x86/topology: Fix function name in documentation
[cris-mirror.git] / net / sunrpc / xprtrdma / svc_rdma_recvfrom.c
blob19e9c6b3304272e1f9e9f289d3726a1b2845e60b
1 /*
2 * Copyright (c) 2016, 2017 Oracle. All rights reserved.
3 * Copyright (c) 2014 Open Grid Computing, Inc. All rights reserved.
4 * Copyright (c) 2005-2006 Network Appliance, Inc. All rights reserved.
6 * This software is available to you under a choice of one of two
7 * licenses. You may choose to be licensed under the terms of the GNU
8 * General Public License (GPL) Version 2, available from the file
9 * COPYING in the main directory of this source tree, or the BSD-type
10 * license below:
12 * Redistribution and use in source and binary forms, with or without
13 * modification, are permitted provided that the following conditions
14 * are met:
16 * Redistributions of source code must retain the above copyright
17 * notice, this list of conditions and the following disclaimer.
19 * Redistributions in binary form must reproduce the above
20 * copyright notice, this list of conditions and the following
21 * disclaimer in the documentation and/or other materials provided
22 * with the distribution.
24 * Neither the name of the Network Appliance, Inc. nor the names of
25 * its contributors may be used to endorse or promote products
26 * derived from this software without specific prior written
27 * permission.
29 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
30 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
31 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
32 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
33 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
34 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
35 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
36 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
37 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
38 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
39 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
41 * Author: Tom Tucker <tom@opengridcomputing.com>
44 /* Operation
46 * The main entry point is svc_rdma_recvfrom. This is called from
47 * svc_recv when the transport indicates there is incoming data to
48 * be read. "Data Ready" is signaled when an RDMA Receive completes,
49 * or when a set of RDMA Reads complete.
51 * An svc_rqst is passed in. This structure contains an array of
52 * free pages (rq_pages) that will contain the incoming RPC message.
54 * Short messages are moved directly into svc_rqst::rq_arg, and
55 * the RPC Call is ready to be processed by the Upper Layer.
56 * svc_rdma_recvfrom returns the length of the RPC Call message,
57 * completing the reception of the RPC Call.
59 * However, when an incoming message has Read chunks,
60 * svc_rdma_recvfrom must post RDMA Reads to pull the RPC Call's
61 * data payload from the client. svc_rdma_recvfrom sets up the
62 * RDMA Reads using pages in svc_rqst::rq_pages, which are
63 * transferred to an svc_rdma_op_ctxt for the duration of the
64 * I/O. svc_rdma_recvfrom then returns zero, since the RPC message
65 * is still not yet ready.
67 * When the Read chunk payloads have become available on the
68 * server, "Data Ready" is raised again, and svc_recv calls
69 * svc_rdma_recvfrom again. This second call may use a different
70 * svc_rqst than the first one, thus any information that needs
71 * to be preserved across these two calls is kept in an
72 * svc_rdma_op_ctxt.
74 * The second call to svc_rdma_recvfrom performs final assembly
75 * of the RPC Call message, using the RDMA Read sink pages kept in
76 * the svc_rdma_op_ctxt. The xdr_buf is copied from the
77 * svc_rdma_op_ctxt to the second svc_rqst. The second call returns
78 * the length of the completed RPC Call message.
80 * Page Management
82 * Pages under I/O must be transferred from the first svc_rqst to an
83 * svc_rdma_op_ctxt before the first svc_rdma_recvfrom call returns.
85 * The first svc_rqst supplies pages for RDMA Reads. These are moved
86 * from rqstp::rq_pages into ctxt::pages. The consumed elements of
87 * the rq_pages array are set to NULL and refilled with the first
88 * svc_rdma_recvfrom call returns.
90 * During the second svc_rdma_recvfrom call, RDMA Read sink pages
91 * are transferred from the svc_rdma_op_ctxt to the second svc_rqst
92 * (see rdma_read_complete() below).
95 #include <asm/unaligned.h>
96 #include <rdma/ib_verbs.h>
97 #include <rdma/rdma_cm.h>
99 #include <linux/spinlock.h>
101 #include <linux/sunrpc/xdr.h>
102 #include <linux/sunrpc/debug.h>
103 #include <linux/sunrpc/rpc_rdma.h>
104 #include <linux/sunrpc/svc_rdma.h>
106 #define RPCDBG_FACILITY RPCDBG_SVCXPRT
109 * Replace the pages in the rq_argpages array with the pages from the SGE in
110 * the RDMA_RECV completion. The SGL should contain full pages up until the
111 * last one.
113 static void rdma_build_arg_xdr(struct svc_rqst *rqstp,
114 struct svc_rdma_op_ctxt *ctxt,
115 u32 byte_count)
117 struct page *page;
118 u32 bc;
119 int sge_no;
121 /* Swap the page in the SGE with the page in argpages */
122 page = ctxt->pages[0];
123 put_page(rqstp->rq_pages[0]);
124 rqstp->rq_pages[0] = page;
126 /* Set up the XDR head */
127 rqstp->rq_arg.head[0].iov_base = page_address(page);
128 rqstp->rq_arg.head[0].iov_len =
129 min_t(size_t, byte_count, ctxt->sge[0].length);
130 rqstp->rq_arg.len = byte_count;
131 rqstp->rq_arg.buflen = byte_count;
133 /* Compute bytes past head in the SGL */
134 bc = byte_count - rqstp->rq_arg.head[0].iov_len;
136 /* If data remains, store it in the pagelist */
137 rqstp->rq_arg.page_len = bc;
138 rqstp->rq_arg.page_base = 0;
140 sge_no = 1;
141 while (bc && sge_no < ctxt->count) {
142 page = ctxt->pages[sge_no];
143 put_page(rqstp->rq_pages[sge_no]);
144 rqstp->rq_pages[sge_no] = page;
145 bc -= min_t(u32, bc, ctxt->sge[sge_no].length);
146 sge_no++;
148 rqstp->rq_respages = &rqstp->rq_pages[sge_no];
149 rqstp->rq_next_page = rqstp->rq_respages + 1;
151 /* If not all pages were used from the SGL, free the remaining ones */
152 bc = sge_no;
153 while (sge_no < ctxt->count) {
154 page = ctxt->pages[sge_no++];
155 put_page(page);
157 ctxt->count = bc;
159 /* Set up tail */
160 rqstp->rq_arg.tail[0].iov_base = NULL;
161 rqstp->rq_arg.tail[0].iov_len = 0;
164 /* This accommodates the largest possible Write chunk,
165 * in one segment.
167 #define MAX_BYTES_WRITE_SEG ((u32)(RPCSVC_MAXPAGES << PAGE_SHIFT))
169 /* This accommodates the largest possible Position-Zero
170 * Read chunk or Reply chunk, in one segment.
172 #define MAX_BYTES_SPECIAL_SEG ((u32)((RPCSVC_MAXPAGES + 2) << PAGE_SHIFT))
174 /* Sanity check the Read list.
176 * Implementation limits:
177 * - This implementation supports only one Read chunk.
179 * Sanity checks:
180 * - Read list does not overflow buffer.
181 * - Segment size limited by largest NFS data payload.
183 * The segment count is limited to how many segments can
184 * fit in the transport header without overflowing the
185 * buffer. That's about 40 Read segments for a 1KB inline
186 * threshold.
188 * Returns pointer to the following Write list.
190 static __be32 *xdr_check_read_list(__be32 *p, const __be32 *end)
192 u32 position;
193 bool first;
195 first = true;
196 while (*p++ != xdr_zero) {
197 if (first) {
198 position = be32_to_cpup(p++);
199 first = false;
200 } else if (be32_to_cpup(p++) != position) {
201 return NULL;
203 p++; /* handle */
204 if (be32_to_cpup(p++) > MAX_BYTES_SPECIAL_SEG)
205 return NULL;
206 p += 2; /* offset */
208 if (p > end)
209 return NULL;
211 return p;
214 /* The segment count is limited to how many segments can
215 * fit in the transport header without overflowing the
216 * buffer. That's about 60 Write segments for a 1KB inline
217 * threshold.
219 static __be32 *xdr_check_write_chunk(__be32 *p, const __be32 *end,
220 u32 maxlen)
222 u32 i, segcount;
224 segcount = be32_to_cpup(p++);
225 for (i = 0; i < segcount; i++) {
226 p++; /* handle */
227 if (be32_to_cpup(p++) > maxlen)
228 return NULL;
229 p += 2; /* offset */
231 if (p > end)
232 return NULL;
235 return p;
238 /* Sanity check the Write list.
240 * Implementation limits:
241 * - This implementation supports only one Write chunk.
243 * Sanity checks:
244 * - Write list does not overflow buffer.
245 * - Segment size limited by largest NFS data payload.
247 * Returns pointer to the following Reply chunk.
249 static __be32 *xdr_check_write_list(__be32 *p, const __be32 *end)
251 u32 chcount;
253 chcount = 0;
254 while (*p++ != xdr_zero) {
255 p = xdr_check_write_chunk(p, end, MAX_BYTES_WRITE_SEG);
256 if (!p)
257 return NULL;
258 if (chcount++ > 1)
259 return NULL;
261 return p;
264 /* Sanity check the Reply chunk.
266 * Sanity checks:
267 * - Reply chunk does not overflow buffer.
268 * - Segment size limited by largest NFS data payload.
270 * Returns pointer to the following RPC header.
272 static __be32 *xdr_check_reply_chunk(__be32 *p, const __be32 *end)
274 if (*p++ != xdr_zero) {
275 p = xdr_check_write_chunk(p, end, MAX_BYTES_SPECIAL_SEG);
276 if (!p)
277 return NULL;
279 return p;
282 /* On entry, xdr->head[0].iov_base points to first byte in the
283 * RPC-over-RDMA header.
285 * On successful exit, head[0] points to first byte past the
286 * RPC-over-RDMA header. For RDMA_MSG, this is the RPC message.
287 * The length of the RPC-over-RDMA header is returned.
289 * Assumptions:
290 * - The transport header is entirely contained in the head iovec.
292 static int svc_rdma_xdr_decode_req(struct xdr_buf *rq_arg)
294 __be32 *p, *end, *rdma_argp;
295 unsigned int hdr_len;
296 char *proc;
298 /* Verify that there's enough bytes for header + something */
299 if (rq_arg->len <= RPCRDMA_HDRLEN_ERR)
300 goto out_short;
302 rdma_argp = rq_arg->head[0].iov_base;
303 if (*(rdma_argp + 1) != rpcrdma_version)
304 goto out_version;
306 switch (*(rdma_argp + 3)) {
307 case rdma_msg:
308 proc = "RDMA_MSG";
309 break;
310 case rdma_nomsg:
311 proc = "RDMA_NOMSG";
312 break;
314 case rdma_done:
315 goto out_drop;
317 case rdma_error:
318 goto out_drop;
320 default:
321 goto out_proc;
324 end = (__be32 *)((unsigned long)rdma_argp + rq_arg->len);
325 p = xdr_check_read_list(rdma_argp + 4, end);
326 if (!p)
327 goto out_inval;
328 p = xdr_check_write_list(p, end);
329 if (!p)
330 goto out_inval;
331 p = xdr_check_reply_chunk(p, end);
332 if (!p)
333 goto out_inval;
334 if (p > end)
335 goto out_inval;
337 rq_arg->head[0].iov_base = p;
338 hdr_len = (unsigned long)p - (unsigned long)rdma_argp;
339 rq_arg->head[0].iov_len -= hdr_len;
340 rq_arg->len -= hdr_len;
341 dprintk("svcrdma: received %s request for XID 0x%08x, hdr_len=%u\n",
342 proc, be32_to_cpup(rdma_argp), hdr_len);
343 return hdr_len;
345 out_short:
346 dprintk("svcrdma: header too short = %d\n", rq_arg->len);
347 return -EINVAL;
349 out_version:
350 dprintk("svcrdma: bad xprt version: %u\n",
351 be32_to_cpup(rdma_argp + 1));
352 return -EPROTONOSUPPORT;
354 out_drop:
355 dprintk("svcrdma: dropping RDMA_DONE/ERROR message\n");
356 return 0;
358 out_proc:
359 dprintk("svcrdma: bad rdma procedure (%u)\n",
360 be32_to_cpup(rdma_argp + 3));
361 return -EINVAL;
363 out_inval:
364 dprintk("svcrdma: failed to parse transport header\n");
365 return -EINVAL;
368 static void rdma_read_complete(struct svc_rqst *rqstp,
369 struct svc_rdma_op_ctxt *head)
371 int page_no;
373 /* Copy RPC pages */
374 for (page_no = 0; page_no < head->count; page_no++) {
375 put_page(rqstp->rq_pages[page_no]);
376 rqstp->rq_pages[page_no] = head->pages[page_no];
379 /* Point rq_arg.pages past header */
380 rqstp->rq_arg.pages = &rqstp->rq_pages[head->hdr_count];
381 rqstp->rq_arg.page_len = head->arg.page_len;
383 /* rq_respages starts after the last arg page */
384 rqstp->rq_respages = &rqstp->rq_pages[page_no];
385 rqstp->rq_next_page = rqstp->rq_respages + 1;
387 /* Rebuild rq_arg head and tail. */
388 rqstp->rq_arg.head[0] = head->arg.head[0];
389 rqstp->rq_arg.tail[0] = head->arg.tail[0];
390 rqstp->rq_arg.len = head->arg.len;
391 rqstp->rq_arg.buflen = head->arg.buflen;
394 static void svc_rdma_send_error(struct svcxprt_rdma *xprt,
395 __be32 *rdma_argp, int status)
397 struct svc_rdma_op_ctxt *ctxt;
398 __be32 *p, *err_msgp;
399 unsigned int length;
400 struct page *page;
401 int ret;
403 page = alloc_page(GFP_KERNEL);
404 if (!page)
405 return;
406 err_msgp = page_address(page);
408 p = err_msgp;
409 *p++ = *rdma_argp;
410 *p++ = *(rdma_argp + 1);
411 *p++ = xprt->sc_fc_credits;
412 *p++ = rdma_error;
413 if (status == -EPROTONOSUPPORT) {
414 *p++ = err_vers;
415 *p++ = rpcrdma_version;
416 *p++ = rpcrdma_version;
417 } else {
418 *p++ = err_chunk;
420 length = (unsigned long)p - (unsigned long)err_msgp;
422 /* Map transport header; no RPC message payload */
423 ctxt = svc_rdma_get_context(xprt);
424 ret = svc_rdma_map_reply_hdr(xprt, ctxt, err_msgp, length);
425 if (ret) {
426 dprintk("svcrdma: Error %d mapping send for protocol error\n",
427 ret);
428 return;
431 ret = svc_rdma_post_send_wr(xprt, ctxt, 1, 0);
432 if (ret) {
433 dprintk("svcrdma: Error %d posting send for protocol error\n",
434 ret);
435 svc_rdma_unmap_dma(ctxt);
436 svc_rdma_put_context(ctxt, 1);
440 /* By convention, backchannel calls arrive via rdma_msg type
441 * messages, and never populate the chunk lists. This makes
442 * the RPC/RDMA header small and fixed in size, so it is
443 * straightforward to check the RPC header's direction field.
445 static bool svc_rdma_is_backchannel_reply(struct svc_xprt *xprt,
446 __be32 *rdma_resp)
448 __be32 *p;
450 if (!xprt->xpt_bc_xprt)
451 return false;
453 p = rdma_resp + 3;
454 if (*p++ != rdma_msg)
455 return false;
457 if (*p++ != xdr_zero)
458 return false;
459 if (*p++ != xdr_zero)
460 return false;
461 if (*p++ != xdr_zero)
462 return false;
464 /* XID sanity */
465 if (*p++ != *rdma_resp)
466 return false;
467 /* call direction */
468 if (*p == cpu_to_be32(RPC_CALL))
469 return false;
471 return true;
475 * svc_rdma_recvfrom - Receive an RPC call
476 * @rqstp: request structure into which to receive an RPC Call
478 * Returns:
479 * The positive number of bytes in the RPC Call message,
480 * %0 if there were no Calls ready to return,
481 * %-EINVAL if the Read chunk data is too large,
482 * %-ENOMEM if rdma_rw context pool was exhausted,
483 * %-ENOTCONN if posting failed (connection is lost),
484 * %-EIO if rdma_rw initialization failed (DMA mapping, etc).
486 * Called in a loop when XPT_DATA is set. XPT_DATA is cleared only
487 * when there are no remaining ctxt's to process.
489 * The next ctxt is removed from the "receive" lists.
491 * - If the ctxt completes a Read, then finish assembling the Call
492 * message and return the number of bytes in the message.
494 * - If the ctxt completes a Receive, then construct the Call
495 * message from the contents of the Receive buffer.
497 * - If there are no Read chunks in this message, then finish
498 * assembling the Call message and return the number of bytes
499 * in the message.
501 * - If there are Read chunks in this message, post Read WRs to
502 * pull that payload and return 0.
504 int svc_rdma_recvfrom(struct svc_rqst *rqstp)
506 struct svc_xprt *xprt = rqstp->rq_xprt;
507 struct svcxprt_rdma *rdma_xprt =
508 container_of(xprt, struct svcxprt_rdma, sc_xprt);
509 struct svc_rdma_op_ctxt *ctxt;
510 __be32 *p;
511 int ret;
513 spin_lock(&rdma_xprt->sc_rq_dto_lock);
514 if (!list_empty(&rdma_xprt->sc_read_complete_q)) {
515 ctxt = list_first_entry(&rdma_xprt->sc_read_complete_q,
516 struct svc_rdma_op_ctxt, list);
517 list_del(&ctxt->list);
518 spin_unlock(&rdma_xprt->sc_rq_dto_lock);
519 rdma_read_complete(rqstp, ctxt);
520 goto complete;
521 } else if (!list_empty(&rdma_xprt->sc_rq_dto_q)) {
522 ctxt = list_first_entry(&rdma_xprt->sc_rq_dto_q,
523 struct svc_rdma_op_ctxt, list);
524 list_del(&ctxt->list);
525 } else {
526 /* No new incoming requests, terminate the loop */
527 clear_bit(XPT_DATA, &xprt->xpt_flags);
528 spin_unlock(&rdma_xprt->sc_rq_dto_lock);
529 return 0;
531 spin_unlock(&rdma_xprt->sc_rq_dto_lock);
533 dprintk("svcrdma: recvfrom: ctxt=%p on xprt=%p, rqstp=%p\n",
534 ctxt, rdma_xprt, rqstp);
535 atomic_inc(&rdma_stat_recv);
537 /* Build up the XDR from the receive buffers. */
538 rdma_build_arg_xdr(rqstp, ctxt, ctxt->byte_len);
540 /* Decode the RDMA header. */
541 p = (__be32 *)rqstp->rq_arg.head[0].iov_base;
542 ret = svc_rdma_xdr_decode_req(&rqstp->rq_arg);
543 if (ret < 0)
544 goto out_err;
545 if (ret == 0)
546 goto out_drop;
547 rqstp->rq_xprt_hlen = ret;
549 if (svc_rdma_is_backchannel_reply(xprt, p)) {
550 ret = svc_rdma_handle_bc_reply(xprt->xpt_bc_xprt, p,
551 &rqstp->rq_arg);
552 svc_rdma_put_context(ctxt, 0);
553 return ret;
556 p += rpcrdma_fixed_maxsz;
557 if (*p != xdr_zero)
558 goto out_readchunk;
560 complete:
561 svc_rdma_put_context(ctxt, 0);
562 dprintk("svcrdma: recvfrom: xprt=%p, rqstp=%p, rq_arg.len=%u\n",
563 rdma_xprt, rqstp, rqstp->rq_arg.len);
564 rqstp->rq_prot = IPPROTO_MAX;
565 svc_xprt_copy_addrs(rqstp, xprt);
566 return rqstp->rq_arg.len;
568 out_readchunk:
569 ret = svc_rdma_recv_read_chunk(rdma_xprt, rqstp, ctxt, p);
570 if (ret < 0)
571 goto out_postfail;
572 return 0;
574 out_err:
575 svc_rdma_send_error(rdma_xprt, p, ret);
576 svc_rdma_put_context(ctxt, 0);
577 return 0;
579 out_postfail:
580 if (ret == -EINVAL)
581 svc_rdma_send_error(rdma_xprt, p, ret);
582 svc_rdma_put_context(ctxt, 1);
583 return ret;
585 out_drop:
586 svc_rdma_put_context(ctxt, 1);
587 return 0;