2 * TLB Management (flush/create/diagnostics) for ARC700
4 * Copyright (C) 2004, 2007-2010, 2011-2012 Synopsys, Inc. (www.synopsys.com)
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License version 2 as
8 * published by the Free Software Foundation.
11 * -Reintroduce duplicate PD fixup - some customer chips still have the issue
14 * -No need to flush_cache_page( ) for each call to update_mmu_cache()
15 * some of the LMBench tests improved amazingly
16 * = page-fault thrice as fast (75 usec to 28 usec)
17 * = mmap twice as fast (9.6 msec to 4.6 msec),
18 * = fork (5.3 msec to 3.7 msec)
20 * vineetg: April 2011 :
21 * -MMU v3: PD{0,1} bits layout changed: They don't overlap anymore,
22 * helps avoid a shift when preparing PD0 from PTE
24 * vineetg: April 2011 : Preparing for MMU V3
25 * -MMU v2/v3 BCRs decoded differently
26 * -Remove TLB_SIZE hardcoding as it's variable now: 256 or 512
27 * -tlb_entry_erase( ) can be void
28 * -local_flush_tlb_range( ):
29 * = need not "ceil" @end
30 * = walks MMU only if range spans < 32 entries, as opposed to 256
32 * Vineetg: Sept 10th 2008
33 * -Changes related to MMU v2 (Rel 4.8)
35 * Vineetg: Aug 29th 2008
36 * -In TLB Flush operations (Metal Fix MMU) there is a explict command to
37 * flush Micro-TLBS. If TLB Index Reg is invalid prior to TLBIVUTLB cmd,
38 * it fails. Thus need to load it with ANY valid value before invoking
41 * Vineetg: Aug 21th 2008:
42 * -Reduced the duration of IRQ lockouts in TLB Flush routines
43 * -Multiple copies of TLB erase code seperated into a "single" function
44 * -In TLB Flush routines, interrupt disabling moved UP to retrieve ASID
45 * in interrupt-safe region.
47 * Vineetg: April 23rd Bug #93131
48 * Problem: tlb_flush_kernel_range() doesnt do anything if the range to
49 * flush is more than the size of TLB itself.
51 * Rahul Trivedi : Codito Technologies 2004
54 #include <linux/module.h>
55 #include <linux/bug.h>
56 #include <asm/arcregs.h>
57 #include <asm/setup.h>
58 #include <asm/mmu_context.h>
61 /* Need for ARC MMU v2
63 * ARC700 MMU-v1 had a Joint-TLB for Code and Data and is 2 way set-assoc.
64 * For a memcpy operation with 3 players (src/dst/code) such that all 3 pages
65 * map into same set, there would be contention for the 2 ways causing severe
68 * Although J-TLB is 2 way set assoc, ARC700 caches J-TLB into uTLBS which has
69 * much higher associativity. u-D-TLB is 8 ways, u-I-TLB is 4 ways.
70 * Given this, the thrasing problem should never happen because once the 3
71 * J-TLB entries are created (even though 3rd will knock out one of the prev
72 * two), the u-D-TLB and u-I-TLB will have what is required to accomplish memcpy
74 * Yet we still see the Thrashing because a J-TLB Write cause flush of u-TLBs.
75 * This is a simple design for keeping them in sync. So what do we do?
76 * The solution which James came up was pretty neat. It utilised the assoc
77 * of uTLBs by not invalidating always but only when absolutely necessary.
79 * - Existing TLB commands work as before
80 * - New command (TLBWriteNI) for TLB write without clearing uTLBs
81 * - New command (TLBIVUTLB) to invalidate uTLBs.
83 * The uTLBs need only be invalidated when pages are being removed from the
84 * OS page table. If a 'victim' TLB entry is being overwritten in the main TLB
85 * as a result of a miss, the removed entry is still allowed to exist in the
86 * uTLBs as it is still valid and present in the OS page table. This allows the
87 * full associativity of the uTLBs to hide the limited associativity of the main
90 * During a miss handler, the new "TLBWriteNI" command is used to load
91 * entries without clearing the uTLBs.
93 * When the OS page table is updated, TLB entries that may be associated with a
94 * removed page are removed (flushed) from the TLB using TLBWrite. In this
95 * circumstance, the uTLBs must also be cleared. This is done by using the
96 * existing TLBWrite command. An explicit IVUTLB is also required for those
97 * corner cases when TLBWrite was not executed at all because the corresp
98 * J-TLB entry got evicted/replaced.
102 /* A copy of the ASID from the PID reg is kept in asid_cache */
103 DEFINE_PER_CPU(unsigned int, asid_cache
) = MM_CTXT_FIRST_CYCLE
;
106 * Utility Routine to erase a J-TLB entry
107 * Caller needs to setup Index Reg (manually or via getIndex)
109 static inline void __tlb_entry_erase(void)
111 write_aux_reg(ARC_REG_TLBPD1
, 0);
112 write_aux_reg(ARC_REG_TLBPD0
, 0);
113 write_aux_reg(ARC_REG_TLBCOMMAND
, TLBWrite
);
116 #if (CONFIG_ARC_MMU_VER < 4)
118 static inline unsigned int tlb_entry_lkup(unsigned long vaddr_n_asid
)
122 write_aux_reg(ARC_REG_TLBPD0
, vaddr_n_asid
);
124 write_aux_reg(ARC_REG_TLBCOMMAND
, TLBProbe
);
125 idx
= read_aux_reg(ARC_REG_TLBINDEX
);
130 static void tlb_entry_erase(unsigned int vaddr_n_asid
)
134 /* Locate the TLB entry for this vaddr + ASID */
135 idx
= tlb_entry_lkup(vaddr_n_asid
);
137 /* No error means entry found, zero it out */
138 if (likely(!(idx
& TLB_LKUP_ERR
))) {
141 /* Duplicate entry error */
142 WARN(idx
== TLB_DUP_ERR
, "Probe returned Dup PD for %x\n",
147 /****************************************************************************
148 * ARC700 MMU caches recently used J-TLB entries (RAM) as uTLBs (FLOPs)
150 * New IVUTLB cmd in MMU v2 explictly invalidates the uTLB
152 * utlb_invalidate ( )
153 * -For v2 MMU calls Flush uTLB Cmd
154 * -For v1 MMU does nothing (except for Metal Fix v1 MMU)
155 * This is because in v1 TLBWrite itself invalidate uTLBs
156 ***************************************************************************/
158 static void utlb_invalidate(void)
160 #if (CONFIG_ARC_MMU_VER >= 2)
162 #if (CONFIG_ARC_MMU_VER == 2)
163 /* MMU v2 introduced the uTLB Flush command.
164 * There was however an obscure hardware bug, where uTLB flush would
165 * fail when a prior probe for J-TLB (both totally unrelated) would
166 * return lkup err - because the entry didnt exist in MMU.
167 * The Workround was to set Index reg with some valid value, prior to
168 * flush. This was fixed in MMU v3 hence not needed any more
172 /* make sure INDEX Reg is valid */
173 idx
= read_aux_reg(ARC_REG_TLBINDEX
);
175 /* If not write some dummy val */
176 if (unlikely(idx
& TLB_LKUP_ERR
))
177 write_aux_reg(ARC_REG_TLBINDEX
, 0xa);
180 write_aux_reg(ARC_REG_TLBCOMMAND
, TLBIVUTLB
);
185 static void tlb_entry_insert(unsigned int pd0
, unsigned int pd1
)
190 * First verify if entry for this vaddr+ASID already exists
191 * This also sets up PD0 (vaddr, ASID..) for final commit
193 idx
= tlb_entry_lkup(pd0
);
196 * If Not already present get a free slot from MMU.
197 * Otherwise, Probe would have located the entry and set INDEX Reg
198 * with existing location. This will cause Write CMD to over-write
199 * existing entry with new PD0 and PD1
201 if (likely(idx
& TLB_LKUP_ERR
))
202 write_aux_reg(ARC_REG_TLBCOMMAND
, TLBGetIndex
);
204 /* setup the other half of TLB entry (pfn, rwx..) */
205 write_aux_reg(ARC_REG_TLBPD1
, pd1
);
208 * Commit the Entry to MMU
209 * It doesnt sound safe to use the TLBWriteNI cmd here
210 * which doesn't flush uTLBs. I'd rather be safe than sorry.
212 write_aux_reg(ARC_REG_TLBCOMMAND
, TLBWrite
);
215 #else /* CONFIG_ARC_MMU_VER >= 4) */
217 static void utlb_invalidate(void)
219 /* No need since uTLB is always in sync with JTLB */
222 static void tlb_entry_erase(unsigned int vaddr_n_asid
)
224 write_aux_reg(ARC_REG_TLBPD0
, vaddr_n_asid
| _PAGE_PRESENT
);
225 write_aux_reg(ARC_REG_TLBCOMMAND
, TLBDeleteEntry
);
228 static void tlb_entry_insert(unsigned int pd0
, unsigned int pd1
)
230 write_aux_reg(ARC_REG_TLBPD0
, pd0
);
231 write_aux_reg(ARC_REG_TLBPD1
, pd1
);
232 write_aux_reg(ARC_REG_TLBCOMMAND
, TLBInsertEntry
);
238 * Un-conditionally (without lookup) erase the entire MMU contents
241 noinline
void local_flush_tlb_all(void)
245 struct cpuinfo_arc_mmu
*mmu
= &cpuinfo_arc700
[smp_processor_id()].mmu
;
247 local_irq_save(flags
);
249 /* Load PD0 and PD1 with template for a Blank Entry */
250 write_aux_reg(ARC_REG_TLBPD1
, 0);
251 write_aux_reg(ARC_REG_TLBPD0
, 0);
253 for (entry
= 0; entry
< mmu
->num_tlb
; entry
++) {
254 /* write this entry to the TLB */
255 write_aux_reg(ARC_REG_TLBINDEX
, entry
);
256 write_aux_reg(ARC_REG_TLBCOMMAND
, TLBWrite
);
261 local_irq_restore(flags
);
265 * Flush the entrie MM for userland. The fastest way is to move to Next ASID
267 noinline
void local_flush_tlb_mm(struct mm_struct
*mm
)
270 * Small optimisation courtesy IA64
271 * flush_mm called during fork,exit,munmap etc, multiple times as well.
272 * Only for fork( ) do we need to move parent to a new MMU ctxt,
273 * all other cases are NOPs, hence this check.
275 if (atomic_read(&mm
->mm_users
) == 0)
279 * - Move to a new ASID, but only if the mm is still wired in
280 * (Android Binder ended up calling this for vma->mm != tsk->mm,
281 * causing h/w - s/w ASID to get out of sync)
282 * - Also get_new_mmu_context() new implementation allocates a new
283 * ASID only if it is not allocated already - so unallocate first
286 if (current
->mm
== mm
)
287 get_new_mmu_context(mm
);
291 * Flush a Range of TLB entries for userland.
292 * @start is inclusive, while @end is exclusive
293 * Difference between this and Kernel Range Flush is
294 * -Here the fastest way (if range is too large) is to move to next ASID
295 * without doing any explicit Shootdown
296 * -In case of kernel Flush, entry has to be shot down explictly
298 void local_flush_tlb_range(struct vm_area_struct
*vma
, unsigned long start
,
301 const unsigned int cpu
= smp_processor_id();
304 /* If range @start to @end is more than 32 TLB entries deep,
305 * its better to move to a new ASID rather than searching for
306 * individual entries and then shooting them down
308 * The calc above is rough, doesn't account for unaligned parts,
309 * since this is heuristics based anyways
311 if (unlikely((end
- start
) >= PAGE_SIZE
* 32)) {
312 local_flush_tlb_mm(vma
->vm_mm
);
317 * @start moved to page start: this alone suffices for checking
318 * loop end condition below, w/o need for aligning @end to end
319 * e.g. 2000 to 4001 will anyhow loop twice
323 local_irq_save(flags
);
325 if (asid_mm(vma
->vm_mm
, cpu
) != MM_CTXT_NO_ASID
) {
326 while (start
< end
) {
327 tlb_entry_erase(start
| hw_pid(vma
->vm_mm
, cpu
));
334 local_irq_restore(flags
);
337 /* Flush the kernel TLB entries - vmalloc/modules (Global from MMU perspective)
338 * @start, @end interpreted as kvaddr
339 * Interestingly, shared TLB entries can also be flushed using just
340 * @start,@end alone (interpreted as user vaddr), although technically SASID
341 * is also needed. However our smart TLbProbe lookup takes care of that.
343 void local_flush_tlb_kernel_range(unsigned long start
, unsigned long end
)
347 /* exactly same as above, except for TLB entry not taking ASID */
349 if (unlikely((end
- start
) >= PAGE_SIZE
* 32)) {
350 local_flush_tlb_all();
356 local_irq_save(flags
);
357 while (start
< end
) {
358 tlb_entry_erase(start
);
364 local_irq_restore(flags
);
368 * Delete TLB entry in MMU for a given page (??? address)
369 * NOTE One TLB entry contains translation for single PAGE
372 void local_flush_tlb_page(struct vm_area_struct
*vma
, unsigned long page
)
374 const unsigned int cpu
= smp_processor_id();
377 /* Note that it is critical that interrupts are DISABLED between
378 * checking the ASID and using it flush the TLB entry
380 local_irq_save(flags
);
382 if (asid_mm(vma
->vm_mm
, cpu
) != MM_CTXT_NO_ASID
) {
383 tlb_entry_erase((page
& PAGE_MASK
) | hw_pid(vma
->vm_mm
, cpu
));
387 local_irq_restore(flags
);
393 struct vm_area_struct
*ta_vma
;
394 unsigned long ta_start
;
395 unsigned long ta_end
;
398 static inline void ipi_flush_tlb_page(void *arg
)
400 struct tlb_args
*ta
= arg
;
402 local_flush_tlb_page(ta
->ta_vma
, ta
->ta_start
);
405 static inline void ipi_flush_tlb_range(void *arg
)
407 struct tlb_args
*ta
= arg
;
409 local_flush_tlb_range(ta
->ta_vma
, ta
->ta_start
, ta
->ta_end
);
412 static inline void ipi_flush_tlb_kernel_range(void *arg
)
414 struct tlb_args
*ta
= (struct tlb_args
*)arg
;
416 local_flush_tlb_kernel_range(ta
->ta_start
, ta
->ta_end
);
419 void flush_tlb_all(void)
421 on_each_cpu((smp_call_func_t
)local_flush_tlb_all
, NULL
, 1);
424 void flush_tlb_mm(struct mm_struct
*mm
)
426 on_each_cpu_mask(mm_cpumask(mm
), (smp_call_func_t
)local_flush_tlb_mm
,
430 void flush_tlb_page(struct vm_area_struct
*vma
, unsigned long uaddr
)
432 struct tlb_args ta
= {
437 on_each_cpu_mask(mm_cpumask(vma
->vm_mm
), ipi_flush_tlb_page
, &ta
, 1);
440 void flush_tlb_range(struct vm_area_struct
*vma
, unsigned long start
,
443 struct tlb_args ta
= {
449 on_each_cpu_mask(mm_cpumask(vma
->vm_mm
), ipi_flush_tlb_range
, &ta
, 1);
452 void flush_tlb_kernel_range(unsigned long start
, unsigned long end
)
454 struct tlb_args ta
= {
459 on_each_cpu(ipi_flush_tlb_kernel_range
, &ta
, 1);
464 * Routine to create a TLB entry
466 void create_tlb(struct vm_area_struct
*vma
, unsigned long address
, pte_t
*ptep
)
469 unsigned int asid_or_sasid
, rwx
;
470 unsigned long pd0
, pd1
;
473 * create_tlb() assumes that current->mm == vma->mm, since
474 * -it ASID for TLB entry is fetched from MMU ASID reg (valid for curr)
475 * -completes the lazy write to SASID reg (again valid for curr tsk)
477 * Removing the assumption involves
478 * -Using vma->mm->context{ASID,SASID}, as opposed to MMU reg.
479 * -Fix the TLB paranoid debug code to not trigger false negatives.
480 * -More importantly it makes this handler inconsistent with fast-path
481 * TLB Refill handler which always deals with "current"
483 * Lets see the use cases when current->mm != vma->mm and we land here
484 * 1. execve->copy_strings()->__get_user_pages->handle_mm_fault
485 * Here VM wants to pre-install a TLB entry for user stack while
486 * current->mm still points to pre-execve mm (hence the condition).
487 * However the stack vaddr is soon relocated (randomization) and
488 * move_page_tables() tries to undo that TLB entry.
489 * Thus not creating TLB entry is not any worse.
491 * 2. ptrace(POKETEXT) causes a CoW - debugger(current) inserting a
492 * breakpoint in debugged task. Not creating a TLB now is not
493 * performance critical.
495 * Both the cases above are not good enough for code churn.
497 if (current
->active_mm
!= vma
->vm_mm
)
500 local_irq_save(flags
);
502 tlb_paranoid_check(asid_mm(vma
->vm_mm
, smp_processor_id()), address
);
504 address
&= PAGE_MASK
;
506 /* update this PTE credentials */
507 pte_val(*ptep
) |= (_PAGE_PRESENT
| _PAGE_ACCESSED
);
509 /* Create HW TLB(PD0,PD1) from PTE */
511 /* ASID for this task */
512 asid_or_sasid
= read_aux_reg(ARC_REG_PID
) & 0xff;
514 pd0
= address
| asid_or_sasid
| (pte_val(*ptep
) & PTE_BITS_IN_PD0
);
517 * ARC MMU provides fully orthogonal access bits for K/U mode,
518 * however Linux only saves 1 set to save PTE real-estate
519 * Here we convert 3 PTE bits into 6 MMU bits:
520 * -Kernel only entries have Kr Kw Kx 0 0 0
521 * -User entries have mirrored K and U bits
523 rwx
= pte_val(*ptep
) & PTE_BITS_RWX
;
525 if (pte_val(*ptep
) & _PAGE_GLOBAL
)
526 rwx
<<= 3; /* r w x => Kr Kw Kx 0 0 0 */
528 rwx
|= (rwx
<< 3); /* r w x => Kr Kw Kx Ur Uw Ux */
530 pd1
= rwx
| (pte_val(*ptep
) & PTE_BITS_NON_RWX_IN_PD1
);
532 tlb_entry_insert(pd0
, pd1
);
534 local_irq_restore(flags
);
538 * Called at the end of pagefault, for a userspace mapped page
539 * -pre-install the corresponding TLB entry into MMU
540 * -Finalize the delayed D-cache flush of kernel mapping of page due to
541 * flush_dcache_page(), copy_user_page()
543 * Note that flush (when done) involves both WBACK - so physical page is
544 * in sync as well as INV - so any non-congruent aliases don't remain
546 void update_mmu_cache(struct vm_area_struct
*vma
, unsigned long vaddr_unaligned
,
549 unsigned long vaddr
= vaddr_unaligned
& PAGE_MASK
;
550 unsigned long paddr
= pte_val(*ptep
) & PAGE_MASK
;
551 struct page
*page
= pfn_to_page(pte_pfn(*ptep
));
553 create_tlb(vma
, vaddr
, ptep
);
555 if (page
== ZERO_PAGE(0)) {
560 * Exec page : Independent of aliasing/page-color considerations,
561 * since icache doesn't snoop dcache on ARC, any dirty
562 * K-mapping of a code page needs to be wback+inv so that
563 * icache fetch by userspace sees code correctly.
564 * !EXEC page: If K-mapping is NOT congruent to U-mapping, flush it
565 * so userspace sees the right data.
566 * (Avoids the flush for Non-exec + congruent mapping case)
568 if ((vma
->vm_flags
& VM_EXEC
) ||
569 addr_not_cache_congruent(paddr
, vaddr
)) {
571 int dirty
= !test_and_set_bit(PG_dc_clean
, &page
->flags
);
573 /* wback + inv dcache lines */
574 __flush_dcache_page(paddr
, paddr
);
576 /* invalidate any existing icache lines */
577 if (vma
->vm_flags
& VM_EXEC
)
578 __inv_icache_page(paddr
, vaddr
);
583 /* Read the Cache Build Confuration Registers, Decode them and save into
584 * the cpuinfo structure for later use.
585 * No Validation is done here, simply read/convert the BCRs
587 void read_decode_mmu_bcr(void)
589 struct cpuinfo_arc_mmu
*mmu
= &cpuinfo_arc700
[smp_processor_id()].mmu
;
592 #ifdef CONFIG_CPU_BIG_ENDIAN
593 unsigned int ver
:8, ways
:4, sets
:4, u_itlb
:8, u_dtlb
:8;
595 unsigned int u_dtlb
:8, u_itlb
:8, sets
:4, ways
:4, ver
:8;
600 #ifdef CONFIG_CPU_BIG_ENDIAN
601 unsigned int ver
:8, ways
:4, sets
:4, osm
:1, reserv
:3, pg_sz
:4,
604 unsigned int u_dtlb
:4, u_itlb
:4, pg_sz
:4, reserv
:3, osm
:1, sets
:4,
610 #ifdef CONFIG_CPU_BIG_ENDIAN
611 unsigned int ver
:8, sasid
:1, sz1
:4, sz0
:4, res
:2, pae
:1,
612 n_ways
:2, n_entry
:2, n_super
:2, u_itlb
:3, u_dtlb
:3;
614 /* DTLB ITLB JES JE JA */
615 unsigned int u_dtlb
:3, u_itlb
:3, n_super
:2, n_entry
:2, n_ways
:2,
616 pae
:1, res
:2, sz0
:4, sz1
:4, sasid
:1, ver
:8;
620 tmp
= read_aux_reg(ARC_REG_MMU_BCR
);
621 mmu
->ver
= (tmp
>> 24);
624 mmu2
= (struct bcr_mmu_1_2
*)&tmp
;
625 mmu
->pg_sz_k
= TO_KB(PAGE_SIZE
);
626 mmu
->sets
= 1 << mmu2
->sets
;
627 mmu
->ways
= 1 << mmu2
->ways
;
628 mmu
->u_dtlb
= mmu2
->u_dtlb
;
629 mmu
->u_itlb
= mmu2
->u_itlb
;
630 } else if (mmu
->ver
== 3) {
631 mmu3
= (struct bcr_mmu_3
*)&tmp
;
632 mmu
->pg_sz_k
= 1 << (mmu3
->pg_sz
- 1);
633 mmu
->sets
= 1 << mmu3
->sets
;
634 mmu
->ways
= 1 << mmu3
->ways
;
635 mmu
->u_dtlb
= mmu3
->u_dtlb
;
636 mmu
->u_itlb
= mmu3
->u_itlb
;
638 mmu4
= (struct bcr_mmu_4
*)&tmp
;
639 mmu
->pg_sz_k
= 1 << (mmu4
->sz0
- 1);
640 mmu
->s_pg_sz_m
= 1 << (mmu4
->sz1
- 11);
641 mmu
->sets
= 64 << mmu4
->n_entry
;
642 mmu
->ways
= mmu4
->n_ways
* 2;
643 mmu
->u_dtlb
= mmu4
->u_dtlb
* 4;
644 mmu
->u_itlb
= mmu4
->u_itlb
* 4;
647 mmu
->num_tlb
= mmu
->sets
* mmu
->ways
;
650 char *arc_mmu_mumbojumbo(int cpu_id
, char *buf
, int len
)
653 struct cpuinfo_arc_mmu
*p_mmu
= &cpuinfo_arc700
[cpu_id
].mmu
;
654 char super_pg
[64] = "";
656 if (p_mmu
->s_pg_sz_m
)
657 scnprintf(super_pg
, 64, "%dM Super Page%s, ",
658 p_mmu
->s_pg_sz_m
, " (not used)");
660 n
+= scnprintf(buf
+ n
, len
- n
,
661 "MMU [v%x]\t: %dk PAGE, %sJTLB %d (%dx%d), uDTLB %d, uITLB %d %s\n",
662 p_mmu
->ver
, p_mmu
->pg_sz_k
, super_pg
,
663 p_mmu
->num_tlb
, p_mmu
->sets
, p_mmu
->ways
,
664 p_mmu
->u_dtlb
, p_mmu
->u_itlb
,
665 IS_ENABLED(CONFIG_ARC_MMU_SASID
) ? ",SASID" : "");
670 void arc_mmu_init(void)
673 struct cpuinfo_arc_mmu
*mmu
= &cpuinfo_arc700
[smp_processor_id()].mmu
;
675 printk(arc_mmu_mumbojumbo(0, str
, sizeof(str
)));
677 /* For efficiency sake, kernel is compile time built for a MMU ver
678 * This must match the hardware it is running on.
679 * Linux built for MMU V2, if run on MMU V1 will break down because V1
680 * hardware doesn't understand cmds such as WriteNI, or IVUTLB
681 * On the other hand, Linux built for V1 if run on MMU V2 will do
682 * un-needed workarounds to prevent memcpy thrashing.
683 * Similarly MMU V3 has new features which won't work on older MMU
685 if (mmu
->ver
!= CONFIG_ARC_MMU_VER
) {
686 panic("MMU ver %d doesn't match kernel built for %d...\n",
687 mmu
->ver
, CONFIG_ARC_MMU_VER
);
690 if (mmu
->pg_sz_k
!= TO_KB(PAGE_SIZE
))
691 panic("MMU pg size != PAGE_SIZE (%luk)\n", TO_KB(PAGE_SIZE
));
694 write_aux_reg(ARC_REG_PID
, MMU_ENABLE
);
696 /* In smp we use this reg for interrupt 1 scratch */
698 /* swapper_pg_dir is the pgd for the kernel, used by vmalloc */
699 write_aux_reg(ARC_REG_SCRATCH_DATA0
, swapper_pg_dir
);
704 * TLB Programmer's Model uses Linear Indexes: 0 to {255, 511} for 128 x {2,4}
705 * The mapping is Column-first.
706 * --------------------- -----------
707 * |way0|way1|way2|way3| |way0|way1|
708 * --------------------- -----------
709 * [set0] | 0 | 1 | 2 | 3 | | 0 | 1 |
710 * [set1] | 4 | 5 | 6 | 7 | | 2 | 3 |
712 * [set127] | 508| 509| 510| 511| | 254| 255|
713 * --------------------- -----------
714 * For normal operations we don't(must not) care how above works since
715 * MMU cmd getIndex(vaddr) abstracts that out.
716 * However for walking WAYS of a SET, we need to know this
718 #define SET_WAY_TO_IDX(mmu, set, way) ((set) * mmu->ways + (way))
720 /* Handling of Duplicate PD (TLB entry) in MMU.
721 * -Could be due to buggy customer tapeouts or obscure kernel bugs
722 * -MMU complaints not at the time of duplicate PD installation, but at the
723 * time of lookup matching multiple ways.
724 * -Ideally these should never happen - but if they do - workaround by deleting
726 * -Knob to be verbose abt it.(TODO: hook them up to debugfs)
728 volatile int dup_pd_verbose
= 1;/* Be slient abt it or complain (default) */
730 void do_tlb_overlap_fault(unsigned long cause
, unsigned long address
,
731 struct pt_regs
*regs
)
734 unsigned long flags
, is_valid
;
735 struct cpuinfo_arc_mmu
*mmu
= &cpuinfo_arc700
[smp_processor_id()].mmu
;
736 unsigned int pd0
[mmu
->ways
], pd1
[mmu
->ways
];
738 local_irq_save(flags
);
740 /* re-enable the MMU */
741 write_aux_reg(ARC_REG_PID
, MMU_ENABLE
| read_aux_reg(ARC_REG_PID
));
743 /* loop thru all sets of TLB */
744 for (set
= 0; set
< mmu
->sets
; set
++) {
746 /* read out all the ways of current set */
747 for (way
= 0, is_valid
= 0; way
< mmu
->ways
; way
++) {
748 write_aux_reg(ARC_REG_TLBINDEX
,
749 SET_WAY_TO_IDX(mmu
, set
, way
));
750 write_aux_reg(ARC_REG_TLBCOMMAND
, TLBRead
);
751 pd0
[way
] = read_aux_reg(ARC_REG_TLBPD0
);
752 pd1
[way
] = read_aux_reg(ARC_REG_TLBPD1
);
753 is_valid
|= pd0
[way
] & _PAGE_PRESENT
;
756 /* If all the WAYS in SET are empty, skip to next SET */
760 /* Scan the set for duplicate ways: needs a nested loop */
761 for (way
= 0; way
< mmu
->ways
- 1; way
++) {
765 for (n
= way
+ 1; n
< mmu
->ways
; n
++) {
766 if ((pd0
[way
] & PAGE_MASK
) ==
767 (pd0
[n
] & PAGE_MASK
)) {
769 if (dup_pd_verbose
) {
770 pr_info("Duplicate PD's @"
773 pr_info("TLBPD0[%u]: %08x\n",
778 * clear entry @way and not @n. This is
779 * critical to our optimised loop
781 pd0
[way
] = pd1
[way
] = 0;
782 write_aux_reg(ARC_REG_TLBINDEX
,
783 SET_WAY_TO_IDX(mmu
, set
, way
));
790 local_irq_restore(flags
);
793 /***********************************************************************
794 * Diagnostic Routines
795 * -Called from Low Level TLB Hanlders if things don;t look good
796 **********************************************************************/
798 #ifdef CONFIG_ARC_DBG_TLB_PARANOIA
801 * Low Level ASM TLB handler calls this if it finds that HW and SW ASIDS
804 void print_asid_mismatch(int mm_asid
, int mmu_asid
, int is_fast_path
)
806 pr_emerg("ASID Mismatch in %s Path Handler: sw-pid=0x%x hw-pid=0x%x\n",
807 is_fast_path
? "Fast" : "Slow", mm_asid
, mmu_asid
);
809 __asm__
__volatile__("flag 1");
812 void tlb_paranoid_check(unsigned int mm_asid
, unsigned long addr
)
814 unsigned int mmu_asid
;
816 mmu_asid
= read_aux_reg(ARC_REG_PID
) & 0xff;
819 * At the time of a TLB miss/installation
820 * - HW version needs to match SW version
821 * - SW needs to have a valid ASID
823 if (addr
< 0x70000000 &&
824 ((mm_asid
== MM_CTXT_NO_ASID
) ||
825 (mmu_asid
!= (mm_asid
& MM_CTXT_ASID_MASK
))))
826 print_asid_mismatch(mm_asid
, mmu_asid
, 0);