2 * Linux performance counter support for MIPS.
4 * Copyright (C) 2010 MIPS Technologies, Inc.
5 * Copyright (C) 2011 Cavium Networks, Inc.
6 * Author: Deng-Cheng Zhu
8 * This code is based on the implementation for ARM, which is in turn
9 * based on the sparc64 perf event code and the x86 code. Performance
10 * counter access is based on the MIPS Oprofile code. And the callchain
11 * support references the code of MIPS stacktrace.c.
13 * This program is free software; you can redistribute it and/or modify
14 * it under the terms of the GNU General Public License version 2 as
15 * published by the Free Software Foundation.
18 #include <linux/cpumask.h>
19 #include <linux/interrupt.h>
20 #include <linux/smp.h>
21 #include <linux/kernel.h>
22 #include <linux/perf_event.h>
23 #include <linux/uaccess.h>
26 #include <asm/irq_regs.h>
27 #include <asm/stacktrace.h>
28 #include <asm/time.h> /* For perf_irq */
30 #define MIPS_MAX_HWEVENTS 4
31 #define MIPS_TCS_PER_COUNTER 2
32 #define MIPS_CPUID_TO_COUNTER_MASK (MIPS_TCS_PER_COUNTER - 1)
34 struct cpu_hw_events
{
35 /* Array of events on this cpu. */
36 struct perf_event
*events
[MIPS_MAX_HWEVENTS
];
39 * Set the bit (indexed by the counter number) when the counter
40 * is used for an event.
42 unsigned long used_mask
[BITS_TO_LONGS(MIPS_MAX_HWEVENTS
)];
45 * Software copy of the control register for each performance counter.
46 * MIPS CPUs vary in performance counters. They use this differently,
47 * and even may not use it.
49 unsigned int saved_ctrl
[MIPS_MAX_HWEVENTS
];
51 DEFINE_PER_CPU(struct cpu_hw_events
, cpu_hw_events
) = {
55 /* The description of MIPS performance events. */
56 struct mips_perf_event
{
57 unsigned int event_id
;
59 * MIPS performance counters are indexed starting from 0.
60 * CNTR_EVEN indicates the indexes of the counters to be used are
63 unsigned int cntr_mask
;
64 #define CNTR_EVEN 0x55555555
65 #define CNTR_ODD 0xaaaaaaaa
66 #define CNTR_ALL 0xffffffff
67 #ifdef CONFIG_MIPS_MT_SMP
80 static struct mips_perf_event raw_event
;
81 static DEFINE_MUTEX(raw_event_mutex
);
83 #define C(x) PERF_COUNT_HW_CACHE_##x
91 u64 (*read_counter
)(unsigned int idx
);
92 void (*write_counter
)(unsigned int idx
, u64 val
);
93 const struct mips_perf_event
*(*map_raw_event
)(u64 config
);
94 const struct mips_perf_event (*general_event_map
)[PERF_COUNT_HW_MAX
];
95 const struct mips_perf_event (*cache_event_map
)
96 [PERF_COUNT_HW_CACHE_MAX
]
97 [PERF_COUNT_HW_CACHE_OP_MAX
]
98 [PERF_COUNT_HW_CACHE_RESULT_MAX
];
99 unsigned int num_counters
;
102 static struct mips_pmu mipspmu
;
104 #define M_PERFCTL_EVENT(event) (((event) << MIPS_PERFCTRL_EVENT_S) & \
106 #define M_PERFCTL_VPEID(vpe) ((vpe) << MIPS_PERFCTRL_VPEID_S)
108 #ifdef CONFIG_CPU_BMIPS5000
109 #define M_PERFCTL_MT_EN(filter) 0
110 #else /* !CONFIG_CPU_BMIPS5000 */
111 #define M_PERFCTL_MT_EN(filter) (filter)
112 #endif /* CONFIG_CPU_BMIPS5000 */
114 #define M_TC_EN_ALL M_PERFCTL_MT_EN(MIPS_PERFCTRL_MT_EN_ALL)
115 #define M_TC_EN_VPE M_PERFCTL_MT_EN(MIPS_PERFCTRL_MT_EN_VPE)
116 #define M_TC_EN_TC M_PERFCTL_MT_EN(MIPS_PERFCTRL_MT_EN_TC)
118 #define M_PERFCTL_COUNT_EVENT_WHENEVER (MIPS_PERFCTRL_EXL | \
124 #ifdef CONFIG_MIPS_MT_SMP
125 #define M_PERFCTL_CONFIG_MASK 0x3fff801f
127 #define M_PERFCTL_CONFIG_MASK 0x1f
131 #ifdef CONFIG_MIPS_PERF_SHARED_TC_COUNTERS
132 static int cpu_has_mipsmt_pertccounters
;
134 static DEFINE_RWLOCK(pmuint_rwlock
);
136 #if defined(CONFIG_CPU_BMIPS5000)
137 #define vpe_id() (cpu_has_mipsmt_pertccounters ? \
138 0 : (smp_processor_id() & MIPS_CPUID_TO_COUNTER_MASK))
141 * FIXME: For VSMP, vpe_id() is redefined for Perf-events, because
142 * cpu_data[cpuid].vpe_id reports 0 for _both_ CPUs.
144 #define vpe_id() (cpu_has_mipsmt_pertccounters ? \
145 0 : smp_processor_id())
148 /* Copied from op_model_mipsxx.c */
149 static unsigned int vpe_shift(void)
151 if (num_possible_cpus() > 1)
157 static unsigned int counters_total_to_per_cpu(unsigned int counters
)
159 return counters
>> vpe_shift();
162 #else /* !CONFIG_MIPS_PERF_SHARED_TC_COUNTERS */
165 #endif /* CONFIG_MIPS_PERF_SHARED_TC_COUNTERS */
167 static void resume_local_counters(void);
168 static void pause_local_counters(void);
169 static irqreturn_t
mipsxx_pmu_handle_irq(int, void *);
170 static int mipsxx_pmu_handle_shared_irq(void);
172 static unsigned int mipsxx_pmu_swizzle_perf_idx(unsigned int idx
)
179 static u64
mipsxx_pmu_read_counter(unsigned int idx
)
181 idx
= mipsxx_pmu_swizzle_perf_idx(idx
);
186 * The counters are unsigned, we must cast to truncate
189 return (u32
)read_c0_perfcntr0();
191 return (u32
)read_c0_perfcntr1();
193 return (u32
)read_c0_perfcntr2();
195 return (u32
)read_c0_perfcntr3();
197 WARN_ONCE(1, "Invalid performance counter number (%d)\n", idx
);
202 static u64
mipsxx_pmu_read_counter_64(unsigned int idx
)
204 idx
= mipsxx_pmu_swizzle_perf_idx(idx
);
208 return read_c0_perfcntr0_64();
210 return read_c0_perfcntr1_64();
212 return read_c0_perfcntr2_64();
214 return read_c0_perfcntr3_64();
216 WARN_ONCE(1, "Invalid performance counter number (%d)\n", idx
);
221 static void mipsxx_pmu_write_counter(unsigned int idx
, u64 val
)
223 idx
= mipsxx_pmu_swizzle_perf_idx(idx
);
227 write_c0_perfcntr0(val
);
230 write_c0_perfcntr1(val
);
233 write_c0_perfcntr2(val
);
236 write_c0_perfcntr3(val
);
241 static void mipsxx_pmu_write_counter_64(unsigned int idx
, u64 val
)
243 idx
= mipsxx_pmu_swizzle_perf_idx(idx
);
247 write_c0_perfcntr0_64(val
);
250 write_c0_perfcntr1_64(val
);
253 write_c0_perfcntr2_64(val
);
256 write_c0_perfcntr3_64(val
);
261 static unsigned int mipsxx_pmu_read_control(unsigned int idx
)
263 idx
= mipsxx_pmu_swizzle_perf_idx(idx
);
267 return read_c0_perfctrl0();
269 return read_c0_perfctrl1();
271 return read_c0_perfctrl2();
273 return read_c0_perfctrl3();
275 WARN_ONCE(1, "Invalid performance counter number (%d)\n", idx
);
280 static void mipsxx_pmu_write_control(unsigned int idx
, unsigned int val
)
282 idx
= mipsxx_pmu_swizzle_perf_idx(idx
);
286 write_c0_perfctrl0(val
);
289 write_c0_perfctrl1(val
);
292 write_c0_perfctrl2(val
);
295 write_c0_perfctrl3(val
);
300 static int mipsxx_pmu_alloc_counter(struct cpu_hw_events
*cpuc
,
301 struct hw_perf_event
*hwc
)
306 * We only need to care the counter mask. The range has been
307 * checked definitely.
309 unsigned long cntr_mask
= (hwc
->event_base
>> 8) & 0xffff;
311 for (i
= mipspmu
.num_counters
- 1; i
>= 0; i
--) {
313 * Note that some MIPS perf events can be counted by both
314 * even and odd counters, wheresas many other are only by
315 * even _or_ odd counters. This introduces an issue that
316 * when the former kind of event takes the counter the
317 * latter kind of event wants to use, then the "counter
318 * allocation" for the latter event will fail. In fact if
319 * they can be dynamically swapped, they both feel happy.
320 * But here we leave this issue alone for now.
322 if (test_bit(i
, &cntr_mask
) &&
323 !test_and_set_bit(i
, cpuc
->used_mask
))
330 static void mipsxx_pmu_enable_event(struct hw_perf_event
*evt
, int idx
)
332 struct cpu_hw_events
*cpuc
= this_cpu_ptr(&cpu_hw_events
);
334 WARN_ON(idx
< 0 || idx
>= mipspmu
.num_counters
);
336 cpuc
->saved_ctrl
[idx
] = M_PERFCTL_EVENT(evt
->event_base
& 0xff) |
337 (evt
->config_base
& M_PERFCTL_CONFIG_MASK
) |
338 /* Make sure interrupt enabled. */
340 if (IS_ENABLED(CONFIG_CPU_BMIPS5000
))
341 /* enable the counter for the calling thread */
342 cpuc
->saved_ctrl
[idx
] |=
343 (1 << (12 + vpe_id())) | BRCM_PERFCTRL_TC
;
346 * We do not actually let the counter run. Leave it until start().
350 static void mipsxx_pmu_disable_event(int idx
)
352 struct cpu_hw_events
*cpuc
= this_cpu_ptr(&cpu_hw_events
);
355 WARN_ON(idx
< 0 || idx
>= mipspmu
.num_counters
);
357 local_irq_save(flags
);
358 cpuc
->saved_ctrl
[idx
] = mipsxx_pmu_read_control(idx
) &
359 ~M_PERFCTL_COUNT_EVENT_WHENEVER
;
360 mipsxx_pmu_write_control(idx
, cpuc
->saved_ctrl
[idx
]);
361 local_irq_restore(flags
);
364 static int mipspmu_event_set_period(struct perf_event
*event
,
365 struct hw_perf_event
*hwc
,
368 u64 left
= local64_read(&hwc
->period_left
);
369 u64 period
= hwc
->sample_period
;
372 if (unlikely((left
+ period
) & (1ULL << 63))) {
373 /* left underflowed by more than period. */
375 local64_set(&hwc
->period_left
, left
);
376 hwc
->last_period
= period
;
378 } else if (unlikely((left
+ period
) <= period
)) {
379 /* left underflowed by less than period. */
381 local64_set(&hwc
->period_left
, left
);
382 hwc
->last_period
= period
;
386 if (left
> mipspmu
.max_period
) {
387 left
= mipspmu
.max_period
;
388 local64_set(&hwc
->period_left
, left
);
391 local64_set(&hwc
->prev_count
, mipspmu
.overflow
- left
);
393 mipspmu
.write_counter(idx
, mipspmu
.overflow
- left
);
395 perf_event_update_userpage(event
);
400 static void mipspmu_event_update(struct perf_event
*event
,
401 struct hw_perf_event
*hwc
,
404 u64 prev_raw_count
, new_raw_count
;
408 prev_raw_count
= local64_read(&hwc
->prev_count
);
409 new_raw_count
= mipspmu
.read_counter(idx
);
411 if (local64_cmpxchg(&hwc
->prev_count
, prev_raw_count
,
412 new_raw_count
) != prev_raw_count
)
415 delta
= new_raw_count
- prev_raw_count
;
417 local64_add(delta
, &event
->count
);
418 local64_sub(delta
, &hwc
->period_left
);
421 static void mipspmu_start(struct perf_event
*event
, int flags
)
423 struct hw_perf_event
*hwc
= &event
->hw
;
425 if (flags
& PERF_EF_RELOAD
)
426 WARN_ON_ONCE(!(hwc
->state
& PERF_HES_UPTODATE
));
430 /* Set the period for the event. */
431 mipspmu_event_set_period(event
, hwc
, hwc
->idx
);
433 /* Enable the event. */
434 mipsxx_pmu_enable_event(hwc
, hwc
->idx
);
437 static void mipspmu_stop(struct perf_event
*event
, int flags
)
439 struct hw_perf_event
*hwc
= &event
->hw
;
441 if (!(hwc
->state
& PERF_HES_STOPPED
)) {
442 /* We are working on a local event. */
443 mipsxx_pmu_disable_event(hwc
->idx
);
445 mipspmu_event_update(event
, hwc
, hwc
->idx
);
446 hwc
->state
|= PERF_HES_STOPPED
| PERF_HES_UPTODATE
;
450 static int mipspmu_add(struct perf_event
*event
, int flags
)
452 struct cpu_hw_events
*cpuc
= this_cpu_ptr(&cpu_hw_events
);
453 struct hw_perf_event
*hwc
= &event
->hw
;
457 perf_pmu_disable(event
->pmu
);
459 /* To look for a free counter for this event. */
460 idx
= mipsxx_pmu_alloc_counter(cpuc
, hwc
);
467 * If there is an event in the counter we are going to use then
468 * make sure it is disabled.
471 mipsxx_pmu_disable_event(idx
);
472 cpuc
->events
[idx
] = event
;
474 hwc
->state
= PERF_HES_STOPPED
| PERF_HES_UPTODATE
;
475 if (flags
& PERF_EF_START
)
476 mipspmu_start(event
, PERF_EF_RELOAD
);
478 /* Propagate our changes to the userspace mapping. */
479 perf_event_update_userpage(event
);
482 perf_pmu_enable(event
->pmu
);
486 static void mipspmu_del(struct perf_event
*event
, int flags
)
488 struct cpu_hw_events
*cpuc
= this_cpu_ptr(&cpu_hw_events
);
489 struct hw_perf_event
*hwc
= &event
->hw
;
492 WARN_ON(idx
< 0 || idx
>= mipspmu
.num_counters
);
494 mipspmu_stop(event
, PERF_EF_UPDATE
);
495 cpuc
->events
[idx
] = NULL
;
496 clear_bit(idx
, cpuc
->used_mask
);
498 perf_event_update_userpage(event
);
501 static void mipspmu_read(struct perf_event
*event
)
503 struct hw_perf_event
*hwc
= &event
->hw
;
505 /* Don't read disabled counters! */
509 mipspmu_event_update(event
, hwc
, hwc
->idx
);
512 static void mipspmu_enable(struct pmu
*pmu
)
514 #ifdef CONFIG_MIPS_PERF_SHARED_TC_COUNTERS
515 write_unlock(&pmuint_rwlock
);
517 resume_local_counters();
521 * MIPS performance counters can be per-TC. The control registers can
522 * not be directly accessed across CPUs. Hence if we want to do global
523 * control, we need cross CPU calls. on_each_cpu() can help us, but we
524 * can not make sure this function is called with interrupts enabled. So
525 * here we pause local counters and then grab a rwlock and leave the
526 * counters on other CPUs alone. If any counter interrupt raises while
527 * we own the write lock, simply pause local counters on that CPU and
528 * spin in the handler. Also we know we won't be switched to another
529 * CPU after pausing local counters and before grabbing the lock.
531 static void mipspmu_disable(struct pmu
*pmu
)
533 pause_local_counters();
534 #ifdef CONFIG_MIPS_PERF_SHARED_TC_COUNTERS
535 write_lock(&pmuint_rwlock
);
539 static atomic_t active_events
= ATOMIC_INIT(0);
540 static DEFINE_MUTEX(pmu_reserve_mutex
);
541 static int (*save_perf_irq
)(void);
543 static int mipspmu_get_irq(void)
547 if (mipspmu
.irq
>= 0) {
548 /* Request my own irq handler. */
549 err
= request_irq(mipspmu
.irq
, mipsxx_pmu_handle_irq
,
550 IRQF_PERCPU
| IRQF_NOBALANCING
|
551 IRQF_NO_THREAD
| IRQF_NO_SUSPEND
|
553 "mips_perf_pmu", &mipspmu
);
555 pr_warn("Unable to request IRQ%d for MIPS performance counters!\n",
558 } else if (cp0_perfcount_irq
< 0) {
560 * We are sharing the irq number with the timer interrupt.
562 save_perf_irq
= perf_irq
;
563 perf_irq
= mipsxx_pmu_handle_shared_irq
;
566 pr_warn("The platform hasn't properly defined its interrupt controller\n");
573 static void mipspmu_free_irq(void)
575 if (mipspmu
.irq
>= 0)
576 free_irq(mipspmu
.irq
, &mipspmu
);
577 else if (cp0_perfcount_irq
< 0)
578 perf_irq
= save_perf_irq
;
582 * mipsxx/rm9000/loongson2 have different performance counters, they have
583 * specific low-level init routines.
585 static void reset_counters(void *arg
);
586 static int __hw_perf_event_init(struct perf_event
*event
);
588 static void hw_perf_event_destroy(struct perf_event
*event
)
590 if (atomic_dec_and_mutex_lock(&active_events
,
591 &pmu_reserve_mutex
)) {
593 * We must not call the destroy function with interrupts
596 on_each_cpu(reset_counters
,
597 (void *)(long)mipspmu
.num_counters
, 1);
599 mutex_unlock(&pmu_reserve_mutex
);
603 static int mipspmu_event_init(struct perf_event
*event
)
607 /* does not support taken branch sampling */
608 if (has_branch_stack(event
))
611 switch (event
->attr
.type
) {
613 case PERF_TYPE_HARDWARE
:
614 case PERF_TYPE_HW_CACHE
:
621 if ((unsigned int)event
->cpu
>= nr_cpumask_bits
||
622 (event
->cpu
>= 0 && !cpu_online(event
->cpu
)))
625 if (!atomic_inc_not_zero(&active_events
)) {
626 mutex_lock(&pmu_reserve_mutex
);
627 if (atomic_read(&active_events
) == 0)
628 err
= mipspmu_get_irq();
631 atomic_inc(&active_events
);
632 mutex_unlock(&pmu_reserve_mutex
);
638 return __hw_perf_event_init(event
);
641 static struct pmu pmu
= {
642 .pmu_enable
= mipspmu_enable
,
643 .pmu_disable
= mipspmu_disable
,
644 .event_init
= mipspmu_event_init
,
647 .start
= mipspmu_start
,
648 .stop
= mipspmu_stop
,
649 .read
= mipspmu_read
,
652 static unsigned int mipspmu_perf_event_encode(const struct mips_perf_event
*pev
)
655 * Top 8 bits for range, next 16 bits for cntr_mask, lowest 8 bits for
658 #ifdef CONFIG_MIPS_MT_SMP
659 return ((unsigned int)pev
->range
<< 24) |
660 (pev
->cntr_mask
& 0xffff00) |
661 (pev
->event_id
& 0xff);
663 return (pev
->cntr_mask
& 0xffff00) |
664 (pev
->event_id
& 0xff);
668 static const struct mips_perf_event
*mipspmu_map_general_event(int idx
)
671 if ((*mipspmu
.general_event_map
)[idx
].cntr_mask
== 0)
672 return ERR_PTR(-EOPNOTSUPP
);
673 return &(*mipspmu
.general_event_map
)[idx
];
676 static const struct mips_perf_event
*mipspmu_map_cache_event(u64 config
)
678 unsigned int cache_type
, cache_op
, cache_result
;
679 const struct mips_perf_event
*pev
;
681 cache_type
= (config
>> 0) & 0xff;
682 if (cache_type
>= PERF_COUNT_HW_CACHE_MAX
)
683 return ERR_PTR(-EINVAL
);
685 cache_op
= (config
>> 8) & 0xff;
686 if (cache_op
>= PERF_COUNT_HW_CACHE_OP_MAX
)
687 return ERR_PTR(-EINVAL
);
689 cache_result
= (config
>> 16) & 0xff;
690 if (cache_result
>= PERF_COUNT_HW_CACHE_RESULT_MAX
)
691 return ERR_PTR(-EINVAL
);
693 pev
= &((*mipspmu
.cache_event_map
)
698 if (pev
->cntr_mask
== 0)
699 return ERR_PTR(-EOPNOTSUPP
);
705 static int validate_group(struct perf_event
*event
)
707 struct perf_event
*sibling
, *leader
= event
->group_leader
;
708 struct cpu_hw_events fake_cpuc
;
710 memset(&fake_cpuc
, 0, sizeof(fake_cpuc
));
712 if (mipsxx_pmu_alloc_counter(&fake_cpuc
, &leader
->hw
) < 0)
715 list_for_each_entry(sibling
, &leader
->sibling_list
, group_entry
) {
716 if (mipsxx_pmu_alloc_counter(&fake_cpuc
, &sibling
->hw
) < 0)
720 if (mipsxx_pmu_alloc_counter(&fake_cpuc
, &event
->hw
) < 0)
726 /* This is needed by specific irq handlers in perf_event_*.c */
727 static void handle_associated_event(struct cpu_hw_events
*cpuc
,
728 int idx
, struct perf_sample_data
*data
,
729 struct pt_regs
*regs
)
731 struct perf_event
*event
= cpuc
->events
[idx
];
732 struct hw_perf_event
*hwc
= &event
->hw
;
734 mipspmu_event_update(event
, hwc
, idx
);
735 data
->period
= event
->hw
.last_period
;
736 if (!mipspmu_event_set_period(event
, hwc
, idx
))
739 if (perf_event_overflow(event
, data
, regs
))
740 mipsxx_pmu_disable_event(idx
);
744 static int __n_counters(void)
748 if (!(read_c0_perfctrl0() & MIPS_PERFCTRL_M
))
750 if (!(read_c0_perfctrl1() & MIPS_PERFCTRL_M
))
752 if (!(read_c0_perfctrl2() & MIPS_PERFCTRL_M
))
758 static int n_counters(void)
762 switch (current_cpu_type()) {
774 counters
= __n_counters();
780 static void reset_counters(void *arg
)
782 int counters
= (int)(long)arg
;
785 mipsxx_pmu_write_control(3, 0);
786 mipspmu
.write_counter(3, 0);
788 mipsxx_pmu_write_control(2, 0);
789 mipspmu
.write_counter(2, 0);
791 mipsxx_pmu_write_control(1, 0);
792 mipspmu
.write_counter(1, 0);
794 mipsxx_pmu_write_control(0, 0);
795 mipspmu
.write_counter(0, 0);
799 /* 24K/34K/1004K/interAptiv/loongson1 cores share the same event map. */
800 static const struct mips_perf_event mipsxxcore_event_map
801 [PERF_COUNT_HW_MAX
] = {
802 [PERF_COUNT_HW_CPU_CYCLES
] = { 0x00, CNTR_EVEN
| CNTR_ODD
, P
},
803 [PERF_COUNT_HW_INSTRUCTIONS
] = { 0x01, CNTR_EVEN
| CNTR_ODD
, T
},
804 [PERF_COUNT_HW_BRANCH_INSTRUCTIONS
] = { 0x02, CNTR_EVEN
, T
},
805 [PERF_COUNT_HW_BRANCH_MISSES
] = { 0x02, CNTR_ODD
, T
},
808 /* 74K/proAptiv core has different branch event code. */
809 static const struct mips_perf_event mipsxxcore_event_map2
810 [PERF_COUNT_HW_MAX
] = {
811 [PERF_COUNT_HW_CPU_CYCLES
] = { 0x00, CNTR_EVEN
| CNTR_ODD
, P
},
812 [PERF_COUNT_HW_INSTRUCTIONS
] = { 0x01, CNTR_EVEN
| CNTR_ODD
, T
},
813 [PERF_COUNT_HW_BRANCH_INSTRUCTIONS
] = { 0x27, CNTR_EVEN
, T
},
814 [PERF_COUNT_HW_BRANCH_MISSES
] = { 0x27, CNTR_ODD
, T
},
817 static const struct mips_perf_event i6x00_event_map
[PERF_COUNT_HW_MAX
] = {
818 [PERF_COUNT_HW_CPU_CYCLES
] = { 0x00, CNTR_EVEN
| CNTR_ODD
},
819 [PERF_COUNT_HW_INSTRUCTIONS
] = { 0x01, CNTR_EVEN
| CNTR_ODD
},
820 /* These only count dcache, not icache */
821 [PERF_COUNT_HW_CACHE_REFERENCES
] = { 0x45, CNTR_EVEN
| CNTR_ODD
},
822 [PERF_COUNT_HW_CACHE_MISSES
] = { 0x48, CNTR_EVEN
| CNTR_ODD
},
823 [PERF_COUNT_HW_BRANCH_INSTRUCTIONS
] = { 0x15, CNTR_EVEN
| CNTR_ODD
},
824 [PERF_COUNT_HW_BRANCH_MISSES
] = { 0x16, CNTR_EVEN
| CNTR_ODD
},
827 static const struct mips_perf_event loongson3_event_map
[PERF_COUNT_HW_MAX
] = {
828 [PERF_COUNT_HW_CPU_CYCLES
] = { 0x00, CNTR_EVEN
},
829 [PERF_COUNT_HW_INSTRUCTIONS
] = { 0x00, CNTR_ODD
},
830 [PERF_COUNT_HW_BRANCH_INSTRUCTIONS
] = { 0x01, CNTR_EVEN
},
831 [PERF_COUNT_HW_BRANCH_MISSES
] = { 0x01, CNTR_ODD
},
834 static const struct mips_perf_event octeon_event_map
[PERF_COUNT_HW_MAX
] = {
835 [PERF_COUNT_HW_CPU_CYCLES
] = { 0x01, CNTR_ALL
},
836 [PERF_COUNT_HW_INSTRUCTIONS
] = { 0x03, CNTR_ALL
},
837 [PERF_COUNT_HW_CACHE_REFERENCES
] = { 0x2b, CNTR_ALL
},
838 [PERF_COUNT_HW_CACHE_MISSES
] = { 0x2e, CNTR_ALL
},
839 [PERF_COUNT_HW_BRANCH_INSTRUCTIONS
] = { 0x08, CNTR_ALL
},
840 [PERF_COUNT_HW_BRANCH_MISSES
] = { 0x09, CNTR_ALL
},
841 [PERF_COUNT_HW_BUS_CYCLES
] = { 0x25, CNTR_ALL
},
844 static const struct mips_perf_event bmips5000_event_map
845 [PERF_COUNT_HW_MAX
] = {
846 [PERF_COUNT_HW_CPU_CYCLES
] = { 0x00, CNTR_EVEN
| CNTR_ODD
, T
},
847 [PERF_COUNT_HW_INSTRUCTIONS
] = { 0x01, CNTR_EVEN
| CNTR_ODD
, T
},
848 [PERF_COUNT_HW_BRANCH_MISSES
] = { 0x02, CNTR_ODD
, T
},
851 static const struct mips_perf_event xlp_event_map
[PERF_COUNT_HW_MAX
] = {
852 [PERF_COUNT_HW_CPU_CYCLES
] = { 0x01, CNTR_ALL
},
853 [PERF_COUNT_HW_INSTRUCTIONS
] = { 0x18, CNTR_ALL
}, /* PAPI_TOT_INS */
854 [PERF_COUNT_HW_CACHE_REFERENCES
] = { 0x04, CNTR_ALL
}, /* PAPI_L1_ICA */
855 [PERF_COUNT_HW_CACHE_MISSES
] = { 0x07, CNTR_ALL
}, /* PAPI_L1_ICM */
856 [PERF_COUNT_HW_BRANCH_INSTRUCTIONS
] = { 0x1b, CNTR_ALL
}, /* PAPI_BR_CN */
857 [PERF_COUNT_HW_BRANCH_MISSES
] = { 0x1c, CNTR_ALL
}, /* PAPI_BR_MSP */
860 /* 24K/34K/1004K/interAptiv/loongson1 cores share the same cache event map. */
861 static const struct mips_perf_event mipsxxcore_cache_map
862 [PERF_COUNT_HW_CACHE_MAX
]
863 [PERF_COUNT_HW_CACHE_OP_MAX
]
864 [PERF_COUNT_HW_CACHE_RESULT_MAX
] = {
867 * Like some other architectures (e.g. ARM), the performance
868 * counters don't differentiate between read and write
869 * accesses/misses, so this isn't strictly correct, but it's the
870 * best we can do. Writes and reads get combined.
873 [C(RESULT_ACCESS
)] = { 0x0a, CNTR_EVEN
, T
},
874 [C(RESULT_MISS
)] = { 0x0b, CNTR_EVEN
| CNTR_ODD
, T
},
877 [C(RESULT_ACCESS
)] = { 0x0a, CNTR_EVEN
, T
},
878 [C(RESULT_MISS
)] = { 0x0b, CNTR_EVEN
| CNTR_ODD
, T
},
883 [C(RESULT_ACCESS
)] = { 0x09, CNTR_EVEN
, T
},
884 [C(RESULT_MISS
)] = { 0x09, CNTR_ODD
, T
},
887 [C(RESULT_ACCESS
)] = { 0x09, CNTR_EVEN
, T
},
888 [C(RESULT_MISS
)] = { 0x09, CNTR_ODD
, T
},
891 [C(RESULT_ACCESS
)] = { 0x14, CNTR_EVEN
, T
},
893 * Note that MIPS has only "hit" events countable for
894 * the prefetch operation.
900 [C(RESULT_ACCESS
)] = { 0x15, CNTR_ODD
, P
},
901 [C(RESULT_MISS
)] = { 0x16, CNTR_EVEN
, P
},
904 [C(RESULT_ACCESS
)] = { 0x15, CNTR_ODD
, P
},
905 [C(RESULT_MISS
)] = { 0x16, CNTR_EVEN
, P
},
910 [C(RESULT_ACCESS
)] = { 0x06, CNTR_EVEN
, T
},
911 [C(RESULT_MISS
)] = { 0x06, CNTR_ODD
, T
},
914 [C(RESULT_ACCESS
)] = { 0x06, CNTR_EVEN
, T
},
915 [C(RESULT_MISS
)] = { 0x06, CNTR_ODD
, T
},
920 [C(RESULT_ACCESS
)] = { 0x05, CNTR_EVEN
, T
},
921 [C(RESULT_MISS
)] = { 0x05, CNTR_ODD
, T
},
924 [C(RESULT_ACCESS
)] = { 0x05, CNTR_EVEN
, T
},
925 [C(RESULT_MISS
)] = { 0x05, CNTR_ODD
, T
},
929 /* Using the same code for *HW_BRANCH* */
931 [C(RESULT_ACCESS
)] = { 0x02, CNTR_EVEN
, T
},
932 [C(RESULT_MISS
)] = { 0x02, CNTR_ODD
, T
},
935 [C(RESULT_ACCESS
)] = { 0x02, CNTR_EVEN
, T
},
936 [C(RESULT_MISS
)] = { 0x02, CNTR_ODD
, T
},
941 /* 74K/proAptiv core has completely different cache event map. */
942 static const struct mips_perf_event mipsxxcore_cache_map2
943 [PERF_COUNT_HW_CACHE_MAX
]
944 [PERF_COUNT_HW_CACHE_OP_MAX
]
945 [PERF_COUNT_HW_CACHE_RESULT_MAX
] = {
948 * Like some other architectures (e.g. ARM), the performance
949 * counters don't differentiate between read and write
950 * accesses/misses, so this isn't strictly correct, but it's the
951 * best we can do. Writes and reads get combined.
954 [C(RESULT_ACCESS
)] = { 0x17, CNTR_ODD
, T
},
955 [C(RESULT_MISS
)] = { 0x18, CNTR_ODD
, T
},
958 [C(RESULT_ACCESS
)] = { 0x17, CNTR_ODD
, T
},
959 [C(RESULT_MISS
)] = { 0x18, CNTR_ODD
, T
},
964 [C(RESULT_ACCESS
)] = { 0x06, CNTR_EVEN
, T
},
965 [C(RESULT_MISS
)] = { 0x06, CNTR_ODD
, T
},
968 [C(RESULT_ACCESS
)] = { 0x06, CNTR_EVEN
, T
},
969 [C(RESULT_MISS
)] = { 0x06, CNTR_ODD
, T
},
972 [C(RESULT_ACCESS
)] = { 0x34, CNTR_EVEN
, T
},
974 * Note that MIPS has only "hit" events countable for
975 * the prefetch operation.
981 [C(RESULT_ACCESS
)] = { 0x1c, CNTR_ODD
, P
},
982 [C(RESULT_MISS
)] = { 0x1d, CNTR_EVEN
, P
},
985 [C(RESULT_ACCESS
)] = { 0x1c, CNTR_ODD
, P
},
986 [C(RESULT_MISS
)] = { 0x1d, CNTR_EVEN
, P
},
990 * 74K core does not have specific DTLB events. proAptiv core has
991 * "speculative" DTLB events which are numbered 0x63 (even/odd) and
992 * not included here. One can use raw events if really needed.
996 [C(RESULT_ACCESS
)] = { 0x04, CNTR_EVEN
, T
},
997 [C(RESULT_MISS
)] = { 0x04, CNTR_ODD
, T
},
1000 [C(RESULT_ACCESS
)] = { 0x04, CNTR_EVEN
, T
},
1001 [C(RESULT_MISS
)] = { 0x04, CNTR_ODD
, T
},
1005 /* Using the same code for *HW_BRANCH* */
1007 [C(RESULT_ACCESS
)] = { 0x27, CNTR_EVEN
, T
},
1008 [C(RESULT_MISS
)] = { 0x27, CNTR_ODD
, T
},
1011 [C(RESULT_ACCESS
)] = { 0x27, CNTR_EVEN
, T
},
1012 [C(RESULT_MISS
)] = { 0x27, CNTR_ODD
, T
},
1017 static const struct mips_perf_event i6x00_cache_map
1018 [PERF_COUNT_HW_CACHE_MAX
]
1019 [PERF_COUNT_HW_CACHE_OP_MAX
]
1020 [PERF_COUNT_HW_CACHE_RESULT_MAX
] = {
1023 [C(RESULT_ACCESS
)] = { 0x46, CNTR_EVEN
| CNTR_ODD
},
1024 [C(RESULT_MISS
)] = { 0x49, CNTR_EVEN
| CNTR_ODD
},
1027 [C(RESULT_ACCESS
)] = { 0x47, CNTR_EVEN
| CNTR_ODD
},
1028 [C(RESULT_MISS
)] = { 0x4a, CNTR_EVEN
| CNTR_ODD
},
1033 [C(RESULT_ACCESS
)] = { 0x84, CNTR_EVEN
| CNTR_ODD
},
1034 [C(RESULT_MISS
)] = { 0x85, CNTR_EVEN
| CNTR_ODD
},
1038 /* Can't distinguish read & write */
1040 [C(RESULT_ACCESS
)] = { 0x40, CNTR_EVEN
| CNTR_ODD
},
1041 [C(RESULT_MISS
)] = { 0x41, CNTR_EVEN
| CNTR_ODD
},
1044 [C(RESULT_ACCESS
)] = { 0x40, CNTR_EVEN
| CNTR_ODD
},
1045 [C(RESULT_MISS
)] = { 0x41, CNTR_EVEN
| CNTR_ODD
},
1049 /* Conditional branches / mispredicted */
1051 [C(RESULT_ACCESS
)] = { 0x15, CNTR_EVEN
| CNTR_ODD
},
1052 [C(RESULT_MISS
)] = { 0x16, CNTR_EVEN
| CNTR_ODD
},
1057 static const struct mips_perf_event loongson3_cache_map
1058 [PERF_COUNT_HW_CACHE_MAX
]
1059 [PERF_COUNT_HW_CACHE_OP_MAX
]
1060 [PERF_COUNT_HW_CACHE_RESULT_MAX
] = {
1063 * Like some other architectures (e.g. ARM), the performance
1064 * counters don't differentiate between read and write
1065 * accesses/misses, so this isn't strictly correct, but it's the
1066 * best we can do. Writes and reads get combined.
1069 [C(RESULT_MISS
)] = { 0x04, CNTR_ODD
},
1072 [C(RESULT_MISS
)] = { 0x04, CNTR_ODD
},
1077 [C(RESULT_MISS
)] = { 0x04, CNTR_EVEN
},
1080 [C(RESULT_MISS
)] = { 0x04, CNTR_EVEN
},
1085 [C(RESULT_MISS
)] = { 0x09, CNTR_ODD
},
1088 [C(RESULT_MISS
)] = { 0x09, CNTR_ODD
},
1093 [C(RESULT_MISS
)] = { 0x0c, CNTR_ODD
},
1096 [C(RESULT_MISS
)] = { 0x0c, CNTR_ODD
},
1100 /* Using the same code for *HW_BRANCH* */
1102 [C(RESULT_ACCESS
)] = { 0x02, CNTR_EVEN
},
1103 [C(RESULT_MISS
)] = { 0x02, CNTR_ODD
},
1106 [C(RESULT_ACCESS
)] = { 0x02, CNTR_EVEN
},
1107 [C(RESULT_MISS
)] = { 0x02, CNTR_ODD
},
1113 static const struct mips_perf_event bmips5000_cache_map
1114 [PERF_COUNT_HW_CACHE_MAX
]
1115 [PERF_COUNT_HW_CACHE_OP_MAX
]
1116 [PERF_COUNT_HW_CACHE_RESULT_MAX
] = {
1119 * Like some other architectures (e.g. ARM), the performance
1120 * counters don't differentiate between read and write
1121 * accesses/misses, so this isn't strictly correct, but it's the
1122 * best we can do. Writes and reads get combined.
1125 [C(RESULT_ACCESS
)] = { 12, CNTR_EVEN
, T
},
1126 [C(RESULT_MISS
)] = { 12, CNTR_ODD
, T
},
1129 [C(RESULT_ACCESS
)] = { 12, CNTR_EVEN
, T
},
1130 [C(RESULT_MISS
)] = { 12, CNTR_ODD
, T
},
1135 [C(RESULT_ACCESS
)] = { 10, CNTR_EVEN
, T
},
1136 [C(RESULT_MISS
)] = { 10, CNTR_ODD
, T
},
1139 [C(RESULT_ACCESS
)] = { 10, CNTR_EVEN
, T
},
1140 [C(RESULT_MISS
)] = { 10, CNTR_ODD
, T
},
1142 [C(OP_PREFETCH
)] = {
1143 [C(RESULT_ACCESS
)] = { 23, CNTR_EVEN
, T
},
1145 * Note that MIPS has only "hit" events countable for
1146 * the prefetch operation.
1152 [C(RESULT_ACCESS
)] = { 28, CNTR_EVEN
, P
},
1153 [C(RESULT_MISS
)] = { 28, CNTR_ODD
, P
},
1156 [C(RESULT_ACCESS
)] = { 28, CNTR_EVEN
, P
},
1157 [C(RESULT_MISS
)] = { 28, CNTR_ODD
, P
},
1161 /* Using the same code for *HW_BRANCH* */
1163 [C(RESULT_MISS
)] = { 0x02, CNTR_ODD
, T
},
1166 [C(RESULT_MISS
)] = { 0x02, CNTR_ODD
, T
},
1172 static const struct mips_perf_event octeon_cache_map
1173 [PERF_COUNT_HW_CACHE_MAX
]
1174 [PERF_COUNT_HW_CACHE_OP_MAX
]
1175 [PERF_COUNT_HW_CACHE_RESULT_MAX
] = {
1178 [C(RESULT_ACCESS
)] = { 0x2b, CNTR_ALL
},
1179 [C(RESULT_MISS
)] = { 0x2e, CNTR_ALL
},
1182 [C(RESULT_ACCESS
)] = { 0x30, CNTR_ALL
},
1187 [C(RESULT_ACCESS
)] = { 0x18, CNTR_ALL
},
1189 [C(OP_PREFETCH
)] = {
1190 [C(RESULT_ACCESS
)] = { 0x19, CNTR_ALL
},
1195 * Only general DTLB misses are counted use the same event for
1199 [C(RESULT_MISS
)] = { 0x35, CNTR_ALL
},
1202 [C(RESULT_MISS
)] = { 0x35, CNTR_ALL
},
1207 [C(RESULT_MISS
)] = { 0x37, CNTR_ALL
},
1212 static const struct mips_perf_event xlp_cache_map
1213 [PERF_COUNT_HW_CACHE_MAX
]
1214 [PERF_COUNT_HW_CACHE_OP_MAX
]
1215 [PERF_COUNT_HW_CACHE_RESULT_MAX
] = {
1218 [C(RESULT_ACCESS
)] = { 0x31, CNTR_ALL
}, /* PAPI_L1_DCR */
1219 [C(RESULT_MISS
)] = { 0x30, CNTR_ALL
}, /* PAPI_L1_LDM */
1222 [C(RESULT_ACCESS
)] = { 0x2f, CNTR_ALL
}, /* PAPI_L1_DCW */
1223 [C(RESULT_MISS
)] = { 0x2e, CNTR_ALL
}, /* PAPI_L1_STM */
1228 [C(RESULT_ACCESS
)] = { 0x04, CNTR_ALL
}, /* PAPI_L1_ICA */
1229 [C(RESULT_MISS
)] = { 0x07, CNTR_ALL
}, /* PAPI_L1_ICM */
1234 [C(RESULT_ACCESS
)] = { 0x35, CNTR_ALL
}, /* PAPI_L2_DCR */
1235 [C(RESULT_MISS
)] = { 0x37, CNTR_ALL
}, /* PAPI_L2_LDM */
1238 [C(RESULT_ACCESS
)] = { 0x34, CNTR_ALL
}, /* PAPI_L2_DCA */
1239 [C(RESULT_MISS
)] = { 0x36, CNTR_ALL
}, /* PAPI_L2_DCM */
1244 * Only general DTLB misses are counted use the same event for
1248 [C(RESULT_MISS
)] = { 0x2d, CNTR_ALL
}, /* PAPI_TLB_DM */
1251 [C(RESULT_MISS
)] = { 0x2d, CNTR_ALL
}, /* PAPI_TLB_DM */
1256 [C(RESULT_MISS
)] = { 0x08, CNTR_ALL
}, /* PAPI_TLB_IM */
1259 [C(RESULT_MISS
)] = { 0x08, CNTR_ALL
}, /* PAPI_TLB_IM */
1264 [C(RESULT_MISS
)] = { 0x25, CNTR_ALL
},
1269 #ifdef CONFIG_MIPS_MT_SMP
1270 static void check_and_calc_range(struct perf_event
*event
,
1271 const struct mips_perf_event
*pev
)
1273 struct hw_perf_event
*hwc
= &event
->hw
;
1275 if (event
->cpu
>= 0) {
1276 if (pev
->range
> V
) {
1278 * The user selected an event that is processor
1279 * wide, while expecting it to be VPE wide.
1281 hwc
->config_base
|= M_TC_EN_ALL
;
1284 * FIXME: cpu_data[event->cpu].vpe_id reports 0
1287 hwc
->config_base
|= M_PERFCTL_VPEID(event
->cpu
);
1288 hwc
->config_base
|= M_TC_EN_VPE
;
1291 hwc
->config_base
|= M_TC_EN_ALL
;
1294 static void check_and_calc_range(struct perf_event
*event
,
1295 const struct mips_perf_event
*pev
)
1300 static int __hw_perf_event_init(struct perf_event
*event
)
1302 struct perf_event_attr
*attr
= &event
->attr
;
1303 struct hw_perf_event
*hwc
= &event
->hw
;
1304 const struct mips_perf_event
*pev
;
1307 /* Returning MIPS event descriptor for generic perf event. */
1308 if (PERF_TYPE_HARDWARE
== event
->attr
.type
) {
1309 if (event
->attr
.config
>= PERF_COUNT_HW_MAX
)
1311 pev
= mipspmu_map_general_event(event
->attr
.config
);
1312 } else if (PERF_TYPE_HW_CACHE
== event
->attr
.type
) {
1313 pev
= mipspmu_map_cache_event(event
->attr
.config
);
1314 } else if (PERF_TYPE_RAW
== event
->attr
.type
) {
1315 /* We are working on the global raw event. */
1316 mutex_lock(&raw_event_mutex
);
1317 pev
= mipspmu
.map_raw_event(event
->attr
.config
);
1319 /* The event type is not (yet) supported. */
1324 if (PERF_TYPE_RAW
== event
->attr
.type
)
1325 mutex_unlock(&raw_event_mutex
);
1326 return PTR_ERR(pev
);
1330 * We allow max flexibility on how each individual counter shared
1331 * by the single CPU operates (the mode exclusion and the range).
1333 hwc
->config_base
= MIPS_PERFCTRL_IE
;
1335 /* Calculate range bits and validate it. */
1336 if (num_possible_cpus() > 1)
1337 check_and_calc_range(event
, pev
);
1339 hwc
->event_base
= mipspmu_perf_event_encode(pev
);
1340 if (PERF_TYPE_RAW
== event
->attr
.type
)
1341 mutex_unlock(&raw_event_mutex
);
1343 if (!attr
->exclude_user
)
1344 hwc
->config_base
|= MIPS_PERFCTRL_U
;
1345 if (!attr
->exclude_kernel
) {
1346 hwc
->config_base
|= MIPS_PERFCTRL_K
;
1347 /* MIPS kernel mode: KSU == 00b || EXL == 1 || ERL == 1 */
1348 hwc
->config_base
|= MIPS_PERFCTRL_EXL
;
1350 if (!attr
->exclude_hv
)
1351 hwc
->config_base
|= MIPS_PERFCTRL_S
;
1353 hwc
->config_base
&= M_PERFCTL_CONFIG_MASK
;
1355 * The event can belong to another cpu. We do not assign a local
1356 * counter for it for now.
1361 if (!hwc
->sample_period
) {
1362 hwc
->sample_period
= mipspmu
.max_period
;
1363 hwc
->last_period
= hwc
->sample_period
;
1364 local64_set(&hwc
->period_left
, hwc
->sample_period
);
1368 if (event
->group_leader
!= event
)
1369 err
= validate_group(event
);
1371 event
->destroy
= hw_perf_event_destroy
;
1374 event
->destroy(event
);
1379 static void pause_local_counters(void)
1381 struct cpu_hw_events
*cpuc
= this_cpu_ptr(&cpu_hw_events
);
1382 int ctr
= mipspmu
.num_counters
;
1383 unsigned long flags
;
1385 local_irq_save(flags
);
1388 cpuc
->saved_ctrl
[ctr
] = mipsxx_pmu_read_control(ctr
);
1389 mipsxx_pmu_write_control(ctr
, cpuc
->saved_ctrl
[ctr
] &
1390 ~M_PERFCTL_COUNT_EVENT_WHENEVER
);
1392 local_irq_restore(flags
);
1395 static void resume_local_counters(void)
1397 struct cpu_hw_events
*cpuc
= this_cpu_ptr(&cpu_hw_events
);
1398 int ctr
= mipspmu
.num_counters
;
1402 mipsxx_pmu_write_control(ctr
, cpuc
->saved_ctrl
[ctr
]);
1406 static int mipsxx_pmu_handle_shared_irq(void)
1408 struct cpu_hw_events
*cpuc
= this_cpu_ptr(&cpu_hw_events
);
1409 struct perf_sample_data data
;
1410 unsigned int counters
= mipspmu
.num_counters
;
1412 int handled
= IRQ_NONE
;
1413 struct pt_regs
*regs
;
1415 if (cpu_has_perf_cntr_intr_bit
&& !(read_c0_cause() & CAUSEF_PCI
))
1418 * First we pause the local counters, so that when we are locked
1419 * here, the counters are all paused. When it gets locked due to
1420 * perf_disable(), the timer interrupt handler will be delayed.
1422 * See also mipsxx_pmu_start().
1424 pause_local_counters();
1425 #ifdef CONFIG_MIPS_PERF_SHARED_TC_COUNTERS
1426 read_lock(&pmuint_rwlock
);
1429 regs
= get_irq_regs();
1431 perf_sample_data_init(&data
, 0, 0);
1434 #define HANDLE_COUNTER(n) \
1436 if (test_bit(n, cpuc->used_mask)) { \
1437 counter = mipspmu.read_counter(n); \
1438 if (counter & mipspmu.overflow) { \
1439 handle_associated_event(cpuc, n, &data, regs); \
1440 handled = IRQ_HANDLED; \
1449 #ifdef CONFIG_MIPS_PERF_SHARED_TC_COUNTERS
1450 read_unlock(&pmuint_rwlock
);
1452 resume_local_counters();
1455 * Do all the work for the pending perf events. We can do this
1456 * in here because the performance counter interrupt is a regular
1457 * interrupt, not NMI.
1459 if (handled
== IRQ_HANDLED
)
1465 static irqreturn_t
mipsxx_pmu_handle_irq(int irq
, void *dev
)
1467 return mipsxx_pmu_handle_shared_irq();
1471 #define IS_BOTH_COUNTERS_24K_EVENT(b) \
1472 ((b) == 0 || (b) == 1 || (b) == 11)
1475 #define IS_BOTH_COUNTERS_34K_EVENT(b) \
1476 ((b) == 0 || (b) == 1 || (b) == 11)
1477 #ifdef CONFIG_MIPS_MT_SMP
1478 #define IS_RANGE_P_34K_EVENT(r, b) \
1479 ((b) == 0 || (r) == 18 || (b) == 21 || (b) == 22 || \
1480 (b) == 25 || (b) == 39 || (r) == 44 || (r) == 174 || \
1481 (r) == 176 || ((b) >= 50 && (b) <= 55) || \
1482 ((b) >= 64 && (b) <= 67))
1483 #define IS_RANGE_V_34K_EVENT(r) ((r) == 47)
1487 #define IS_BOTH_COUNTERS_74K_EVENT(b) \
1488 ((b) == 0 || (b) == 1)
1491 #define IS_BOTH_COUNTERS_PROAPTIV_EVENT(b) \
1492 ((b) == 0 || (b) == 1)
1494 #define IS_BOTH_COUNTERS_P5600_EVENT(b) \
1495 ((b) == 0 || (b) == 1)
1498 #define IS_BOTH_COUNTERS_1004K_EVENT(b) \
1499 ((b) == 0 || (b) == 1 || (b) == 11)
1500 #ifdef CONFIG_MIPS_MT_SMP
1501 #define IS_RANGE_P_1004K_EVENT(r, b) \
1502 ((b) == 0 || (r) == 18 || (b) == 21 || (b) == 22 || \
1503 (b) == 25 || (b) == 36 || (b) == 39 || (r) == 44 || \
1504 (r) == 174 || (r) == 176 || ((b) >= 50 && (b) <= 59) || \
1505 (r) == 188 || (b) == 61 || (b) == 62 || \
1506 ((b) >= 64 && (b) <= 67))
1507 #define IS_RANGE_V_1004K_EVENT(r) ((r) == 47)
1511 #define IS_BOTH_COUNTERS_INTERAPTIV_EVENT(b) \
1512 ((b) == 0 || (b) == 1 || (b) == 11)
1513 #ifdef CONFIG_MIPS_MT_SMP
1514 /* The P/V/T info is not provided for "(b) == 38" in SUM, assume P. */
1515 #define IS_RANGE_P_INTERAPTIV_EVENT(r, b) \
1516 ((b) == 0 || (r) == 18 || (b) == 21 || (b) == 22 || \
1517 (b) == 25 || (b) == 36 || (b) == 38 || (b) == 39 || \
1518 (r) == 44 || (r) == 174 || (r) == 176 || ((b) >= 50 && \
1519 (b) <= 59) || (r) == 188 || (b) == 61 || (b) == 62 || \
1520 ((b) >= 64 && (b) <= 67))
1521 #define IS_RANGE_V_INTERAPTIV_EVENT(r) ((r) == 47 || (r) == 175)
1525 #define IS_BOTH_COUNTERS_BMIPS5000_EVENT(b) \
1526 ((b) == 0 || (b) == 1)
1530 * For most cores the user can use 0-255 raw events, where 0-127 for the events
1531 * of even counters, and 128-255 for odd counters. Note that bit 7 is used to
1532 * indicate the even/odd bank selector. So, for example, when user wants to take
1533 * the Event Num of 15 for odd counters (by referring to the user manual), then
1534 * 128 needs to be added to 15 as the input for the event config, i.e., 143 (0x8F)
1537 * Some newer cores have even more events, in which case the user can use raw
1538 * events 0-511, where 0-255 are for the events of even counters, and 256-511
1539 * are for odd counters, so bit 8 is used to indicate the even/odd bank selector.
1541 static const struct mips_perf_event
*mipsxx_pmu_map_raw_event(u64 config
)
1543 /* currently most cores have 7-bit event numbers */
1544 unsigned int raw_id
= config
& 0xff;
1545 unsigned int base_id
= raw_id
& 0x7f;
1547 switch (current_cpu_type()) {
1549 if (IS_BOTH_COUNTERS_24K_EVENT(base_id
))
1550 raw_event
.cntr_mask
= CNTR_EVEN
| CNTR_ODD
;
1552 raw_event
.cntr_mask
=
1553 raw_id
> 127 ? CNTR_ODD
: CNTR_EVEN
;
1554 #ifdef CONFIG_MIPS_MT_SMP
1556 * This is actually doing nothing. Non-multithreading
1557 * CPUs will not check and calculate the range.
1559 raw_event
.range
= P
;
1563 if (IS_BOTH_COUNTERS_34K_EVENT(base_id
))
1564 raw_event
.cntr_mask
= CNTR_EVEN
| CNTR_ODD
;
1566 raw_event
.cntr_mask
=
1567 raw_id
> 127 ? CNTR_ODD
: CNTR_EVEN
;
1568 #ifdef CONFIG_MIPS_MT_SMP
1569 if (IS_RANGE_P_34K_EVENT(raw_id
, base_id
))
1570 raw_event
.range
= P
;
1571 else if (unlikely(IS_RANGE_V_34K_EVENT(raw_id
)))
1572 raw_event
.range
= V
;
1574 raw_event
.range
= T
;
1579 if (IS_BOTH_COUNTERS_74K_EVENT(base_id
))
1580 raw_event
.cntr_mask
= CNTR_EVEN
| CNTR_ODD
;
1582 raw_event
.cntr_mask
=
1583 raw_id
> 127 ? CNTR_ODD
: CNTR_EVEN
;
1584 #ifdef CONFIG_MIPS_MT_SMP
1585 raw_event
.range
= P
;
1589 if (IS_BOTH_COUNTERS_PROAPTIV_EVENT(base_id
))
1590 raw_event
.cntr_mask
= CNTR_EVEN
| CNTR_ODD
;
1592 raw_event
.cntr_mask
=
1593 raw_id
> 127 ? CNTR_ODD
: CNTR_EVEN
;
1594 #ifdef CONFIG_MIPS_MT_SMP
1595 raw_event
.range
= P
;
1600 /* 8-bit event numbers */
1601 raw_id
= config
& 0x1ff;
1602 base_id
= raw_id
& 0xff;
1603 if (IS_BOTH_COUNTERS_P5600_EVENT(base_id
))
1604 raw_event
.cntr_mask
= CNTR_EVEN
| CNTR_ODD
;
1606 raw_event
.cntr_mask
=
1607 raw_id
> 255 ? CNTR_ODD
: CNTR_EVEN
;
1608 #ifdef CONFIG_MIPS_MT_SMP
1609 raw_event
.range
= P
;
1614 /* 8-bit event numbers */
1615 base_id
= config
& 0xff;
1616 raw_event
.cntr_mask
= CNTR_EVEN
| CNTR_ODD
;
1619 if (IS_BOTH_COUNTERS_1004K_EVENT(base_id
))
1620 raw_event
.cntr_mask
= CNTR_EVEN
| CNTR_ODD
;
1622 raw_event
.cntr_mask
=
1623 raw_id
> 127 ? CNTR_ODD
: CNTR_EVEN
;
1624 #ifdef CONFIG_MIPS_MT_SMP
1625 if (IS_RANGE_P_1004K_EVENT(raw_id
, base_id
))
1626 raw_event
.range
= P
;
1627 else if (unlikely(IS_RANGE_V_1004K_EVENT(raw_id
)))
1628 raw_event
.range
= V
;
1630 raw_event
.range
= T
;
1633 case CPU_INTERAPTIV
:
1634 if (IS_BOTH_COUNTERS_INTERAPTIV_EVENT(base_id
))
1635 raw_event
.cntr_mask
= CNTR_EVEN
| CNTR_ODD
;
1637 raw_event
.cntr_mask
=
1638 raw_id
> 127 ? CNTR_ODD
: CNTR_EVEN
;
1639 #ifdef CONFIG_MIPS_MT_SMP
1640 if (IS_RANGE_P_INTERAPTIV_EVENT(raw_id
, base_id
))
1641 raw_event
.range
= P
;
1642 else if (unlikely(IS_RANGE_V_INTERAPTIV_EVENT(raw_id
)))
1643 raw_event
.range
= V
;
1645 raw_event
.range
= T
;
1649 if (IS_BOTH_COUNTERS_BMIPS5000_EVENT(base_id
))
1650 raw_event
.cntr_mask
= CNTR_EVEN
| CNTR_ODD
;
1652 raw_event
.cntr_mask
=
1653 raw_id
> 127 ? CNTR_ODD
: CNTR_EVEN
;
1656 raw_event
.cntr_mask
= raw_id
> 127 ? CNTR_ODD
: CNTR_EVEN
;
1660 raw_event
.event_id
= base_id
;
1665 static const struct mips_perf_event
*octeon_pmu_map_raw_event(u64 config
)
1667 unsigned int raw_id
= config
& 0xff;
1668 unsigned int base_id
= raw_id
& 0x7f;
1671 raw_event
.cntr_mask
= CNTR_ALL
;
1672 raw_event
.event_id
= base_id
;
1674 if (current_cpu_type() == CPU_CAVIUM_OCTEON2
) {
1676 return ERR_PTR(-EOPNOTSUPP
);
1679 return ERR_PTR(-EOPNOTSUPP
);
1690 return ERR_PTR(-EOPNOTSUPP
);
1698 static const struct mips_perf_event
*xlp_pmu_map_raw_event(u64 config
)
1700 unsigned int raw_id
= config
& 0xff;
1702 /* Only 1-63 are defined */
1703 if ((raw_id
< 0x01) || (raw_id
> 0x3f))
1704 return ERR_PTR(-EOPNOTSUPP
);
1706 raw_event
.cntr_mask
= CNTR_ALL
;
1707 raw_event
.event_id
= raw_id
;
1713 init_hw_perf_events(void)
1718 pr_info("Performance counters: ");
1720 counters
= n_counters();
1721 if (counters
== 0) {
1722 pr_cont("No available PMU.\n");
1726 #ifdef CONFIG_MIPS_PERF_SHARED_TC_COUNTERS
1727 cpu_has_mipsmt_pertccounters
= read_c0_config7() & (1<<19);
1728 if (!cpu_has_mipsmt_pertccounters
)
1729 counters
= counters_total_to_per_cpu(counters
);
1732 if (get_c0_perfcount_int
)
1733 irq
= get_c0_perfcount_int();
1734 else if (cp0_perfcount_irq
>= 0)
1735 irq
= MIPS_CPU_IRQ_BASE
+ cp0_perfcount_irq
;
1739 mipspmu
.map_raw_event
= mipsxx_pmu_map_raw_event
;
1741 switch (current_cpu_type()) {
1743 mipspmu
.name
= "mips/24K";
1744 mipspmu
.general_event_map
= &mipsxxcore_event_map
;
1745 mipspmu
.cache_event_map
= &mipsxxcore_cache_map
;
1748 mipspmu
.name
= "mips/34K";
1749 mipspmu
.general_event_map
= &mipsxxcore_event_map
;
1750 mipspmu
.cache_event_map
= &mipsxxcore_cache_map
;
1753 mipspmu
.name
= "mips/74K";
1754 mipspmu
.general_event_map
= &mipsxxcore_event_map2
;
1755 mipspmu
.cache_event_map
= &mipsxxcore_cache_map2
;
1758 mipspmu
.name
= "mips/proAptiv";
1759 mipspmu
.general_event_map
= &mipsxxcore_event_map2
;
1760 mipspmu
.cache_event_map
= &mipsxxcore_cache_map2
;
1763 mipspmu
.name
= "mips/P5600";
1764 mipspmu
.general_event_map
= &mipsxxcore_event_map2
;
1765 mipspmu
.cache_event_map
= &mipsxxcore_cache_map2
;
1768 mipspmu
.name
= "mips/P6600";
1769 mipspmu
.general_event_map
= &mipsxxcore_event_map2
;
1770 mipspmu
.cache_event_map
= &mipsxxcore_cache_map2
;
1773 mipspmu
.name
= "mips/I6400";
1774 mipspmu
.general_event_map
= &i6x00_event_map
;
1775 mipspmu
.cache_event_map
= &i6x00_cache_map
;
1778 mipspmu
.name
= "mips/I6500";
1779 mipspmu
.general_event_map
= &i6x00_event_map
;
1780 mipspmu
.cache_event_map
= &i6x00_cache_map
;
1783 mipspmu
.name
= "mips/1004K";
1784 mipspmu
.general_event_map
= &mipsxxcore_event_map
;
1785 mipspmu
.cache_event_map
= &mipsxxcore_cache_map
;
1788 mipspmu
.name
= "mips/1074K";
1789 mipspmu
.general_event_map
= &mipsxxcore_event_map
;
1790 mipspmu
.cache_event_map
= &mipsxxcore_cache_map
;
1792 case CPU_INTERAPTIV
:
1793 mipspmu
.name
= "mips/interAptiv";
1794 mipspmu
.general_event_map
= &mipsxxcore_event_map
;
1795 mipspmu
.cache_event_map
= &mipsxxcore_cache_map
;
1798 mipspmu
.name
= "mips/loongson1";
1799 mipspmu
.general_event_map
= &mipsxxcore_event_map
;
1800 mipspmu
.cache_event_map
= &mipsxxcore_cache_map
;
1803 mipspmu
.name
= "mips/loongson3";
1804 mipspmu
.general_event_map
= &loongson3_event_map
;
1805 mipspmu
.cache_event_map
= &loongson3_cache_map
;
1807 case CPU_CAVIUM_OCTEON
:
1808 case CPU_CAVIUM_OCTEON_PLUS
:
1809 case CPU_CAVIUM_OCTEON2
:
1810 mipspmu
.name
= "octeon";
1811 mipspmu
.general_event_map
= &octeon_event_map
;
1812 mipspmu
.cache_event_map
= &octeon_cache_map
;
1813 mipspmu
.map_raw_event
= octeon_pmu_map_raw_event
;
1816 mipspmu
.name
= "BMIPS5000";
1817 mipspmu
.general_event_map
= &bmips5000_event_map
;
1818 mipspmu
.cache_event_map
= &bmips5000_cache_map
;
1821 mipspmu
.name
= "xlp";
1822 mipspmu
.general_event_map
= &xlp_event_map
;
1823 mipspmu
.cache_event_map
= &xlp_cache_map
;
1824 mipspmu
.map_raw_event
= xlp_pmu_map_raw_event
;
1827 pr_cont("Either hardware does not support performance "
1828 "counters, or not yet implemented.\n");
1832 mipspmu
.num_counters
= counters
;
1835 if (read_c0_perfctrl0() & MIPS_PERFCTRL_W
) {
1836 mipspmu
.max_period
= (1ULL << 63) - 1;
1837 mipspmu
.valid_count
= (1ULL << 63) - 1;
1838 mipspmu
.overflow
= 1ULL << 63;
1839 mipspmu
.read_counter
= mipsxx_pmu_read_counter_64
;
1840 mipspmu
.write_counter
= mipsxx_pmu_write_counter_64
;
1843 mipspmu
.max_period
= (1ULL << 31) - 1;
1844 mipspmu
.valid_count
= (1ULL << 31) - 1;
1845 mipspmu
.overflow
= 1ULL << 31;
1846 mipspmu
.read_counter
= mipsxx_pmu_read_counter
;
1847 mipspmu
.write_counter
= mipsxx_pmu_write_counter
;
1851 on_each_cpu(reset_counters
, (void *)(long)counters
, 1);
1853 pr_cont("%s PMU enabled, %d %d-bit counters available to each "
1854 "CPU, irq %d%s\n", mipspmu
.name
, counters
, counter_bits
, irq
,
1855 irq
< 0 ? " (share with timer interrupt)" : "");
1857 perf_pmu_register(&pmu
, "cpu", PERF_TYPE_RAW
);
1861 early_initcall(init_hw_perf_events
);