 status = -EPROTO;
2458 break;
2459 default:
2460 if (xhci_is_vendor_info_code(xhci, trb_comp_code)) {
2461 status = 0;
2462 break;
2464 xhci_warn(xhci,
2465 "ERROR Unknown event condition %u for slot %u ep %u , HC probably busted\n",
2466 trb_comp_code, slot_id, ep_index);
2467 goto cleanup;
2470 do {
2471 /* This TRB should be in the TD at the head of this ring's
2472 * TD list.
2474 if (list_empty(&ep_ring->td_list)) {
2476 * Don't print wanings if it's due to a stopped endpoint
2477 * generating an extra completion event if the device
2478 * was suspended. Or, a event for the last TRB of a
2479 * short TD we already got a short event for.
2480 * The short TD is already removed from the TD list.
2483 if (!(trb_comp_code == COMP_STOPPED ||
2484 trb_comp_code == COMP_STOPPED_LENGTH_INVALID ||
2485 ep_ring->last_td_was_short)) {
2486 xhci_warn(xhci, "WARN Event TRB for slot %d ep %d with no TDs queued?\n",
2487 TRB_TO_SLOT_ID(le32_to_cpu(event->flags)),
2488 ep_index);
2490 if (ep->skip) {
2491 ep->skip = false;
2492 xhci_dbg(xhci, "td_list is empty while skip flag set. Clear skip flag for slot %u ep %u.\n",
2493 slot_id, ep_index);
2495 goto cleanup;
2498 /* We've skipped all the TDs on the ep ring when ep->skip set */
2499 if (ep->skip && td_num == 0) {
2500 ep->skip = false;
2501 xhci_dbg(xhci, "All tds on the ep_ring skipped. Clear skip flag for slot %u ep %u.\n",
2502 slot_id, ep_index);
2503 goto cleanup;
2506 td = list_first_entry(&ep_ring->td_list, struct xhci_td,
2507 td_list);
2508 if (ep->skip)
2509 td_num--;
2511 /* Is this a TRB in the currently executing TD? */
2512 ep_seg = trb_in_td(xhci, ep_ring->deq_seg, ep_ring->dequeue,
2513 td->last_trb, ep_trb_dma, false);
2516 * Skip the Force Stopped Event. The event_trb(event_dma) of FSE
2517 * is not in the current TD pointed by ep_ring->dequeue because
2518 * that the hardware dequeue pointer still at the previous TRB
2519 * of the current TD. The previous TRB maybe a Link TD or the
2520 * last TRB of the previous TD. The command completion handle
2521 * will take care the rest.
2523 if (!ep_seg && (trb_comp_code == COMP_STOPPED ||
2524 trb_comp_code == COMP_STOPPED_LENGTH_INVALID)) {
2525 goto cleanup;
2528 if (!ep_seg) {
2529 if (!ep->skip ||
2530 !usb_endpoint_xfer_isoc(&td->urb->ep->desc)) {
2531 /* Some host controllers give a spurious
2532 * successful event after a short transfer.
2533 * Ignore it.
2535 if ((xhci->quirks & XHCI_SPURIOUS_SUCCESS) &&
2536 ep_ring->last_td_was_short) {
2537 ep_ring->last_td_was_short = false;
2538 goto cleanup;
2540 /* HC is busted, give up! */
2541 xhci_err(xhci,
2542 "ERROR Transfer event TRB DMA ptr not "
2543 "part of current TD ep_index %d "
2544 "comp_code %u\n", ep_index,
2545 trb_comp_code);
2546 trb_in_td(xhci, ep_ring->deq_seg,
2547 ep_ring->dequeue, td->last_trb,
2548 ep_trb_dma, true);
2549 return -ESHUTDOWN;
2552 skip_isoc_td(xhci, td, event, ep, &status);
2553 goto cleanup;
2555 if (trb_comp_code == COMP_SHORT_PACKET)
2556 ep_ring->last_td_was_short = true;
2557 else
2558 ep_ring->last_td_was_short = false;
2560 if (ep->skip) {
2561 xhci_dbg(xhci,
2562 "Found td. Clear skip flag for slot %u ep %u.\n",
2563 slot_id, ep_index);
2564 ep->skip = false;
2567 ep_trb = &ep_seg->trbs[(ep_trb_dma - ep_seg->dma) /
2568 sizeof(*ep_trb)];
2570 trace_xhci_handle_transfer(ep_ring,
2571 (struct xhci_generic_trb *) ep_trb);
2574 * No-op TRB could trigger interrupts in a case where
2575 * a URB was killed and a STALL_ERROR happens right
2576 * after the endpoint ring stopped. Reset the halted
2577 * endpoint. Otherwise, the endpoint remains stalled
2578 * indefinitely.
2580 if (trb_is_noop(ep_trb)) {
2581 if (trb_comp_code == COMP_STALL_ERROR ||
2582 xhci_requires_manual_halt_cleanup(xhci, ep_ctx,
2583 trb_comp_code))
2584 xhci_cleanup_halted_endpoint(xhci, slot_id,
2585 ep_index,
2586 ep_ring->stream_id,
2587 td, ep_trb,
2588 EP_HARD_RESET);
2589 goto cleanup;
2592 /* update the urb's actual_length and give back to the core */
2593 if (usb_endpoint_xfer_control(&td->urb->ep->desc))
2594 process_ctrl_td(xhci, td, ep_trb, event, ep, &status);
2595 else if (usb_endpoint_xfer_isoc(&td->urb->ep->desc))
2596 process_isoc_td(xhci, td, ep_trb, event, ep, &status);
2597 else
2598 process_bulk_intr_td(xhci, td, ep_trb, event, ep,
2599 &status);
2600 cleanup:
2601 handling_skipped_tds = ep->skip &&
2602 trb_comp_code != COMP_MISSED_SERVICE_ERROR &&
2603 trb_comp_code != COMP_NO_PING_RESPONSE_ERROR;
2606 * Do not update event ring dequeue pointer if we're in a loop
2607 * processing missed tds.
2609 if (!handling_skipped_tds)
2610 inc_deq(xhci, xhci->event_ring);
2613 * If ep->skip is set, it means there are missed tds on the
2614 * endpoint ring need to take care of.
2615 * Process them as short transfer until reach the td pointed by
2616 * the event.
2618 } while (handling_skipped_tds);
2620 return 0;
2622 err_out:
2623 xhci_err(xhci, "@%016llx %08x %08x %08x %08x\n",
2624 (unsigned long long) xhci_trb_virt_to_dma(
2625 xhci->event_ring->deq_seg,
2626 xhci->event_ring->dequeue),
2627 lower_32_bits(le64_to_cpu(event->buffer)),
2628 upper_32_bits(le64_to_cpu(event->buffer)),
2629 le32_to_cpu(event->transfer_len),
2630 le32_to_cpu(event->flags));
2631 return -ENODEV;
2635 * This function handles all OS-owned events on the event ring. It may drop
2636 * xhci->lock between event processing (e.g. to pass up port status changes).
2637 * Returns >0 for "possibly more events to process" (caller should call again),
2638 * otherwise 0 if done. In future, <0 returns should indicate error code.
2640 static int xhci_handle_event(struct xhci_hcd *xhci)
2642 union xhci_trb *event;
2643 int update_ptrs = 1;
2644 int ret;
2646 /* Event ring hasn't been allocated yet. */
2647 if (!xhci->event_ring || !xhci->event_ring->dequeue) {
2648 xhci_err(xhci, "ERROR event ring not ready\n");
2649 return -ENOMEM;
2652 event = xhci->event_ring->dequeue;
2653 /* Does the HC or OS own the TRB? */
2654 if ((le32_to_cpu(event->event_cmd.flags) & TRB_CYCLE) !=
2655 xhci->event_ring->cycle_state)
2656 return 0;
2658 trace_xhci_handle_event(xhci->event_ring, &event->generic);
2661 * Barrier between reading the TRB_CYCLE (valid) flag above and any
2662 * speculative reads of the event's flags/data below.
2664 rmb();
2665 /* FIXME: Handle more event types. */
2666 switch (le32_to_cpu(event->event_cmd.flags) & TRB_TYPE_BITMASK) {
2667 case TRB_TYPE(TRB_COMPLETION):
2668 handle_cmd_completion(xhci, &event->event_cmd);
2669 break;
2670 case TRB_TYPE(TRB_PORT_STATUS):
2671 handle_port_status(xhci, event);
2672 update_ptrs = 0;
2673 break;
2674 case TRB_TYPE(TRB_TRANSFER):
2675 ret = handle_tx_event(xhci, &event->trans_event);
2676 if (ret >= 0)
2677 update_ptrs = 0;
2678 break;
2679 case TRB_TYPE(TRB_DEV_NOTE):
2680 handle_device_notification(xhci, event);
2681 break;
2682 default:
2683 if ((le32_to_cpu(event->event_cmd.flags) & TRB_TYPE_BITMASK) >=
2684 TRB_TYPE(48))
2685 handle_vendor_event(xhci, event);
2686 else
2687 xhci_warn(xhci, "ERROR unknown event type %d\n",
2688 TRB_FIELD_TO_TYPE(
2689 le32_to_cpu(event->event_cmd.flags)));
2691 /* Any of the above functions may drop and re-acquire the lock, so check
2692 * to make sure a watchdog timer didn't mark the host as non-responsive.
2694 if (xhci->xhc_state & XHCI_STATE_DYING) {
2695 xhci_dbg(xhci, "xHCI host dying, returning from "
2696 "event handler.\n");
2697 return 0;
2700 if (update_ptrs)
2701 /* Update SW event ring dequeue pointer */
2702 inc_deq(xhci, xhci->event_ring);
2704 /* Are there more items on the event ring? Caller will call us again to
2705 * check.
2707 return 1;
2711 * xHCI spec says we can get an interrupt, and if the HC has an error condition,
2712 * we might get bad data out of the event ring. Section 4.10.2.7 has a list of
2713 * indicators of an event TRB error, but we check the status *first* to be safe.
2715 irqreturn_t xhci_irq(struct usb_hcd *hcd)
2717 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
2718 union xhci_trb *event_ring_deq;
2719 irqreturn_t ret = IRQ_NONE;
2720 unsigned long flags;
2721 dma_addr_t deq;
2722 u64 temp_64;
2723 u32 status;
2725 spin_lock_irqsave(&xhci->lock, flags);
2726 /* Check if the xHC generated the interrupt, or the irq is shared */
2727 status = readl(&xhci->op_regs->status);
2728 if (status == ~(u32)0) {
2729 xhci_hc_died(xhci);
2730 ret = IRQ_HANDLED;
2731 goto out;
2734 if (!(status & STS_EINT))
2735 goto out;
2737 if (status & STS_FATAL) {
2738 xhci_warn(xhci, "WARNING: Host System Error\n");
2739 xhci_halt(xhci);
2740 ret = IRQ_HANDLED;
2741 goto out;
2745 * Clear the op reg interrupt status first,
2746 * so we can receive interrupts from other MSI-X interrupters.
2747 * Write 1 to clear the interrupt status.
2749 status |= STS_EINT;
2750 writel(status, &xhci->op_regs->status);
2752 if (!hcd->msi_enabled) {
2753 u32 irq_pending;
2754 irq_pending = readl(&xhci->ir_set->irq_pending);
2755 irq_pending |= IMAN_IP;
2756 writel(irq_pending, &xhci->ir_set->irq_pending);
2759 if (xhci->xhc_state & XHCI_STATE_DYING ||
2760 xhci->xhc_state & XHCI_STATE_HALTED) {
2761 xhci_dbg(xhci, "xHCI dying, ignoring interrupt. "
2762 "Shouldn't IRQs be disabled?\n");
2763 /* Clear the event handler busy flag (RW1C);
2764 * the event ring should be empty.
2766 temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
2767 xhci_write_64(xhci, temp_64 | ERST_EHB,
2768 &xhci->ir_set->erst_dequeue);
2769 ret = IRQ_HANDLED;
2770 goto out;
2773 event_ring_deq = xhci->event_ring->dequeue;
2774 /* FIXME this should be a delayed service routine
2775 * that clears the EHB.
2777 while (xhci_handle_event(xhci) > 0) {}
2779 temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
2780 /* If necessary, update the HW's version of the event ring deq ptr. */
2781 if (event_ring_deq != xhci->event_ring->dequeue) {
2782 deq = xhci_trb_virt_to_dma(xhci->event_ring->deq_seg,
2783 xhci->event_ring->dequeue);
2784 if (deq == 0)
2785 xhci_warn(xhci, "WARN something wrong with SW event "
2786 "ring dequeue ptr.\n");
2787 /* Update HC event ring dequeue pointer */
2788 temp_64 &= ERST_PTR_MASK;
2789 temp_64 |= ((u64) deq & (u64) ~ERST_PTR_MASK);
2792 /* Clear the event handler busy flag (RW1C); event ring is empty. */
2793 temp_64 |= ERST_EHB;
2794 xhci_write_64(xhci, temp_64, &xhci->ir_set->erst_dequeue);
2795 ret = IRQ_HANDLED;
2797 out:
2798 spin_unlock_irqrestore(&xhci->lock, flags);
2800 return ret;
2803 irqreturn_t xhci_msi_irq(int irq, void *hcd)
2805 return xhci_irq(hcd);
2808 /**** Endpoint Ring Operations ****/
2811 * Generic function for queueing a TRB on a ring.
2812 * The caller must have checked to make sure there's room on the ring.
2814 * @more_trbs_coming: Will you enqueue more TRBs before calling
2815 * prepare_transfer()?
2817 static void queue_trb(struct xhci_hcd *xhci, struct xhci_ring *ring,
2818 bool more_trbs_coming,
2819 u32 field1, u32 field2, u32 field3, u32 field4)
2821 struct xhci_generic_trb *trb;
2823 trb = &ring->enqueue->generic;
2824 trb->field[0] = cpu_to_le32(field1);
2825 trb->field[1] = cpu_to_le32(field2);
2826 trb->field[2] = cpu_to_le32(field3);
2827 trb->field[3] = cpu_to_le32(field4);
2829 trace_xhci_queue_trb(ring, trb);
2831 inc_enq(xhci, ring, more_trbs_coming);
2835 * Does various checks on the endpoint ring, and makes it ready to queue num_trbs.
2836 * FIXME allocate segments if the ring is full.
2838 static int prepare_ring(struct xhci_hcd *xhci, struct xhci_ring *ep_ring,
2839 u32 ep_state, unsigned int num_trbs, gfp_t mem_flags)
2841 unsigned int num_trbs_needed;
2843 /* Make sure the endpoint has been added to xHC schedule */
2844 switch (ep_state) {
2845 case EP_STATE_DISABLED:
2847 * USB core changed config/interfaces without notifying us,
2848 * or hardware is reporting the wrong state.
2850 xhci_warn(xhci, "WARN urb submitted to disabled ep\n");
2851 return -ENOENT;
2852 case EP_STATE_ERROR:
2853 xhci_warn(xhci, "WARN waiting for error on ep to be cleared\n");
2854 /* FIXME event handling code for error needs to clear it */
2855 /* XXX not sure if this should be -ENOENT or not */
2856 return -EINVAL;
2857 case EP_STATE_HALTED:
2858 xhci_dbg(xhci, "WARN halted endpoint, queueing URB anyway.\n");
2859 case EP_STATE_STOPPED:
2860 case EP_STATE_RUNNING:
2861 break;
2862 default:
2863 xhci_err(xhci, "ERROR unknown endpoint state for ep\n");
2865 * FIXME issue Configure Endpoint command to try to get the HC
2866 * back into a known state.
2868 return -EINVAL;
2871 while (1) {
2872 if (room_on_ring(xhci, ep_ring, num_trbs))
2873 break;
2875 if (ep_ring == xhci->cmd_ring) {
2876 xhci_err(xhci, "Do not support expand command ring\n");
2877 return -ENOMEM;
2880 xhci_dbg_trace(xhci, trace_xhci_dbg_ring_expansion,
2881 "ERROR no room on ep ring, try ring expansion");
2882 num_trbs_needed = num_trbs - ep_ring->num_trbs_free;
2883 if (xhci_ring_expansion(xhci, ep_ring, num_trbs_needed,
2884 mem_flags)) {
2885 xhci_err(xhci, "Ring expansion failed\n");
2886 return -ENOMEM;
2890 while (trb_is_link(ep_ring->enqueue)) {
2891 /* If we're not dealing with 0.95 hardware or isoc rings
2892 * on AMD 0.96 host, clear the chain bit.
2894 if (!xhci_link_trb_quirk(xhci) &&
2895 !(ep_ring->type == TYPE_ISOC &&
2896 (xhci->quirks & XHCI_AMD_0x96_HOST)))
2897 ep_ring->enqueue->link.control &=
2898 cpu_to_le32(~TRB_CHAIN);
2899 else
2900 ep_ring->enqueue->link.control |=
2901 cpu_to_le32(TRB_CHAIN);
2903 wmb();
2904 ep_ring->enqueue->link.control ^= cpu_to_le32(TRB_CYCLE);
2906 /* Toggle the cycle bit after the last ring segment. */
2907 if (link_trb_toggles_cycle(ep_ring->enqueue))
2908 ep_ring->cycle_state ^= 1;
2910 ep_ring->enq_seg = ep_ring->enq_seg->next;
2911 ep_ring->enqueue = ep_ring->enq_seg->trbs;
2913 return 0;
2916 static int prepare_transfer(struct xhci_hcd *xhci,
2917 struct xhci_virt_device *xdev,
2918 unsigned int ep_index,
2919 unsigned int stream_id,
2920 unsigned int num_trbs,
2921 struct urb *urb,
2922 unsigned int td_index,
2923 gfp_t mem_flags)
2925 int ret;
2926 struct urb_priv *urb_priv;
2927 struct xhci_td *td;
2928 struct xhci_ring *ep_ring;
2929 struct xhci_ep_ctx *ep_ctx = xhci_get_ep_ctx(xhci, xdev->out_ctx, ep_index);
2931 ep_ring = xhci_stream_id_to_ring(xdev, ep_index, stream_id);
2932 if (!ep_ring) {
2933 xhci_dbg(xhci, "Can't prepare ring for bad stream ID %u\n",
2934 stream_id);
2935 return -EINVAL;
2938 ret = prepare_ring(xhci, ep_ring, GET_EP_CTX_STATE(ep_ctx),
2939 num_trbs, mem_flags);
2940 if (ret)
2941 return ret;
2943 urb_priv = urb->hcpriv;
2944 td = &urb_priv->td[td_index];
2946 INIT_LIST_HEAD(&td->td_list);
2947 INIT_LIST_HEAD(&td->cancelled_td_list);
2949 if (td_index == 0) {
2950 ret = usb_hcd_link_urb_to_ep(bus_to_hcd(urb->dev->bus), urb);
2951 if (unlikely(ret))
2952 return ret;
2955 td->urb = urb;
2956 /* Add this TD to the tail of the endpoint ring's TD list */
2957 list_add_tail(&td->td_list, &ep_ring->td_list);
2958 td->start_seg = ep_ring->enq_seg;
2959 td->first_trb = ep_ring->enqueue;
2961 return 0;
2964 unsigned int count_trbs(u64 addr, u64 len)
2966 unsigned int num_trbs;
2968 num_trbs = DIV_ROUND_UP(len + (addr & (TRB_MAX_BUFF_SIZE - 1)),
2969 TRB_MAX_BUFF_SIZE);
2970 if (num_trbs == 0)
2971 num_trbs++;
2973 return num_trbs;
2976 static inline unsigned int count_trbs_needed(struct urb *urb)
2978 return count_trbs(urb->transfer_dma, urb->transfer_buffer_length);
2981 static unsigned int count_sg_trbs_needed(struct urb *urb)
2983 struct scatterlist *sg;
2984 unsigned int i, len, full_len, num_trbs = 0;
2986 full_len = urb->transfer_buffer_length;
2988 for_each_sg(urb->sg, sg, urb->num_mapped_sgs, i) {
2989 len = sg_dma_len(sg);
2990 num_trbs += count_trbs(sg_dma_address(sg), len);
2991 len = min_t(unsigned int, len, full_len);
2992 full_len -= len;
2993 if (full_len == 0)
2994 break;
2997 return num_trbs;
3000 static unsigned int count_isoc_trbs_needed(struct urb *urb, int i)
3002 u64 addr, len;
3004 addr = (u64) (urb->transfer_dma + urb->iso_frame_desc[i].offset);
3005 len = urb->iso_frame_desc[i].length;
3007 return count_trbs(addr, len);
3010 static void check_trb_math(struct urb *urb, int running_total)
3012 if (unlikely(running_total != urb->transfer_buffer_length))
3013 dev_err(&urb->dev->dev, "%s - ep %#x - Miscalculated tx length, "
3014 "queued %#x (%d), asked for %#x (%d)\n",
3015 __func__,
3016 urb->ep->desc.bEndpointAddress,
3017 running_total, running_total,
3018 urb->transfer_buffer_length,
3019 urb->transfer_buffer_length);
3022 static void giveback_first_trb(struct xhci_hcd *xhci, int slot_id,
3023 unsigned int ep_index, unsigned int stream_id, int start_cycle,
3024 struct xhci_generic_trb *start_trb)
3027 * Pass all the TRBs to the hardware at once and make sure this write
3028 * isn't reordered.
3030 wmb();
3031 if (start_cycle)
3032 start_trb->field[3] |= cpu_to_le32(start_cycle);
3033 else
3034 start_trb->field[3] &= cpu_to_le32(~TRB_CYCLE);
3035 xhci_ring_ep_doorbell(xhci, slot_id, ep_index, stream_id);
3038 static void check_interval(struct xhci_hcd *xhci, struct urb *urb,
3039 struct xhci_ep_ctx *ep_ctx)
3041 int xhci_interval;
3042 int ep_interval;
3044 xhci_interval = EP_INTERVAL_TO_UFRAMES(le32_to_cpu(ep_ctx->ep_info));
3045 ep_interval = urb->interval;
3047 /* Convert to microframes */
3048 if (urb->dev->speed == USB_SPEED_LOW ||
3049 urb->dev->speed == USB_SPEED_FULL)
3050 ep_interval *= 8;
3052 /* FIXME change this to a warning and a suggestion to use the new API
3053 * to set the polling interval (once the API is added).
3055 if (xhci_interval != ep_interval) {
3056 dev_dbg_ratelimited(&urb->dev->dev,
3057 "Driver uses different interval (%d microframe%s) than xHCI (%d microframe%s)\n",
3058 ep_interval, ep_interval == 1 ? "" : "s",
3059 xhci_interval, xhci_interval == 1 ? "" : "s");
3060 urb->interval = xhci_interval;
3061 /* Convert back to frames for LS/FS devices */
3062 if (urb->dev->speed == USB_SPEED_LOW ||
3063 urb->dev->speed == USB_SPEED_FULL)
3064 urb->interval /= 8;
3069 * xHCI uses normal TRBs for both bulk and interrupt. When the interrupt
3070 * endpoint is to be serviced, the xHC will consume (at most) one TD. A TD
3071 * (comprised of sg list entries) can take several service intervals to
3072 * transmit.
3074 int xhci_queue_intr_tx(struct xhci_hcd *xhci, gfp_t mem_flags,
3075 struct urb *urb, int slot_id, unsigned int ep_index)
3077 struct xhci_ep_ctx *ep_ctx;
3079 ep_ctx = xhci_get_ep_ctx(xhci, xhci->devs[slot_id]->out_ctx, ep_index);
3080 check_interval(xhci, urb, ep_ctx);
3082 return xhci_queue_bulk_tx(xhci, mem_flags, urb, slot_id, ep_index);
3086 * For xHCI 1.0 host controllers, TD size is the number of max packet sized
3087 * packets remaining in the TD (*not* including this TRB).
3089 * Total TD packet count = total_packet_count =
3090 * DIV_ROUND_UP(TD size in bytes / wMaxPacketSize)
3092 * Packets transferred up to and including this TRB = packets_transferred =
3093 * rounddown(total bytes transferred including this TRB / wMaxPacketSize)
3095 * TD size = total_packet_count - packets_transferred
3097 * For xHCI 0.96 and older, TD size field should be the remaining bytes
3098 * including this TRB, right shifted by 10
3100 * For all hosts it must fit in bits 21:17, so it can't be bigger than 31.
3101 * This is taken care of in the TRB_TD_SIZE() macro
3103 * The last TRB in a TD must have the TD size set to zero.
3105 static u32 xhci_td_remainder(struct xhci_hcd *xhci, int transferred,
3106 int trb_buff_len, unsigned int td_total_len,
3107 struct urb *urb, bool more_trbs_coming)
3109 u32 maxp, total_packet_count;
3111 /* MTK xHCI 0.96 contains some features from 1.0 */
3112 if (xhci->hci_version < 0x100 && !(xhci->quirks & XHCI_MTK_HOST))
3113 return ((td_total_len - transferred) >> 10);
3115 /* One TRB with a zero-length data packet. */
3116 if (!more_trbs_coming || (transferred == 0 && trb_buff_len == 0) ||
3117 trb_buff_len == td_total_len)
3118 return 0;
3120 /* for MTK xHCI 0.96, TD size include this TRB, but not in 1.x */
3121 if ((xhci->quirks & XHCI_MTK_HOST) && (xhci->hci_version < 0x100))
3122 trb_buff_len = 0;
3124 maxp = usb_endpoint_maxp(&urb->ep->desc);
3125 total_packet_count = DIV_ROUND_UP(td_total_len, maxp);
3127 /* Queueing functions don't count the current TRB into transferred */
3128 return (total_packet_count - ((transferred + trb_buff_len) / maxp));
3132 static int xhci_align_td(struct xhci_hcd *xhci, struct urb *urb, u32 enqd_len,
3133 u32 *trb_buff_len, struct xhci_segment *seg)
3135 struct device *dev = xhci_to_hcd(xhci)->self.controller;
3136 unsigned int unalign;
3137 unsigned int max_pkt;
3138 u32 new_buff_len;
3140 max_pkt = usb_endpoint_maxp(&urb->ep->desc);
3141 unalign = (enqd_len + *trb_buff_len) % max_pkt;
3143 /* we got lucky, last normal TRB data on segment is packet aligned */
3144 if (unalign == 0)
3145 return 0;
3147 xhci_dbg(xhci, "Unaligned %d bytes, buff len %d\n",
3148 unalign, *trb_buff_len);
3150 /* is the last nornal TRB alignable by splitting it */
3151 if (*trb_buff_len > unalign) {
3152 *trb_buff_len -= unalign;
3153 xhci_dbg(xhci, "split align, new buff len %d\n", *trb_buff_len);
3154 return 0;
3158 * We want enqd_len + trb_buff_len to sum up to a number aligned to
3159 * number which is divisible by the endpoint's wMaxPacketSize. IOW:
3160 * (size of currently enqueued TRBs + remainder) % wMaxPacketSize == 0.
3162 new_buff_len = max_pkt - (enqd_len % max_pkt);
3164 if (new_buff_len > (urb->transfer_buffer_length - enqd_len))
3165 new_buff_len = (urb->transfer_buffer_length - enqd_len);
3167 /* create a max max_pkt sized bounce buffer pointed to by last trb */
3168 if (usb_urb_dir_out(urb)) {
3169 sg_pcopy_to_buffer(urb->sg, urb->num_mapped_sgs,
3170 seg->bounce_buf, new_buff_len, enqd_len);
3171 seg->bounce_dma = dma_map_single(dev, seg->bounce_buf,
3172 max_pkt, DMA_TO_DEVICE);
3173 } else {
3174 seg->bounce_dma = dma_map_single(dev, seg->bounce_buf,
3175 max_pkt, DMA_FROM_DEVICE);
3178 if (dma_mapping_error(dev, seg->bounce_dma)) {
3179 /* try without aligning. Some host controllers survive */
3180 xhci_warn(xhci, "Failed mapping bounce buffer, not aligning\n");
3181 return 0;
3183 *trb_buff_len = new_buff_len;
3184 seg->bounce_len = new_buff_len;
3185 seg->bounce_offs = enqd_len;
3187 xhci_dbg(xhci, "Bounce align, new buff len %d\n", *trb_buff_len);
3189 return 1;
3192 /* This is very similar to what ehci-q.c qtd_fill() does */
3193 int xhci_queue_bulk_tx(struct xhci_hcd *xhci, gfp_t mem_flags,
3194 struct urb *urb, int slot_id, unsigned int ep_index)
3196 struct xhci_ring *ring;
3197 struct urb_priv *urb_priv;
3198 struct xhci_td *td;
3199 struct xhci_generic_trb *start_trb;
3200 struct scatterlist *sg = NULL;
3201 bool more_trbs_coming = true;
3202 bool need_zero_pkt = false;
3203 bool first_trb = true;
3204 unsigned int num_trbs;
3205 unsigned int start_cycle, num_sgs = 0;
3206 unsigned int enqd_len, block_len, trb_buff_len, full_len;
3207 int sent_len, ret;
3208 u32 field, length_field, remainder;
3209 u64 addr, send_addr;
3211 ring = xhci_urb_to_transfer_ring(xhci, urb);
3212 if (!ring)
3213 return -EINVAL;
3215 full_len = urb->transfer_buffer_length;
3216 /* If we have scatter/gather list, we use it. */
3217 if (urb->num_sgs) {
3218 num_sgs = urb->num_mapped_sgs;
3219 sg = urb->sg;
3220 addr = (u64) sg_dma_address(sg);
3221 block_len = sg_dma_len(sg);
3222 num_trbs = count_sg_trbs_needed(urb);
3223 } else {
3224 num_trbs = count_trbs_needed(urb);
3225 addr = (u64) urb->transfer_dma;
3226 block_len = full_len;
3228 ret = prepare_transfer(xhci, xhci->devs[slot_id],
3229 ep_index, urb->stream_id,
3230 num_trbs, urb, 0, mem_flags);
3231 if (unlikely(ret < 0))
3232 return ret;
3234 urb_priv = urb->hcpriv;
3236 /* Deal with URB_ZERO_PACKET - need one more td/trb */
3237 if (urb->transfer_flags & URB_ZERO_PACKET && urb_priv->num_tds > 1)
3238 need_zero_pkt = true;
3240 td = &urb_priv->td[0];
3243 * Don't give the first TRB to the hardware (by toggling the cycle bit)
3244 * until we've finished creating all the other TRBs. The ring's cycle
3245 * state may change as we enqueue the other TRBs, so save it too.
3247 start_trb = &ring->enqueue->generic;
3248 start_cycle = ring->cycle_state;
3249 send_addr = addr;
3251 /* Queue the TRBs, even if they are zero-length */
3252 for (enqd_len = 0; first_trb || enqd_len < full_len;
3253 enqd_len += trb_buff_len) {
3254 field = TRB_TYPE(TRB_NORMAL);
3256 /* TRB buffer should not cross 64KB boundaries */
3257 trb_buff_len = TRB_BUFF_LEN_UP_TO_BOUNDARY(addr);
3258 trb_buff_len = min_t(unsigned int, trb_buff_len, block_len);
3260 if (enqd_len + trb_buff_len > full_len)
3261 trb_buff_len = full_len - enqd_len;
3263 /* Don't change the cycle bit of the first TRB until later */
3264 if (first_trb) {
3265 first_trb = false;
3266 if (start_cycle == 0)
3267 field |= TRB_CYCLE;
3268 } else
3269 field |= ring->cycle_state;
3271 /* Chain all the TRBs together; clear the chain bit in the last
3272 * TRB to indicate it's the last TRB in the chain.
3274 if (enqd_len + trb_buff_len < full_len) {
3275 field |= TRB_CHAIN;
3276 if (trb_is_link(ring->enqueue + 1)) {
3277 if (xhci_align_td(xhci, urb, enqd_len,
3278 &trb_buff_len,
3279 ring->enq_seg)) {
3280 send_addr = ring->enq_seg->bounce_dma;
3281 /* assuming TD won't span 2 segs */
3282 td->bounce_seg = ring->enq_seg;
3286 if (enqd_len + trb_buff_len >= full_len) {
3287 field &= ~TRB_CHAIN;
3288 field |= TRB_IOC;
3289 more_trbs_coming = false;
3290 td->last_trb = ring->enqueue;
3293 /* Only set interrupt on short packet for IN endpoints */
3294 if (usb_urb_dir_in(urb))
3295 field |= TRB_ISP;
3297 /* Set the TRB length, TD size, and interrupter fields. */
3298 remainder = xhci_td_remainder(xhci, enqd_len, trb_buff_len,
3299 full_len, urb, more_trbs_coming);
3301 length_field = TRB_LEN(trb_buff_len) |
3302 TRB_TD_SIZE(remainder) |
3303 TRB_INTR_TARGET(0);
3305 queue_trb(xhci, ring, more_trbs_coming | need_zero_pkt,
3306 lower_32_bits(send_addr),
3307 upper_32_bits(send_addr),
3308 length_field,
3309 field);
3311 addr += trb_buff_len;
3312 sent_len = trb_buff_len;
3314 while (sg && sent_len >= block_len) {
3315 /* New sg entry */
3316 --num_sgs;
3317 sent_len -= block_len;
3318 if (num_sgs != 0) {
3319 sg = sg_next(sg);
3320 block_len = sg_dma_len(sg);
3321 addr = (u64) sg_dma_address(sg);
3322 addr += sent_len;
3325 block_len -= sent_len;
3326 send_addr = addr;
3329 if (need_zero_pkt) {
3330 ret = prepare_transfer(xhci, xhci->devs[slot_id],
3331 ep_index, urb->stream_id,
3332 1, urb, 1, mem_flags);
3333 urb_priv->td[1].last_trb = ring->enqueue;
3334 field = TRB_TYPE(TRB_NORMAL) | ring->cycle_state | TRB_IOC;
3335 queue_trb(xhci, ring, 0, 0, 0, TRB_INTR_TARGET(0), field);
3338 check_trb_math(urb, enqd_len);
3339 giveback_first_trb(xhci, slot_id, ep_index, urb->stream_id,
3340 start_cycle, start_trb);
3341 return 0;
3344 /* Caller must have locked xhci->lock */
3345 int xhci_queue_ctrl_tx(struct xhci_hcd *xhci, gfp_t mem_flags,
3346 struct urb *urb, int slot_id, unsigned int ep_index)
3348 struct xhci_ring *ep_ring;
3349 int num_trbs;
3350 int ret;
3351 struct usb_ctrlrequest *setup;
3352 struct xhci_generic_trb *start_trb;
3353 int start_cycle;
3354 u32 field;
3355 struct urb_priv *urb_priv;
3356 struct xhci_td *td;
3358 ep_ring = xhci_urb_to_transfer_ring(xhci, urb);
3359 if (!ep_ring)
3360 return -EINVAL;
3363 * Need to copy setup packet into setup TRB, so we can't use the setup
3364 * DMA address.
3366 if (!urb->setup_packet)
3367 return -EINVAL;
3369 /* 1 TRB for setup, 1 for status */
3370 num_trbs = 2;
3372 * Don't need to check if we need additional event data and normal TRBs,
3373 * since data in control transfers will never get bigger than 16MB
3374 * XXX: can we get a buffer that crosses 64KB boundaries?
3376 if (urb->transfer_buffer_length > 0)
3377 num_trbs++;
3378 ret = prepare_transfer(xhci, xhci->devs[slot_id],
3379 ep_index, urb->stream_id,
3380 num_trbs, urb, 0, mem_flags);
3381 if (ret < 0)
3382 return ret;
3384 urb_priv = urb->hcpriv;
3385 td = &urb_priv->td[0];
3388 * Don't give the first TRB to the hardware (by toggling the cycle bit)
3389 * until we've finished creating all the other TRBs. The ring's cycle
3390 * state may change as we enqueue the other TRBs, so save it too.
3392 start_trb = &ep_ring->enqueue->generic;
3393 start_cycle = ep_ring->cycle_state;
3395 /* Queue setup TRB - see section 6.4.1.2.1 */
3396 /* FIXME better way to translate setup_packet into two u32 fields? */
3397 setup = (struct usb_ctrlrequest *) urb->setup_packet;
3398 field = 0;
3399 field |= TRB_IDT | TRB_TYPE(TRB_SETUP);
3400 if (start_cycle == 0)
3401 field |= 0x1;
3403 /* xHCI 1.0/1.1 6.4.1.2.1: Transfer Type field */
3404 if ((xhci->hci_version >= 0x100) || (xhci->quirks & XHCI_MTK_HOST)) {
3405 if (urb->transfer_buffer_length > 0) {
3406 if (setup->bRequestType & USB_DIR_IN)
3407 field |= TRB_TX_TYPE(TRB_DATA_IN);
3408 else
3409 field |= TRB_TX_TYPE(TRB_DATA_OUT);
3413 queue_trb(xhci, ep_ring, true,
3414 setup->bRequestType | setup->bRequest << 8 | le16_to_cpu(setup->wValue) << 16,
3415 le16_to_cpu(setup->wIndex) | le16_to_cpu(setup->wLength) << 16,
3416 TRB_LEN(8) | TRB_INTR_TARGET(0),
3417 /* Immediate data in pointer */
3418 field);
3420 /* If there's data, queue data TRBs */
3421 /* Only set interrupt on short packet for IN endpoints */
3422 if (usb_urb_dir_in(urb))
3423 field = TRB_ISP | TRB_TYPE(TRB_DATA);
3424 else
3425 field = TRB_TYPE(TRB_DATA);
3427 if (urb->transfer_buffer_length > 0) {
3428 u32 length_field, remainder;
3430 remainder = xhci_td_remainder(xhci, 0,
3431 urb->transfer_buffer_length,
3432 urb->transfer_buffer_length,
3433 urb, 1);
3434 length_field = TRB_LEN(urb->transfer_buffer_length) |
3435 TRB_TD_SIZE(remainder) |
3436 TRB_INTR_TARGET(0);
3437 if (setup->bRequestType & USB_DIR_IN)
3438 field |= TRB_DIR_IN;
3439 queue_trb(xhci, ep_ring, true,
3440 lower_32_bits(urb->transfer_dma),
3441 upper_32_bits(urb->transfer_dma),
3442 length_field,
3443 field | ep_ring->cycle_state);
3446 /* Save the DMA address of the last TRB in the TD */
3447 td->last_trb = ep_ring->enqueue;
3449 /* Queue status TRB - see Table 7 and sections 4.11.2.2 and 6.4.1.2.3 */
3450 /* If the device sent data, the status stage is an OUT transfer */
3451 if (urb->transfer_buffer_length > 0 && setup->bRequestType & USB_DIR_IN)
3452 field = 0;
3453 else
3454 field = TRB_DIR_IN;
3455 queue_trb(xhci, ep_ring, false,
3458 TRB_INTR_TARGET(0),
3459 /* Event on completion */
3460 field | TRB_IOC | TRB_TYPE(TRB_STATUS) | ep_ring->cycle_state);
3462 giveback_first_trb(xhci, slot_id, ep_index, 0,
3463 start_cycle, start_trb);
3464 return 0;
3468 * The transfer burst count field of the isochronous TRB defines the number of
3469 * bursts that are required to move all packets in this TD. Only SuperSpeed
3470 * devices can burst up to bMaxBurst number of packets per service interval.
3471 * This field is zero based, meaning a value of zero in the field means one
3472 * burst. Basically, for everything but SuperSpeed devices, this field will be
3473 * zero. Only xHCI 1.0 host controllers support this field.
3475 static unsigned int xhci_get_burst_count(struct xhci_hcd *xhci,
3476 struct urb *urb, unsigned int total_packet_count)
3478 unsigned int max_burst;
3480 if (xhci->hci_version < 0x100 || urb->dev->speed < USB_SPEED_SUPER)
3481 return 0;
3483 max_burst = urb->ep->ss_ep_comp.bMaxBurst;
3484 return DIV_ROUND_UP(total_packet_count, max_burst + 1) - 1;
3488 * Returns the number of packets in the last "burst" of packets. This field is
3489 * valid for all speeds of devices. USB 2.0 devices can only do one "burst", so
3490 * the last burst packet count is equal to the total number of packets in the
3491 * TD. SuperSpeed endpoints can have up to 3 bursts. All but the last burst
3492 * must contain (bMaxBurst + 1) number of packets, but the last burst can
3493 * contain 1 to (bMaxBurst + 1) packets.
3495 static unsigned int xhci_get_last_burst_packet_count(struct xhci_hcd *xhci,
3496 struct urb *urb, unsigned int total_packet_count)
3498 unsigned int max_burst;
3499 unsigned int residue;
3501 if (xhci->hci_version < 0x100)
3502 return 0;
3504 if (urb->dev->speed >= USB_SPEED_SUPER) {
3505 /* bMaxBurst is zero based: 0 means 1 packet per burst */
3506 max_burst = urb->ep->ss_ep_comp.bMaxBurst;
3507 residue = total_packet_count % (max_burst + 1);
3508 /* If residue is zero, the last burst contains (max_burst + 1)
3509 * number of packets, but the TLBPC field is zero-based.
3511 if (residue == 0)
3512 return max_burst;
3513 return residue - 1;
3515 if (total_packet_count == 0)
3516 return 0;
3517 return total_packet_count - 1;
3521 * Calculates Frame ID field of the isochronous TRB identifies the
3522 * target frame that the Interval associated with this Isochronous
3523 * Transfer Descriptor will start on. Refer to 4.11.2.5 in 1.1 spec.
3525 * Returns actual frame id on success, negative value on error.
3527 static int xhci_get_isoc_frame_id(struct xhci_hcd *xhci,
3528 struct urb *urb, int index)
3530 int start_frame, ist, ret = 0;
3531 int start_frame_id, end_frame_id, current_frame_id;
3533 if (urb->dev->speed == USB_SPEED_LOW ||
3534 urb->dev->speed == USB_SPEED_FULL)
3535 start_frame = urb->start_frame + index * urb->interval;
3536 else
3537 start_frame = (urb->start_frame + index * urb->interval) >> 3;
3539 /* Isochronous Scheduling Threshold (IST, bits 0~3 in HCSPARAMS2):
3541 * If bit [3] of IST is cleared to '0', software can add a TRB no
3542 * later than IST[2:0] Microframes before that TRB is scheduled to
3543 * be executed.
3544 * If bit [3] of IST is set to '1', software can add a TRB no later
3545 * than IST[2:0] Frames before that TRB is scheduled to be executed.
3547 ist = HCS_IST(xhci->hcs_params2) & 0x7;
3548 if (HCS_IST(xhci->hcs_params2) & (1 << 3))
3549 ist <<= 3;
3551 /* Software shall not schedule an Isoch TD with a Frame ID value that
3552 * is less than the Start Frame ID or greater than the End Frame ID,
3553 * where:
3555 * End Frame ID = (Current MFINDEX register value + 895 ms.) MOD 2048
3556 * Start Frame ID = (Current MFINDEX register value + IST + 1) MOD 2048
3558 * Both the End Frame ID and Start Frame ID values are calculated
3559 * in microframes. When software determines the valid Frame ID value;
3560 * The End Frame ID value should be rounded down to the nearest Frame
3561 * boundary, and the Start Frame ID value should be rounded up to the
3562 * nearest Frame boundary.
3564 current_frame_id = readl(&xhci->run_regs->microframe_index);
3565 start_frame_id = roundup(current_frame_id + ist + 1, 8);
3566 end_frame_id = rounddown(current_frame_id + 895 * 8, 8);
3568 start_frame &= 0x7ff;
3569 start_frame_id = (start_frame_id >> 3) & 0x7ff;
3570 end_frame_id = (end_frame_id >> 3) & 0x7ff;
3572 xhci_dbg(xhci, "%s: index %d, reg 0x%x start_frame_id 0x%x, end_frame_id 0x%x, start_frame 0x%x\n",
3573 __func__, index, readl(&xhci->run_regs->microframe_index),
3574 start_frame_id, end_frame_id, start_frame);
3576 if (start_frame_id < end_frame_id) {
3577 if (start_frame > end_frame_id ||
3578 start_frame < start_frame_id)
3579 ret = -EINVAL;
3580 } else if (start_frame_id > end_frame_id) {
3581 if ((start_frame > end_frame_id &&
3582 start_frame < start_frame_id))
3583 ret = -EINVAL;
3584 } else {
3585 ret = -EINVAL;
3588 if (index == 0) {
3589 if (ret == -EINVAL || start_frame == start_frame_id) {
3590 start_frame = start_frame_id + 1;
3591 if (urb->dev->speed == USB_SPEED_LOW ||
3592 urb->dev->speed == USB_SPEED_FULL)
3593 urb->start_frame = start_frame;
3594 else
3595 urb->start_frame = start_frame << 3;
3596 ret = 0;
3600 if (ret) {
3601 xhci_warn(xhci, "Frame ID %d (reg %d, index %d) beyond range (%d, %d)\n",
3602 start_frame, current_frame_id, index,
3603 start_frame_id, end_frame_id);
3604 xhci_warn(xhci, "Ignore frame ID field, use SIA bit instead\n");
3605 return ret;
3608 return start_frame;
3611 /* This is for isoc transfer */
3612 static int xhci_queue_isoc_tx(struct xhci_hcd *xhci, gfp_t mem_flags,
3613 struct urb *urb, int slot_id, unsigned int ep_index)
3615 struct xhci_ring *ep_ring;
3616 struct urb_priv *urb_priv;
3617 struct xhci_td *td;
3618 int num_tds, trbs_per_td;
3619 struct xhci_generic_trb *start_trb;
3620 bool first_trb;
3621 int start_cycle;
3622 u32 field, length_field;
3623 int running_total, trb_buff_len, td_len, td_remain_len, ret;
3624 u64 start_addr, addr;
3625 int i, j;
3626 bool more_trbs_coming;
3627 struct xhci_virt_ep *xep;
3628 int frame_id;
3630 xep = &xhci->devs[slot_id]->eps[ep_index];
3631 ep_ring = xhci->devs[slot_id]->eps[ep_index].ring;
3633 num_tds = urb->number_of_packets;
3634 if (num_tds < 1) {
3635 xhci_dbg(xhci, "Isoc URB with zero packets?\n");
3636 return -EINVAL;
3638 start_addr = (u64) urb->transfer_dma;
3639 start_trb = &ep_ring->enqueue->generic;
3640 start_cycle = ep_ring->cycle_state;
3642 urb_priv = urb->hcpriv;
3643 /* Queue the TRBs for each TD, even if they are zero-length */
3644 for (i = 0; i < num_tds; i++) {
3645 unsigned int total_pkt_count, max_pkt;
3646 unsigned int burst_count, last_burst_pkt_count;
3647 u32 sia_frame_id;
3649 first_trb = true;
3650 running_total = 0;
3651 addr = start_addr + urb->iso_frame_desc[i].offset;
3652 td_len = urb->iso_frame_desc[i].length;
3653 td_remain_len = td_len;
3654 max_pkt = usb_endpoint_maxp(&urb->ep->desc);
3655 total_pkt_count = DIV_ROUND_UP(td_len, max_pkt);
3657 /* A zero-length transfer still involves at least one packet. */
3658 if (total_pkt_count == 0)
3659 total_pkt_count++;
3660 burst_count = xhci_get_burst_count(xhci, urb, total_pkt_count);
3661 last_burst_pkt_count = xhci_get_last_burst_packet_count(xhci,
3662 urb, total_pkt_count);
3664 trbs_per_td = count_isoc_trbs_needed(urb, i);
3666 ret = prepare_transfer(xhci, xhci->devs[slot_id], ep_index,
3667 urb->stream_id, trbs_per_td, urb, i, mem_flags);
3668 if (ret < 0) {
3669 if (i == 0)
3670 return ret;
3671 goto cleanup;
3673 td = &urb_priv->td[i];
3675 /* use SIA as default, if frame id is used overwrite it */
3676 sia_frame_id = TRB_SIA;
3677 if (!(urb->transfer_flags & URB_ISO_ASAP) &&
3678 HCC_CFC(xhci->hcc_params)) {
3679 frame_id = xhci_get_isoc_frame_id(xhci, urb, i);
3680 if (frame_id >= 0)
3681 sia_frame_id = TRB_FRAME_ID(frame_id);
3684 * Set isoc specific data for the first TRB in a TD.
3685 * Prevent HW from getting the TRBs by keeping the cycle state
3686 * inverted in the first TDs isoc TRB.
3688 field = TRB_TYPE(TRB_ISOC) |
3689 TRB_TLBPC(last_burst_pkt_count) |
3690 sia_frame_id |
3691 (i ? ep_ring->cycle_state : !start_cycle);
3693 /* xhci 1.1 with ETE uses TD_Size field for TBC, old is Rsvdz */
3694 if (!xep->use_extended_tbc)
3695 field |= TRB_TBC(burst_count);
3697 /* fill the rest of the TRB fields, and remaining normal TRBs */
3698 for (j = 0; j < trbs_per_td; j++) {
3699 u32 remainder = 0;
3701 /* only first TRB is isoc, overwrite otherwise */
3702 if (!first_trb)
3703 field = TRB_TYPE(TRB_NORMAL) |
3704 ep_ring->cycle_state;
3706 /* Only set interrupt on short packet for IN EPs */
3707 if (usb_urb_dir_in(urb))
3708 field |= TRB_ISP;
3710 /* Set the chain bit for all except the last TRB */
3711 if (j < trbs_per_td - 1) {
3712 more_trbs_coming = true;
3713 field |= TRB_CHAIN;
3714 } else {
3715 more_trbs_coming = false;
3716 td->last_trb = ep_ring->enqueue;
3717 field |= TRB_IOC;
3718 /* set BEI, except for the last TD */
3719 if (xhci->hci_version >= 0x100 &&
3720 !(xhci->quirks & XHCI_AVOID_BEI) &&
3721 i < num_tds - 1)
3722 field |= TRB_BEI;
3724 /* Calculate TRB length */
3725 trb_buff_len = TRB_BUFF_LEN_UP_TO_BOUNDARY(addr);
3726 if (trb_buff_len > td_remain_len)
3727 trb_buff_len = td_remain_len;
3729 /* Set the TRB length, TD size, & interrupter fields. */
3730 remainder = xhci_td_remainder(xhci, running_total,
3731 trb_buff_len, td_len,
3732 urb, more_trbs_coming);
3734 length_field = TRB_LEN(trb_buff_len) |
3735 TRB_INTR_TARGET(0);
3737 /* xhci 1.1 with ETE uses TD Size field for TBC */
3738 if (first_trb && xep->use_extended_tbc)
3739 length_field |= TRB_TD_SIZE_TBC(burst_count);
3740 else
3741 length_field |= TRB_TD_SIZE(remainder);
3742 first_trb = false;
3744 queue_trb(xhci, ep_ring, more_trbs_coming,
3745 lower_32_bits(addr),
3746 upper_32_bits(addr),
3747 length_field,
3748 field);
3749 running_total += trb_buff_len;
3751 addr += trb_buff_len;
3752 td_remain_len -= trb_buff_len;
3755 /* Check TD length */
3756 if (running_total != td_len) {
3757 xhci_err(xhci, "ISOC TD length unmatch\n");
3758 ret = -EINVAL;
3759 goto cleanup;
3763 /* store the next frame id */
3764 if (HCC_CFC(xhci->hcc_params))
3765 xep->next_frame_id = urb->start_frame + num_tds * urb->interval;
3767 if (xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs == 0) {
3768 if (xhci->quirks & XHCI_AMD_PLL_FIX)
3769 usb_amd_quirk_pll_disable();
3771 xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs++;
3773 giveback_first_trb(xhci, slot_id, ep_index, urb->stream_id,
3774 start_cycle, start_trb);
3775 return 0;
3776 cleanup:
3777 /* Clean up a partially enqueued isoc transfer. */
3779 for (i--; i >= 0; i--)
3780 list_del_init(&urb_priv->td[i].td_list);
3782 /* Use the first TD as a temporary variable to turn the TDs we've queued
3783 * into No-ops with a software-owned cycle bit. That way the hardware
3784 * won't accidentally start executing bogus TDs when we partially
3785 * overwrite them. td->first_trb and td->start_seg are already set.
3787 urb_priv->td[0].last_trb = ep_ring->enqueue;
3788 /* Every TRB except the first & last will have its cycle bit flipped. */
3789 td_to_noop(xhci, ep_ring, &urb_priv->td[0], true);
3791 /* Reset the ring enqueue back to the first TRB and its cycle bit. */
3792 ep_ring->enqueue = urb_priv->td[0].first_trb;
3793 ep_ring->enq_seg = urb_priv->td[0].start_seg;
3794 ep_ring->cycle_state = start_cycle;
3795 ep_ring->num_trbs_free = ep_ring->num_trbs_free_temp;
3796 usb_hcd_unlink_urb_from_ep(bus_to_hcd(urb->dev->bus), urb);
3797 return ret;
3801 * Check transfer ring to guarantee there is enough room for the urb.
3802 * Update ISO URB start_frame and interval.
3803 * Update interval as xhci_queue_intr_tx does. Use xhci frame_index to
3804 * update urb->start_frame if URB_ISO_ASAP is set in transfer_flags or
3805 * Contiguous Frame ID is not supported by HC.
3807 int xhci_queue_isoc_tx_prepare(struct xhci_hcd *xhci, gfp_t mem_flags,
3808 struct urb *urb, int slot_id, unsigned int ep_index)
3810 struct xhci_virt_device *xdev;
3811 struct xhci_ring *ep_ring;
3812 struct xhci_ep_ctx *ep_ctx;
3813 int start_frame;
3814 int num_tds, num_trbs, i;
3815 int ret;
3816 struct xhci_virt_ep *xep;
3817 int ist;
3819 xdev = xhci->devs[slot_id];
3820 xep = &xhci->devs[slot_id]->eps[ep_index];
3821 ep_ring = xdev->eps[ep_index].ring;
3822 ep_ctx = xhci_get_ep_ctx(xhci, xdev->out_ctx, ep_index);
3824 num_trbs = 0;
3825 num_tds = urb->number_of_packets;
3826 for (i = 0; i < num_tds; i++)
3827 num_trbs += count_isoc_trbs_needed(urb, i);
3829 /* Check the ring to guarantee there is enough room for the whole urb.
3830 * Do not insert any td of the urb to the ring if the check failed.
3832 ret = prepare_ring(xhci, ep_ring, GET_EP_CTX_STATE(ep_ctx),
3833 num_trbs, mem_flags);
3834 if (ret)
3835 return ret;
3838 * Check interval value. This should be done before we start to
3839 * calculate the start frame value.
3841 check_interval(xhci, urb, ep_ctx);
3843 /* Calculate the start frame and put it in urb->start_frame. */
3844 if (HCC_CFC(xhci->hcc_params) && !list_empty(&ep_ring->td_list)) {
3845 if (GET_EP_CTX_STATE(ep_ctx) == EP_STATE_RUNNING) {
3846 urb->start_frame = xep->next_frame_id;
3847 goto skip_start_over;
3851 start_frame = readl(&xhci->run_regs->microframe_index);
3852 start_frame &= 0x3fff;
3854 * Round up to the next frame and consider the time before trb really
3855 * gets scheduled by hardare.
3857 ist = HCS_IST(xhci->hcs_params2) & 0x7;
3858 if (HCS_IST(xhci->hcs_params2) & (1 << 3))
3859 ist <<= 3;
3860 start_frame += ist + XHCI_CFC_DELAY;
3861 start_frame = roundup(start_frame, 8);
3864 * Round up to the next ESIT (Endpoint Service Interval Time) if ESIT
3865 * is greate than 8 microframes.
3867 if (urb->dev->speed == USB_SPEED_LOW ||
3868 urb->dev->speed == USB_SPEED_FULL) {
3869 start_frame = roundup(start_frame, urb->interval << 3);
3870 urb->start_frame = start_frame >> 3;
3871 } else {
3872 start_frame = roundup(start_frame, urb->interval);
3873 urb->start_frame = start_frame;
3876 skip_start_over:
3877 ep_ring->num_trbs_free_temp = ep_ring->num_trbs_free;
3879 return xhci_queue_isoc_tx(xhci, mem_flags, urb, slot_id, ep_index);
3882 /**** Command Ring Operations ****/
3884 /* Generic function for queueing a command TRB on the command ring.
3885 * Check to make sure there's room on the command ring for one command TRB.
3886 * Also check that there's room reserved for commands that must not fail.
3887 * If this is a command that must not fail, meaning command_must_succeed = TRUE,
3888 * then only check for the number of reserved spots.
3889 * Don't decrement xhci->cmd_ring_reserved_trbs after we've queued the TRB
3890 * because the command event handler may want to resubmit a failed command.
3892 static int queue_command(struct xhci_hcd *xhci, struct xhci_command *cmd,
3893 u32 field1, u32 field2,
3894 u32 field3, u32 field4, bool command_must_succeed)
3896 int reserved_trbs = xhci->cmd_ring_reserved_trbs;
3897 int ret;
3899 if ((xhci->xhc_state & XHCI_STATE_DYING) ||
3900 (xhci->xhc_state & XHCI_STATE_HALTED)) {
3901 xhci_dbg(xhci, "xHCI dying or halted, can't queue_command\n");
3902 return -ESHUTDOWN;
3905 if (!command_must_succeed)
3906 reserved_trbs++;
3908 ret = prepare_ring(xhci, xhci->cmd_ring, EP_STATE_RUNNING,
3909 reserved_trbs, GFP_ATOMIC);
3910 if (ret < 0) {
3911 xhci_err(xhci, "ERR: No room for command on command ring\n");
3912 if (command_must_succeed)
3913 xhci_err(xhci, "ERR: Reserved TRB counting for "
3914 "unfailable commands failed.\n");
3915 return ret;
3918 cmd->command_trb = xhci->cmd_ring->enqueue;
3920 /* if there are no other commands queued we start the timeout timer */
3921 if (list_empty(&xhci->cmd_list)) {
3922 xhci->current_cmd = cmd;
3923 xhci_mod_cmd_timer(xhci, XHCI_CMD_DEFAULT_TIMEOUT);
3926 list_add_tail(&cmd->cmd_list, &xhci->cmd_list);
3928 queue_trb(xhci, xhci->cmd_ring, false, field1, field2, field3,
3929 field4 | xhci->cmd_ring->cycle_state);
3930 return 0;
3933 /* Queue a slot enable or disable request on the command ring */
3934 int xhci_queue_slot_control(struct xhci_hcd *xhci, struct xhci_command *cmd,
3935 u32 trb_type, u32 slot_id)
3937 return queue_command(xhci, cmd, 0, 0, 0,
3938 TRB_TYPE(trb_type) | SLOT_ID_FOR_TRB(slot_id), false);
3941 /* Queue an address device command TRB */
3942 int xhci_queue_address_device(struct xhci_hcd *xhci, struct xhci_command *cmd,
3943 dma_addr_t in_ctx_ptr, u32 slot_id, enum xhci_setup_dev setup)
3945 return queue_command(xhci, cmd, lower_32_bits(in_ctx_ptr),
3946 upper_32_bits(in_ctx_ptr), 0,
3947 TRB_TYPE(TRB_ADDR_DEV) | SLOT_ID_FOR_TRB(slot_id)
3948 | (setup == SETUP_CONTEXT_ONLY ? TRB_BSR : 0), false);
3951 int xhci_queue_vendor_command(struct xhci_hcd *xhci, struct xhci_command *cmd,
3952 u32 field1, u32 field2, u32 field3, u32 field4)
3954 return queue_command(xhci, cmd, field1, field2, field3, field4, false);
3957 /* Queue a reset device command TRB */
3958 int xhci_queue_reset_device(struct xhci_hcd *xhci, struct xhci_command *cmd,
3959 u32 slot_id)
3961 return queue_command(xhci, cmd, 0, 0, 0,
3962 TRB_TYPE(TRB_RESET_DEV) | SLOT_ID_FOR_TRB(slot_id),
3963 false);
3966 /* Queue a configure endpoint command TRB */
3967 int xhci_queue_configure_endpoint(struct xhci_hcd *xhci,
3968 struct xhci_command *cmd, dma_addr_t in_ctx_ptr,
3969 u32 slot_id, bool command_must_succeed)
3971 return queue_command(xhci, cmd, lower_32_bits(in_ctx_ptr),
3972 upper_32_bits(in_ctx_ptr), 0,
3973 TRB_TYPE(TRB_CONFIG_EP) | SLOT_ID_FOR_TRB(slot_id),
3974 command_must_succeed);
3977 /* Queue an evaluate context command TRB */
3978 int xhci_queue_evaluate_context(struct xhci_hcd *xhci, struct xhci_command *cmd,
3979 dma_addr_t in_ctx_ptr, u32 slot_id, bool command_must_succeed)
3981 return queue_command(xhci, cmd, lower_32_bits(in_ctx_ptr),
3982 upper_32_bits(in_ctx_ptr), 0,
3983 TRB_TYPE(TRB_EVAL_CONTEXT) | SLOT_ID_FOR_TRB(slot_id),
3984 command_must_succeed);
3988 * Suspend is set to indicate "Stop Endpoint Command" is being issued to stop
3989 * activity on an endpoint that is about to be suspended.
3991 int xhci_queue_stop_endpoint(struct xhci_hcd *xhci, struct xhci_command *cmd,
3992 int slot_id, unsigned int ep_index, int suspend)
3994 u32 trb_slot_id = SLOT_ID_FOR_TRB(slot_id);
3995 u32 trb_ep_index = EP_ID_FOR_TRB(ep_index);
3996 u32 type = TRB_TYPE(TRB_STOP_RING);
3997 u32 trb_suspend = SUSPEND_PORT_FOR_TRB(suspend);
3999 return queue_command(xhci, cmd, 0, 0, 0,
4000 trb_slot_id | trb_ep_index | type | trb_suspend, false);
4003 /* Set Transfer Ring Dequeue Pointer command */
4004 void xhci_queue_new_dequeue_state(struct xhci_hcd *xhci,
4005 unsigned int slot_id, unsigned int ep_index,
4006 struct xhci_dequeue_state *deq_state)
4008 dma_addr_t addr;
4009 u32 trb_slot_id = SLOT_ID_FOR_TRB(slot_id);
4010 u32 trb_ep_index = EP_ID_FOR_TRB(ep_index);
4011 u32 trb_stream_id = STREAM_ID_FOR_TRB(deq_state->stream_id);
4012 u32 trb_sct = 0;
4013 u32 type = TRB_TYPE(TRB_SET_DEQ);
4014 struct xhci_virt_ep *ep;
4015 struct xhci_command *cmd;
4016 int ret;
4018 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
4019 "Set TR Deq Ptr cmd, new deq seg = %p (0x%llx dma), new deq ptr = %p (0x%llx dma), new cycle = %u",
4020 deq_state->new_deq_seg,
4021 (unsigned long long)deq_state->new_deq_seg->dma,
4022 deq_state->new_deq_ptr,
4023 (unsigned long long)xhci_trb_virt_to_dma(
4024 deq_state->new_deq_seg, deq_state->new_deq_ptr),
4025 deq_state->new_cycle_state);
4027 addr = xhci_trb_virt_to_dma(deq_state->new_deq_seg,
4028 deq_state->new_deq_ptr);
4029 if (addr == 0) {
4030 xhci_warn(xhci, "WARN Cannot submit Set TR Deq Ptr\n");
4031 xhci_warn(xhci, "WARN deq seg = %p, deq pt = %p\n",
4032 deq_state->new_deq_seg, deq_state->new_deq_ptr);
4033 return;
4035 ep = &xhci->devs[slot_id]->eps[ep_index];
4036 if ((ep->ep_state & SET_DEQ_PENDING)) {
4037 xhci_warn(xhci, "WARN Cannot submit Set TR Deq Ptr\n");
4038 xhci_warn(xhci, "A Set TR Deq Ptr command is pending.\n");
4039 return;
4042 /* This function gets called from contexts where it cannot sleep */
4043 cmd = xhci_alloc_command(xhci, false, GFP_ATOMIC);
4044 if (!cmd)
4045 return;
4047 ep->queued_deq_seg = deq_state->new_deq_seg;
4048 ep->queued_deq_ptr = deq_state->new_deq_ptr;
4049 if (deq_state->stream_id)
4050 trb_sct = SCT_FOR_TRB(SCT_PRI_TR);
4051 ret = queue_command(xhci, cmd,
4052 lower_32_bits(addr) | trb_sct | deq_state->new_cycle_state,
4053 upper_32_bits(addr), trb_stream_id,
4054 trb_slot_id | trb_ep_index | type, false);
4055 if (ret < 0) {
4056 xhci_free_command(xhci, cmd);
4057 return;
4060 /* Stop the TD queueing code from ringing the doorbell until
4061 * this command completes. The HC won't set the dequeue pointer
4062 * if the ring is running, and ringing the doorbell starts the
4063 * ring running.
4065 ep->ep_state |= SET_DEQ_PENDING;
4068 int xhci_queue_reset_ep(struct xhci_hcd *xhci, struct xhci_command *cmd,
4069 int slot_id, unsigned int ep_index,
4070 enum xhci_ep_reset_type reset_type)
4072 u32 trb_slot_id = SLOT_ID_FOR_TRB(slot_id);
4073 u32 trb_ep_index = EP_ID_FOR_TRB(ep_index);
4074 u32 type = TRB_TYPE(TRB_RESET_EP);
4076 if (reset_type == EP_SOFT_RESET)
4077 type |= TRB_TSP;
4079 return queue_command(xhci, cmd, 0, 0, 0,
4080 trb_slot_id | trb_ep_index | type, false);