2 * linux/arch/cris/arch-v10/kernel/time.c
4 * Copyright (C) 1991, 1992, 1995 Linus Torvalds
5 * Copyright (C) 1999-2002 Axis Communications AB
9 #include <linux/timex.h>
10 #include <linux/time.h>
11 #include <linux/jiffies.h>
12 #include <linux/interrupt.h>
13 #include <linux/swap.h>
14 #include <linux/sched.h>
15 #include <linux/init.h>
17 #include <asm/types.h>
18 #include <asm/signal.h>
20 #include <asm/delay.h>
21 #include <asm/irq_regs.h>
23 /* define this if you need to use print_timestamp */
24 /* it will make jiffies at 96 hz instead of 100 hz though */
25 #undef USE_CASCADE_TIMERS
27 unsigned long get_ns_in_jiffie(void)
29 unsigned char timer_count
, t1
;
30 unsigned short presc_count
;
34 local_irq_save(flags
);
35 timer_count
= *R_TIMER0_DATA
;
36 presc_count
= *R_TIM_PRESC_STATUS
;
37 /* presc_count might be wrapped */
40 if (timer_count
!= t1
){
41 /* it wrapped, read prescaler again... */
42 presc_count
= *R_TIM_PRESC_STATUS
;
45 local_irq_restore(flags
);
46 if (presc_count
>= PRESCALE_VALUE
/2 ){
47 presc_count
= PRESCALE_VALUE
- presc_count
+ PRESCALE_VALUE
/2;
49 presc_count
= PRESCALE_VALUE
- presc_count
- PRESCALE_VALUE
/2;
52 ns
= ( (TIMER0_DIV
- timer_count
) * ((1000000000/HZ
)/TIMER0_DIV
)) +
53 ( (presc_count
) * (1000000000/PRESCALE_FREQ
));
57 static u32
cris_v10_gettimeoffset(void)
61 /* The timer interrupt comes from Etrax timer 0. In order to get
62 * better precision, we check the current value. It might have
63 * underflowed already though.
65 count
= *R_TIMER0_DATA
;
67 /* Convert timer value to nsec */
68 return (TIMER0_DIV
- count
) * (NSEC_PER_SEC
/HZ
)/TIMER0_DIV
;
71 /* Excerpt from the Etrax100 HSDD about the built-in watchdog:
73 * 3.10.4 Watchdog timer
75 * When the watchdog timer is started, it generates an NMI if the watchdog
76 * isn't restarted or stopped within 0.1 s. If it still isn't restarted or
77 * stopped after an additional 3.3 ms, the watchdog resets the chip.
78 * The watchdog timer is stopped after reset. The watchdog timer is controlled
79 * by the R_WATCHDOG register. The R_WATCHDOG register contains an enable bit
80 * and a 3-bit key value. The effect of writing to the R_WATCHDOG register is
81 * described in the table below:
83 * Watchdog Value written:
84 * state: To enable: To key: Operation:
85 * -------- ---------- ------- ----------
86 * stopped 0 X No effect.
87 * stopped 1 key_val Start watchdog with key = key_val.
88 * started 0 ~key Stop watchdog
89 * started 1 ~key Restart watchdog with key = ~key.
90 * started X new_key_val Change key to new_key_val.
92 * Note: '~' is the bitwise NOT operator.
96 /* right now, starting the watchdog is the same as resetting it */
97 #define start_watchdog reset_watchdog
99 #ifdef CONFIG_ETRAX_WATCHDOG
100 static int watchdog_key
= 0; /* arbitrary number */
103 /* number of pages to consider "out of memory". it is normal that the memory
104 * is used though, so put this really low.
107 #define WATCHDOG_MIN_FREE_PAGES 8
109 void reset_watchdog(void)
111 #if defined(CONFIG_ETRAX_WATCHDOG)
112 /* only keep watchdog happy as long as we have memory left! */
113 if(nr_free_pages() > WATCHDOG_MIN_FREE_PAGES
) {
114 /* reset the watchdog with the inverse of the old key */
115 watchdog_key
^= 0x7; /* invert key, which is 3 bits */
116 *R_WATCHDOG
= IO_FIELD(R_WATCHDOG
, key
, watchdog_key
) |
117 IO_STATE(R_WATCHDOG
, enable
, start
);
122 /* stop the watchdog - we still need the correct key */
124 void stop_watchdog(void)
126 #ifdef CONFIG_ETRAX_WATCHDOG
127 watchdog_key
^= 0x7; /* invert key, which is 3 bits */
128 *R_WATCHDOG
= IO_FIELD(R_WATCHDOG
, key
, watchdog_key
) |
129 IO_STATE(R_WATCHDOG
, enable
, stop
);
134 extern void cris_do_profile(struct pt_regs
*regs
);
137 * timer_interrupt() needs to keep up the real-time clock,
138 * as well as call the "xtime_update()" routine every clocktick
140 static inline irqreturn_t
timer_interrupt(int irq
, void *dev_id
)
142 struct pt_regs
*regs
= get_irq_regs();
143 /* acknowledge the timer irq */
145 #ifdef USE_CASCADE_TIMERS
147 IO_FIELD( R_TIMER_CTRL
, timerdiv1
, 0) |
148 IO_FIELD( R_TIMER_CTRL
, timerdiv0
, 0) |
149 IO_STATE( R_TIMER_CTRL
, i1
, clr
) |
150 IO_STATE( R_TIMER_CTRL
, tm1
, run
) |
151 IO_STATE( R_TIMER_CTRL
, clksel1
, cascade0
) |
152 IO_STATE( R_TIMER_CTRL
, i0
, clr
) |
153 IO_STATE( R_TIMER_CTRL
, tm0
, run
) |
154 IO_STATE( R_TIMER_CTRL
, clksel0
, c6250kHz
);
156 *R_TIMER_CTRL
= r_timer_ctrl_shadow
| IO_STATE(R_TIMER_CTRL
, i0
, clr
);
159 /* reset watchdog otherwise it resets us! */
162 /* Update statistics. */
163 update_process_times(user_mode(regs
));
165 /* call the real timer interrupt handler */
168 cris_do_profile(regs
); /* Save profiling information */
172 /* timer is IRQF_SHARED so drivers can add stuff to the timer irq chain */
174 static struct irqaction irq2
= {
175 .handler
= timer_interrupt
,
176 .flags
= IRQF_SHARED
,
180 void __init
time_init(void)
182 arch_gettimeoffset
= cris_v10_gettimeoffset
;
184 /* probe for the RTC and read it if it exists
185 * Before the RTC can be probed the loops_per_usec variable needs
186 * to be initialized to make usleep work. A better value for
187 * loops_per_usec is calculated by the kernel later once the
192 /* Setup the etrax timers
193 * Base frequency is 25000 hz, divider 250 -> 100 HZ
194 * In normal mode, we use timer0, so timer1 is free. In cascade
195 * mode (which we sometimes use for debugging) both timers are used.
196 * Remember that linux/timex.h contains #defines that rely on the
197 * timer settings below (hz and divide factor) !!!
200 #ifdef USE_CASCADE_TIMERS
202 IO_FIELD( R_TIMER_CTRL
, timerdiv1
, 0) |
203 IO_FIELD( R_TIMER_CTRL
, timerdiv0
, 0) |
204 IO_STATE( R_TIMER_CTRL
, i1
, nop
) |
205 IO_STATE( R_TIMER_CTRL
, tm1
, stop_ld
) |
206 IO_STATE( R_TIMER_CTRL
, clksel1
, cascade0
) |
207 IO_STATE( R_TIMER_CTRL
, i0
, nop
) |
208 IO_STATE( R_TIMER_CTRL
, tm0
, stop_ld
) |
209 IO_STATE( R_TIMER_CTRL
, clksel0
, c6250kHz
);
211 *R_TIMER_CTRL
= r_timer_ctrl_shadow
=
212 IO_FIELD( R_TIMER_CTRL
, timerdiv1
, 0) |
213 IO_FIELD( R_TIMER_CTRL
, timerdiv0
, 0) |
214 IO_STATE( R_TIMER_CTRL
, i1
, nop
) |
215 IO_STATE( R_TIMER_CTRL
, tm1
, run
) |
216 IO_STATE( R_TIMER_CTRL
, clksel1
, cascade0
) |
217 IO_STATE( R_TIMER_CTRL
, i0
, nop
) |
218 IO_STATE( R_TIMER_CTRL
, tm0
, run
) |
219 IO_STATE( R_TIMER_CTRL
, clksel0
, c6250kHz
);
222 IO_FIELD(R_TIMER_CTRL
, timerdiv1
, 192) |
223 IO_FIELD(R_TIMER_CTRL
, timerdiv0
, TIMER0_DIV
) |
224 IO_STATE(R_TIMER_CTRL
, i1
, nop
) |
225 IO_STATE(R_TIMER_CTRL
, tm1
, stop_ld
) |
226 IO_STATE(R_TIMER_CTRL
, clksel1
, c19k2Hz
) |
227 IO_STATE(R_TIMER_CTRL
, i0
, nop
) |
228 IO_STATE(R_TIMER_CTRL
, tm0
, stop_ld
) |
229 IO_STATE(R_TIMER_CTRL
, clksel0
, flexible
);
231 *R_TIMER_CTRL
= r_timer_ctrl_shadow
=
232 IO_FIELD(R_TIMER_CTRL
, timerdiv1
, 192) |
233 IO_FIELD(R_TIMER_CTRL
, timerdiv0
, TIMER0_DIV
) |
234 IO_STATE(R_TIMER_CTRL
, i1
, nop
) |
235 IO_STATE(R_TIMER_CTRL
, tm1
, run
) |
236 IO_STATE(R_TIMER_CTRL
, clksel1
, c19k2Hz
) |
237 IO_STATE(R_TIMER_CTRL
, i0
, nop
) |
238 IO_STATE(R_TIMER_CTRL
, tm0
, run
) |
239 IO_STATE(R_TIMER_CTRL
, clksel0
, flexible
);
241 *R_TIMER_PRESCALE
= PRESCALE_VALUE
;
244 /* unmask the timer irq */
245 *R_IRQ_MASK0_SET
= IO_STATE(R_IRQ_MASK0_SET
, timer0
, set
);
247 /* now actually register the irq handler that calls timer_interrupt() */
248 setup_irq(2, &irq2
); /* irq 2 is the timer0 irq in etrax */
250 /* enable watchdog if we should use one */
251 #if defined(CONFIG_ETRAX_WATCHDOG)
252 printk("Enabling watchdog...\n");
255 /* If we use the hardware watchdog, we want to trap it as an NMI
256 and dump registers before it resets us. For this to happen, we
257 must set the "m" NMI enable flag (which once set, is unset only
258 when an NMI is taken).
260 The same goes for the external NMI, but that doesn't have any
261 driver or infrastructure support yet. */
264 *R_IRQ_MASK0_SET
= IO_STATE(R_IRQ_MASK0_SET
, watchdog_nmi
, set
);
265 *R_VECT_MASK_SET
= IO_STATE(R_VECT_MASK_SET
, nmi
, set
);