blk: rq_data_dir() should not return a boolean
[cris-mirror.git] / arch / powerpc / include / asm / mmu-hash64.h
bloba82f5347540ae2c875733253a8639a089399fa3f
1 #ifndef _ASM_POWERPC_MMU_HASH64_H_
2 #define _ASM_POWERPC_MMU_HASH64_H_
3 /*
4 * PowerPC64 memory management structures
6 * Dave Engebretsen & Mike Corrigan <{engebret|mikejc}@us.ibm.com>
7 * PPC64 rework.
9 * This program is free software; you can redistribute it and/or
10 * modify it under the terms of the GNU General Public License
11 * as published by the Free Software Foundation; either version
12 * 2 of the License, or (at your option) any later version.
15 #include <asm/asm-compat.h>
16 #include <asm/page.h>
19 * This is necessary to get the definition of PGTABLE_RANGE which we
20 * need for various slices related matters. Note that this isn't the
21 * complete pgtable.h but only a portion of it.
23 #include <asm/pgtable-ppc64.h>
24 #include <asm/bug.h>
25 #include <asm/processor.h>
28 * SLB
31 #define SLB_NUM_BOLTED 3
32 #define SLB_CACHE_ENTRIES 8
33 #define SLB_MIN_SIZE 32
35 /* Bits in the SLB ESID word */
36 #define SLB_ESID_V ASM_CONST(0x0000000008000000) /* valid */
38 /* Bits in the SLB VSID word */
39 #define SLB_VSID_SHIFT 12
40 #define SLB_VSID_SHIFT_1T 24
41 #define SLB_VSID_SSIZE_SHIFT 62
42 #define SLB_VSID_B ASM_CONST(0xc000000000000000)
43 #define SLB_VSID_B_256M ASM_CONST(0x0000000000000000)
44 #define SLB_VSID_B_1T ASM_CONST(0x4000000000000000)
45 #define SLB_VSID_KS ASM_CONST(0x0000000000000800)
46 #define SLB_VSID_KP ASM_CONST(0x0000000000000400)
47 #define SLB_VSID_N ASM_CONST(0x0000000000000200) /* no-execute */
48 #define SLB_VSID_L ASM_CONST(0x0000000000000100)
49 #define SLB_VSID_C ASM_CONST(0x0000000000000080) /* class */
50 #define SLB_VSID_LP ASM_CONST(0x0000000000000030)
51 #define SLB_VSID_LP_00 ASM_CONST(0x0000000000000000)
52 #define SLB_VSID_LP_01 ASM_CONST(0x0000000000000010)
53 #define SLB_VSID_LP_10 ASM_CONST(0x0000000000000020)
54 #define SLB_VSID_LP_11 ASM_CONST(0x0000000000000030)
55 #define SLB_VSID_LLP (SLB_VSID_L|SLB_VSID_LP)
57 #define SLB_VSID_KERNEL (SLB_VSID_KP)
58 #define SLB_VSID_USER (SLB_VSID_KP|SLB_VSID_KS|SLB_VSID_C)
60 #define SLBIE_C (0x08000000)
61 #define SLBIE_SSIZE_SHIFT 25
64 * Hash table
67 #define HPTES_PER_GROUP 8
69 #define HPTE_V_SSIZE_SHIFT 62
70 #define HPTE_V_AVPN_SHIFT 7
71 #define HPTE_V_AVPN ASM_CONST(0x3fffffffffffff80)
72 #define HPTE_V_AVPN_VAL(x) (((x) & HPTE_V_AVPN) >> HPTE_V_AVPN_SHIFT)
73 #define HPTE_V_COMPARE(x,y) (!(((x) ^ (y)) & 0xffffffffffffff80UL))
74 #define HPTE_V_BOLTED ASM_CONST(0x0000000000000010)
75 #define HPTE_V_LOCK ASM_CONST(0x0000000000000008)
76 #define HPTE_V_LARGE ASM_CONST(0x0000000000000004)
77 #define HPTE_V_SECONDARY ASM_CONST(0x0000000000000002)
78 #define HPTE_V_VALID ASM_CONST(0x0000000000000001)
80 #define HPTE_R_PP0 ASM_CONST(0x8000000000000000)
81 #define HPTE_R_TS ASM_CONST(0x4000000000000000)
82 #define HPTE_R_KEY_HI ASM_CONST(0x3000000000000000)
83 #define HPTE_R_RPN_SHIFT 12
84 #define HPTE_R_RPN ASM_CONST(0x0ffffffffffff000)
85 #define HPTE_R_PP ASM_CONST(0x0000000000000003)
86 #define HPTE_R_N ASM_CONST(0x0000000000000004)
87 #define HPTE_R_G ASM_CONST(0x0000000000000008)
88 #define HPTE_R_M ASM_CONST(0x0000000000000010)
89 #define HPTE_R_I ASM_CONST(0x0000000000000020)
90 #define HPTE_R_W ASM_CONST(0x0000000000000040)
91 #define HPTE_R_WIMG ASM_CONST(0x0000000000000078)
92 #define HPTE_R_C ASM_CONST(0x0000000000000080)
93 #define HPTE_R_R ASM_CONST(0x0000000000000100)
94 #define HPTE_R_KEY_LO ASM_CONST(0x0000000000000e00)
96 #define HPTE_V_1TB_SEG ASM_CONST(0x4000000000000000)
97 #define HPTE_V_VRMA_MASK ASM_CONST(0x4001ffffff000000)
99 /* Values for PP (assumes Ks=0, Kp=1) */
100 #define PP_RWXX 0 /* Supervisor read/write, User none */
101 #define PP_RWRX 1 /* Supervisor read/write, User read */
102 #define PP_RWRW 2 /* Supervisor read/write, User read/write */
103 #define PP_RXRX 3 /* Supervisor read, User read */
104 #define PP_RXXX (HPTE_R_PP0 | 2) /* Supervisor read, user none */
106 /* Fields for tlbiel instruction in architecture 2.06 */
107 #define TLBIEL_INVAL_SEL_MASK 0xc00 /* invalidation selector */
108 #define TLBIEL_INVAL_PAGE 0x000 /* invalidate a single page */
109 #define TLBIEL_INVAL_SET_LPID 0x800 /* invalidate a set for current LPID */
110 #define TLBIEL_INVAL_SET 0xc00 /* invalidate a set for all LPIDs */
111 #define TLBIEL_INVAL_SET_MASK 0xfff000 /* set number to inval. */
112 #define TLBIEL_INVAL_SET_SHIFT 12
114 #define POWER7_TLB_SETS 128 /* # sets in POWER7 TLB */
115 #define POWER8_TLB_SETS 512 /* # sets in POWER8 TLB */
117 #ifndef __ASSEMBLY__
119 struct hash_pte {
120 __be64 v;
121 __be64 r;
124 extern struct hash_pte *htab_address;
125 extern unsigned long htab_size_bytes;
126 extern unsigned long htab_hash_mask;
129 * Page size definition
131 * shift : is the "PAGE_SHIFT" value for that page size
132 * sllp : is a bit mask with the value of SLB L || LP to be or'ed
133 * directly to a slbmte "vsid" value
134 * penc : is the HPTE encoding mask for the "LP" field:
137 struct mmu_psize_def
139 unsigned int shift; /* number of bits */
140 int penc[MMU_PAGE_COUNT]; /* HPTE encoding */
141 unsigned int tlbiel; /* tlbiel supported for that page size */
142 unsigned long avpnm; /* bits to mask out in AVPN in the HPTE */
143 unsigned long sllp; /* SLB L||LP (exact mask to use in slbmte) */
145 extern struct mmu_psize_def mmu_psize_defs[MMU_PAGE_COUNT];
147 static inline int shift_to_mmu_psize(unsigned int shift)
149 int psize;
151 for (psize = 0; psize < MMU_PAGE_COUNT; ++psize)
152 if (mmu_psize_defs[psize].shift == shift)
153 return psize;
154 return -1;
157 static inline unsigned int mmu_psize_to_shift(unsigned int mmu_psize)
159 if (mmu_psize_defs[mmu_psize].shift)
160 return mmu_psize_defs[mmu_psize].shift;
161 BUG();
164 #endif /* __ASSEMBLY__ */
167 * Segment sizes.
168 * These are the values used by hardware in the B field of
169 * SLB entries and the first dword of MMU hashtable entries.
170 * The B field is 2 bits; the values 2 and 3 are unused and reserved.
172 #define MMU_SEGSIZE_256M 0
173 #define MMU_SEGSIZE_1T 1
176 * encode page number shift.
177 * in order to fit the 78 bit va in a 64 bit variable we shift the va by
178 * 12 bits. This enable us to address upto 76 bit va.
179 * For hpt hash from a va we can ignore the page size bits of va and for
180 * hpte encoding we ignore up to 23 bits of va. So ignoring lower 12 bits ensure
181 * we work in all cases including 4k page size.
183 #define VPN_SHIFT 12
186 * HPTE Large Page (LP) details
188 #define LP_SHIFT 12
189 #define LP_BITS 8
190 #define LP_MASK(i) ((0xFF >> (i)) << LP_SHIFT)
192 #ifndef __ASSEMBLY__
194 static inline int slb_vsid_shift(int ssize)
196 if (ssize == MMU_SEGSIZE_256M)
197 return SLB_VSID_SHIFT;
198 return SLB_VSID_SHIFT_1T;
201 static inline int segment_shift(int ssize)
203 if (ssize == MMU_SEGSIZE_256M)
204 return SID_SHIFT;
205 return SID_SHIFT_1T;
209 * The current system page and segment sizes
211 extern int mmu_linear_psize;
212 extern int mmu_virtual_psize;
213 extern int mmu_vmalloc_psize;
214 extern int mmu_vmemmap_psize;
215 extern int mmu_io_psize;
216 extern int mmu_kernel_ssize;
217 extern int mmu_highuser_ssize;
218 extern u16 mmu_slb_size;
219 extern unsigned long tce_alloc_start, tce_alloc_end;
222 * If the processor supports 64k normal pages but not 64k cache
223 * inhibited pages, we have to be prepared to switch processes
224 * to use 4k pages when they create cache-inhibited mappings.
225 * If this is the case, mmu_ci_restrictions will be set to 1.
227 extern int mmu_ci_restrictions;
230 * This computes the AVPN and B fields of the first dword of a HPTE,
231 * for use when we want to match an existing PTE. The bottom 7 bits
232 * of the returned value are zero.
234 static inline unsigned long hpte_encode_avpn(unsigned long vpn, int psize,
235 int ssize)
237 unsigned long v;
239 * The AVA field omits the low-order 23 bits of the 78 bits VA.
240 * These bits are not needed in the PTE, because the
241 * low-order b of these bits are part of the byte offset
242 * into the virtual page and, if b < 23, the high-order
243 * 23-b of these bits are always used in selecting the
244 * PTEGs to be searched
246 v = (vpn >> (23 - VPN_SHIFT)) & ~(mmu_psize_defs[psize].avpnm);
247 v <<= HPTE_V_AVPN_SHIFT;
248 v |= ((unsigned long) ssize) << HPTE_V_SSIZE_SHIFT;
249 return v;
253 * This function sets the AVPN and L fields of the HPTE appropriately
254 * using the base page size and actual page size.
256 static inline unsigned long hpte_encode_v(unsigned long vpn, int base_psize,
257 int actual_psize, int ssize)
259 unsigned long v;
260 v = hpte_encode_avpn(vpn, base_psize, ssize);
261 if (actual_psize != MMU_PAGE_4K)
262 v |= HPTE_V_LARGE;
263 return v;
267 * This function sets the ARPN, and LP fields of the HPTE appropriately
268 * for the page size. We assume the pa is already "clean" that is properly
269 * aligned for the requested page size
271 static inline unsigned long hpte_encode_r(unsigned long pa, int base_psize,
272 int actual_psize)
274 /* A 4K page needs no special encoding */
275 if (actual_psize == MMU_PAGE_4K)
276 return pa & HPTE_R_RPN;
277 else {
278 unsigned int penc = mmu_psize_defs[base_psize].penc[actual_psize];
279 unsigned int shift = mmu_psize_defs[actual_psize].shift;
280 return (pa & ~((1ul << shift) - 1)) | (penc << LP_SHIFT);
285 * Build a VPN_SHIFT bit shifted va given VSID, EA and segment size.
287 static inline unsigned long hpt_vpn(unsigned long ea,
288 unsigned long vsid, int ssize)
290 unsigned long mask;
291 int s_shift = segment_shift(ssize);
293 mask = (1ul << (s_shift - VPN_SHIFT)) - 1;
294 return (vsid << (s_shift - VPN_SHIFT)) | ((ea >> VPN_SHIFT) & mask);
298 * This hashes a virtual address
300 static inline unsigned long hpt_hash(unsigned long vpn,
301 unsigned int shift, int ssize)
303 int mask;
304 unsigned long hash, vsid;
306 /* VPN_SHIFT can be atmost 12 */
307 if (ssize == MMU_SEGSIZE_256M) {
308 mask = (1ul << (SID_SHIFT - VPN_SHIFT)) - 1;
309 hash = (vpn >> (SID_SHIFT - VPN_SHIFT)) ^
310 ((vpn & mask) >> (shift - VPN_SHIFT));
311 } else {
312 mask = (1ul << (SID_SHIFT_1T - VPN_SHIFT)) - 1;
313 vsid = vpn >> (SID_SHIFT_1T - VPN_SHIFT);
314 hash = vsid ^ (vsid << 25) ^
315 ((vpn & mask) >> (shift - VPN_SHIFT)) ;
317 return hash & 0x7fffffffffUL;
320 #define HPTE_LOCAL_UPDATE 0x1
321 #define HPTE_NOHPTE_UPDATE 0x2
323 extern int __hash_page_4K(unsigned long ea, unsigned long access,
324 unsigned long vsid, pte_t *ptep, unsigned long trap,
325 unsigned long flags, int ssize, int subpage_prot);
326 extern int __hash_page_64K(unsigned long ea, unsigned long access,
327 unsigned long vsid, pte_t *ptep, unsigned long trap,
328 unsigned long flags, int ssize);
329 struct mm_struct;
330 unsigned int hash_page_do_lazy_icache(unsigned int pp, pte_t pte, int trap);
331 extern int hash_page_mm(struct mm_struct *mm, unsigned long ea,
332 unsigned long access, unsigned long trap,
333 unsigned long flags);
334 extern int hash_page(unsigned long ea, unsigned long access, unsigned long trap,
335 unsigned long dsisr);
336 int __hash_page_huge(unsigned long ea, unsigned long access, unsigned long vsid,
337 pte_t *ptep, unsigned long trap, unsigned long flags,
338 int ssize, unsigned int shift, unsigned int mmu_psize);
339 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
340 extern int __hash_page_thp(unsigned long ea, unsigned long access,
341 unsigned long vsid, pmd_t *pmdp, unsigned long trap,
342 unsigned long flags, int ssize, unsigned int psize);
343 #else
344 static inline int __hash_page_thp(unsigned long ea, unsigned long access,
345 unsigned long vsid, pmd_t *pmdp,
346 unsigned long trap, unsigned long flags,
347 int ssize, unsigned int psize)
349 BUG();
350 return -1;
352 #endif
353 extern void hash_failure_debug(unsigned long ea, unsigned long access,
354 unsigned long vsid, unsigned long trap,
355 int ssize, int psize, int lpsize,
356 unsigned long pte);
357 extern int htab_bolt_mapping(unsigned long vstart, unsigned long vend,
358 unsigned long pstart, unsigned long prot,
359 int psize, int ssize);
360 int htab_remove_mapping(unsigned long vstart, unsigned long vend,
361 int psize, int ssize);
362 extern void add_gpage(u64 addr, u64 page_size, unsigned long number_of_pages);
363 extern void demote_segment_4k(struct mm_struct *mm, unsigned long addr);
365 extern void hpte_init_native(void);
366 extern void hpte_init_lpar(void);
367 extern void hpte_init_beat(void);
368 extern void hpte_init_beat_v3(void);
370 extern void slb_initialize(void);
371 extern void slb_flush_and_rebolt(void);
373 extern void slb_vmalloc_update(void);
374 extern void slb_set_size(u16 size);
375 #endif /* __ASSEMBLY__ */
378 * VSID allocation (256MB segment)
380 * We first generate a 37-bit "proto-VSID". Proto-VSIDs are generated
381 * from mmu context id and effective segment id of the address.
383 * For user processes max context id is limited to ((1ul << 19) - 5)
384 * for kernel space, we use the top 4 context ids to map address as below
385 * NOTE: each context only support 64TB now.
386 * 0x7fffc - [ 0xc000000000000000 - 0xc0003fffffffffff ]
387 * 0x7fffd - [ 0xd000000000000000 - 0xd0003fffffffffff ]
388 * 0x7fffe - [ 0xe000000000000000 - 0xe0003fffffffffff ]
389 * 0x7ffff - [ 0xf000000000000000 - 0xf0003fffffffffff ]
391 * The proto-VSIDs are then scrambled into real VSIDs with the
392 * multiplicative hash:
394 * VSID = (proto-VSID * VSID_MULTIPLIER) % VSID_MODULUS
396 * VSID_MULTIPLIER is prime, so in particular it is
397 * co-prime to VSID_MODULUS, making this a 1:1 scrambling function.
398 * Because the modulus is 2^n-1 we can compute it efficiently without
399 * a divide or extra multiply (see below). The scramble function gives
400 * robust scattering in the hash table (at least based on some initial
401 * results).
403 * We also consider VSID 0 special. We use VSID 0 for slb entries mapping
404 * bad address. This enables us to consolidate bad address handling in
405 * hash_page.
407 * We also need to avoid the last segment of the last context, because that
408 * would give a protovsid of 0x1fffffffff. That will result in a VSID 0
409 * because of the modulo operation in vsid scramble. But the vmemmap
410 * (which is what uses region 0xf) will never be close to 64TB in size
411 * (it's 56 bytes per page of system memory).
414 #define CONTEXT_BITS 19
415 #define ESID_BITS 18
416 #define ESID_BITS_1T 6
419 * 256MB segment
420 * The proto-VSID space has 2^(CONTEX_BITS + ESID_BITS) - 1 segments
421 * available for user + kernel mapping. The top 4 contexts are used for
422 * kernel mapping. Each segment contains 2^28 bytes. Each
423 * context maps 2^46 bytes (64TB) so we can support 2^19-1 contexts
424 * (19 == 37 + 28 - 46).
426 #define MAX_USER_CONTEXT ((ASM_CONST(1) << CONTEXT_BITS) - 5)
429 * This should be computed such that protovosid * vsid_mulitplier
430 * doesn't overflow 64 bits. It should also be co-prime to vsid_modulus
432 #define VSID_MULTIPLIER_256M ASM_CONST(12538073) /* 24-bit prime */
433 #define VSID_BITS_256M (CONTEXT_BITS + ESID_BITS)
434 #define VSID_MODULUS_256M ((1UL<<VSID_BITS_256M)-1)
436 #define VSID_MULTIPLIER_1T ASM_CONST(12538073) /* 24-bit prime */
437 #define VSID_BITS_1T (CONTEXT_BITS + ESID_BITS_1T)
438 #define VSID_MODULUS_1T ((1UL<<VSID_BITS_1T)-1)
441 #define USER_VSID_RANGE (1UL << (ESID_BITS + SID_SHIFT))
444 * This macro generates asm code to compute the VSID scramble
445 * function. Used in slb_allocate() and do_stab_bolted. The function
446 * computed is: (protovsid*VSID_MULTIPLIER) % VSID_MODULUS
448 * rt = register continaing the proto-VSID and into which the
449 * VSID will be stored
450 * rx = scratch register (clobbered)
452 * - rt and rx must be different registers
453 * - The answer will end up in the low VSID_BITS bits of rt. The higher
454 * bits may contain other garbage, so you may need to mask the
455 * result.
457 #define ASM_VSID_SCRAMBLE(rt, rx, size) \
458 lis rx,VSID_MULTIPLIER_##size@h; \
459 ori rx,rx,VSID_MULTIPLIER_##size@l; \
460 mulld rt,rt,rx; /* rt = rt * MULTIPLIER */ \
462 srdi rx,rt,VSID_BITS_##size; \
463 clrldi rt,rt,(64-VSID_BITS_##size); \
464 add rt,rt,rx; /* add high and low bits */ \
465 /* NOTE: explanation based on VSID_BITS_##size = 36 \
466 * Now, r3 == VSID (mod 2^36-1), and lies between 0 and \
467 * 2^36-1+2^28-1. That in particular means that if r3 >= \
468 * 2^36-1, then r3+1 has the 2^36 bit set. So, if r3+1 has \
469 * the bit clear, r3 already has the answer we want, if it \
470 * doesn't, the answer is the low 36 bits of r3+1. So in all \
471 * cases the answer is the low 36 bits of (r3 + ((r3+1) >> 36))*/\
472 addi rx,rt,1; \
473 srdi rx,rx,VSID_BITS_##size; /* extract 2^VSID_BITS bit */ \
474 add rt,rt,rx
476 /* 4 bits per slice and we have one slice per 1TB */
477 #define SLICE_ARRAY_SIZE (PGTABLE_RANGE >> 41)
479 #ifndef __ASSEMBLY__
481 #ifdef CONFIG_PPC_SUBPAGE_PROT
483 * For the sub-page protection option, we extend the PGD with one of
484 * these. Basically we have a 3-level tree, with the top level being
485 * the protptrs array. To optimize speed and memory consumption when
486 * only addresses < 4GB are being protected, pointers to the first
487 * four pages of sub-page protection words are stored in the low_prot
488 * array.
489 * Each page of sub-page protection words protects 1GB (4 bytes
490 * protects 64k). For the 3-level tree, each page of pointers then
491 * protects 8TB.
493 struct subpage_prot_table {
494 unsigned long maxaddr; /* only addresses < this are protected */
495 unsigned int **protptrs[(TASK_SIZE_USER64 >> 43)];
496 unsigned int *low_prot[4];
499 #define SBP_L1_BITS (PAGE_SHIFT - 2)
500 #define SBP_L2_BITS (PAGE_SHIFT - 3)
501 #define SBP_L1_COUNT (1 << SBP_L1_BITS)
502 #define SBP_L2_COUNT (1 << SBP_L2_BITS)
503 #define SBP_L2_SHIFT (PAGE_SHIFT + SBP_L1_BITS)
504 #define SBP_L3_SHIFT (SBP_L2_SHIFT + SBP_L2_BITS)
506 extern void subpage_prot_free(struct mm_struct *mm);
507 extern void subpage_prot_init_new_context(struct mm_struct *mm);
508 #else
509 static inline void subpage_prot_free(struct mm_struct *mm) {}
510 static inline void subpage_prot_init_new_context(struct mm_struct *mm) { }
511 #endif /* CONFIG_PPC_SUBPAGE_PROT */
513 typedef unsigned long mm_context_id_t;
514 struct spinlock;
516 typedef struct {
517 mm_context_id_t id;
518 u16 user_psize; /* page size index */
520 #ifdef CONFIG_PPC_MM_SLICES
521 u64 low_slices_psize; /* SLB page size encodings */
522 unsigned char high_slices_psize[SLICE_ARRAY_SIZE];
523 #else
524 u16 sllp; /* SLB page size encoding */
525 #endif
526 unsigned long vdso_base;
527 #ifdef CONFIG_PPC_SUBPAGE_PROT
528 struct subpage_prot_table spt;
529 #endif /* CONFIG_PPC_SUBPAGE_PROT */
530 #ifdef CONFIG_PPC_ICSWX
531 struct spinlock *cop_lockp; /* guard acop and cop_pid */
532 unsigned long acop; /* mask of enabled coprocessor types */
533 unsigned int cop_pid; /* pid value used with coprocessors */
534 #endif /* CONFIG_PPC_ICSWX */
535 #ifdef CONFIG_PPC_64K_PAGES
536 /* for 4K PTE fragment support */
537 void *pte_frag;
538 #endif
539 #ifdef CONFIG_SPAPR_TCE_IOMMU
540 struct list_head iommu_group_mem_list;
541 #endif
542 } mm_context_t;
545 #if 0
547 * The code below is equivalent to this function for arguments
548 * < 2^VSID_BITS, which is all this should ever be called
549 * with. However gcc is not clever enough to compute the
550 * modulus (2^n-1) without a second multiply.
552 #define vsid_scramble(protovsid, size) \
553 ((((protovsid) * VSID_MULTIPLIER_##size) % VSID_MODULUS_##size))
555 #else /* 1 */
556 #define vsid_scramble(protovsid, size) \
557 ({ \
558 unsigned long x; \
559 x = (protovsid) * VSID_MULTIPLIER_##size; \
560 x = (x >> VSID_BITS_##size) + (x & VSID_MODULUS_##size); \
561 (x + ((x+1) >> VSID_BITS_##size)) & VSID_MODULUS_##size; \
563 #endif /* 1 */
565 /* Returns the segment size indicator for a user address */
566 static inline int user_segment_size(unsigned long addr)
568 /* Use 1T segments if possible for addresses >= 1T */
569 if (addr >= (1UL << SID_SHIFT_1T))
570 return mmu_highuser_ssize;
571 return MMU_SEGSIZE_256M;
574 static inline unsigned long get_vsid(unsigned long context, unsigned long ea,
575 int ssize)
578 * Bad address. We return VSID 0 for that
580 if ((ea & ~REGION_MASK) >= PGTABLE_RANGE)
581 return 0;
583 if (ssize == MMU_SEGSIZE_256M)
584 return vsid_scramble((context << ESID_BITS)
585 | (ea >> SID_SHIFT), 256M);
586 return vsid_scramble((context << ESID_BITS_1T)
587 | (ea >> SID_SHIFT_1T), 1T);
591 * This is only valid for addresses >= PAGE_OFFSET
593 * For kernel space, we use the top 4 context ids to map address as below
594 * 0x7fffc - [ 0xc000000000000000 - 0xc0003fffffffffff ]
595 * 0x7fffd - [ 0xd000000000000000 - 0xd0003fffffffffff ]
596 * 0x7fffe - [ 0xe000000000000000 - 0xe0003fffffffffff ]
597 * 0x7ffff - [ 0xf000000000000000 - 0xf0003fffffffffff ]
599 static inline unsigned long get_kernel_vsid(unsigned long ea, int ssize)
601 unsigned long context;
604 * kernel take the top 4 context from the available range
606 context = (MAX_USER_CONTEXT) + ((ea >> 60) - 0xc) + 1;
607 return get_vsid(context, ea, ssize);
609 #endif /* __ASSEMBLY__ */
611 #endif /* _ASM_POWERPC_MMU_HASH64_H_ */