4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
6 * Swap reorganised 29.12.95, Stephen Tweedie.
7 * kswapd added: 7.1.96 sct
8 * Removed kswapd_ctl limits, and swap out as many pages as needed
9 * to bring the system back to freepages.high: 2.4.97, Rik van Riel.
10 * Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
11 * Multiqueue VM started 5.8.00, Rik van Riel.
14 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
17 #include <linux/module.h>
18 #include <linux/gfp.h>
19 #include <linux/kernel_stat.h>
20 #include <linux/swap.h>
21 #include <linux/pagemap.h>
22 #include <linux/init.h>
23 #include <linux/highmem.h>
24 #include <linux/vmpressure.h>
25 #include <linux/vmstat.h>
26 #include <linux/file.h>
27 #include <linux/writeback.h>
28 #include <linux/blkdev.h>
29 #include <linux/buffer_head.h> /* for try_to_release_page(),
30 buffer_heads_over_limit */
31 #include <linux/mm_inline.h>
32 #include <linux/backing-dev.h>
33 #include <linux/rmap.h>
34 #include <linux/topology.h>
35 #include <linux/cpu.h>
36 #include <linux/cpuset.h>
37 #include <linux/compaction.h>
38 #include <linux/notifier.h>
39 #include <linux/rwsem.h>
40 #include <linux/delay.h>
41 #include <linux/kthread.h>
42 #include <linux/freezer.h>
43 #include <linux/memcontrol.h>
44 #include <linux/delayacct.h>
45 #include <linux/sysctl.h>
46 #include <linux/oom.h>
47 #include <linux/prefetch.h>
48 #include <linux/printk.h>
50 #include <asm/tlbflush.h>
51 #include <asm/div64.h>
53 #include <linux/swapops.h>
54 #include <linux/balloon_compaction.h>
58 #define CREATE_TRACE_POINTS
59 #include <trace/events/vmscan.h>
62 /* How many pages shrink_list() should reclaim */
63 unsigned long nr_to_reclaim
;
65 /* This context's GFP mask */
68 /* Allocation order */
72 * Nodemask of nodes allowed by the caller. If NULL, all nodes
78 * The memory cgroup that hit its limit and as a result is the
79 * primary target of this reclaim invocation.
81 struct mem_cgroup
*target_mem_cgroup
;
83 /* Scan (total_size >> priority) pages at once */
86 unsigned int may_writepage
:1;
88 /* Can mapped pages be reclaimed? */
89 unsigned int may_unmap
:1;
91 /* Can pages be swapped as part of reclaim? */
92 unsigned int may_swap
:1;
94 unsigned int hibernation_mode
:1;
96 /* One of the zones is ready for compaction */
97 unsigned int compaction_ready
:1;
99 /* Incremented by the number of inactive pages that were scanned */
100 unsigned long nr_scanned
;
102 /* Number of pages freed so far during a call to shrink_zones() */
103 unsigned long nr_reclaimed
;
106 #define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru))
108 #ifdef ARCH_HAS_PREFETCH
109 #define prefetch_prev_lru_page(_page, _base, _field) \
111 if ((_page)->lru.prev != _base) { \
114 prev = lru_to_page(&(_page->lru)); \
115 prefetch(&prev->_field); \
119 #define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
122 #ifdef ARCH_HAS_PREFETCHW
123 #define prefetchw_prev_lru_page(_page, _base, _field) \
125 if ((_page)->lru.prev != _base) { \
128 prev = lru_to_page(&(_page->lru)); \
129 prefetchw(&prev->_field); \
133 #define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
137 * From 0 .. 100. Higher means more swappy.
139 int vm_swappiness
= 60;
141 * The total number of pages which are beyond the high watermark within all
144 unsigned long vm_total_pages
;
146 static LIST_HEAD(shrinker_list
);
147 static DECLARE_RWSEM(shrinker_rwsem
);
150 static bool global_reclaim(struct scan_control
*sc
)
152 return !sc
->target_mem_cgroup
;
155 static bool global_reclaim(struct scan_control
*sc
)
161 static unsigned long zone_reclaimable_pages(struct zone
*zone
)
165 nr
= zone_page_state(zone
, NR_ACTIVE_FILE
) +
166 zone_page_state(zone
, NR_INACTIVE_FILE
);
168 if (get_nr_swap_pages() > 0)
169 nr
+= zone_page_state(zone
, NR_ACTIVE_ANON
) +
170 zone_page_state(zone
, NR_INACTIVE_ANON
);
175 bool zone_reclaimable(struct zone
*zone
)
177 return zone_page_state(zone
, NR_PAGES_SCANNED
) <
178 zone_reclaimable_pages(zone
) * 6;
181 static unsigned long get_lru_size(struct lruvec
*lruvec
, enum lru_list lru
)
183 if (!mem_cgroup_disabled())
184 return mem_cgroup_get_lru_size(lruvec
, lru
);
186 return zone_page_state(lruvec_zone(lruvec
), NR_LRU_BASE
+ lru
);
190 * Add a shrinker callback to be called from the vm.
192 int register_shrinker(struct shrinker
*shrinker
)
194 size_t size
= sizeof(*shrinker
->nr_deferred
);
197 * If we only have one possible node in the system anyway, save
198 * ourselves the trouble and disable NUMA aware behavior. This way we
199 * will save memory and some small loop time later.
201 if (nr_node_ids
== 1)
202 shrinker
->flags
&= ~SHRINKER_NUMA_AWARE
;
204 if (shrinker
->flags
& SHRINKER_NUMA_AWARE
)
207 shrinker
->nr_deferred
= kzalloc(size
, GFP_KERNEL
);
208 if (!shrinker
->nr_deferred
)
211 down_write(&shrinker_rwsem
);
212 list_add_tail(&shrinker
->list
, &shrinker_list
);
213 up_write(&shrinker_rwsem
);
216 EXPORT_SYMBOL(register_shrinker
);
221 void unregister_shrinker(struct shrinker
*shrinker
)
223 down_write(&shrinker_rwsem
);
224 list_del(&shrinker
->list
);
225 up_write(&shrinker_rwsem
);
226 kfree(shrinker
->nr_deferred
);
228 EXPORT_SYMBOL(unregister_shrinker
);
230 #define SHRINK_BATCH 128
232 static unsigned long shrink_slabs(struct shrink_control
*shrinkctl
,
233 struct shrinker
*shrinker
,
234 unsigned long nr_scanned
,
235 unsigned long nr_eligible
)
237 unsigned long freed
= 0;
238 unsigned long long delta
;
243 int nid
= shrinkctl
->nid
;
244 long batch_size
= shrinker
->batch
? shrinker
->batch
247 freeable
= shrinker
->count_objects(shrinker
, shrinkctl
);
252 * copy the current shrinker scan count into a local variable
253 * and zero it so that other concurrent shrinker invocations
254 * don't also do this scanning work.
256 nr
= atomic_long_xchg(&shrinker
->nr_deferred
[nid
], 0);
259 delta
= (4 * nr_scanned
) / shrinker
->seeks
;
261 do_div(delta
, nr_eligible
+ 1);
263 if (total_scan
< 0) {
264 pr_err("shrink_slab: %pF negative objects to delete nr=%ld\n",
265 shrinker
->scan_objects
, total_scan
);
266 total_scan
= freeable
;
270 * We need to avoid excessive windup on filesystem shrinkers
271 * due to large numbers of GFP_NOFS allocations causing the
272 * shrinkers to return -1 all the time. This results in a large
273 * nr being built up so when a shrink that can do some work
274 * comes along it empties the entire cache due to nr >>>
275 * freeable. This is bad for sustaining a working set in
278 * Hence only allow the shrinker to scan the entire cache when
279 * a large delta change is calculated directly.
281 if (delta
< freeable
/ 4)
282 total_scan
= min(total_scan
, freeable
/ 2);
285 * Avoid risking looping forever due to too large nr value:
286 * never try to free more than twice the estimate number of
289 if (total_scan
> freeable
* 2)
290 total_scan
= freeable
* 2;
292 trace_mm_shrink_slab_start(shrinker
, shrinkctl
, nr
,
293 nr_scanned
, nr_eligible
,
294 freeable
, delta
, total_scan
);
297 * Normally, we should not scan less than batch_size objects in one
298 * pass to avoid too frequent shrinker calls, but if the slab has less
299 * than batch_size objects in total and we are really tight on memory,
300 * we will try to reclaim all available objects, otherwise we can end
301 * up failing allocations although there are plenty of reclaimable
302 * objects spread over several slabs with usage less than the
305 * We detect the "tight on memory" situations by looking at the total
306 * number of objects we want to scan (total_scan). If it is greater
307 * than the total number of objects on slab (freeable), we must be
308 * scanning at high prio and therefore should try to reclaim as much as
311 while (total_scan
>= batch_size
||
312 total_scan
>= freeable
) {
314 unsigned long nr_to_scan
= min(batch_size
, total_scan
);
316 shrinkctl
->nr_to_scan
= nr_to_scan
;
317 ret
= shrinker
->scan_objects(shrinker
, shrinkctl
);
318 if (ret
== SHRINK_STOP
)
322 count_vm_events(SLABS_SCANNED
, nr_to_scan
);
323 total_scan
-= nr_to_scan
;
329 * move the unused scan count back into the shrinker in a
330 * manner that handles concurrent updates. If we exhausted the
331 * scan, there is no need to do an update.
334 new_nr
= atomic_long_add_return(total_scan
,
335 &shrinker
->nr_deferred
[nid
]);
337 new_nr
= atomic_long_read(&shrinker
->nr_deferred
[nid
]);
339 trace_mm_shrink_slab_end(shrinker
, nid
, freed
, nr
, new_nr
, total_scan
);
344 * shrink_node_slabs - shrink slab caches of a given node
345 * @gfp_mask: allocation context
346 * @nid: node whose slab caches to target
347 * @nr_scanned: pressure numerator
348 * @nr_eligible: pressure denominator
350 * Call the shrink functions to age shrinkable caches.
352 * @nid is passed along to shrinkers with SHRINKER_NUMA_AWARE set,
353 * unaware shrinkers will receive a node id of 0 instead.
355 * @nr_scanned and @nr_eligible form a ratio that indicate how much of
356 * the available objects should be scanned. Page reclaim for example
357 * passes the number of pages scanned and the number of pages on the
358 * LRU lists that it considered on @nid, plus a bias in @nr_scanned
359 * when it encountered mapped pages. The ratio is further biased by
360 * the ->seeks setting of the shrink function, which indicates the
361 * cost to recreate an object relative to that of an LRU page.
363 * Returns the number of reclaimed slab objects.
365 unsigned long shrink_node_slabs(gfp_t gfp_mask
, int nid
,
366 unsigned long nr_scanned
,
367 unsigned long nr_eligible
)
369 struct shrinker
*shrinker
;
370 unsigned long freed
= 0;
373 nr_scanned
= SWAP_CLUSTER_MAX
;
375 if (!down_read_trylock(&shrinker_rwsem
)) {
377 * If we would return 0, our callers would understand that we
378 * have nothing else to shrink and give up trying. By returning
379 * 1 we keep it going and assume we'll be able to shrink next
386 list_for_each_entry(shrinker
, &shrinker_list
, list
) {
387 struct shrink_control sc
= {
388 .gfp_mask
= gfp_mask
,
392 if (!(shrinker
->flags
& SHRINKER_NUMA_AWARE
))
395 freed
+= shrink_slabs(&sc
, shrinker
, nr_scanned
, nr_eligible
);
398 up_read(&shrinker_rwsem
);
404 static inline int is_page_cache_freeable(struct page
*page
)
407 * A freeable page cache page is referenced only by the caller
408 * that isolated the page, the page cache radix tree and
409 * optional buffer heads at page->private.
411 return page_count(page
) - page_has_private(page
) == 2;
414 static int may_write_to_queue(struct backing_dev_info
*bdi
,
415 struct scan_control
*sc
)
417 if (current
->flags
& PF_SWAPWRITE
)
419 if (!bdi_write_congested(bdi
))
421 if (bdi
== current
->backing_dev_info
)
427 * We detected a synchronous write error writing a page out. Probably
428 * -ENOSPC. We need to propagate that into the address_space for a subsequent
429 * fsync(), msync() or close().
431 * The tricky part is that after writepage we cannot touch the mapping: nothing
432 * prevents it from being freed up. But we have a ref on the page and once
433 * that page is locked, the mapping is pinned.
435 * We're allowed to run sleeping lock_page() here because we know the caller has
438 static void handle_write_error(struct address_space
*mapping
,
439 struct page
*page
, int error
)
442 if (page_mapping(page
) == mapping
)
443 mapping_set_error(mapping
, error
);
447 /* possible outcome of pageout() */
449 /* failed to write page out, page is locked */
451 /* move page to the active list, page is locked */
453 /* page has been sent to the disk successfully, page is unlocked */
455 /* page is clean and locked */
460 * pageout is called by shrink_page_list() for each dirty page.
461 * Calls ->writepage().
463 static pageout_t
pageout(struct page
*page
, struct address_space
*mapping
,
464 struct scan_control
*sc
)
467 * If the page is dirty, only perform writeback if that write
468 * will be non-blocking. To prevent this allocation from being
469 * stalled by pagecache activity. But note that there may be
470 * stalls if we need to run get_block(). We could test
471 * PagePrivate for that.
473 * If this process is currently in __generic_file_write_iter() against
474 * this page's queue, we can perform writeback even if that
477 * If the page is swapcache, write it back even if that would
478 * block, for some throttling. This happens by accident, because
479 * swap_backing_dev_info is bust: it doesn't reflect the
480 * congestion state of the swapdevs. Easy to fix, if needed.
482 if (!is_page_cache_freeable(page
))
486 * Some data journaling orphaned pages can have
487 * page->mapping == NULL while being dirty with clean buffers.
489 if (page_has_private(page
)) {
490 if (try_to_free_buffers(page
)) {
491 ClearPageDirty(page
);
492 pr_info("%s: orphaned page\n", __func__
);
498 if (mapping
->a_ops
->writepage
== NULL
)
499 return PAGE_ACTIVATE
;
500 if (!may_write_to_queue(mapping
->backing_dev_info
, sc
))
503 if (clear_page_dirty_for_io(page
)) {
505 struct writeback_control wbc
= {
506 .sync_mode
= WB_SYNC_NONE
,
507 .nr_to_write
= SWAP_CLUSTER_MAX
,
509 .range_end
= LLONG_MAX
,
513 SetPageReclaim(page
);
514 res
= mapping
->a_ops
->writepage(page
, &wbc
);
516 handle_write_error(mapping
, page
, res
);
517 if (res
== AOP_WRITEPAGE_ACTIVATE
) {
518 ClearPageReclaim(page
);
519 return PAGE_ACTIVATE
;
522 if (!PageWriteback(page
)) {
523 /* synchronous write or broken a_ops? */
524 ClearPageReclaim(page
);
526 trace_mm_vmscan_writepage(page
, trace_reclaim_flags(page
));
527 inc_zone_page_state(page
, NR_VMSCAN_WRITE
);
535 * Same as remove_mapping, but if the page is removed from the mapping, it
536 * gets returned with a refcount of 0.
538 static int __remove_mapping(struct address_space
*mapping
, struct page
*page
,
541 BUG_ON(!PageLocked(page
));
542 BUG_ON(mapping
!= page_mapping(page
));
544 spin_lock_irq(&mapping
->tree_lock
);
546 * The non racy check for a busy page.
548 * Must be careful with the order of the tests. When someone has
549 * a ref to the page, it may be possible that they dirty it then
550 * drop the reference. So if PageDirty is tested before page_count
551 * here, then the following race may occur:
553 * get_user_pages(&page);
554 * [user mapping goes away]
556 * !PageDirty(page) [good]
557 * SetPageDirty(page);
559 * !page_count(page) [good, discard it]
561 * [oops, our write_to data is lost]
563 * Reversing the order of the tests ensures such a situation cannot
564 * escape unnoticed. The smp_rmb is needed to ensure the page->flags
565 * load is not satisfied before that of page->_count.
567 * Note that if SetPageDirty is always performed via set_page_dirty,
568 * and thus under tree_lock, then this ordering is not required.
570 if (!page_freeze_refs(page
, 2))
572 /* note: atomic_cmpxchg in page_freeze_refs provides the smp_rmb */
573 if (unlikely(PageDirty(page
))) {
574 page_unfreeze_refs(page
, 2);
578 if (PageSwapCache(page
)) {
579 swp_entry_t swap
= { .val
= page_private(page
) };
580 mem_cgroup_swapout(page
, swap
);
581 __delete_from_swap_cache(page
);
582 spin_unlock_irq(&mapping
->tree_lock
);
583 swapcache_free(swap
);
585 void (*freepage
)(struct page
*);
588 freepage
= mapping
->a_ops
->freepage
;
590 * Remember a shadow entry for reclaimed file cache in
591 * order to detect refaults, thus thrashing, later on.
593 * But don't store shadows in an address space that is
594 * already exiting. This is not just an optizimation,
595 * inode reclaim needs to empty out the radix tree or
596 * the nodes are lost. Don't plant shadows behind its
599 if (reclaimed
&& page_is_file_cache(page
) &&
600 !mapping_exiting(mapping
))
601 shadow
= workingset_eviction(mapping
, page
);
602 __delete_from_page_cache(page
, shadow
);
603 spin_unlock_irq(&mapping
->tree_lock
);
605 if (freepage
!= NULL
)
612 spin_unlock_irq(&mapping
->tree_lock
);
617 * Attempt to detach a locked page from its ->mapping. If it is dirty or if
618 * someone else has a ref on the page, abort and return 0. If it was
619 * successfully detached, return 1. Assumes the caller has a single ref on
622 int remove_mapping(struct address_space
*mapping
, struct page
*page
)
624 if (__remove_mapping(mapping
, page
, false)) {
626 * Unfreezing the refcount with 1 rather than 2 effectively
627 * drops the pagecache ref for us without requiring another
630 page_unfreeze_refs(page
, 1);
637 * putback_lru_page - put previously isolated page onto appropriate LRU list
638 * @page: page to be put back to appropriate lru list
640 * Add previously isolated @page to appropriate LRU list.
641 * Page may still be unevictable for other reasons.
643 * lru_lock must not be held, interrupts must be enabled.
645 void putback_lru_page(struct page
*page
)
648 int was_unevictable
= PageUnevictable(page
);
650 VM_BUG_ON_PAGE(PageLRU(page
), page
);
653 ClearPageUnevictable(page
);
655 if (page_evictable(page
)) {
657 * For evictable pages, we can use the cache.
658 * In event of a race, worst case is we end up with an
659 * unevictable page on [in]active list.
660 * We know how to handle that.
662 is_unevictable
= false;
666 * Put unevictable pages directly on zone's unevictable
669 is_unevictable
= true;
670 add_page_to_unevictable_list(page
);
672 * When racing with an mlock or AS_UNEVICTABLE clearing
673 * (page is unlocked) make sure that if the other thread
674 * does not observe our setting of PG_lru and fails
675 * isolation/check_move_unevictable_pages,
676 * we see PG_mlocked/AS_UNEVICTABLE cleared below and move
677 * the page back to the evictable list.
679 * The other side is TestClearPageMlocked() or shmem_lock().
685 * page's status can change while we move it among lru. If an evictable
686 * page is on unevictable list, it never be freed. To avoid that,
687 * check after we added it to the list, again.
689 if (is_unevictable
&& page_evictable(page
)) {
690 if (!isolate_lru_page(page
)) {
694 /* This means someone else dropped this page from LRU
695 * So, it will be freed or putback to LRU again. There is
696 * nothing to do here.
700 if (was_unevictable
&& !is_unevictable
)
701 count_vm_event(UNEVICTABLE_PGRESCUED
);
702 else if (!was_unevictable
&& is_unevictable
)
703 count_vm_event(UNEVICTABLE_PGCULLED
);
705 put_page(page
); /* drop ref from isolate */
708 enum page_references
{
710 PAGEREF_RECLAIM_CLEAN
,
715 static enum page_references
page_check_references(struct page
*page
,
716 struct scan_control
*sc
)
718 int referenced_ptes
, referenced_page
;
719 unsigned long vm_flags
;
721 referenced_ptes
= page_referenced(page
, 1, sc
->target_mem_cgroup
,
723 referenced_page
= TestClearPageReferenced(page
);
726 * Mlock lost the isolation race with us. Let try_to_unmap()
727 * move the page to the unevictable list.
729 if (vm_flags
& VM_LOCKED
)
730 return PAGEREF_RECLAIM
;
732 if (referenced_ptes
) {
733 if (PageSwapBacked(page
))
734 return PAGEREF_ACTIVATE
;
736 * All mapped pages start out with page table
737 * references from the instantiating fault, so we need
738 * to look twice if a mapped file page is used more
741 * Mark it and spare it for another trip around the
742 * inactive list. Another page table reference will
743 * lead to its activation.
745 * Note: the mark is set for activated pages as well
746 * so that recently deactivated but used pages are
749 SetPageReferenced(page
);
751 if (referenced_page
|| referenced_ptes
> 1)
752 return PAGEREF_ACTIVATE
;
755 * Activate file-backed executable pages after first usage.
757 if (vm_flags
& VM_EXEC
)
758 return PAGEREF_ACTIVATE
;
763 /* Reclaim if clean, defer dirty pages to writeback */
764 if (referenced_page
&& !PageSwapBacked(page
))
765 return PAGEREF_RECLAIM_CLEAN
;
767 return PAGEREF_RECLAIM
;
770 /* Check if a page is dirty or under writeback */
771 static void page_check_dirty_writeback(struct page
*page
,
772 bool *dirty
, bool *writeback
)
774 struct address_space
*mapping
;
777 * Anonymous pages are not handled by flushers and must be written
778 * from reclaim context. Do not stall reclaim based on them
780 if (!page_is_file_cache(page
)) {
786 /* By default assume that the page flags are accurate */
787 *dirty
= PageDirty(page
);
788 *writeback
= PageWriteback(page
);
790 /* Verify dirty/writeback state if the filesystem supports it */
791 if (!page_has_private(page
))
794 mapping
= page_mapping(page
);
795 if (mapping
&& mapping
->a_ops
->is_dirty_writeback
)
796 mapping
->a_ops
->is_dirty_writeback(page
, dirty
, writeback
);
800 * shrink_page_list() returns the number of reclaimed pages
802 static unsigned long shrink_page_list(struct list_head
*page_list
,
804 struct scan_control
*sc
,
805 enum ttu_flags ttu_flags
,
806 unsigned long *ret_nr_dirty
,
807 unsigned long *ret_nr_unqueued_dirty
,
808 unsigned long *ret_nr_congested
,
809 unsigned long *ret_nr_writeback
,
810 unsigned long *ret_nr_immediate
,
813 LIST_HEAD(ret_pages
);
814 LIST_HEAD(free_pages
);
816 unsigned long nr_unqueued_dirty
= 0;
817 unsigned long nr_dirty
= 0;
818 unsigned long nr_congested
= 0;
819 unsigned long nr_reclaimed
= 0;
820 unsigned long nr_writeback
= 0;
821 unsigned long nr_immediate
= 0;
825 while (!list_empty(page_list
)) {
826 struct address_space
*mapping
;
829 enum page_references references
= PAGEREF_RECLAIM_CLEAN
;
830 bool dirty
, writeback
;
834 page
= lru_to_page(page_list
);
835 list_del(&page
->lru
);
837 if (!trylock_page(page
))
840 VM_BUG_ON_PAGE(PageActive(page
), page
);
841 VM_BUG_ON_PAGE(page_zone(page
) != zone
, page
);
845 if (unlikely(!page_evictable(page
)))
848 if (!sc
->may_unmap
&& page_mapped(page
))
851 /* Double the slab pressure for mapped and swapcache pages */
852 if (page_mapped(page
) || PageSwapCache(page
))
855 may_enter_fs
= (sc
->gfp_mask
& __GFP_FS
) ||
856 (PageSwapCache(page
) && (sc
->gfp_mask
& __GFP_IO
));
859 * The number of dirty pages determines if a zone is marked
860 * reclaim_congested which affects wait_iff_congested. kswapd
861 * will stall and start writing pages if the tail of the LRU
862 * is all dirty unqueued pages.
864 page_check_dirty_writeback(page
, &dirty
, &writeback
);
865 if (dirty
|| writeback
)
868 if (dirty
&& !writeback
)
872 * Treat this page as congested if the underlying BDI is or if
873 * pages are cycling through the LRU so quickly that the
874 * pages marked for immediate reclaim are making it to the
875 * end of the LRU a second time.
877 mapping
= page_mapping(page
);
878 if (((dirty
|| writeback
) && mapping
&&
879 bdi_write_congested(mapping
->backing_dev_info
)) ||
880 (writeback
&& PageReclaim(page
)))
884 * If a page at the tail of the LRU is under writeback, there
885 * are three cases to consider.
887 * 1) If reclaim is encountering an excessive number of pages
888 * under writeback and this page is both under writeback and
889 * PageReclaim then it indicates that pages are being queued
890 * for IO but are being recycled through the LRU before the
891 * IO can complete. Waiting on the page itself risks an
892 * indefinite stall if it is impossible to writeback the
893 * page due to IO error or disconnected storage so instead
894 * note that the LRU is being scanned too quickly and the
895 * caller can stall after page list has been processed.
897 * 2) Global reclaim encounters a page, memcg encounters a
898 * page that is not marked for immediate reclaim or
899 * the caller does not have __GFP_IO. In this case mark
900 * the page for immediate reclaim and continue scanning.
902 * __GFP_IO is checked because a loop driver thread might
903 * enter reclaim, and deadlock if it waits on a page for
904 * which it is needed to do the write (loop masks off
905 * __GFP_IO|__GFP_FS for this reason); but more thought
906 * would probably show more reasons.
908 * Don't require __GFP_FS, since we're not going into the
909 * FS, just waiting on its writeback completion. Worryingly,
910 * ext4 gfs2 and xfs allocate pages with
911 * grab_cache_page_write_begin(,,AOP_FLAG_NOFS), so testing
912 * may_enter_fs here is liable to OOM on them.
914 * 3) memcg encounters a page that is not already marked
915 * PageReclaim. memcg does not have any dirty pages
916 * throttling so we could easily OOM just because too many
917 * pages are in writeback and there is nothing else to
918 * reclaim. Wait for the writeback to complete.
920 if (PageWriteback(page
)) {
922 if (current_is_kswapd() &&
924 test_bit(ZONE_WRITEBACK
, &zone
->flags
)) {
929 } else if (global_reclaim(sc
) ||
930 !PageReclaim(page
) || !(sc
->gfp_mask
& __GFP_IO
)) {
932 * This is slightly racy - end_page_writeback()
933 * might have just cleared PageReclaim, then
934 * setting PageReclaim here end up interpreted
935 * as PageReadahead - but that does not matter
936 * enough to care. What we do want is for this
937 * page to have PageReclaim set next time memcg
938 * reclaim reaches the tests above, so it will
939 * then wait_on_page_writeback() to avoid OOM;
940 * and it's also appropriate in global reclaim.
942 SetPageReclaim(page
);
949 wait_on_page_writeback(page
);
954 references
= page_check_references(page
, sc
);
956 switch (references
) {
957 case PAGEREF_ACTIVATE
:
958 goto activate_locked
;
961 case PAGEREF_RECLAIM
:
962 case PAGEREF_RECLAIM_CLEAN
:
963 ; /* try to reclaim the page below */
967 * Anonymous process memory has backing store?
968 * Try to allocate it some swap space here.
970 if (PageAnon(page
) && !PageSwapCache(page
)) {
971 if (!(sc
->gfp_mask
& __GFP_IO
))
973 if (!add_to_swap(page
, page_list
))
974 goto activate_locked
;
977 /* Adding to swap updated mapping */
978 mapping
= page_mapping(page
);
982 * The page is mapped into the page tables of one or more
983 * processes. Try to unmap it here.
985 if (page_mapped(page
) && mapping
) {
986 switch (try_to_unmap(page
, ttu_flags
)) {
988 goto activate_locked
;
994 ; /* try to free the page below */
998 if (PageDirty(page
)) {
1000 * Only kswapd can writeback filesystem pages to
1001 * avoid risk of stack overflow but only writeback
1002 * if many dirty pages have been encountered.
1004 if (page_is_file_cache(page
) &&
1005 (!current_is_kswapd() ||
1006 !test_bit(ZONE_DIRTY
, &zone
->flags
))) {
1008 * Immediately reclaim when written back.
1009 * Similar in principal to deactivate_page()
1010 * except we already have the page isolated
1011 * and know it's dirty
1013 inc_zone_page_state(page
, NR_VMSCAN_IMMEDIATE
);
1014 SetPageReclaim(page
);
1019 if (references
== PAGEREF_RECLAIM_CLEAN
)
1023 if (!sc
->may_writepage
)
1026 /* Page is dirty, try to write it out here */
1027 switch (pageout(page
, mapping
, sc
)) {
1031 goto activate_locked
;
1033 if (PageWriteback(page
))
1035 if (PageDirty(page
))
1039 * A synchronous write - probably a ramdisk. Go
1040 * ahead and try to reclaim the page.
1042 if (!trylock_page(page
))
1044 if (PageDirty(page
) || PageWriteback(page
))
1046 mapping
= page_mapping(page
);
1048 ; /* try to free the page below */
1053 * If the page has buffers, try to free the buffer mappings
1054 * associated with this page. If we succeed we try to free
1057 * We do this even if the page is PageDirty().
1058 * try_to_release_page() does not perform I/O, but it is
1059 * possible for a page to have PageDirty set, but it is actually
1060 * clean (all its buffers are clean). This happens if the
1061 * buffers were written out directly, with submit_bh(). ext3
1062 * will do this, as well as the blockdev mapping.
1063 * try_to_release_page() will discover that cleanness and will
1064 * drop the buffers and mark the page clean - it can be freed.
1066 * Rarely, pages can have buffers and no ->mapping. These are
1067 * the pages which were not successfully invalidated in
1068 * truncate_complete_page(). We try to drop those buffers here
1069 * and if that worked, and the page is no longer mapped into
1070 * process address space (page_count == 1) it can be freed.
1071 * Otherwise, leave the page on the LRU so it is swappable.
1073 if (page_has_private(page
)) {
1074 if (!try_to_release_page(page
, sc
->gfp_mask
))
1075 goto activate_locked
;
1076 if (!mapping
&& page_count(page
) == 1) {
1078 if (put_page_testzero(page
))
1082 * rare race with speculative reference.
1083 * the speculative reference will free
1084 * this page shortly, so we may
1085 * increment nr_reclaimed here (and
1086 * leave it off the LRU).
1094 if (!mapping
|| !__remove_mapping(mapping
, page
, true))
1098 * At this point, we have no other references and there is
1099 * no way to pick any more up (removed from LRU, removed
1100 * from pagecache). Can use non-atomic bitops now (and
1101 * we obviously don't have to worry about waking up a process
1102 * waiting on the page lock, because there are no references.
1104 __clear_page_locked(page
);
1109 * Is there need to periodically free_page_list? It would
1110 * appear not as the counts should be low
1112 list_add(&page
->lru
, &free_pages
);
1116 if (PageSwapCache(page
))
1117 try_to_free_swap(page
);
1119 putback_lru_page(page
);
1123 /* Not a candidate for swapping, so reclaim swap space. */
1124 if (PageSwapCache(page
) && vm_swap_full())
1125 try_to_free_swap(page
);
1126 VM_BUG_ON_PAGE(PageActive(page
), page
);
1127 SetPageActive(page
);
1132 list_add(&page
->lru
, &ret_pages
);
1133 VM_BUG_ON_PAGE(PageLRU(page
) || PageUnevictable(page
), page
);
1136 mem_cgroup_uncharge_list(&free_pages
);
1137 free_hot_cold_page_list(&free_pages
, true);
1139 list_splice(&ret_pages
, page_list
);
1140 count_vm_events(PGACTIVATE
, pgactivate
);
1142 *ret_nr_dirty
+= nr_dirty
;
1143 *ret_nr_congested
+= nr_congested
;
1144 *ret_nr_unqueued_dirty
+= nr_unqueued_dirty
;
1145 *ret_nr_writeback
+= nr_writeback
;
1146 *ret_nr_immediate
+= nr_immediate
;
1147 return nr_reclaimed
;
1150 unsigned long reclaim_clean_pages_from_list(struct zone
*zone
,
1151 struct list_head
*page_list
)
1153 struct scan_control sc
= {
1154 .gfp_mask
= GFP_KERNEL
,
1155 .priority
= DEF_PRIORITY
,
1158 unsigned long ret
, dummy1
, dummy2
, dummy3
, dummy4
, dummy5
;
1159 struct page
*page
, *next
;
1160 LIST_HEAD(clean_pages
);
1162 list_for_each_entry_safe(page
, next
, page_list
, lru
) {
1163 if (page_is_file_cache(page
) && !PageDirty(page
) &&
1164 !isolated_balloon_page(page
)) {
1165 ClearPageActive(page
);
1166 list_move(&page
->lru
, &clean_pages
);
1170 ret
= shrink_page_list(&clean_pages
, zone
, &sc
,
1171 TTU_UNMAP
|TTU_IGNORE_ACCESS
,
1172 &dummy1
, &dummy2
, &dummy3
, &dummy4
, &dummy5
, true);
1173 list_splice(&clean_pages
, page_list
);
1174 mod_zone_page_state(zone
, NR_ISOLATED_FILE
, -ret
);
1179 * Attempt to remove the specified page from its LRU. Only take this page
1180 * if it is of the appropriate PageActive status. Pages which are being
1181 * freed elsewhere are also ignored.
1183 * page: page to consider
1184 * mode: one of the LRU isolation modes defined above
1186 * returns 0 on success, -ve errno on failure.
1188 int __isolate_lru_page(struct page
*page
, isolate_mode_t mode
)
1192 /* Only take pages on the LRU. */
1196 /* Compaction should not handle unevictable pages but CMA can do so */
1197 if (PageUnevictable(page
) && !(mode
& ISOLATE_UNEVICTABLE
))
1203 * To minimise LRU disruption, the caller can indicate that it only
1204 * wants to isolate pages it will be able to operate on without
1205 * blocking - clean pages for the most part.
1207 * ISOLATE_CLEAN means that only clean pages should be isolated. This
1208 * is used by reclaim when it is cannot write to backing storage
1210 * ISOLATE_ASYNC_MIGRATE is used to indicate that it only wants to pages
1211 * that it is possible to migrate without blocking
1213 if (mode
& (ISOLATE_CLEAN
|ISOLATE_ASYNC_MIGRATE
)) {
1214 /* All the caller can do on PageWriteback is block */
1215 if (PageWriteback(page
))
1218 if (PageDirty(page
)) {
1219 struct address_space
*mapping
;
1221 /* ISOLATE_CLEAN means only clean pages */
1222 if (mode
& ISOLATE_CLEAN
)
1226 * Only pages without mappings or that have a
1227 * ->migratepage callback are possible to migrate
1230 mapping
= page_mapping(page
);
1231 if (mapping
&& !mapping
->a_ops
->migratepage
)
1236 if ((mode
& ISOLATE_UNMAPPED
) && page_mapped(page
))
1239 if (likely(get_page_unless_zero(page
))) {
1241 * Be careful not to clear PageLRU until after we're
1242 * sure the page is not being freed elsewhere -- the
1243 * page release code relies on it.
1253 * zone->lru_lock is heavily contended. Some of the functions that
1254 * shrink the lists perform better by taking out a batch of pages
1255 * and working on them outside the LRU lock.
1257 * For pagecache intensive workloads, this function is the hottest
1258 * spot in the kernel (apart from copy_*_user functions).
1260 * Appropriate locks must be held before calling this function.
1262 * @nr_to_scan: The number of pages to look through on the list.
1263 * @lruvec: The LRU vector to pull pages from.
1264 * @dst: The temp list to put pages on to.
1265 * @nr_scanned: The number of pages that were scanned.
1266 * @sc: The scan_control struct for this reclaim session
1267 * @mode: One of the LRU isolation modes
1268 * @lru: LRU list id for isolating
1270 * returns how many pages were moved onto *@dst.
1272 static unsigned long isolate_lru_pages(unsigned long nr_to_scan
,
1273 struct lruvec
*lruvec
, struct list_head
*dst
,
1274 unsigned long *nr_scanned
, struct scan_control
*sc
,
1275 isolate_mode_t mode
, enum lru_list lru
)
1277 struct list_head
*src
= &lruvec
->lists
[lru
];
1278 unsigned long nr_taken
= 0;
1281 for (scan
= 0; scan
< nr_to_scan
&& !list_empty(src
); scan
++) {
1285 page
= lru_to_page(src
);
1286 prefetchw_prev_lru_page(page
, src
, flags
);
1288 VM_BUG_ON_PAGE(!PageLRU(page
), page
);
1290 switch (__isolate_lru_page(page
, mode
)) {
1292 nr_pages
= hpage_nr_pages(page
);
1293 mem_cgroup_update_lru_size(lruvec
, lru
, -nr_pages
);
1294 list_move(&page
->lru
, dst
);
1295 nr_taken
+= nr_pages
;
1299 /* else it is being freed elsewhere */
1300 list_move(&page
->lru
, src
);
1309 trace_mm_vmscan_lru_isolate(sc
->order
, nr_to_scan
, scan
,
1310 nr_taken
, mode
, is_file_lru(lru
));
1315 * isolate_lru_page - tries to isolate a page from its LRU list
1316 * @page: page to isolate from its LRU list
1318 * Isolates a @page from an LRU list, clears PageLRU and adjusts the
1319 * vmstat statistic corresponding to whatever LRU list the page was on.
1321 * Returns 0 if the page was removed from an LRU list.
1322 * Returns -EBUSY if the page was not on an LRU list.
1324 * The returned page will have PageLRU() cleared. If it was found on
1325 * the active list, it will have PageActive set. If it was found on
1326 * the unevictable list, it will have the PageUnevictable bit set. That flag
1327 * may need to be cleared by the caller before letting the page go.
1329 * The vmstat statistic corresponding to the list on which the page was
1330 * found will be decremented.
1333 * (1) Must be called with an elevated refcount on the page. This is a
1334 * fundamentnal difference from isolate_lru_pages (which is called
1335 * without a stable reference).
1336 * (2) the lru_lock must not be held.
1337 * (3) interrupts must be enabled.
1339 int isolate_lru_page(struct page
*page
)
1343 VM_BUG_ON_PAGE(!page_count(page
), page
);
1345 if (PageLRU(page
)) {
1346 struct zone
*zone
= page_zone(page
);
1347 struct lruvec
*lruvec
;
1349 spin_lock_irq(&zone
->lru_lock
);
1350 lruvec
= mem_cgroup_page_lruvec(page
, zone
);
1351 if (PageLRU(page
)) {
1352 int lru
= page_lru(page
);
1355 del_page_from_lru_list(page
, lruvec
, lru
);
1358 spin_unlock_irq(&zone
->lru_lock
);
1364 * A direct reclaimer may isolate SWAP_CLUSTER_MAX pages from the LRU list and
1365 * then get resheduled. When there are massive number of tasks doing page
1366 * allocation, such sleeping direct reclaimers may keep piling up on each CPU,
1367 * the LRU list will go small and be scanned faster than necessary, leading to
1368 * unnecessary swapping, thrashing and OOM.
1370 static int too_many_isolated(struct zone
*zone
, int file
,
1371 struct scan_control
*sc
)
1373 unsigned long inactive
, isolated
;
1375 if (current_is_kswapd())
1378 if (!global_reclaim(sc
))
1382 inactive
= zone_page_state(zone
, NR_INACTIVE_FILE
);
1383 isolated
= zone_page_state(zone
, NR_ISOLATED_FILE
);
1385 inactive
= zone_page_state(zone
, NR_INACTIVE_ANON
);
1386 isolated
= zone_page_state(zone
, NR_ISOLATED_ANON
);
1390 * GFP_NOIO/GFP_NOFS callers are allowed to isolate more pages, so they
1391 * won't get blocked by normal direct-reclaimers, forming a circular
1394 if ((sc
->gfp_mask
& GFP_IOFS
) == GFP_IOFS
)
1397 return isolated
> inactive
;
1400 static noinline_for_stack
void
1401 putback_inactive_pages(struct lruvec
*lruvec
, struct list_head
*page_list
)
1403 struct zone_reclaim_stat
*reclaim_stat
= &lruvec
->reclaim_stat
;
1404 struct zone
*zone
= lruvec_zone(lruvec
);
1405 LIST_HEAD(pages_to_free
);
1408 * Put back any unfreeable pages.
1410 while (!list_empty(page_list
)) {
1411 struct page
*page
= lru_to_page(page_list
);
1414 VM_BUG_ON_PAGE(PageLRU(page
), page
);
1415 list_del(&page
->lru
);
1416 if (unlikely(!page_evictable(page
))) {
1417 spin_unlock_irq(&zone
->lru_lock
);
1418 putback_lru_page(page
);
1419 spin_lock_irq(&zone
->lru_lock
);
1423 lruvec
= mem_cgroup_page_lruvec(page
, zone
);
1426 lru
= page_lru(page
);
1427 add_page_to_lru_list(page
, lruvec
, lru
);
1429 if (is_active_lru(lru
)) {
1430 int file
= is_file_lru(lru
);
1431 int numpages
= hpage_nr_pages(page
);
1432 reclaim_stat
->recent_rotated
[file
] += numpages
;
1434 if (put_page_testzero(page
)) {
1435 __ClearPageLRU(page
);
1436 __ClearPageActive(page
);
1437 del_page_from_lru_list(page
, lruvec
, lru
);
1439 if (unlikely(PageCompound(page
))) {
1440 spin_unlock_irq(&zone
->lru_lock
);
1441 mem_cgroup_uncharge(page
);
1442 (*get_compound_page_dtor(page
))(page
);
1443 spin_lock_irq(&zone
->lru_lock
);
1445 list_add(&page
->lru
, &pages_to_free
);
1450 * To save our caller's stack, now use input list for pages to free.
1452 list_splice(&pages_to_free
, page_list
);
1456 * If a kernel thread (such as nfsd for loop-back mounts) services
1457 * a backing device by writing to the page cache it sets PF_LESS_THROTTLE.
1458 * In that case we should only throttle if the backing device it is
1459 * writing to is congested. In other cases it is safe to throttle.
1461 static int current_may_throttle(void)
1463 return !(current
->flags
& PF_LESS_THROTTLE
) ||
1464 current
->backing_dev_info
== NULL
||
1465 bdi_write_congested(current
->backing_dev_info
);
1469 * shrink_inactive_list() is a helper for shrink_zone(). It returns the number
1470 * of reclaimed pages
1472 static noinline_for_stack
unsigned long
1473 shrink_inactive_list(unsigned long nr_to_scan
, struct lruvec
*lruvec
,
1474 struct scan_control
*sc
, enum lru_list lru
)
1476 LIST_HEAD(page_list
);
1477 unsigned long nr_scanned
;
1478 unsigned long nr_reclaimed
= 0;
1479 unsigned long nr_taken
;
1480 unsigned long nr_dirty
= 0;
1481 unsigned long nr_congested
= 0;
1482 unsigned long nr_unqueued_dirty
= 0;
1483 unsigned long nr_writeback
= 0;
1484 unsigned long nr_immediate
= 0;
1485 isolate_mode_t isolate_mode
= 0;
1486 int file
= is_file_lru(lru
);
1487 struct zone
*zone
= lruvec_zone(lruvec
);
1488 struct zone_reclaim_stat
*reclaim_stat
= &lruvec
->reclaim_stat
;
1490 while (unlikely(too_many_isolated(zone
, file
, sc
))) {
1491 congestion_wait(BLK_RW_ASYNC
, HZ
/10);
1493 /* We are about to die and free our memory. Return now. */
1494 if (fatal_signal_pending(current
))
1495 return SWAP_CLUSTER_MAX
;
1501 isolate_mode
|= ISOLATE_UNMAPPED
;
1502 if (!sc
->may_writepage
)
1503 isolate_mode
|= ISOLATE_CLEAN
;
1505 spin_lock_irq(&zone
->lru_lock
);
1507 nr_taken
= isolate_lru_pages(nr_to_scan
, lruvec
, &page_list
,
1508 &nr_scanned
, sc
, isolate_mode
, lru
);
1510 __mod_zone_page_state(zone
, NR_LRU_BASE
+ lru
, -nr_taken
);
1511 __mod_zone_page_state(zone
, NR_ISOLATED_ANON
+ file
, nr_taken
);
1513 if (global_reclaim(sc
)) {
1514 __mod_zone_page_state(zone
, NR_PAGES_SCANNED
, nr_scanned
);
1515 if (current_is_kswapd())
1516 __count_zone_vm_events(PGSCAN_KSWAPD
, zone
, nr_scanned
);
1518 __count_zone_vm_events(PGSCAN_DIRECT
, zone
, nr_scanned
);
1520 spin_unlock_irq(&zone
->lru_lock
);
1525 nr_reclaimed
= shrink_page_list(&page_list
, zone
, sc
, TTU_UNMAP
,
1526 &nr_dirty
, &nr_unqueued_dirty
, &nr_congested
,
1527 &nr_writeback
, &nr_immediate
,
1530 spin_lock_irq(&zone
->lru_lock
);
1532 reclaim_stat
->recent_scanned
[file
] += nr_taken
;
1534 if (global_reclaim(sc
)) {
1535 if (current_is_kswapd())
1536 __count_zone_vm_events(PGSTEAL_KSWAPD
, zone
,
1539 __count_zone_vm_events(PGSTEAL_DIRECT
, zone
,
1543 putback_inactive_pages(lruvec
, &page_list
);
1545 __mod_zone_page_state(zone
, NR_ISOLATED_ANON
+ file
, -nr_taken
);
1547 spin_unlock_irq(&zone
->lru_lock
);
1549 mem_cgroup_uncharge_list(&page_list
);
1550 free_hot_cold_page_list(&page_list
, true);
1553 * If reclaim is isolating dirty pages under writeback, it implies
1554 * that the long-lived page allocation rate is exceeding the page
1555 * laundering rate. Either the global limits are not being effective
1556 * at throttling processes due to the page distribution throughout
1557 * zones or there is heavy usage of a slow backing device. The
1558 * only option is to throttle from reclaim context which is not ideal
1559 * as there is no guarantee the dirtying process is throttled in the
1560 * same way balance_dirty_pages() manages.
1562 * Once a zone is flagged ZONE_WRITEBACK, kswapd will count the number
1563 * of pages under pages flagged for immediate reclaim and stall if any
1564 * are encountered in the nr_immediate check below.
1566 if (nr_writeback
&& nr_writeback
== nr_taken
)
1567 set_bit(ZONE_WRITEBACK
, &zone
->flags
);
1570 * memcg will stall in page writeback so only consider forcibly
1571 * stalling for global reclaim
1573 if (global_reclaim(sc
)) {
1575 * Tag a zone as congested if all the dirty pages scanned were
1576 * backed by a congested BDI and wait_iff_congested will stall.
1578 if (nr_dirty
&& nr_dirty
== nr_congested
)
1579 set_bit(ZONE_CONGESTED
, &zone
->flags
);
1582 * If dirty pages are scanned that are not queued for IO, it
1583 * implies that flushers are not keeping up. In this case, flag
1584 * the zone ZONE_DIRTY and kswapd will start writing pages from
1587 if (nr_unqueued_dirty
== nr_taken
)
1588 set_bit(ZONE_DIRTY
, &zone
->flags
);
1591 * If kswapd scans pages marked marked for immediate
1592 * reclaim and under writeback (nr_immediate), it implies
1593 * that pages are cycling through the LRU faster than
1594 * they are written so also forcibly stall.
1596 if (nr_immediate
&& current_may_throttle())
1597 congestion_wait(BLK_RW_ASYNC
, HZ
/10);
1601 * Stall direct reclaim for IO completions if underlying BDIs or zone
1602 * is congested. Allow kswapd to continue until it starts encountering
1603 * unqueued dirty pages or cycling through the LRU too quickly.
1605 if (!sc
->hibernation_mode
&& !current_is_kswapd() &&
1606 current_may_throttle())
1607 wait_iff_congested(zone
, BLK_RW_ASYNC
, HZ
/10);
1609 trace_mm_vmscan_lru_shrink_inactive(zone
->zone_pgdat
->node_id
,
1611 nr_scanned
, nr_reclaimed
,
1613 trace_shrink_flags(file
));
1614 return nr_reclaimed
;
1618 * This moves pages from the active list to the inactive list.
1620 * We move them the other way if the page is referenced by one or more
1621 * processes, from rmap.
1623 * If the pages are mostly unmapped, the processing is fast and it is
1624 * appropriate to hold zone->lru_lock across the whole operation. But if
1625 * the pages are mapped, the processing is slow (page_referenced()) so we
1626 * should drop zone->lru_lock around each page. It's impossible to balance
1627 * this, so instead we remove the pages from the LRU while processing them.
1628 * It is safe to rely on PG_active against the non-LRU pages in here because
1629 * nobody will play with that bit on a non-LRU page.
1631 * The downside is that we have to touch page->_count against each page.
1632 * But we had to alter page->flags anyway.
1635 static void move_active_pages_to_lru(struct lruvec
*lruvec
,
1636 struct list_head
*list
,
1637 struct list_head
*pages_to_free
,
1640 struct zone
*zone
= lruvec_zone(lruvec
);
1641 unsigned long pgmoved
= 0;
1645 while (!list_empty(list
)) {
1646 page
= lru_to_page(list
);
1647 lruvec
= mem_cgroup_page_lruvec(page
, zone
);
1649 VM_BUG_ON_PAGE(PageLRU(page
), page
);
1652 nr_pages
= hpage_nr_pages(page
);
1653 mem_cgroup_update_lru_size(lruvec
, lru
, nr_pages
);
1654 list_move(&page
->lru
, &lruvec
->lists
[lru
]);
1655 pgmoved
+= nr_pages
;
1657 if (put_page_testzero(page
)) {
1658 __ClearPageLRU(page
);
1659 __ClearPageActive(page
);
1660 del_page_from_lru_list(page
, lruvec
, lru
);
1662 if (unlikely(PageCompound(page
))) {
1663 spin_unlock_irq(&zone
->lru_lock
);
1664 mem_cgroup_uncharge(page
);
1665 (*get_compound_page_dtor(page
))(page
);
1666 spin_lock_irq(&zone
->lru_lock
);
1668 list_add(&page
->lru
, pages_to_free
);
1671 __mod_zone_page_state(zone
, NR_LRU_BASE
+ lru
, pgmoved
);
1672 if (!is_active_lru(lru
))
1673 __count_vm_events(PGDEACTIVATE
, pgmoved
);
1676 static void shrink_active_list(unsigned long nr_to_scan
,
1677 struct lruvec
*lruvec
,
1678 struct scan_control
*sc
,
1681 unsigned long nr_taken
;
1682 unsigned long nr_scanned
;
1683 unsigned long vm_flags
;
1684 LIST_HEAD(l_hold
); /* The pages which were snipped off */
1685 LIST_HEAD(l_active
);
1686 LIST_HEAD(l_inactive
);
1688 struct zone_reclaim_stat
*reclaim_stat
= &lruvec
->reclaim_stat
;
1689 unsigned long nr_rotated
= 0;
1690 isolate_mode_t isolate_mode
= 0;
1691 int file
= is_file_lru(lru
);
1692 struct zone
*zone
= lruvec_zone(lruvec
);
1697 isolate_mode
|= ISOLATE_UNMAPPED
;
1698 if (!sc
->may_writepage
)
1699 isolate_mode
|= ISOLATE_CLEAN
;
1701 spin_lock_irq(&zone
->lru_lock
);
1703 nr_taken
= isolate_lru_pages(nr_to_scan
, lruvec
, &l_hold
,
1704 &nr_scanned
, sc
, isolate_mode
, lru
);
1705 if (global_reclaim(sc
))
1706 __mod_zone_page_state(zone
, NR_PAGES_SCANNED
, nr_scanned
);
1708 reclaim_stat
->recent_scanned
[file
] += nr_taken
;
1710 __count_zone_vm_events(PGREFILL
, zone
, nr_scanned
);
1711 __mod_zone_page_state(zone
, NR_LRU_BASE
+ lru
, -nr_taken
);
1712 __mod_zone_page_state(zone
, NR_ISOLATED_ANON
+ file
, nr_taken
);
1713 spin_unlock_irq(&zone
->lru_lock
);
1715 while (!list_empty(&l_hold
)) {
1717 page
= lru_to_page(&l_hold
);
1718 list_del(&page
->lru
);
1720 if (unlikely(!page_evictable(page
))) {
1721 putback_lru_page(page
);
1725 if (unlikely(buffer_heads_over_limit
)) {
1726 if (page_has_private(page
) && trylock_page(page
)) {
1727 if (page_has_private(page
))
1728 try_to_release_page(page
, 0);
1733 if (page_referenced(page
, 0, sc
->target_mem_cgroup
,
1735 nr_rotated
+= hpage_nr_pages(page
);
1737 * Identify referenced, file-backed active pages and
1738 * give them one more trip around the active list. So
1739 * that executable code get better chances to stay in
1740 * memory under moderate memory pressure. Anon pages
1741 * are not likely to be evicted by use-once streaming
1742 * IO, plus JVM can create lots of anon VM_EXEC pages,
1743 * so we ignore them here.
1745 if ((vm_flags
& VM_EXEC
) && page_is_file_cache(page
)) {
1746 list_add(&page
->lru
, &l_active
);
1751 ClearPageActive(page
); /* we are de-activating */
1752 list_add(&page
->lru
, &l_inactive
);
1756 * Move pages back to the lru list.
1758 spin_lock_irq(&zone
->lru_lock
);
1760 * Count referenced pages from currently used mappings as rotated,
1761 * even though only some of them are actually re-activated. This
1762 * helps balance scan pressure between file and anonymous pages in
1765 reclaim_stat
->recent_rotated
[file
] += nr_rotated
;
1767 move_active_pages_to_lru(lruvec
, &l_active
, &l_hold
, lru
);
1768 move_active_pages_to_lru(lruvec
, &l_inactive
, &l_hold
, lru
- LRU_ACTIVE
);
1769 __mod_zone_page_state(zone
, NR_ISOLATED_ANON
+ file
, -nr_taken
);
1770 spin_unlock_irq(&zone
->lru_lock
);
1772 mem_cgroup_uncharge_list(&l_hold
);
1773 free_hot_cold_page_list(&l_hold
, true);
1777 static int inactive_anon_is_low_global(struct zone
*zone
)
1779 unsigned long active
, inactive
;
1781 active
= zone_page_state(zone
, NR_ACTIVE_ANON
);
1782 inactive
= zone_page_state(zone
, NR_INACTIVE_ANON
);
1784 if (inactive
* zone
->inactive_ratio
< active
)
1791 * inactive_anon_is_low - check if anonymous pages need to be deactivated
1792 * @lruvec: LRU vector to check
1794 * Returns true if the zone does not have enough inactive anon pages,
1795 * meaning some active anon pages need to be deactivated.
1797 static int inactive_anon_is_low(struct lruvec
*lruvec
)
1800 * If we don't have swap space, anonymous page deactivation
1803 if (!total_swap_pages
)
1806 if (!mem_cgroup_disabled())
1807 return mem_cgroup_inactive_anon_is_low(lruvec
);
1809 return inactive_anon_is_low_global(lruvec_zone(lruvec
));
1812 static inline int inactive_anon_is_low(struct lruvec
*lruvec
)
1819 * inactive_file_is_low - check if file pages need to be deactivated
1820 * @lruvec: LRU vector to check
1822 * When the system is doing streaming IO, memory pressure here
1823 * ensures that active file pages get deactivated, until more
1824 * than half of the file pages are on the inactive list.
1826 * Once we get to that situation, protect the system's working
1827 * set from being evicted by disabling active file page aging.
1829 * This uses a different ratio than the anonymous pages, because
1830 * the page cache uses a use-once replacement algorithm.
1832 static int inactive_file_is_low(struct lruvec
*lruvec
)
1834 unsigned long inactive
;
1835 unsigned long active
;
1837 inactive
= get_lru_size(lruvec
, LRU_INACTIVE_FILE
);
1838 active
= get_lru_size(lruvec
, LRU_ACTIVE_FILE
);
1840 return active
> inactive
;
1843 static int inactive_list_is_low(struct lruvec
*lruvec
, enum lru_list lru
)
1845 if (is_file_lru(lru
))
1846 return inactive_file_is_low(lruvec
);
1848 return inactive_anon_is_low(lruvec
);
1851 static unsigned long shrink_list(enum lru_list lru
, unsigned long nr_to_scan
,
1852 struct lruvec
*lruvec
, struct scan_control
*sc
)
1854 if (is_active_lru(lru
)) {
1855 if (inactive_list_is_low(lruvec
, lru
))
1856 shrink_active_list(nr_to_scan
, lruvec
, sc
, lru
);
1860 return shrink_inactive_list(nr_to_scan
, lruvec
, sc
, lru
);
1871 * Determine how aggressively the anon and file LRU lists should be
1872 * scanned. The relative value of each set of LRU lists is determined
1873 * by looking at the fraction of the pages scanned we did rotate back
1874 * onto the active list instead of evict.
1876 * nr[0] = anon inactive pages to scan; nr[1] = anon active pages to scan
1877 * nr[2] = file inactive pages to scan; nr[3] = file active pages to scan
1879 static void get_scan_count(struct lruvec
*lruvec
, int swappiness
,
1880 struct scan_control
*sc
, unsigned long *nr
,
1881 unsigned long *lru_pages
)
1883 struct zone_reclaim_stat
*reclaim_stat
= &lruvec
->reclaim_stat
;
1885 u64 denominator
= 0; /* gcc */
1886 struct zone
*zone
= lruvec_zone(lruvec
);
1887 unsigned long anon_prio
, file_prio
;
1888 enum scan_balance scan_balance
;
1889 unsigned long anon
, file
;
1890 bool force_scan
= false;
1891 unsigned long ap
, fp
;
1897 * If the zone or memcg is small, nr[l] can be 0. This
1898 * results in no scanning on this priority and a potential
1899 * priority drop. Global direct reclaim can go to the next
1900 * zone and tends to have no problems. Global kswapd is for
1901 * zone balancing and it needs to scan a minimum amount. When
1902 * reclaiming for a memcg, a priority drop can cause high
1903 * latencies, so it's better to scan a minimum amount there as
1906 if (current_is_kswapd() && !zone_reclaimable(zone
))
1908 if (!global_reclaim(sc
))
1911 /* If we have no swap space, do not bother scanning anon pages. */
1912 if (!sc
->may_swap
|| (get_nr_swap_pages() <= 0)) {
1913 scan_balance
= SCAN_FILE
;
1918 * Global reclaim will swap to prevent OOM even with no
1919 * swappiness, but memcg users want to use this knob to
1920 * disable swapping for individual groups completely when
1921 * using the memory controller's swap limit feature would be
1924 if (!global_reclaim(sc
) && !swappiness
) {
1925 scan_balance
= SCAN_FILE
;
1930 * Do not apply any pressure balancing cleverness when the
1931 * system is close to OOM, scan both anon and file equally
1932 * (unless the swappiness setting disagrees with swapping).
1934 if (!sc
->priority
&& swappiness
) {
1935 scan_balance
= SCAN_EQUAL
;
1940 * Prevent the reclaimer from falling into the cache trap: as
1941 * cache pages start out inactive, every cache fault will tip
1942 * the scan balance towards the file LRU. And as the file LRU
1943 * shrinks, so does the window for rotation from references.
1944 * This means we have a runaway feedback loop where a tiny
1945 * thrashing file LRU becomes infinitely more attractive than
1946 * anon pages. Try to detect this based on file LRU size.
1948 if (global_reclaim(sc
)) {
1949 unsigned long zonefile
;
1950 unsigned long zonefree
;
1952 zonefree
= zone_page_state(zone
, NR_FREE_PAGES
);
1953 zonefile
= zone_page_state(zone
, NR_ACTIVE_FILE
) +
1954 zone_page_state(zone
, NR_INACTIVE_FILE
);
1956 if (unlikely(zonefile
+ zonefree
<= high_wmark_pages(zone
))) {
1957 scan_balance
= SCAN_ANON
;
1963 * There is enough inactive page cache, do not reclaim
1964 * anything from the anonymous working set right now.
1966 if (!inactive_file_is_low(lruvec
)) {
1967 scan_balance
= SCAN_FILE
;
1971 scan_balance
= SCAN_FRACT
;
1974 * With swappiness at 100, anonymous and file have the same priority.
1975 * This scanning priority is essentially the inverse of IO cost.
1977 anon_prio
= swappiness
;
1978 file_prio
= 200 - anon_prio
;
1981 * OK, so we have swap space and a fair amount of page cache
1982 * pages. We use the recently rotated / recently scanned
1983 * ratios to determine how valuable each cache is.
1985 * Because workloads change over time (and to avoid overflow)
1986 * we keep these statistics as a floating average, which ends
1987 * up weighing recent references more than old ones.
1989 * anon in [0], file in [1]
1992 anon
= get_lru_size(lruvec
, LRU_ACTIVE_ANON
) +
1993 get_lru_size(lruvec
, LRU_INACTIVE_ANON
);
1994 file
= get_lru_size(lruvec
, LRU_ACTIVE_FILE
) +
1995 get_lru_size(lruvec
, LRU_INACTIVE_FILE
);
1997 spin_lock_irq(&zone
->lru_lock
);
1998 if (unlikely(reclaim_stat
->recent_scanned
[0] > anon
/ 4)) {
1999 reclaim_stat
->recent_scanned
[0] /= 2;
2000 reclaim_stat
->recent_rotated
[0] /= 2;
2003 if (unlikely(reclaim_stat
->recent_scanned
[1] > file
/ 4)) {
2004 reclaim_stat
->recent_scanned
[1] /= 2;
2005 reclaim_stat
->recent_rotated
[1] /= 2;
2009 * The amount of pressure on anon vs file pages is inversely
2010 * proportional to the fraction of recently scanned pages on
2011 * each list that were recently referenced and in active use.
2013 ap
= anon_prio
* (reclaim_stat
->recent_scanned
[0] + 1);
2014 ap
/= reclaim_stat
->recent_rotated
[0] + 1;
2016 fp
= file_prio
* (reclaim_stat
->recent_scanned
[1] + 1);
2017 fp
/= reclaim_stat
->recent_rotated
[1] + 1;
2018 spin_unlock_irq(&zone
->lru_lock
);
2022 denominator
= ap
+ fp
+ 1;
2024 some_scanned
= false;
2025 /* Only use force_scan on second pass. */
2026 for (pass
= 0; !some_scanned
&& pass
< 2; pass
++) {
2028 for_each_evictable_lru(lru
) {
2029 int file
= is_file_lru(lru
);
2033 size
= get_lru_size(lruvec
, lru
);
2034 scan
= size
>> sc
->priority
;
2036 if (!scan
&& pass
&& force_scan
)
2037 scan
= min(size
, SWAP_CLUSTER_MAX
);
2039 switch (scan_balance
) {
2041 /* Scan lists relative to size */
2045 * Scan types proportional to swappiness and
2046 * their relative recent reclaim efficiency.
2048 scan
= div64_u64(scan
* fraction
[file
],
2053 /* Scan one type exclusively */
2054 if ((scan_balance
== SCAN_FILE
) != file
) {
2060 /* Look ma, no brain */
2068 * Skip the second pass and don't force_scan,
2069 * if we found something to scan.
2071 some_scanned
|= !!scan
;
2077 * This is a basic per-zone page freer. Used by both kswapd and direct reclaim.
2079 static void shrink_lruvec(struct lruvec
*lruvec
, int swappiness
,
2080 struct scan_control
*sc
, unsigned long *lru_pages
)
2082 unsigned long nr
[NR_LRU_LISTS
];
2083 unsigned long targets
[NR_LRU_LISTS
];
2084 unsigned long nr_to_scan
;
2086 unsigned long nr_reclaimed
= 0;
2087 unsigned long nr_to_reclaim
= sc
->nr_to_reclaim
;
2088 struct blk_plug plug
;
2091 get_scan_count(lruvec
, swappiness
, sc
, nr
, lru_pages
);
2093 /* Record the original scan target for proportional adjustments later */
2094 memcpy(targets
, nr
, sizeof(nr
));
2097 * Global reclaiming within direct reclaim at DEF_PRIORITY is a normal
2098 * event that can occur when there is little memory pressure e.g.
2099 * multiple streaming readers/writers. Hence, we do not abort scanning
2100 * when the requested number of pages are reclaimed when scanning at
2101 * DEF_PRIORITY on the assumption that the fact we are direct
2102 * reclaiming implies that kswapd is not keeping up and it is best to
2103 * do a batch of work at once. For memcg reclaim one check is made to
2104 * abort proportional reclaim if either the file or anon lru has already
2105 * dropped to zero at the first pass.
2107 scan_adjusted
= (global_reclaim(sc
) && !current_is_kswapd() &&
2108 sc
->priority
== DEF_PRIORITY
);
2110 blk_start_plug(&plug
);
2111 while (nr
[LRU_INACTIVE_ANON
] || nr
[LRU_ACTIVE_FILE
] ||
2112 nr
[LRU_INACTIVE_FILE
]) {
2113 unsigned long nr_anon
, nr_file
, percentage
;
2114 unsigned long nr_scanned
;
2116 for_each_evictable_lru(lru
) {
2118 nr_to_scan
= min(nr
[lru
], SWAP_CLUSTER_MAX
);
2119 nr
[lru
] -= nr_to_scan
;
2121 nr_reclaimed
+= shrink_list(lru
, nr_to_scan
,
2126 if (nr_reclaimed
< nr_to_reclaim
|| scan_adjusted
)
2130 * For kswapd and memcg, reclaim at least the number of pages
2131 * requested. Ensure that the anon and file LRUs are scanned
2132 * proportionally what was requested by get_scan_count(). We
2133 * stop reclaiming one LRU and reduce the amount scanning
2134 * proportional to the original scan target.
2136 nr_file
= nr
[LRU_INACTIVE_FILE
] + nr
[LRU_ACTIVE_FILE
];
2137 nr_anon
= nr
[LRU_INACTIVE_ANON
] + nr
[LRU_ACTIVE_ANON
];
2140 * It's just vindictive to attack the larger once the smaller
2141 * has gone to zero. And given the way we stop scanning the
2142 * smaller below, this makes sure that we only make one nudge
2143 * towards proportionality once we've got nr_to_reclaim.
2145 if (!nr_file
|| !nr_anon
)
2148 if (nr_file
> nr_anon
) {
2149 unsigned long scan_target
= targets
[LRU_INACTIVE_ANON
] +
2150 targets
[LRU_ACTIVE_ANON
] + 1;
2152 percentage
= nr_anon
* 100 / scan_target
;
2154 unsigned long scan_target
= targets
[LRU_INACTIVE_FILE
] +
2155 targets
[LRU_ACTIVE_FILE
] + 1;
2157 percentage
= nr_file
* 100 / scan_target
;
2160 /* Stop scanning the smaller of the LRU */
2162 nr
[lru
+ LRU_ACTIVE
] = 0;
2165 * Recalculate the other LRU scan count based on its original
2166 * scan target and the percentage scanning already complete
2168 lru
= (lru
== LRU_FILE
) ? LRU_BASE
: LRU_FILE
;
2169 nr_scanned
= targets
[lru
] - nr
[lru
];
2170 nr
[lru
] = targets
[lru
] * (100 - percentage
) / 100;
2171 nr
[lru
] -= min(nr
[lru
], nr_scanned
);
2174 nr_scanned
= targets
[lru
] - nr
[lru
];
2175 nr
[lru
] = targets
[lru
] * (100 - percentage
) / 100;
2176 nr
[lru
] -= min(nr
[lru
], nr_scanned
);
2178 scan_adjusted
= true;
2180 blk_finish_plug(&plug
);
2181 sc
->nr_reclaimed
+= nr_reclaimed
;
2184 * Even if we did not try to evict anon pages at all, we want to
2185 * rebalance the anon lru active/inactive ratio.
2187 if (inactive_anon_is_low(lruvec
))
2188 shrink_active_list(SWAP_CLUSTER_MAX
, lruvec
,
2189 sc
, LRU_ACTIVE_ANON
);
2191 throttle_vm_writeout(sc
->gfp_mask
);
2194 /* Use reclaim/compaction for costly allocs or under memory pressure */
2195 static bool in_reclaim_compaction(struct scan_control
*sc
)
2197 if (IS_ENABLED(CONFIG_COMPACTION
) && sc
->order
&&
2198 (sc
->order
> PAGE_ALLOC_COSTLY_ORDER
||
2199 sc
->priority
< DEF_PRIORITY
- 2))
2206 * Reclaim/compaction is used for high-order allocation requests. It reclaims
2207 * order-0 pages before compacting the zone. should_continue_reclaim() returns
2208 * true if more pages should be reclaimed such that when the page allocator
2209 * calls try_to_compact_zone() that it will have enough free pages to succeed.
2210 * It will give up earlier than that if there is difficulty reclaiming pages.
2212 static inline bool should_continue_reclaim(struct zone
*zone
,
2213 unsigned long nr_reclaimed
,
2214 unsigned long nr_scanned
,
2215 struct scan_control
*sc
)
2217 unsigned long pages_for_compaction
;
2218 unsigned long inactive_lru_pages
;
2220 /* If not in reclaim/compaction mode, stop */
2221 if (!in_reclaim_compaction(sc
))
2224 /* Consider stopping depending on scan and reclaim activity */
2225 if (sc
->gfp_mask
& __GFP_REPEAT
) {
2227 * For __GFP_REPEAT allocations, stop reclaiming if the
2228 * full LRU list has been scanned and we are still failing
2229 * to reclaim pages. This full LRU scan is potentially
2230 * expensive but a __GFP_REPEAT caller really wants to succeed
2232 if (!nr_reclaimed
&& !nr_scanned
)
2236 * For non-__GFP_REPEAT allocations which can presumably
2237 * fail without consequence, stop if we failed to reclaim
2238 * any pages from the last SWAP_CLUSTER_MAX number of
2239 * pages that were scanned. This will return to the
2240 * caller faster at the risk reclaim/compaction and
2241 * the resulting allocation attempt fails
2248 * If we have not reclaimed enough pages for compaction and the
2249 * inactive lists are large enough, continue reclaiming
2251 pages_for_compaction
= (2UL << sc
->order
);
2252 inactive_lru_pages
= zone_page_state(zone
, NR_INACTIVE_FILE
);
2253 if (get_nr_swap_pages() > 0)
2254 inactive_lru_pages
+= zone_page_state(zone
, NR_INACTIVE_ANON
);
2255 if (sc
->nr_reclaimed
< pages_for_compaction
&&
2256 inactive_lru_pages
> pages_for_compaction
)
2259 /* If compaction would go ahead or the allocation would succeed, stop */
2260 switch (compaction_suitable(zone
, sc
->order
, 0, 0)) {
2261 case COMPACT_PARTIAL
:
2262 case COMPACT_CONTINUE
:
2269 static bool shrink_zone(struct zone
*zone
, struct scan_control
*sc
,
2272 unsigned long nr_reclaimed
, nr_scanned
;
2273 bool reclaimable
= false;
2276 struct mem_cgroup
*root
= sc
->target_mem_cgroup
;
2277 struct mem_cgroup_reclaim_cookie reclaim
= {
2279 .priority
= sc
->priority
,
2281 unsigned long zone_lru_pages
= 0;
2282 struct mem_cgroup
*memcg
;
2284 nr_reclaimed
= sc
->nr_reclaimed
;
2285 nr_scanned
= sc
->nr_scanned
;
2287 memcg
= mem_cgroup_iter(root
, NULL
, &reclaim
);
2289 unsigned long lru_pages
;
2290 struct lruvec
*lruvec
;
2293 lruvec
= mem_cgroup_zone_lruvec(zone
, memcg
);
2294 swappiness
= mem_cgroup_swappiness(memcg
);
2296 shrink_lruvec(lruvec
, swappiness
, sc
, &lru_pages
);
2297 zone_lru_pages
+= lru_pages
;
2300 * Direct reclaim and kswapd have to scan all memory
2301 * cgroups to fulfill the overall scan target for the
2304 * Limit reclaim, on the other hand, only cares about
2305 * nr_to_reclaim pages to be reclaimed and it will
2306 * retry with decreasing priority if one round over the
2307 * whole hierarchy is not sufficient.
2309 if (!global_reclaim(sc
) &&
2310 sc
->nr_reclaimed
>= sc
->nr_to_reclaim
) {
2311 mem_cgroup_iter_break(root
, memcg
);
2314 memcg
= mem_cgroup_iter(root
, memcg
, &reclaim
);
2318 * Shrink the slab caches in the same proportion that
2319 * the eligible LRU pages were scanned.
2321 if (global_reclaim(sc
) && is_classzone
) {
2322 struct reclaim_state
*reclaim_state
;
2324 shrink_node_slabs(sc
->gfp_mask
, zone_to_nid(zone
),
2325 sc
->nr_scanned
- nr_scanned
,
2328 reclaim_state
= current
->reclaim_state
;
2329 if (reclaim_state
) {
2331 reclaim_state
->reclaimed_slab
;
2332 reclaim_state
->reclaimed_slab
= 0;
2336 vmpressure(sc
->gfp_mask
, sc
->target_mem_cgroup
,
2337 sc
->nr_scanned
- nr_scanned
,
2338 sc
->nr_reclaimed
- nr_reclaimed
);
2340 if (sc
->nr_reclaimed
- nr_reclaimed
)
2343 } while (should_continue_reclaim(zone
, sc
->nr_reclaimed
- nr_reclaimed
,
2344 sc
->nr_scanned
- nr_scanned
, sc
));
2350 * Returns true if compaction should go ahead for a high-order request, or
2351 * the high-order allocation would succeed without compaction.
2353 static inline bool compaction_ready(struct zone
*zone
, int order
)
2355 unsigned long balance_gap
, watermark
;
2359 * Compaction takes time to run and there are potentially other
2360 * callers using the pages just freed. Continue reclaiming until
2361 * there is a buffer of free pages available to give compaction
2362 * a reasonable chance of completing and allocating the page
2364 balance_gap
= min(low_wmark_pages(zone
), DIV_ROUND_UP(
2365 zone
->managed_pages
, KSWAPD_ZONE_BALANCE_GAP_RATIO
));
2366 watermark
= high_wmark_pages(zone
) + balance_gap
+ (2UL << order
);
2367 watermark_ok
= zone_watermark_ok_safe(zone
, 0, watermark
, 0, 0);
2370 * If compaction is deferred, reclaim up to a point where
2371 * compaction will have a chance of success when re-enabled
2373 if (compaction_deferred(zone
, order
))
2374 return watermark_ok
;
2377 * If compaction is not ready to start and allocation is not likely
2378 * to succeed without it, then keep reclaiming.
2380 if (compaction_suitable(zone
, order
, 0, 0) == COMPACT_SKIPPED
)
2383 return watermark_ok
;
2387 * This is the direct reclaim path, for page-allocating processes. We only
2388 * try to reclaim pages from zones which will satisfy the caller's allocation
2391 * We reclaim from a zone even if that zone is over high_wmark_pages(zone).
2393 * a) The caller may be trying to free *extra* pages to satisfy a higher-order
2395 * b) The target zone may be at high_wmark_pages(zone) but the lower zones
2396 * must go *over* high_wmark_pages(zone) to satisfy the `incremental min'
2397 * zone defense algorithm.
2399 * If a zone is deemed to be full of pinned pages then just give it a light
2400 * scan then give up on it.
2402 * Returns true if a zone was reclaimable.
2404 static bool shrink_zones(struct zonelist
*zonelist
, struct scan_control
*sc
)
2408 unsigned long nr_soft_reclaimed
;
2409 unsigned long nr_soft_scanned
;
2411 enum zone_type requested_highidx
= gfp_zone(sc
->gfp_mask
);
2412 bool reclaimable
= false;
2415 * If the number of buffer_heads in the machine exceeds the maximum
2416 * allowed level, force direct reclaim to scan the highmem zone as
2417 * highmem pages could be pinning lowmem pages storing buffer_heads
2419 orig_mask
= sc
->gfp_mask
;
2420 if (buffer_heads_over_limit
)
2421 sc
->gfp_mask
|= __GFP_HIGHMEM
;
2423 for_each_zone_zonelist_nodemask(zone
, z
, zonelist
,
2424 requested_highidx
, sc
->nodemask
) {
2425 enum zone_type classzone_idx
;
2427 if (!populated_zone(zone
))
2430 classzone_idx
= requested_highidx
;
2431 while (!populated_zone(zone
->zone_pgdat
->node_zones
+
2436 * Take care memory controller reclaiming has small influence
2439 if (global_reclaim(sc
)) {
2440 if (!cpuset_zone_allowed(zone
,
2441 GFP_KERNEL
| __GFP_HARDWALL
))
2444 if (sc
->priority
!= DEF_PRIORITY
&&
2445 !zone_reclaimable(zone
))
2446 continue; /* Let kswapd poll it */
2449 * If we already have plenty of memory free for
2450 * compaction in this zone, don't free any more.
2451 * Even though compaction is invoked for any
2452 * non-zero order, only frequent costly order
2453 * reclamation is disruptive enough to become a
2454 * noticeable problem, like transparent huge
2457 if (IS_ENABLED(CONFIG_COMPACTION
) &&
2458 sc
->order
> PAGE_ALLOC_COSTLY_ORDER
&&
2459 zonelist_zone_idx(z
) <= requested_highidx
&&
2460 compaction_ready(zone
, sc
->order
)) {
2461 sc
->compaction_ready
= true;
2466 * This steals pages from memory cgroups over softlimit
2467 * and returns the number of reclaimed pages and
2468 * scanned pages. This works for global memory pressure
2469 * and balancing, not for a memcg's limit.
2471 nr_soft_scanned
= 0;
2472 nr_soft_reclaimed
= mem_cgroup_soft_limit_reclaim(zone
,
2473 sc
->order
, sc
->gfp_mask
,
2475 sc
->nr_reclaimed
+= nr_soft_reclaimed
;
2476 sc
->nr_scanned
+= nr_soft_scanned
;
2477 if (nr_soft_reclaimed
)
2479 /* need some check for avoid more shrink_zone() */
2482 if (shrink_zone(zone
, sc
, zone_idx(zone
) == classzone_idx
))
2485 if (global_reclaim(sc
) &&
2486 !reclaimable
&& zone_reclaimable(zone
))
2491 * Restore to original mask to avoid the impact on the caller if we
2492 * promoted it to __GFP_HIGHMEM.
2494 sc
->gfp_mask
= orig_mask
;
2500 * This is the main entry point to direct page reclaim.
2502 * If a full scan of the inactive list fails to free enough memory then we
2503 * are "out of memory" and something needs to be killed.
2505 * If the caller is !__GFP_FS then the probability of a failure is reasonably
2506 * high - the zone may be full of dirty or under-writeback pages, which this
2507 * caller can't do much about. We kick the writeback threads and take explicit
2508 * naps in the hope that some of these pages can be written. But if the
2509 * allocating task holds filesystem locks which prevent writeout this might not
2510 * work, and the allocation attempt will fail.
2512 * returns: 0, if no pages reclaimed
2513 * else, the number of pages reclaimed
2515 static unsigned long do_try_to_free_pages(struct zonelist
*zonelist
,
2516 struct scan_control
*sc
)
2518 unsigned long total_scanned
= 0;
2519 unsigned long writeback_threshold
;
2520 bool zones_reclaimable
;
2522 delayacct_freepages_start();
2524 if (global_reclaim(sc
))
2525 count_vm_event(ALLOCSTALL
);
2528 vmpressure_prio(sc
->gfp_mask
, sc
->target_mem_cgroup
,
2531 zones_reclaimable
= shrink_zones(zonelist
, sc
);
2533 total_scanned
+= sc
->nr_scanned
;
2534 if (sc
->nr_reclaimed
>= sc
->nr_to_reclaim
)
2537 if (sc
->compaction_ready
)
2541 * If we're getting trouble reclaiming, start doing
2542 * writepage even in laptop mode.
2544 if (sc
->priority
< DEF_PRIORITY
- 2)
2545 sc
->may_writepage
= 1;
2548 * Try to write back as many pages as we just scanned. This
2549 * tends to cause slow streaming writers to write data to the
2550 * disk smoothly, at the dirtying rate, which is nice. But
2551 * that's undesirable in laptop mode, where we *want* lumpy
2552 * writeout. So in laptop mode, write out the whole world.
2554 writeback_threshold
= sc
->nr_to_reclaim
+ sc
->nr_to_reclaim
/ 2;
2555 if (total_scanned
> writeback_threshold
) {
2556 wakeup_flusher_threads(laptop_mode
? 0 : total_scanned
,
2557 WB_REASON_TRY_TO_FREE_PAGES
);
2558 sc
->may_writepage
= 1;
2560 } while (--sc
->priority
>= 0);
2562 delayacct_freepages_end();
2564 if (sc
->nr_reclaimed
)
2565 return sc
->nr_reclaimed
;
2567 /* Aborted reclaim to try compaction? don't OOM, then */
2568 if (sc
->compaction_ready
)
2571 /* Any of the zones still reclaimable? Don't OOM. */
2572 if (zones_reclaimable
)
2578 static bool pfmemalloc_watermark_ok(pg_data_t
*pgdat
)
2581 unsigned long pfmemalloc_reserve
= 0;
2582 unsigned long free_pages
= 0;
2586 for (i
= 0; i
<= ZONE_NORMAL
; i
++) {
2587 zone
= &pgdat
->node_zones
[i
];
2588 if (!populated_zone(zone
))
2591 pfmemalloc_reserve
+= min_wmark_pages(zone
);
2592 free_pages
+= zone_page_state(zone
, NR_FREE_PAGES
);
2595 /* If there are no reserves (unexpected config) then do not throttle */
2596 if (!pfmemalloc_reserve
)
2599 wmark_ok
= free_pages
> pfmemalloc_reserve
/ 2;
2601 /* kswapd must be awake if processes are being throttled */
2602 if (!wmark_ok
&& waitqueue_active(&pgdat
->kswapd_wait
)) {
2603 pgdat
->classzone_idx
= min(pgdat
->classzone_idx
,
2604 (enum zone_type
)ZONE_NORMAL
);
2605 wake_up_interruptible(&pgdat
->kswapd_wait
);
2612 * Throttle direct reclaimers if backing storage is backed by the network
2613 * and the PFMEMALLOC reserve for the preferred node is getting dangerously
2614 * depleted. kswapd will continue to make progress and wake the processes
2615 * when the low watermark is reached.
2617 * Returns true if a fatal signal was delivered during throttling. If this
2618 * happens, the page allocator should not consider triggering the OOM killer.
2620 static bool throttle_direct_reclaim(gfp_t gfp_mask
, struct zonelist
*zonelist
,
2621 nodemask_t
*nodemask
)
2625 pg_data_t
*pgdat
= NULL
;
2628 * Kernel threads should not be throttled as they may be indirectly
2629 * responsible for cleaning pages necessary for reclaim to make forward
2630 * progress. kjournald for example may enter direct reclaim while
2631 * committing a transaction where throttling it could forcing other
2632 * processes to block on log_wait_commit().
2634 if (current
->flags
& PF_KTHREAD
)
2638 * If a fatal signal is pending, this process should not throttle.
2639 * It should return quickly so it can exit and free its memory
2641 if (fatal_signal_pending(current
))
2645 * Check if the pfmemalloc reserves are ok by finding the first node
2646 * with a usable ZONE_NORMAL or lower zone. The expectation is that
2647 * GFP_KERNEL will be required for allocating network buffers when
2648 * swapping over the network so ZONE_HIGHMEM is unusable.
2650 * Throttling is based on the first usable node and throttled processes
2651 * wait on a queue until kswapd makes progress and wakes them. There
2652 * is an affinity then between processes waking up and where reclaim
2653 * progress has been made assuming the process wakes on the same node.
2654 * More importantly, processes running on remote nodes will not compete
2655 * for remote pfmemalloc reserves and processes on different nodes
2656 * should make reasonable progress.
2658 for_each_zone_zonelist_nodemask(zone
, z
, zonelist
,
2659 gfp_mask
, nodemask
) {
2660 if (zone_idx(zone
) > ZONE_NORMAL
)
2663 /* Throttle based on the first usable node */
2664 pgdat
= zone
->zone_pgdat
;
2665 if (pfmemalloc_watermark_ok(pgdat
))
2670 /* If no zone was usable by the allocation flags then do not throttle */
2674 /* Account for the throttling */
2675 count_vm_event(PGSCAN_DIRECT_THROTTLE
);
2678 * If the caller cannot enter the filesystem, it's possible that it
2679 * is due to the caller holding an FS lock or performing a journal
2680 * transaction in the case of a filesystem like ext[3|4]. In this case,
2681 * it is not safe to block on pfmemalloc_wait as kswapd could be
2682 * blocked waiting on the same lock. Instead, throttle for up to a
2683 * second before continuing.
2685 if (!(gfp_mask
& __GFP_FS
)) {
2686 wait_event_interruptible_timeout(pgdat
->pfmemalloc_wait
,
2687 pfmemalloc_watermark_ok(pgdat
), HZ
);
2692 /* Throttle until kswapd wakes the process */
2693 wait_event_killable(zone
->zone_pgdat
->pfmemalloc_wait
,
2694 pfmemalloc_watermark_ok(pgdat
));
2697 if (fatal_signal_pending(current
))
2704 unsigned long try_to_free_pages(struct zonelist
*zonelist
, int order
,
2705 gfp_t gfp_mask
, nodemask_t
*nodemask
)
2707 unsigned long nr_reclaimed
;
2708 struct scan_control sc
= {
2709 .nr_to_reclaim
= SWAP_CLUSTER_MAX
,
2710 .gfp_mask
= (gfp_mask
= memalloc_noio_flags(gfp_mask
)),
2712 .nodemask
= nodemask
,
2713 .priority
= DEF_PRIORITY
,
2714 .may_writepage
= !laptop_mode
,
2720 * Do not enter reclaim if fatal signal was delivered while throttled.
2721 * 1 is returned so that the page allocator does not OOM kill at this
2724 if (throttle_direct_reclaim(gfp_mask
, zonelist
, nodemask
))
2727 trace_mm_vmscan_direct_reclaim_begin(order
,
2731 nr_reclaimed
= do_try_to_free_pages(zonelist
, &sc
);
2733 trace_mm_vmscan_direct_reclaim_end(nr_reclaimed
);
2735 return nr_reclaimed
;
2740 unsigned long mem_cgroup_shrink_node_zone(struct mem_cgroup
*memcg
,
2741 gfp_t gfp_mask
, bool noswap
,
2743 unsigned long *nr_scanned
)
2745 struct scan_control sc
= {
2746 .nr_to_reclaim
= SWAP_CLUSTER_MAX
,
2747 .target_mem_cgroup
= memcg
,
2748 .may_writepage
= !laptop_mode
,
2750 .may_swap
= !noswap
,
2752 struct lruvec
*lruvec
= mem_cgroup_zone_lruvec(zone
, memcg
);
2753 int swappiness
= mem_cgroup_swappiness(memcg
);
2754 unsigned long lru_pages
;
2756 sc
.gfp_mask
= (gfp_mask
& GFP_RECLAIM_MASK
) |
2757 (GFP_HIGHUSER_MOVABLE
& ~GFP_RECLAIM_MASK
);
2759 trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc
.order
,
2764 * NOTE: Although we can get the priority field, using it
2765 * here is not a good idea, since it limits the pages we can scan.
2766 * if we don't reclaim here, the shrink_zone from balance_pgdat
2767 * will pick up pages from other mem cgroup's as well. We hack
2768 * the priority and make it zero.
2770 shrink_lruvec(lruvec
, swappiness
, &sc
, &lru_pages
);
2772 trace_mm_vmscan_memcg_softlimit_reclaim_end(sc
.nr_reclaimed
);
2774 *nr_scanned
= sc
.nr_scanned
;
2775 return sc
.nr_reclaimed
;
2778 unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup
*memcg
,
2779 unsigned long nr_pages
,
2783 struct zonelist
*zonelist
;
2784 unsigned long nr_reclaimed
;
2786 struct scan_control sc
= {
2787 .nr_to_reclaim
= max(nr_pages
, SWAP_CLUSTER_MAX
),
2788 .gfp_mask
= (gfp_mask
& GFP_RECLAIM_MASK
) |
2789 (GFP_HIGHUSER_MOVABLE
& ~GFP_RECLAIM_MASK
),
2790 .target_mem_cgroup
= memcg
,
2791 .priority
= DEF_PRIORITY
,
2792 .may_writepage
= !laptop_mode
,
2794 .may_swap
= may_swap
,
2798 * Unlike direct reclaim via alloc_pages(), memcg's reclaim doesn't
2799 * take care of from where we get pages. So the node where we start the
2800 * scan does not need to be the current node.
2802 nid
= mem_cgroup_select_victim_node(memcg
);
2804 zonelist
= NODE_DATA(nid
)->node_zonelists
;
2806 trace_mm_vmscan_memcg_reclaim_begin(0,
2810 nr_reclaimed
= do_try_to_free_pages(zonelist
, &sc
);
2812 trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed
);
2814 return nr_reclaimed
;
2818 static void age_active_anon(struct zone
*zone
, struct scan_control
*sc
)
2820 struct mem_cgroup
*memcg
;
2822 if (!total_swap_pages
)
2825 memcg
= mem_cgroup_iter(NULL
, NULL
, NULL
);
2827 struct lruvec
*lruvec
= mem_cgroup_zone_lruvec(zone
, memcg
);
2829 if (inactive_anon_is_low(lruvec
))
2830 shrink_active_list(SWAP_CLUSTER_MAX
, lruvec
,
2831 sc
, LRU_ACTIVE_ANON
);
2833 memcg
= mem_cgroup_iter(NULL
, memcg
, NULL
);
2837 static bool zone_balanced(struct zone
*zone
, int order
,
2838 unsigned long balance_gap
, int classzone_idx
)
2840 if (!zone_watermark_ok_safe(zone
, order
, high_wmark_pages(zone
) +
2841 balance_gap
, classzone_idx
, 0))
2844 if (IS_ENABLED(CONFIG_COMPACTION
) && order
&& compaction_suitable(zone
,
2845 order
, 0, classzone_idx
) == COMPACT_SKIPPED
)
2852 * pgdat_balanced() is used when checking if a node is balanced.
2854 * For order-0, all zones must be balanced!
2856 * For high-order allocations only zones that meet watermarks and are in a
2857 * zone allowed by the callers classzone_idx are added to balanced_pages. The
2858 * total of balanced pages must be at least 25% of the zones allowed by
2859 * classzone_idx for the node to be considered balanced. Forcing all zones to
2860 * be balanced for high orders can cause excessive reclaim when there are
2862 * The choice of 25% is due to
2863 * o a 16M DMA zone that is balanced will not balance a zone on any
2864 * reasonable sized machine
2865 * o On all other machines, the top zone must be at least a reasonable
2866 * percentage of the middle zones. For example, on 32-bit x86, highmem
2867 * would need to be at least 256M for it to be balance a whole node.
2868 * Similarly, on x86-64 the Normal zone would need to be at least 1G
2869 * to balance a node on its own. These seemed like reasonable ratios.
2871 static bool pgdat_balanced(pg_data_t
*pgdat
, int order
, int classzone_idx
)
2873 unsigned long managed_pages
= 0;
2874 unsigned long balanced_pages
= 0;
2877 /* Check the watermark levels */
2878 for (i
= 0; i
<= classzone_idx
; i
++) {
2879 struct zone
*zone
= pgdat
->node_zones
+ i
;
2881 if (!populated_zone(zone
))
2884 managed_pages
+= zone
->managed_pages
;
2887 * A special case here:
2889 * balance_pgdat() skips over all_unreclaimable after
2890 * DEF_PRIORITY. Effectively, it considers them balanced so
2891 * they must be considered balanced here as well!
2893 if (!zone_reclaimable(zone
)) {
2894 balanced_pages
+= zone
->managed_pages
;
2898 if (zone_balanced(zone
, order
, 0, i
))
2899 balanced_pages
+= zone
->managed_pages
;
2905 return balanced_pages
>= (managed_pages
>> 2);
2911 * Prepare kswapd for sleeping. This verifies that there are no processes
2912 * waiting in throttle_direct_reclaim() and that watermarks have been met.
2914 * Returns true if kswapd is ready to sleep
2916 static bool prepare_kswapd_sleep(pg_data_t
*pgdat
, int order
, long remaining
,
2919 /* If a direct reclaimer woke kswapd within HZ/10, it's premature */
2924 * The throttled processes are normally woken up in balance_pgdat() as
2925 * soon as pfmemalloc_watermark_ok() is true. But there is a potential
2926 * race between when kswapd checks the watermarks and a process gets
2927 * throttled. There is also a potential race if processes get
2928 * throttled, kswapd wakes, a large process exits thereby balancing the
2929 * zones, which causes kswapd to exit balance_pgdat() before reaching
2930 * the wake up checks. If kswapd is going to sleep, no process should
2931 * be sleeping on pfmemalloc_wait, so wake them now if necessary. If
2932 * the wake up is premature, processes will wake kswapd and get
2933 * throttled again. The difference from wake ups in balance_pgdat() is
2934 * that here we are under prepare_to_wait().
2936 if (waitqueue_active(&pgdat
->pfmemalloc_wait
))
2937 wake_up_all(&pgdat
->pfmemalloc_wait
);
2939 return pgdat_balanced(pgdat
, order
, classzone_idx
);
2943 * kswapd shrinks the zone by the number of pages required to reach
2944 * the high watermark.
2946 * Returns true if kswapd scanned at least the requested number of pages to
2947 * reclaim or if the lack of progress was due to pages under writeback.
2948 * This is used to determine if the scanning priority needs to be raised.
2950 static bool kswapd_shrink_zone(struct zone
*zone
,
2952 struct scan_control
*sc
,
2953 unsigned long *nr_attempted
)
2955 int testorder
= sc
->order
;
2956 unsigned long balance_gap
;
2957 bool lowmem_pressure
;
2959 /* Reclaim above the high watermark. */
2960 sc
->nr_to_reclaim
= max(SWAP_CLUSTER_MAX
, high_wmark_pages(zone
));
2963 * Kswapd reclaims only single pages with compaction enabled. Trying
2964 * too hard to reclaim until contiguous free pages have become
2965 * available can hurt performance by evicting too much useful data
2966 * from memory. Do not reclaim more than needed for compaction.
2968 if (IS_ENABLED(CONFIG_COMPACTION
) && sc
->order
&&
2969 compaction_suitable(zone
, sc
->order
, 0, classzone_idx
)
2974 * We put equal pressure on every zone, unless one zone has way too
2975 * many pages free already. The "too many pages" is defined as the
2976 * high wmark plus a "gap" where the gap is either the low
2977 * watermark or 1% of the zone, whichever is smaller.
2979 balance_gap
= min(low_wmark_pages(zone
), DIV_ROUND_UP(
2980 zone
->managed_pages
, KSWAPD_ZONE_BALANCE_GAP_RATIO
));
2983 * If there is no low memory pressure or the zone is balanced then no
2984 * reclaim is necessary
2986 lowmem_pressure
= (buffer_heads_over_limit
&& is_highmem(zone
));
2987 if (!lowmem_pressure
&& zone_balanced(zone
, testorder
,
2988 balance_gap
, classzone_idx
))
2991 shrink_zone(zone
, sc
, zone_idx(zone
) == classzone_idx
);
2993 /* Account for the number of pages attempted to reclaim */
2994 *nr_attempted
+= sc
->nr_to_reclaim
;
2996 clear_bit(ZONE_WRITEBACK
, &zone
->flags
);
2999 * If a zone reaches its high watermark, consider it to be no longer
3000 * congested. It's possible there are dirty pages backed by congested
3001 * BDIs but as pressure is relieved, speculatively avoid congestion
3004 if (zone_reclaimable(zone
) &&
3005 zone_balanced(zone
, testorder
, 0, classzone_idx
)) {
3006 clear_bit(ZONE_CONGESTED
, &zone
->flags
);
3007 clear_bit(ZONE_DIRTY
, &zone
->flags
);
3010 return sc
->nr_scanned
>= sc
->nr_to_reclaim
;
3014 * For kswapd, balance_pgdat() will work across all this node's zones until
3015 * they are all at high_wmark_pages(zone).
3017 * Returns the final order kswapd was reclaiming at
3019 * There is special handling here for zones which are full of pinned pages.
3020 * This can happen if the pages are all mlocked, or if they are all used by
3021 * device drivers (say, ZONE_DMA). Or if they are all in use by hugetlb.
3022 * What we do is to detect the case where all pages in the zone have been
3023 * scanned twice and there has been zero successful reclaim. Mark the zone as
3024 * dead and from now on, only perform a short scan. Basically we're polling
3025 * the zone for when the problem goes away.
3027 * kswapd scans the zones in the highmem->normal->dma direction. It skips
3028 * zones which have free_pages > high_wmark_pages(zone), but once a zone is
3029 * found to have free_pages <= high_wmark_pages(zone), we scan that zone and the
3030 * lower zones regardless of the number of free pages in the lower zones. This
3031 * interoperates with the page allocator fallback scheme to ensure that aging
3032 * of pages is balanced across the zones.
3034 static unsigned long balance_pgdat(pg_data_t
*pgdat
, int order
,
3038 int end_zone
= 0; /* Inclusive. 0 = ZONE_DMA */
3039 unsigned long nr_soft_reclaimed
;
3040 unsigned long nr_soft_scanned
;
3041 struct scan_control sc
= {
3042 .gfp_mask
= GFP_KERNEL
,
3044 .priority
= DEF_PRIORITY
,
3045 .may_writepage
= !laptop_mode
,
3049 count_vm_event(PAGEOUTRUN
);
3052 unsigned long nr_attempted
= 0;
3053 bool raise_priority
= true;
3054 bool pgdat_needs_compaction
= (order
> 0);
3056 sc
.nr_reclaimed
= 0;
3059 * Scan in the highmem->dma direction for the highest
3060 * zone which needs scanning
3062 for (i
= pgdat
->nr_zones
- 1; i
>= 0; i
--) {
3063 struct zone
*zone
= pgdat
->node_zones
+ i
;
3065 if (!populated_zone(zone
))
3068 if (sc
.priority
!= DEF_PRIORITY
&&
3069 !zone_reclaimable(zone
))
3073 * Do some background aging of the anon list, to give
3074 * pages a chance to be referenced before reclaiming.
3076 age_active_anon(zone
, &sc
);
3079 * If the number of buffer_heads in the machine
3080 * exceeds the maximum allowed level and this node
3081 * has a highmem zone, force kswapd to reclaim from
3082 * it to relieve lowmem pressure.
3084 if (buffer_heads_over_limit
&& is_highmem_idx(i
)) {
3089 if (!zone_balanced(zone
, order
, 0, 0)) {
3094 * If balanced, clear the dirty and congested
3097 clear_bit(ZONE_CONGESTED
, &zone
->flags
);
3098 clear_bit(ZONE_DIRTY
, &zone
->flags
);
3105 for (i
= 0; i
<= end_zone
; i
++) {
3106 struct zone
*zone
= pgdat
->node_zones
+ i
;
3108 if (!populated_zone(zone
))
3112 * If any zone is currently balanced then kswapd will
3113 * not call compaction as it is expected that the
3114 * necessary pages are already available.
3116 if (pgdat_needs_compaction
&&
3117 zone_watermark_ok(zone
, order
,
3118 low_wmark_pages(zone
),
3120 pgdat_needs_compaction
= false;
3124 * If we're getting trouble reclaiming, start doing writepage
3125 * even in laptop mode.
3127 if (sc
.priority
< DEF_PRIORITY
- 2)
3128 sc
.may_writepage
= 1;
3131 * Now scan the zone in the dma->highmem direction, stopping
3132 * at the last zone which needs scanning.
3134 * We do this because the page allocator works in the opposite
3135 * direction. This prevents the page allocator from allocating
3136 * pages behind kswapd's direction of progress, which would
3137 * cause too much scanning of the lower zones.
3139 for (i
= 0; i
<= end_zone
; i
++) {
3140 struct zone
*zone
= pgdat
->node_zones
+ i
;
3142 if (!populated_zone(zone
))
3145 if (sc
.priority
!= DEF_PRIORITY
&&
3146 !zone_reclaimable(zone
))
3151 nr_soft_scanned
= 0;
3153 * Call soft limit reclaim before calling shrink_zone.
3155 nr_soft_reclaimed
= mem_cgroup_soft_limit_reclaim(zone
,
3158 sc
.nr_reclaimed
+= nr_soft_reclaimed
;
3161 * There should be no need to raise the scanning
3162 * priority if enough pages are already being scanned
3163 * that that high watermark would be met at 100%
3166 if (kswapd_shrink_zone(zone
, end_zone
,
3167 &sc
, &nr_attempted
))
3168 raise_priority
= false;
3172 * If the low watermark is met there is no need for processes
3173 * to be throttled on pfmemalloc_wait as they should not be
3174 * able to safely make forward progress. Wake them
3176 if (waitqueue_active(&pgdat
->pfmemalloc_wait
) &&
3177 pfmemalloc_watermark_ok(pgdat
))
3178 wake_up(&pgdat
->pfmemalloc_wait
);
3181 * Fragmentation may mean that the system cannot be rebalanced
3182 * for high-order allocations in all zones. If twice the
3183 * allocation size has been reclaimed and the zones are still
3184 * not balanced then recheck the watermarks at order-0 to
3185 * prevent kswapd reclaiming excessively. Assume that a
3186 * process requested a high-order can direct reclaim/compact.
3188 if (order
&& sc
.nr_reclaimed
>= 2UL << order
)
3189 order
= sc
.order
= 0;
3191 /* Check if kswapd should be suspending */
3192 if (try_to_freeze() || kthread_should_stop())
3196 * Compact if necessary and kswapd is reclaiming at least the
3197 * high watermark number of pages as requsted
3199 if (pgdat_needs_compaction
&& sc
.nr_reclaimed
> nr_attempted
)
3200 compact_pgdat(pgdat
, order
);
3203 * Raise priority if scanning rate is too low or there was no
3204 * progress in reclaiming pages
3206 if (raise_priority
|| !sc
.nr_reclaimed
)
3208 } while (sc
.priority
>= 1 &&
3209 !pgdat_balanced(pgdat
, order
, *classzone_idx
));
3213 * Return the order we were reclaiming at so prepare_kswapd_sleep()
3214 * makes a decision on the order we were last reclaiming at. However,
3215 * if another caller entered the allocator slow path while kswapd
3216 * was awake, order will remain at the higher level
3218 *classzone_idx
= end_zone
;
3222 static void kswapd_try_to_sleep(pg_data_t
*pgdat
, int order
, int classzone_idx
)
3227 if (freezing(current
) || kthread_should_stop())
3230 prepare_to_wait(&pgdat
->kswapd_wait
, &wait
, TASK_INTERRUPTIBLE
);
3232 /* Try to sleep for a short interval */
3233 if (prepare_kswapd_sleep(pgdat
, order
, remaining
, classzone_idx
)) {
3234 remaining
= schedule_timeout(HZ
/10);
3235 finish_wait(&pgdat
->kswapd_wait
, &wait
);
3236 prepare_to_wait(&pgdat
->kswapd_wait
, &wait
, TASK_INTERRUPTIBLE
);
3240 * After a short sleep, check if it was a premature sleep. If not, then
3241 * go fully to sleep until explicitly woken up.
3243 if (prepare_kswapd_sleep(pgdat
, order
, remaining
, classzone_idx
)) {
3244 trace_mm_vmscan_kswapd_sleep(pgdat
->node_id
);
3247 * vmstat counters are not perfectly accurate and the estimated
3248 * value for counters such as NR_FREE_PAGES can deviate from the
3249 * true value by nr_online_cpus * threshold. To avoid the zone
3250 * watermarks being breached while under pressure, we reduce the
3251 * per-cpu vmstat threshold while kswapd is awake and restore
3252 * them before going back to sleep.
3254 set_pgdat_percpu_threshold(pgdat
, calculate_normal_threshold
);
3257 * Compaction records what page blocks it recently failed to
3258 * isolate pages from and skips them in the future scanning.
3259 * When kswapd is going to sleep, it is reasonable to assume
3260 * that pages and compaction may succeed so reset the cache.
3262 reset_isolation_suitable(pgdat
);
3264 if (!kthread_should_stop())
3267 set_pgdat_percpu_threshold(pgdat
, calculate_pressure_threshold
);
3270 count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY
);
3272 count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY
);
3274 finish_wait(&pgdat
->kswapd_wait
, &wait
);
3278 * The background pageout daemon, started as a kernel thread
3279 * from the init process.
3281 * This basically trickles out pages so that we have _some_
3282 * free memory available even if there is no other activity
3283 * that frees anything up. This is needed for things like routing
3284 * etc, where we otherwise might have all activity going on in
3285 * asynchronous contexts that cannot page things out.
3287 * If there are applications that are active memory-allocators
3288 * (most normal use), this basically shouldn't matter.
3290 static int kswapd(void *p
)
3292 unsigned long order
, new_order
;
3293 unsigned balanced_order
;
3294 int classzone_idx
, new_classzone_idx
;
3295 int balanced_classzone_idx
;
3296 pg_data_t
*pgdat
= (pg_data_t
*)p
;
3297 struct task_struct
*tsk
= current
;
3299 struct reclaim_state reclaim_state
= {
3300 .reclaimed_slab
= 0,
3302 const struct cpumask
*cpumask
= cpumask_of_node(pgdat
->node_id
);
3304 lockdep_set_current_reclaim_state(GFP_KERNEL
);
3306 if (!cpumask_empty(cpumask
))
3307 set_cpus_allowed_ptr(tsk
, cpumask
);
3308 current
->reclaim_state
= &reclaim_state
;
3311 * Tell the memory management that we're a "memory allocator",
3312 * and that if we need more memory we should get access to it
3313 * regardless (see "__alloc_pages()"). "kswapd" should
3314 * never get caught in the normal page freeing logic.
3316 * (Kswapd normally doesn't need memory anyway, but sometimes
3317 * you need a small amount of memory in order to be able to
3318 * page out something else, and this flag essentially protects
3319 * us from recursively trying to free more memory as we're
3320 * trying to free the first piece of memory in the first place).
3322 tsk
->flags
|= PF_MEMALLOC
| PF_SWAPWRITE
| PF_KSWAPD
;
3325 order
= new_order
= 0;
3327 classzone_idx
= new_classzone_idx
= pgdat
->nr_zones
- 1;
3328 balanced_classzone_idx
= classzone_idx
;
3333 * If the last balance_pgdat was unsuccessful it's unlikely a
3334 * new request of a similar or harder type will succeed soon
3335 * so consider going to sleep on the basis we reclaimed at
3337 if (balanced_classzone_idx
>= new_classzone_idx
&&
3338 balanced_order
== new_order
) {
3339 new_order
= pgdat
->kswapd_max_order
;
3340 new_classzone_idx
= pgdat
->classzone_idx
;
3341 pgdat
->kswapd_max_order
= 0;
3342 pgdat
->classzone_idx
= pgdat
->nr_zones
- 1;
3345 if (order
< new_order
|| classzone_idx
> new_classzone_idx
) {
3347 * Don't sleep if someone wants a larger 'order'
3348 * allocation or has tigher zone constraints
3351 classzone_idx
= new_classzone_idx
;
3353 kswapd_try_to_sleep(pgdat
, balanced_order
,
3354 balanced_classzone_idx
);
3355 order
= pgdat
->kswapd_max_order
;
3356 classzone_idx
= pgdat
->classzone_idx
;
3358 new_classzone_idx
= classzone_idx
;
3359 pgdat
->kswapd_max_order
= 0;
3360 pgdat
->classzone_idx
= pgdat
->nr_zones
- 1;
3363 ret
= try_to_freeze();
3364 if (kthread_should_stop())
3368 * We can speed up thawing tasks if we don't call balance_pgdat
3369 * after returning from the refrigerator
3372 trace_mm_vmscan_kswapd_wake(pgdat
->node_id
, order
);
3373 balanced_classzone_idx
= classzone_idx
;
3374 balanced_order
= balance_pgdat(pgdat
, order
,
3375 &balanced_classzone_idx
);
3379 tsk
->flags
&= ~(PF_MEMALLOC
| PF_SWAPWRITE
| PF_KSWAPD
);
3380 current
->reclaim_state
= NULL
;
3381 lockdep_clear_current_reclaim_state();
3387 * A zone is low on free memory, so wake its kswapd task to service it.
3389 void wakeup_kswapd(struct zone
*zone
, int order
, enum zone_type classzone_idx
)
3393 if (!populated_zone(zone
))
3396 if (!cpuset_zone_allowed(zone
, GFP_KERNEL
| __GFP_HARDWALL
))
3398 pgdat
= zone
->zone_pgdat
;
3399 if (pgdat
->kswapd_max_order
< order
) {
3400 pgdat
->kswapd_max_order
= order
;
3401 pgdat
->classzone_idx
= min(pgdat
->classzone_idx
, classzone_idx
);
3403 if (!waitqueue_active(&pgdat
->kswapd_wait
))
3405 if (zone_balanced(zone
, order
, 0, 0))
3408 trace_mm_vmscan_wakeup_kswapd(pgdat
->node_id
, zone_idx(zone
), order
);
3409 wake_up_interruptible(&pgdat
->kswapd_wait
);
3412 #ifdef CONFIG_HIBERNATION
3414 * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
3417 * Rather than trying to age LRUs the aim is to preserve the overall
3418 * LRU order by reclaiming preferentially
3419 * inactive > active > active referenced > active mapped
3421 unsigned long shrink_all_memory(unsigned long nr_to_reclaim
)
3423 struct reclaim_state reclaim_state
;
3424 struct scan_control sc
= {
3425 .nr_to_reclaim
= nr_to_reclaim
,
3426 .gfp_mask
= GFP_HIGHUSER_MOVABLE
,
3427 .priority
= DEF_PRIORITY
,
3431 .hibernation_mode
= 1,
3433 struct zonelist
*zonelist
= node_zonelist(numa_node_id(), sc
.gfp_mask
);
3434 struct task_struct
*p
= current
;
3435 unsigned long nr_reclaimed
;
3437 p
->flags
|= PF_MEMALLOC
;
3438 lockdep_set_current_reclaim_state(sc
.gfp_mask
);
3439 reclaim_state
.reclaimed_slab
= 0;
3440 p
->reclaim_state
= &reclaim_state
;
3442 nr_reclaimed
= do_try_to_free_pages(zonelist
, &sc
);
3444 p
->reclaim_state
= NULL
;
3445 lockdep_clear_current_reclaim_state();
3446 p
->flags
&= ~PF_MEMALLOC
;
3448 return nr_reclaimed
;
3450 #endif /* CONFIG_HIBERNATION */
3452 /* It's optimal to keep kswapds on the same CPUs as their memory, but
3453 not required for correctness. So if the last cpu in a node goes
3454 away, we get changed to run anywhere: as the first one comes back,
3455 restore their cpu bindings. */
3456 static int cpu_callback(struct notifier_block
*nfb
, unsigned long action
,
3461 if (action
== CPU_ONLINE
|| action
== CPU_ONLINE_FROZEN
) {
3462 for_each_node_state(nid
, N_MEMORY
) {
3463 pg_data_t
*pgdat
= NODE_DATA(nid
);
3464 const struct cpumask
*mask
;
3466 mask
= cpumask_of_node(pgdat
->node_id
);
3468 if (cpumask_any_and(cpu_online_mask
, mask
) < nr_cpu_ids
)
3469 /* One of our CPUs online: restore mask */
3470 set_cpus_allowed_ptr(pgdat
->kswapd
, mask
);
3477 * This kswapd start function will be called by init and node-hot-add.
3478 * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
3480 int kswapd_run(int nid
)
3482 pg_data_t
*pgdat
= NODE_DATA(nid
);
3488 pgdat
->kswapd
= kthread_run(kswapd
, pgdat
, "kswapd%d", nid
);
3489 if (IS_ERR(pgdat
->kswapd
)) {
3490 /* failure at boot is fatal */
3491 BUG_ON(system_state
== SYSTEM_BOOTING
);
3492 pr_err("Failed to start kswapd on node %d\n", nid
);
3493 ret
= PTR_ERR(pgdat
->kswapd
);
3494 pgdat
->kswapd
= NULL
;
3500 * Called by memory hotplug when all memory in a node is offlined. Caller must
3501 * hold mem_hotplug_begin/end().
3503 void kswapd_stop(int nid
)
3505 struct task_struct
*kswapd
= NODE_DATA(nid
)->kswapd
;
3508 kthread_stop(kswapd
);
3509 NODE_DATA(nid
)->kswapd
= NULL
;
3513 static int __init
kswapd_init(void)
3518 for_each_node_state(nid
, N_MEMORY
)
3520 hotcpu_notifier(cpu_callback
, 0);
3524 module_init(kswapd_init
)
3530 * If non-zero call zone_reclaim when the number of free pages falls below
3533 int zone_reclaim_mode __read_mostly
;
3535 #define RECLAIM_OFF 0
3536 #define RECLAIM_ZONE (1<<0) /* Run shrink_inactive_list on the zone */
3537 #define RECLAIM_WRITE (1<<1) /* Writeout pages during reclaim */
3538 #define RECLAIM_SWAP (1<<2) /* Swap pages out during reclaim */
3541 * Priority for ZONE_RECLAIM. This determines the fraction of pages
3542 * of a node considered for each zone_reclaim. 4 scans 1/16th of
3545 #define ZONE_RECLAIM_PRIORITY 4
3548 * Percentage of pages in a zone that must be unmapped for zone_reclaim to
3551 int sysctl_min_unmapped_ratio
= 1;
3554 * If the number of slab pages in a zone grows beyond this percentage then
3555 * slab reclaim needs to occur.
3557 int sysctl_min_slab_ratio
= 5;
3559 static inline unsigned long zone_unmapped_file_pages(struct zone
*zone
)
3561 unsigned long file_mapped
= zone_page_state(zone
, NR_FILE_MAPPED
);
3562 unsigned long file_lru
= zone_page_state(zone
, NR_INACTIVE_FILE
) +
3563 zone_page_state(zone
, NR_ACTIVE_FILE
);
3566 * It's possible for there to be more file mapped pages than
3567 * accounted for by the pages on the file LRU lists because
3568 * tmpfs pages accounted for as ANON can also be FILE_MAPPED
3570 return (file_lru
> file_mapped
) ? (file_lru
- file_mapped
) : 0;
3573 /* Work out how many page cache pages we can reclaim in this reclaim_mode */
3574 static long zone_pagecache_reclaimable(struct zone
*zone
)
3576 long nr_pagecache_reclaimable
;
3580 * If RECLAIM_SWAP is set, then all file pages are considered
3581 * potentially reclaimable. Otherwise, we have to worry about
3582 * pages like swapcache and zone_unmapped_file_pages() provides
3585 if (zone_reclaim_mode
& RECLAIM_SWAP
)
3586 nr_pagecache_reclaimable
= zone_page_state(zone
, NR_FILE_PAGES
);
3588 nr_pagecache_reclaimable
= zone_unmapped_file_pages(zone
);
3590 /* If we can't clean pages, remove dirty pages from consideration */
3591 if (!(zone_reclaim_mode
& RECLAIM_WRITE
))
3592 delta
+= zone_page_state(zone
, NR_FILE_DIRTY
);
3594 /* Watch for any possible underflows due to delta */
3595 if (unlikely(delta
> nr_pagecache_reclaimable
))
3596 delta
= nr_pagecache_reclaimable
;
3598 return nr_pagecache_reclaimable
- delta
;
3602 * Try to free up some pages from this zone through reclaim.
3604 static int __zone_reclaim(struct zone
*zone
, gfp_t gfp_mask
, unsigned int order
)
3606 /* Minimum pages needed in order to stay on node */
3607 const unsigned long nr_pages
= 1 << order
;
3608 struct task_struct
*p
= current
;
3609 struct reclaim_state reclaim_state
;
3610 struct scan_control sc
= {
3611 .nr_to_reclaim
= max(nr_pages
, SWAP_CLUSTER_MAX
),
3612 .gfp_mask
= (gfp_mask
= memalloc_noio_flags(gfp_mask
)),
3614 .priority
= ZONE_RECLAIM_PRIORITY
,
3615 .may_writepage
= !!(zone_reclaim_mode
& RECLAIM_WRITE
),
3616 .may_unmap
= !!(zone_reclaim_mode
& RECLAIM_SWAP
),
3622 * We need to be able to allocate from the reserves for RECLAIM_SWAP
3623 * and we also need to be able to write out pages for RECLAIM_WRITE
3626 p
->flags
|= PF_MEMALLOC
| PF_SWAPWRITE
;
3627 lockdep_set_current_reclaim_state(gfp_mask
);
3628 reclaim_state
.reclaimed_slab
= 0;
3629 p
->reclaim_state
= &reclaim_state
;
3631 if (zone_pagecache_reclaimable(zone
) > zone
->min_unmapped_pages
) {
3633 * Free memory by calling shrink zone with increasing
3634 * priorities until we have enough memory freed.
3637 shrink_zone(zone
, &sc
, true);
3638 } while (sc
.nr_reclaimed
< nr_pages
&& --sc
.priority
>= 0);
3641 p
->reclaim_state
= NULL
;
3642 current
->flags
&= ~(PF_MEMALLOC
| PF_SWAPWRITE
);
3643 lockdep_clear_current_reclaim_state();
3644 return sc
.nr_reclaimed
>= nr_pages
;
3647 int zone_reclaim(struct zone
*zone
, gfp_t gfp_mask
, unsigned int order
)
3653 * Zone reclaim reclaims unmapped file backed pages and
3654 * slab pages if we are over the defined limits.
3656 * A small portion of unmapped file backed pages is needed for
3657 * file I/O otherwise pages read by file I/O will be immediately
3658 * thrown out if the zone is overallocated. So we do not reclaim
3659 * if less than a specified percentage of the zone is used by
3660 * unmapped file backed pages.
3662 if (zone_pagecache_reclaimable(zone
) <= zone
->min_unmapped_pages
&&
3663 zone_page_state(zone
, NR_SLAB_RECLAIMABLE
) <= zone
->min_slab_pages
)
3664 return ZONE_RECLAIM_FULL
;
3666 if (!zone_reclaimable(zone
))
3667 return ZONE_RECLAIM_FULL
;
3670 * Do not scan if the allocation should not be delayed.
3672 if (!(gfp_mask
& __GFP_WAIT
) || (current
->flags
& PF_MEMALLOC
))
3673 return ZONE_RECLAIM_NOSCAN
;
3676 * Only run zone reclaim on the local zone or on zones that do not
3677 * have associated processors. This will favor the local processor
3678 * over remote processors and spread off node memory allocations
3679 * as wide as possible.
3681 node_id
= zone_to_nid(zone
);
3682 if (node_state(node_id
, N_CPU
) && node_id
!= numa_node_id())
3683 return ZONE_RECLAIM_NOSCAN
;
3685 if (test_and_set_bit(ZONE_RECLAIM_LOCKED
, &zone
->flags
))
3686 return ZONE_RECLAIM_NOSCAN
;
3688 ret
= __zone_reclaim(zone
, gfp_mask
, order
);
3689 clear_bit(ZONE_RECLAIM_LOCKED
, &zone
->flags
);
3692 count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED
);
3699 * page_evictable - test whether a page is evictable
3700 * @page: the page to test
3702 * Test whether page is evictable--i.e., should be placed on active/inactive
3703 * lists vs unevictable list.
3705 * Reasons page might not be evictable:
3706 * (1) page's mapping marked unevictable
3707 * (2) page is part of an mlocked VMA
3710 int page_evictable(struct page
*page
)
3712 return !mapping_unevictable(page_mapping(page
)) && !PageMlocked(page
);
3717 * check_move_unevictable_pages - check pages for evictability and move to appropriate zone lru list
3718 * @pages: array of pages to check
3719 * @nr_pages: number of pages to check
3721 * Checks pages for evictability and moves them to the appropriate lru list.
3723 * This function is only used for SysV IPC SHM_UNLOCK.
3725 void check_move_unevictable_pages(struct page
**pages
, int nr_pages
)
3727 struct lruvec
*lruvec
;
3728 struct zone
*zone
= NULL
;
3733 for (i
= 0; i
< nr_pages
; i
++) {
3734 struct page
*page
= pages
[i
];
3735 struct zone
*pagezone
;
3738 pagezone
= page_zone(page
);
3739 if (pagezone
!= zone
) {
3741 spin_unlock_irq(&zone
->lru_lock
);
3743 spin_lock_irq(&zone
->lru_lock
);
3745 lruvec
= mem_cgroup_page_lruvec(page
, zone
);
3747 if (!PageLRU(page
) || !PageUnevictable(page
))
3750 if (page_evictable(page
)) {
3751 enum lru_list lru
= page_lru_base_type(page
);
3753 VM_BUG_ON_PAGE(PageActive(page
), page
);
3754 ClearPageUnevictable(page
);
3755 del_page_from_lru_list(page
, lruvec
, LRU_UNEVICTABLE
);
3756 add_page_to_lru_list(page
, lruvec
, lru
);
3762 __count_vm_events(UNEVICTABLE_PGRESCUED
, pgrescued
);
3763 __count_vm_events(UNEVICTABLE_PGSCANNED
, pgscanned
);
3764 spin_unlock_irq(&zone
->lru_lock
);
3767 #endif /* CONFIG_SHMEM */