blk: rq_data_dir() should not return a boolean
[cris-mirror.git] / arch / s390 / include / asm / pgtable.h
blobbdb2f51124edeff48399eb007a1bdd90a5c44340
1 /*
2 * S390 version
3 * Copyright IBM Corp. 1999, 2000
4 * Author(s): Hartmut Penner (hp@de.ibm.com)
5 * Ulrich Weigand (weigand@de.ibm.com)
6 * Martin Schwidefsky (schwidefsky@de.ibm.com)
8 * Derived from "include/asm-i386/pgtable.h"
9 */
11 #ifndef _ASM_S390_PGTABLE_H
12 #define _ASM_S390_PGTABLE_H
15 * The Linux memory management assumes a three-level page table setup.
16 * For s390 64 bit we use up to four of the five levels the hardware
17 * provides (region first tables are not used).
19 * The "pgd_xxx()" functions are trivial for a folded two-level
20 * setup: the pgd is never bad, and a pmd always exists (as it's folded
21 * into the pgd entry)
23 * This file contains the functions and defines necessary to modify and use
24 * the S390 page table tree.
26 #ifndef __ASSEMBLY__
27 #include <linux/sched.h>
28 #include <linux/mm_types.h>
29 #include <linux/page-flags.h>
30 #include <linux/radix-tree.h>
31 #include <asm/bug.h>
32 #include <asm/page.h>
34 extern pgd_t swapper_pg_dir[] __attribute__ ((aligned (4096)));
35 extern void paging_init(void);
36 extern void vmem_map_init(void);
39 * The S390 doesn't have any external MMU info: the kernel page
40 * tables contain all the necessary information.
42 #define update_mmu_cache(vma, address, ptep) do { } while (0)
43 #define update_mmu_cache_pmd(vma, address, ptep) do { } while (0)
46 * ZERO_PAGE is a global shared page that is always zero; used
47 * for zero-mapped memory areas etc..
50 extern unsigned long empty_zero_page;
51 extern unsigned long zero_page_mask;
53 #define ZERO_PAGE(vaddr) \
54 (virt_to_page((void *)(empty_zero_page + \
55 (((unsigned long)(vaddr)) &zero_page_mask))))
56 #define __HAVE_COLOR_ZERO_PAGE
58 /* TODO: s390 cannot support io_remap_pfn_range... */
59 #endif /* !__ASSEMBLY__ */
62 * PMD_SHIFT determines the size of the area a second-level page
63 * table can map
64 * PGDIR_SHIFT determines what a third-level page table entry can map
66 #define PMD_SHIFT 20
67 #define PUD_SHIFT 31
68 #define PGDIR_SHIFT 42
70 #define PMD_SIZE (1UL << PMD_SHIFT)
71 #define PMD_MASK (~(PMD_SIZE-1))
72 #define PUD_SIZE (1UL << PUD_SHIFT)
73 #define PUD_MASK (~(PUD_SIZE-1))
74 #define PGDIR_SIZE (1UL << PGDIR_SHIFT)
75 #define PGDIR_MASK (~(PGDIR_SIZE-1))
78 * entries per page directory level: the S390 is two-level, so
79 * we don't really have any PMD directory physically.
80 * for S390 segment-table entries are combined to one PGD
81 * that leads to 1024 pte per pgd
83 #define PTRS_PER_PTE 256
84 #define PTRS_PER_PMD 2048
85 #define PTRS_PER_PUD 2048
86 #define PTRS_PER_PGD 2048
88 #define FIRST_USER_ADDRESS 0UL
90 #define pte_ERROR(e) \
91 printk("%s:%d: bad pte %p.\n", __FILE__, __LINE__, (void *) pte_val(e))
92 #define pmd_ERROR(e) \
93 printk("%s:%d: bad pmd %p.\n", __FILE__, __LINE__, (void *) pmd_val(e))
94 #define pud_ERROR(e) \
95 printk("%s:%d: bad pud %p.\n", __FILE__, __LINE__, (void *) pud_val(e))
96 #define pgd_ERROR(e) \
97 printk("%s:%d: bad pgd %p.\n", __FILE__, __LINE__, (void *) pgd_val(e))
99 #ifndef __ASSEMBLY__
101 * The vmalloc and module area will always be on the topmost area of the
102 * kernel mapping. We reserve 128GB (64bit) for vmalloc and modules.
103 * On 64 bit kernels we have a 2GB area at the top of the vmalloc area where
104 * modules will reside. That makes sure that inter module branches always
105 * happen without trampolines and in addition the placement within a 2GB frame
106 * is branch prediction unit friendly.
108 extern unsigned long VMALLOC_START;
109 extern unsigned long VMALLOC_END;
110 extern struct page *vmemmap;
112 #define VMEM_MAX_PHYS ((unsigned long) vmemmap)
114 extern unsigned long MODULES_VADDR;
115 extern unsigned long MODULES_END;
116 #define MODULES_VADDR MODULES_VADDR
117 #define MODULES_END MODULES_END
118 #define MODULES_LEN (1UL << 31)
120 static inline int is_module_addr(void *addr)
122 BUILD_BUG_ON(MODULES_LEN > (1UL << 31));
123 if (addr < (void *)MODULES_VADDR)
124 return 0;
125 if (addr > (void *)MODULES_END)
126 return 0;
127 return 1;
131 * A 64 bit pagetable entry of S390 has following format:
132 * | PFRA |0IPC| OS |
133 * 0000000000111111111122222222223333333333444444444455555555556666
134 * 0123456789012345678901234567890123456789012345678901234567890123
136 * I Page-Invalid Bit: Page is not available for address-translation
137 * P Page-Protection Bit: Store access not possible for page
138 * C Change-bit override: HW is not required to set change bit
140 * A 64 bit segmenttable entry of S390 has following format:
141 * | P-table origin | TT
142 * 0000000000111111111122222222223333333333444444444455555555556666
143 * 0123456789012345678901234567890123456789012345678901234567890123
145 * I Segment-Invalid Bit: Segment is not available for address-translation
146 * C Common-Segment Bit: Segment is not private (PoP 3-30)
147 * P Page-Protection Bit: Store access not possible for page
148 * TT Type 00
150 * A 64 bit region table entry of S390 has following format:
151 * | S-table origin | TF TTTL
152 * 0000000000111111111122222222223333333333444444444455555555556666
153 * 0123456789012345678901234567890123456789012345678901234567890123
155 * I Segment-Invalid Bit: Segment is not available for address-translation
156 * TT Type 01
157 * TF
158 * TL Table length
160 * The 64 bit regiontable origin of S390 has following format:
161 * | region table origon | DTTL
162 * 0000000000111111111122222222223333333333444444444455555555556666
163 * 0123456789012345678901234567890123456789012345678901234567890123
165 * X Space-Switch event:
166 * G Segment-Invalid Bit:
167 * P Private-Space Bit:
168 * S Storage-Alteration:
169 * R Real space
170 * TL Table-Length:
172 * A storage key has the following format:
173 * | ACC |F|R|C|0|
174 * 0 3 4 5 6 7
175 * ACC: access key
176 * F : fetch protection bit
177 * R : referenced bit
178 * C : changed bit
181 /* Hardware bits in the page table entry */
182 #define _PAGE_PROTECT 0x200 /* HW read-only bit */
183 #define _PAGE_INVALID 0x400 /* HW invalid bit */
184 #define _PAGE_LARGE 0x800 /* Bit to mark a large pte */
186 /* Software bits in the page table entry */
187 #define _PAGE_PRESENT 0x001 /* SW pte present bit */
188 #define _PAGE_YOUNG 0x004 /* SW pte young bit */
189 #define _PAGE_DIRTY 0x008 /* SW pte dirty bit */
190 #define _PAGE_READ 0x010 /* SW pte read bit */
191 #define _PAGE_WRITE 0x020 /* SW pte write bit */
192 #define _PAGE_SPECIAL 0x040 /* SW associated with special page */
193 #define _PAGE_UNUSED 0x080 /* SW bit for pgste usage state */
194 #define __HAVE_ARCH_PTE_SPECIAL
196 /* Set of bits not changed in pte_modify */
197 #define _PAGE_CHG_MASK (PAGE_MASK | _PAGE_SPECIAL | _PAGE_DIRTY | \
198 _PAGE_YOUNG)
201 * handle_pte_fault uses pte_present and pte_none to find out the pte type
202 * WITHOUT holding the page table lock. The _PAGE_PRESENT bit is used to
203 * distinguish present from not-present ptes. It is changed only with the page
204 * table lock held.
206 * The following table gives the different possible bit combinations for
207 * the pte hardware and software bits in the last 12 bits of a pte
208 * (. unassigned bit, x don't care, t swap type):
210 * 842100000000
211 * 000084210000
212 * 000000008421
213 * .IR.uswrdy.p
214 * empty .10.00000000
215 * swap .11..ttttt.0
216 * prot-none, clean, old .11.xx0000.1
217 * prot-none, clean, young .11.xx0001.1
218 * prot-none, dirty, old .10.xx0010.1
219 * prot-none, dirty, young .10.xx0011.1
220 * read-only, clean, old .11.xx0100.1
221 * read-only, clean, young .01.xx0101.1
222 * read-only, dirty, old .11.xx0110.1
223 * read-only, dirty, young .01.xx0111.1
224 * read-write, clean, old .11.xx1100.1
225 * read-write, clean, young .01.xx1101.1
226 * read-write, dirty, old .10.xx1110.1
227 * read-write, dirty, young .00.xx1111.1
228 * HW-bits: R read-only, I invalid
229 * SW-bits: p present, y young, d dirty, r read, w write, s special,
230 * u unused, l large
232 * pte_none is true for the bit pattern .10.00000000, pte == 0x400
233 * pte_swap is true for the bit pattern .11..ooooo.0, (pte & 0x201) == 0x200
234 * pte_present is true for the bit pattern .xx.xxxxxx.1, (pte & 0x001) == 0x001
237 /* Bits in the segment/region table address-space-control-element */
238 #define _ASCE_ORIGIN ~0xfffUL/* segment table origin */
239 #define _ASCE_PRIVATE_SPACE 0x100 /* private space control */
240 #define _ASCE_ALT_EVENT 0x80 /* storage alteration event control */
241 #define _ASCE_SPACE_SWITCH 0x40 /* space switch event */
242 #define _ASCE_REAL_SPACE 0x20 /* real space control */
243 #define _ASCE_TYPE_MASK 0x0c /* asce table type mask */
244 #define _ASCE_TYPE_REGION1 0x0c /* region first table type */
245 #define _ASCE_TYPE_REGION2 0x08 /* region second table type */
246 #define _ASCE_TYPE_REGION3 0x04 /* region third table type */
247 #define _ASCE_TYPE_SEGMENT 0x00 /* segment table type */
248 #define _ASCE_TABLE_LENGTH 0x03 /* region table length */
250 /* Bits in the region table entry */
251 #define _REGION_ENTRY_ORIGIN ~0xfffUL/* region/segment table origin */
252 #define _REGION_ENTRY_PROTECT 0x200 /* region protection bit */
253 #define _REGION_ENTRY_INVALID 0x20 /* invalid region table entry */
254 #define _REGION_ENTRY_TYPE_MASK 0x0c /* region/segment table type mask */
255 #define _REGION_ENTRY_TYPE_R1 0x0c /* region first table type */
256 #define _REGION_ENTRY_TYPE_R2 0x08 /* region second table type */
257 #define _REGION_ENTRY_TYPE_R3 0x04 /* region third table type */
258 #define _REGION_ENTRY_LENGTH 0x03 /* region third length */
260 #define _REGION1_ENTRY (_REGION_ENTRY_TYPE_R1 | _REGION_ENTRY_LENGTH)
261 #define _REGION1_ENTRY_EMPTY (_REGION_ENTRY_TYPE_R1 | _REGION_ENTRY_INVALID)
262 #define _REGION2_ENTRY (_REGION_ENTRY_TYPE_R2 | _REGION_ENTRY_LENGTH)
263 #define _REGION2_ENTRY_EMPTY (_REGION_ENTRY_TYPE_R2 | _REGION_ENTRY_INVALID)
264 #define _REGION3_ENTRY (_REGION_ENTRY_TYPE_R3 | _REGION_ENTRY_LENGTH)
265 #define _REGION3_ENTRY_EMPTY (_REGION_ENTRY_TYPE_R3 | _REGION_ENTRY_INVALID)
267 #define _REGION3_ENTRY_LARGE 0x400 /* RTTE-format control, large page */
268 #define _REGION3_ENTRY_RO 0x200 /* page protection bit */
270 /* Bits in the segment table entry */
271 #define _SEGMENT_ENTRY_BITS 0xfffffffffffffe33UL
272 #define _SEGMENT_ENTRY_BITS_LARGE 0xfffffffffff0ff33UL
273 #define _SEGMENT_ENTRY_ORIGIN_LARGE ~0xfffffUL /* large page address */
274 #define _SEGMENT_ENTRY_ORIGIN ~0x7ffUL/* segment table origin */
275 #define _SEGMENT_ENTRY_PROTECT 0x200 /* page protection bit */
276 #define _SEGMENT_ENTRY_INVALID 0x20 /* invalid segment table entry */
278 #define _SEGMENT_ENTRY (0)
279 #define _SEGMENT_ENTRY_EMPTY (_SEGMENT_ENTRY_INVALID)
281 #define _SEGMENT_ENTRY_DIRTY 0x2000 /* SW segment dirty bit */
282 #define _SEGMENT_ENTRY_YOUNG 0x1000 /* SW segment young bit */
283 #define _SEGMENT_ENTRY_SPLIT 0x0800 /* THP splitting bit */
284 #define _SEGMENT_ENTRY_LARGE 0x0400 /* STE-format control, large page */
285 #define _SEGMENT_ENTRY_READ 0x0002 /* SW segment read bit */
286 #define _SEGMENT_ENTRY_WRITE 0x0001 /* SW segment write bit */
289 * Segment table entry encoding (R = read-only, I = invalid, y = young bit):
290 * dy..R...I...wr
291 * prot-none, clean, old 00..1...1...00
292 * prot-none, clean, young 01..1...1...00
293 * prot-none, dirty, old 10..1...1...00
294 * prot-none, dirty, young 11..1...1...00
295 * read-only, clean, old 00..1...1...01
296 * read-only, clean, young 01..1...0...01
297 * read-only, dirty, old 10..1...1...01
298 * read-only, dirty, young 11..1...0...01
299 * read-write, clean, old 00..1...1...11
300 * read-write, clean, young 01..1...0...11
301 * read-write, dirty, old 10..0...1...11
302 * read-write, dirty, young 11..0...0...11
303 * The segment table origin is used to distinguish empty (origin==0) from
304 * read-write, old segment table entries (origin!=0)
305 * HW-bits: R read-only, I invalid
306 * SW-bits: y young, d dirty, r read, w write
309 #define _SEGMENT_ENTRY_SPLIT_BIT 11 /* THP splitting bit number */
311 /* Page status table bits for virtualization */
312 #define PGSTE_ACC_BITS 0xf000000000000000UL
313 #define PGSTE_FP_BIT 0x0800000000000000UL
314 #define PGSTE_PCL_BIT 0x0080000000000000UL
315 #define PGSTE_HR_BIT 0x0040000000000000UL
316 #define PGSTE_HC_BIT 0x0020000000000000UL
317 #define PGSTE_GR_BIT 0x0004000000000000UL
318 #define PGSTE_GC_BIT 0x0002000000000000UL
319 #define PGSTE_UC_BIT 0x0000800000000000UL /* user dirty (migration) */
320 #define PGSTE_IN_BIT 0x0000400000000000UL /* IPTE notify bit */
322 /* Guest Page State used for virtualization */
323 #define _PGSTE_GPS_ZERO 0x0000000080000000UL
324 #define _PGSTE_GPS_USAGE_MASK 0x0000000003000000UL
325 #define _PGSTE_GPS_USAGE_STABLE 0x0000000000000000UL
326 #define _PGSTE_GPS_USAGE_UNUSED 0x0000000001000000UL
329 * A user page table pointer has the space-switch-event bit, the
330 * private-space-control bit and the storage-alteration-event-control
331 * bit set. A kernel page table pointer doesn't need them.
333 #define _ASCE_USER_BITS (_ASCE_SPACE_SWITCH | _ASCE_PRIVATE_SPACE | \
334 _ASCE_ALT_EVENT)
337 * Page protection definitions.
339 #define PAGE_NONE __pgprot(_PAGE_PRESENT | _PAGE_INVALID)
340 #define PAGE_READ __pgprot(_PAGE_PRESENT | _PAGE_READ | \
341 _PAGE_INVALID | _PAGE_PROTECT)
342 #define PAGE_WRITE __pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_WRITE | \
343 _PAGE_INVALID | _PAGE_PROTECT)
345 #define PAGE_SHARED __pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_WRITE | \
346 _PAGE_YOUNG | _PAGE_DIRTY)
347 #define PAGE_KERNEL __pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_WRITE | \
348 _PAGE_YOUNG | _PAGE_DIRTY)
349 #define PAGE_KERNEL_RO __pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_YOUNG | \
350 _PAGE_PROTECT)
353 * On s390 the page table entry has an invalid bit and a read-only bit.
354 * Read permission implies execute permission and write permission
355 * implies read permission.
357 /*xwr*/
358 #define __P000 PAGE_NONE
359 #define __P001 PAGE_READ
360 #define __P010 PAGE_READ
361 #define __P011 PAGE_READ
362 #define __P100 PAGE_READ
363 #define __P101 PAGE_READ
364 #define __P110 PAGE_READ
365 #define __P111 PAGE_READ
367 #define __S000 PAGE_NONE
368 #define __S001 PAGE_READ
369 #define __S010 PAGE_WRITE
370 #define __S011 PAGE_WRITE
371 #define __S100 PAGE_READ
372 #define __S101 PAGE_READ
373 #define __S110 PAGE_WRITE
374 #define __S111 PAGE_WRITE
377 * Segment entry (large page) protection definitions.
379 #define SEGMENT_NONE __pgprot(_SEGMENT_ENTRY_INVALID | \
380 _SEGMENT_ENTRY_PROTECT)
381 #define SEGMENT_READ __pgprot(_SEGMENT_ENTRY_PROTECT | \
382 _SEGMENT_ENTRY_READ)
383 #define SEGMENT_WRITE __pgprot(_SEGMENT_ENTRY_READ | \
384 _SEGMENT_ENTRY_WRITE)
386 static inline int mm_has_pgste(struct mm_struct *mm)
388 #ifdef CONFIG_PGSTE
389 if (unlikely(mm->context.has_pgste))
390 return 1;
391 #endif
392 return 0;
395 static inline int mm_alloc_pgste(struct mm_struct *mm)
397 #ifdef CONFIG_PGSTE
398 if (unlikely(mm->context.alloc_pgste))
399 return 1;
400 #endif
401 return 0;
405 * In the case that a guest uses storage keys
406 * faults should no longer be backed by zero pages
408 #define mm_forbids_zeropage mm_use_skey
409 static inline int mm_use_skey(struct mm_struct *mm)
411 #ifdef CONFIG_PGSTE
412 if (mm->context.use_skey)
413 return 1;
414 #endif
415 return 0;
419 * pgd/pmd/pte query functions
421 static inline int pgd_present(pgd_t pgd)
423 if ((pgd_val(pgd) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R2)
424 return 1;
425 return (pgd_val(pgd) & _REGION_ENTRY_ORIGIN) != 0UL;
428 static inline int pgd_none(pgd_t pgd)
430 if ((pgd_val(pgd) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R2)
431 return 0;
432 return (pgd_val(pgd) & _REGION_ENTRY_INVALID) != 0UL;
435 static inline int pgd_bad(pgd_t pgd)
438 * With dynamic page table levels the pgd can be a region table
439 * entry or a segment table entry. Check for the bit that are
440 * invalid for either table entry.
442 unsigned long mask =
443 ~_SEGMENT_ENTRY_ORIGIN & ~_REGION_ENTRY_INVALID &
444 ~_REGION_ENTRY_TYPE_MASK & ~_REGION_ENTRY_LENGTH;
445 return (pgd_val(pgd) & mask) != 0;
448 static inline int pud_present(pud_t pud)
450 if ((pud_val(pud) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R3)
451 return 1;
452 return (pud_val(pud) & _REGION_ENTRY_ORIGIN) != 0UL;
455 static inline int pud_none(pud_t pud)
457 if ((pud_val(pud) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R3)
458 return 0;
459 return (pud_val(pud) & _REGION_ENTRY_INVALID) != 0UL;
462 static inline int pud_large(pud_t pud)
464 if ((pud_val(pud) & _REGION_ENTRY_TYPE_MASK) != _REGION_ENTRY_TYPE_R3)
465 return 0;
466 return !!(pud_val(pud) & _REGION3_ENTRY_LARGE);
469 static inline int pud_bad(pud_t pud)
472 * With dynamic page table levels the pud can be a region table
473 * entry or a segment table entry. Check for the bit that are
474 * invalid for either table entry.
476 unsigned long mask =
477 ~_SEGMENT_ENTRY_ORIGIN & ~_REGION_ENTRY_INVALID &
478 ~_REGION_ENTRY_TYPE_MASK & ~_REGION_ENTRY_LENGTH;
479 return (pud_val(pud) & mask) != 0;
482 static inline int pmd_present(pmd_t pmd)
484 return pmd_val(pmd) != _SEGMENT_ENTRY_INVALID;
487 static inline int pmd_none(pmd_t pmd)
489 return pmd_val(pmd) == _SEGMENT_ENTRY_INVALID;
492 static inline int pmd_large(pmd_t pmd)
494 return (pmd_val(pmd) & _SEGMENT_ENTRY_LARGE) != 0;
497 static inline unsigned long pmd_pfn(pmd_t pmd)
499 unsigned long origin_mask;
501 origin_mask = _SEGMENT_ENTRY_ORIGIN;
502 if (pmd_large(pmd))
503 origin_mask = _SEGMENT_ENTRY_ORIGIN_LARGE;
504 return (pmd_val(pmd) & origin_mask) >> PAGE_SHIFT;
507 static inline int pmd_bad(pmd_t pmd)
509 if (pmd_large(pmd))
510 return (pmd_val(pmd) & ~_SEGMENT_ENTRY_BITS_LARGE) != 0;
511 return (pmd_val(pmd) & ~_SEGMENT_ENTRY_BITS) != 0;
514 #define __HAVE_ARCH_PMDP_SPLITTING_FLUSH
515 extern void pmdp_splitting_flush(struct vm_area_struct *vma,
516 unsigned long addr, pmd_t *pmdp);
518 #define __HAVE_ARCH_PMDP_SET_ACCESS_FLAGS
519 extern int pmdp_set_access_flags(struct vm_area_struct *vma,
520 unsigned long address, pmd_t *pmdp,
521 pmd_t entry, int dirty);
523 #define __HAVE_ARCH_PMDP_CLEAR_YOUNG_FLUSH
524 extern int pmdp_clear_flush_young(struct vm_area_struct *vma,
525 unsigned long address, pmd_t *pmdp);
527 #define __HAVE_ARCH_PMD_WRITE
528 static inline int pmd_write(pmd_t pmd)
530 return (pmd_val(pmd) & _SEGMENT_ENTRY_WRITE) != 0;
533 static inline int pmd_dirty(pmd_t pmd)
535 int dirty = 1;
536 if (pmd_large(pmd))
537 dirty = (pmd_val(pmd) & _SEGMENT_ENTRY_DIRTY) != 0;
538 return dirty;
541 static inline int pmd_young(pmd_t pmd)
543 int young = 1;
544 if (pmd_large(pmd))
545 young = (pmd_val(pmd) & _SEGMENT_ENTRY_YOUNG) != 0;
546 return young;
549 static inline int pte_present(pte_t pte)
551 /* Bit pattern: (pte & 0x001) == 0x001 */
552 return (pte_val(pte) & _PAGE_PRESENT) != 0;
555 static inline int pte_none(pte_t pte)
557 /* Bit pattern: pte == 0x400 */
558 return pte_val(pte) == _PAGE_INVALID;
561 static inline int pte_swap(pte_t pte)
563 /* Bit pattern: (pte & 0x201) == 0x200 */
564 return (pte_val(pte) & (_PAGE_PROTECT | _PAGE_PRESENT))
565 == _PAGE_PROTECT;
568 static inline int pte_special(pte_t pte)
570 return (pte_val(pte) & _PAGE_SPECIAL);
573 #define __HAVE_ARCH_PTE_SAME
574 static inline int pte_same(pte_t a, pte_t b)
576 return pte_val(a) == pte_val(b);
579 #ifdef CONFIG_NUMA_BALANCING
580 static inline int pte_protnone(pte_t pte)
582 return pte_present(pte) && !(pte_val(pte) & _PAGE_READ);
585 static inline int pmd_protnone(pmd_t pmd)
587 /* pmd_large(pmd) implies pmd_present(pmd) */
588 return pmd_large(pmd) && !(pmd_val(pmd) & _SEGMENT_ENTRY_READ);
590 #endif
592 static inline pgste_t pgste_get_lock(pte_t *ptep)
594 unsigned long new = 0;
595 #ifdef CONFIG_PGSTE
596 unsigned long old;
598 preempt_disable();
599 asm(
600 " lg %0,%2\n"
601 "0: lgr %1,%0\n"
602 " nihh %0,0xff7f\n" /* clear PCL bit in old */
603 " oihh %1,0x0080\n" /* set PCL bit in new */
604 " csg %0,%1,%2\n"
605 " jl 0b\n"
606 : "=&d" (old), "=&d" (new), "=Q" (ptep[PTRS_PER_PTE])
607 : "Q" (ptep[PTRS_PER_PTE]) : "cc", "memory");
608 #endif
609 return __pgste(new);
612 static inline void pgste_set_unlock(pte_t *ptep, pgste_t pgste)
614 #ifdef CONFIG_PGSTE
615 asm(
616 " nihh %1,0xff7f\n" /* clear PCL bit */
617 " stg %1,%0\n"
618 : "=Q" (ptep[PTRS_PER_PTE])
619 : "d" (pgste_val(pgste)), "Q" (ptep[PTRS_PER_PTE])
620 : "cc", "memory");
621 preempt_enable();
622 #endif
625 static inline pgste_t pgste_get(pte_t *ptep)
627 unsigned long pgste = 0;
628 #ifdef CONFIG_PGSTE
629 pgste = *(unsigned long *)(ptep + PTRS_PER_PTE);
630 #endif
631 return __pgste(pgste);
634 static inline void pgste_set(pte_t *ptep, pgste_t pgste)
636 #ifdef CONFIG_PGSTE
637 *(pgste_t *)(ptep + PTRS_PER_PTE) = pgste;
638 #endif
641 static inline pgste_t pgste_update_all(pte_t *ptep, pgste_t pgste,
642 struct mm_struct *mm)
644 #ifdef CONFIG_PGSTE
645 unsigned long address, bits, skey;
647 if (!mm_use_skey(mm) || pte_val(*ptep) & _PAGE_INVALID)
648 return pgste;
649 address = pte_val(*ptep) & PAGE_MASK;
650 skey = (unsigned long) page_get_storage_key(address);
651 bits = skey & (_PAGE_CHANGED | _PAGE_REFERENCED);
652 /* Transfer page changed & referenced bit to guest bits in pgste */
653 pgste_val(pgste) |= bits << 48; /* GR bit & GC bit */
654 /* Copy page access key and fetch protection bit to pgste */
655 pgste_val(pgste) &= ~(PGSTE_ACC_BITS | PGSTE_FP_BIT);
656 pgste_val(pgste) |= (skey & (_PAGE_ACC_BITS | _PAGE_FP_BIT)) << 56;
657 #endif
658 return pgste;
662 static inline void pgste_set_key(pte_t *ptep, pgste_t pgste, pte_t entry,
663 struct mm_struct *mm)
665 #ifdef CONFIG_PGSTE
666 unsigned long address;
667 unsigned long nkey;
669 if (!mm_use_skey(mm) || pte_val(entry) & _PAGE_INVALID)
670 return;
671 VM_BUG_ON(!(pte_val(*ptep) & _PAGE_INVALID));
672 address = pte_val(entry) & PAGE_MASK;
674 * Set page access key and fetch protection bit from pgste.
675 * The guest C/R information is still in the PGSTE, set real
676 * key C/R to 0.
678 nkey = (pgste_val(pgste) & (PGSTE_ACC_BITS | PGSTE_FP_BIT)) >> 56;
679 nkey |= (pgste_val(pgste) & (PGSTE_GR_BIT | PGSTE_GC_BIT)) >> 48;
680 page_set_storage_key(address, nkey, 0);
681 #endif
684 static inline pgste_t pgste_set_pte(pte_t *ptep, pgste_t pgste, pte_t entry)
686 if ((pte_val(entry) & _PAGE_PRESENT) &&
687 (pte_val(entry) & _PAGE_WRITE) &&
688 !(pte_val(entry) & _PAGE_INVALID)) {
689 if (!MACHINE_HAS_ESOP) {
691 * Without enhanced suppression-on-protection force
692 * the dirty bit on for all writable ptes.
694 pte_val(entry) |= _PAGE_DIRTY;
695 pte_val(entry) &= ~_PAGE_PROTECT;
697 if (!(pte_val(entry) & _PAGE_PROTECT))
698 /* This pte allows write access, set user-dirty */
699 pgste_val(pgste) |= PGSTE_UC_BIT;
701 *ptep = entry;
702 return pgste;
706 * struct gmap_struct - guest address space
707 * @crst_list: list of all crst tables used in the guest address space
708 * @mm: pointer to the parent mm_struct
709 * @guest_to_host: radix tree with guest to host address translation
710 * @host_to_guest: radix tree with pointer to segment table entries
711 * @guest_table_lock: spinlock to protect all entries in the guest page table
712 * @table: pointer to the page directory
713 * @asce: address space control element for gmap page table
714 * @pfault_enabled: defines if pfaults are applicable for the guest
716 struct gmap {
717 struct list_head list;
718 struct list_head crst_list;
719 struct mm_struct *mm;
720 struct radix_tree_root guest_to_host;
721 struct radix_tree_root host_to_guest;
722 spinlock_t guest_table_lock;
723 unsigned long *table;
724 unsigned long asce;
725 unsigned long asce_end;
726 void *private;
727 bool pfault_enabled;
731 * struct gmap_notifier - notify function block for page invalidation
732 * @notifier_call: address of callback function
734 struct gmap_notifier {
735 struct list_head list;
736 void (*notifier_call)(struct gmap *gmap, unsigned long gaddr);
739 struct gmap *gmap_alloc(struct mm_struct *mm, unsigned long limit);
740 void gmap_free(struct gmap *gmap);
741 void gmap_enable(struct gmap *gmap);
742 void gmap_disable(struct gmap *gmap);
743 int gmap_map_segment(struct gmap *gmap, unsigned long from,
744 unsigned long to, unsigned long len);
745 int gmap_unmap_segment(struct gmap *gmap, unsigned long to, unsigned long len);
746 unsigned long __gmap_translate(struct gmap *, unsigned long gaddr);
747 unsigned long gmap_translate(struct gmap *, unsigned long gaddr);
748 int __gmap_link(struct gmap *gmap, unsigned long gaddr, unsigned long vmaddr);
749 int gmap_fault(struct gmap *, unsigned long gaddr, unsigned int fault_flags);
750 void gmap_discard(struct gmap *, unsigned long from, unsigned long to);
751 void __gmap_zap(struct gmap *, unsigned long gaddr);
752 bool gmap_test_and_clear_dirty(unsigned long address, struct gmap *);
755 void gmap_register_ipte_notifier(struct gmap_notifier *);
756 void gmap_unregister_ipte_notifier(struct gmap_notifier *);
757 int gmap_ipte_notify(struct gmap *, unsigned long start, unsigned long len);
758 void gmap_do_ipte_notify(struct mm_struct *, unsigned long addr, pte_t *);
760 static inline pgste_t pgste_ipte_notify(struct mm_struct *mm,
761 unsigned long addr,
762 pte_t *ptep, pgste_t pgste)
764 #ifdef CONFIG_PGSTE
765 if (pgste_val(pgste) & PGSTE_IN_BIT) {
766 pgste_val(pgste) &= ~PGSTE_IN_BIT;
767 gmap_do_ipte_notify(mm, addr, ptep);
769 #endif
770 return pgste;
774 * Certain architectures need to do special things when PTEs
775 * within a page table are directly modified. Thus, the following
776 * hook is made available.
778 static inline void set_pte_at(struct mm_struct *mm, unsigned long addr,
779 pte_t *ptep, pte_t entry)
781 pgste_t pgste;
783 if (mm_has_pgste(mm)) {
784 pgste = pgste_get_lock(ptep);
785 pgste_val(pgste) &= ~_PGSTE_GPS_ZERO;
786 pgste_set_key(ptep, pgste, entry, mm);
787 pgste = pgste_set_pte(ptep, pgste, entry);
788 pgste_set_unlock(ptep, pgste);
789 } else {
790 *ptep = entry;
795 * query functions pte_write/pte_dirty/pte_young only work if
796 * pte_present() is true. Undefined behaviour if not..
798 static inline int pte_write(pte_t pte)
800 return (pte_val(pte) & _PAGE_WRITE) != 0;
803 static inline int pte_dirty(pte_t pte)
805 return (pte_val(pte) & _PAGE_DIRTY) != 0;
808 static inline int pte_young(pte_t pte)
810 return (pte_val(pte) & _PAGE_YOUNG) != 0;
813 #define __HAVE_ARCH_PTE_UNUSED
814 static inline int pte_unused(pte_t pte)
816 return pte_val(pte) & _PAGE_UNUSED;
820 * pgd/pmd/pte modification functions
823 static inline void pgd_clear(pgd_t *pgd)
825 if ((pgd_val(*pgd) & _REGION_ENTRY_TYPE_MASK) == _REGION_ENTRY_TYPE_R2)
826 pgd_val(*pgd) = _REGION2_ENTRY_EMPTY;
829 static inline void pud_clear(pud_t *pud)
831 if ((pud_val(*pud) & _REGION_ENTRY_TYPE_MASK) == _REGION_ENTRY_TYPE_R3)
832 pud_val(*pud) = _REGION3_ENTRY_EMPTY;
835 static inline void pmd_clear(pmd_t *pmdp)
837 pmd_val(*pmdp) = _SEGMENT_ENTRY_INVALID;
840 static inline void pte_clear(struct mm_struct *mm, unsigned long addr, pte_t *ptep)
842 pte_val(*ptep) = _PAGE_INVALID;
846 * The following pte modification functions only work if
847 * pte_present() is true. Undefined behaviour if not..
849 static inline pte_t pte_modify(pte_t pte, pgprot_t newprot)
851 pte_val(pte) &= _PAGE_CHG_MASK;
852 pte_val(pte) |= pgprot_val(newprot);
854 * newprot for PAGE_NONE, PAGE_READ and PAGE_WRITE has the
855 * invalid bit set, clear it again for readable, young pages
857 if ((pte_val(pte) & _PAGE_YOUNG) && (pte_val(pte) & _PAGE_READ))
858 pte_val(pte) &= ~_PAGE_INVALID;
860 * newprot for PAGE_READ and PAGE_WRITE has the page protection
861 * bit set, clear it again for writable, dirty pages
863 if ((pte_val(pte) & _PAGE_DIRTY) && (pte_val(pte) & _PAGE_WRITE))
864 pte_val(pte) &= ~_PAGE_PROTECT;
865 return pte;
868 static inline pte_t pte_wrprotect(pte_t pte)
870 pte_val(pte) &= ~_PAGE_WRITE;
871 pte_val(pte) |= _PAGE_PROTECT;
872 return pte;
875 static inline pte_t pte_mkwrite(pte_t pte)
877 pte_val(pte) |= _PAGE_WRITE;
878 if (pte_val(pte) & _PAGE_DIRTY)
879 pte_val(pte) &= ~_PAGE_PROTECT;
880 return pte;
883 static inline pte_t pte_mkclean(pte_t pte)
885 pte_val(pte) &= ~_PAGE_DIRTY;
886 pte_val(pte) |= _PAGE_PROTECT;
887 return pte;
890 static inline pte_t pte_mkdirty(pte_t pte)
892 pte_val(pte) |= _PAGE_DIRTY;
893 if (pte_val(pte) & _PAGE_WRITE)
894 pte_val(pte) &= ~_PAGE_PROTECT;
895 return pte;
898 static inline pte_t pte_mkold(pte_t pte)
900 pte_val(pte) &= ~_PAGE_YOUNG;
901 pte_val(pte) |= _PAGE_INVALID;
902 return pte;
905 static inline pte_t pte_mkyoung(pte_t pte)
907 pte_val(pte) |= _PAGE_YOUNG;
908 if (pte_val(pte) & _PAGE_READ)
909 pte_val(pte) &= ~_PAGE_INVALID;
910 return pte;
913 static inline pte_t pte_mkspecial(pte_t pte)
915 pte_val(pte) |= _PAGE_SPECIAL;
916 return pte;
919 #ifdef CONFIG_HUGETLB_PAGE
920 static inline pte_t pte_mkhuge(pte_t pte)
922 pte_val(pte) |= _PAGE_LARGE;
923 return pte;
925 #endif
927 static inline void __ptep_ipte(unsigned long address, pte_t *ptep)
929 unsigned long pto = (unsigned long) ptep;
931 /* Invalidation + global TLB flush for the pte */
932 asm volatile(
933 " ipte %2,%3"
934 : "=m" (*ptep) : "m" (*ptep), "a" (pto), "a" (address));
937 static inline void __ptep_ipte_local(unsigned long address, pte_t *ptep)
939 unsigned long pto = (unsigned long) ptep;
941 /* Invalidation + local TLB flush for the pte */
942 asm volatile(
943 " .insn rrf,0xb2210000,%2,%3,0,1"
944 : "=m" (*ptep) : "m" (*ptep), "a" (pto), "a" (address));
947 static inline void __ptep_ipte_range(unsigned long address, int nr, pte_t *ptep)
949 unsigned long pto = (unsigned long) ptep;
951 /* Invalidate a range of ptes + global TLB flush of the ptes */
952 do {
953 asm volatile(
954 " .insn rrf,0xb2210000,%2,%0,%1,0"
955 : "+a" (address), "+a" (nr) : "a" (pto) : "memory");
956 } while (nr != 255);
959 static inline void ptep_flush_direct(struct mm_struct *mm,
960 unsigned long address, pte_t *ptep)
962 int active, count;
964 if (pte_val(*ptep) & _PAGE_INVALID)
965 return;
966 active = (mm == current->active_mm) ? 1 : 0;
967 count = atomic_add_return(0x10000, &mm->context.attach_count);
968 if (MACHINE_HAS_TLB_LC && (count & 0xffff) <= active &&
969 cpumask_equal(mm_cpumask(mm), cpumask_of(smp_processor_id())))
970 __ptep_ipte_local(address, ptep);
971 else
972 __ptep_ipte(address, ptep);
973 atomic_sub(0x10000, &mm->context.attach_count);
976 static inline void ptep_flush_lazy(struct mm_struct *mm,
977 unsigned long address, pte_t *ptep)
979 int active, count;
981 if (pte_val(*ptep) & _PAGE_INVALID)
982 return;
983 active = (mm == current->active_mm) ? 1 : 0;
984 count = atomic_add_return(0x10000, &mm->context.attach_count);
985 if ((count & 0xffff) <= active) {
986 pte_val(*ptep) |= _PAGE_INVALID;
987 mm->context.flush_mm = 1;
988 } else
989 __ptep_ipte(address, ptep);
990 atomic_sub(0x10000, &mm->context.attach_count);
994 * Get (and clear) the user dirty bit for a pte.
996 static inline int ptep_test_and_clear_user_dirty(struct mm_struct *mm,
997 unsigned long addr,
998 pte_t *ptep)
1000 pgste_t pgste;
1001 pte_t pte;
1002 int dirty;
1004 if (!mm_has_pgste(mm))
1005 return 0;
1006 pgste = pgste_get_lock(ptep);
1007 dirty = !!(pgste_val(pgste) & PGSTE_UC_BIT);
1008 pgste_val(pgste) &= ~PGSTE_UC_BIT;
1009 pte = *ptep;
1010 if (dirty && (pte_val(pte) & _PAGE_PRESENT)) {
1011 pgste = pgste_ipte_notify(mm, addr, ptep, pgste);
1012 __ptep_ipte(addr, ptep);
1013 if (MACHINE_HAS_ESOP || !(pte_val(pte) & _PAGE_WRITE))
1014 pte_val(pte) |= _PAGE_PROTECT;
1015 else
1016 pte_val(pte) |= _PAGE_INVALID;
1017 *ptep = pte;
1019 pgste_set_unlock(ptep, pgste);
1020 return dirty;
1023 #define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
1024 static inline int ptep_test_and_clear_young(struct vm_area_struct *vma,
1025 unsigned long addr, pte_t *ptep)
1027 pgste_t pgste;
1028 pte_t pte, oldpte;
1029 int young;
1031 if (mm_has_pgste(vma->vm_mm)) {
1032 pgste = pgste_get_lock(ptep);
1033 pgste = pgste_ipte_notify(vma->vm_mm, addr, ptep, pgste);
1036 oldpte = pte = *ptep;
1037 ptep_flush_direct(vma->vm_mm, addr, ptep);
1038 young = pte_young(pte);
1039 pte = pte_mkold(pte);
1041 if (mm_has_pgste(vma->vm_mm)) {
1042 pgste = pgste_update_all(&oldpte, pgste, vma->vm_mm);
1043 pgste = pgste_set_pte(ptep, pgste, pte);
1044 pgste_set_unlock(ptep, pgste);
1045 } else
1046 *ptep = pte;
1048 return young;
1051 #define __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH
1052 static inline int ptep_clear_flush_young(struct vm_area_struct *vma,
1053 unsigned long address, pte_t *ptep)
1055 return ptep_test_and_clear_young(vma, address, ptep);
1059 * This is hard to understand. ptep_get_and_clear and ptep_clear_flush
1060 * both clear the TLB for the unmapped pte. The reason is that
1061 * ptep_get_and_clear is used in common code (e.g. change_pte_range)
1062 * to modify an active pte. The sequence is
1063 * 1) ptep_get_and_clear
1064 * 2) set_pte_at
1065 * 3) flush_tlb_range
1066 * On s390 the tlb needs to get flushed with the modification of the pte
1067 * if the pte is active. The only way how this can be implemented is to
1068 * have ptep_get_and_clear do the tlb flush. In exchange flush_tlb_range
1069 * is a nop.
1071 #define __HAVE_ARCH_PTEP_GET_AND_CLEAR
1072 static inline pte_t ptep_get_and_clear(struct mm_struct *mm,
1073 unsigned long address, pte_t *ptep)
1075 pgste_t pgste;
1076 pte_t pte;
1078 if (mm_has_pgste(mm)) {
1079 pgste = pgste_get_lock(ptep);
1080 pgste = pgste_ipte_notify(mm, address, ptep, pgste);
1083 pte = *ptep;
1084 ptep_flush_lazy(mm, address, ptep);
1085 pte_val(*ptep) = _PAGE_INVALID;
1087 if (mm_has_pgste(mm)) {
1088 pgste = pgste_update_all(&pte, pgste, mm);
1089 pgste_set_unlock(ptep, pgste);
1091 return pte;
1094 #define __HAVE_ARCH_PTEP_MODIFY_PROT_TRANSACTION
1095 static inline pte_t ptep_modify_prot_start(struct mm_struct *mm,
1096 unsigned long address,
1097 pte_t *ptep)
1099 pgste_t pgste;
1100 pte_t pte;
1102 if (mm_has_pgste(mm)) {
1103 pgste = pgste_get_lock(ptep);
1104 pgste_ipte_notify(mm, address, ptep, pgste);
1107 pte = *ptep;
1108 ptep_flush_lazy(mm, address, ptep);
1110 if (mm_has_pgste(mm)) {
1111 pgste = pgste_update_all(&pte, pgste, mm);
1112 pgste_set(ptep, pgste);
1114 return pte;
1117 static inline void ptep_modify_prot_commit(struct mm_struct *mm,
1118 unsigned long address,
1119 pte_t *ptep, pte_t pte)
1121 pgste_t pgste;
1123 if (mm_has_pgste(mm)) {
1124 pgste = pgste_get(ptep);
1125 pgste_set_key(ptep, pgste, pte, mm);
1126 pgste = pgste_set_pte(ptep, pgste, pte);
1127 pgste_set_unlock(ptep, pgste);
1128 } else
1129 *ptep = pte;
1132 #define __HAVE_ARCH_PTEP_CLEAR_FLUSH
1133 static inline pte_t ptep_clear_flush(struct vm_area_struct *vma,
1134 unsigned long address, pte_t *ptep)
1136 pgste_t pgste;
1137 pte_t pte;
1139 if (mm_has_pgste(vma->vm_mm)) {
1140 pgste = pgste_get_lock(ptep);
1141 pgste = pgste_ipte_notify(vma->vm_mm, address, ptep, pgste);
1144 pte = *ptep;
1145 ptep_flush_direct(vma->vm_mm, address, ptep);
1146 pte_val(*ptep) = _PAGE_INVALID;
1148 if (mm_has_pgste(vma->vm_mm)) {
1149 if ((pgste_val(pgste) & _PGSTE_GPS_USAGE_MASK) ==
1150 _PGSTE_GPS_USAGE_UNUSED)
1151 pte_val(pte) |= _PAGE_UNUSED;
1152 pgste = pgste_update_all(&pte, pgste, vma->vm_mm);
1153 pgste_set_unlock(ptep, pgste);
1155 return pte;
1159 * The batched pte unmap code uses ptep_get_and_clear_full to clear the
1160 * ptes. Here an optimization is possible. tlb_gather_mmu flushes all
1161 * tlbs of an mm if it can guarantee that the ptes of the mm_struct
1162 * cannot be accessed while the batched unmap is running. In this case
1163 * full==1 and a simple pte_clear is enough. See tlb.h.
1165 #define __HAVE_ARCH_PTEP_GET_AND_CLEAR_FULL
1166 static inline pte_t ptep_get_and_clear_full(struct mm_struct *mm,
1167 unsigned long address,
1168 pte_t *ptep, int full)
1170 pgste_t pgste;
1171 pte_t pte;
1173 if (!full && mm_has_pgste(mm)) {
1174 pgste = pgste_get_lock(ptep);
1175 pgste = pgste_ipte_notify(mm, address, ptep, pgste);
1178 pte = *ptep;
1179 if (!full)
1180 ptep_flush_lazy(mm, address, ptep);
1181 pte_val(*ptep) = _PAGE_INVALID;
1183 if (!full && mm_has_pgste(mm)) {
1184 pgste = pgste_update_all(&pte, pgste, mm);
1185 pgste_set_unlock(ptep, pgste);
1187 return pte;
1190 #define __HAVE_ARCH_PTEP_SET_WRPROTECT
1191 static inline pte_t ptep_set_wrprotect(struct mm_struct *mm,
1192 unsigned long address, pte_t *ptep)
1194 pgste_t pgste;
1195 pte_t pte = *ptep;
1197 if (pte_write(pte)) {
1198 if (mm_has_pgste(mm)) {
1199 pgste = pgste_get_lock(ptep);
1200 pgste = pgste_ipte_notify(mm, address, ptep, pgste);
1203 ptep_flush_lazy(mm, address, ptep);
1204 pte = pte_wrprotect(pte);
1206 if (mm_has_pgste(mm)) {
1207 pgste = pgste_set_pte(ptep, pgste, pte);
1208 pgste_set_unlock(ptep, pgste);
1209 } else
1210 *ptep = pte;
1212 return pte;
1215 #define __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS
1216 static inline int ptep_set_access_flags(struct vm_area_struct *vma,
1217 unsigned long address, pte_t *ptep,
1218 pte_t entry, int dirty)
1220 pgste_t pgste;
1222 if (pte_same(*ptep, entry))
1223 return 0;
1224 if (mm_has_pgste(vma->vm_mm)) {
1225 pgste = pgste_get_lock(ptep);
1226 pgste = pgste_ipte_notify(vma->vm_mm, address, ptep, pgste);
1229 ptep_flush_direct(vma->vm_mm, address, ptep);
1231 if (mm_has_pgste(vma->vm_mm)) {
1232 pgste_set_key(ptep, pgste, entry, vma->vm_mm);
1233 pgste = pgste_set_pte(ptep, pgste, entry);
1234 pgste_set_unlock(ptep, pgste);
1235 } else
1236 *ptep = entry;
1237 return 1;
1241 * Conversion functions: convert a page and protection to a page entry,
1242 * and a page entry and page directory to the page they refer to.
1244 static inline pte_t mk_pte_phys(unsigned long physpage, pgprot_t pgprot)
1246 pte_t __pte;
1247 pte_val(__pte) = physpage + pgprot_val(pgprot);
1248 return pte_mkyoung(__pte);
1251 static inline pte_t mk_pte(struct page *page, pgprot_t pgprot)
1253 unsigned long physpage = page_to_phys(page);
1254 pte_t __pte = mk_pte_phys(physpage, pgprot);
1256 if (pte_write(__pte) && PageDirty(page))
1257 __pte = pte_mkdirty(__pte);
1258 return __pte;
1261 #define pgd_index(address) (((address) >> PGDIR_SHIFT) & (PTRS_PER_PGD-1))
1262 #define pud_index(address) (((address) >> PUD_SHIFT) & (PTRS_PER_PUD-1))
1263 #define pmd_index(address) (((address) >> PMD_SHIFT) & (PTRS_PER_PMD-1))
1264 #define pte_index(address) (((address) >> PAGE_SHIFT) & (PTRS_PER_PTE-1))
1266 #define pgd_offset(mm, address) ((mm)->pgd + pgd_index(address))
1267 #define pgd_offset_k(address) pgd_offset(&init_mm, address)
1269 #define pmd_deref(pmd) (pmd_val(pmd) & _SEGMENT_ENTRY_ORIGIN)
1270 #define pud_deref(pud) (pud_val(pud) & _REGION_ENTRY_ORIGIN)
1271 #define pgd_deref(pgd) (pgd_val(pgd) & _REGION_ENTRY_ORIGIN)
1273 static inline pud_t *pud_offset(pgd_t *pgd, unsigned long address)
1275 pud_t *pud = (pud_t *) pgd;
1276 if ((pgd_val(*pgd) & _REGION_ENTRY_TYPE_MASK) == _REGION_ENTRY_TYPE_R2)
1277 pud = (pud_t *) pgd_deref(*pgd);
1278 return pud + pud_index(address);
1281 static inline pmd_t *pmd_offset(pud_t *pud, unsigned long address)
1283 pmd_t *pmd = (pmd_t *) pud;
1284 if ((pud_val(*pud) & _REGION_ENTRY_TYPE_MASK) == _REGION_ENTRY_TYPE_R3)
1285 pmd = (pmd_t *) pud_deref(*pud);
1286 return pmd + pmd_index(address);
1289 #define pfn_pte(pfn,pgprot) mk_pte_phys(__pa((pfn) << PAGE_SHIFT),(pgprot))
1290 #define pte_pfn(x) (pte_val(x) >> PAGE_SHIFT)
1291 #define pte_page(x) pfn_to_page(pte_pfn(x))
1293 #define pmd_page(pmd) pfn_to_page(pmd_pfn(pmd))
1295 /* Find an entry in the lowest level page table.. */
1296 #define pte_offset(pmd, addr) ((pte_t *) pmd_deref(*(pmd)) + pte_index(addr))
1297 #define pte_offset_kernel(pmd, address) pte_offset(pmd,address)
1298 #define pte_offset_map(pmd, address) pte_offset_kernel(pmd, address)
1299 #define pte_unmap(pte) do { } while (0)
1301 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLB_PAGE)
1302 static inline unsigned long massage_pgprot_pmd(pgprot_t pgprot)
1305 * pgprot is PAGE_NONE, PAGE_READ, or PAGE_WRITE (see __Pxxx / __Sxxx)
1306 * Convert to segment table entry format.
1308 if (pgprot_val(pgprot) == pgprot_val(PAGE_NONE))
1309 return pgprot_val(SEGMENT_NONE);
1310 if (pgprot_val(pgprot) == pgprot_val(PAGE_READ))
1311 return pgprot_val(SEGMENT_READ);
1312 return pgprot_val(SEGMENT_WRITE);
1315 static inline pmd_t pmd_wrprotect(pmd_t pmd)
1317 pmd_val(pmd) &= ~_SEGMENT_ENTRY_WRITE;
1318 pmd_val(pmd) |= _SEGMENT_ENTRY_PROTECT;
1319 return pmd;
1322 static inline pmd_t pmd_mkwrite(pmd_t pmd)
1324 pmd_val(pmd) |= _SEGMENT_ENTRY_WRITE;
1325 if (pmd_large(pmd) && !(pmd_val(pmd) & _SEGMENT_ENTRY_DIRTY))
1326 return pmd;
1327 pmd_val(pmd) &= ~_SEGMENT_ENTRY_PROTECT;
1328 return pmd;
1331 static inline pmd_t pmd_mkclean(pmd_t pmd)
1333 if (pmd_large(pmd)) {
1334 pmd_val(pmd) &= ~_SEGMENT_ENTRY_DIRTY;
1335 pmd_val(pmd) |= _SEGMENT_ENTRY_PROTECT;
1337 return pmd;
1340 static inline pmd_t pmd_mkdirty(pmd_t pmd)
1342 if (pmd_large(pmd)) {
1343 pmd_val(pmd) |= _SEGMENT_ENTRY_DIRTY;
1344 if (pmd_val(pmd) & _SEGMENT_ENTRY_WRITE)
1345 pmd_val(pmd) &= ~_SEGMENT_ENTRY_PROTECT;
1347 return pmd;
1350 static inline pmd_t pmd_mkyoung(pmd_t pmd)
1352 if (pmd_large(pmd)) {
1353 pmd_val(pmd) |= _SEGMENT_ENTRY_YOUNG;
1354 if (pmd_val(pmd) & _SEGMENT_ENTRY_READ)
1355 pmd_val(pmd) &= ~_SEGMENT_ENTRY_INVALID;
1357 return pmd;
1360 static inline pmd_t pmd_mkold(pmd_t pmd)
1362 if (pmd_large(pmd)) {
1363 pmd_val(pmd) &= ~_SEGMENT_ENTRY_YOUNG;
1364 pmd_val(pmd) |= _SEGMENT_ENTRY_INVALID;
1366 return pmd;
1369 static inline pmd_t pmd_modify(pmd_t pmd, pgprot_t newprot)
1371 if (pmd_large(pmd)) {
1372 pmd_val(pmd) &= _SEGMENT_ENTRY_ORIGIN_LARGE |
1373 _SEGMENT_ENTRY_DIRTY | _SEGMENT_ENTRY_YOUNG |
1374 _SEGMENT_ENTRY_LARGE | _SEGMENT_ENTRY_SPLIT;
1375 pmd_val(pmd) |= massage_pgprot_pmd(newprot);
1376 if (!(pmd_val(pmd) & _SEGMENT_ENTRY_DIRTY))
1377 pmd_val(pmd) |= _SEGMENT_ENTRY_PROTECT;
1378 if (!(pmd_val(pmd) & _SEGMENT_ENTRY_YOUNG))
1379 pmd_val(pmd) |= _SEGMENT_ENTRY_INVALID;
1380 return pmd;
1382 pmd_val(pmd) &= _SEGMENT_ENTRY_ORIGIN;
1383 pmd_val(pmd) |= massage_pgprot_pmd(newprot);
1384 return pmd;
1387 static inline pmd_t mk_pmd_phys(unsigned long physpage, pgprot_t pgprot)
1389 pmd_t __pmd;
1390 pmd_val(__pmd) = physpage + massage_pgprot_pmd(pgprot);
1391 return __pmd;
1394 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLB_PAGE */
1396 static inline void __pmdp_csp(pmd_t *pmdp)
1398 register unsigned long reg2 asm("2") = pmd_val(*pmdp);
1399 register unsigned long reg3 asm("3") = pmd_val(*pmdp) |
1400 _SEGMENT_ENTRY_INVALID;
1401 register unsigned long reg4 asm("4") = ((unsigned long) pmdp) + 5;
1403 asm volatile(
1404 " csp %1,%3"
1405 : "=m" (*pmdp)
1406 : "d" (reg2), "d" (reg3), "d" (reg4), "m" (*pmdp) : "cc");
1409 static inline void __pmdp_idte(unsigned long address, pmd_t *pmdp)
1411 unsigned long sto;
1413 sto = (unsigned long) pmdp - pmd_index(address) * sizeof(pmd_t);
1414 asm volatile(
1415 " .insn rrf,0xb98e0000,%2,%3,0,0"
1416 : "=m" (*pmdp)
1417 : "m" (*pmdp), "a" (sto), "a" ((address & HPAGE_MASK))
1418 : "cc" );
1421 static inline void __pmdp_idte_local(unsigned long address, pmd_t *pmdp)
1423 unsigned long sto;
1425 sto = (unsigned long) pmdp - pmd_index(address) * sizeof(pmd_t);
1426 asm volatile(
1427 " .insn rrf,0xb98e0000,%2,%3,0,1"
1428 : "=m" (*pmdp)
1429 : "m" (*pmdp), "a" (sto), "a" ((address & HPAGE_MASK))
1430 : "cc" );
1433 static inline void pmdp_flush_direct(struct mm_struct *mm,
1434 unsigned long address, pmd_t *pmdp)
1436 int active, count;
1438 if (pmd_val(*pmdp) & _SEGMENT_ENTRY_INVALID)
1439 return;
1440 if (!MACHINE_HAS_IDTE) {
1441 __pmdp_csp(pmdp);
1442 return;
1444 active = (mm == current->active_mm) ? 1 : 0;
1445 count = atomic_add_return(0x10000, &mm->context.attach_count);
1446 if (MACHINE_HAS_TLB_LC && (count & 0xffff) <= active &&
1447 cpumask_equal(mm_cpumask(mm), cpumask_of(smp_processor_id())))
1448 __pmdp_idte_local(address, pmdp);
1449 else
1450 __pmdp_idte(address, pmdp);
1451 atomic_sub(0x10000, &mm->context.attach_count);
1454 static inline void pmdp_flush_lazy(struct mm_struct *mm,
1455 unsigned long address, pmd_t *pmdp)
1457 int active, count;
1459 if (pmd_val(*pmdp) & _SEGMENT_ENTRY_INVALID)
1460 return;
1461 active = (mm == current->active_mm) ? 1 : 0;
1462 count = atomic_add_return(0x10000, &mm->context.attach_count);
1463 if ((count & 0xffff) <= active) {
1464 pmd_val(*pmdp) |= _SEGMENT_ENTRY_INVALID;
1465 mm->context.flush_mm = 1;
1466 } else if (MACHINE_HAS_IDTE)
1467 __pmdp_idte(address, pmdp);
1468 else
1469 __pmdp_csp(pmdp);
1470 atomic_sub(0x10000, &mm->context.attach_count);
1473 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1475 #define __HAVE_ARCH_PGTABLE_DEPOSIT
1476 extern void pgtable_trans_huge_deposit(struct mm_struct *mm, pmd_t *pmdp,
1477 pgtable_t pgtable);
1479 #define __HAVE_ARCH_PGTABLE_WITHDRAW
1480 extern pgtable_t pgtable_trans_huge_withdraw(struct mm_struct *mm, pmd_t *pmdp);
1482 static inline int pmd_trans_splitting(pmd_t pmd)
1484 return (pmd_val(pmd) & _SEGMENT_ENTRY_LARGE) &&
1485 (pmd_val(pmd) & _SEGMENT_ENTRY_SPLIT);
1488 static inline void set_pmd_at(struct mm_struct *mm, unsigned long addr,
1489 pmd_t *pmdp, pmd_t entry)
1491 *pmdp = entry;
1494 static inline pmd_t pmd_mkhuge(pmd_t pmd)
1496 pmd_val(pmd) |= _SEGMENT_ENTRY_LARGE;
1497 pmd_val(pmd) |= _SEGMENT_ENTRY_YOUNG;
1498 pmd_val(pmd) |= _SEGMENT_ENTRY_PROTECT;
1499 return pmd;
1502 #define __HAVE_ARCH_PMDP_TEST_AND_CLEAR_YOUNG
1503 static inline int pmdp_test_and_clear_young(struct vm_area_struct *vma,
1504 unsigned long address, pmd_t *pmdp)
1506 pmd_t pmd;
1508 pmd = *pmdp;
1509 pmdp_flush_direct(vma->vm_mm, address, pmdp);
1510 *pmdp = pmd_mkold(pmd);
1511 return pmd_young(pmd);
1514 #define __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR
1515 static inline pmd_t pmdp_huge_get_and_clear(struct mm_struct *mm,
1516 unsigned long address, pmd_t *pmdp)
1518 pmd_t pmd = *pmdp;
1520 pmdp_flush_direct(mm, address, pmdp);
1521 pmd_clear(pmdp);
1522 return pmd;
1525 #define __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR_FULL
1526 static inline pmd_t pmdp_huge_get_and_clear_full(struct mm_struct *mm,
1527 unsigned long address,
1528 pmd_t *pmdp, int full)
1530 pmd_t pmd = *pmdp;
1532 if (!full)
1533 pmdp_flush_lazy(mm, address, pmdp);
1534 pmd_clear(pmdp);
1535 return pmd;
1538 #define __HAVE_ARCH_PMDP_HUGE_CLEAR_FLUSH
1539 static inline pmd_t pmdp_huge_clear_flush(struct vm_area_struct *vma,
1540 unsigned long address, pmd_t *pmdp)
1542 return pmdp_huge_get_and_clear(vma->vm_mm, address, pmdp);
1545 #define __HAVE_ARCH_PMDP_INVALIDATE
1546 static inline void pmdp_invalidate(struct vm_area_struct *vma,
1547 unsigned long address, pmd_t *pmdp)
1549 pmdp_flush_direct(vma->vm_mm, address, pmdp);
1552 #define __HAVE_ARCH_PMDP_SET_WRPROTECT
1553 static inline void pmdp_set_wrprotect(struct mm_struct *mm,
1554 unsigned long address, pmd_t *pmdp)
1556 pmd_t pmd = *pmdp;
1558 if (pmd_write(pmd)) {
1559 pmdp_flush_direct(mm, address, pmdp);
1560 set_pmd_at(mm, address, pmdp, pmd_wrprotect(pmd));
1564 static inline pmd_t pmdp_collapse_flush(struct vm_area_struct *vma,
1565 unsigned long address,
1566 pmd_t *pmdp)
1568 return pmdp_huge_get_and_clear(vma->vm_mm, address, pmdp);
1570 #define pmdp_collapse_flush pmdp_collapse_flush
1572 #define pfn_pmd(pfn, pgprot) mk_pmd_phys(__pa((pfn) << PAGE_SHIFT), (pgprot))
1573 #define mk_pmd(page, pgprot) pfn_pmd(page_to_pfn(page), (pgprot))
1575 static inline int pmd_trans_huge(pmd_t pmd)
1577 return pmd_val(pmd) & _SEGMENT_ENTRY_LARGE;
1580 static inline int has_transparent_hugepage(void)
1582 return MACHINE_HAS_HPAGE ? 1 : 0;
1584 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1587 * 64 bit swap entry format:
1588 * A page-table entry has some bits we have to treat in a special way.
1589 * Bits 52 and bit 55 have to be zero, otherwise a specification
1590 * exception will occur instead of a page translation exception. The
1591 * specification exception has the bad habit not to store necessary
1592 * information in the lowcore.
1593 * Bits 54 and 63 are used to indicate the page type.
1594 * A swap pte is indicated by bit pattern (pte & 0x201) == 0x200
1595 * This leaves the bits 0-51 and bits 56-62 to store type and offset.
1596 * We use the 5 bits from 57-61 for the type and the 52 bits from 0-51
1597 * for the offset.
1598 * | offset |01100|type |00|
1599 * |0000000000111111111122222222223333333333444444444455|55555|55566|66|
1600 * |0123456789012345678901234567890123456789012345678901|23456|78901|23|
1603 #define __SWP_OFFSET_MASK ((1UL << 52) - 1)
1604 #define __SWP_OFFSET_SHIFT 12
1605 #define __SWP_TYPE_MASK ((1UL << 5) - 1)
1606 #define __SWP_TYPE_SHIFT 2
1608 static inline pte_t mk_swap_pte(unsigned long type, unsigned long offset)
1610 pte_t pte;
1612 pte_val(pte) = _PAGE_INVALID | _PAGE_PROTECT;
1613 pte_val(pte) |= (offset & __SWP_OFFSET_MASK) << __SWP_OFFSET_SHIFT;
1614 pte_val(pte) |= (type & __SWP_TYPE_MASK) << __SWP_TYPE_SHIFT;
1615 return pte;
1618 static inline unsigned long __swp_type(swp_entry_t entry)
1620 return (entry.val >> __SWP_TYPE_SHIFT) & __SWP_TYPE_MASK;
1623 static inline unsigned long __swp_offset(swp_entry_t entry)
1625 return (entry.val >> __SWP_OFFSET_SHIFT) & __SWP_OFFSET_MASK;
1628 static inline swp_entry_t __swp_entry(unsigned long type, unsigned long offset)
1630 return (swp_entry_t) { pte_val(mk_swap_pte(type, offset)) };
1633 #define __pte_to_swp_entry(pte) ((swp_entry_t) { pte_val(pte) })
1634 #define __swp_entry_to_pte(x) ((pte_t) { (x).val })
1636 #endif /* !__ASSEMBLY__ */
1638 #define kern_addr_valid(addr) (1)
1640 extern int vmem_add_mapping(unsigned long start, unsigned long size);
1641 extern int vmem_remove_mapping(unsigned long start, unsigned long size);
1642 extern int s390_enable_sie(void);
1643 extern int s390_enable_skey(void);
1644 extern void s390_reset_cmma(struct mm_struct *mm);
1646 /* s390 has a private copy of get unmapped area to deal with cache synonyms */
1647 #define HAVE_ARCH_UNMAPPED_AREA
1648 #define HAVE_ARCH_UNMAPPED_AREA_TOPDOWN
1651 * No page table caches to initialise
1653 static inline void pgtable_cache_init(void) { }
1654 static inline void check_pgt_cache(void) { }
1656 #include <asm-generic/pgtable.h>
1658 #endif /* _S390_PAGE_H */