1 // SPDX-License-Identifier: GPL-2.0
3 * e100net.c: A network driver for the ETRAX 100LX network controller.
5 * Copyright (c) 1998-2002 Axis Communications AB.
7 * The outline of this driver comes from skeleton.c.
11 #include <linux/kernel.h>
12 #include <linux/delay.h>
13 #include <linux/types.h>
14 #include <linux/fcntl.h>
15 #include <linux/interrupt.h>
16 #include <linux/ptrace.h>
17 #include <linux/ioport.h>
19 #include <linux/string.h>
20 #include <linux/spinlock.h>
21 #include <linux/errno.h>
22 #include <linux/init.h>
23 #include <linux/bitops.h>
26 #include <linux/mii.h>
27 #include <linux/netdevice.h>
28 #include <linux/etherdevice.h>
29 #include <linux/skbuff.h>
30 #include <linux/ethtool.h>
32 #include <arch/svinto.h>/* DMA and register descriptions */
33 #include <asm/io.h> /* CRIS_LED_* I/O functions */
36 #include <asm/ethernet.h>
37 #include <asm/cache.h>
38 #include <arch/io_interface_mux.h>
44 * The name of the card. Is used for messages and in the requests for
45 * io regions, irqs and dma channels
48 static const char* cardname
= "ETRAX 100LX built-in ethernet controller";
50 /* A default ethernet address. Highlevel SW will set the real one later */
52 static struct sockaddr default_mac
= {
54 { 0x00, 0x40, 0x8C, 0xCD, 0x00, 0x00 }
57 /* Information that need to be kept for each board. */
59 struct mii_if_info mii_if
;
61 /* Tx control lock. This protects the transmit buffer ring
62 * state along with the "tx full" state of the driver. This
63 * means all netif_queue flow control actions are protected
64 * by this lock as well.
68 spinlock_t led_lock
; /* Protect LED state */
69 spinlock_t transceiver_lock
; /* Protect transceiver state. */
72 typedef struct etrax_eth_descr
74 etrax_dma_descr descr
;
78 /* Some transceivers requires special handling */
79 struct transceiver_ops
82 void (*check_speed
)(struct net_device
* dev
);
83 void (*check_duplex
)(struct net_device
* dev
);
94 /* Dma descriptors etc. */
96 #define MAX_MEDIA_DATA_SIZE 1522
98 #define MIN_PACKET_LEN 46
99 #define ETHER_HEAD_LEN 14
104 #define MDIO_START 0x1
105 #define MDIO_READ 0x2
106 #define MDIO_WRITE 0x1
107 #define MDIO_PREAMBLE 0xfffffffful
109 /* Broadcom specific */
110 #define MDIO_AUX_CTRL_STATUS_REG 0x18
111 #define MDIO_BC_FULL_DUPLEX_IND 0x1
112 #define MDIO_BC_SPEED 0x2
115 #define MDIO_TDK_DIAGNOSTIC_REG 18
116 #define MDIO_TDK_DIAGNOSTIC_RATE 0x400
117 #define MDIO_TDK_DIAGNOSTIC_DPLX 0x800
119 /*Intel LXT972A specific*/
120 #define MDIO_INT_STATUS_REG_2 0x0011
121 #define MDIO_INT_FULL_DUPLEX_IND (1 << 9)
122 #define MDIO_INT_SPEED (1 << 14)
124 /* Network flash constants */
125 #define NET_FLASH_TIME (HZ/50) /* 20 ms */
126 #define NET_FLASH_PAUSE (HZ/100) /* 10 ms */
127 #define NET_LINK_UP_CHECK_INTERVAL (2*HZ) /* 2 s */
128 #define NET_DUPLEX_CHECK_INTERVAL (2*HZ) /* 2 s */
130 #define NO_NETWORK_ACTIVITY 0
131 #define NETWORK_ACTIVITY 1
133 #define NBR_OF_RX_DESC 32
134 #define NBR_OF_TX_DESC 16
136 /* Large packets are sent directly to upper layers while small packets are */
137 /* copied (to reduce memory waste). The following constant decides the breakpoint */
138 #define RX_COPYBREAK 256
140 /* Due to a chip bug we need to flush the cache when descriptors are returned */
141 /* to the DMA. To decrease performance impact we return descriptors in chunks. */
142 /* The following constant determines the number of descriptors to return. */
143 #define RX_QUEUE_THRESHOLD NBR_OF_RX_DESC/2
145 #define GET_BIT(bit,val) (((val) >> (bit)) & 0x01)
147 /* Define some macros to access ETRAX 100 registers */
148 #define SETF(var, reg, field, val) var = (var & ~IO_MASK_(reg##_, field##_)) | \
149 IO_FIELD_(reg##_, field##_, val)
150 #define SETS(var, reg, field, val) var = (var & ~IO_MASK_(reg##_, field##_)) | \
151 IO_STATE_(reg##_, field##_, _##val)
153 static etrax_eth_descr
*myNextRxDesc
; /* Points to the next descriptor to
155 static etrax_eth_descr
*myLastRxDesc
; /* The last processed descriptor */
157 static etrax_eth_descr RxDescList
[NBR_OF_RX_DESC
] __attribute__ ((aligned(32)));
159 static etrax_eth_descr
* myFirstTxDesc
; /* First packet not yet sent */
160 static etrax_eth_descr
* myLastTxDesc
; /* End of send queue */
161 static etrax_eth_descr
* myNextTxDesc
; /* Next descriptor to use */
162 static etrax_eth_descr TxDescList
[NBR_OF_TX_DESC
] __attribute__ ((aligned(32)));
164 static unsigned int network_rec_config_shadow
= 0;
166 static unsigned int network_tr_ctrl_shadow
= 0;
169 static void e100_check_speed(struct timer_list
*unused
);
170 static void e100_clear_network_leds(struct timer_list
*unused
);
171 static void e100_check_duplex(struct timer_list
*unused
);
172 static DEFINE_TIMER(speed_timer
, e100_check_speed
);
173 static DEFINE_TIMER(clear_led_timer
, e100_clear_network_leds
);
174 static DEFINE_TIMER(duplex_timer
, e100_check_duplex
);
175 static struct net_device
*timer_dev
;
177 /* Network speed indication. */
178 static int current_speed
; /* Speed read from transceiver */
179 static int current_speed_selection
; /* Speed selected by user */
180 static unsigned long led_next_time
;
181 static int led_active
;
182 static int rx_queue_len
;
185 static int full_duplex
;
186 static enum duplex current_duplex
;
188 /* Index to functions, as function prototypes. */
190 static int etrax_ethernet_init(void);
192 static int e100_open(struct net_device
*dev
);
193 static int e100_set_mac_address(struct net_device
*dev
, void *addr
);
194 static int e100_send_packet(struct sk_buff
*skb
, struct net_device
*dev
);
195 static irqreturn_t
e100rxtx_interrupt(int irq
, void *dev_id
);
196 static irqreturn_t
e100nw_interrupt(int irq
, void *dev_id
);
197 static void e100_rx(struct net_device
*dev
);
198 static int e100_close(struct net_device
*dev
);
199 static int e100_ioctl(struct net_device
*dev
, struct ifreq
*ifr
, int cmd
);
200 static int e100_set_config(struct net_device
* dev
, struct ifmap
* map
);
201 static void e100_tx_timeout(struct net_device
*dev
);
202 static struct net_device_stats
*e100_get_stats(struct net_device
*dev
);
203 static void set_multicast_list(struct net_device
*dev
);
204 static void e100_hardware_send_packet(struct net_local
* np
, char *buf
, int length
);
205 static void update_rx_stats(struct net_device_stats
*);
206 static void update_tx_stats(struct net_device_stats
*);
207 static int e100_probe_transceiver(struct net_device
* dev
);
209 static void e100_set_speed(struct net_device
* dev
, unsigned long speed
);
210 static void e100_set_duplex(struct net_device
* dev
, enum duplex
);
211 static void e100_negotiate(struct net_device
* dev
);
213 static int e100_get_mdio_reg(struct net_device
*dev
, int phy_id
, int location
);
214 static void e100_set_mdio_reg(struct net_device
*dev
, int phy_id
, int location
, int value
);
216 static void e100_send_mdio_cmd(unsigned short cmd
, int write_cmd
);
217 static void e100_send_mdio_bit(unsigned char bit
);
218 static unsigned char e100_receive_mdio_bit(void);
219 static void e100_reset_transceiver(struct net_device
* net
);
221 static void e100_set_network_leds(int active
);
223 static const struct ethtool_ops e100_ethtool_ops
;
224 #if defined(CONFIG_ETRAX_NO_PHY)
225 static void dummy_check_speed(struct net_device
* dev
);
226 static void dummy_check_duplex(struct net_device
* dev
);
228 static void broadcom_check_speed(struct net_device
* dev
);
229 static void broadcom_check_duplex(struct net_device
* dev
);
230 static void tdk_check_speed(struct net_device
* dev
);
231 static void tdk_check_duplex(struct net_device
* dev
);
232 static void intel_check_speed(struct net_device
* dev
);
233 static void intel_check_duplex(struct net_device
* dev
);
234 static void generic_check_speed(struct net_device
* dev
);
235 static void generic_check_duplex(struct net_device
* dev
);
237 #ifdef CONFIG_NET_POLL_CONTROLLER
238 static void e100_netpoll(struct net_device
* dev
);
241 static int autoneg_normal
= 1;
243 struct transceiver_ops transceivers
[] =
245 #if defined(CONFIG_ETRAX_NO_PHY)
246 {0x0000, dummy_check_speed
, dummy_check_duplex
} /* Dummy */
248 {0x1018, broadcom_check_speed
, broadcom_check_duplex
}, /* Broadcom */
249 {0xC039, tdk_check_speed
, tdk_check_duplex
}, /* TDK 2120 */
250 {0x039C, tdk_check_speed
, tdk_check_duplex
}, /* TDK 2120C */
251 {0x04de, intel_check_speed
, intel_check_duplex
}, /* Intel LXT972A*/
252 {0x0000, generic_check_speed
, generic_check_duplex
} /* Generic, must be last */
256 struct transceiver_ops
* transceiver
= &transceivers
[0];
258 static const struct net_device_ops e100_netdev_ops
= {
259 .ndo_open
= e100_open
,
260 .ndo_stop
= e100_close
,
261 .ndo_start_xmit
= e100_send_packet
,
262 .ndo_tx_timeout
= e100_tx_timeout
,
263 .ndo_get_stats
= e100_get_stats
,
264 .ndo_set_rx_mode
= set_multicast_list
,
265 .ndo_do_ioctl
= e100_ioctl
,
266 .ndo_set_mac_address
= e100_set_mac_address
,
267 .ndo_validate_addr
= eth_validate_addr
,
268 .ndo_set_config
= e100_set_config
,
269 #ifdef CONFIG_NET_POLL_CONTROLLER
270 .ndo_poll_controller
= e100_netpoll
,
274 #define tx_done(dev) (*R_DMA_CH0_CMD == 0)
277 * Check for a network adaptor of this type, and return '0' if one exists.
278 * If dev->base_addr == 0, probe all likely locations.
279 * If dev->base_addr == 1, always return failure.
280 * If dev->base_addr == 2, allocate space for the device and return success
281 * (detachable devices only).
285 etrax_ethernet_init(void)
287 struct net_device
*dev
;
288 struct net_local
* np
;
292 "ETRAX 100LX 10/100MBit ethernet v2.0 (c) 1998-2007 Axis Communications AB\n");
294 if (cris_request_io_interface(if_eth
, cardname
)) {
295 printk(KERN_CRIT
"etrax_ethernet_init failed to get IO interface\n");
299 dev
= alloc_etherdev(sizeof(struct net_local
));
303 np
= netdev_priv(dev
);
305 /* we do our own locking */
306 dev
->features
|= NETIF_F_LLTX
;
308 dev
->base_addr
= (unsigned int)R_NETWORK_SA_0
; /* just to have something to show */
310 /* now setup our etrax specific stuff */
312 dev
->irq
= NETWORK_DMA_RX_IRQ_NBR
; /* we really use DMATX as well... */
313 dev
->dma
= NETWORK_RX_DMA_NBR
;
315 /* fill in our handlers so the network layer can talk to us in the future */
317 dev
->ethtool_ops
= &e100_ethtool_ops
;
318 dev
->netdev_ops
= &e100_netdev_ops
;
320 spin_lock_init(&np
->lock
);
321 spin_lock_init(&np
->led_lock
);
322 spin_lock_init(&np
->transceiver_lock
);
324 /* Initialise the list of Etrax DMA-descriptors */
326 /* Initialise receive descriptors */
328 for (i
= 0; i
< NBR_OF_RX_DESC
; i
++) {
329 /* Allocate two extra cachelines to make sure that buffer used
330 * by DMA does not share cacheline with any other data (to
333 RxDescList
[i
].skb
= dev_alloc_skb(MAX_MEDIA_DATA_SIZE
+ 2 * L1_CACHE_BYTES
);
334 if (!RxDescList
[i
].skb
)
336 RxDescList
[i
].descr
.ctrl
= 0;
337 RxDescList
[i
].descr
.sw_len
= MAX_MEDIA_DATA_SIZE
;
338 RxDescList
[i
].descr
.next
= virt_to_phys(&RxDescList
[i
+ 1]);
339 RxDescList
[i
].descr
.buf
= L1_CACHE_ALIGN(virt_to_phys(RxDescList
[i
].skb
->data
));
340 RxDescList
[i
].descr
.status
= 0;
341 RxDescList
[i
].descr
.hw_len
= 0;
342 prepare_rx_descriptor(&RxDescList
[i
].descr
);
345 RxDescList
[NBR_OF_RX_DESC
- 1].descr
.ctrl
= d_eol
;
346 RxDescList
[NBR_OF_RX_DESC
- 1].descr
.next
= virt_to_phys(&RxDescList
[0]);
349 /* Initialize transmit descriptors */
350 for (i
= 0; i
< NBR_OF_TX_DESC
; i
++) {
351 TxDescList
[i
].descr
.ctrl
= 0;
352 TxDescList
[i
].descr
.sw_len
= 0;
353 TxDescList
[i
].descr
.next
= virt_to_phys(&TxDescList
[i
+ 1].descr
);
354 TxDescList
[i
].descr
.buf
= 0;
355 TxDescList
[i
].descr
.status
= 0;
356 TxDescList
[i
].descr
.hw_len
= 0;
357 TxDescList
[i
].skb
= 0;
360 TxDescList
[NBR_OF_TX_DESC
- 1].descr
.ctrl
= d_eol
;
361 TxDescList
[NBR_OF_TX_DESC
- 1].descr
.next
= virt_to_phys(&TxDescList
[0].descr
);
363 /* Initialise initial pointers */
365 myNextRxDesc
= &RxDescList
[0];
366 myLastRxDesc
= &RxDescList
[NBR_OF_RX_DESC
- 1];
367 myFirstTxDesc
= &TxDescList
[0];
368 myNextTxDesc
= &TxDescList
[0];
369 myLastTxDesc
= &TxDescList
[NBR_OF_TX_DESC
- 1];
371 /* Register device */
372 err
= register_netdev(dev
);
378 /* set the default MAC address */
380 e100_set_mac_address(dev
, &default_mac
);
382 /* Initialize speed indicator stuff. */
385 current_speed_selection
= 0; /* Auto */
386 speed_timer
.expires
= jiffies
+ NET_LINK_UP_CHECK_INTERVAL
;
389 current_duplex
= autoneg
;
390 duplex_timer
.expires
= jiffies
+ NET_DUPLEX_CHECK_INTERVAL
;
394 /* Initialize mii interface */
395 np
->mii_if
.phy_id_mask
= 0x1f;
396 np
->mii_if
.reg_num_mask
= 0x1f;
397 np
->mii_if
.dev
= dev
;
398 np
->mii_if
.mdio_read
= e100_get_mdio_reg
;
399 np
->mii_if
.mdio_write
= e100_set_mdio_reg
;
401 /* Initialize group address registers to make sure that no */
402 /* unwanted addresses are matched */
403 *R_NETWORK_GA_0
= 0x00000000;
404 *R_NETWORK_GA_1
= 0x00000000;
406 /* Initialize next time the led can flash */
407 led_next_time
= jiffies
;
410 device_initcall(etrax_ethernet_init
)
412 /* set MAC address of the interface. called from the core after a
413 * SIOCSIFADDR ioctl, and from the bootup above.
417 e100_set_mac_address(struct net_device
*dev
, void *p
)
419 struct net_local
*np
= netdev_priv(dev
);
420 struct sockaddr
*addr
= p
;
422 spin_lock(&np
->lock
); /* preemption protection */
426 memcpy(dev
->dev_addr
, addr
->sa_data
, dev
->addr_len
);
428 /* Write it to the hardware.
429 * Note the way the address is wrapped:
430 * *R_NETWORK_SA_0 = a0_0 | (a0_1 << 8) | (a0_2 << 16) | (a0_3 << 24);
431 * *R_NETWORK_SA_1 = a0_4 | (a0_5 << 8);
434 *R_NETWORK_SA_0
= dev
->dev_addr
[0] | (dev
->dev_addr
[1] << 8) |
435 (dev
->dev_addr
[2] << 16) | (dev
->dev_addr
[3] << 24);
436 *R_NETWORK_SA_1
= dev
->dev_addr
[4] | (dev
->dev_addr
[5] << 8);
439 /* show it in the log as well */
441 printk(KERN_INFO
"%s: changed MAC to %pM\n", dev
->name
, dev
->dev_addr
);
443 spin_unlock(&np
->lock
);
449 * Open/initialize the board. This is called (in the current kernel)
450 * sometime after booting when the 'ifconfig' program is run.
452 * This routine should set everything up anew at each open, even
453 * registers that "should" only need to be set once at boot, so that
454 * there is non-reboot way to recover if something goes wrong.
458 e100_open(struct net_device
*dev
)
462 /* enable the MDIO output pin */
464 *R_NETWORK_MGM_CTRL
= IO_STATE(R_NETWORK_MGM_CTRL
, mdoe
, enable
);
467 IO_STATE(R_IRQ_MASK0_CLR
, overrun
, clr
) |
468 IO_STATE(R_IRQ_MASK0_CLR
, underrun
, clr
) |
469 IO_STATE(R_IRQ_MASK0_CLR
, excessive_col
, clr
);
471 /* clear dma0 and 1 eop and descr irq masks */
473 IO_STATE(R_IRQ_MASK2_CLR
, dma0_descr
, clr
) |
474 IO_STATE(R_IRQ_MASK2_CLR
, dma0_eop
, clr
) |
475 IO_STATE(R_IRQ_MASK2_CLR
, dma1_descr
, clr
) |
476 IO_STATE(R_IRQ_MASK2_CLR
, dma1_eop
, clr
);
478 /* Reset and wait for the DMA channels */
480 RESET_DMA(NETWORK_TX_DMA_NBR
);
481 RESET_DMA(NETWORK_RX_DMA_NBR
);
482 WAIT_DMA(NETWORK_TX_DMA_NBR
);
483 WAIT_DMA(NETWORK_RX_DMA_NBR
);
485 /* Initialise the etrax network controller */
487 /* allocate the irq corresponding to the receiving DMA */
489 if (request_irq(NETWORK_DMA_RX_IRQ_NBR
, e100rxtx_interrupt
, 0, cardname
,
494 /* allocate the irq corresponding to the transmitting DMA */
496 if (request_irq(NETWORK_DMA_TX_IRQ_NBR
, e100rxtx_interrupt
, 0,
497 cardname
, (void *)dev
)) {
501 /* allocate the irq corresponding to the network errors etc */
503 if (request_irq(NETWORK_STATUS_IRQ_NBR
, e100nw_interrupt
, 0,
504 cardname
, (void *)dev
)) {
509 * Always allocate the DMA channels after the IRQ,
510 * and clean up on failure.
513 if (cris_request_dma(NETWORK_TX_DMA_NBR
,
515 DMA_VERBOSE_ON_ERROR
,
520 if (cris_request_dma(NETWORK_RX_DMA_NBR
,
522 DMA_VERBOSE_ON_ERROR
,
527 /* give the HW an idea of what MAC address we want */
529 *R_NETWORK_SA_0
= dev
->dev_addr
[0] | (dev
->dev_addr
[1] << 8) |
530 (dev
->dev_addr
[2] << 16) | (dev
->dev_addr
[3] << 24);
531 *R_NETWORK_SA_1
= dev
->dev_addr
[4] | (dev
->dev_addr
[5] << 8);
535 /* use promiscuous mode for testing */
536 *R_NETWORK_GA_0
= 0xffffffff;
537 *R_NETWORK_GA_1
= 0xffffffff;
539 *R_NETWORK_REC_CONFIG
= 0xd; /* broadcast rec, individ. rec, ma0 enabled */
541 SETS(network_rec_config_shadow
, R_NETWORK_REC_CONFIG
, max_size
, size1522
);
542 SETS(network_rec_config_shadow
, R_NETWORK_REC_CONFIG
, broadcast
, receive
);
543 SETS(network_rec_config_shadow
, R_NETWORK_REC_CONFIG
, ma0
, enable
);
544 SETF(network_rec_config_shadow
, R_NETWORK_REC_CONFIG
, duplex
, full_duplex
);
545 *R_NETWORK_REC_CONFIG
= network_rec_config_shadow
;
548 *R_NETWORK_GEN_CONFIG
=
549 IO_STATE(R_NETWORK_GEN_CONFIG
, phy
, mii_clk
) |
550 IO_STATE(R_NETWORK_GEN_CONFIG
, enable
, on
);
552 SETS(network_tr_ctrl_shadow
, R_NETWORK_TR_CTRL
, clr_error
, clr
);
553 SETS(network_tr_ctrl_shadow
, R_NETWORK_TR_CTRL
, delay
, none
);
554 SETS(network_tr_ctrl_shadow
, R_NETWORK_TR_CTRL
, cancel
, dont
);
555 SETS(network_tr_ctrl_shadow
, R_NETWORK_TR_CTRL
, cd
, enable
);
556 SETS(network_tr_ctrl_shadow
, R_NETWORK_TR_CTRL
, retry
, enable
);
557 SETS(network_tr_ctrl_shadow
, R_NETWORK_TR_CTRL
, pad
, enable
);
558 SETS(network_tr_ctrl_shadow
, R_NETWORK_TR_CTRL
, crc
, enable
);
559 *R_NETWORK_TR_CTRL
= network_tr_ctrl_shadow
;
561 local_irq_save(flags
);
563 /* enable the irq's for ethernet DMA */
566 IO_STATE(R_IRQ_MASK2_SET
, dma0_eop
, set
) |
567 IO_STATE(R_IRQ_MASK2_SET
, dma1_eop
, set
);
570 IO_STATE(R_IRQ_MASK0_SET
, overrun
, set
) |
571 IO_STATE(R_IRQ_MASK0_SET
, underrun
, set
) |
572 IO_STATE(R_IRQ_MASK0_SET
, excessive_col
, set
);
574 /* make sure the irqs are cleared */
576 *R_DMA_CH0_CLR_INTR
= IO_STATE(R_DMA_CH0_CLR_INTR
, clr_eop
, do);
577 *R_DMA_CH1_CLR_INTR
= IO_STATE(R_DMA_CH1_CLR_INTR
, clr_eop
, do);
579 /* make sure the rec and transmit error counters are cleared */
581 (void)*R_REC_COUNTERS
; /* dummy read */
582 (void)*R_TR_COUNTERS
; /* dummy read */
584 /* start the receiving DMA channel so we can receive packets from now on */
586 *R_DMA_CH1_FIRST
= virt_to_phys(myNextRxDesc
);
587 *R_DMA_CH1_CMD
= IO_STATE(R_DMA_CH1_CMD
, cmd
, start
);
589 /* Set up transmit DMA channel so it can be restarted later */
591 *R_DMA_CH0_FIRST
= 0;
592 *R_DMA_CH0_DESCR
= virt_to_phys(myLastTxDesc
);
593 netif_start_queue(dev
);
595 local_irq_restore(flags
);
597 /* Probe for transceiver */
598 if (e100_probe_transceiver(dev
))
601 /* Start duplex/speed timers */
602 add_timer(&speed_timer
);
603 add_timer(&duplex_timer
);
605 /* We are now ready to accept transmit requeusts from
606 * the queueing layer of the networking.
608 netif_carrier_on(dev
);
613 cris_free_dma(NETWORK_RX_DMA_NBR
, cardname
);
615 cris_free_dma(NETWORK_TX_DMA_NBR
, cardname
);
617 free_irq(NETWORK_STATUS_IRQ_NBR
, (void *)dev
);
619 free_irq(NETWORK_DMA_TX_IRQ_NBR
, (void *)dev
);
621 free_irq(NETWORK_DMA_RX_IRQ_NBR
, (void *)dev
);
626 #if defined(CONFIG_ETRAX_NO_PHY)
628 dummy_check_speed(struct net_device
* dev
)
634 generic_check_speed(struct net_device
* dev
)
637 struct net_local
*np
= netdev_priv(dev
);
639 data
= e100_get_mdio_reg(dev
, np
->mii_if
.phy_id
, MII_ADVERTISE
);
640 if ((data
& ADVERTISE_100FULL
) ||
641 (data
& ADVERTISE_100HALF
))
648 tdk_check_speed(struct net_device
* dev
)
651 struct net_local
*np
= netdev_priv(dev
);
653 data
= e100_get_mdio_reg(dev
, np
->mii_if
.phy_id
,
654 MDIO_TDK_DIAGNOSTIC_REG
);
655 current_speed
= (data
& MDIO_TDK_DIAGNOSTIC_RATE
? 100 : 10);
659 broadcom_check_speed(struct net_device
* dev
)
662 struct net_local
*np
= netdev_priv(dev
);
664 data
= e100_get_mdio_reg(dev
, np
->mii_if
.phy_id
,
665 MDIO_AUX_CTRL_STATUS_REG
);
666 current_speed
= (data
& MDIO_BC_SPEED
? 100 : 10);
670 intel_check_speed(struct net_device
* dev
)
673 struct net_local
*np
= netdev_priv(dev
);
675 data
= e100_get_mdio_reg(dev
, np
->mii_if
.phy_id
,
676 MDIO_INT_STATUS_REG_2
);
677 current_speed
= (data
& MDIO_INT_SPEED
? 100 : 10);
681 e100_check_speed(struct timer_list
*unused
)
683 struct net_device
* dev
= timer_dev
;
684 struct net_local
*np
= netdev_priv(dev
);
685 static int led_initiated
= 0;
687 int old_speed
= current_speed
;
689 spin_lock(&np
->transceiver_lock
);
691 data
= e100_get_mdio_reg(dev
, np
->mii_if
.phy_id
, MII_BMSR
);
692 if (!(data
& BMSR_LSTATUS
)) {
695 transceiver
->check_speed(dev
);
698 spin_lock(&np
->led_lock
);
699 if ((old_speed
!= current_speed
) || !led_initiated
) {
701 e100_set_network_leds(NO_NETWORK_ACTIVITY
);
703 netif_carrier_on(dev
);
705 netif_carrier_off(dev
);
707 spin_unlock(&np
->led_lock
);
709 /* Reinitialize the timer. */
710 speed_timer
.expires
= jiffies
+ NET_LINK_UP_CHECK_INTERVAL
;
711 add_timer(&speed_timer
);
713 spin_unlock(&np
->transceiver_lock
);
717 e100_negotiate(struct net_device
* dev
)
719 struct net_local
*np
= netdev_priv(dev
);
720 unsigned short data
= e100_get_mdio_reg(dev
, np
->mii_if
.phy_id
,
723 /* Discard old speed and duplex settings */
724 data
&= ~(ADVERTISE_100HALF
| ADVERTISE_100FULL
|
725 ADVERTISE_10HALF
| ADVERTISE_10FULL
);
727 switch (current_speed_selection
) {
729 if (current_duplex
== full
)
730 data
|= ADVERTISE_10FULL
;
731 else if (current_duplex
== half
)
732 data
|= ADVERTISE_10HALF
;
734 data
|= ADVERTISE_10HALF
| ADVERTISE_10FULL
;
738 if (current_duplex
== full
)
739 data
|= ADVERTISE_100FULL
;
740 else if (current_duplex
== half
)
741 data
|= ADVERTISE_100HALF
;
743 data
|= ADVERTISE_100HALF
| ADVERTISE_100FULL
;
747 if (current_duplex
== full
)
748 data
|= ADVERTISE_100FULL
| ADVERTISE_10FULL
;
749 else if (current_duplex
== half
)
750 data
|= ADVERTISE_100HALF
| ADVERTISE_10HALF
;
752 data
|= ADVERTISE_10HALF
| ADVERTISE_10FULL
|
753 ADVERTISE_100HALF
| ADVERTISE_100FULL
;
756 default: /* assume autoneg speed and duplex */
757 data
|= ADVERTISE_10HALF
| ADVERTISE_10FULL
|
758 ADVERTISE_100HALF
| ADVERTISE_100FULL
;
762 e100_set_mdio_reg(dev
, np
->mii_if
.phy_id
, MII_ADVERTISE
, data
);
764 data
= e100_get_mdio_reg(dev
, np
->mii_if
.phy_id
, MII_BMCR
);
765 if (autoneg_normal
) {
766 /* Renegotiate with link partner */
767 data
|= BMCR_ANENABLE
| BMCR_ANRESTART
;
769 /* Don't negotiate speed or duplex */
770 data
&= ~(BMCR_ANENABLE
| BMCR_ANRESTART
);
772 /* Set speed and duplex static */
773 if (current_speed_selection
== 10)
774 data
&= ~BMCR_SPEED100
;
776 data
|= BMCR_SPEED100
;
778 if (current_duplex
!= full
)
779 data
&= ~BMCR_FULLDPLX
;
781 data
|= BMCR_FULLDPLX
;
783 e100_set_mdio_reg(dev
, np
->mii_if
.phy_id
, MII_BMCR
, data
);
787 e100_set_speed(struct net_device
* dev
, unsigned long speed
)
789 struct net_local
*np
= netdev_priv(dev
);
791 spin_lock(&np
->transceiver_lock
);
792 if (speed
!= current_speed_selection
) {
793 current_speed_selection
= speed
;
796 spin_unlock(&np
->transceiver_lock
);
800 e100_check_duplex(struct timer_list
*unused
)
802 struct net_device
*dev
= timer_dev
;
803 struct net_local
*np
= netdev_priv(dev
);
806 spin_lock(&np
->transceiver_lock
);
807 old_duplex
= full_duplex
;
808 transceiver
->check_duplex(dev
);
809 if (old_duplex
!= full_duplex
) {
811 SETF(network_rec_config_shadow
, R_NETWORK_REC_CONFIG
, duplex
, full_duplex
);
812 *R_NETWORK_REC_CONFIG
= network_rec_config_shadow
;
815 /* Reinitialize the timer. */
816 duplex_timer
.expires
= jiffies
+ NET_DUPLEX_CHECK_INTERVAL
;
817 add_timer(&duplex_timer
);
818 np
->mii_if
.full_duplex
= full_duplex
;
819 spin_unlock(&np
->transceiver_lock
);
821 #if defined(CONFIG_ETRAX_NO_PHY)
823 dummy_check_duplex(struct net_device
* dev
)
829 generic_check_duplex(struct net_device
* dev
)
832 struct net_local
*np
= netdev_priv(dev
);
834 data
= e100_get_mdio_reg(dev
, np
->mii_if
.phy_id
, MII_ADVERTISE
);
835 if ((data
& ADVERTISE_10FULL
) ||
836 (data
& ADVERTISE_100FULL
))
843 tdk_check_duplex(struct net_device
* dev
)
846 struct net_local
*np
= netdev_priv(dev
);
848 data
= e100_get_mdio_reg(dev
, np
->mii_if
.phy_id
,
849 MDIO_TDK_DIAGNOSTIC_REG
);
850 full_duplex
= (data
& MDIO_TDK_DIAGNOSTIC_DPLX
) ? 1 : 0;
854 broadcom_check_duplex(struct net_device
* dev
)
857 struct net_local
*np
= netdev_priv(dev
);
859 data
= e100_get_mdio_reg(dev
, np
->mii_if
.phy_id
,
860 MDIO_AUX_CTRL_STATUS_REG
);
861 full_duplex
= (data
& MDIO_BC_FULL_DUPLEX_IND
) ? 1 : 0;
865 intel_check_duplex(struct net_device
* dev
)
868 struct net_local
*np
= netdev_priv(dev
);
870 data
= e100_get_mdio_reg(dev
, np
->mii_if
.phy_id
,
871 MDIO_INT_STATUS_REG_2
);
872 full_duplex
= (data
& MDIO_INT_FULL_DUPLEX_IND
) ? 1 : 0;
876 e100_set_duplex(struct net_device
* dev
, enum duplex new_duplex
)
878 struct net_local
*np
= netdev_priv(dev
);
880 spin_lock(&np
->transceiver_lock
);
881 if (new_duplex
!= current_duplex
) {
882 current_duplex
= new_duplex
;
885 spin_unlock(&np
->transceiver_lock
);
889 e100_probe_transceiver(struct net_device
* dev
)
893 #if !defined(CONFIG_ETRAX_NO_PHY)
894 unsigned int phyid_high
;
895 unsigned int phyid_low
;
897 struct transceiver_ops
* ops
= NULL
;
898 struct net_local
*np
= netdev_priv(dev
);
900 spin_lock(&np
->transceiver_lock
);
902 /* Probe MDIO physical address */
903 for (np
->mii_if
.phy_id
= 0; np
->mii_if
.phy_id
<= 31;
904 np
->mii_if
.phy_id
++) {
905 if (e100_get_mdio_reg(dev
,
906 np
->mii_if
.phy_id
, MII_BMSR
) != 0xffff)
909 if (np
->mii_if
.phy_id
== 32) {
914 /* Get manufacturer */
915 phyid_high
= e100_get_mdio_reg(dev
, np
->mii_if
.phy_id
, MII_PHYSID1
);
916 phyid_low
= e100_get_mdio_reg(dev
, np
->mii_if
.phy_id
, MII_PHYSID2
);
917 oui
= (phyid_high
<< 6) | (phyid_low
>> 10);
919 for (ops
= &transceivers
[0]; ops
->oui
; ops
++) {
925 spin_unlock(&np
->transceiver_lock
);
931 e100_get_mdio_reg(struct net_device
*dev
, int phy_id
, int location
)
933 unsigned short cmd
; /* Data to be sent on MDIO port */
934 int data
; /* Data read from MDIO */
937 /* Start of frame, OP Code, Physical Address, Register Address */
938 cmd
= (MDIO_START
<< 14) | (MDIO_READ
<< 12) | (phy_id
<< 7) |
941 e100_send_mdio_cmd(cmd
, 0);
946 for (bitCounter
=15; bitCounter
>=0 ; bitCounter
--) {
947 data
|= (e100_receive_mdio_bit() << bitCounter
);
954 e100_set_mdio_reg(struct net_device
*dev
, int phy_id
, int location
, int value
)
959 cmd
= (MDIO_START
<< 14) | (MDIO_WRITE
<< 12) | (phy_id
<< 7) |
962 e100_send_mdio_cmd(cmd
, 1);
965 for (bitCounter
=15; bitCounter
>=0 ; bitCounter
--) {
966 e100_send_mdio_bit(GET_BIT(bitCounter
, value
));
972 e100_send_mdio_cmd(unsigned short cmd
, int write_cmd
)
975 unsigned char data
= 0x2;
978 for (bitCounter
= 31; bitCounter
>= 0; bitCounter
--)
979 e100_send_mdio_bit(GET_BIT(bitCounter
, MDIO_PREAMBLE
));
981 for (bitCounter
= 15; bitCounter
>= 2; bitCounter
--)
982 e100_send_mdio_bit(GET_BIT(bitCounter
, cmd
));
985 for (bitCounter
= 1; bitCounter
>= 0 ; bitCounter
--)
987 e100_send_mdio_bit(GET_BIT(bitCounter
, data
));
989 e100_receive_mdio_bit();
993 e100_send_mdio_bit(unsigned char bit
)
995 *R_NETWORK_MGM_CTRL
=
996 IO_STATE(R_NETWORK_MGM_CTRL
, mdoe
, enable
) |
997 IO_FIELD(R_NETWORK_MGM_CTRL
, mdio
, bit
);
999 *R_NETWORK_MGM_CTRL
=
1000 IO_STATE(R_NETWORK_MGM_CTRL
, mdoe
, enable
) |
1001 IO_MASK(R_NETWORK_MGM_CTRL
, mdck
) |
1002 IO_FIELD(R_NETWORK_MGM_CTRL
, mdio
, bit
);
1006 static unsigned char
1007 e100_receive_mdio_bit(void)
1010 *R_NETWORK_MGM_CTRL
= 0;
1011 bit
= IO_EXTRACT(R_NETWORK_STAT
, mdio
, *R_NETWORK_STAT
);
1013 *R_NETWORK_MGM_CTRL
= IO_MASK(R_NETWORK_MGM_CTRL
, mdck
);
1019 e100_reset_transceiver(struct net_device
* dev
)
1021 struct net_local
*np
= netdev_priv(dev
);
1023 unsigned short data
;
1026 data
= e100_get_mdio_reg(dev
, np
->mii_if
.phy_id
, MII_BMCR
);
1028 cmd
= (MDIO_START
<< 14) | (MDIO_WRITE
<< 12) | (np
->mii_if
.phy_id
<< 7) | (MII_BMCR
<< 2);
1030 e100_send_mdio_cmd(cmd
, 1);
1034 for (bitCounter
= 15; bitCounter
>= 0 ; bitCounter
--) {
1035 e100_send_mdio_bit(GET_BIT(bitCounter
, data
));
1039 /* Called by upper layers if they decide it took too long to complete
1040 * sending a packet - we need to reset and stuff.
1044 e100_tx_timeout(struct net_device
*dev
)
1046 struct net_local
*np
= netdev_priv(dev
);
1047 unsigned long flags
;
1049 spin_lock_irqsave(&np
->lock
, flags
);
1051 printk(KERN_WARNING
"%s: transmit timed out, %s?\n", dev
->name
,
1052 tx_done(dev
) ? "IRQ problem" : "network cable problem");
1054 /* remember we got an error */
1056 dev
->stats
.tx_errors
++;
1058 /* reset the TX DMA in case it has hung on something */
1060 RESET_DMA(NETWORK_TX_DMA_NBR
);
1061 WAIT_DMA(NETWORK_TX_DMA_NBR
);
1063 /* Reset the transceiver. */
1065 e100_reset_transceiver(dev
);
1067 /* and get rid of the packets that never got an interrupt */
1068 while (myFirstTxDesc
!= myNextTxDesc
) {
1069 dev_kfree_skb(myFirstTxDesc
->skb
);
1070 myFirstTxDesc
->skb
= 0;
1071 myFirstTxDesc
= phys_to_virt(myFirstTxDesc
->descr
.next
);
1074 /* Set up transmit DMA channel so it can be restarted later */
1075 *R_DMA_CH0_FIRST
= 0;
1076 *R_DMA_CH0_DESCR
= virt_to_phys(myLastTxDesc
);
1078 /* tell the upper layers we're ok again */
1080 netif_wake_queue(dev
);
1081 spin_unlock_irqrestore(&np
->lock
, flags
);
1085 /* This will only be invoked if the driver is _not_ in XOFF state.
1086 * What this means is that we need not check it, and that this
1087 * invariant will hold if we make sure that the netif_*_queue()
1088 * calls are done at the proper times.
1092 e100_send_packet(struct sk_buff
*skb
, struct net_device
*dev
)
1094 struct net_local
*np
= netdev_priv(dev
);
1095 unsigned char *buf
= skb
->data
;
1096 unsigned long flags
;
1099 printk("send packet len %d\n", length
);
1101 spin_lock_irqsave(&np
->lock
, flags
); /* protect from tx_interrupt and ourself */
1103 myNextTxDesc
->skb
= skb
;
1105 netif_trans_update(dev
); /* NETIF_F_LLTX driver :( */
1107 e100_hardware_send_packet(np
, buf
, skb
->len
);
1109 myNextTxDesc
= phys_to_virt(myNextTxDesc
->descr
.next
);
1111 /* Stop queue if full */
1112 if (myNextTxDesc
== myFirstTxDesc
) {
1113 netif_stop_queue(dev
);
1116 spin_unlock_irqrestore(&np
->lock
, flags
);
1118 return NETDEV_TX_OK
;
1122 * The typical workload of the driver:
1123 * Handle the network interface interrupts.
1127 e100rxtx_interrupt(int irq
, void *dev_id
)
1129 struct net_device
*dev
= (struct net_device
*)dev_id
;
1130 unsigned long irqbits
;
1133 * Note that both rx and tx interrupts are blocked at this point,
1134 * regardless of which got us here.
1137 irqbits
= *R_IRQ_MASK2_RD
;
1139 /* Handle received packets */
1140 if (irqbits
& IO_STATE(R_IRQ_MASK2_RD
, dma1_eop
, active
)) {
1141 /* acknowledge the eop interrupt */
1143 *R_DMA_CH1_CLR_INTR
= IO_STATE(R_DMA_CH1_CLR_INTR
, clr_eop
, do);
1145 /* check if one or more complete packets were indeed received */
1147 while ((*R_DMA_CH1_FIRST
!= virt_to_phys(myNextRxDesc
)) &&
1148 (myNextRxDesc
!= myLastRxDesc
)) {
1149 /* Take out the buffer and give it to the OS, then
1150 * allocate a new buffer to put a packet in.
1153 dev
->stats
.rx_packets
++;
1154 /* restart/continue on the channel, for safety */
1155 *R_DMA_CH1_CMD
= IO_STATE(R_DMA_CH1_CMD
, cmd
, restart
);
1156 /* clear dma channel 1 eop/descr irq bits */
1157 *R_DMA_CH1_CLR_INTR
=
1158 IO_STATE(R_DMA_CH1_CLR_INTR
, clr_eop
, do) |
1159 IO_STATE(R_DMA_CH1_CLR_INTR
, clr_descr
, do);
1161 /* now, we might have gotten another packet
1162 so we have to loop back and check if so */
1166 /* Report any packets that have been sent */
1167 while (virt_to_phys(myFirstTxDesc
) != *R_DMA_CH0_FIRST
&&
1168 (netif_queue_stopped(dev
) || myFirstTxDesc
!= myNextTxDesc
)) {
1169 dev
->stats
.tx_bytes
+= myFirstTxDesc
->skb
->len
;
1170 dev
->stats
.tx_packets
++;
1172 /* dma is ready with the transmission of the data in tx_skb, so now
1173 we can release the skb memory */
1174 dev_kfree_skb_irq(myFirstTxDesc
->skb
);
1175 myFirstTxDesc
->skb
= 0;
1176 myFirstTxDesc
= phys_to_virt(myFirstTxDesc
->descr
.next
);
1177 /* Wake up queue. */
1178 netif_wake_queue(dev
);
1181 if (irqbits
& IO_STATE(R_IRQ_MASK2_RD
, dma0_eop
, active
)) {
1182 /* acknowledge the eop interrupt. */
1183 *R_DMA_CH0_CLR_INTR
= IO_STATE(R_DMA_CH0_CLR_INTR
, clr_eop
, do);
1190 e100nw_interrupt(int irq
, void *dev_id
)
1192 struct net_device
*dev
= (struct net_device
*)dev_id
;
1193 unsigned long irqbits
= *R_IRQ_MASK0_RD
;
1195 /* check for underrun irq */
1196 if (irqbits
& IO_STATE(R_IRQ_MASK0_RD
, underrun
, active
)) {
1197 SETS(network_tr_ctrl_shadow
, R_NETWORK_TR_CTRL
, clr_error
, clr
);
1198 *R_NETWORK_TR_CTRL
= network_tr_ctrl_shadow
;
1199 SETS(network_tr_ctrl_shadow
, R_NETWORK_TR_CTRL
, clr_error
, nop
);
1200 dev
->stats
.tx_errors
++;
1201 D(printk("ethernet receiver underrun!\n"));
1204 /* check for overrun irq */
1205 if (irqbits
& IO_STATE(R_IRQ_MASK0_RD
, overrun
, active
)) {
1206 update_rx_stats(&dev
->stats
); /* this will ack the irq */
1207 D(printk("ethernet receiver overrun!\n"));
1209 /* check for excessive collision irq */
1210 if (irqbits
& IO_STATE(R_IRQ_MASK0_RD
, excessive_col
, active
)) {
1211 SETS(network_tr_ctrl_shadow
, R_NETWORK_TR_CTRL
, clr_error
, clr
);
1212 *R_NETWORK_TR_CTRL
= network_tr_ctrl_shadow
;
1213 SETS(network_tr_ctrl_shadow
, R_NETWORK_TR_CTRL
, clr_error
, nop
);
1214 dev
->stats
.tx_errors
++;
1215 D(printk("ethernet excessive collisions!\n"));
1220 /* We have a good packet(s), get it/them out of the buffers. */
1222 e100_rx(struct net_device
*dev
)
1224 struct sk_buff
*skb
;
1226 struct net_local
*np
= netdev_priv(dev
);
1227 unsigned char *skb_data_ptr
;
1231 etrax_eth_descr
*prevRxDesc
; /* The descriptor right before myNextRxDesc */
1232 spin_lock(&np
->led_lock
);
1233 if (!led_active
&& time_after(jiffies
, led_next_time
)) {
1234 /* light the network leds depending on the current speed. */
1235 e100_set_network_leds(NETWORK_ACTIVITY
);
1237 /* Set the earliest time we may clear the LED */
1238 led_next_time
= jiffies
+ NET_FLASH_TIME
;
1240 mod_timer(&clear_led_timer
, jiffies
+ HZ
/10);
1242 spin_unlock(&np
->led_lock
);
1244 length
= myNextRxDesc
->descr
.hw_len
- 4;
1245 dev
->stats
.rx_bytes
+= length
;
1248 printk("Got a packet of length %d:\n", length
);
1249 /* dump the first bytes in the packet */
1250 skb_data_ptr
= (unsigned char *)phys_to_virt(myNextRxDesc
->descr
.buf
);
1251 for (i
= 0; i
< 8; i
++) {
1252 printk("%d: %.2x %.2x %.2x %.2x %.2x %.2x %.2x %.2x\n", i
* 8,
1253 skb_data_ptr
[0],skb_data_ptr
[1],skb_data_ptr
[2],skb_data_ptr
[3],
1254 skb_data_ptr
[4],skb_data_ptr
[5],skb_data_ptr
[6],skb_data_ptr
[7]);
1259 if (length
< RX_COPYBREAK
) {
1260 /* Small packet, copy data */
1261 skb
= dev_alloc_skb(length
- ETHER_HEAD_LEN
);
1263 dev
->stats
.rx_errors
++;
1264 printk(KERN_NOTICE
"%s: Memory squeeze, dropping packet.\n", dev
->name
);
1265 goto update_nextrxdesc
;
1268 skb_put(skb
, length
- ETHER_HEAD_LEN
); /* allocate room for the packet body */
1269 skb_data_ptr
= skb_push(skb
, ETHER_HEAD_LEN
); /* allocate room for the header */
1272 printk("head = 0x%x, data = 0x%x, tail = 0x%x, end = 0x%x\n",
1273 skb
->head
, skb
->data
, skb_tail_pointer(skb
),
1274 skb_end_pointer(skb
));
1275 printk("copying packet to 0x%x.\n", skb_data_ptr
);
1278 memcpy(skb_data_ptr
, phys_to_virt(myNextRxDesc
->descr
.buf
), length
);
1281 /* Large packet, send directly to upper layers and allocate new
1282 * memory (aligned to cache line boundary to avoid bug).
1283 * Before sending the skb to upper layers we must make sure
1284 * that skb->data points to the aligned start of the packet.
1287 struct sk_buff
*new_skb
= dev_alloc_skb(MAX_MEDIA_DATA_SIZE
+ 2 * L1_CACHE_BYTES
);
1289 dev
->stats
.rx_errors
++;
1290 printk(KERN_NOTICE
"%s: Memory squeeze, dropping packet.\n", dev
->name
);
1291 goto update_nextrxdesc
;
1293 skb
= myNextRxDesc
->skb
;
1294 align
= (int)phys_to_virt(myNextRxDesc
->descr
.buf
) - (int)skb
->data
;
1295 skb_put(skb
, length
+ align
);
1296 skb_pull(skb
, align
); /* Remove alignment bytes */
1297 myNextRxDesc
->skb
= new_skb
;
1298 myNextRxDesc
->descr
.buf
= L1_CACHE_ALIGN(virt_to_phys(myNextRxDesc
->skb
->data
));
1301 skb
->protocol
= eth_type_trans(skb
, dev
);
1303 /* Send the packet to the upper layers */
1307 /* Prepare for next packet */
1308 myNextRxDesc
->descr
.status
= 0;
1309 prevRxDesc
= myNextRxDesc
;
1310 myNextRxDesc
= phys_to_virt(myNextRxDesc
->descr
.next
);
1314 /* Check if descriptors should be returned */
1315 if (rx_queue_len
== RX_QUEUE_THRESHOLD
) {
1316 flush_etrax_cache();
1317 prevRxDesc
->descr
.ctrl
|= d_eol
;
1318 myLastRxDesc
->descr
.ctrl
&= ~d_eol
;
1319 myLastRxDesc
= prevRxDesc
;
1324 /* The inverse routine to net_open(). */
1326 e100_close(struct net_device
*dev
)
1328 printk(KERN_INFO
"Closing %s.\n", dev
->name
);
1330 netif_stop_queue(dev
);
1333 IO_STATE(R_IRQ_MASK0_CLR
, overrun
, clr
) |
1334 IO_STATE(R_IRQ_MASK0_CLR
, underrun
, clr
) |
1335 IO_STATE(R_IRQ_MASK0_CLR
, excessive_col
, clr
);
1338 IO_STATE(R_IRQ_MASK2_CLR
, dma0_descr
, clr
) |
1339 IO_STATE(R_IRQ_MASK2_CLR
, dma0_eop
, clr
) |
1340 IO_STATE(R_IRQ_MASK2_CLR
, dma1_descr
, clr
) |
1341 IO_STATE(R_IRQ_MASK2_CLR
, dma1_eop
, clr
);
1343 /* Stop the receiver and the transmitter */
1345 RESET_DMA(NETWORK_TX_DMA_NBR
);
1346 RESET_DMA(NETWORK_RX_DMA_NBR
);
1348 /* Flush the Tx and disable Rx here. */
1350 free_irq(NETWORK_DMA_RX_IRQ_NBR
, (void *)dev
);
1351 free_irq(NETWORK_DMA_TX_IRQ_NBR
, (void *)dev
);
1352 free_irq(NETWORK_STATUS_IRQ_NBR
, (void *)dev
);
1354 cris_free_dma(NETWORK_TX_DMA_NBR
, cardname
);
1355 cris_free_dma(NETWORK_RX_DMA_NBR
, cardname
);
1357 /* Update the statistics here. */
1359 update_rx_stats(&dev
->stats
);
1360 update_tx_stats(&dev
->stats
);
1362 /* Stop speed/duplex timers */
1363 del_timer(&speed_timer
);
1364 del_timer(&duplex_timer
);
1370 e100_ioctl(struct net_device
*dev
, struct ifreq
*ifr
, int cmd
)
1372 struct mii_ioctl_data
*data
= if_mii(ifr
);
1373 struct net_local
*np
= netdev_priv(dev
);
1377 spin_lock(&np
->lock
); /* Preempt protection */
1379 /* The ioctls below should be considered obsolete but are */
1380 /* still present for compatibility with old scripts/apps */
1381 case SET_ETH_SPEED_10
: /* 10 Mbps */
1382 e100_set_speed(dev
, 10);
1384 case SET_ETH_SPEED_100
: /* 100 Mbps */
1385 e100_set_speed(dev
, 100);
1387 case SET_ETH_SPEED_AUTO
: /* Auto-negotiate speed */
1388 e100_set_speed(dev
, 0);
1390 case SET_ETH_DUPLEX_HALF
: /* Half duplex */
1391 e100_set_duplex(dev
, half
);
1393 case SET_ETH_DUPLEX_FULL
: /* Full duplex */
1394 e100_set_duplex(dev
, full
);
1396 case SET_ETH_DUPLEX_AUTO
: /* Auto-negotiate duplex */
1397 e100_set_duplex(dev
, autoneg
);
1399 case SET_ETH_AUTONEG
:
1400 old_autoneg
= autoneg_normal
;
1401 autoneg_normal
= *(int*)data
;
1402 if (autoneg_normal
!= old_autoneg
)
1403 e100_negotiate(dev
);
1406 rc
= generic_mii_ioctl(&np
->mii_if
, if_mii(ifr
),
1410 spin_unlock(&np
->lock
);
1414 static int e100_get_link_ksettings(struct net_device
*dev
,
1415 struct ethtool_link_ksettings
*cmd
)
1417 struct net_local
*np
= netdev_priv(dev
);
1420 spin_lock_irq(&np
->lock
);
1421 mii_ethtool_get_link_ksettings(&np
->mii_if
, cmd
);
1422 spin_unlock_irq(&np
->lock
);
1424 /* The PHY may support 1000baseT, but the Etrax100 does not. */
1425 ethtool_convert_link_mode_to_legacy_u32(&supported
,
1426 cmd
->link_modes
.supported
);
1428 supported
&= ~(SUPPORTED_1000baseT_Half
| SUPPORTED_1000baseT_Full
);
1430 ethtool_convert_legacy_u32_to_link_mode(cmd
->link_modes
.supported
,
1436 static int e100_set_link_ksettings(struct net_device
*dev
,
1437 const struct ethtool_link_ksettings
*ecmd
)
1439 if (ecmd
->base
.autoneg
== AUTONEG_ENABLE
) {
1440 e100_set_duplex(dev
, autoneg
);
1441 e100_set_speed(dev
, 0);
1443 e100_set_duplex(dev
, ecmd
->base
.duplex
== DUPLEX_HALF
?
1445 e100_set_speed(dev
, ecmd
->base
.speed
== SPEED_10
? 10 : 100);
1451 static void e100_get_drvinfo(struct net_device
*dev
,
1452 struct ethtool_drvinfo
*info
)
1454 strlcpy(info
->driver
, "ETRAX 100LX", sizeof(info
->driver
));
1455 strlcpy(info
->version
, "$Revision: 1.31 $", sizeof(info
->version
));
1456 strlcpy(info
->fw_version
, "N/A", sizeof(info
->fw_version
));
1457 strlcpy(info
->bus_info
, "N/A", sizeof(info
->bus_info
));
1460 static int e100_nway_reset(struct net_device
*dev
)
1462 if (current_duplex
== autoneg
&& current_speed_selection
== 0)
1463 e100_negotiate(dev
);
1467 static const struct ethtool_ops e100_ethtool_ops
= {
1468 .get_drvinfo
= e100_get_drvinfo
,
1469 .nway_reset
= e100_nway_reset
,
1470 .get_link
= ethtool_op_get_link
,
1471 .get_link_ksettings
= e100_get_link_ksettings
,
1472 .set_link_ksettings
= e100_set_link_ksettings
,
1476 e100_set_config(struct net_device
*dev
, struct ifmap
*map
)
1478 struct net_local
*np
= netdev_priv(dev
);
1480 spin_lock(&np
->lock
); /* Preempt protection */
1483 case IF_PORT_UNKNOWN
:
1485 e100_set_speed(dev
, 0);
1486 e100_set_duplex(dev
, autoneg
);
1488 case IF_PORT_10BASET
:
1489 e100_set_speed(dev
, 10);
1490 e100_set_duplex(dev
, autoneg
);
1492 case IF_PORT_100BASET
:
1493 case IF_PORT_100BASETX
:
1494 e100_set_speed(dev
, 100);
1495 e100_set_duplex(dev
, autoneg
);
1497 case IF_PORT_100BASEFX
:
1498 case IF_PORT_10BASE2
:
1500 spin_unlock(&np
->lock
);
1503 printk(KERN_ERR
"%s: Invalid media selected", dev
->name
);
1504 spin_unlock(&np
->lock
);
1507 spin_unlock(&np
->lock
);
1512 update_rx_stats(struct net_device_stats
*es
)
1514 unsigned long r
= *R_REC_COUNTERS
;
1515 /* update stats relevant to reception errors */
1516 es
->rx_fifo_errors
+= IO_EXTRACT(R_REC_COUNTERS
, congestion
, r
);
1517 es
->rx_crc_errors
+= IO_EXTRACT(R_REC_COUNTERS
, crc_error
, r
);
1518 es
->rx_frame_errors
+= IO_EXTRACT(R_REC_COUNTERS
, alignment_error
, r
);
1519 es
->rx_length_errors
+= IO_EXTRACT(R_REC_COUNTERS
, oversize
, r
);
1523 update_tx_stats(struct net_device_stats
*es
)
1525 unsigned long r
= *R_TR_COUNTERS
;
1526 /* update stats relevant to transmission errors */
1528 IO_EXTRACT(R_TR_COUNTERS
, single_col
, r
) +
1529 IO_EXTRACT(R_TR_COUNTERS
, multiple_col
, r
);
1533 * Get the current statistics.
1534 * This may be called with the card open or closed.
1536 static struct net_device_stats
*
1537 e100_get_stats(struct net_device
*dev
)
1539 struct net_local
*lp
= netdev_priv(dev
);
1540 unsigned long flags
;
1542 spin_lock_irqsave(&lp
->lock
, flags
);
1544 update_rx_stats(&dev
->stats
);
1545 update_tx_stats(&dev
->stats
);
1547 spin_unlock_irqrestore(&lp
->lock
, flags
);
1552 * Set or clear the multicast filter for this adaptor.
1553 * num_addrs == -1 Promiscuous mode, receive all packets
1554 * num_addrs == 0 Normal mode, clear multicast list
1555 * num_addrs > 0 Multicast mode, receive normal and MC packets,
1556 * and do best-effort filtering.
1559 set_multicast_list(struct net_device
*dev
)
1561 struct net_local
*lp
= netdev_priv(dev
);
1562 int num_addr
= netdev_mc_count(dev
);
1563 unsigned long int lo_bits
;
1564 unsigned long int hi_bits
;
1566 spin_lock(&lp
->lock
);
1567 if (dev
->flags
& IFF_PROMISC
) {
1568 /* promiscuous mode */
1569 lo_bits
= 0xfffffffful
;
1570 hi_bits
= 0xfffffffful
;
1572 /* Enable individual receive */
1573 SETS(network_rec_config_shadow
, R_NETWORK_REC_CONFIG
, individual
, receive
);
1574 *R_NETWORK_REC_CONFIG
= network_rec_config_shadow
;
1575 } else if (dev
->flags
& IFF_ALLMULTI
) {
1576 /* enable all multicasts */
1577 lo_bits
= 0xfffffffful
;
1578 hi_bits
= 0xfffffffful
;
1580 /* Disable individual receive */
1581 SETS(network_rec_config_shadow
, R_NETWORK_REC_CONFIG
, individual
, discard
);
1582 *R_NETWORK_REC_CONFIG
= network_rec_config_shadow
;
1583 } else if (num_addr
== 0) {
1584 /* Normal, clear the mc list */
1585 lo_bits
= 0x00000000ul
;
1586 hi_bits
= 0x00000000ul
;
1588 /* Disable individual receive */
1589 SETS(network_rec_config_shadow
, R_NETWORK_REC_CONFIG
, individual
, discard
);
1590 *R_NETWORK_REC_CONFIG
= network_rec_config_shadow
;
1592 /* MC mode, receive normal and MC packets */
1594 struct netdev_hw_addr
*ha
;
1597 lo_bits
= 0x00000000ul
;
1598 hi_bits
= 0x00000000ul
;
1599 netdev_for_each_mc_addr(ha
, dev
) {
1600 /* Calculate the hash index for the GA registers */
1604 hash_ix
^= (*baddr
) & 0x3f;
1605 hash_ix
^= ((*baddr
) >> 6) & 0x03;
1607 hash_ix
^= ((*baddr
) << 2) & 0x03c;
1608 hash_ix
^= ((*baddr
) >> 4) & 0xf;
1610 hash_ix
^= ((*baddr
) << 4) & 0x30;
1611 hash_ix
^= ((*baddr
) >> 2) & 0x3f;
1613 hash_ix
^= (*baddr
) & 0x3f;
1614 hash_ix
^= ((*baddr
) >> 6) & 0x03;
1616 hash_ix
^= ((*baddr
) << 2) & 0x03c;
1617 hash_ix
^= ((*baddr
) >> 4) & 0xf;
1619 hash_ix
^= ((*baddr
) << 4) & 0x30;
1620 hash_ix
^= ((*baddr
) >> 2) & 0x3f;
1624 if (hash_ix
>= 32) {
1625 hi_bits
|= (1 << (hash_ix
-32));
1627 lo_bits
|= (1 << hash_ix
);
1630 /* Disable individual receive */
1631 SETS(network_rec_config_shadow
, R_NETWORK_REC_CONFIG
, individual
, discard
);
1632 *R_NETWORK_REC_CONFIG
= network_rec_config_shadow
;
1634 *R_NETWORK_GA_0
= lo_bits
;
1635 *R_NETWORK_GA_1
= hi_bits
;
1636 spin_unlock(&lp
->lock
);
1640 e100_hardware_send_packet(struct net_local
*np
, char *buf
, int length
)
1642 D(printk("e100 send pack, buf 0x%x len %d\n", buf
, length
));
1644 spin_lock(&np
->led_lock
);
1645 if (!led_active
&& time_after(jiffies
, led_next_time
)) {
1646 /* light the network leds depending on the current speed. */
1647 e100_set_network_leds(NETWORK_ACTIVITY
);
1649 /* Set the earliest time we may clear the LED */
1650 led_next_time
= jiffies
+ NET_FLASH_TIME
;
1652 mod_timer(&clear_led_timer
, jiffies
+ HZ
/10);
1654 spin_unlock(&np
->led_lock
);
1656 /* configure the tx dma descriptor */
1657 myNextTxDesc
->descr
.sw_len
= length
;
1658 myNextTxDesc
->descr
.ctrl
= d_eop
| d_eol
| d_wait
;
1659 myNextTxDesc
->descr
.buf
= virt_to_phys(buf
);
1661 /* Move end of list */
1662 myLastTxDesc
->descr
.ctrl
&= ~d_eol
;
1663 myLastTxDesc
= myNextTxDesc
;
1665 /* Restart DMA channel */
1666 *R_DMA_CH0_CMD
= IO_STATE(R_DMA_CH0_CMD
, cmd
, restart
);
1670 e100_clear_network_leds(struct timer_list
*unused
)
1672 struct net_device
*dev
= timer_dev
;
1673 struct net_local
*np
= netdev_priv(dev
);
1675 spin_lock(&np
->led_lock
);
1677 if (led_active
&& time_after(jiffies
, led_next_time
)) {
1678 e100_set_network_leds(NO_NETWORK_ACTIVITY
);
1680 /* Set the earliest time we may set the LED */
1681 led_next_time
= jiffies
+ NET_FLASH_PAUSE
;
1685 spin_unlock(&np
->led_lock
);
1689 e100_set_network_leds(int active
)
1691 #if defined(CONFIG_ETRAX_NETWORK_LED_ON_WHEN_LINK)
1692 int light_leds
= (active
== NO_NETWORK_ACTIVITY
);
1693 #elif defined(CONFIG_ETRAX_NETWORK_LED_ON_WHEN_ACTIVITY)
1694 int light_leds
= (active
== NETWORK_ACTIVITY
);
1696 #error "Define either CONFIG_ETRAX_NETWORK_LED_ON_WHEN_LINK or CONFIG_ETRAX_NETWORK_LED_ON_WHEN_ACTIVITY"
1699 if (!current_speed
) {
1700 /* Make LED red, link is down */
1701 CRIS_LED_NETWORK_SET(CRIS_LED_OFF
);
1702 } else if (light_leds
) {
1703 if (current_speed
== 10) {
1704 CRIS_LED_NETWORK_SET(CRIS_LED_ORANGE
);
1706 CRIS_LED_NETWORK_SET(CRIS_LED_GREEN
);
1709 CRIS_LED_NETWORK_SET(CRIS_LED_OFF
);
1713 #ifdef CONFIG_NET_POLL_CONTROLLER
1715 e100_netpoll(struct net_device
* netdev
)
1717 e100rxtx_interrupt(NETWORK_DMA_TX_IRQ_NBR
, netdev
);
1723 e100_boot_setup(char* str
)
1725 struct sockaddr sa
= {0};
1728 /* Parse the colon separated Ethernet station address */
1729 for (i
= 0; i
< ETH_ALEN
; i
++) {
1731 if (sscanf(str
+ 3*i
, "%2x", &tmp
) != 1) {
1732 printk(KERN_WARNING
"Malformed station address");
1735 sa
.sa_data
[i
] = (char)tmp
;
1742 __setup("etrax100_eth=", e100_boot_setup
);