2 * linux/kernel/time/tick-sched.c
4 * Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
5 * Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
6 * Copyright(C) 2006-2007 Timesys Corp., Thomas Gleixner
8 * No idle tick implementation for low and high resolution timers
10 * Started by: Thomas Gleixner and Ingo Molnar
12 * Distribute under GPLv2.
14 #include <linux/cpu.h>
15 #include <linux/err.h>
16 #include <linux/hrtimer.h>
17 #include <linux/interrupt.h>
18 #include <linux/kernel_stat.h>
19 #include <linux/percpu.h>
20 #include <linux/nmi.h>
21 #include <linux/profile.h>
22 #include <linux/sched/signal.h>
23 #include <linux/sched/clock.h>
24 #include <linux/sched/stat.h>
25 #include <linux/sched/nohz.h>
26 #include <linux/module.h>
27 #include <linux/irq_work.h>
28 #include <linux/posix-timers.h>
29 #include <linux/context_tracking.h>
31 #include <asm/irq_regs.h>
33 #include "tick-internal.h"
35 #include <trace/events/timer.h>
38 * Per-CPU nohz control structure
40 static DEFINE_PER_CPU(struct tick_sched
, tick_cpu_sched
);
42 struct tick_sched
*tick_get_tick_sched(int cpu
)
44 return &per_cpu(tick_cpu_sched
, cpu
);
47 #if defined(CONFIG_NO_HZ_COMMON) || defined(CONFIG_HIGH_RES_TIMERS)
49 * The time, when the last jiffy update happened. Protected by jiffies_lock.
51 static ktime_t last_jiffies_update
;
54 * Must be called with interrupts disabled !
56 static void tick_do_update_jiffies64(ktime_t now
)
58 unsigned long ticks
= 0;
62 * Do a quick check without holding jiffies_lock:
64 delta
= ktime_sub(now
, last_jiffies_update
);
65 if (delta
< tick_period
)
68 /* Reevaluate with jiffies_lock held */
69 write_seqlock(&jiffies_lock
);
71 delta
= ktime_sub(now
, last_jiffies_update
);
72 if (delta
>= tick_period
) {
74 delta
= ktime_sub(delta
, tick_period
);
75 last_jiffies_update
= ktime_add(last_jiffies_update
,
78 /* Slow path for long timeouts */
79 if (unlikely(delta
>= tick_period
)) {
80 s64 incr
= ktime_to_ns(tick_period
);
82 ticks
= ktime_divns(delta
, incr
);
84 last_jiffies_update
= ktime_add_ns(last_jiffies_update
,
89 /* Keep the tick_next_period variable up to date */
90 tick_next_period
= ktime_add(last_jiffies_update
, tick_period
);
92 write_sequnlock(&jiffies_lock
);
95 write_sequnlock(&jiffies_lock
);
100 * Initialize and return retrieve the jiffies update.
102 static ktime_t
tick_init_jiffy_update(void)
106 write_seqlock(&jiffies_lock
);
107 /* Did we start the jiffies update yet ? */
108 if (last_jiffies_update
== 0)
109 last_jiffies_update
= tick_next_period
;
110 period
= last_jiffies_update
;
111 write_sequnlock(&jiffies_lock
);
116 static void tick_sched_do_timer(ktime_t now
)
118 int cpu
= smp_processor_id();
120 #ifdef CONFIG_NO_HZ_COMMON
122 * Check if the do_timer duty was dropped. We don't care about
123 * concurrency: This happens only when the CPU in charge went
124 * into a long sleep. If two CPUs happen to assign themselves to
125 * this duty, then the jiffies update is still serialized by
128 if (unlikely(tick_do_timer_cpu
== TICK_DO_TIMER_NONE
)
129 && !tick_nohz_full_cpu(cpu
))
130 tick_do_timer_cpu
= cpu
;
133 /* Check, if the jiffies need an update */
134 if (tick_do_timer_cpu
== cpu
)
135 tick_do_update_jiffies64(now
);
138 static void tick_sched_handle(struct tick_sched
*ts
, struct pt_regs
*regs
)
140 #ifdef CONFIG_NO_HZ_COMMON
142 * When we are idle and the tick is stopped, we have to touch
143 * the watchdog as we might not schedule for a really long
144 * time. This happens on complete idle SMP systems while
145 * waiting on the login prompt. We also increment the "start of
146 * idle" jiffy stamp so the idle accounting adjustment we do
147 * when we go busy again does not account too much ticks.
149 if (ts
->tick_stopped
) {
150 touch_softlockup_watchdog_sched();
151 if (is_idle_task(current
))
155 update_process_times(user_mode(regs
));
156 profile_tick(CPU_PROFILING
);
160 #ifdef CONFIG_NO_HZ_FULL
161 cpumask_var_t tick_nohz_full_mask
;
162 cpumask_var_t housekeeping_mask
;
163 bool tick_nohz_full_running
;
164 static atomic_t tick_dep_mask
;
166 static bool check_tick_dependency(atomic_t
*dep
)
168 int val
= atomic_read(dep
);
170 if (val
& TICK_DEP_MASK_POSIX_TIMER
) {
171 trace_tick_stop(0, TICK_DEP_MASK_POSIX_TIMER
);
175 if (val
& TICK_DEP_MASK_PERF_EVENTS
) {
176 trace_tick_stop(0, TICK_DEP_MASK_PERF_EVENTS
);
180 if (val
& TICK_DEP_MASK_SCHED
) {
181 trace_tick_stop(0, TICK_DEP_MASK_SCHED
);
185 if (val
& TICK_DEP_MASK_CLOCK_UNSTABLE
) {
186 trace_tick_stop(0, TICK_DEP_MASK_CLOCK_UNSTABLE
);
193 static bool can_stop_full_tick(int cpu
, struct tick_sched
*ts
)
195 WARN_ON_ONCE(!irqs_disabled());
197 if (unlikely(!cpu_online(cpu
)))
200 if (check_tick_dependency(&tick_dep_mask
))
203 if (check_tick_dependency(&ts
->tick_dep_mask
))
206 if (check_tick_dependency(¤t
->tick_dep_mask
))
209 if (check_tick_dependency(¤t
->signal
->tick_dep_mask
))
215 static void nohz_full_kick_func(struct irq_work
*work
)
217 /* Empty, the tick restart happens on tick_nohz_irq_exit() */
220 static DEFINE_PER_CPU(struct irq_work
, nohz_full_kick_work
) = {
221 .func
= nohz_full_kick_func
,
225 * Kick this CPU if it's full dynticks in order to force it to
226 * re-evaluate its dependency on the tick and restart it if necessary.
227 * This kick, unlike tick_nohz_full_kick_cpu() and tick_nohz_full_kick_all(),
230 static void tick_nohz_full_kick(void)
232 if (!tick_nohz_full_cpu(smp_processor_id()))
235 irq_work_queue(this_cpu_ptr(&nohz_full_kick_work
));
239 * Kick the CPU if it's full dynticks in order to force it to
240 * re-evaluate its dependency on the tick and restart it if necessary.
242 void tick_nohz_full_kick_cpu(int cpu
)
244 if (!tick_nohz_full_cpu(cpu
))
247 irq_work_queue_on(&per_cpu(nohz_full_kick_work
, cpu
), cpu
);
251 * Kick all full dynticks CPUs in order to force these to re-evaluate
252 * their dependency on the tick and restart it if necessary.
254 static void tick_nohz_full_kick_all(void)
258 if (!tick_nohz_full_running
)
262 for_each_cpu_and(cpu
, tick_nohz_full_mask
, cpu_online_mask
)
263 tick_nohz_full_kick_cpu(cpu
);
267 static void tick_nohz_dep_set_all(atomic_t
*dep
,
268 enum tick_dep_bits bit
)
272 prev
= atomic_fetch_or(BIT(bit
), dep
);
274 tick_nohz_full_kick_all();
278 * Set a global tick dependency. Used by perf events that rely on freq and
281 void tick_nohz_dep_set(enum tick_dep_bits bit
)
283 tick_nohz_dep_set_all(&tick_dep_mask
, bit
);
286 void tick_nohz_dep_clear(enum tick_dep_bits bit
)
288 atomic_andnot(BIT(bit
), &tick_dep_mask
);
292 * Set per-CPU tick dependency. Used by scheduler and perf events in order to
293 * manage events throttling.
295 void tick_nohz_dep_set_cpu(int cpu
, enum tick_dep_bits bit
)
298 struct tick_sched
*ts
;
300 ts
= per_cpu_ptr(&tick_cpu_sched
, cpu
);
302 prev
= atomic_fetch_or(BIT(bit
), &ts
->tick_dep_mask
);
305 /* Perf needs local kick that is NMI safe */
306 if (cpu
== smp_processor_id()) {
307 tick_nohz_full_kick();
309 /* Remote irq work not NMI-safe */
310 if (!WARN_ON_ONCE(in_nmi()))
311 tick_nohz_full_kick_cpu(cpu
);
317 void tick_nohz_dep_clear_cpu(int cpu
, enum tick_dep_bits bit
)
319 struct tick_sched
*ts
= per_cpu_ptr(&tick_cpu_sched
, cpu
);
321 atomic_andnot(BIT(bit
), &ts
->tick_dep_mask
);
325 * Set a per-task tick dependency. Posix CPU timers need this in order to elapse
328 void tick_nohz_dep_set_task(struct task_struct
*tsk
, enum tick_dep_bits bit
)
331 * We could optimize this with just kicking the target running the task
332 * if that noise matters for nohz full users.
334 tick_nohz_dep_set_all(&tsk
->tick_dep_mask
, bit
);
337 void tick_nohz_dep_clear_task(struct task_struct
*tsk
, enum tick_dep_bits bit
)
339 atomic_andnot(BIT(bit
), &tsk
->tick_dep_mask
);
343 * Set a per-taskgroup tick dependency. Posix CPU timers need this in order to elapse
344 * per process timers.
346 void tick_nohz_dep_set_signal(struct signal_struct
*sig
, enum tick_dep_bits bit
)
348 tick_nohz_dep_set_all(&sig
->tick_dep_mask
, bit
);
351 void tick_nohz_dep_clear_signal(struct signal_struct
*sig
, enum tick_dep_bits bit
)
353 atomic_andnot(BIT(bit
), &sig
->tick_dep_mask
);
357 * Re-evaluate the need for the tick as we switch the current task.
358 * It might need the tick due to per task/process properties:
359 * perf events, posix CPU timers, ...
361 void __tick_nohz_task_switch(void)
364 struct tick_sched
*ts
;
366 local_irq_save(flags
);
368 if (!tick_nohz_full_cpu(smp_processor_id()))
371 ts
= this_cpu_ptr(&tick_cpu_sched
);
373 if (ts
->tick_stopped
) {
374 if (atomic_read(¤t
->tick_dep_mask
) ||
375 atomic_read(¤t
->signal
->tick_dep_mask
))
376 tick_nohz_full_kick();
379 local_irq_restore(flags
);
382 /* Parse the boot-time nohz CPU list from the kernel parameters. */
383 static int __init
tick_nohz_full_setup(char *str
)
385 alloc_bootmem_cpumask_var(&tick_nohz_full_mask
);
386 if (cpulist_parse(str
, tick_nohz_full_mask
) < 0) {
387 pr_warn("NO_HZ: Incorrect nohz_full cpumask\n");
388 free_bootmem_cpumask_var(tick_nohz_full_mask
);
391 tick_nohz_full_running
= true;
395 __setup("nohz_full=", tick_nohz_full_setup
);
397 static int tick_nohz_cpu_down(unsigned int cpu
)
400 * The boot CPU handles housekeeping duty (unbound timers,
401 * workqueues, timekeeping, ...) on behalf of full dynticks
402 * CPUs. It must remain online when nohz full is enabled.
404 if (tick_nohz_full_running
&& tick_do_timer_cpu
== cpu
)
409 static int tick_nohz_init_all(void)
413 #ifdef CONFIG_NO_HZ_FULL_ALL
414 if (!alloc_cpumask_var(&tick_nohz_full_mask
, GFP_KERNEL
)) {
415 WARN(1, "NO_HZ: Can't allocate full dynticks cpumask\n");
419 cpumask_setall(tick_nohz_full_mask
);
420 tick_nohz_full_running
= true;
425 void __init
tick_nohz_init(void)
429 if (!tick_nohz_full_running
) {
430 if (tick_nohz_init_all() < 0)
434 if (!alloc_cpumask_var(&housekeeping_mask
, GFP_KERNEL
)) {
435 WARN(1, "NO_HZ: Can't allocate not-full dynticks cpumask\n");
436 cpumask_clear(tick_nohz_full_mask
);
437 tick_nohz_full_running
= false;
442 * Full dynticks uses irq work to drive the tick rescheduling on safe
443 * locking contexts. But then we need irq work to raise its own
444 * interrupts to avoid circular dependency on the tick
446 if (!arch_irq_work_has_interrupt()) {
447 pr_warn("NO_HZ: Can't run full dynticks because arch doesn't support irq work self-IPIs\n");
448 cpumask_clear(tick_nohz_full_mask
);
449 cpumask_copy(housekeeping_mask
, cpu_possible_mask
);
450 tick_nohz_full_running
= false;
454 cpu
= smp_processor_id();
456 if (cpumask_test_cpu(cpu
, tick_nohz_full_mask
)) {
457 pr_warn("NO_HZ: Clearing %d from nohz_full range for timekeeping\n",
459 cpumask_clear_cpu(cpu
, tick_nohz_full_mask
);
462 cpumask_andnot(housekeeping_mask
,
463 cpu_possible_mask
, tick_nohz_full_mask
);
465 for_each_cpu(cpu
, tick_nohz_full_mask
)
466 context_tracking_cpu_set(cpu
);
468 ret
= cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN
,
469 "kernel/nohz:predown", NULL
,
472 pr_info("NO_HZ: Full dynticks CPUs: %*pbl.\n",
473 cpumask_pr_args(tick_nohz_full_mask
));
476 * We need at least one CPU to handle housekeeping work such
477 * as timekeeping, unbound timers, workqueues, ...
479 WARN_ON_ONCE(cpumask_empty(housekeeping_mask
));
484 * NOHZ - aka dynamic tick functionality
486 #ifdef CONFIG_NO_HZ_COMMON
490 bool tick_nohz_enabled __read_mostly
= true;
491 unsigned long tick_nohz_active __read_mostly
;
493 * Enable / Disable tickless mode
495 static int __init
setup_tick_nohz(char *str
)
497 return (kstrtobool(str
, &tick_nohz_enabled
) == 0);
500 __setup("nohz=", setup_tick_nohz
);
502 int tick_nohz_tick_stopped(void)
504 return __this_cpu_read(tick_cpu_sched
.tick_stopped
);
508 * tick_nohz_update_jiffies - update jiffies when idle was interrupted
510 * Called from interrupt entry when the CPU was idle
512 * In case the sched_tick was stopped on this CPU, we have to check if jiffies
513 * must be updated. Otherwise an interrupt handler could use a stale jiffy
514 * value. We do this unconditionally on any CPU, as we don't know whether the
515 * CPU, which has the update task assigned is in a long sleep.
517 static void tick_nohz_update_jiffies(ktime_t now
)
521 __this_cpu_write(tick_cpu_sched
.idle_waketime
, now
);
523 local_irq_save(flags
);
524 tick_do_update_jiffies64(now
);
525 local_irq_restore(flags
);
527 touch_softlockup_watchdog_sched();
531 * Updates the per-CPU time idle statistics counters
534 update_ts_time_stats(int cpu
, struct tick_sched
*ts
, ktime_t now
, u64
*last_update_time
)
538 if (ts
->idle_active
) {
539 delta
= ktime_sub(now
, ts
->idle_entrytime
);
540 if (nr_iowait_cpu(cpu
) > 0)
541 ts
->iowait_sleeptime
= ktime_add(ts
->iowait_sleeptime
, delta
);
543 ts
->idle_sleeptime
= ktime_add(ts
->idle_sleeptime
, delta
);
544 ts
->idle_entrytime
= now
;
547 if (last_update_time
)
548 *last_update_time
= ktime_to_us(now
);
552 static void tick_nohz_stop_idle(struct tick_sched
*ts
, ktime_t now
)
554 update_ts_time_stats(smp_processor_id(), ts
, now
, NULL
);
557 sched_clock_idle_wakeup_event(0);
560 static ktime_t
tick_nohz_start_idle(struct tick_sched
*ts
)
562 ktime_t now
= ktime_get();
564 ts
->idle_entrytime
= now
;
566 sched_clock_idle_sleep_event();
571 * get_cpu_idle_time_us - get the total idle time of a CPU
572 * @cpu: CPU number to query
573 * @last_update_time: variable to store update time in. Do not update
576 * Return the cumulative idle time (since boot) for a given
577 * CPU, in microseconds.
579 * This time is measured via accounting rather than sampling,
580 * and is as accurate as ktime_get() is.
582 * This function returns -1 if NOHZ is not enabled.
584 u64
get_cpu_idle_time_us(int cpu
, u64
*last_update_time
)
586 struct tick_sched
*ts
= &per_cpu(tick_cpu_sched
, cpu
);
589 if (!tick_nohz_active
)
593 if (last_update_time
) {
594 update_ts_time_stats(cpu
, ts
, now
, last_update_time
);
595 idle
= ts
->idle_sleeptime
;
597 if (ts
->idle_active
&& !nr_iowait_cpu(cpu
)) {
598 ktime_t delta
= ktime_sub(now
, ts
->idle_entrytime
);
600 idle
= ktime_add(ts
->idle_sleeptime
, delta
);
602 idle
= ts
->idle_sleeptime
;
606 return ktime_to_us(idle
);
609 EXPORT_SYMBOL_GPL(get_cpu_idle_time_us
);
612 * get_cpu_iowait_time_us - get the total iowait time of a CPU
613 * @cpu: CPU number to query
614 * @last_update_time: variable to store update time in. Do not update
617 * Return the cumulative iowait time (since boot) for a given
618 * CPU, in microseconds.
620 * This time is measured via accounting rather than sampling,
621 * and is as accurate as ktime_get() is.
623 * This function returns -1 if NOHZ is not enabled.
625 u64
get_cpu_iowait_time_us(int cpu
, u64
*last_update_time
)
627 struct tick_sched
*ts
= &per_cpu(tick_cpu_sched
, cpu
);
630 if (!tick_nohz_active
)
634 if (last_update_time
) {
635 update_ts_time_stats(cpu
, ts
, now
, last_update_time
);
636 iowait
= ts
->iowait_sleeptime
;
638 if (ts
->idle_active
&& nr_iowait_cpu(cpu
) > 0) {
639 ktime_t delta
= ktime_sub(now
, ts
->idle_entrytime
);
641 iowait
= ktime_add(ts
->iowait_sleeptime
, delta
);
643 iowait
= ts
->iowait_sleeptime
;
647 return ktime_to_us(iowait
);
649 EXPORT_SYMBOL_GPL(get_cpu_iowait_time_us
);
651 static void tick_nohz_restart(struct tick_sched
*ts
, ktime_t now
)
653 hrtimer_cancel(&ts
->sched_timer
);
654 hrtimer_set_expires(&ts
->sched_timer
, ts
->last_tick
);
656 /* Forward the time to expire in the future */
657 hrtimer_forward(&ts
->sched_timer
, now
, tick_period
);
659 if (ts
->nohz_mode
== NOHZ_MODE_HIGHRES
)
660 hrtimer_start_expires(&ts
->sched_timer
, HRTIMER_MODE_ABS_PINNED
);
662 tick_program_event(hrtimer_get_expires(&ts
->sched_timer
), 1);
665 static ktime_t
tick_nohz_stop_sched_tick(struct tick_sched
*ts
,
666 ktime_t now
, int cpu
)
668 struct clock_event_device
*dev
= __this_cpu_read(tick_cpu_device
.evtdev
);
669 u64 basemono
, next_tick
, next_tmr
, next_rcu
, delta
, expires
;
670 unsigned long seq
, basejiff
;
673 /* Read jiffies and the time when jiffies were updated last */
675 seq
= read_seqbegin(&jiffies_lock
);
676 basemono
= last_jiffies_update
;
678 } while (read_seqretry(&jiffies_lock
, seq
));
679 ts
->last_jiffies
= basejiff
;
681 if (rcu_needs_cpu(basemono
, &next_rcu
) ||
682 arch_needs_cpu() || irq_work_needs_cpu()) {
683 next_tick
= basemono
+ TICK_NSEC
;
686 * Get the next pending timer. If high resolution
687 * timers are enabled this only takes the timer wheel
688 * timers into account. If high resolution timers are
689 * disabled this also looks at the next expiring
692 next_tmr
= get_next_timer_interrupt(basejiff
, basemono
);
693 ts
->next_timer
= next_tmr
;
694 /* Take the next rcu event into account */
695 next_tick
= next_rcu
< next_tmr
? next_rcu
: next_tmr
;
699 * If the tick is due in the next period, keep it ticking or
700 * force prod the timer.
702 delta
= next_tick
- basemono
;
703 if (delta
<= (u64
)TICK_NSEC
) {
707 * Tell the timer code that the base is not idle, i.e. undo
708 * the effect of get_next_timer_interrupt():
712 * We've not stopped the tick yet, and there's a timer in the
713 * next period, so no point in stopping it either, bail.
715 if (!ts
->tick_stopped
)
719 * If, OTOH, we did stop it, but there's a pending (expired)
720 * timer reprogram the timer hardware to fire now.
722 * We will not restart the tick proper, just prod the timer
723 * hardware into firing an interrupt to process the pending
724 * timers. Just like tick_irq_exit() will not restart the tick
725 * for 'normal' interrupts.
727 * Only once we exit the idle loop will we re-enable the tick,
728 * see tick_nohz_idle_exit().
731 tick_nohz_restart(ts
, now
);
737 * If this CPU is the one which updates jiffies, then give up
738 * the assignment and let it be taken by the CPU which runs
739 * the tick timer next, which might be this CPU as well. If we
740 * don't drop this here the jiffies might be stale and
741 * do_timer() never invoked. Keep track of the fact that it
742 * was the one which had the do_timer() duty last. If this CPU
743 * is the one which had the do_timer() duty last, we limit the
744 * sleep time to the timekeeping max_deferment value.
745 * Otherwise we can sleep as long as we want.
747 delta
= timekeeping_max_deferment();
748 if (cpu
== tick_do_timer_cpu
) {
749 tick_do_timer_cpu
= TICK_DO_TIMER_NONE
;
750 ts
->do_timer_last
= 1;
751 } else if (tick_do_timer_cpu
!= TICK_DO_TIMER_NONE
) {
753 ts
->do_timer_last
= 0;
754 } else if (!ts
->do_timer_last
) {
758 #ifdef CONFIG_NO_HZ_FULL
759 /* Limit the tick delta to the maximum scheduler deferment */
761 delta
= min(delta
, scheduler_tick_max_deferment());
764 /* Calculate the next expiry time */
765 if (delta
< (KTIME_MAX
- basemono
))
766 expires
= basemono
+ delta
;
770 expires
= min_t(u64
, expires
, next_tick
);
773 /* Skip reprogram of event if its not changed */
774 if (ts
->tick_stopped
&& (expires
== dev
->next_event
))
778 * nohz_stop_sched_tick can be called several times before
779 * the nohz_restart_sched_tick is called. This happens when
780 * interrupts arrive which do not cause a reschedule. In the
781 * first call we save the current tick time, so we can restart
782 * the scheduler tick in nohz_restart_sched_tick.
784 if (!ts
->tick_stopped
) {
785 nohz_balance_enter_idle(cpu
);
786 calc_load_enter_idle();
787 cpu_load_update_nohz_start();
789 ts
->last_tick
= hrtimer_get_expires(&ts
->sched_timer
);
790 ts
->tick_stopped
= 1;
791 trace_tick_stop(1, TICK_DEP_MASK_NONE
);
795 * If the expiration time == KTIME_MAX, then we simply stop
798 if (unlikely(expires
== KTIME_MAX
)) {
799 if (ts
->nohz_mode
== NOHZ_MODE_HIGHRES
)
800 hrtimer_cancel(&ts
->sched_timer
);
804 if (ts
->nohz_mode
== NOHZ_MODE_HIGHRES
)
805 hrtimer_start(&ts
->sched_timer
, tick
, HRTIMER_MODE_ABS_PINNED
);
807 tick_program_event(tick
, 1);
809 /* Update the estimated sleep length */
810 ts
->sleep_length
= ktime_sub(dev
->next_event
, now
);
814 static void tick_nohz_restart_sched_tick(struct tick_sched
*ts
, ktime_t now
)
816 /* Update jiffies first */
817 tick_do_update_jiffies64(now
);
818 cpu_load_update_nohz_stop();
821 * Clear the timer idle flag, so we avoid IPIs on remote queueing and
822 * the clock forward checks in the enqueue path:
826 calc_load_exit_idle();
827 touch_softlockup_watchdog_sched();
829 * Cancel the scheduled timer and restore the tick
831 ts
->tick_stopped
= 0;
832 ts
->idle_exittime
= now
;
834 tick_nohz_restart(ts
, now
);
837 static void tick_nohz_full_update_tick(struct tick_sched
*ts
)
839 #ifdef CONFIG_NO_HZ_FULL
840 int cpu
= smp_processor_id();
842 if (!tick_nohz_full_cpu(cpu
))
845 if (!ts
->tick_stopped
&& ts
->nohz_mode
== NOHZ_MODE_INACTIVE
)
848 if (can_stop_full_tick(cpu
, ts
))
849 tick_nohz_stop_sched_tick(ts
, ktime_get(), cpu
);
850 else if (ts
->tick_stopped
)
851 tick_nohz_restart_sched_tick(ts
, ktime_get());
855 static bool can_stop_idle_tick(int cpu
, struct tick_sched
*ts
)
858 * If this CPU is offline and it is the one which updates
859 * jiffies, then give up the assignment and let it be taken by
860 * the CPU which runs the tick timer next. If we don't drop
861 * this here the jiffies might be stale and do_timer() never
864 if (unlikely(!cpu_online(cpu
))) {
865 if (cpu
== tick_do_timer_cpu
)
866 tick_do_timer_cpu
= TICK_DO_TIMER_NONE
;
870 if (unlikely(ts
->nohz_mode
== NOHZ_MODE_INACTIVE
)) {
871 ts
->sleep_length
= NSEC_PER_SEC
/ HZ
;
878 if (unlikely(local_softirq_pending() && cpu_online(cpu
))) {
879 static int ratelimit
;
881 if (ratelimit
< 10 &&
882 (local_softirq_pending() & SOFTIRQ_STOP_IDLE_MASK
)) {
883 pr_warn("NOHZ: local_softirq_pending %02x\n",
884 (unsigned int) local_softirq_pending());
890 if (tick_nohz_full_enabled()) {
892 * Keep the tick alive to guarantee timekeeping progression
893 * if there are full dynticks CPUs around
895 if (tick_do_timer_cpu
== cpu
)
898 * Boot safety: make sure the timekeeping duty has been
899 * assigned before entering dyntick-idle mode,
901 if (tick_do_timer_cpu
== TICK_DO_TIMER_NONE
)
908 static void __tick_nohz_idle_enter(struct tick_sched
*ts
)
910 ktime_t now
, expires
;
911 int cpu
= smp_processor_id();
913 now
= tick_nohz_start_idle(ts
);
915 if (can_stop_idle_tick(cpu
, ts
)) {
916 int was_stopped
= ts
->tick_stopped
;
920 expires
= tick_nohz_stop_sched_tick(ts
, now
, cpu
);
923 ts
->idle_expires
= expires
;
926 if (!was_stopped
&& ts
->tick_stopped
)
927 ts
->idle_jiffies
= ts
->last_jiffies
;
932 * tick_nohz_idle_enter - stop the idle tick from the idle task
934 * When the next event is more than a tick into the future, stop the idle tick
935 * Called when we start the idle loop.
937 * The arch is responsible of calling:
939 * - rcu_idle_enter() after its last use of RCU before the CPU is put
941 * - rcu_idle_exit() before the first use of RCU after the CPU is woken up.
943 void tick_nohz_idle_enter(void)
945 struct tick_sched
*ts
;
947 WARN_ON_ONCE(irqs_disabled());
950 * Update the idle state in the scheduler domain hierarchy
951 * when tick_nohz_stop_sched_tick() is called from the idle loop.
952 * State will be updated to busy during the first busy tick after
955 set_cpu_sd_state_idle();
959 ts
= this_cpu_ptr(&tick_cpu_sched
);
961 __tick_nohz_idle_enter(ts
);
967 * tick_nohz_irq_exit - update next tick event from interrupt exit
969 * When an interrupt fires while we are idle and it doesn't cause
970 * a reschedule, it may still add, modify or delete a timer, enqueue
971 * an RCU callback, etc...
972 * So we need to re-calculate and reprogram the next tick event.
974 void tick_nohz_irq_exit(void)
976 struct tick_sched
*ts
= this_cpu_ptr(&tick_cpu_sched
);
979 __tick_nohz_idle_enter(ts
);
981 tick_nohz_full_update_tick(ts
);
985 * tick_nohz_get_sleep_length - return the length of the current sleep
987 * Called from power state control code with interrupts disabled
989 ktime_t
tick_nohz_get_sleep_length(void)
991 struct tick_sched
*ts
= this_cpu_ptr(&tick_cpu_sched
);
993 return ts
->sleep_length
;
997 * tick_nohz_get_idle_calls - return the current idle calls counter value
999 * Called from the schedutil frequency scaling governor in scheduler context.
1001 unsigned long tick_nohz_get_idle_calls(void)
1003 struct tick_sched
*ts
= this_cpu_ptr(&tick_cpu_sched
);
1005 return ts
->idle_calls
;
1008 static void tick_nohz_account_idle_ticks(struct tick_sched
*ts
)
1010 #ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
1011 unsigned long ticks
;
1013 if (vtime_accounting_cpu_enabled())
1016 * We stopped the tick in idle. Update process times would miss the
1017 * time we slept as update_process_times does only a 1 tick
1018 * accounting. Enforce that this is accounted to idle !
1020 ticks
= jiffies
- ts
->idle_jiffies
;
1022 * We might be one off. Do not randomly account a huge number of ticks!
1024 if (ticks
&& ticks
< LONG_MAX
)
1025 account_idle_ticks(ticks
);
1030 * tick_nohz_idle_exit - restart the idle tick from the idle task
1032 * Restart the idle tick when the CPU is woken up from idle
1033 * This also exit the RCU extended quiescent state. The CPU
1034 * can use RCU again after this function is called.
1036 void tick_nohz_idle_exit(void)
1038 struct tick_sched
*ts
= this_cpu_ptr(&tick_cpu_sched
);
1041 local_irq_disable();
1043 WARN_ON_ONCE(!ts
->inidle
);
1047 if (ts
->idle_active
|| ts
->tick_stopped
)
1050 if (ts
->idle_active
)
1051 tick_nohz_stop_idle(ts
, now
);
1053 if (ts
->tick_stopped
) {
1054 tick_nohz_restart_sched_tick(ts
, now
);
1055 tick_nohz_account_idle_ticks(ts
);
1062 * The nohz low res interrupt handler
1064 static void tick_nohz_handler(struct clock_event_device
*dev
)
1066 struct tick_sched
*ts
= this_cpu_ptr(&tick_cpu_sched
);
1067 struct pt_regs
*regs
= get_irq_regs();
1068 ktime_t now
= ktime_get();
1070 dev
->next_event
= KTIME_MAX
;
1072 tick_sched_do_timer(now
);
1073 tick_sched_handle(ts
, regs
);
1075 /* No need to reprogram if we are running tickless */
1076 if (unlikely(ts
->tick_stopped
))
1079 hrtimer_forward(&ts
->sched_timer
, now
, tick_period
);
1080 tick_program_event(hrtimer_get_expires(&ts
->sched_timer
), 1);
1083 static inline void tick_nohz_activate(struct tick_sched
*ts
, int mode
)
1085 if (!tick_nohz_enabled
)
1087 ts
->nohz_mode
= mode
;
1088 /* One update is enough */
1089 if (!test_and_set_bit(0, &tick_nohz_active
))
1090 timers_update_migration(true);
1094 * tick_nohz_switch_to_nohz - switch to nohz mode
1096 static void tick_nohz_switch_to_nohz(void)
1098 struct tick_sched
*ts
= this_cpu_ptr(&tick_cpu_sched
);
1101 if (!tick_nohz_enabled
)
1104 if (tick_switch_to_oneshot(tick_nohz_handler
))
1108 * Recycle the hrtimer in ts, so we can share the
1109 * hrtimer_forward with the highres code.
1111 hrtimer_init(&ts
->sched_timer
, CLOCK_MONOTONIC
, HRTIMER_MODE_ABS
);
1112 /* Get the next period */
1113 next
= tick_init_jiffy_update();
1115 hrtimer_set_expires(&ts
->sched_timer
, next
);
1116 hrtimer_forward_now(&ts
->sched_timer
, tick_period
);
1117 tick_program_event(hrtimer_get_expires(&ts
->sched_timer
), 1);
1118 tick_nohz_activate(ts
, NOHZ_MODE_LOWRES
);
1121 static inline void tick_nohz_irq_enter(void)
1123 struct tick_sched
*ts
= this_cpu_ptr(&tick_cpu_sched
);
1126 if (!ts
->idle_active
&& !ts
->tick_stopped
)
1129 if (ts
->idle_active
)
1130 tick_nohz_stop_idle(ts
, now
);
1131 if (ts
->tick_stopped
)
1132 tick_nohz_update_jiffies(now
);
1137 static inline void tick_nohz_switch_to_nohz(void) { }
1138 static inline void tick_nohz_irq_enter(void) { }
1139 static inline void tick_nohz_activate(struct tick_sched
*ts
, int mode
) { }
1141 #endif /* CONFIG_NO_HZ_COMMON */
1144 * Called from irq_enter to notify about the possible interruption of idle()
1146 void tick_irq_enter(void)
1148 tick_check_oneshot_broadcast_this_cpu();
1149 tick_nohz_irq_enter();
1153 * High resolution timer specific code
1155 #ifdef CONFIG_HIGH_RES_TIMERS
1157 * We rearm the timer until we get disabled by the idle code.
1158 * Called with interrupts disabled.
1160 static enum hrtimer_restart
tick_sched_timer(struct hrtimer
*timer
)
1162 struct tick_sched
*ts
=
1163 container_of(timer
, struct tick_sched
, sched_timer
);
1164 struct pt_regs
*regs
= get_irq_regs();
1165 ktime_t now
= ktime_get();
1167 tick_sched_do_timer(now
);
1170 * Do not call, when we are not in irq context and have
1171 * no valid regs pointer
1174 tick_sched_handle(ts
, regs
);
1176 /* No need to reprogram if we are in idle or full dynticks mode */
1177 if (unlikely(ts
->tick_stopped
))
1178 return HRTIMER_NORESTART
;
1180 hrtimer_forward(timer
, now
, tick_period
);
1182 return HRTIMER_RESTART
;
1185 static int sched_skew_tick
;
1187 static int __init
skew_tick(char *str
)
1189 get_option(&str
, &sched_skew_tick
);
1193 early_param("skew_tick", skew_tick
);
1196 * tick_setup_sched_timer - setup the tick emulation timer
1198 void tick_setup_sched_timer(void)
1200 struct tick_sched
*ts
= this_cpu_ptr(&tick_cpu_sched
);
1201 ktime_t now
= ktime_get();
1204 * Emulate tick processing via per-CPU hrtimers:
1206 hrtimer_init(&ts
->sched_timer
, CLOCK_MONOTONIC
, HRTIMER_MODE_ABS
);
1207 ts
->sched_timer
.function
= tick_sched_timer
;
1209 /* Get the next period (per-CPU) */
1210 hrtimer_set_expires(&ts
->sched_timer
, tick_init_jiffy_update());
1212 /* Offset the tick to avert jiffies_lock contention. */
1213 if (sched_skew_tick
) {
1214 u64 offset
= ktime_to_ns(tick_period
) >> 1;
1215 do_div(offset
, num_possible_cpus());
1216 offset
*= smp_processor_id();
1217 hrtimer_add_expires_ns(&ts
->sched_timer
, offset
);
1220 hrtimer_forward(&ts
->sched_timer
, now
, tick_period
);
1221 hrtimer_start_expires(&ts
->sched_timer
, HRTIMER_MODE_ABS_PINNED
);
1222 tick_nohz_activate(ts
, NOHZ_MODE_HIGHRES
);
1224 #endif /* HIGH_RES_TIMERS */
1226 #if defined CONFIG_NO_HZ_COMMON || defined CONFIG_HIGH_RES_TIMERS
1227 void tick_cancel_sched_timer(int cpu
)
1229 struct tick_sched
*ts
= &per_cpu(tick_cpu_sched
, cpu
);
1231 # ifdef CONFIG_HIGH_RES_TIMERS
1232 if (ts
->sched_timer
.base
)
1233 hrtimer_cancel(&ts
->sched_timer
);
1236 memset(ts
, 0, sizeof(*ts
));
1241 * Async notification about clocksource changes
1243 void tick_clock_notify(void)
1247 for_each_possible_cpu(cpu
)
1248 set_bit(0, &per_cpu(tick_cpu_sched
, cpu
).check_clocks
);
1252 * Async notification about clock event changes
1254 void tick_oneshot_notify(void)
1256 struct tick_sched
*ts
= this_cpu_ptr(&tick_cpu_sched
);
1258 set_bit(0, &ts
->check_clocks
);
1262 * Check, if a change happened, which makes oneshot possible.
1264 * Called cyclic from the hrtimer softirq (driven by the timer
1265 * softirq) allow_nohz signals, that we can switch into low-res nohz
1266 * mode, because high resolution timers are disabled (either compile
1267 * or runtime). Called with interrupts disabled.
1269 int tick_check_oneshot_change(int allow_nohz
)
1271 struct tick_sched
*ts
= this_cpu_ptr(&tick_cpu_sched
);
1273 if (!test_and_clear_bit(0, &ts
->check_clocks
))
1276 if (ts
->nohz_mode
!= NOHZ_MODE_INACTIVE
)
1279 if (!timekeeping_valid_for_hres() || !tick_is_oneshot_available())
1285 tick_nohz_switch_to_nohz();