blk: rq_data_dir() should not return a boolean
[cris-mirror.git] / arch / s390 / kernel / time.c
blob017c3a9bfc280e2475bbeed6902ac1cf3ed8c569
1 /*
2 * Time of day based timer functions.
4 * S390 version
5 * Copyright IBM Corp. 1999, 2008
6 * Author(s): Hartmut Penner (hp@de.ibm.com),
7 * Martin Schwidefsky (schwidefsky@de.ibm.com),
8 * Denis Joseph Barrow (djbarrow@de.ibm.com,barrow_dj@yahoo.com)
10 * Derived from "arch/i386/kernel/time.c"
11 * Copyright (C) 1991, 1992, 1995 Linus Torvalds
14 #define KMSG_COMPONENT "time"
15 #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
17 #include <linux/kernel_stat.h>
18 #include <linux/errno.h>
19 #include <linux/module.h>
20 #include <linux/sched.h>
21 #include <linux/kernel.h>
22 #include <linux/param.h>
23 #include <linux/string.h>
24 #include <linux/mm.h>
25 #include <linux/interrupt.h>
26 #include <linux/cpu.h>
27 #include <linux/stop_machine.h>
28 #include <linux/time.h>
29 #include <linux/device.h>
30 #include <linux/delay.h>
31 #include <linux/init.h>
32 #include <linux/smp.h>
33 #include <linux/types.h>
34 #include <linux/profile.h>
35 #include <linux/timex.h>
36 #include <linux/notifier.h>
37 #include <linux/timekeeper_internal.h>
38 #include <linux/clockchips.h>
39 #include <linux/gfp.h>
40 #include <linux/kprobes.h>
41 #include <asm/uaccess.h>
42 #include <asm/delay.h>
43 #include <asm/div64.h>
44 #include <asm/vdso.h>
45 #include <asm/irq.h>
46 #include <asm/irq_regs.h>
47 #include <asm/vtimer.h>
48 #include <asm/etr.h>
49 #include <asm/cio.h>
50 #include "entry.h"
52 /* change this if you have some constant time drift */
53 #define USECS_PER_JIFFY ((unsigned long) 1000000/HZ)
54 #define CLK_TICKS_PER_JIFFY ((unsigned long) USECS_PER_JIFFY << 12)
56 u64 sched_clock_base_cc = -1; /* Force to data section. */
57 EXPORT_SYMBOL_GPL(sched_clock_base_cc);
59 static DEFINE_PER_CPU(struct clock_event_device, comparators);
61 ATOMIC_NOTIFIER_HEAD(s390_epoch_delta_notifier);
62 EXPORT_SYMBOL(s390_epoch_delta_notifier);
65 * Scheduler clock - returns current time in nanosec units.
67 unsigned long long notrace sched_clock(void)
69 return tod_to_ns(get_tod_clock_monotonic());
71 NOKPROBE_SYMBOL(sched_clock);
74 * Monotonic_clock - returns # of nanoseconds passed since time_init()
76 unsigned long long monotonic_clock(void)
78 return sched_clock();
80 EXPORT_SYMBOL(monotonic_clock);
82 void tod_to_timeval(__u64 todval, struct timespec64 *xt)
84 unsigned long long sec;
86 sec = todval >> 12;
87 do_div(sec, 1000000);
88 xt->tv_sec = sec;
89 todval -= (sec * 1000000) << 12;
90 xt->tv_nsec = ((todval * 1000) >> 12);
92 EXPORT_SYMBOL(tod_to_timeval);
94 void clock_comparator_work(void)
96 struct clock_event_device *cd;
98 S390_lowcore.clock_comparator = -1ULL;
99 cd = this_cpu_ptr(&comparators);
100 cd->event_handler(cd);
104 * Fixup the clock comparator.
106 static void fixup_clock_comparator(unsigned long long delta)
108 /* If nobody is waiting there's nothing to fix. */
109 if (S390_lowcore.clock_comparator == -1ULL)
110 return;
111 S390_lowcore.clock_comparator += delta;
112 set_clock_comparator(S390_lowcore.clock_comparator);
115 static int s390_next_event(unsigned long delta,
116 struct clock_event_device *evt)
118 S390_lowcore.clock_comparator = get_tod_clock() + delta;
119 set_clock_comparator(S390_lowcore.clock_comparator);
120 return 0;
124 * Set up lowcore and control register of the current cpu to
125 * enable TOD clock and clock comparator interrupts.
127 void init_cpu_timer(void)
129 struct clock_event_device *cd;
130 int cpu;
132 S390_lowcore.clock_comparator = -1ULL;
133 set_clock_comparator(S390_lowcore.clock_comparator);
135 cpu = smp_processor_id();
136 cd = &per_cpu(comparators, cpu);
137 cd->name = "comparator";
138 cd->features = CLOCK_EVT_FEAT_ONESHOT;
139 cd->mult = 16777;
140 cd->shift = 12;
141 cd->min_delta_ns = 1;
142 cd->max_delta_ns = LONG_MAX;
143 cd->rating = 400;
144 cd->cpumask = cpumask_of(cpu);
145 cd->set_next_event = s390_next_event;
147 clockevents_register_device(cd);
149 /* Enable clock comparator timer interrupt. */
150 __ctl_set_bit(0,11);
152 /* Always allow the timing alert external interrupt. */
153 __ctl_set_bit(0, 4);
156 static void clock_comparator_interrupt(struct ext_code ext_code,
157 unsigned int param32,
158 unsigned long param64)
160 inc_irq_stat(IRQEXT_CLK);
161 if (S390_lowcore.clock_comparator == -1ULL)
162 set_clock_comparator(S390_lowcore.clock_comparator);
165 static void etr_timing_alert(struct etr_irq_parm *);
166 static void stp_timing_alert(struct stp_irq_parm *);
168 static void timing_alert_interrupt(struct ext_code ext_code,
169 unsigned int param32, unsigned long param64)
171 inc_irq_stat(IRQEXT_TLA);
172 if (param32 & 0x00c40000)
173 etr_timing_alert((struct etr_irq_parm *) &param32);
174 if (param32 & 0x00038000)
175 stp_timing_alert((struct stp_irq_parm *) &param32);
178 static void etr_reset(void);
179 static void stp_reset(void);
181 void read_persistent_clock64(struct timespec64 *ts)
183 tod_to_timeval(get_tod_clock() - TOD_UNIX_EPOCH, ts);
186 void read_boot_clock64(struct timespec64 *ts)
188 tod_to_timeval(sched_clock_base_cc - TOD_UNIX_EPOCH, ts);
191 static cycle_t read_tod_clock(struct clocksource *cs)
193 return get_tod_clock();
196 static struct clocksource clocksource_tod = {
197 .name = "tod",
198 .rating = 400,
199 .read = read_tod_clock,
200 .mask = -1ULL,
201 .mult = 1000,
202 .shift = 12,
203 .flags = CLOCK_SOURCE_IS_CONTINUOUS,
206 struct clocksource * __init clocksource_default_clock(void)
208 return &clocksource_tod;
211 void update_vsyscall(struct timekeeper *tk)
213 u64 nsecps;
215 if (tk->tkr_mono.clock != &clocksource_tod)
216 return;
218 /* Make userspace gettimeofday spin until we're done. */
219 ++vdso_data->tb_update_count;
220 smp_wmb();
221 vdso_data->xtime_tod_stamp = tk->tkr_mono.cycle_last;
222 vdso_data->xtime_clock_sec = tk->xtime_sec;
223 vdso_data->xtime_clock_nsec = tk->tkr_mono.xtime_nsec;
224 vdso_data->wtom_clock_sec =
225 tk->xtime_sec + tk->wall_to_monotonic.tv_sec;
226 vdso_data->wtom_clock_nsec = tk->tkr_mono.xtime_nsec +
227 + ((u64) tk->wall_to_monotonic.tv_nsec << tk->tkr_mono.shift);
228 nsecps = (u64) NSEC_PER_SEC << tk->tkr_mono.shift;
229 while (vdso_data->wtom_clock_nsec >= nsecps) {
230 vdso_data->wtom_clock_nsec -= nsecps;
231 vdso_data->wtom_clock_sec++;
234 vdso_data->xtime_coarse_sec = tk->xtime_sec;
235 vdso_data->xtime_coarse_nsec =
236 (long)(tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift);
237 vdso_data->wtom_coarse_sec =
238 vdso_data->xtime_coarse_sec + tk->wall_to_monotonic.tv_sec;
239 vdso_data->wtom_coarse_nsec =
240 vdso_data->xtime_coarse_nsec + tk->wall_to_monotonic.tv_nsec;
241 while (vdso_data->wtom_coarse_nsec >= NSEC_PER_SEC) {
242 vdso_data->wtom_coarse_nsec -= NSEC_PER_SEC;
243 vdso_data->wtom_coarse_sec++;
246 vdso_data->tk_mult = tk->tkr_mono.mult;
247 vdso_data->tk_shift = tk->tkr_mono.shift;
248 smp_wmb();
249 ++vdso_data->tb_update_count;
252 extern struct timezone sys_tz;
254 void update_vsyscall_tz(void)
256 /* Make userspace gettimeofday spin until we're done. */
257 ++vdso_data->tb_update_count;
258 smp_wmb();
259 vdso_data->tz_minuteswest = sys_tz.tz_minuteswest;
260 vdso_data->tz_dsttime = sys_tz.tz_dsttime;
261 smp_wmb();
262 ++vdso_data->tb_update_count;
266 * Initialize the TOD clock and the CPU timer of
267 * the boot cpu.
269 void __init time_init(void)
271 /* Reset time synchronization interfaces. */
272 etr_reset();
273 stp_reset();
275 /* request the clock comparator external interrupt */
276 if (register_external_irq(EXT_IRQ_CLK_COMP, clock_comparator_interrupt))
277 panic("Couldn't request external interrupt 0x1004");
279 /* request the timing alert external interrupt */
280 if (register_external_irq(EXT_IRQ_TIMING_ALERT, timing_alert_interrupt))
281 panic("Couldn't request external interrupt 0x1406");
283 if (__clocksource_register(&clocksource_tod) != 0)
284 panic("Could not register TOD clock source");
286 /* Enable TOD clock interrupts on the boot cpu. */
287 init_cpu_timer();
289 /* Enable cpu timer interrupts on the boot cpu. */
290 vtime_init();
294 * The time is "clock". old is what we think the time is.
295 * Adjust the value by a multiple of jiffies and add the delta to ntp.
296 * "delay" is an approximation how long the synchronization took. If
297 * the time correction is positive, then "delay" is subtracted from
298 * the time difference and only the remaining part is passed to ntp.
300 static unsigned long long adjust_time(unsigned long long old,
301 unsigned long long clock,
302 unsigned long long delay)
304 unsigned long long delta, ticks;
305 struct timex adjust;
307 if (clock > old) {
308 /* It is later than we thought. */
309 delta = ticks = clock - old;
310 delta = ticks = (delta < delay) ? 0 : delta - delay;
311 delta -= do_div(ticks, CLK_TICKS_PER_JIFFY);
312 adjust.offset = ticks * (1000000 / HZ);
313 } else {
314 /* It is earlier than we thought. */
315 delta = ticks = old - clock;
316 delta -= do_div(ticks, CLK_TICKS_PER_JIFFY);
317 delta = -delta;
318 adjust.offset = -ticks * (1000000 / HZ);
320 sched_clock_base_cc += delta;
321 if (adjust.offset != 0) {
322 pr_notice("The ETR interface has adjusted the clock "
323 "by %li microseconds\n", adjust.offset);
324 adjust.modes = ADJ_OFFSET_SINGLESHOT;
325 do_adjtimex(&adjust);
327 return delta;
330 static DEFINE_PER_CPU(atomic_t, clock_sync_word);
331 static DEFINE_MUTEX(clock_sync_mutex);
332 static unsigned long clock_sync_flags;
334 #define CLOCK_SYNC_HAS_ETR 0
335 #define CLOCK_SYNC_HAS_STP 1
336 #define CLOCK_SYNC_ETR 2
337 #define CLOCK_SYNC_STP 3
340 * The synchronous get_clock function. It will write the current clock
341 * value to the clock pointer and return 0 if the clock is in sync with
342 * the external time source. If the clock mode is local it will return
343 * -EOPNOTSUPP and -EAGAIN if the clock is not in sync with the external
344 * reference.
346 int get_sync_clock(unsigned long long *clock)
348 atomic_t *sw_ptr;
349 unsigned int sw0, sw1;
351 sw_ptr = &get_cpu_var(clock_sync_word);
352 sw0 = atomic_read(sw_ptr);
353 *clock = get_tod_clock();
354 sw1 = atomic_read(sw_ptr);
355 put_cpu_var(clock_sync_word);
356 if (sw0 == sw1 && (sw0 & 0x80000000U))
357 /* Success: time is in sync. */
358 return 0;
359 if (!test_bit(CLOCK_SYNC_HAS_ETR, &clock_sync_flags) &&
360 !test_bit(CLOCK_SYNC_HAS_STP, &clock_sync_flags))
361 return -EOPNOTSUPP;
362 if (!test_bit(CLOCK_SYNC_ETR, &clock_sync_flags) &&
363 !test_bit(CLOCK_SYNC_STP, &clock_sync_flags))
364 return -EACCES;
365 return -EAGAIN;
367 EXPORT_SYMBOL(get_sync_clock);
370 * Make get_sync_clock return -EAGAIN.
372 static void disable_sync_clock(void *dummy)
374 atomic_t *sw_ptr = this_cpu_ptr(&clock_sync_word);
376 * Clear the in-sync bit 2^31. All get_sync_clock calls will
377 * fail until the sync bit is turned back on. In addition
378 * increase the "sequence" counter to avoid the race of an
379 * etr event and the complete recovery against get_sync_clock.
381 atomic_andnot(0x80000000, sw_ptr);
382 atomic_inc(sw_ptr);
386 * Make get_sync_clock return 0 again.
387 * Needs to be called from a context disabled for preemption.
389 static void enable_sync_clock(void)
391 atomic_t *sw_ptr = this_cpu_ptr(&clock_sync_word);
392 atomic_or(0x80000000, sw_ptr);
396 * Function to check if the clock is in sync.
398 static inline int check_sync_clock(void)
400 atomic_t *sw_ptr;
401 int rc;
403 sw_ptr = &get_cpu_var(clock_sync_word);
404 rc = (atomic_read(sw_ptr) & 0x80000000U) != 0;
405 put_cpu_var(clock_sync_word);
406 return rc;
409 /* Single threaded workqueue used for etr and stp sync events */
410 static struct workqueue_struct *time_sync_wq;
412 static void __init time_init_wq(void)
414 if (time_sync_wq)
415 return;
416 time_sync_wq = create_singlethread_workqueue("timesync");
420 * External Time Reference (ETR) code.
422 static int etr_port0_online;
423 static int etr_port1_online;
424 static int etr_steai_available;
426 static int __init early_parse_etr(char *p)
428 if (strncmp(p, "off", 3) == 0)
429 etr_port0_online = etr_port1_online = 0;
430 else if (strncmp(p, "port0", 5) == 0)
431 etr_port0_online = 1;
432 else if (strncmp(p, "port1", 5) == 0)
433 etr_port1_online = 1;
434 else if (strncmp(p, "on", 2) == 0)
435 etr_port0_online = etr_port1_online = 1;
436 return 0;
438 early_param("etr", early_parse_etr);
440 enum etr_event {
441 ETR_EVENT_PORT0_CHANGE,
442 ETR_EVENT_PORT1_CHANGE,
443 ETR_EVENT_PORT_ALERT,
444 ETR_EVENT_SYNC_CHECK,
445 ETR_EVENT_SWITCH_LOCAL,
446 ETR_EVENT_UPDATE,
450 * Valid bit combinations of the eacr register are (x = don't care):
451 * e0 e1 dp p0 p1 ea es sl
452 * 0 0 x 0 0 0 0 0 initial, disabled state
453 * 0 0 x 0 1 1 0 0 port 1 online
454 * 0 0 x 1 0 1 0 0 port 0 online
455 * 0 0 x 1 1 1 0 0 both ports online
456 * 0 1 x 0 1 1 0 0 port 1 online and usable, ETR or PPS mode
457 * 0 1 x 0 1 1 0 1 port 1 online, usable and ETR mode
458 * 0 1 x 0 1 1 1 0 port 1 online, usable, PPS mode, in-sync
459 * 0 1 x 0 1 1 1 1 port 1 online, usable, ETR mode, in-sync
460 * 0 1 x 1 1 1 0 0 both ports online, port 1 usable
461 * 0 1 x 1 1 1 1 0 both ports online, port 1 usable, PPS mode, in-sync
462 * 0 1 x 1 1 1 1 1 both ports online, port 1 usable, ETR mode, in-sync
463 * 1 0 x 1 0 1 0 0 port 0 online and usable, ETR or PPS mode
464 * 1 0 x 1 0 1 0 1 port 0 online, usable and ETR mode
465 * 1 0 x 1 0 1 1 0 port 0 online, usable, PPS mode, in-sync
466 * 1 0 x 1 0 1 1 1 port 0 online, usable, ETR mode, in-sync
467 * 1 0 x 1 1 1 0 0 both ports online, port 0 usable
468 * 1 0 x 1 1 1 1 0 both ports online, port 0 usable, PPS mode, in-sync
469 * 1 0 x 1 1 1 1 1 both ports online, port 0 usable, ETR mode, in-sync
470 * 1 1 x 1 1 1 1 0 both ports online & usable, ETR, in-sync
471 * 1 1 x 1 1 1 1 1 both ports online & usable, ETR, in-sync
473 static struct etr_eacr etr_eacr;
474 static u64 etr_tolec; /* time of last eacr update */
475 static struct etr_aib etr_port0;
476 static int etr_port0_uptodate;
477 static struct etr_aib etr_port1;
478 static int etr_port1_uptodate;
479 static unsigned long etr_events;
480 static struct timer_list etr_timer;
482 static void etr_timeout(unsigned long dummy);
483 static void etr_work_fn(struct work_struct *work);
484 static DEFINE_MUTEX(etr_work_mutex);
485 static DECLARE_WORK(etr_work, etr_work_fn);
488 * Reset ETR attachment.
490 static void etr_reset(void)
492 etr_eacr = (struct etr_eacr) {
493 .e0 = 0, .e1 = 0, ._pad0 = 4, .dp = 0,
494 .p0 = 0, .p1 = 0, ._pad1 = 0, .ea = 0,
495 .es = 0, .sl = 0 };
496 if (etr_setr(&etr_eacr) == 0) {
497 etr_tolec = get_tod_clock();
498 set_bit(CLOCK_SYNC_HAS_ETR, &clock_sync_flags);
499 if (etr_port0_online && etr_port1_online)
500 set_bit(CLOCK_SYNC_ETR, &clock_sync_flags);
501 } else if (etr_port0_online || etr_port1_online) {
502 pr_warning("The real or virtual hardware system does "
503 "not provide an ETR interface\n");
504 etr_port0_online = etr_port1_online = 0;
508 static int __init etr_init(void)
510 struct etr_aib aib;
512 if (!test_bit(CLOCK_SYNC_HAS_ETR, &clock_sync_flags))
513 return 0;
514 time_init_wq();
515 /* Check if this machine has the steai instruction. */
516 if (etr_steai(&aib, ETR_STEAI_STEPPING_PORT) == 0)
517 etr_steai_available = 1;
518 setup_timer(&etr_timer, etr_timeout, 0UL);
519 if (etr_port0_online) {
520 set_bit(ETR_EVENT_PORT0_CHANGE, &etr_events);
521 queue_work(time_sync_wq, &etr_work);
523 if (etr_port1_online) {
524 set_bit(ETR_EVENT_PORT1_CHANGE, &etr_events);
525 queue_work(time_sync_wq, &etr_work);
527 return 0;
530 arch_initcall(etr_init);
533 * Two sorts of ETR machine checks. The architecture reads:
534 * "When a machine-check niterruption occurs and if a switch-to-local or
535 * ETR-sync-check interrupt request is pending but disabled, this pending
536 * disabled interruption request is indicated and is cleared".
537 * Which means that we can get etr_switch_to_local events from the machine
538 * check handler although the interruption condition is disabled. Lovely..
542 * Switch to local machine check. This is called when the last usable
543 * ETR port goes inactive. After switch to local the clock is not in sync.
545 void etr_switch_to_local(void)
547 if (!etr_eacr.sl)
548 return;
549 disable_sync_clock(NULL);
550 if (!test_and_set_bit(ETR_EVENT_SWITCH_LOCAL, &etr_events)) {
551 etr_eacr.es = etr_eacr.sl = 0;
552 etr_setr(&etr_eacr);
553 queue_work(time_sync_wq, &etr_work);
558 * ETR sync check machine check. This is called when the ETR OTE and the
559 * local clock OTE are farther apart than the ETR sync check tolerance.
560 * After a ETR sync check the clock is not in sync. The machine check
561 * is broadcasted to all cpus at the same time.
563 void etr_sync_check(void)
565 if (!etr_eacr.es)
566 return;
567 disable_sync_clock(NULL);
568 if (!test_and_set_bit(ETR_EVENT_SYNC_CHECK, &etr_events)) {
569 etr_eacr.es = 0;
570 etr_setr(&etr_eacr);
571 queue_work(time_sync_wq, &etr_work);
576 * ETR timing alert. There are two causes:
577 * 1) port state change, check the usability of the port
578 * 2) port alert, one of the ETR-data-validity bits (v1-v2 bits of the
579 * sldr-status word) or ETR-data word 1 (edf1) or ETR-data word 3 (edf3)
580 * or ETR-data word 4 (edf4) has changed.
582 static void etr_timing_alert(struct etr_irq_parm *intparm)
584 if (intparm->pc0)
585 /* ETR port 0 state change. */
586 set_bit(ETR_EVENT_PORT0_CHANGE, &etr_events);
587 if (intparm->pc1)
588 /* ETR port 1 state change. */
589 set_bit(ETR_EVENT_PORT1_CHANGE, &etr_events);
590 if (intparm->eai)
592 * ETR port alert on either port 0, 1 or both.
593 * Both ports are not up-to-date now.
595 set_bit(ETR_EVENT_PORT_ALERT, &etr_events);
596 queue_work(time_sync_wq, &etr_work);
599 static void etr_timeout(unsigned long dummy)
601 set_bit(ETR_EVENT_UPDATE, &etr_events);
602 queue_work(time_sync_wq, &etr_work);
606 * Check if the etr mode is pss.
608 static inline int etr_mode_is_pps(struct etr_eacr eacr)
610 return eacr.es && !eacr.sl;
614 * Check if the etr mode is etr.
616 static inline int etr_mode_is_etr(struct etr_eacr eacr)
618 return eacr.es && eacr.sl;
622 * Check if the port can be used for TOD synchronization.
623 * For PPS mode the port has to receive OTEs. For ETR mode
624 * the port has to receive OTEs, the ETR stepping bit has to
625 * be zero and the validity bits for data frame 1, 2, and 3
626 * have to be 1.
628 static int etr_port_valid(struct etr_aib *aib, int port)
630 unsigned int psc;
632 /* Check that this port is receiving OTEs. */
633 if (aib->tsp == 0)
634 return 0;
636 psc = port ? aib->esw.psc1 : aib->esw.psc0;
637 if (psc == etr_lpsc_pps_mode)
638 return 1;
639 if (psc == etr_lpsc_operational_step)
640 return !aib->esw.y && aib->slsw.v1 &&
641 aib->slsw.v2 && aib->slsw.v3;
642 return 0;
646 * Check if two ports are on the same network.
648 static int etr_compare_network(struct etr_aib *aib1, struct etr_aib *aib2)
650 // FIXME: any other fields we have to compare?
651 return aib1->edf1.net_id == aib2->edf1.net_id;
655 * Wrapper for etr_stei that converts physical port states
656 * to logical port states to be consistent with the output
657 * of stetr (see etr_psc vs. etr_lpsc).
659 static void etr_steai_cv(struct etr_aib *aib, unsigned int func)
661 BUG_ON(etr_steai(aib, func) != 0);
662 /* Convert port state to logical port state. */
663 if (aib->esw.psc0 == 1)
664 aib->esw.psc0 = 2;
665 else if (aib->esw.psc0 == 0 && aib->esw.p == 0)
666 aib->esw.psc0 = 1;
667 if (aib->esw.psc1 == 1)
668 aib->esw.psc1 = 2;
669 else if (aib->esw.psc1 == 0 && aib->esw.p == 1)
670 aib->esw.psc1 = 1;
674 * Check if the aib a2 is still connected to the same attachment as
675 * aib a1, the etv values differ by one and a2 is valid.
677 static int etr_aib_follows(struct etr_aib *a1, struct etr_aib *a2, int p)
679 int state_a1, state_a2;
681 /* Paranoia check: e0/e1 should better be the same. */
682 if (a1->esw.eacr.e0 != a2->esw.eacr.e0 ||
683 a1->esw.eacr.e1 != a2->esw.eacr.e1)
684 return 0;
686 /* Still connected to the same etr ? */
687 state_a1 = p ? a1->esw.psc1 : a1->esw.psc0;
688 state_a2 = p ? a2->esw.psc1 : a2->esw.psc0;
689 if (state_a1 == etr_lpsc_operational_step) {
690 if (state_a2 != etr_lpsc_operational_step ||
691 a1->edf1.net_id != a2->edf1.net_id ||
692 a1->edf1.etr_id != a2->edf1.etr_id ||
693 a1->edf1.etr_pn != a2->edf1.etr_pn)
694 return 0;
695 } else if (state_a2 != etr_lpsc_pps_mode)
696 return 0;
698 /* The ETV value of a2 needs to be ETV of a1 + 1. */
699 if (a1->edf2.etv + 1 != a2->edf2.etv)
700 return 0;
702 if (!etr_port_valid(a2, p))
703 return 0;
705 return 1;
708 struct clock_sync_data {
709 atomic_t cpus;
710 int in_sync;
711 unsigned long long fixup_cc;
712 int etr_port;
713 struct etr_aib *etr_aib;
716 static void clock_sync_cpu(struct clock_sync_data *sync)
718 atomic_dec(&sync->cpus);
719 enable_sync_clock();
721 * This looks like a busy wait loop but it isn't. etr_sync_cpus
722 * is called on all other cpus while the TOD clocks is stopped.
723 * __udelay will stop the cpu on an enabled wait psw until the
724 * TOD is running again.
726 while (sync->in_sync == 0) {
727 __udelay(1);
729 * A different cpu changes *in_sync. Therefore use
730 * barrier() to force memory access.
732 barrier();
734 if (sync->in_sync != 1)
735 /* Didn't work. Clear per-cpu in sync bit again. */
736 disable_sync_clock(NULL);
738 * This round of TOD syncing is done. Set the clock comparator
739 * to the next tick and let the processor continue.
741 fixup_clock_comparator(sync->fixup_cc);
745 * Sync the TOD clock using the port referred to by aibp. This port
746 * has to be enabled and the other port has to be disabled. The
747 * last eacr update has to be more than 1.6 seconds in the past.
749 static int etr_sync_clock(void *data)
751 static int first;
752 unsigned long long clock, old_clock, clock_delta, delay, delta;
753 struct clock_sync_data *etr_sync;
754 struct etr_aib *sync_port, *aib;
755 int port;
756 int rc;
758 etr_sync = data;
760 if (xchg(&first, 1) == 1) {
761 /* Slave */
762 clock_sync_cpu(etr_sync);
763 return 0;
766 /* Wait until all other cpus entered the sync function. */
767 while (atomic_read(&etr_sync->cpus) != 0)
768 cpu_relax();
770 port = etr_sync->etr_port;
771 aib = etr_sync->etr_aib;
772 sync_port = (port == 0) ? &etr_port0 : &etr_port1;
773 enable_sync_clock();
775 /* Set clock to next OTE. */
776 __ctl_set_bit(14, 21);
777 __ctl_set_bit(0, 29);
778 clock = ((unsigned long long) (aib->edf2.etv + 1)) << 32;
779 old_clock = get_tod_clock();
780 if (set_tod_clock(clock) == 0) {
781 __udelay(1); /* Wait for the clock to start. */
782 __ctl_clear_bit(0, 29);
783 __ctl_clear_bit(14, 21);
784 etr_stetr(aib);
785 /* Adjust Linux timing variables. */
786 delay = (unsigned long long)
787 (aib->edf2.etv - sync_port->edf2.etv) << 32;
788 delta = adjust_time(old_clock, clock, delay);
789 clock_delta = clock - old_clock;
790 atomic_notifier_call_chain(&s390_epoch_delta_notifier, 0,
791 &clock_delta);
792 etr_sync->fixup_cc = delta;
793 fixup_clock_comparator(delta);
794 /* Verify that the clock is properly set. */
795 if (!etr_aib_follows(sync_port, aib, port)) {
796 /* Didn't work. */
797 disable_sync_clock(NULL);
798 etr_sync->in_sync = -EAGAIN;
799 rc = -EAGAIN;
800 } else {
801 etr_sync->in_sync = 1;
802 rc = 0;
804 } else {
805 /* Could not set the clock ?!? */
806 __ctl_clear_bit(0, 29);
807 __ctl_clear_bit(14, 21);
808 disable_sync_clock(NULL);
809 etr_sync->in_sync = -EAGAIN;
810 rc = -EAGAIN;
812 xchg(&first, 0);
813 return rc;
816 static int etr_sync_clock_stop(struct etr_aib *aib, int port)
818 struct clock_sync_data etr_sync;
819 struct etr_aib *sync_port;
820 int follows;
821 int rc;
823 /* Check if the current aib is adjacent to the sync port aib. */
824 sync_port = (port == 0) ? &etr_port0 : &etr_port1;
825 follows = etr_aib_follows(sync_port, aib, port);
826 memcpy(sync_port, aib, sizeof(*aib));
827 if (!follows)
828 return -EAGAIN;
829 memset(&etr_sync, 0, sizeof(etr_sync));
830 etr_sync.etr_aib = aib;
831 etr_sync.etr_port = port;
832 get_online_cpus();
833 atomic_set(&etr_sync.cpus, num_online_cpus() - 1);
834 rc = stop_machine(etr_sync_clock, &etr_sync, cpu_online_mask);
835 put_online_cpus();
836 return rc;
840 * Handle the immediate effects of the different events.
841 * The port change event is used for online/offline changes.
843 static struct etr_eacr etr_handle_events(struct etr_eacr eacr)
845 if (test_and_clear_bit(ETR_EVENT_SYNC_CHECK, &etr_events))
846 eacr.es = 0;
847 if (test_and_clear_bit(ETR_EVENT_SWITCH_LOCAL, &etr_events))
848 eacr.es = eacr.sl = 0;
849 if (test_and_clear_bit(ETR_EVENT_PORT_ALERT, &etr_events))
850 etr_port0_uptodate = etr_port1_uptodate = 0;
852 if (test_and_clear_bit(ETR_EVENT_PORT0_CHANGE, &etr_events)) {
853 if (eacr.e0)
855 * Port change of an enabled port. We have to
856 * assume that this can have caused an stepping
857 * port switch.
859 etr_tolec = get_tod_clock();
860 eacr.p0 = etr_port0_online;
861 if (!eacr.p0)
862 eacr.e0 = 0;
863 etr_port0_uptodate = 0;
865 if (test_and_clear_bit(ETR_EVENT_PORT1_CHANGE, &etr_events)) {
866 if (eacr.e1)
868 * Port change of an enabled port. We have to
869 * assume that this can have caused an stepping
870 * port switch.
872 etr_tolec = get_tod_clock();
873 eacr.p1 = etr_port1_online;
874 if (!eacr.p1)
875 eacr.e1 = 0;
876 etr_port1_uptodate = 0;
878 clear_bit(ETR_EVENT_UPDATE, &etr_events);
879 return eacr;
883 * Set up a timer that expires after the etr_tolec + 1.6 seconds if
884 * one of the ports needs an update.
886 static void etr_set_tolec_timeout(unsigned long long now)
888 unsigned long micros;
890 if ((!etr_eacr.p0 || etr_port0_uptodate) &&
891 (!etr_eacr.p1 || etr_port1_uptodate))
892 return;
893 micros = (now > etr_tolec) ? ((now - etr_tolec) >> 12) : 0;
894 micros = (micros > 1600000) ? 0 : 1600000 - micros;
895 mod_timer(&etr_timer, jiffies + (micros * HZ) / 1000000 + 1);
899 * Set up a time that expires after 1/2 second.
901 static void etr_set_sync_timeout(void)
903 mod_timer(&etr_timer, jiffies + HZ/2);
907 * Update the aib information for one or both ports.
909 static struct etr_eacr etr_handle_update(struct etr_aib *aib,
910 struct etr_eacr eacr)
912 /* With both ports disabled the aib information is useless. */
913 if (!eacr.e0 && !eacr.e1)
914 return eacr;
916 /* Update port0 or port1 with aib stored in etr_work_fn. */
917 if (aib->esw.q == 0) {
918 /* Information for port 0 stored. */
919 if (eacr.p0 && !etr_port0_uptodate) {
920 etr_port0 = *aib;
921 if (etr_port0_online)
922 etr_port0_uptodate = 1;
924 } else {
925 /* Information for port 1 stored. */
926 if (eacr.p1 && !etr_port1_uptodate) {
927 etr_port1 = *aib;
928 if (etr_port0_online)
929 etr_port1_uptodate = 1;
934 * Do not try to get the alternate port aib if the clock
935 * is not in sync yet.
937 if (!eacr.es || !check_sync_clock())
938 return eacr;
941 * If steai is available we can get the information about
942 * the other port immediately. If only stetr is available the
943 * data-port bit toggle has to be used.
945 if (etr_steai_available) {
946 if (eacr.p0 && !etr_port0_uptodate) {
947 etr_steai_cv(&etr_port0, ETR_STEAI_PORT_0);
948 etr_port0_uptodate = 1;
950 if (eacr.p1 && !etr_port1_uptodate) {
951 etr_steai_cv(&etr_port1, ETR_STEAI_PORT_1);
952 etr_port1_uptodate = 1;
954 } else {
956 * One port was updated above, if the other
957 * port is not uptodate toggle dp bit.
959 if ((eacr.p0 && !etr_port0_uptodate) ||
960 (eacr.p1 && !etr_port1_uptodate))
961 eacr.dp ^= 1;
962 else
963 eacr.dp = 0;
965 return eacr;
969 * Write new etr control register if it differs from the current one.
970 * Return 1 if etr_tolec has been updated as well.
972 static void etr_update_eacr(struct etr_eacr eacr)
974 int dp_changed;
976 if (memcmp(&etr_eacr, &eacr, sizeof(eacr)) == 0)
977 /* No change, return. */
978 return;
980 * The disable of an active port of the change of the data port
981 * bit can/will cause a change in the data port.
983 dp_changed = etr_eacr.e0 > eacr.e0 || etr_eacr.e1 > eacr.e1 ||
984 (etr_eacr.dp ^ eacr.dp) != 0;
985 etr_eacr = eacr;
986 etr_setr(&etr_eacr);
987 if (dp_changed)
988 etr_tolec = get_tod_clock();
992 * ETR work. In this function you'll find the main logic. In
993 * particular this is the only function that calls etr_update_eacr(),
994 * it "controls" the etr control register.
996 static void etr_work_fn(struct work_struct *work)
998 unsigned long long now;
999 struct etr_eacr eacr;
1000 struct etr_aib aib;
1001 int sync_port;
1003 /* prevent multiple execution. */
1004 mutex_lock(&etr_work_mutex);
1006 /* Create working copy of etr_eacr. */
1007 eacr = etr_eacr;
1009 /* Check for the different events and their immediate effects. */
1010 eacr = etr_handle_events(eacr);
1012 /* Check if ETR is supposed to be active. */
1013 eacr.ea = eacr.p0 || eacr.p1;
1014 if (!eacr.ea) {
1015 /* Both ports offline. Reset everything. */
1016 eacr.dp = eacr.es = eacr.sl = 0;
1017 on_each_cpu(disable_sync_clock, NULL, 1);
1018 del_timer_sync(&etr_timer);
1019 etr_update_eacr(eacr);
1020 goto out_unlock;
1023 /* Store aib to get the current ETR status word. */
1024 BUG_ON(etr_stetr(&aib) != 0);
1025 etr_port0.esw = etr_port1.esw = aib.esw; /* Copy status word. */
1026 now = get_tod_clock();
1029 * Update the port information if the last stepping port change
1030 * or data port change is older than 1.6 seconds.
1032 if (now >= etr_tolec + (1600000 << 12))
1033 eacr = etr_handle_update(&aib, eacr);
1036 * Select ports to enable. The preferred synchronization mode is PPS.
1037 * If a port can be enabled depends on a number of things:
1038 * 1) The port needs to be online and uptodate. A port is not
1039 * disabled just because it is not uptodate, but it is only
1040 * enabled if it is uptodate.
1041 * 2) The port needs to have the same mode (pps / etr).
1042 * 3) The port needs to be usable -> etr_port_valid() == 1
1043 * 4) To enable the second port the clock needs to be in sync.
1044 * 5) If both ports are useable and are ETR ports, the network id
1045 * has to be the same.
1046 * The eacr.sl bit is used to indicate etr mode vs. pps mode.
1048 if (eacr.p0 && aib.esw.psc0 == etr_lpsc_pps_mode) {
1049 eacr.sl = 0;
1050 eacr.e0 = 1;
1051 if (!etr_mode_is_pps(etr_eacr))
1052 eacr.es = 0;
1053 if (!eacr.es || !eacr.p1 || aib.esw.psc1 != etr_lpsc_pps_mode)
1054 eacr.e1 = 0;
1055 // FIXME: uptodate checks ?
1056 else if (etr_port0_uptodate && etr_port1_uptodate)
1057 eacr.e1 = 1;
1058 sync_port = (etr_port0_uptodate &&
1059 etr_port_valid(&etr_port0, 0)) ? 0 : -1;
1060 } else if (eacr.p1 && aib.esw.psc1 == etr_lpsc_pps_mode) {
1061 eacr.sl = 0;
1062 eacr.e0 = 0;
1063 eacr.e1 = 1;
1064 if (!etr_mode_is_pps(etr_eacr))
1065 eacr.es = 0;
1066 sync_port = (etr_port1_uptodate &&
1067 etr_port_valid(&etr_port1, 1)) ? 1 : -1;
1068 } else if (eacr.p0 && aib.esw.psc0 == etr_lpsc_operational_step) {
1069 eacr.sl = 1;
1070 eacr.e0 = 1;
1071 if (!etr_mode_is_etr(etr_eacr))
1072 eacr.es = 0;
1073 if (!eacr.es || !eacr.p1 ||
1074 aib.esw.psc1 != etr_lpsc_operational_alt)
1075 eacr.e1 = 0;
1076 else if (etr_port0_uptodate && etr_port1_uptodate &&
1077 etr_compare_network(&etr_port0, &etr_port1))
1078 eacr.e1 = 1;
1079 sync_port = (etr_port0_uptodate &&
1080 etr_port_valid(&etr_port0, 0)) ? 0 : -1;
1081 } else if (eacr.p1 && aib.esw.psc1 == etr_lpsc_operational_step) {
1082 eacr.sl = 1;
1083 eacr.e0 = 0;
1084 eacr.e1 = 1;
1085 if (!etr_mode_is_etr(etr_eacr))
1086 eacr.es = 0;
1087 sync_port = (etr_port1_uptodate &&
1088 etr_port_valid(&etr_port1, 1)) ? 1 : -1;
1089 } else {
1090 /* Both ports not usable. */
1091 eacr.es = eacr.sl = 0;
1092 sync_port = -1;
1096 * If the clock is in sync just update the eacr and return.
1097 * If there is no valid sync port wait for a port update.
1099 if ((eacr.es && check_sync_clock()) || sync_port < 0) {
1100 etr_update_eacr(eacr);
1101 etr_set_tolec_timeout(now);
1102 goto out_unlock;
1106 * Prepare control register for clock syncing
1107 * (reset data port bit, set sync check control.
1109 eacr.dp = 0;
1110 eacr.es = 1;
1113 * Update eacr and try to synchronize the clock. If the update
1114 * of eacr caused a stepping port switch (or if we have to
1115 * assume that a stepping port switch has occurred) or the
1116 * clock syncing failed, reset the sync check control bit
1117 * and set up a timer to try again after 0.5 seconds
1119 etr_update_eacr(eacr);
1120 if (now < etr_tolec + (1600000 << 12) ||
1121 etr_sync_clock_stop(&aib, sync_port) != 0) {
1122 /* Sync failed. Try again in 1/2 second. */
1123 eacr.es = 0;
1124 etr_update_eacr(eacr);
1125 etr_set_sync_timeout();
1126 } else
1127 etr_set_tolec_timeout(now);
1128 out_unlock:
1129 mutex_unlock(&etr_work_mutex);
1133 * Sysfs interface functions
1135 static struct bus_type etr_subsys = {
1136 .name = "etr",
1137 .dev_name = "etr",
1140 static struct device etr_port0_dev = {
1141 .id = 0,
1142 .bus = &etr_subsys,
1145 static struct device etr_port1_dev = {
1146 .id = 1,
1147 .bus = &etr_subsys,
1151 * ETR subsys attributes
1153 static ssize_t etr_stepping_port_show(struct device *dev,
1154 struct device_attribute *attr,
1155 char *buf)
1157 return sprintf(buf, "%i\n", etr_port0.esw.p);
1160 static DEVICE_ATTR(stepping_port, 0400, etr_stepping_port_show, NULL);
1162 static ssize_t etr_stepping_mode_show(struct device *dev,
1163 struct device_attribute *attr,
1164 char *buf)
1166 char *mode_str;
1168 if (etr_mode_is_pps(etr_eacr))
1169 mode_str = "pps";
1170 else if (etr_mode_is_etr(etr_eacr))
1171 mode_str = "etr";
1172 else
1173 mode_str = "local";
1174 return sprintf(buf, "%s\n", mode_str);
1177 static DEVICE_ATTR(stepping_mode, 0400, etr_stepping_mode_show, NULL);
1180 * ETR port attributes
1182 static inline struct etr_aib *etr_aib_from_dev(struct device *dev)
1184 if (dev == &etr_port0_dev)
1185 return etr_port0_online ? &etr_port0 : NULL;
1186 else
1187 return etr_port1_online ? &etr_port1 : NULL;
1190 static ssize_t etr_online_show(struct device *dev,
1191 struct device_attribute *attr,
1192 char *buf)
1194 unsigned int online;
1196 online = (dev == &etr_port0_dev) ? etr_port0_online : etr_port1_online;
1197 return sprintf(buf, "%i\n", online);
1200 static ssize_t etr_online_store(struct device *dev,
1201 struct device_attribute *attr,
1202 const char *buf, size_t count)
1204 unsigned int value;
1206 value = simple_strtoul(buf, NULL, 0);
1207 if (value != 0 && value != 1)
1208 return -EINVAL;
1209 if (!test_bit(CLOCK_SYNC_HAS_ETR, &clock_sync_flags))
1210 return -EOPNOTSUPP;
1211 mutex_lock(&clock_sync_mutex);
1212 if (dev == &etr_port0_dev) {
1213 if (etr_port0_online == value)
1214 goto out; /* Nothing to do. */
1215 etr_port0_online = value;
1216 if (etr_port0_online && etr_port1_online)
1217 set_bit(CLOCK_SYNC_ETR, &clock_sync_flags);
1218 else
1219 clear_bit(CLOCK_SYNC_ETR, &clock_sync_flags);
1220 set_bit(ETR_EVENT_PORT0_CHANGE, &etr_events);
1221 queue_work(time_sync_wq, &etr_work);
1222 } else {
1223 if (etr_port1_online == value)
1224 goto out; /* Nothing to do. */
1225 etr_port1_online = value;
1226 if (etr_port0_online && etr_port1_online)
1227 set_bit(CLOCK_SYNC_ETR, &clock_sync_flags);
1228 else
1229 clear_bit(CLOCK_SYNC_ETR, &clock_sync_flags);
1230 set_bit(ETR_EVENT_PORT1_CHANGE, &etr_events);
1231 queue_work(time_sync_wq, &etr_work);
1233 out:
1234 mutex_unlock(&clock_sync_mutex);
1235 return count;
1238 static DEVICE_ATTR(online, 0600, etr_online_show, etr_online_store);
1240 static ssize_t etr_stepping_control_show(struct device *dev,
1241 struct device_attribute *attr,
1242 char *buf)
1244 return sprintf(buf, "%i\n", (dev == &etr_port0_dev) ?
1245 etr_eacr.e0 : etr_eacr.e1);
1248 static DEVICE_ATTR(stepping_control, 0400, etr_stepping_control_show, NULL);
1250 static ssize_t etr_mode_code_show(struct device *dev,
1251 struct device_attribute *attr, char *buf)
1253 if (!etr_port0_online && !etr_port1_online)
1254 /* Status word is not uptodate if both ports are offline. */
1255 return -ENODATA;
1256 return sprintf(buf, "%i\n", (dev == &etr_port0_dev) ?
1257 etr_port0.esw.psc0 : etr_port0.esw.psc1);
1260 static DEVICE_ATTR(state_code, 0400, etr_mode_code_show, NULL);
1262 static ssize_t etr_untuned_show(struct device *dev,
1263 struct device_attribute *attr, char *buf)
1265 struct etr_aib *aib = etr_aib_from_dev(dev);
1267 if (!aib || !aib->slsw.v1)
1268 return -ENODATA;
1269 return sprintf(buf, "%i\n", aib->edf1.u);
1272 static DEVICE_ATTR(untuned, 0400, etr_untuned_show, NULL);
1274 static ssize_t etr_network_id_show(struct device *dev,
1275 struct device_attribute *attr, char *buf)
1277 struct etr_aib *aib = etr_aib_from_dev(dev);
1279 if (!aib || !aib->slsw.v1)
1280 return -ENODATA;
1281 return sprintf(buf, "%i\n", aib->edf1.net_id);
1284 static DEVICE_ATTR(network, 0400, etr_network_id_show, NULL);
1286 static ssize_t etr_id_show(struct device *dev,
1287 struct device_attribute *attr, char *buf)
1289 struct etr_aib *aib = etr_aib_from_dev(dev);
1291 if (!aib || !aib->slsw.v1)
1292 return -ENODATA;
1293 return sprintf(buf, "%i\n", aib->edf1.etr_id);
1296 static DEVICE_ATTR(id, 0400, etr_id_show, NULL);
1298 static ssize_t etr_port_number_show(struct device *dev,
1299 struct device_attribute *attr, char *buf)
1301 struct etr_aib *aib = etr_aib_from_dev(dev);
1303 if (!aib || !aib->slsw.v1)
1304 return -ENODATA;
1305 return sprintf(buf, "%i\n", aib->edf1.etr_pn);
1308 static DEVICE_ATTR(port, 0400, etr_port_number_show, NULL);
1310 static ssize_t etr_coupled_show(struct device *dev,
1311 struct device_attribute *attr, char *buf)
1313 struct etr_aib *aib = etr_aib_from_dev(dev);
1315 if (!aib || !aib->slsw.v3)
1316 return -ENODATA;
1317 return sprintf(buf, "%i\n", aib->edf3.c);
1320 static DEVICE_ATTR(coupled, 0400, etr_coupled_show, NULL);
1322 static ssize_t etr_local_time_show(struct device *dev,
1323 struct device_attribute *attr, char *buf)
1325 struct etr_aib *aib = etr_aib_from_dev(dev);
1327 if (!aib || !aib->slsw.v3)
1328 return -ENODATA;
1329 return sprintf(buf, "%i\n", aib->edf3.blto);
1332 static DEVICE_ATTR(local_time, 0400, etr_local_time_show, NULL);
1334 static ssize_t etr_utc_offset_show(struct device *dev,
1335 struct device_attribute *attr, char *buf)
1337 struct etr_aib *aib = etr_aib_from_dev(dev);
1339 if (!aib || !aib->slsw.v3)
1340 return -ENODATA;
1341 return sprintf(buf, "%i\n", aib->edf3.buo);
1344 static DEVICE_ATTR(utc_offset, 0400, etr_utc_offset_show, NULL);
1346 static struct device_attribute *etr_port_attributes[] = {
1347 &dev_attr_online,
1348 &dev_attr_stepping_control,
1349 &dev_attr_state_code,
1350 &dev_attr_untuned,
1351 &dev_attr_network,
1352 &dev_attr_id,
1353 &dev_attr_port,
1354 &dev_attr_coupled,
1355 &dev_attr_local_time,
1356 &dev_attr_utc_offset,
1357 NULL
1360 static int __init etr_register_port(struct device *dev)
1362 struct device_attribute **attr;
1363 int rc;
1365 rc = device_register(dev);
1366 if (rc)
1367 goto out;
1368 for (attr = etr_port_attributes; *attr; attr++) {
1369 rc = device_create_file(dev, *attr);
1370 if (rc)
1371 goto out_unreg;
1373 return 0;
1374 out_unreg:
1375 for (; attr >= etr_port_attributes; attr--)
1376 device_remove_file(dev, *attr);
1377 device_unregister(dev);
1378 out:
1379 return rc;
1382 static void __init etr_unregister_port(struct device *dev)
1384 struct device_attribute **attr;
1386 for (attr = etr_port_attributes; *attr; attr++)
1387 device_remove_file(dev, *attr);
1388 device_unregister(dev);
1391 static int __init etr_init_sysfs(void)
1393 int rc;
1395 rc = subsys_system_register(&etr_subsys, NULL);
1396 if (rc)
1397 goto out;
1398 rc = device_create_file(etr_subsys.dev_root, &dev_attr_stepping_port);
1399 if (rc)
1400 goto out_unreg_subsys;
1401 rc = device_create_file(etr_subsys.dev_root, &dev_attr_stepping_mode);
1402 if (rc)
1403 goto out_remove_stepping_port;
1404 rc = etr_register_port(&etr_port0_dev);
1405 if (rc)
1406 goto out_remove_stepping_mode;
1407 rc = etr_register_port(&etr_port1_dev);
1408 if (rc)
1409 goto out_remove_port0;
1410 return 0;
1412 out_remove_port0:
1413 etr_unregister_port(&etr_port0_dev);
1414 out_remove_stepping_mode:
1415 device_remove_file(etr_subsys.dev_root, &dev_attr_stepping_mode);
1416 out_remove_stepping_port:
1417 device_remove_file(etr_subsys.dev_root, &dev_attr_stepping_port);
1418 out_unreg_subsys:
1419 bus_unregister(&etr_subsys);
1420 out:
1421 return rc;
1424 device_initcall(etr_init_sysfs);
1427 * Server Time Protocol (STP) code.
1429 static int stp_online;
1430 static struct stp_sstpi stp_info;
1431 static void *stp_page;
1433 static void stp_work_fn(struct work_struct *work);
1434 static DEFINE_MUTEX(stp_work_mutex);
1435 static DECLARE_WORK(stp_work, stp_work_fn);
1436 static struct timer_list stp_timer;
1438 static int __init early_parse_stp(char *p)
1440 if (strncmp(p, "off", 3) == 0)
1441 stp_online = 0;
1442 else if (strncmp(p, "on", 2) == 0)
1443 stp_online = 1;
1444 return 0;
1446 early_param("stp", early_parse_stp);
1449 * Reset STP attachment.
1451 static void __init stp_reset(void)
1453 int rc;
1455 stp_page = (void *) get_zeroed_page(GFP_ATOMIC);
1456 rc = chsc_sstpc(stp_page, STP_OP_CTRL, 0x0000);
1457 if (rc == 0)
1458 set_bit(CLOCK_SYNC_HAS_STP, &clock_sync_flags);
1459 else if (stp_online) {
1460 pr_warning("The real or virtual hardware system does "
1461 "not provide an STP interface\n");
1462 free_page((unsigned long) stp_page);
1463 stp_page = NULL;
1464 stp_online = 0;
1468 static void stp_timeout(unsigned long dummy)
1470 queue_work(time_sync_wq, &stp_work);
1473 static int __init stp_init(void)
1475 if (!test_bit(CLOCK_SYNC_HAS_STP, &clock_sync_flags))
1476 return 0;
1477 setup_timer(&stp_timer, stp_timeout, 0UL);
1478 time_init_wq();
1479 if (!stp_online)
1480 return 0;
1481 queue_work(time_sync_wq, &stp_work);
1482 return 0;
1485 arch_initcall(stp_init);
1488 * STP timing alert. There are three causes:
1489 * 1) timing status change
1490 * 2) link availability change
1491 * 3) time control parameter change
1492 * In all three cases we are only interested in the clock source state.
1493 * If a STP clock source is now available use it.
1495 static void stp_timing_alert(struct stp_irq_parm *intparm)
1497 if (intparm->tsc || intparm->lac || intparm->tcpc)
1498 queue_work(time_sync_wq, &stp_work);
1502 * STP sync check machine check. This is called when the timing state
1503 * changes from the synchronized state to the unsynchronized state.
1504 * After a STP sync check the clock is not in sync. The machine check
1505 * is broadcasted to all cpus at the same time.
1507 void stp_sync_check(void)
1509 disable_sync_clock(NULL);
1510 queue_work(time_sync_wq, &stp_work);
1514 * STP island condition machine check. This is called when an attached
1515 * server attempts to communicate over an STP link and the servers
1516 * have matching CTN ids and have a valid stratum-1 configuration
1517 * but the configurations do not match.
1519 void stp_island_check(void)
1521 disable_sync_clock(NULL);
1522 queue_work(time_sync_wq, &stp_work);
1526 static int stp_sync_clock(void *data)
1528 static int first;
1529 unsigned long long old_clock, delta, new_clock, clock_delta;
1530 struct clock_sync_data *stp_sync;
1531 int rc;
1533 stp_sync = data;
1535 if (xchg(&first, 1) == 1) {
1536 /* Slave */
1537 clock_sync_cpu(stp_sync);
1538 return 0;
1541 /* Wait until all other cpus entered the sync function. */
1542 while (atomic_read(&stp_sync->cpus) != 0)
1543 cpu_relax();
1545 enable_sync_clock();
1547 rc = 0;
1548 if (stp_info.todoff[0] || stp_info.todoff[1] ||
1549 stp_info.todoff[2] || stp_info.todoff[3] ||
1550 stp_info.tmd != 2) {
1551 old_clock = get_tod_clock();
1552 rc = chsc_sstpc(stp_page, STP_OP_SYNC, 0);
1553 if (rc == 0) {
1554 new_clock = get_tod_clock();
1555 delta = adjust_time(old_clock, new_clock, 0);
1556 clock_delta = new_clock - old_clock;
1557 atomic_notifier_call_chain(&s390_epoch_delta_notifier,
1558 0, &clock_delta);
1559 fixup_clock_comparator(delta);
1560 rc = chsc_sstpi(stp_page, &stp_info,
1561 sizeof(struct stp_sstpi));
1562 if (rc == 0 && stp_info.tmd != 2)
1563 rc = -EAGAIN;
1566 if (rc) {
1567 disable_sync_clock(NULL);
1568 stp_sync->in_sync = -EAGAIN;
1569 } else
1570 stp_sync->in_sync = 1;
1571 xchg(&first, 0);
1572 return 0;
1576 * STP work. Check for the STP state and take over the clock
1577 * synchronization if the STP clock source is usable.
1579 static void stp_work_fn(struct work_struct *work)
1581 struct clock_sync_data stp_sync;
1582 int rc;
1584 /* prevent multiple execution. */
1585 mutex_lock(&stp_work_mutex);
1587 if (!stp_online) {
1588 chsc_sstpc(stp_page, STP_OP_CTRL, 0x0000);
1589 del_timer_sync(&stp_timer);
1590 goto out_unlock;
1593 rc = chsc_sstpc(stp_page, STP_OP_CTRL, 0xb0e0);
1594 if (rc)
1595 goto out_unlock;
1597 rc = chsc_sstpi(stp_page, &stp_info, sizeof(struct stp_sstpi));
1598 if (rc || stp_info.c == 0)
1599 goto out_unlock;
1601 /* Skip synchronization if the clock is already in sync. */
1602 if (check_sync_clock())
1603 goto out_unlock;
1605 memset(&stp_sync, 0, sizeof(stp_sync));
1606 get_online_cpus();
1607 atomic_set(&stp_sync.cpus, num_online_cpus() - 1);
1608 stop_machine(stp_sync_clock, &stp_sync, cpu_online_mask);
1609 put_online_cpus();
1611 if (!check_sync_clock())
1613 * There is a usable clock but the synchonization failed.
1614 * Retry after a second.
1616 mod_timer(&stp_timer, jiffies + HZ);
1618 out_unlock:
1619 mutex_unlock(&stp_work_mutex);
1623 * STP subsys sysfs interface functions
1625 static struct bus_type stp_subsys = {
1626 .name = "stp",
1627 .dev_name = "stp",
1630 static ssize_t stp_ctn_id_show(struct device *dev,
1631 struct device_attribute *attr,
1632 char *buf)
1634 if (!stp_online)
1635 return -ENODATA;
1636 return sprintf(buf, "%016llx\n",
1637 *(unsigned long long *) stp_info.ctnid);
1640 static DEVICE_ATTR(ctn_id, 0400, stp_ctn_id_show, NULL);
1642 static ssize_t stp_ctn_type_show(struct device *dev,
1643 struct device_attribute *attr,
1644 char *buf)
1646 if (!stp_online)
1647 return -ENODATA;
1648 return sprintf(buf, "%i\n", stp_info.ctn);
1651 static DEVICE_ATTR(ctn_type, 0400, stp_ctn_type_show, NULL);
1653 static ssize_t stp_dst_offset_show(struct device *dev,
1654 struct device_attribute *attr,
1655 char *buf)
1657 if (!stp_online || !(stp_info.vbits & 0x2000))
1658 return -ENODATA;
1659 return sprintf(buf, "%i\n", (int)(s16) stp_info.dsto);
1662 static DEVICE_ATTR(dst_offset, 0400, stp_dst_offset_show, NULL);
1664 static ssize_t stp_leap_seconds_show(struct device *dev,
1665 struct device_attribute *attr,
1666 char *buf)
1668 if (!stp_online || !(stp_info.vbits & 0x8000))
1669 return -ENODATA;
1670 return sprintf(buf, "%i\n", (int)(s16) stp_info.leaps);
1673 static DEVICE_ATTR(leap_seconds, 0400, stp_leap_seconds_show, NULL);
1675 static ssize_t stp_stratum_show(struct device *dev,
1676 struct device_attribute *attr,
1677 char *buf)
1679 if (!stp_online)
1680 return -ENODATA;
1681 return sprintf(buf, "%i\n", (int)(s16) stp_info.stratum);
1684 static DEVICE_ATTR(stratum, 0400, stp_stratum_show, NULL);
1686 static ssize_t stp_time_offset_show(struct device *dev,
1687 struct device_attribute *attr,
1688 char *buf)
1690 if (!stp_online || !(stp_info.vbits & 0x0800))
1691 return -ENODATA;
1692 return sprintf(buf, "%i\n", (int) stp_info.tto);
1695 static DEVICE_ATTR(time_offset, 0400, stp_time_offset_show, NULL);
1697 static ssize_t stp_time_zone_offset_show(struct device *dev,
1698 struct device_attribute *attr,
1699 char *buf)
1701 if (!stp_online || !(stp_info.vbits & 0x4000))
1702 return -ENODATA;
1703 return sprintf(buf, "%i\n", (int)(s16) stp_info.tzo);
1706 static DEVICE_ATTR(time_zone_offset, 0400,
1707 stp_time_zone_offset_show, NULL);
1709 static ssize_t stp_timing_mode_show(struct device *dev,
1710 struct device_attribute *attr,
1711 char *buf)
1713 if (!stp_online)
1714 return -ENODATA;
1715 return sprintf(buf, "%i\n", stp_info.tmd);
1718 static DEVICE_ATTR(timing_mode, 0400, stp_timing_mode_show, NULL);
1720 static ssize_t stp_timing_state_show(struct device *dev,
1721 struct device_attribute *attr,
1722 char *buf)
1724 if (!stp_online)
1725 return -ENODATA;
1726 return sprintf(buf, "%i\n", stp_info.tst);
1729 static DEVICE_ATTR(timing_state, 0400, stp_timing_state_show, NULL);
1731 static ssize_t stp_online_show(struct device *dev,
1732 struct device_attribute *attr,
1733 char *buf)
1735 return sprintf(buf, "%i\n", stp_online);
1738 static ssize_t stp_online_store(struct device *dev,
1739 struct device_attribute *attr,
1740 const char *buf, size_t count)
1742 unsigned int value;
1744 value = simple_strtoul(buf, NULL, 0);
1745 if (value != 0 && value != 1)
1746 return -EINVAL;
1747 if (!test_bit(CLOCK_SYNC_HAS_STP, &clock_sync_flags))
1748 return -EOPNOTSUPP;
1749 mutex_lock(&clock_sync_mutex);
1750 stp_online = value;
1751 if (stp_online)
1752 set_bit(CLOCK_SYNC_STP, &clock_sync_flags);
1753 else
1754 clear_bit(CLOCK_SYNC_STP, &clock_sync_flags);
1755 queue_work(time_sync_wq, &stp_work);
1756 mutex_unlock(&clock_sync_mutex);
1757 return count;
1761 * Can't use DEVICE_ATTR because the attribute should be named
1762 * stp/online but dev_attr_online already exists in this file ..
1764 static struct device_attribute dev_attr_stp_online = {
1765 .attr = { .name = "online", .mode = 0600 },
1766 .show = stp_online_show,
1767 .store = stp_online_store,
1770 static struct device_attribute *stp_attributes[] = {
1771 &dev_attr_ctn_id,
1772 &dev_attr_ctn_type,
1773 &dev_attr_dst_offset,
1774 &dev_attr_leap_seconds,
1775 &dev_attr_stp_online,
1776 &dev_attr_stratum,
1777 &dev_attr_time_offset,
1778 &dev_attr_time_zone_offset,
1779 &dev_attr_timing_mode,
1780 &dev_attr_timing_state,
1781 NULL
1784 static int __init stp_init_sysfs(void)
1786 struct device_attribute **attr;
1787 int rc;
1789 rc = subsys_system_register(&stp_subsys, NULL);
1790 if (rc)
1791 goto out;
1792 for (attr = stp_attributes; *attr; attr++) {
1793 rc = device_create_file(stp_subsys.dev_root, *attr);
1794 if (rc)
1795 goto out_unreg;
1797 return 0;
1798 out_unreg:
1799 for (; attr >= stp_attributes; attr--)
1800 device_remove_file(stp_subsys.dev_root, *attr);
1801 bus_unregister(&stp_subsys);
1802 out:
1803 return rc;
1806 device_initcall(stp_init_sysfs);