x86/topology: Fix function name in documentation
[cris-mirror.git] / include / linux / jiffies.h
blob9385aa57497b80851cbe7bfd6adc83c60f03034c
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _LINUX_JIFFIES_H
3 #define _LINUX_JIFFIES_H
5 #include <linux/cache.h>
6 #include <linux/math64.h>
7 #include <linux/kernel.h>
8 #include <linux/types.h>
9 #include <linux/time.h>
10 #include <linux/timex.h>
11 #include <asm/param.h> /* for HZ */
12 #include <generated/timeconst.h>
15 * The following defines establish the engineering parameters of the PLL
16 * model. The HZ variable establishes the timer interrupt frequency, 100 Hz
17 * for the SunOS kernel, 256 Hz for the Ultrix kernel and 1024 Hz for the
18 * OSF/1 kernel. The SHIFT_HZ define expresses the same value as the
19 * nearest power of two in order to avoid hardware multiply operations.
21 #if HZ >= 12 && HZ < 24
22 # define SHIFT_HZ 4
23 #elif HZ >= 24 && HZ < 48
24 # define SHIFT_HZ 5
25 #elif HZ >= 48 && HZ < 96
26 # define SHIFT_HZ 6
27 #elif HZ >= 96 && HZ < 192
28 # define SHIFT_HZ 7
29 #elif HZ >= 192 && HZ < 384
30 # define SHIFT_HZ 8
31 #elif HZ >= 384 && HZ < 768
32 # define SHIFT_HZ 9
33 #elif HZ >= 768 && HZ < 1536
34 # define SHIFT_HZ 10
35 #elif HZ >= 1536 && HZ < 3072
36 # define SHIFT_HZ 11
37 #elif HZ >= 3072 && HZ < 6144
38 # define SHIFT_HZ 12
39 #elif HZ >= 6144 && HZ < 12288
40 # define SHIFT_HZ 13
41 #else
42 # error Invalid value of HZ.
43 #endif
45 /* Suppose we want to divide two numbers NOM and DEN: NOM/DEN, then we can
46 * improve accuracy by shifting LSH bits, hence calculating:
47 * (NOM << LSH) / DEN
48 * This however means trouble for large NOM, because (NOM << LSH) may no
49 * longer fit in 32 bits. The following way of calculating this gives us
50 * some slack, under the following conditions:
51 * - (NOM / DEN) fits in (32 - LSH) bits.
52 * - (NOM % DEN) fits in (32 - LSH) bits.
54 #define SH_DIV(NOM,DEN,LSH) ( (((NOM) / (DEN)) << (LSH)) \
55 + ((((NOM) % (DEN)) << (LSH)) + (DEN) / 2) / (DEN))
57 /* LATCH is used in the interval timer and ftape setup. */
58 #define LATCH ((CLOCK_TICK_RATE + HZ/2) / HZ) /* For divider */
60 extern int register_refined_jiffies(long clock_tick_rate);
62 /* TICK_NSEC is the time between ticks in nsec assuming SHIFTED_HZ */
63 #define TICK_NSEC ((NSEC_PER_SEC+HZ/2)/HZ)
65 /* TICK_USEC is the time between ticks in usec assuming fake USER_HZ */
66 #define TICK_USEC ((1000000UL + USER_HZ/2) / USER_HZ)
68 #ifndef __jiffy_arch_data
69 #define __jiffy_arch_data
70 #endif
73 * The 64-bit value is not atomic - you MUST NOT read it
74 * without sampling the sequence number in jiffies_lock.
75 * get_jiffies_64() will do this for you as appropriate.
77 extern u64 __cacheline_aligned_in_smp jiffies_64;
78 extern unsigned long volatile __cacheline_aligned_in_smp __jiffy_arch_data jiffies;
80 #if (BITS_PER_LONG < 64)
81 u64 get_jiffies_64(void);
82 #else
83 static inline u64 get_jiffies_64(void)
85 return (u64)jiffies;
87 #endif
90 * These inlines deal with timer wrapping correctly. You are
91 * strongly encouraged to use them
92 * 1. Because people otherwise forget
93 * 2. Because if the timer wrap changes in future you won't have to
94 * alter your driver code.
96 * time_after(a,b) returns true if the time a is after time b.
98 * Do this with "<0" and ">=0" to only test the sign of the result. A
99 * good compiler would generate better code (and a really good compiler
100 * wouldn't care). Gcc is currently neither.
102 #define time_after(a,b) \
103 (typecheck(unsigned long, a) && \
104 typecheck(unsigned long, b) && \
105 ((long)((b) - (a)) < 0))
106 #define time_before(a,b) time_after(b,a)
108 #define time_after_eq(a,b) \
109 (typecheck(unsigned long, a) && \
110 typecheck(unsigned long, b) && \
111 ((long)((a) - (b)) >= 0))
112 #define time_before_eq(a,b) time_after_eq(b,a)
115 * Calculate whether a is in the range of [b, c].
117 #define time_in_range(a,b,c) \
118 (time_after_eq(a,b) && \
119 time_before_eq(a,c))
122 * Calculate whether a is in the range of [b, c).
124 #define time_in_range_open(a,b,c) \
125 (time_after_eq(a,b) && \
126 time_before(a,c))
128 /* Same as above, but does so with platform independent 64bit types.
129 * These must be used when utilizing jiffies_64 (i.e. return value of
130 * get_jiffies_64() */
131 #define time_after64(a,b) \
132 (typecheck(__u64, a) && \
133 typecheck(__u64, b) && \
134 ((__s64)((b) - (a)) < 0))
135 #define time_before64(a,b) time_after64(b,a)
137 #define time_after_eq64(a,b) \
138 (typecheck(__u64, a) && \
139 typecheck(__u64, b) && \
140 ((__s64)((a) - (b)) >= 0))
141 #define time_before_eq64(a,b) time_after_eq64(b,a)
143 #define time_in_range64(a, b, c) \
144 (time_after_eq64(a, b) && \
145 time_before_eq64(a, c))
148 * These four macros compare jiffies and 'a' for convenience.
151 /* time_is_before_jiffies(a) return true if a is before jiffies */
152 #define time_is_before_jiffies(a) time_after(jiffies, a)
153 #define time_is_before_jiffies64(a) time_after64(get_jiffies_64(), a)
155 /* time_is_after_jiffies(a) return true if a is after jiffies */
156 #define time_is_after_jiffies(a) time_before(jiffies, a)
157 #define time_is_after_jiffies64(a) time_before64(get_jiffies_64(), a)
159 /* time_is_before_eq_jiffies(a) return true if a is before or equal to jiffies*/
160 #define time_is_before_eq_jiffies(a) time_after_eq(jiffies, a)
161 #define time_is_before_eq_jiffies64(a) time_after_eq64(get_jiffies_64(), a)
163 /* time_is_after_eq_jiffies(a) return true if a is after or equal to jiffies*/
164 #define time_is_after_eq_jiffies(a) time_before_eq(jiffies, a)
165 #define time_is_after_eq_jiffies64(a) time_before_eq64(get_jiffies_64(), a)
168 * Have the 32 bit jiffies value wrap 5 minutes after boot
169 * so jiffies wrap bugs show up earlier.
171 #define INITIAL_JIFFIES ((unsigned long)(unsigned int) (-300*HZ))
174 * Change timeval to jiffies, trying to avoid the
175 * most obvious overflows..
177 * And some not so obvious.
179 * Note that we don't want to return LONG_MAX, because
180 * for various timeout reasons we often end up having
181 * to wait "jiffies+1" in order to guarantee that we wait
182 * at _least_ "jiffies" - so "jiffies+1" had better still
183 * be positive.
185 #define MAX_JIFFY_OFFSET ((LONG_MAX >> 1)-1)
187 extern unsigned long preset_lpj;
190 * We want to do realistic conversions of time so we need to use the same
191 * values the update wall clock code uses as the jiffies size. This value
192 * is: TICK_NSEC (which is defined in timex.h). This
193 * is a constant and is in nanoseconds. We will use scaled math
194 * with a set of scales defined here as SEC_JIFFIE_SC, USEC_JIFFIE_SC and
195 * NSEC_JIFFIE_SC. Note that these defines contain nothing but
196 * constants and so are computed at compile time. SHIFT_HZ (computed in
197 * timex.h) adjusts the scaling for different HZ values.
199 * Scaled math??? What is that?
201 * Scaled math is a way to do integer math on values that would,
202 * otherwise, either overflow, underflow, or cause undesired div
203 * instructions to appear in the execution path. In short, we "scale"
204 * up the operands so they take more bits (more precision, less
205 * underflow), do the desired operation and then "scale" the result back
206 * by the same amount. If we do the scaling by shifting we avoid the
207 * costly mpy and the dastardly div instructions.
209 * Suppose, for example, we want to convert from seconds to jiffies
210 * where jiffies is defined in nanoseconds as NSEC_PER_JIFFIE. The
211 * simple math is: jiff = (sec * NSEC_PER_SEC) / NSEC_PER_JIFFIE; We
212 * observe that (NSEC_PER_SEC / NSEC_PER_JIFFIE) is a constant which we
213 * might calculate at compile time, however, the result will only have
214 * about 3-4 bits of precision (less for smaller values of HZ).
216 * So, we scale as follows:
217 * jiff = (sec) * (NSEC_PER_SEC / NSEC_PER_JIFFIE);
218 * jiff = ((sec) * ((NSEC_PER_SEC * SCALE)/ NSEC_PER_JIFFIE)) / SCALE;
219 * Then we make SCALE a power of two so:
220 * jiff = ((sec) * ((NSEC_PER_SEC << SCALE)/ NSEC_PER_JIFFIE)) >> SCALE;
221 * Now we define:
222 * #define SEC_CONV = ((NSEC_PER_SEC << SCALE)/ NSEC_PER_JIFFIE))
223 * jiff = (sec * SEC_CONV) >> SCALE;
225 * Often the math we use will expand beyond 32-bits so we tell C how to
226 * do this and pass the 64-bit result of the mpy through the ">> SCALE"
227 * which should take the result back to 32-bits. We want this expansion
228 * to capture as much precision as possible. At the same time we don't
229 * want to overflow so we pick the SCALE to avoid this. In this file,
230 * that means using a different scale for each range of HZ values (as
231 * defined in timex.h).
233 * For those who want to know, gcc will give a 64-bit result from a "*"
234 * operator if the result is a long long AND at least one of the
235 * operands is cast to long long (usually just prior to the "*" so as
236 * not to confuse it into thinking it really has a 64-bit operand,
237 * which, buy the way, it can do, but it takes more code and at least 2
238 * mpys).
240 * We also need to be aware that one second in nanoseconds is only a
241 * couple of bits away from overflowing a 32-bit word, so we MUST use
242 * 64-bits to get the full range time in nanoseconds.
247 * Here are the scales we will use. One for seconds, nanoseconds and
248 * microseconds.
250 * Within the limits of cpp we do a rough cut at the SEC_JIFFIE_SC and
251 * check if the sign bit is set. If not, we bump the shift count by 1.
252 * (Gets an extra bit of precision where we can use it.)
253 * We know it is set for HZ = 1024 and HZ = 100 not for 1000.
254 * Haven't tested others.
256 * Limits of cpp (for #if expressions) only long (no long long), but
257 * then we only need the most signicant bit.
260 #define SEC_JIFFIE_SC (31 - SHIFT_HZ)
261 #if !((((NSEC_PER_SEC << 2) / TICK_NSEC) << (SEC_JIFFIE_SC - 2)) & 0x80000000)
262 #undef SEC_JIFFIE_SC
263 #define SEC_JIFFIE_SC (32 - SHIFT_HZ)
264 #endif
265 #define NSEC_JIFFIE_SC (SEC_JIFFIE_SC + 29)
266 #define SEC_CONVERSION ((unsigned long)((((u64)NSEC_PER_SEC << SEC_JIFFIE_SC) +\
267 TICK_NSEC -1) / (u64)TICK_NSEC))
269 #define NSEC_CONVERSION ((unsigned long)((((u64)1 << NSEC_JIFFIE_SC) +\
270 TICK_NSEC -1) / (u64)TICK_NSEC))
272 * The maximum jiffie value is (MAX_INT >> 1). Here we translate that
273 * into seconds. The 64-bit case will overflow if we are not careful,
274 * so use the messy SH_DIV macro to do it. Still all constants.
276 #if BITS_PER_LONG < 64
277 # define MAX_SEC_IN_JIFFIES \
278 (long)((u64)((u64)MAX_JIFFY_OFFSET * TICK_NSEC) / NSEC_PER_SEC)
279 #else /* take care of overflow on 64 bits machines */
280 # define MAX_SEC_IN_JIFFIES \
281 (SH_DIV((MAX_JIFFY_OFFSET >> SEC_JIFFIE_SC) * TICK_NSEC, NSEC_PER_SEC, 1) - 1)
283 #endif
286 * Convert various time units to each other:
288 extern unsigned int jiffies_to_msecs(const unsigned long j);
289 extern unsigned int jiffies_to_usecs(const unsigned long j);
291 static inline u64 jiffies_to_nsecs(const unsigned long j)
293 return (u64)jiffies_to_usecs(j) * NSEC_PER_USEC;
296 extern u64 jiffies64_to_nsecs(u64 j);
298 extern unsigned long __msecs_to_jiffies(const unsigned int m);
299 #if HZ <= MSEC_PER_SEC && !(MSEC_PER_SEC % HZ)
301 * HZ is equal to or smaller than 1000, and 1000 is a nice round
302 * multiple of HZ, divide with the factor between them, but round
303 * upwards:
305 static inline unsigned long _msecs_to_jiffies(const unsigned int m)
307 return (m + (MSEC_PER_SEC / HZ) - 1) / (MSEC_PER_SEC / HZ);
309 #elif HZ > MSEC_PER_SEC && !(HZ % MSEC_PER_SEC)
311 * HZ is larger than 1000, and HZ is a nice round multiple of 1000 -
312 * simply multiply with the factor between them.
314 * But first make sure the multiplication result cannot overflow:
316 static inline unsigned long _msecs_to_jiffies(const unsigned int m)
318 if (m > jiffies_to_msecs(MAX_JIFFY_OFFSET))
319 return MAX_JIFFY_OFFSET;
320 return m * (HZ / MSEC_PER_SEC);
322 #else
324 * Generic case - multiply, round and divide. But first check that if
325 * we are doing a net multiplication, that we wouldn't overflow:
327 static inline unsigned long _msecs_to_jiffies(const unsigned int m)
329 if (HZ > MSEC_PER_SEC && m > jiffies_to_msecs(MAX_JIFFY_OFFSET))
330 return MAX_JIFFY_OFFSET;
332 return (MSEC_TO_HZ_MUL32 * m + MSEC_TO_HZ_ADJ32) >> MSEC_TO_HZ_SHR32;
334 #endif
336 * msecs_to_jiffies: - convert milliseconds to jiffies
337 * @m: time in milliseconds
339 * conversion is done as follows:
341 * - negative values mean 'infinite timeout' (MAX_JIFFY_OFFSET)
343 * - 'too large' values [that would result in larger than
344 * MAX_JIFFY_OFFSET values] mean 'infinite timeout' too.
346 * - all other values are converted to jiffies by either multiplying
347 * the input value by a factor or dividing it with a factor and
348 * handling any 32-bit overflows.
349 * for the details see __msecs_to_jiffies()
351 * msecs_to_jiffies() checks for the passed in value being a constant
352 * via __builtin_constant_p() allowing gcc to eliminate most of the
353 * code, __msecs_to_jiffies() is called if the value passed does not
354 * allow constant folding and the actual conversion must be done at
355 * runtime.
356 * the HZ range specific helpers _msecs_to_jiffies() are called both
357 * directly here and from __msecs_to_jiffies() in the case where
358 * constant folding is not possible.
360 static __always_inline unsigned long msecs_to_jiffies(const unsigned int m)
362 if (__builtin_constant_p(m)) {
363 if ((int)m < 0)
364 return MAX_JIFFY_OFFSET;
365 return _msecs_to_jiffies(m);
366 } else {
367 return __msecs_to_jiffies(m);
371 extern unsigned long __usecs_to_jiffies(const unsigned int u);
372 #if !(USEC_PER_SEC % HZ)
373 static inline unsigned long _usecs_to_jiffies(const unsigned int u)
375 return (u + (USEC_PER_SEC / HZ) - 1) / (USEC_PER_SEC / HZ);
377 #else
378 static inline unsigned long _usecs_to_jiffies(const unsigned int u)
380 return (USEC_TO_HZ_MUL32 * u + USEC_TO_HZ_ADJ32)
381 >> USEC_TO_HZ_SHR32;
383 #endif
386 * usecs_to_jiffies: - convert microseconds to jiffies
387 * @u: time in microseconds
389 * conversion is done as follows:
391 * - 'too large' values [that would result in larger than
392 * MAX_JIFFY_OFFSET values] mean 'infinite timeout' too.
394 * - all other values are converted to jiffies by either multiplying
395 * the input value by a factor or dividing it with a factor and
396 * handling any 32-bit overflows as for msecs_to_jiffies.
398 * usecs_to_jiffies() checks for the passed in value being a constant
399 * via __builtin_constant_p() allowing gcc to eliminate most of the
400 * code, __usecs_to_jiffies() is called if the value passed does not
401 * allow constant folding and the actual conversion must be done at
402 * runtime.
403 * the HZ range specific helpers _usecs_to_jiffies() are called both
404 * directly here and from __msecs_to_jiffies() in the case where
405 * constant folding is not possible.
407 static __always_inline unsigned long usecs_to_jiffies(const unsigned int u)
409 if (__builtin_constant_p(u)) {
410 if (u > jiffies_to_usecs(MAX_JIFFY_OFFSET))
411 return MAX_JIFFY_OFFSET;
412 return _usecs_to_jiffies(u);
413 } else {
414 return __usecs_to_jiffies(u);
418 extern unsigned long timespec64_to_jiffies(const struct timespec64 *value);
419 extern void jiffies_to_timespec64(const unsigned long jiffies,
420 struct timespec64 *value);
421 static inline unsigned long timespec_to_jiffies(const struct timespec *value)
423 struct timespec64 ts = timespec_to_timespec64(*value);
425 return timespec64_to_jiffies(&ts);
428 static inline void jiffies_to_timespec(const unsigned long jiffies,
429 struct timespec *value)
431 struct timespec64 ts;
433 jiffies_to_timespec64(jiffies, &ts);
434 *value = timespec64_to_timespec(ts);
437 extern unsigned long timeval_to_jiffies(const struct timeval *value);
438 extern void jiffies_to_timeval(const unsigned long jiffies,
439 struct timeval *value);
441 extern clock_t jiffies_to_clock_t(unsigned long x);
442 static inline clock_t jiffies_delta_to_clock_t(long delta)
444 return jiffies_to_clock_t(max(0L, delta));
447 extern unsigned long clock_t_to_jiffies(unsigned long x);
448 extern u64 jiffies_64_to_clock_t(u64 x);
449 extern u64 nsec_to_clock_t(u64 x);
450 extern u64 nsecs_to_jiffies64(u64 n);
451 extern unsigned long nsecs_to_jiffies(u64 n);
453 #define TIMESTAMP_SIZE 30
455 #endif