1 // SPDX-License-Identifier: GPL-2.0
2 #include <linux/ceph/ceph_debug.h>
4 #include <linux/crc32c.h>
5 #include <linux/ctype.h>
6 #include <linux/highmem.h>
7 #include <linux/inet.h>
8 #include <linux/kthread.h>
10 #include <linux/nsproxy.h>
11 #include <linux/sched/mm.h>
12 #include <linux/slab.h>
13 #include <linux/socket.h>
14 #include <linux/string.h>
16 #include <linux/bio.h>
17 #endif /* CONFIG_BLOCK */
18 #include <linux/dns_resolver.h>
21 #include <linux/ceph/ceph_features.h>
22 #include <linux/ceph/libceph.h>
23 #include <linux/ceph/messenger.h>
24 #include <linux/ceph/decode.h>
25 #include <linux/ceph/pagelist.h>
26 #include <linux/export.h>
29 * Ceph uses the messenger to exchange ceph_msg messages with other
30 * hosts in the system. The messenger provides ordered and reliable
31 * delivery. We tolerate TCP disconnects by reconnecting (with
32 * exponential backoff) in the case of a fault (disconnection, bad
33 * crc, protocol error). Acks allow sent messages to be discarded by
38 * We track the state of the socket on a given connection using
39 * values defined below. The transition to a new socket state is
40 * handled by a function which verifies we aren't coming from an
44 * | NEW* | transient initial state
46 * | con_sock_state_init()
49 * | CLOSED | initialized, but no socket (and no
50 * ---------- TCP connection)
52 * | \ con_sock_state_connecting()
53 * | ----------------------
55 * + con_sock_state_closed() \
56 * |+--------------------------- \
59 * | | CLOSING | socket event; \ \
60 * | ----------- await close \ \
63 * | + con_sock_state_closing() \ |
65 * | / --------------- | |
68 * | / -----------------| CONNECTING | socket created, TCP
69 * | | / -------------- connect initiated
70 * | | | con_sock_state_connected()
73 * | CONNECTED | TCP connection established
76 * State values for ceph_connection->sock_state; NEW is assumed to be 0.
79 #define CON_SOCK_STATE_NEW 0 /* -> CLOSED */
80 #define CON_SOCK_STATE_CLOSED 1 /* -> CONNECTING */
81 #define CON_SOCK_STATE_CONNECTING 2 /* -> CONNECTED or -> CLOSING */
82 #define CON_SOCK_STATE_CONNECTED 3 /* -> CLOSING or -> CLOSED */
83 #define CON_SOCK_STATE_CLOSING 4 /* -> CLOSED */
88 #define CON_STATE_CLOSED 1 /* -> PREOPEN */
89 #define CON_STATE_PREOPEN 2 /* -> CONNECTING, CLOSED */
90 #define CON_STATE_CONNECTING 3 /* -> NEGOTIATING, CLOSED */
91 #define CON_STATE_NEGOTIATING 4 /* -> OPEN, CLOSED */
92 #define CON_STATE_OPEN 5 /* -> STANDBY, CLOSED */
93 #define CON_STATE_STANDBY 6 /* -> PREOPEN, CLOSED */
96 * ceph_connection flag bits
98 #define CON_FLAG_LOSSYTX 0 /* we can close channel or drop
99 * messages on errors */
100 #define CON_FLAG_KEEPALIVE_PENDING 1 /* we need to send a keepalive */
101 #define CON_FLAG_WRITE_PENDING 2 /* we have data ready to send */
102 #define CON_FLAG_SOCK_CLOSED 3 /* socket state changed to closed */
103 #define CON_FLAG_BACKOFF 4 /* need to retry queuing delayed work */
105 static bool con_flag_valid(unsigned long con_flag
)
108 case CON_FLAG_LOSSYTX
:
109 case CON_FLAG_KEEPALIVE_PENDING
:
110 case CON_FLAG_WRITE_PENDING
:
111 case CON_FLAG_SOCK_CLOSED
:
112 case CON_FLAG_BACKOFF
:
119 static void con_flag_clear(struct ceph_connection
*con
, unsigned long con_flag
)
121 BUG_ON(!con_flag_valid(con_flag
));
123 clear_bit(con_flag
, &con
->flags
);
126 static void con_flag_set(struct ceph_connection
*con
, unsigned long con_flag
)
128 BUG_ON(!con_flag_valid(con_flag
));
130 set_bit(con_flag
, &con
->flags
);
133 static bool con_flag_test(struct ceph_connection
*con
, unsigned long con_flag
)
135 BUG_ON(!con_flag_valid(con_flag
));
137 return test_bit(con_flag
, &con
->flags
);
140 static bool con_flag_test_and_clear(struct ceph_connection
*con
,
141 unsigned long con_flag
)
143 BUG_ON(!con_flag_valid(con_flag
));
145 return test_and_clear_bit(con_flag
, &con
->flags
);
148 static bool con_flag_test_and_set(struct ceph_connection
*con
,
149 unsigned long con_flag
)
151 BUG_ON(!con_flag_valid(con_flag
));
153 return test_and_set_bit(con_flag
, &con
->flags
);
156 /* Slab caches for frequently-allocated structures */
158 static struct kmem_cache
*ceph_msg_cache
;
159 static struct kmem_cache
*ceph_msg_data_cache
;
161 /* static tag bytes (protocol control messages) */
162 static char tag_msg
= CEPH_MSGR_TAG_MSG
;
163 static char tag_ack
= CEPH_MSGR_TAG_ACK
;
164 static char tag_keepalive
= CEPH_MSGR_TAG_KEEPALIVE
;
165 static char tag_keepalive2
= CEPH_MSGR_TAG_KEEPALIVE2
;
167 #ifdef CONFIG_LOCKDEP
168 static struct lock_class_key socket_class
;
172 * When skipping (ignoring) a block of input we read it into a "skip
173 * buffer," which is this many bytes in size.
175 #define SKIP_BUF_SIZE 1024
177 static void queue_con(struct ceph_connection
*con
);
178 static void cancel_con(struct ceph_connection
*con
);
179 static void ceph_con_workfn(struct work_struct
*);
180 static void con_fault(struct ceph_connection
*con
);
183 * Nicely render a sockaddr as a string. An array of formatted
184 * strings is used, to approximate reentrancy.
186 #define ADDR_STR_COUNT_LOG 5 /* log2(# address strings in array) */
187 #define ADDR_STR_COUNT (1 << ADDR_STR_COUNT_LOG)
188 #define ADDR_STR_COUNT_MASK (ADDR_STR_COUNT - 1)
189 #define MAX_ADDR_STR_LEN 64 /* 54 is enough */
191 static char addr_str
[ADDR_STR_COUNT
][MAX_ADDR_STR_LEN
];
192 static atomic_t addr_str_seq
= ATOMIC_INIT(0);
194 static struct page
*zero_page
; /* used in certain error cases */
196 const char *ceph_pr_addr(const struct sockaddr_storage
*ss
)
200 struct sockaddr_in
*in4
= (struct sockaddr_in
*) ss
;
201 struct sockaddr_in6
*in6
= (struct sockaddr_in6
*) ss
;
203 i
= atomic_inc_return(&addr_str_seq
) & ADDR_STR_COUNT_MASK
;
206 switch (ss
->ss_family
) {
208 snprintf(s
, MAX_ADDR_STR_LEN
, "%pI4:%hu", &in4
->sin_addr
,
209 ntohs(in4
->sin_port
));
213 snprintf(s
, MAX_ADDR_STR_LEN
, "[%pI6c]:%hu", &in6
->sin6_addr
,
214 ntohs(in6
->sin6_port
));
218 snprintf(s
, MAX_ADDR_STR_LEN
, "(unknown sockaddr family %hu)",
224 EXPORT_SYMBOL(ceph_pr_addr
);
226 static void encode_my_addr(struct ceph_messenger
*msgr
)
228 memcpy(&msgr
->my_enc_addr
, &msgr
->inst
.addr
, sizeof(msgr
->my_enc_addr
));
229 ceph_encode_addr(&msgr
->my_enc_addr
);
233 * work queue for all reading and writing to/from the socket.
235 static struct workqueue_struct
*ceph_msgr_wq
;
237 static int ceph_msgr_slab_init(void)
239 BUG_ON(ceph_msg_cache
);
240 ceph_msg_cache
= KMEM_CACHE(ceph_msg
, 0);
244 BUG_ON(ceph_msg_data_cache
);
245 ceph_msg_data_cache
= KMEM_CACHE(ceph_msg_data
, 0);
246 if (ceph_msg_data_cache
)
249 kmem_cache_destroy(ceph_msg_cache
);
250 ceph_msg_cache
= NULL
;
255 static void ceph_msgr_slab_exit(void)
257 BUG_ON(!ceph_msg_data_cache
);
258 kmem_cache_destroy(ceph_msg_data_cache
);
259 ceph_msg_data_cache
= NULL
;
261 BUG_ON(!ceph_msg_cache
);
262 kmem_cache_destroy(ceph_msg_cache
);
263 ceph_msg_cache
= NULL
;
266 static void _ceph_msgr_exit(void)
269 destroy_workqueue(ceph_msgr_wq
);
273 BUG_ON(zero_page
== NULL
);
277 ceph_msgr_slab_exit();
280 int ceph_msgr_init(void)
282 if (ceph_msgr_slab_init())
285 BUG_ON(zero_page
!= NULL
);
286 zero_page
= ZERO_PAGE(0);
290 * The number of active work items is limited by the number of
291 * connections, so leave @max_active at default.
293 ceph_msgr_wq
= alloc_workqueue("ceph-msgr", WQ_MEM_RECLAIM
, 0);
297 pr_err("msgr_init failed to create workqueue\n");
302 EXPORT_SYMBOL(ceph_msgr_init
);
304 void ceph_msgr_exit(void)
306 BUG_ON(ceph_msgr_wq
== NULL
);
310 EXPORT_SYMBOL(ceph_msgr_exit
);
312 void ceph_msgr_flush(void)
314 flush_workqueue(ceph_msgr_wq
);
316 EXPORT_SYMBOL(ceph_msgr_flush
);
318 /* Connection socket state transition functions */
320 static void con_sock_state_init(struct ceph_connection
*con
)
324 old_state
= atomic_xchg(&con
->sock_state
, CON_SOCK_STATE_CLOSED
);
325 if (WARN_ON(old_state
!= CON_SOCK_STATE_NEW
))
326 printk("%s: unexpected old state %d\n", __func__
, old_state
);
327 dout("%s con %p sock %d -> %d\n", __func__
, con
, old_state
,
328 CON_SOCK_STATE_CLOSED
);
331 static void con_sock_state_connecting(struct ceph_connection
*con
)
335 old_state
= atomic_xchg(&con
->sock_state
, CON_SOCK_STATE_CONNECTING
);
336 if (WARN_ON(old_state
!= CON_SOCK_STATE_CLOSED
))
337 printk("%s: unexpected old state %d\n", __func__
, old_state
);
338 dout("%s con %p sock %d -> %d\n", __func__
, con
, old_state
,
339 CON_SOCK_STATE_CONNECTING
);
342 static void con_sock_state_connected(struct ceph_connection
*con
)
346 old_state
= atomic_xchg(&con
->sock_state
, CON_SOCK_STATE_CONNECTED
);
347 if (WARN_ON(old_state
!= CON_SOCK_STATE_CONNECTING
))
348 printk("%s: unexpected old state %d\n", __func__
, old_state
);
349 dout("%s con %p sock %d -> %d\n", __func__
, con
, old_state
,
350 CON_SOCK_STATE_CONNECTED
);
353 static void con_sock_state_closing(struct ceph_connection
*con
)
357 old_state
= atomic_xchg(&con
->sock_state
, CON_SOCK_STATE_CLOSING
);
358 if (WARN_ON(old_state
!= CON_SOCK_STATE_CONNECTING
&&
359 old_state
!= CON_SOCK_STATE_CONNECTED
&&
360 old_state
!= CON_SOCK_STATE_CLOSING
))
361 printk("%s: unexpected old state %d\n", __func__
, old_state
);
362 dout("%s con %p sock %d -> %d\n", __func__
, con
, old_state
,
363 CON_SOCK_STATE_CLOSING
);
366 static void con_sock_state_closed(struct ceph_connection
*con
)
370 old_state
= atomic_xchg(&con
->sock_state
, CON_SOCK_STATE_CLOSED
);
371 if (WARN_ON(old_state
!= CON_SOCK_STATE_CONNECTED
&&
372 old_state
!= CON_SOCK_STATE_CLOSING
&&
373 old_state
!= CON_SOCK_STATE_CONNECTING
&&
374 old_state
!= CON_SOCK_STATE_CLOSED
))
375 printk("%s: unexpected old state %d\n", __func__
, old_state
);
376 dout("%s con %p sock %d -> %d\n", __func__
, con
, old_state
,
377 CON_SOCK_STATE_CLOSED
);
381 * socket callback functions
384 /* data available on socket, or listen socket received a connect */
385 static void ceph_sock_data_ready(struct sock
*sk
)
387 struct ceph_connection
*con
= sk
->sk_user_data
;
388 if (atomic_read(&con
->msgr
->stopping
)) {
392 if (sk
->sk_state
!= TCP_CLOSE_WAIT
) {
393 dout("%s on %p state = %lu, queueing work\n", __func__
,
399 /* socket has buffer space for writing */
400 static void ceph_sock_write_space(struct sock
*sk
)
402 struct ceph_connection
*con
= sk
->sk_user_data
;
404 /* only queue to workqueue if there is data we want to write,
405 * and there is sufficient space in the socket buffer to accept
406 * more data. clear SOCK_NOSPACE so that ceph_sock_write_space()
407 * doesn't get called again until try_write() fills the socket
408 * buffer. See net/ipv4/tcp_input.c:tcp_check_space()
409 * and net/core/stream.c:sk_stream_write_space().
411 if (con_flag_test(con
, CON_FLAG_WRITE_PENDING
)) {
412 if (sk_stream_is_writeable(sk
)) {
413 dout("%s %p queueing write work\n", __func__
, con
);
414 clear_bit(SOCK_NOSPACE
, &sk
->sk_socket
->flags
);
418 dout("%s %p nothing to write\n", __func__
, con
);
422 /* socket's state has changed */
423 static void ceph_sock_state_change(struct sock
*sk
)
425 struct ceph_connection
*con
= sk
->sk_user_data
;
427 dout("%s %p state = %lu sk_state = %u\n", __func__
,
428 con
, con
->state
, sk
->sk_state
);
430 switch (sk
->sk_state
) {
432 dout("%s TCP_CLOSE\n", __func__
);
435 dout("%s TCP_CLOSE_WAIT\n", __func__
);
436 con_sock_state_closing(con
);
437 con_flag_set(con
, CON_FLAG_SOCK_CLOSED
);
440 case TCP_ESTABLISHED
:
441 dout("%s TCP_ESTABLISHED\n", __func__
);
442 con_sock_state_connected(con
);
445 default: /* Everything else is uninteresting */
451 * set up socket callbacks
453 static void set_sock_callbacks(struct socket
*sock
,
454 struct ceph_connection
*con
)
456 struct sock
*sk
= sock
->sk
;
457 sk
->sk_user_data
= con
;
458 sk
->sk_data_ready
= ceph_sock_data_ready
;
459 sk
->sk_write_space
= ceph_sock_write_space
;
460 sk
->sk_state_change
= ceph_sock_state_change
;
469 * initiate connection to a remote socket.
471 static int ceph_tcp_connect(struct ceph_connection
*con
)
473 struct sockaddr_storage
*paddr
= &con
->peer_addr
.in_addr
;
475 unsigned int noio_flag
;
480 /* sock_create_kern() allocates with GFP_KERNEL */
481 noio_flag
= memalloc_noio_save();
482 ret
= sock_create_kern(read_pnet(&con
->msgr
->net
), paddr
->ss_family
,
483 SOCK_STREAM
, IPPROTO_TCP
, &sock
);
484 memalloc_noio_restore(noio_flag
);
487 sock
->sk
->sk_allocation
= GFP_NOFS
;
489 #ifdef CONFIG_LOCKDEP
490 lockdep_set_class(&sock
->sk
->sk_lock
, &socket_class
);
493 set_sock_callbacks(sock
, con
);
495 dout("connect %s\n", ceph_pr_addr(&con
->peer_addr
.in_addr
));
497 con_sock_state_connecting(con
);
498 ret
= sock
->ops
->connect(sock
, (struct sockaddr
*)paddr
, sizeof(*paddr
),
500 if (ret
== -EINPROGRESS
) {
501 dout("connect %s EINPROGRESS sk_state = %u\n",
502 ceph_pr_addr(&con
->peer_addr
.in_addr
),
504 } else if (ret
< 0) {
505 pr_err("connect %s error %d\n",
506 ceph_pr_addr(&con
->peer_addr
.in_addr
), ret
);
511 if (ceph_test_opt(from_msgr(con
->msgr
), TCP_NODELAY
)) {
514 ret
= kernel_setsockopt(sock
, SOL_TCP
, TCP_NODELAY
,
515 (char *)&optval
, sizeof(optval
));
517 pr_err("kernel_setsockopt(TCP_NODELAY) failed: %d",
525 static int ceph_tcp_recvmsg(struct socket
*sock
, void *buf
, size_t len
)
527 struct kvec iov
= {buf
, len
};
528 struct msghdr msg
= { .msg_flags
= MSG_DONTWAIT
| MSG_NOSIGNAL
};
531 iov_iter_kvec(&msg
.msg_iter
, READ
| ITER_KVEC
, &iov
, 1, len
);
532 r
= sock_recvmsg(sock
, &msg
, msg
.msg_flags
);
538 static int ceph_tcp_recvpage(struct socket
*sock
, struct page
*page
,
539 int page_offset
, size_t length
)
541 struct bio_vec bvec
= {
543 .bv_offset
= page_offset
,
546 struct msghdr msg
= { .msg_flags
= MSG_DONTWAIT
| MSG_NOSIGNAL
};
549 BUG_ON(page_offset
+ length
> PAGE_SIZE
);
550 iov_iter_bvec(&msg
.msg_iter
, READ
| ITER_BVEC
, &bvec
, 1, length
);
551 r
= sock_recvmsg(sock
, &msg
, msg
.msg_flags
);
558 * write something. @more is true if caller will be sending more data
561 static int ceph_tcp_sendmsg(struct socket
*sock
, struct kvec
*iov
,
562 size_t kvlen
, size_t len
, int more
)
564 struct msghdr msg
= { .msg_flags
= MSG_DONTWAIT
| MSG_NOSIGNAL
};
568 msg
.msg_flags
|= MSG_MORE
;
570 msg
.msg_flags
|= MSG_EOR
; /* superfluous, but what the hell */
572 r
= kernel_sendmsg(sock
, &msg
, iov
, kvlen
, len
);
578 static int __ceph_tcp_sendpage(struct socket
*sock
, struct page
*page
,
579 int offset
, size_t size
, bool more
)
581 int flags
= MSG_DONTWAIT
| MSG_NOSIGNAL
| (more
? MSG_MORE
: MSG_EOR
);
584 ret
= kernel_sendpage(sock
, page
, offset
, size
, flags
);
591 static int ceph_tcp_sendpage(struct socket
*sock
, struct page
*page
,
592 int offset
, size_t size
, bool more
)
594 struct msghdr msg
= { .msg_flags
= MSG_DONTWAIT
| MSG_NOSIGNAL
};
598 /* sendpage cannot properly handle pages with page_count == 0,
599 * we need to fallback to sendmsg if that's the case */
600 if (page_count(page
) >= 1)
601 return __ceph_tcp_sendpage(sock
, page
, offset
, size
, more
);
604 bvec
.bv_offset
= offset
;
608 msg
.msg_flags
|= MSG_MORE
;
610 msg
.msg_flags
|= MSG_EOR
; /* superfluous, but what the hell */
612 iov_iter_bvec(&msg
.msg_iter
, WRITE
| ITER_BVEC
, &bvec
, 1, size
);
613 ret
= sock_sendmsg(sock
, &msg
);
621 * Shutdown/close the socket for the given connection.
623 static int con_close_socket(struct ceph_connection
*con
)
627 dout("con_close_socket on %p sock %p\n", con
, con
->sock
);
629 rc
= con
->sock
->ops
->shutdown(con
->sock
, SHUT_RDWR
);
630 sock_release(con
->sock
);
635 * Forcibly clear the SOCK_CLOSED flag. It gets set
636 * independent of the connection mutex, and we could have
637 * received a socket close event before we had the chance to
638 * shut the socket down.
640 con_flag_clear(con
, CON_FLAG_SOCK_CLOSED
);
642 con_sock_state_closed(con
);
647 * Reset a connection. Discard all incoming and outgoing messages
648 * and clear *_seq state.
650 static void ceph_msg_remove(struct ceph_msg
*msg
)
652 list_del_init(&msg
->list_head
);
656 static void ceph_msg_remove_list(struct list_head
*head
)
658 while (!list_empty(head
)) {
659 struct ceph_msg
*msg
= list_first_entry(head
, struct ceph_msg
,
661 ceph_msg_remove(msg
);
665 static void reset_connection(struct ceph_connection
*con
)
667 /* reset connection, out_queue, msg_ and connect_seq */
668 /* discard existing out_queue and msg_seq */
669 dout("reset_connection %p\n", con
);
670 ceph_msg_remove_list(&con
->out_queue
);
671 ceph_msg_remove_list(&con
->out_sent
);
674 BUG_ON(con
->in_msg
->con
!= con
);
675 ceph_msg_put(con
->in_msg
);
679 con
->connect_seq
= 0;
682 BUG_ON(con
->out_msg
->con
!= con
);
683 ceph_msg_put(con
->out_msg
);
687 con
->in_seq_acked
= 0;
693 * mark a peer down. drop any open connections.
695 void ceph_con_close(struct ceph_connection
*con
)
697 mutex_lock(&con
->mutex
);
698 dout("con_close %p peer %s\n", con
,
699 ceph_pr_addr(&con
->peer_addr
.in_addr
));
700 con
->state
= CON_STATE_CLOSED
;
702 con_flag_clear(con
, CON_FLAG_LOSSYTX
); /* so we retry next connect */
703 con_flag_clear(con
, CON_FLAG_KEEPALIVE_PENDING
);
704 con_flag_clear(con
, CON_FLAG_WRITE_PENDING
);
705 con_flag_clear(con
, CON_FLAG_BACKOFF
);
707 reset_connection(con
);
708 con
->peer_global_seq
= 0;
710 con_close_socket(con
);
711 mutex_unlock(&con
->mutex
);
713 EXPORT_SYMBOL(ceph_con_close
);
716 * Reopen a closed connection, with a new peer address.
718 void ceph_con_open(struct ceph_connection
*con
,
719 __u8 entity_type
, __u64 entity_num
,
720 struct ceph_entity_addr
*addr
)
722 mutex_lock(&con
->mutex
);
723 dout("con_open %p %s\n", con
, ceph_pr_addr(&addr
->in_addr
));
725 WARN_ON(con
->state
!= CON_STATE_CLOSED
);
726 con
->state
= CON_STATE_PREOPEN
;
728 con
->peer_name
.type
= (__u8
) entity_type
;
729 con
->peer_name
.num
= cpu_to_le64(entity_num
);
731 memcpy(&con
->peer_addr
, addr
, sizeof(*addr
));
732 con
->delay
= 0; /* reset backoff memory */
733 mutex_unlock(&con
->mutex
);
736 EXPORT_SYMBOL(ceph_con_open
);
739 * return true if this connection ever successfully opened
741 bool ceph_con_opened(struct ceph_connection
*con
)
743 return con
->connect_seq
> 0;
747 * initialize a new connection.
749 void ceph_con_init(struct ceph_connection
*con
, void *private,
750 const struct ceph_connection_operations
*ops
,
751 struct ceph_messenger
*msgr
)
753 dout("con_init %p\n", con
);
754 memset(con
, 0, sizeof(*con
));
755 con
->private = private;
759 con_sock_state_init(con
);
761 mutex_init(&con
->mutex
);
762 INIT_LIST_HEAD(&con
->out_queue
);
763 INIT_LIST_HEAD(&con
->out_sent
);
764 INIT_DELAYED_WORK(&con
->work
, ceph_con_workfn
);
766 con
->state
= CON_STATE_CLOSED
;
768 EXPORT_SYMBOL(ceph_con_init
);
772 * We maintain a global counter to order connection attempts. Get
773 * a unique seq greater than @gt.
775 static u32
get_global_seq(struct ceph_messenger
*msgr
, u32 gt
)
779 spin_lock(&msgr
->global_seq_lock
);
780 if (msgr
->global_seq
< gt
)
781 msgr
->global_seq
= gt
;
782 ret
= ++msgr
->global_seq
;
783 spin_unlock(&msgr
->global_seq_lock
);
787 static void con_out_kvec_reset(struct ceph_connection
*con
)
789 BUG_ON(con
->out_skip
);
791 con
->out_kvec_left
= 0;
792 con
->out_kvec_bytes
= 0;
793 con
->out_kvec_cur
= &con
->out_kvec
[0];
796 static void con_out_kvec_add(struct ceph_connection
*con
,
797 size_t size
, void *data
)
799 int index
= con
->out_kvec_left
;
801 BUG_ON(con
->out_skip
);
802 BUG_ON(index
>= ARRAY_SIZE(con
->out_kvec
));
804 con
->out_kvec
[index
].iov_len
= size
;
805 con
->out_kvec
[index
].iov_base
= data
;
806 con
->out_kvec_left
++;
807 con
->out_kvec_bytes
+= size
;
811 * Chop off a kvec from the end. Return residual number of bytes for
812 * that kvec, i.e. how many bytes would have been written if the kvec
815 static int con_out_kvec_skip(struct ceph_connection
*con
)
817 int off
= con
->out_kvec_cur
- con
->out_kvec
;
820 if (con
->out_kvec_bytes
> 0) {
821 skip
= con
->out_kvec
[off
+ con
->out_kvec_left
- 1].iov_len
;
822 BUG_ON(con
->out_kvec_bytes
< skip
);
823 BUG_ON(!con
->out_kvec_left
);
824 con
->out_kvec_bytes
-= skip
;
825 con
->out_kvec_left
--;
834 * For a bio data item, a piece is whatever remains of the next
835 * entry in the current bio iovec, or the first entry in the next
838 static void ceph_msg_data_bio_cursor_init(struct ceph_msg_data_cursor
*cursor
,
841 struct ceph_msg_data
*data
= cursor
->data
;
844 BUG_ON(data
->type
!= CEPH_MSG_DATA_BIO
);
849 cursor
->resid
= min(length
, data
->bio_length
);
851 cursor
->bvec_iter
= bio
->bi_iter
;
853 cursor
->resid
<= bio_iter_len(bio
, cursor
->bvec_iter
);
856 static struct page
*ceph_msg_data_bio_next(struct ceph_msg_data_cursor
*cursor
,
860 struct ceph_msg_data
*data
= cursor
->data
;
862 struct bio_vec bio_vec
;
864 BUG_ON(data
->type
!= CEPH_MSG_DATA_BIO
);
869 bio_vec
= bio_iter_iovec(bio
, cursor
->bvec_iter
);
871 *page_offset
= (size_t) bio_vec
.bv_offset
;
872 BUG_ON(*page_offset
>= PAGE_SIZE
);
873 if (cursor
->last_piece
) /* pagelist offset is always 0 */
874 *length
= cursor
->resid
;
876 *length
= (size_t) bio_vec
.bv_len
;
877 BUG_ON(*length
> cursor
->resid
);
878 BUG_ON(*page_offset
+ *length
> PAGE_SIZE
);
880 return bio_vec
.bv_page
;
883 static bool ceph_msg_data_bio_advance(struct ceph_msg_data_cursor
*cursor
,
887 struct bio_vec bio_vec
;
889 BUG_ON(cursor
->data
->type
!= CEPH_MSG_DATA_BIO
);
894 bio_vec
= bio_iter_iovec(bio
, cursor
->bvec_iter
);
896 /* Advance the cursor offset */
898 BUG_ON(cursor
->resid
< bytes
);
899 cursor
->resid
-= bytes
;
901 bio_advance_iter(bio
, &cursor
->bvec_iter
, bytes
);
903 if (bytes
< bio_vec
.bv_len
)
904 return false; /* more bytes to process in this segment */
906 /* Move on to the next segment, and possibly the next bio */
908 if (!cursor
->bvec_iter
.bi_size
) {
912 cursor
->bvec_iter
= bio
->bi_iter
;
914 memset(&cursor
->bvec_iter
, 0,
915 sizeof(cursor
->bvec_iter
));
918 if (!cursor
->last_piece
) {
919 BUG_ON(!cursor
->resid
);
921 /* A short read is OK, so use <= rather than == */
922 if (cursor
->resid
<= bio_iter_len(bio
, cursor
->bvec_iter
))
923 cursor
->last_piece
= true;
928 #endif /* CONFIG_BLOCK */
931 * For a page array, a piece comes from the first page in the array
932 * that has not already been fully consumed.
934 static void ceph_msg_data_pages_cursor_init(struct ceph_msg_data_cursor
*cursor
,
937 struct ceph_msg_data
*data
= cursor
->data
;
940 BUG_ON(data
->type
!= CEPH_MSG_DATA_PAGES
);
942 BUG_ON(!data
->pages
);
943 BUG_ON(!data
->length
);
945 cursor
->resid
= min(length
, data
->length
);
946 page_count
= calc_pages_for(data
->alignment
, (u64
)data
->length
);
947 cursor
->page_offset
= data
->alignment
& ~PAGE_MASK
;
948 cursor
->page_index
= 0;
949 BUG_ON(page_count
> (int)USHRT_MAX
);
950 cursor
->page_count
= (unsigned short)page_count
;
951 BUG_ON(length
> SIZE_MAX
- cursor
->page_offset
);
952 cursor
->last_piece
= cursor
->page_offset
+ cursor
->resid
<= PAGE_SIZE
;
956 ceph_msg_data_pages_next(struct ceph_msg_data_cursor
*cursor
,
957 size_t *page_offset
, size_t *length
)
959 struct ceph_msg_data
*data
= cursor
->data
;
961 BUG_ON(data
->type
!= CEPH_MSG_DATA_PAGES
);
963 BUG_ON(cursor
->page_index
>= cursor
->page_count
);
964 BUG_ON(cursor
->page_offset
>= PAGE_SIZE
);
966 *page_offset
= cursor
->page_offset
;
967 if (cursor
->last_piece
)
968 *length
= cursor
->resid
;
970 *length
= PAGE_SIZE
- *page_offset
;
972 return data
->pages
[cursor
->page_index
];
975 static bool ceph_msg_data_pages_advance(struct ceph_msg_data_cursor
*cursor
,
978 BUG_ON(cursor
->data
->type
!= CEPH_MSG_DATA_PAGES
);
980 BUG_ON(cursor
->page_offset
+ bytes
> PAGE_SIZE
);
982 /* Advance the cursor page offset */
984 cursor
->resid
-= bytes
;
985 cursor
->page_offset
= (cursor
->page_offset
+ bytes
) & ~PAGE_MASK
;
986 if (!bytes
|| cursor
->page_offset
)
987 return false; /* more bytes to process in the current page */
990 return false; /* no more data */
992 /* Move on to the next page; offset is already at 0 */
994 BUG_ON(cursor
->page_index
>= cursor
->page_count
);
995 cursor
->page_index
++;
996 cursor
->last_piece
= cursor
->resid
<= PAGE_SIZE
;
1002 * For a pagelist, a piece is whatever remains to be consumed in the
1003 * first page in the list, or the front of the next page.
1006 ceph_msg_data_pagelist_cursor_init(struct ceph_msg_data_cursor
*cursor
,
1009 struct ceph_msg_data
*data
= cursor
->data
;
1010 struct ceph_pagelist
*pagelist
;
1013 BUG_ON(data
->type
!= CEPH_MSG_DATA_PAGELIST
);
1015 pagelist
= data
->pagelist
;
1019 return; /* pagelist can be assigned but empty */
1021 BUG_ON(list_empty(&pagelist
->head
));
1022 page
= list_first_entry(&pagelist
->head
, struct page
, lru
);
1024 cursor
->resid
= min(length
, pagelist
->length
);
1025 cursor
->page
= page
;
1027 cursor
->last_piece
= cursor
->resid
<= PAGE_SIZE
;
1030 static struct page
*
1031 ceph_msg_data_pagelist_next(struct ceph_msg_data_cursor
*cursor
,
1032 size_t *page_offset
, size_t *length
)
1034 struct ceph_msg_data
*data
= cursor
->data
;
1035 struct ceph_pagelist
*pagelist
;
1037 BUG_ON(data
->type
!= CEPH_MSG_DATA_PAGELIST
);
1039 pagelist
= data
->pagelist
;
1042 BUG_ON(!cursor
->page
);
1043 BUG_ON(cursor
->offset
+ cursor
->resid
!= pagelist
->length
);
1045 /* offset of first page in pagelist is always 0 */
1046 *page_offset
= cursor
->offset
& ~PAGE_MASK
;
1047 if (cursor
->last_piece
)
1048 *length
= cursor
->resid
;
1050 *length
= PAGE_SIZE
- *page_offset
;
1052 return cursor
->page
;
1055 static bool ceph_msg_data_pagelist_advance(struct ceph_msg_data_cursor
*cursor
,
1058 struct ceph_msg_data
*data
= cursor
->data
;
1059 struct ceph_pagelist
*pagelist
;
1061 BUG_ON(data
->type
!= CEPH_MSG_DATA_PAGELIST
);
1063 pagelist
= data
->pagelist
;
1066 BUG_ON(cursor
->offset
+ cursor
->resid
!= pagelist
->length
);
1067 BUG_ON((cursor
->offset
& ~PAGE_MASK
) + bytes
> PAGE_SIZE
);
1069 /* Advance the cursor offset */
1071 cursor
->resid
-= bytes
;
1072 cursor
->offset
+= bytes
;
1073 /* offset of first page in pagelist is always 0 */
1074 if (!bytes
|| cursor
->offset
& ~PAGE_MASK
)
1075 return false; /* more bytes to process in the current page */
1078 return false; /* no more data */
1080 /* Move on to the next page */
1082 BUG_ON(list_is_last(&cursor
->page
->lru
, &pagelist
->head
));
1083 cursor
->page
= list_next_entry(cursor
->page
, lru
);
1084 cursor
->last_piece
= cursor
->resid
<= PAGE_SIZE
;
1090 * Message data is handled (sent or received) in pieces, where each
1091 * piece resides on a single page. The network layer might not
1092 * consume an entire piece at once. A data item's cursor keeps
1093 * track of which piece is next to process and how much remains to
1094 * be processed in that piece. It also tracks whether the current
1095 * piece is the last one in the data item.
1097 static void __ceph_msg_data_cursor_init(struct ceph_msg_data_cursor
*cursor
)
1099 size_t length
= cursor
->total_resid
;
1101 switch (cursor
->data
->type
) {
1102 case CEPH_MSG_DATA_PAGELIST
:
1103 ceph_msg_data_pagelist_cursor_init(cursor
, length
);
1105 case CEPH_MSG_DATA_PAGES
:
1106 ceph_msg_data_pages_cursor_init(cursor
, length
);
1109 case CEPH_MSG_DATA_BIO
:
1110 ceph_msg_data_bio_cursor_init(cursor
, length
);
1112 #endif /* CONFIG_BLOCK */
1113 case CEPH_MSG_DATA_NONE
:
1118 cursor
->need_crc
= true;
1121 static void ceph_msg_data_cursor_init(struct ceph_msg
*msg
, size_t length
)
1123 struct ceph_msg_data_cursor
*cursor
= &msg
->cursor
;
1124 struct ceph_msg_data
*data
;
1127 BUG_ON(length
> msg
->data_length
);
1128 BUG_ON(list_empty(&msg
->data
));
1130 cursor
->data_head
= &msg
->data
;
1131 cursor
->total_resid
= length
;
1132 data
= list_first_entry(&msg
->data
, struct ceph_msg_data
, links
);
1133 cursor
->data
= data
;
1135 __ceph_msg_data_cursor_init(cursor
);
1139 * Return the page containing the next piece to process for a given
1140 * data item, and supply the page offset and length of that piece.
1141 * Indicate whether this is the last piece in this data item.
1143 static struct page
*ceph_msg_data_next(struct ceph_msg_data_cursor
*cursor
,
1144 size_t *page_offset
, size_t *length
,
1149 switch (cursor
->data
->type
) {
1150 case CEPH_MSG_DATA_PAGELIST
:
1151 page
= ceph_msg_data_pagelist_next(cursor
, page_offset
, length
);
1153 case CEPH_MSG_DATA_PAGES
:
1154 page
= ceph_msg_data_pages_next(cursor
, page_offset
, length
);
1157 case CEPH_MSG_DATA_BIO
:
1158 page
= ceph_msg_data_bio_next(cursor
, page_offset
, length
);
1160 #endif /* CONFIG_BLOCK */
1161 case CEPH_MSG_DATA_NONE
:
1167 BUG_ON(*page_offset
+ *length
> PAGE_SIZE
);
1170 *last_piece
= cursor
->last_piece
;
1176 * Returns true if the result moves the cursor on to the next piece
1179 static void ceph_msg_data_advance(struct ceph_msg_data_cursor
*cursor
,
1184 BUG_ON(bytes
> cursor
->resid
);
1185 switch (cursor
->data
->type
) {
1186 case CEPH_MSG_DATA_PAGELIST
:
1187 new_piece
= ceph_msg_data_pagelist_advance(cursor
, bytes
);
1189 case CEPH_MSG_DATA_PAGES
:
1190 new_piece
= ceph_msg_data_pages_advance(cursor
, bytes
);
1193 case CEPH_MSG_DATA_BIO
:
1194 new_piece
= ceph_msg_data_bio_advance(cursor
, bytes
);
1196 #endif /* CONFIG_BLOCK */
1197 case CEPH_MSG_DATA_NONE
:
1202 cursor
->total_resid
-= bytes
;
1204 if (!cursor
->resid
&& cursor
->total_resid
) {
1205 WARN_ON(!cursor
->last_piece
);
1206 BUG_ON(list_is_last(&cursor
->data
->links
, cursor
->data_head
));
1207 cursor
->data
= list_next_entry(cursor
->data
, links
);
1208 __ceph_msg_data_cursor_init(cursor
);
1211 cursor
->need_crc
= new_piece
;
1214 static size_t sizeof_footer(struct ceph_connection
*con
)
1216 return (con
->peer_features
& CEPH_FEATURE_MSG_AUTH
) ?
1217 sizeof(struct ceph_msg_footer
) :
1218 sizeof(struct ceph_msg_footer_old
);
1221 static void prepare_message_data(struct ceph_msg
*msg
, u32 data_len
)
1226 /* Initialize data cursor */
1228 ceph_msg_data_cursor_init(msg
, (size_t)data_len
);
1232 * Prepare footer for currently outgoing message, and finish things
1233 * off. Assumes out_kvec* are already valid.. we just add on to the end.
1235 static void prepare_write_message_footer(struct ceph_connection
*con
)
1237 struct ceph_msg
*m
= con
->out_msg
;
1239 m
->footer
.flags
|= CEPH_MSG_FOOTER_COMPLETE
;
1241 dout("prepare_write_message_footer %p\n", con
);
1242 con_out_kvec_add(con
, sizeof_footer(con
), &m
->footer
);
1243 if (con
->peer_features
& CEPH_FEATURE_MSG_AUTH
) {
1244 if (con
->ops
->sign_message
)
1245 con
->ops
->sign_message(m
);
1249 m
->old_footer
.flags
= m
->footer
.flags
;
1251 con
->out_more
= m
->more_to_follow
;
1252 con
->out_msg_done
= true;
1256 * Prepare headers for the next outgoing message.
1258 static void prepare_write_message(struct ceph_connection
*con
)
1263 con_out_kvec_reset(con
);
1264 con
->out_msg_done
= false;
1266 /* Sneak an ack in there first? If we can get it into the same
1267 * TCP packet that's a good thing. */
1268 if (con
->in_seq
> con
->in_seq_acked
) {
1269 con
->in_seq_acked
= con
->in_seq
;
1270 con_out_kvec_add(con
, sizeof (tag_ack
), &tag_ack
);
1271 con
->out_temp_ack
= cpu_to_le64(con
->in_seq_acked
);
1272 con_out_kvec_add(con
, sizeof (con
->out_temp_ack
),
1273 &con
->out_temp_ack
);
1276 BUG_ON(list_empty(&con
->out_queue
));
1277 m
= list_first_entry(&con
->out_queue
, struct ceph_msg
, list_head
);
1279 BUG_ON(m
->con
!= con
);
1281 /* put message on sent list */
1283 list_move_tail(&m
->list_head
, &con
->out_sent
);
1286 * only assign outgoing seq # if we haven't sent this message
1287 * yet. if it is requeued, resend with it's original seq.
1289 if (m
->needs_out_seq
) {
1290 m
->hdr
.seq
= cpu_to_le64(++con
->out_seq
);
1291 m
->needs_out_seq
= false;
1293 if (con
->ops
->reencode_message
)
1294 con
->ops
->reencode_message(m
);
1297 dout("prepare_write_message %p seq %lld type %d len %d+%d+%zd\n",
1298 m
, con
->out_seq
, le16_to_cpu(m
->hdr
.type
),
1299 le32_to_cpu(m
->hdr
.front_len
), le32_to_cpu(m
->hdr
.middle_len
),
1301 WARN_ON(m
->front
.iov_len
!= le32_to_cpu(m
->hdr
.front_len
));
1302 WARN_ON(m
->data_length
!= le32_to_cpu(m
->hdr
.data_len
));
1304 /* tag + hdr + front + middle */
1305 con_out_kvec_add(con
, sizeof (tag_msg
), &tag_msg
);
1306 con_out_kvec_add(con
, sizeof(con
->out_hdr
), &con
->out_hdr
);
1307 con_out_kvec_add(con
, m
->front
.iov_len
, m
->front
.iov_base
);
1310 con_out_kvec_add(con
, m
->middle
->vec
.iov_len
,
1311 m
->middle
->vec
.iov_base
);
1313 /* fill in hdr crc and finalize hdr */
1314 crc
= crc32c(0, &m
->hdr
, offsetof(struct ceph_msg_header
, crc
));
1315 con
->out_msg
->hdr
.crc
= cpu_to_le32(crc
);
1316 memcpy(&con
->out_hdr
, &con
->out_msg
->hdr
, sizeof(con
->out_hdr
));
1318 /* fill in front and middle crc, footer */
1319 crc
= crc32c(0, m
->front
.iov_base
, m
->front
.iov_len
);
1320 con
->out_msg
->footer
.front_crc
= cpu_to_le32(crc
);
1322 crc
= crc32c(0, m
->middle
->vec
.iov_base
,
1323 m
->middle
->vec
.iov_len
);
1324 con
->out_msg
->footer
.middle_crc
= cpu_to_le32(crc
);
1326 con
->out_msg
->footer
.middle_crc
= 0;
1327 dout("%s front_crc %u middle_crc %u\n", __func__
,
1328 le32_to_cpu(con
->out_msg
->footer
.front_crc
),
1329 le32_to_cpu(con
->out_msg
->footer
.middle_crc
));
1330 con
->out_msg
->footer
.flags
= 0;
1332 /* is there a data payload? */
1333 con
->out_msg
->footer
.data_crc
= 0;
1334 if (m
->data_length
) {
1335 prepare_message_data(con
->out_msg
, m
->data_length
);
1336 con
->out_more
= 1; /* data + footer will follow */
1338 /* no, queue up footer too and be done */
1339 prepare_write_message_footer(con
);
1342 con_flag_set(con
, CON_FLAG_WRITE_PENDING
);
1348 static void prepare_write_ack(struct ceph_connection
*con
)
1350 dout("prepare_write_ack %p %llu -> %llu\n", con
,
1351 con
->in_seq_acked
, con
->in_seq
);
1352 con
->in_seq_acked
= con
->in_seq
;
1354 con_out_kvec_reset(con
);
1356 con_out_kvec_add(con
, sizeof (tag_ack
), &tag_ack
);
1358 con
->out_temp_ack
= cpu_to_le64(con
->in_seq_acked
);
1359 con_out_kvec_add(con
, sizeof (con
->out_temp_ack
),
1360 &con
->out_temp_ack
);
1362 con
->out_more
= 1; /* more will follow.. eventually.. */
1363 con_flag_set(con
, CON_FLAG_WRITE_PENDING
);
1367 * Prepare to share the seq during handshake
1369 static void prepare_write_seq(struct ceph_connection
*con
)
1371 dout("prepare_write_seq %p %llu -> %llu\n", con
,
1372 con
->in_seq_acked
, con
->in_seq
);
1373 con
->in_seq_acked
= con
->in_seq
;
1375 con_out_kvec_reset(con
);
1377 con
->out_temp_ack
= cpu_to_le64(con
->in_seq_acked
);
1378 con_out_kvec_add(con
, sizeof (con
->out_temp_ack
),
1379 &con
->out_temp_ack
);
1381 con_flag_set(con
, CON_FLAG_WRITE_PENDING
);
1385 * Prepare to write keepalive byte.
1387 static void prepare_write_keepalive(struct ceph_connection
*con
)
1389 dout("prepare_write_keepalive %p\n", con
);
1390 con_out_kvec_reset(con
);
1391 if (con
->peer_features
& CEPH_FEATURE_MSGR_KEEPALIVE2
) {
1392 struct timespec now
;
1394 ktime_get_real_ts(&now
);
1395 con_out_kvec_add(con
, sizeof(tag_keepalive2
), &tag_keepalive2
);
1396 ceph_encode_timespec(&con
->out_temp_keepalive2
, &now
);
1397 con_out_kvec_add(con
, sizeof(con
->out_temp_keepalive2
),
1398 &con
->out_temp_keepalive2
);
1400 con_out_kvec_add(con
, sizeof(tag_keepalive
), &tag_keepalive
);
1402 con_flag_set(con
, CON_FLAG_WRITE_PENDING
);
1406 * Connection negotiation.
1409 static struct ceph_auth_handshake
*get_connect_authorizer(struct ceph_connection
*con
,
1412 struct ceph_auth_handshake
*auth
;
1414 if (!con
->ops
->get_authorizer
) {
1415 con
->out_connect
.authorizer_protocol
= CEPH_AUTH_UNKNOWN
;
1416 con
->out_connect
.authorizer_len
= 0;
1420 auth
= con
->ops
->get_authorizer(con
, auth_proto
, con
->auth_retry
);
1424 con
->auth_reply_buf
= auth
->authorizer_reply_buf
;
1425 con
->auth_reply_buf_len
= auth
->authorizer_reply_buf_len
;
1430 * We connected to a peer and are saying hello.
1432 static void prepare_write_banner(struct ceph_connection
*con
)
1434 con_out_kvec_add(con
, strlen(CEPH_BANNER
), CEPH_BANNER
);
1435 con_out_kvec_add(con
, sizeof (con
->msgr
->my_enc_addr
),
1436 &con
->msgr
->my_enc_addr
);
1439 con_flag_set(con
, CON_FLAG_WRITE_PENDING
);
1442 static int prepare_write_connect(struct ceph_connection
*con
)
1444 unsigned int global_seq
= get_global_seq(con
->msgr
, 0);
1447 struct ceph_auth_handshake
*auth
;
1449 switch (con
->peer_name
.type
) {
1450 case CEPH_ENTITY_TYPE_MON
:
1451 proto
= CEPH_MONC_PROTOCOL
;
1453 case CEPH_ENTITY_TYPE_OSD
:
1454 proto
= CEPH_OSDC_PROTOCOL
;
1456 case CEPH_ENTITY_TYPE_MDS
:
1457 proto
= CEPH_MDSC_PROTOCOL
;
1463 dout("prepare_write_connect %p cseq=%d gseq=%d proto=%d\n", con
,
1464 con
->connect_seq
, global_seq
, proto
);
1466 con
->out_connect
.features
=
1467 cpu_to_le64(from_msgr(con
->msgr
)->supported_features
);
1468 con
->out_connect
.host_type
= cpu_to_le32(CEPH_ENTITY_TYPE_CLIENT
);
1469 con
->out_connect
.connect_seq
= cpu_to_le32(con
->connect_seq
);
1470 con
->out_connect
.global_seq
= cpu_to_le32(global_seq
);
1471 con
->out_connect
.protocol_version
= cpu_to_le32(proto
);
1472 con
->out_connect
.flags
= 0;
1474 auth_proto
= CEPH_AUTH_UNKNOWN
;
1475 auth
= get_connect_authorizer(con
, &auth_proto
);
1477 return PTR_ERR(auth
);
1479 con
->out_connect
.authorizer_protocol
= cpu_to_le32(auth_proto
);
1480 con
->out_connect
.authorizer_len
= auth
?
1481 cpu_to_le32(auth
->authorizer_buf_len
) : 0;
1483 con_out_kvec_add(con
, sizeof (con
->out_connect
),
1485 if (auth
&& auth
->authorizer_buf_len
)
1486 con_out_kvec_add(con
, auth
->authorizer_buf_len
,
1487 auth
->authorizer_buf
);
1490 con_flag_set(con
, CON_FLAG_WRITE_PENDING
);
1496 * write as much of pending kvecs to the socket as we can.
1498 * 0 -> socket full, but more to do
1501 static int write_partial_kvec(struct ceph_connection
*con
)
1505 dout("write_partial_kvec %p %d left\n", con
, con
->out_kvec_bytes
);
1506 while (con
->out_kvec_bytes
> 0) {
1507 ret
= ceph_tcp_sendmsg(con
->sock
, con
->out_kvec_cur
,
1508 con
->out_kvec_left
, con
->out_kvec_bytes
,
1512 con
->out_kvec_bytes
-= ret
;
1513 if (con
->out_kvec_bytes
== 0)
1516 /* account for full iov entries consumed */
1517 while (ret
>= con
->out_kvec_cur
->iov_len
) {
1518 BUG_ON(!con
->out_kvec_left
);
1519 ret
-= con
->out_kvec_cur
->iov_len
;
1520 con
->out_kvec_cur
++;
1521 con
->out_kvec_left
--;
1523 /* and for a partially-consumed entry */
1525 con
->out_kvec_cur
->iov_len
-= ret
;
1526 con
->out_kvec_cur
->iov_base
+= ret
;
1529 con
->out_kvec_left
= 0;
1532 dout("write_partial_kvec %p %d left in %d kvecs ret = %d\n", con
,
1533 con
->out_kvec_bytes
, con
->out_kvec_left
, ret
);
1534 return ret
; /* done! */
1537 static u32
ceph_crc32c_page(u32 crc
, struct page
*page
,
1538 unsigned int page_offset
,
1539 unsigned int length
)
1544 BUG_ON(kaddr
== NULL
);
1545 crc
= crc32c(crc
, kaddr
+ page_offset
, length
);
1551 * Write as much message data payload as we can. If we finish, queue
1553 * 1 -> done, footer is now queued in out_kvec[].
1554 * 0 -> socket full, but more to do
1557 static int write_partial_message_data(struct ceph_connection
*con
)
1559 struct ceph_msg
*msg
= con
->out_msg
;
1560 struct ceph_msg_data_cursor
*cursor
= &msg
->cursor
;
1561 bool do_datacrc
= !ceph_test_opt(from_msgr(con
->msgr
), NOCRC
);
1564 dout("%s %p msg %p\n", __func__
, con
, msg
);
1566 if (list_empty(&msg
->data
))
1570 * Iterate through each page that contains data to be
1571 * written, and send as much as possible for each.
1573 * If we are calculating the data crc (the default), we will
1574 * need to map the page. If we have no pages, they have
1575 * been revoked, so use the zero page.
1577 crc
= do_datacrc
? le32_to_cpu(msg
->footer
.data_crc
) : 0;
1578 while (cursor
->resid
) {
1585 page
= ceph_msg_data_next(cursor
, &page_offset
, &length
,
1587 ret
= ceph_tcp_sendpage(con
->sock
, page
, page_offset
,
1588 length
, !last_piece
);
1591 msg
->footer
.data_crc
= cpu_to_le32(crc
);
1595 if (do_datacrc
&& cursor
->need_crc
)
1596 crc
= ceph_crc32c_page(crc
, page
, page_offset
, length
);
1597 ceph_msg_data_advance(cursor
, (size_t)ret
);
1600 dout("%s %p msg %p done\n", __func__
, con
, msg
);
1602 /* prepare and queue up footer, too */
1604 msg
->footer
.data_crc
= cpu_to_le32(crc
);
1606 msg
->footer
.flags
|= CEPH_MSG_FOOTER_NOCRC
;
1607 con_out_kvec_reset(con
);
1608 prepare_write_message_footer(con
);
1610 return 1; /* must return > 0 to indicate success */
1616 static int write_partial_skip(struct ceph_connection
*con
)
1620 dout("%s %p %d left\n", __func__
, con
, con
->out_skip
);
1621 while (con
->out_skip
> 0) {
1622 size_t size
= min(con
->out_skip
, (int) PAGE_SIZE
);
1624 ret
= ceph_tcp_sendpage(con
->sock
, zero_page
, 0, size
, true);
1627 con
->out_skip
-= ret
;
1635 * Prepare to read connection handshake, or an ack.
1637 static void prepare_read_banner(struct ceph_connection
*con
)
1639 dout("prepare_read_banner %p\n", con
);
1640 con
->in_base_pos
= 0;
1643 static void prepare_read_connect(struct ceph_connection
*con
)
1645 dout("prepare_read_connect %p\n", con
);
1646 con
->in_base_pos
= 0;
1649 static void prepare_read_ack(struct ceph_connection
*con
)
1651 dout("prepare_read_ack %p\n", con
);
1652 con
->in_base_pos
= 0;
1655 static void prepare_read_seq(struct ceph_connection
*con
)
1657 dout("prepare_read_seq %p\n", con
);
1658 con
->in_base_pos
= 0;
1659 con
->in_tag
= CEPH_MSGR_TAG_SEQ
;
1662 static void prepare_read_tag(struct ceph_connection
*con
)
1664 dout("prepare_read_tag %p\n", con
);
1665 con
->in_base_pos
= 0;
1666 con
->in_tag
= CEPH_MSGR_TAG_READY
;
1669 static void prepare_read_keepalive_ack(struct ceph_connection
*con
)
1671 dout("prepare_read_keepalive_ack %p\n", con
);
1672 con
->in_base_pos
= 0;
1676 * Prepare to read a message.
1678 static int prepare_read_message(struct ceph_connection
*con
)
1680 dout("prepare_read_message %p\n", con
);
1681 BUG_ON(con
->in_msg
!= NULL
);
1682 con
->in_base_pos
= 0;
1683 con
->in_front_crc
= con
->in_middle_crc
= con
->in_data_crc
= 0;
1688 static int read_partial(struct ceph_connection
*con
,
1689 int end
, int size
, void *object
)
1691 while (con
->in_base_pos
< end
) {
1692 int left
= end
- con
->in_base_pos
;
1693 int have
= size
- left
;
1694 int ret
= ceph_tcp_recvmsg(con
->sock
, object
+ have
, left
);
1697 con
->in_base_pos
+= ret
;
1704 * Read all or part of the connect-side handshake on a new connection
1706 static int read_partial_banner(struct ceph_connection
*con
)
1712 dout("read_partial_banner %p at %d\n", con
, con
->in_base_pos
);
1715 size
= strlen(CEPH_BANNER
);
1717 ret
= read_partial(con
, end
, size
, con
->in_banner
);
1721 size
= sizeof (con
->actual_peer_addr
);
1723 ret
= read_partial(con
, end
, size
, &con
->actual_peer_addr
);
1727 size
= sizeof (con
->peer_addr_for_me
);
1729 ret
= read_partial(con
, end
, size
, &con
->peer_addr_for_me
);
1737 static int read_partial_connect(struct ceph_connection
*con
)
1743 dout("read_partial_connect %p at %d\n", con
, con
->in_base_pos
);
1745 size
= sizeof (con
->in_reply
);
1747 ret
= read_partial(con
, end
, size
, &con
->in_reply
);
1751 size
= le32_to_cpu(con
->in_reply
.authorizer_len
);
1753 ret
= read_partial(con
, end
, size
, con
->auth_reply_buf
);
1757 dout("read_partial_connect %p tag %d, con_seq = %u, g_seq = %u\n",
1758 con
, (int)con
->in_reply
.tag
,
1759 le32_to_cpu(con
->in_reply
.connect_seq
),
1760 le32_to_cpu(con
->in_reply
.global_seq
));
1767 * Verify the hello banner looks okay.
1769 static int verify_hello(struct ceph_connection
*con
)
1771 if (memcmp(con
->in_banner
, CEPH_BANNER
, strlen(CEPH_BANNER
))) {
1772 pr_err("connect to %s got bad banner\n",
1773 ceph_pr_addr(&con
->peer_addr
.in_addr
));
1774 con
->error_msg
= "protocol error, bad banner";
1780 static bool addr_is_blank(struct sockaddr_storage
*ss
)
1782 struct in_addr
*addr
= &((struct sockaddr_in
*)ss
)->sin_addr
;
1783 struct in6_addr
*addr6
= &((struct sockaddr_in6
*)ss
)->sin6_addr
;
1785 switch (ss
->ss_family
) {
1787 return addr
->s_addr
== htonl(INADDR_ANY
);
1789 return ipv6_addr_any(addr6
);
1795 static int addr_port(struct sockaddr_storage
*ss
)
1797 switch (ss
->ss_family
) {
1799 return ntohs(((struct sockaddr_in
*)ss
)->sin_port
);
1801 return ntohs(((struct sockaddr_in6
*)ss
)->sin6_port
);
1806 static void addr_set_port(struct sockaddr_storage
*ss
, int p
)
1808 switch (ss
->ss_family
) {
1810 ((struct sockaddr_in
*)ss
)->sin_port
= htons(p
);
1813 ((struct sockaddr_in6
*)ss
)->sin6_port
= htons(p
);
1819 * Unlike other *_pton function semantics, zero indicates success.
1821 static int ceph_pton(const char *str
, size_t len
, struct sockaddr_storage
*ss
,
1822 char delim
, const char **ipend
)
1824 struct sockaddr_in
*in4
= (struct sockaddr_in
*) ss
;
1825 struct sockaddr_in6
*in6
= (struct sockaddr_in6
*) ss
;
1827 memset(ss
, 0, sizeof(*ss
));
1829 if (in4_pton(str
, len
, (u8
*)&in4
->sin_addr
.s_addr
, delim
, ipend
)) {
1830 ss
->ss_family
= AF_INET
;
1834 if (in6_pton(str
, len
, (u8
*)&in6
->sin6_addr
.s6_addr
, delim
, ipend
)) {
1835 ss
->ss_family
= AF_INET6
;
1843 * Extract hostname string and resolve using kernel DNS facility.
1845 #ifdef CONFIG_CEPH_LIB_USE_DNS_RESOLVER
1846 static int ceph_dns_resolve_name(const char *name
, size_t namelen
,
1847 struct sockaddr_storage
*ss
, char delim
, const char **ipend
)
1849 const char *end
, *delim_p
;
1850 char *colon_p
, *ip_addr
= NULL
;
1854 * The end of the hostname occurs immediately preceding the delimiter or
1855 * the port marker (':') where the delimiter takes precedence.
1857 delim_p
= memchr(name
, delim
, namelen
);
1858 colon_p
= memchr(name
, ':', namelen
);
1860 if (delim_p
&& colon_p
)
1861 end
= delim_p
< colon_p
? delim_p
: colon_p
;
1862 else if (!delim_p
&& colon_p
)
1866 if (!end
) /* case: hostname:/ */
1867 end
= name
+ namelen
;
1873 /* do dns_resolve upcall */
1874 ip_len
= dns_query(NULL
, name
, end
- name
, NULL
, &ip_addr
, NULL
);
1876 ret
= ceph_pton(ip_addr
, ip_len
, ss
, -1, NULL
);
1884 pr_info("resolve '%.*s' (ret=%d): %s\n", (int)(end
- name
), name
,
1885 ret
, ret
? "failed" : ceph_pr_addr(ss
));
1890 static inline int ceph_dns_resolve_name(const char *name
, size_t namelen
,
1891 struct sockaddr_storage
*ss
, char delim
, const char **ipend
)
1898 * Parse a server name (IP or hostname). If a valid IP address is not found
1899 * then try to extract a hostname to resolve using userspace DNS upcall.
1901 static int ceph_parse_server_name(const char *name
, size_t namelen
,
1902 struct sockaddr_storage
*ss
, char delim
, const char **ipend
)
1906 ret
= ceph_pton(name
, namelen
, ss
, delim
, ipend
);
1908 ret
= ceph_dns_resolve_name(name
, namelen
, ss
, delim
, ipend
);
1914 * Parse an ip[:port] list into an addr array. Use the default
1915 * monitor port if a port isn't specified.
1917 int ceph_parse_ips(const char *c
, const char *end
,
1918 struct ceph_entity_addr
*addr
,
1919 int max_count
, int *count
)
1921 int i
, ret
= -EINVAL
;
1924 dout("parse_ips on '%.*s'\n", (int)(end
-c
), c
);
1925 for (i
= 0; i
< max_count
; i
++) {
1927 struct sockaddr_storage
*ss
= &addr
[i
].in_addr
;
1936 ret
= ceph_parse_server_name(p
, end
- p
, ss
, delim
, &ipend
);
1945 dout("missing matching ']'\n");
1952 if (p
< end
&& *p
== ':') {
1955 while (p
< end
&& *p
>= '0' && *p
<= '9') {
1956 port
= (port
* 10) + (*p
- '0');
1960 port
= CEPH_MON_PORT
;
1961 else if (port
> 65535)
1964 port
= CEPH_MON_PORT
;
1967 addr_set_port(ss
, port
);
1969 dout("parse_ips got %s\n", ceph_pr_addr(ss
));
1986 pr_err("parse_ips bad ip '%.*s'\n", (int)(end
- c
), c
);
1989 EXPORT_SYMBOL(ceph_parse_ips
);
1991 static int process_banner(struct ceph_connection
*con
)
1993 dout("process_banner on %p\n", con
);
1995 if (verify_hello(con
) < 0)
1998 ceph_decode_addr(&con
->actual_peer_addr
);
1999 ceph_decode_addr(&con
->peer_addr_for_me
);
2002 * Make sure the other end is who we wanted. note that the other
2003 * end may not yet know their ip address, so if it's 0.0.0.0, give
2004 * them the benefit of the doubt.
2006 if (memcmp(&con
->peer_addr
, &con
->actual_peer_addr
,
2007 sizeof(con
->peer_addr
)) != 0 &&
2008 !(addr_is_blank(&con
->actual_peer_addr
.in_addr
) &&
2009 con
->actual_peer_addr
.nonce
== con
->peer_addr
.nonce
)) {
2010 pr_warn("wrong peer, want %s/%d, got %s/%d\n",
2011 ceph_pr_addr(&con
->peer_addr
.in_addr
),
2012 (int)le32_to_cpu(con
->peer_addr
.nonce
),
2013 ceph_pr_addr(&con
->actual_peer_addr
.in_addr
),
2014 (int)le32_to_cpu(con
->actual_peer_addr
.nonce
));
2015 con
->error_msg
= "wrong peer at address";
2020 * did we learn our address?
2022 if (addr_is_blank(&con
->msgr
->inst
.addr
.in_addr
)) {
2023 int port
= addr_port(&con
->msgr
->inst
.addr
.in_addr
);
2025 memcpy(&con
->msgr
->inst
.addr
.in_addr
,
2026 &con
->peer_addr_for_me
.in_addr
,
2027 sizeof(con
->peer_addr_for_me
.in_addr
));
2028 addr_set_port(&con
->msgr
->inst
.addr
.in_addr
, port
);
2029 encode_my_addr(con
->msgr
);
2030 dout("process_banner learned my addr is %s\n",
2031 ceph_pr_addr(&con
->msgr
->inst
.addr
.in_addr
));
2037 static int process_connect(struct ceph_connection
*con
)
2039 u64 sup_feat
= from_msgr(con
->msgr
)->supported_features
;
2040 u64 req_feat
= from_msgr(con
->msgr
)->required_features
;
2041 u64 server_feat
= le64_to_cpu(con
->in_reply
.features
);
2044 dout("process_connect on %p tag %d\n", con
, (int)con
->in_tag
);
2046 if (con
->auth_reply_buf
) {
2048 * Any connection that defines ->get_authorizer()
2049 * should also define ->verify_authorizer_reply().
2050 * See get_connect_authorizer().
2052 ret
= con
->ops
->verify_authorizer_reply(con
);
2054 con
->error_msg
= "bad authorize reply";
2059 switch (con
->in_reply
.tag
) {
2060 case CEPH_MSGR_TAG_FEATURES
:
2061 pr_err("%s%lld %s feature set mismatch,"
2062 " my %llx < server's %llx, missing %llx\n",
2063 ENTITY_NAME(con
->peer_name
),
2064 ceph_pr_addr(&con
->peer_addr
.in_addr
),
2065 sup_feat
, server_feat
, server_feat
& ~sup_feat
);
2066 con
->error_msg
= "missing required protocol features";
2067 reset_connection(con
);
2070 case CEPH_MSGR_TAG_BADPROTOVER
:
2071 pr_err("%s%lld %s protocol version mismatch,"
2072 " my %d != server's %d\n",
2073 ENTITY_NAME(con
->peer_name
),
2074 ceph_pr_addr(&con
->peer_addr
.in_addr
),
2075 le32_to_cpu(con
->out_connect
.protocol_version
),
2076 le32_to_cpu(con
->in_reply
.protocol_version
));
2077 con
->error_msg
= "protocol version mismatch";
2078 reset_connection(con
);
2081 case CEPH_MSGR_TAG_BADAUTHORIZER
:
2083 dout("process_connect %p got BADAUTHORIZER attempt %d\n", con
,
2085 if (con
->auth_retry
== 2) {
2086 con
->error_msg
= "connect authorization failure";
2089 con_out_kvec_reset(con
);
2090 ret
= prepare_write_connect(con
);
2093 prepare_read_connect(con
);
2096 case CEPH_MSGR_TAG_RESETSESSION
:
2098 * If we connected with a large connect_seq but the peer
2099 * has no record of a session with us (no connection, or
2100 * connect_seq == 0), they will send RESETSESION to indicate
2101 * that they must have reset their session, and may have
2104 dout("process_connect got RESET peer seq %u\n",
2105 le32_to_cpu(con
->in_reply
.connect_seq
));
2106 pr_err("%s%lld %s connection reset\n",
2107 ENTITY_NAME(con
->peer_name
),
2108 ceph_pr_addr(&con
->peer_addr
.in_addr
));
2109 reset_connection(con
);
2110 con_out_kvec_reset(con
);
2111 ret
= prepare_write_connect(con
);
2114 prepare_read_connect(con
);
2116 /* Tell ceph about it. */
2117 mutex_unlock(&con
->mutex
);
2118 pr_info("reset on %s%lld\n", ENTITY_NAME(con
->peer_name
));
2119 if (con
->ops
->peer_reset
)
2120 con
->ops
->peer_reset(con
);
2121 mutex_lock(&con
->mutex
);
2122 if (con
->state
!= CON_STATE_NEGOTIATING
)
2126 case CEPH_MSGR_TAG_RETRY_SESSION
:
2128 * If we sent a smaller connect_seq than the peer has, try
2129 * again with a larger value.
2131 dout("process_connect got RETRY_SESSION my seq %u, peer %u\n",
2132 le32_to_cpu(con
->out_connect
.connect_seq
),
2133 le32_to_cpu(con
->in_reply
.connect_seq
));
2134 con
->connect_seq
= le32_to_cpu(con
->in_reply
.connect_seq
);
2135 con_out_kvec_reset(con
);
2136 ret
= prepare_write_connect(con
);
2139 prepare_read_connect(con
);
2142 case CEPH_MSGR_TAG_RETRY_GLOBAL
:
2144 * If we sent a smaller global_seq than the peer has, try
2145 * again with a larger value.
2147 dout("process_connect got RETRY_GLOBAL my %u peer_gseq %u\n",
2148 con
->peer_global_seq
,
2149 le32_to_cpu(con
->in_reply
.global_seq
));
2150 get_global_seq(con
->msgr
,
2151 le32_to_cpu(con
->in_reply
.global_seq
));
2152 con_out_kvec_reset(con
);
2153 ret
= prepare_write_connect(con
);
2156 prepare_read_connect(con
);
2159 case CEPH_MSGR_TAG_SEQ
:
2160 case CEPH_MSGR_TAG_READY
:
2161 if (req_feat
& ~server_feat
) {
2162 pr_err("%s%lld %s protocol feature mismatch,"
2163 " my required %llx > server's %llx, need %llx\n",
2164 ENTITY_NAME(con
->peer_name
),
2165 ceph_pr_addr(&con
->peer_addr
.in_addr
),
2166 req_feat
, server_feat
, req_feat
& ~server_feat
);
2167 con
->error_msg
= "missing required protocol features";
2168 reset_connection(con
);
2172 WARN_ON(con
->state
!= CON_STATE_NEGOTIATING
);
2173 con
->state
= CON_STATE_OPEN
;
2174 con
->auth_retry
= 0; /* we authenticated; clear flag */
2175 con
->peer_global_seq
= le32_to_cpu(con
->in_reply
.global_seq
);
2177 con
->peer_features
= server_feat
;
2178 dout("process_connect got READY gseq %d cseq %d (%d)\n",
2179 con
->peer_global_seq
,
2180 le32_to_cpu(con
->in_reply
.connect_seq
),
2182 WARN_ON(con
->connect_seq
!=
2183 le32_to_cpu(con
->in_reply
.connect_seq
));
2185 if (con
->in_reply
.flags
& CEPH_MSG_CONNECT_LOSSY
)
2186 con_flag_set(con
, CON_FLAG_LOSSYTX
);
2188 con
->delay
= 0; /* reset backoff memory */
2190 if (con
->in_reply
.tag
== CEPH_MSGR_TAG_SEQ
) {
2191 prepare_write_seq(con
);
2192 prepare_read_seq(con
);
2194 prepare_read_tag(con
);
2198 case CEPH_MSGR_TAG_WAIT
:
2200 * If there is a connection race (we are opening
2201 * connections to each other), one of us may just have
2202 * to WAIT. This shouldn't happen if we are the
2205 con
->error_msg
= "protocol error, got WAIT as client";
2209 con
->error_msg
= "protocol error, garbage tag during connect";
2217 * read (part of) an ack
2219 static int read_partial_ack(struct ceph_connection
*con
)
2221 int size
= sizeof (con
->in_temp_ack
);
2224 return read_partial(con
, end
, size
, &con
->in_temp_ack
);
2228 * We can finally discard anything that's been acked.
2230 static void process_ack(struct ceph_connection
*con
)
2233 u64 ack
= le64_to_cpu(con
->in_temp_ack
);
2235 bool reconnect
= (con
->in_tag
== CEPH_MSGR_TAG_SEQ
);
2236 struct list_head
*list
= reconnect
? &con
->out_queue
: &con
->out_sent
;
2239 * In the reconnect case, con_fault() has requeued messages
2240 * in out_sent. We should cleanup old messages according to
2241 * the reconnect seq.
2243 while (!list_empty(list
)) {
2244 m
= list_first_entry(list
, struct ceph_msg
, list_head
);
2245 if (reconnect
&& m
->needs_out_seq
)
2247 seq
= le64_to_cpu(m
->hdr
.seq
);
2250 dout("got ack for seq %llu type %d at %p\n", seq
,
2251 le16_to_cpu(m
->hdr
.type
), m
);
2252 m
->ack_stamp
= jiffies
;
2256 prepare_read_tag(con
);
2260 static int read_partial_message_section(struct ceph_connection
*con
,
2261 struct kvec
*section
,
2262 unsigned int sec_len
, u32
*crc
)
2268 while (section
->iov_len
< sec_len
) {
2269 BUG_ON(section
->iov_base
== NULL
);
2270 left
= sec_len
- section
->iov_len
;
2271 ret
= ceph_tcp_recvmsg(con
->sock
, (char *)section
->iov_base
+
2272 section
->iov_len
, left
);
2275 section
->iov_len
+= ret
;
2277 if (section
->iov_len
== sec_len
)
2278 *crc
= crc32c(0, section
->iov_base
, section
->iov_len
);
2283 static int read_partial_msg_data(struct ceph_connection
*con
)
2285 struct ceph_msg
*msg
= con
->in_msg
;
2286 struct ceph_msg_data_cursor
*cursor
= &msg
->cursor
;
2287 bool do_datacrc
= !ceph_test_opt(from_msgr(con
->msgr
), NOCRC
);
2295 if (list_empty(&msg
->data
))
2299 crc
= con
->in_data_crc
;
2300 while (cursor
->resid
) {
2301 page
= ceph_msg_data_next(cursor
, &page_offset
, &length
, NULL
);
2302 ret
= ceph_tcp_recvpage(con
->sock
, page
, page_offset
, length
);
2305 con
->in_data_crc
= crc
;
2311 crc
= ceph_crc32c_page(crc
, page
, page_offset
, ret
);
2312 ceph_msg_data_advance(cursor
, (size_t)ret
);
2315 con
->in_data_crc
= crc
;
2317 return 1; /* must return > 0 to indicate success */
2321 * read (part of) a message.
2323 static int ceph_con_in_msg_alloc(struct ceph_connection
*con
, int *skip
);
2325 static int read_partial_message(struct ceph_connection
*con
)
2327 struct ceph_msg
*m
= con
->in_msg
;
2331 unsigned int front_len
, middle_len
, data_len
;
2332 bool do_datacrc
= !ceph_test_opt(from_msgr(con
->msgr
), NOCRC
);
2333 bool need_sign
= (con
->peer_features
& CEPH_FEATURE_MSG_AUTH
);
2337 dout("read_partial_message con %p msg %p\n", con
, m
);
2340 size
= sizeof (con
->in_hdr
);
2342 ret
= read_partial(con
, end
, size
, &con
->in_hdr
);
2346 crc
= crc32c(0, &con
->in_hdr
, offsetof(struct ceph_msg_header
, crc
));
2347 if (cpu_to_le32(crc
) != con
->in_hdr
.crc
) {
2348 pr_err("read_partial_message bad hdr crc %u != expected %u\n",
2349 crc
, con
->in_hdr
.crc
);
2353 front_len
= le32_to_cpu(con
->in_hdr
.front_len
);
2354 if (front_len
> CEPH_MSG_MAX_FRONT_LEN
)
2356 middle_len
= le32_to_cpu(con
->in_hdr
.middle_len
);
2357 if (middle_len
> CEPH_MSG_MAX_MIDDLE_LEN
)
2359 data_len
= le32_to_cpu(con
->in_hdr
.data_len
);
2360 if (data_len
> CEPH_MSG_MAX_DATA_LEN
)
2364 seq
= le64_to_cpu(con
->in_hdr
.seq
);
2365 if ((s64
)seq
- (s64
)con
->in_seq
< 1) {
2366 pr_info("skipping %s%lld %s seq %lld expected %lld\n",
2367 ENTITY_NAME(con
->peer_name
),
2368 ceph_pr_addr(&con
->peer_addr
.in_addr
),
2369 seq
, con
->in_seq
+ 1);
2370 con
->in_base_pos
= -front_len
- middle_len
- data_len
-
2372 con
->in_tag
= CEPH_MSGR_TAG_READY
;
2374 } else if ((s64
)seq
- (s64
)con
->in_seq
> 1) {
2375 pr_err("read_partial_message bad seq %lld expected %lld\n",
2376 seq
, con
->in_seq
+ 1);
2377 con
->error_msg
= "bad message sequence # for incoming message";
2381 /* allocate message? */
2385 dout("got hdr type %d front %d data %d\n", con
->in_hdr
.type
,
2386 front_len
, data_len
);
2387 ret
= ceph_con_in_msg_alloc(con
, &skip
);
2391 BUG_ON(!con
->in_msg
^ skip
);
2393 /* skip this message */
2394 dout("alloc_msg said skip message\n");
2395 con
->in_base_pos
= -front_len
- middle_len
- data_len
-
2397 con
->in_tag
= CEPH_MSGR_TAG_READY
;
2402 BUG_ON(!con
->in_msg
);
2403 BUG_ON(con
->in_msg
->con
!= con
);
2405 m
->front
.iov_len
= 0; /* haven't read it yet */
2407 m
->middle
->vec
.iov_len
= 0;
2409 /* prepare for data payload, if any */
2412 prepare_message_data(con
->in_msg
, data_len
);
2416 ret
= read_partial_message_section(con
, &m
->front
, front_len
,
2417 &con
->in_front_crc
);
2423 ret
= read_partial_message_section(con
, &m
->middle
->vec
,
2425 &con
->in_middle_crc
);
2432 ret
= read_partial_msg_data(con
);
2438 size
= sizeof_footer(con
);
2440 ret
= read_partial(con
, end
, size
, &m
->footer
);
2445 m
->footer
.flags
= m
->old_footer
.flags
;
2449 dout("read_partial_message got msg %p %d (%u) + %d (%u) + %d (%u)\n",
2450 m
, front_len
, m
->footer
.front_crc
, middle_len
,
2451 m
->footer
.middle_crc
, data_len
, m
->footer
.data_crc
);
2454 if (con
->in_front_crc
!= le32_to_cpu(m
->footer
.front_crc
)) {
2455 pr_err("read_partial_message %p front crc %u != exp. %u\n",
2456 m
, con
->in_front_crc
, m
->footer
.front_crc
);
2459 if (con
->in_middle_crc
!= le32_to_cpu(m
->footer
.middle_crc
)) {
2460 pr_err("read_partial_message %p middle crc %u != exp %u\n",
2461 m
, con
->in_middle_crc
, m
->footer
.middle_crc
);
2465 (m
->footer
.flags
& CEPH_MSG_FOOTER_NOCRC
) == 0 &&
2466 con
->in_data_crc
!= le32_to_cpu(m
->footer
.data_crc
)) {
2467 pr_err("read_partial_message %p data crc %u != exp. %u\n", m
,
2468 con
->in_data_crc
, le32_to_cpu(m
->footer
.data_crc
));
2472 if (need_sign
&& con
->ops
->check_message_signature
&&
2473 con
->ops
->check_message_signature(m
)) {
2474 pr_err("read_partial_message %p signature check failed\n", m
);
2478 return 1; /* done! */
2482 * Process message. This happens in the worker thread. The callback should
2483 * be careful not to do anything that waits on other incoming messages or it
2486 static void process_message(struct ceph_connection
*con
)
2488 struct ceph_msg
*msg
= con
->in_msg
;
2490 BUG_ON(con
->in_msg
->con
!= con
);
2493 /* if first message, set peer_name */
2494 if (con
->peer_name
.type
== 0)
2495 con
->peer_name
= msg
->hdr
.src
;
2498 mutex_unlock(&con
->mutex
);
2500 dout("===== %p %llu from %s%lld %d=%s len %d+%d (%u %u %u) =====\n",
2501 msg
, le64_to_cpu(msg
->hdr
.seq
),
2502 ENTITY_NAME(msg
->hdr
.src
),
2503 le16_to_cpu(msg
->hdr
.type
),
2504 ceph_msg_type_name(le16_to_cpu(msg
->hdr
.type
)),
2505 le32_to_cpu(msg
->hdr
.front_len
),
2506 le32_to_cpu(msg
->hdr
.data_len
),
2507 con
->in_front_crc
, con
->in_middle_crc
, con
->in_data_crc
);
2508 con
->ops
->dispatch(con
, msg
);
2510 mutex_lock(&con
->mutex
);
2513 static int read_keepalive_ack(struct ceph_connection
*con
)
2515 struct ceph_timespec ceph_ts
;
2516 size_t size
= sizeof(ceph_ts
);
2517 int ret
= read_partial(con
, size
, size
, &ceph_ts
);
2520 ceph_decode_timespec(&con
->last_keepalive_ack
, &ceph_ts
);
2521 prepare_read_tag(con
);
2526 * Write something to the socket. Called in a worker thread when the
2527 * socket appears to be writeable and we have something ready to send.
2529 static int try_write(struct ceph_connection
*con
)
2533 dout("try_write start %p state %lu\n", con
, con
->state
);
2536 dout("try_write out_kvec_bytes %d\n", con
->out_kvec_bytes
);
2538 /* open the socket first? */
2539 if (con
->state
== CON_STATE_PREOPEN
) {
2541 con
->state
= CON_STATE_CONNECTING
;
2543 con_out_kvec_reset(con
);
2544 prepare_write_banner(con
);
2545 prepare_read_banner(con
);
2547 BUG_ON(con
->in_msg
);
2548 con
->in_tag
= CEPH_MSGR_TAG_READY
;
2549 dout("try_write initiating connect on %p new state %lu\n",
2551 ret
= ceph_tcp_connect(con
);
2553 con
->error_msg
= "connect error";
2559 /* kvec data queued? */
2560 if (con
->out_kvec_left
) {
2561 ret
= write_partial_kvec(con
);
2565 if (con
->out_skip
) {
2566 ret
= write_partial_skip(con
);
2573 if (con
->out_msg_done
) {
2574 ceph_msg_put(con
->out_msg
);
2575 con
->out_msg
= NULL
; /* we're done with this one */
2579 ret
= write_partial_message_data(con
);
2581 goto more_kvec
; /* we need to send the footer, too! */
2585 dout("try_write write_partial_message_data err %d\n",
2592 if (con
->state
== CON_STATE_OPEN
) {
2593 if (con_flag_test_and_clear(con
, CON_FLAG_KEEPALIVE_PENDING
)) {
2594 prepare_write_keepalive(con
);
2597 /* is anything else pending? */
2598 if (!list_empty(&con
->out_queue
)) {
2599 prepare_write_message(con
);
2602 if (con
->in_seq
> con
->in_seq_acked
) {
2603 prepare_write_ack(con
);
2608 /* Nothing to do! */
2609 con_flag_clear(con
, CON_FLAG_WRITE_PENDING
);
2610 dout("try_write nothing else to write.\n");
2613 dout("try_write done on %p ret %d\n", con
, ret
);
2620 * Read what we can from the socket.
2622 static int try_read(struct ceph_connection
*con
)
2627 dout("try_read start on %p state %lu\n", con
, con
->state
);
2628 if (con
->state
!= CON_STATE_CONNECTING
&&
2629 con
->state
!= CON_STATE_NEGOTIATING
&&
2630 con
->state
!= CON_STATE_OPEN
)
2635 dout("try_read tag %d in_base_pos %d\n", (int)con
->in_tag
,
2638 if (con
->state
== CON_STATE_CONNECTING
) {
2639 dout("try_read connecting\n");
2640 ret
= read_partial_banner(con
);
2643 ret
= process_banner(con
);
2647 con
->state
= CON_STATE_NEGOTIATING
;
2650 * Received banner is good, exchange connection info.
2651 * Do not reset out_kvec, as sending our banner raced
2652 * with receiving peer banner after connect completed.
2654 ret
= prepare_write_connect(con
);
2657 prepare_read_connect(con
);
2659 /* Send connection info before awaiting response */
2663 if (con
->state
== CON_STATE_NEGOTIATING
) {
2664 dout("try_read negotiating\n");
2665 ret
= read_partial_connect(con
);
2668 ret
= process_connect(con
);
2674 WARN_ON(con
->state
!= CON_STATE_OPEN
);
2676 if (con
->in_base_pos
< 0) {
2678 * skipping + discarding content.
2680 * FIXME: there must be a better way to do this!
2682 static char buf
[SKIP_BUF_SIZE
];
2683 int skip
= min((int) sizeof (buf
), -con
->in_base_pos
);
2685 dout("skipping %d / %d bytes\n", skip
, -con
->in_base_pos
);
2686 ret
= ceph_tcp_recvmsg(con
->sock
, buf
, skip
);
2689 con
->in_base_pos
+= ret
;
2690 if (con
->in_base_pos
)
2693 if (con
->in_tag
== CEPH_MSGR_TAG_READY
) {
2697 ret
= ceph_tcp_recvmsg(con
->sock
, &con
->in_tag
, 1);
2700 dout("try_read got tag %d\n", (int)con
->in_tag
);
2701 switch (con
->in_tag
) {
2702 case CEPH_MSGR_TAG_MSG
:
2703 prepare_read_message(con
);
2705 case CEPH_MSGR_TAG_ACK
:
2706 prepare_read_ack(con
);
2708 case CEPH_MSGR_TAG_KEEPALIVE2_ACK
:
2709 prepare_read_keepalive_ack(con
);
2711 case CEPH_MSGR_TAG_CLOSE
:
2712 con_close_socket(con
);
2713 con
->state
= CON_STATE_CLOSED
;
2719 if (con
->in_tag
== CEPH_MSGR_TAG_MSG
) {
2720 ret
= read_partial_message(con
);
2724 con
->error_msg
= "bad crc/signature";
2730 con
->error_msg
= "io error";
2735 if (con
->in_tag
== CEPH_MSGR_TAG_READY
)
2737 process_message(con
);
2738 if (con
->state
== CON_STATE_OPEN
)
2739 prepare_read_tag(con
);
2742 if (con
->in_tag
== CEPH_MSGR_TAG_ACK
||
2743 con
->in_tag
== CEPH_MSGR_TAG_SEQ
) {
2745 * the final handshake seq exchange is semantically
2746 * equivalent to an ACK
2748 ret
= read_partial_ack(con
);
2754 if (con
->in_tag
== CEPH_MSGR_TAG_KEEPALIVE2_ACK
) {
2755 ret
= read_keepalive_ack(con
);
2762 dout("try_read done on %p ret %d\n", con
, ret
);
2766 pr_err("try_read bad con->in_tag = %d\n", (int)con
->in_tag
);
2767 con
->error_msg
= "protocol error, garbage tag";
2774 * Atomically queue work on a connection after the specified delay.
2775 * Bump @con reference to avoid races with connection teardown.
2776 * Returns 0 if work was queued, or an error code otherwise.
2778 static int queue_con_delay(struct ceph_connection
*con
, unsigned long delay
)
2780 if (!con
->ops
->get(con
)) {
2781 dout("%s %p ref count 0\n", __func__
, con
);
2785 if (!queue_delayed_work(ceph_msgr_wq
, &con
->work
, delay
)) {
2786 dout("%s %p - already queued\n", __func__
, con
);
2791 dout("%s %p %lu\n", __func__
, con
, delay
);
2795 static void queue_con(struct ceph_connection
*con
)
2797 (void) queue_con_delay(con
, 0);
2800 static void cancel_con(struct ceph_connection
*con
)
2802 if (cancel_delayed_work(&con
->work
)) {
2803 dout("%s %p\n", __func__
, con
);
2808 static bool con_sock_closed(struct ceph_connection
*con
)
2810 if (!con_flag_test_and_clear(con
, CON_FLAG_SOCK_CLOSED
))
2814 case CON_STATE_ ## x: \
2815 con->error_msg = "socket closed (con state " #x ")"; \
2818 switch (con
->state
) {
2826 pr_warn("%s con %p unrecognized state %lu\n",
2827 __func__
, con
, con
->state
);
2828 con
->error_msg
= "unrecognized con state";
2837 static bool con_backoff(struct ceph_connection
*con
)
2841 if (!con_flag_test_and_clear(con
, CON_FLAG_BACKOFF
))
2844 ret
= queue_con_delay(con
, round_jiffies_relative(con
->delay
));
2846 dout("%s: con %p FAILED to back off %lu\n", __func__
,
2848 BUG_ON(ret
== -ENOENT
);
2849 con_flag_set(con
, CON_FLAG_BACKOFF
);
2855 /* Finish fault handling; con->mutex must *not* be held here */
2857 static void con_fault_finish(struct ceph_connection
*con
)
2859 dout("%s %p\n", __func__
, con
);
2862 * in case we faulted due to authentication, invalidate our
2863 * current tickets so that we can get new ones.
2865 if (con
->auth_retry
) {
2866 dout("auth_retry %d, invalidating\n", con
->auth_retry
);
2867 if (con
->ops
->invalidate_authorizer
)
2868 con
->ops
->invalidate_authorizer(con
);
2869 con
->auth_retry
= 0;
2872 if (con
->ops
->fault
)
2873 con
->ops
->fault(con
);
2877 * Do some work on a connection. Drop a connection ref when we're done.
2879 static void ceph_con_workfn(struct work_struct
*work
)
2881 struct ceph_connection
*con
= container_of(work
, struct ceph_connection
,
2885 mutex_lock(&con
->mutex
);
2889 if ((fault
= con_sock_closed(con
))) {
2890 dout("%s: con %p SOCK_CLOSED\n", __func__
, con
);
2893 if (con_backoff(con
)) {
2894 dout("%s: con %p BACKOFF\n", __func__
, con
);
2897 if (con
->state
== CON_STATE_STANDBY
) {
2898 dout("%s: con %p STANDBY\n", __func__
, con
);
2901 if (con
->state
== CON_STATE_CLOSED
) {
2902 dout("%s: con %p CLOSED\n", __func__
, con
);
2906 if (con
->state
== CON_STATE_PREOPEN
) {
2907 dout("%s: con %p PREOPEN\n", __func__
, con
);
2911 ret
= try_read(con
);
2915 if (!con
->error_msg
)
2916 con
->error_msg
= "socket error on read";
2921 ret
= try_write(con
);
2925 if (!con
->error_msg
)
2926 con
->error_msg
= "socket error on write";
2930 break; /* If we make it to here, we're done */
2934 mutex_unlock(&con
->mutex
);
2937 con_fault_finish(con
);
2943 * Generic error/fault handler. A retry mechanism is used with
2944 * exponential backoff
2946 static void con_fault(struct ceph_connection
*con
)
2948 dout("fault %p state %lu to peer %s\n",
2949 con
, con
->state
, ceph_pr_addr(&con
->peer_addr
.in_addr
));
2951 pr_warn("%s%lld %s %s\n", ENTITY_NAME(con
->peer_name
),
2952 ceph_pr_addr(&con
->peer_addr
.in_addr
), con
->error_msg
);
2953 con
->error_msg
= NULL
;
2955 WARN_ON(con
->state
!= CON_STATE_CONNECTING
&&
2956 con
->state
!= CON_STATE_NEGOTIATING
&&
2957 con
->state
!= CON_STATE_OPEN
);
2959 con_close_socket(con
);
2961 if (con_flag_test(con
, CON_FLAG_LOSSYTX
)) {
2962 dout("fault on LOSSYTX channel, marking CLOSED\n");
2963 con
->state
= CON_STATE_CLOSED
;
2968 BUG_ON(con
->in_msg
->con
!= con
);
2969 ceph_msg_put(con
->in_msg
);
2973 /* Requeue anything that hasn't been acked */
2974 list_splice_init(&con
->out_sent
, &con
->out_queue
);
2976 /* If there are no messages queued or keepalive pending, place
2977 * the connection in a STANDBY state */
2978 if (list_empty(&con
->out_queue
) &&
2979 !con_flag_test(con
, CON_FLAG_KEEPALIVE_PENDING
)) {
2980 dout("fault %p setting STANDBY clearing WRITE_PENDING\n", con
);
2981 con_flag_clear(con
, CON_FLAG_WRITE_PENDING
);
2982 con
->state
= CON_STATE_STANDBY
;
2984 /* retry after a delay. */
2985 con
->state
= CON_STATE_PREOPEN
;
2986 if (con
->delay
== 0)
2987 con
->delay
= BASE_DELAY_INTERVAL
;
2988 else if (con
->delay
< MAX_DELAY_INTERVAL
)
2990 con_flag_set(con
, CON_FLAG_BACKOFF
);
2998 * initialize a new messenger instance
3000 void ceph_messenger_init(struct ceph_messenger
*msgr
,
3001 struct ceph_entity_addr
*myaddr
)
3003 spin_lock_init(&msgr
->global_seq_lock
);
3006 msgr
->inst
.addr
= *myaddr
;
3008 /* select a random nonce */
3009 msgr
->inst
.addr
.type
= 0;
3010 get_random_bytes(&msgr
->inst
.addr
.nonce
, sizeof(msgr
->inst
.addr
.nonce
));
3011 encode_my_addr(msgr
);
3013 atomic_set(&msgr
->stopping
, 0);
3014 write_pnet(&msgr
->net
, get_net(current
->nsproxy
->net_ns
));
3016 dout("%s %p\n", __func__
, msgr
);
3018 EXPORT_SYMBOL(ceph_messenger_init
);
3020 void ceph_messenger_fini(struct ceph_messenger
*msgr
)
3022 put_net(read_pnet(&msgr
->net
));
3024 EXPORT_SYMBOL(ceph_messenger_fini
);
3026 static void msg_con_set(struct ceph_msg
*msg
, struct ceph_connection
*con
)
3029 msg
->con
->ops
->put(msg
->con
);
3031 msg
->con
= con
? con
->ops
->get(con
) : NULL
;
3032 BUG_ON(msg
->con
!= con
);
3035 static void clear_standby(struct ceph_connection
*con
)
3037 /* come back from STANDBY? */
3038 if (con
->state
== CON_STATE_STANDBY
) {
3039 dout("clear_standby %p and ++connect_seq\n", con
);
3040 con
->state
= CON_STATE_PREOPEN
;
3042 WARN_ON(con_flag_test(con
, CON_FLAG_WRITE_PENDING
));
3043 WARN_ON(con_flag_test(con
, CON_FLAG_KEEPALIVE_PENDING
));
3048 * Queue up an outgoing message on the given connection.
3050 void ceph_con_send(struct ceph_connection
*con
, struct ceph_msg
*msg
)
3053 msg
->hdr
.src
= con
->msgr
->inst
.name
;
3054 BUG_ON(msg
->front
.iov_len
!= le32_to_cpu(msg
->hdr
.front_len
));
3055 msg
->needs_out_seq
= true;
3057 mutex_lock(&con
->mutex
);
3059 if (con
->state
== CON_STATE_CLOSED
) {
3060 dout("con_send %p closed, dropping %p\n", con
, msg
);
3062 mutex_unlock(&con
->mutex
);
3066 msg_con_set(msg
, con
);
3068 BUG_ON(!list_empty(&msg
->list_head
));
3069 list_add_tail(&msg
->list_head
, &con
->out_queue
);
3070 dout("----- %p to %s%lld %d=%s len %d+%d+%d -----\n", msg
,
3071 ENTITY_NAME(con
->peer_name
), le16_to_cpu(msg
->hdr
.type
),
3072 ceph_msg_type_name(le16_to_cpu(msg
->hdr
.type
)),
3073 le32_to_cpu(msg
->hdr
.front_len
),
3074 le32_to_cpu(msg
->hdr
.middle_len
),
3075 le32_to_cpu(msg
->hdr
.data_len
));
3078 mutex_unlock(&con
->mutex
);
3080 /* if there wasn't anything waiting to send before, queue
3082 if (con_flag_test_and_set(con
, CON_FLAG_WRITE_PENDING
) == 0)
3085 EXPORT_SYMBOL(ceph_con_send
);
3088 * Revoke a message that was previously queued for send
3090 void ceph_msg_revoke(struct ceph_msg
*msg
)
3092 struct ceph_connection
*con
= msg
->con
;
3095 dout("%s msg %p null con\n", __func__
, msg
);
3096 return; /* Message not in our possession */
3099 mutex_lock(&con
->mutex
);
3100 if (!list_empty(&msg
->list_head
)) {
3101 dout("%s %p msg %p - was on queue\n", __func__
, con
, msg
);
3102 list_del_init(&msg
->list_head
);
3107 if (con
->out_msg
== msg
) {
3108 BUG_ON(con
->out_skip
);
3110 if (con
->out_msg_done
) {
3111 con
->out_skip
+= con_out_kvec_skip(con
);
3113 BUG_ON(!msg
->data_length
);
3114 con
->out_skip
+= sizeof_footer(con
);
3116 /* data, middle, front */
3117 if (msg
->data_length
)
3118 con
->out_skip
+= msg
->cursor
.total_resid
;
3120 con
->out_skip
+= con_out_kvec_skip(con
);
3121 con
->out_skip
+= con_out_kvec_skip(con
);
3123 dout("%s %p msg %p - was sending, will write %d skip %d\n",
3124 __func__
, con
, msg
, con
->out_kvec_bytes
, con
->out_skip
);
3126 con
->out_msg
= NULL
;
3130 mutex_unlock(&con
->mutex
);
3134 * Revoke a message that we may be reading data into
3136 void ceph_msg_revoke_incoming(struct ceph_msg
*msg
)
3138 struct ceph_connection
*con
= msg
->con
;
3141 dout("%s msg %p null con\n", __func__
, msg
);
3142 return; /* Message not in our possession */
3145 mutex_lock(&con
->mutex
);
3146 if (con
->in_msg
== msg
) {
3147 unsigned int front_len
= le32_to_cpu(con
->in_hdr
.front_len
);
3148 unsigned int middle_len
= le32_to_cpu(con
->in_hdr
.middle_len
);
3149 unsigned int data_len
= le32_to_cpu(con
->in_hdr
.data_len
);
3151 /* skip rest of message */
3152 dout("%s %p msg %p revoked\n", __func__
, con
, msg
);
3153 con
->in_base_pos
= con
->in_base_pos
-
3154 sizeof(struct ceph_msg_header
) -
3158 sizeof(struct ceph_msg_footer
);
3159 ceph_msg_put(con
->in_msg
);
3161 con
->in_tag
= CEPH_MSGR_TAG_READY
;
3164 dout("%s %p in_msg %p msg %p no-op\n",
3165 __func__
, con
, con
->in_msg
, msg
);
3167 mutex_unlock(&con
->mutex
);
3171 * Queue a keepalive byte to ensure the tcp connection is alive.
3173 void ceph_con_keepalive(struct ceph_connection
*con
)
3175 dout("con_keepalive %p\n", con
);
3176 mutex_lock(&con
->mutex
);
3178 mutex_unlock(&con
->mutex
);
3179 if (con_flag_test_and_set(con
, CON_FLAG_KEEPALIVE_PENDING
) == 0 &&
3180 con_flag_test_and_set(con
, CON_FLAG_WRITE_PENDING
) == 0)
3183 EXPORT_SYMBOL(ceph_con_keepalive
);
3185 bool ceph_con_keepalive_expired(struct ceph_connection
*con
,
3186 unsigned long interval
)
3189 (con
->peer_features
& CEPH_FEATURE_MSGR_KEEPALIVE2
)) {
3190 struct timespec now
;
3192 ktime_get_real_ts(&now
);
3193 jiffies_to_timespec(interval
, &ts
);
3194 ts
= timespec_add(con
->last_keepalive_ack
, ts
);
3195 return timespec_compare(&now
, &ts
) >= 0;
3200 static struct ceph_msg_data
*ceph_msg_data_create(enum ceph_msg_data_type type
)
3202 struct ceph_msg_data
*data
;
3204 if (WARN_ON(!ceph_msg_data_type_valid(type
)))
3207 data
= kmem_cache_zalloc(ceph_msg_data_cache
, GFP_NOFS
);
3212 INIT_LIST_HEAD(&data
->links
);
3217 static void ceph_msg_data_destroy(struct ceph_msg_data
*data
)
3222 WARN_ON(!list_empty(&data
->links
));
3223 if (data
->type
== CEPH_MSG_DATA_PAGELIST
)
3224 ceph_pagelist_release(data
->pagelist
);
3225 kmem_cache_free(ceph_msg_data_cache
, data
);
3228 void ceph_msg_data_add_pages(struct ceph_msg
*msg
, struct page
**pages
,
3229 size_t length
, size_t alignment
)
3231 struct ceph_msg_data
*data
;
3236 data
= ceph_msg_data_create(CEPH_MSG_DATA_PAGES
);
3238 data
->pages
= pages
;
3239 data
->length
= length
;
3240 data
->alignment
= alignment
& ~PAGE_MASK
;
3242 list_add_tail(&data
->links
, &msg
->data
);
3243 msg
->data_length
+= length
;
3245 EXPORT_SYMBOL(ceph_msg_data_add_pages
);
3247 void ceph_msg_data_add_pagelist(struct ceph_msg
*msg
,
3248 struct ceph_pagelist
*pagelist
)
3250 struct ceph_msg_data
*data
;
3253 BUG_ON(!pagelist
->length
);
3255 data
= ceph_msg_data_create(CEPH_MSG_DATA_PAGELIST
);
3257 data
->pagelist
= pagelist
;
3259 list_add_tail(&data
->links
, &msg
->data
);
3260 msg
->data_length
+= pagelist
->length
;
3262 EXPORT_SYMBOL(ceph_msg_data_add_pagelist
);
3265 void ceph_msg_data_add_bio(struct ceph_msg
*msg
, struct bio
*bio
,
3268 struct ceph_msg_data
*data
;
3272 data
= ceph_msg_data_create(CEPH_MSG_DATA_BIO
);
3275 data
->bio_length
= length
;
3277 list_add_tail(&data
->links
, &msg
->data
);
3278 msg
->data_length
+= length
;
3280 EXPORT_SYMBOL(ceph_msg_data_add_bio
);
3281 #endif /* CONFIG_BLOCK */
3284 * construct a new message with given type, size
3285 * the new msg has a ref count of 1.
3287 struct ceph_msg
*ceph_msg_new(int type
, int front_len
, gfp_t flags
,
3292 m
= kmem_cache_zalloc(ceph_msg_cache
, flags
);
3296 m
->hdr
.type
= cpu_to_le16(type
);
3297 m
->hdr
.priority
= cpu_to_le16(CEPH_MSG_PRIO_DEFAULT
);
3298 m
->hdr
.front_len
= cpu_to_le32(front_len
);
3300 INIT_LIST_HEAD(&m
->list_head
);
3301 kref_init(&m
->kref
);
3302 INIT_LIST_HEAD(&m
->data
);
3306 m
->front
.iov_base
= ceph_kvmalloc(front_len
, flags
);
3307 if (m
->front
.iov_base
== NULL
) {
3308 dout("ceph_msg_new can't allocate %d bytes\n",
3313 m
->front
.iov_base
= NULL
;
3315 m
->front_alloc_len
= m
->front
.iov_len
= front_len
;
3317 dout("ceph_msg_new %p front %d\n", m
, front_len
);
3324 pr_err("msg_new can't create type %d front %d\n", type
,
3328 dout("msg_new can't create type %d front %d\n", type
,
3333 EXPORT_SYMBOL(ceph_msg_new
);
3336 * Allocate "middle" portion of a message, if it is needed and wasn't
3337 * allocated by alloc_msg. This allows us to read a small fixed-size
3338 * per-type header in the front and then gracefully fail (i.e.,
3339 * propagate the error to the caller based on info in the front) when
3340 * the middle is too large.
3342 static int ceph_alloc_middle(struct ceph_connection
*con
, struct ceph_msg
*msg
)
3344 int type
= le16_to_cpu(msg
->hdr
.type
);
3345 int middle_len
= le32_to_cpu(msg
->hdr
.middle_len
);
3347 dout("alloc_middle %p type %d %s middle_len %d\n", msg
, type
,
3348 ceph_msg_type_name(type
), middle_len
);
3349 BUG_ON(!middle_len
);
3350 BUG_ON(msg
->middle
);
3352 msg
->middle
= ceph_buffer_new(middle_len
, GFP_NOFS
);
3359 * Allocate a message for receiving an incoming message on a
3360 * connection, and save the result in con->in_msg. Uses the
3361 * connection's private alloc_msg op if available.
3363 * Returns 0 on success, or a negative error code.
3365 * On success, if we set *skip = 1:
3366 * - the next message should be skipped and ignored.
3367 * - con->in_msg == NULL
3368 * or if we set *skip = 0:
3369 * - con->in_msg is non-null.
3370 * On error (ENOMEM, EAGAIN, ...),
3371 * - con->in_msg == NULL
3373 static int ceph_con_in_msg_alloc(struct ceph_connection
*con
, int *skip
)
3375 struct ceph_msg_header
*hdr
= &con
->in_hdr
;
3376 int middle_len
= le32_to_cpu(hdr
->middle_len
);
3377 struct ceph_msg
*msg
;
3380 BUG_ON(con
->in_msg
!= NULL
);
3381 BUG_ON(!con
->ops
->alloc_msg
);
3383 mutex_unlock(&con
->mutex
);
3384 msg
= con
->ops
->alloc_msg(con
, hdr
, skip
);
3385 mutex_lock(&con
->mutex
);
3386 if (con
->state
!= CON_STATE_OPEN
) {
3393 msg_con_set(msg
, con
);
3397 * Null message pointer means either we should skip
3398 * this message or we couldn't allocate memory. The
3399 * former is not an error.
3404 con
->error_msg
= "error allocating memory for incoming message";
3407 memcpy(&con
->in_msg
->hdr
, &con
->in_hdr
, sizeof(con
->in_hdr
));
3409 if (middle_len
&& !con
->in_msg
->middle
) {
3410 ret
= ceph_alloc_middle(con
, con
->in_msg
);
3412 ceph_msg_put(con
->in_msg
);
3422 * Free a generically kmalloc'd message.
3424 static void ceph_msg_free(struct ceph_msg
*m
)
3426 dout("%s %p\n", __func__
, m
);
3427 kvfree(m
->front
.iov_base
);
3428 kmem_cache_free(ceph_msg_cache
, m
);
3431 static void ceph_msg_release(struct kref
*kref
)
3433 struct ceph_msg
*m
= container_of(kref
, struct ceph_msg
, kref
);
3434 struct ceph_msg_data
*data
, *next
;
3436 dout("%s %p\n", __func__
, m
);
3437 WARN_ON(!list_empty(&m
->list_head
));
3439 msg_con_set(m
, NULL
);
3441 /* drop middle, data, if any */
3443 ceph_buffer_put(m
->middle
);
3447 list_for_each_entry_safe(data
, next
, &m
->data
, links
) {
3448 list_del_init(&data
->links
);
3449 ceph_msg_data_destroy(data
);
3454 ceph_msgpool_put(m
->pool
, m
);
3459 struct ceph_msg
*ceph_msg_get(struct ceph_msg
*msg
)
3461 dout("%s %p (was %d)\n", __func__
, msg
,
3462 kref_read(&msg
->kref
));
3463 kref_get(&msg
->kref
);
3466 EXPORT_SYMBOL(ceph_msg_get
);
3468 void ceph_msg_put(struct ceph_msg
*msg
)
3470 dout("%s %p (was %d)\n", __func__
, msg
,
3471 kref_read(&msg
->kref
));
3472 kref_put(&msg
->kref
, ceph_msg_release
);
3474 EXPORT_SYMBOL(ceph_msg_put
);
3476 void ceph_msg_dump(struct ceph_msg
*msg
)
3478 pr_debug("msg_dump %p (front_alloc_len %d length %zd)\n", msg
,
3479 msg
->front_alloc_len
, msg
->data_length
);
3480 print_hex_dump(KERN_DEBUG
, "header: ",
3481 DUMP_PREFIX_OFFSET
, 16, 1,
3482 &msg
->hdr
, sizeof(msg
->hdr
), true);
3483 print_hex_dump(KERN_DEBUG
, " front: ",
3484 DUMP_PREFIX_OFFSET
, 16, 1,
3485 msg
->front
.iov_base
, msg
->front
.iov_len
, true);
3487 print_hex_dump(KERN_DEBUG
, "middle: ",
3488 DUMP_PREFIX_OFFSET
, 16, 1,
3489 msg
->middle
->vec
.iov_base
,
3490 msg
->middle
->vec
.iov_len
, true);
3491 print_hex_dump(KERN_DEBUG
, "footer: ",
3492 DUMP_PREFIX_OFFSET
, 16, 1,
3493 &msg
->footer
, sizeof(msg
->footer
), true);
3495 EXPORT_SYMBOL(ceph_msg_dump
);