2 * Copyright(c) 2004 - 2006 Intel Corporation. All rights reserved.
4 * This program is free software; you can redistribute it and/or modify it
5 * under the terms of the GNU General Public License as published by the Free
6 * Software Foundation; either version 2 of the License, or (at your option)
9 * This program is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
14 * The full GNU General Public License is included in this distribution in the
15 * file called COPYING.
17 #ifndef LINUX_DMAENGINE_H
18 #define LINUX_DMAENGINE_H
20 #include <linux/device.h>
21 #include <linux/err.h>
22 #include <linux/uio.h>
23 #include <linux/bug.h>
24 #include <linux/scatterlist.h>
25 #include <linux/bitmap.h>
26 #include <linux/types.h>
30 * typedef dma_cookie_t - an opaque DMA cookie
32 * if dma_cookie_t is >0 it's a DMA request cookie, <0 it's an error code
34 typedef s32 dma_cookie_t
;
35 #define DMA_MIN_COOKIE 1
37 static inline int dma_submit_error(dma_cookie_t cookie
)
39 return cookie
< 0 ? cookie
: 0;
43 * enum dma_status - DMA transaction status
44 * @DMA_COMPLETE: transaction completed
45 * @DMA_IN_PROGRESS: transaction not yet processed
46 * @DMA_PAUSED: transaction is paused
47 * @DMA_ERROR: transaction failed
57 * enum dma_transaction_type - DMA transaction types/indexes
59 * Note: The DMA_ASYNC_TX capability is not to be set by drivers. It is
60 * automatically set as dma devices are registered.
62 enum dma_transaction_type
{
77 /* last transaction type for creation of the capabilities mask */
82 * enum dma_transfer_direction - dma transfer mode and direction indicator
83 * @DMA_MEM_TO_MEM: Async/Memcpy mode
84 * @DMA_MEM_TO_DEV: Slave mode & From Memory to Device
85 * @DMA_DEV_TO_MEM: Slave mode & From Device to Memory
86 * @DMA_DEV_TO_DEV: Slave mode & From Device to Device
88 enum dma_transfer_direction
{
97 * Interleaved Transfer Request
98 * ----------------------------
99 * A chunk is collection of contiguous bytes to be transfered.
100 * The gap(in bytes) between two chunks is called inter-chunk-gap(ICG).
101 * ICGs may or maynot change between chunks.
102 * A FRAME is the smallest series of contiguous {chunk,icg} pairs,
103 * that when repeated an integral number of times, specifies the transfer.
104 * A transfer template is specification of a Frame, the number of times
105 * it is to be repeated and other per-transfer attributes.
107 * Practically, a client driver would have ready a template for each
108 * type of transfer it is going to need during its lifetime and
109 * set only 'src_start' and 'dst_start' before submitting the requests.
112 * | Frame-1 | Frame-2 | ~ | Frame-'numf' |
113 * |====....==.===...=...|====....==.===...=...| ~ |====....==.===...=...|
120 * struct data_chunk - Element of scatter-gather list that makes a frame.
121 * @size: Number of bytes to read from source.
122 * size_dst := fn(op, size_src), so doesn't mean much for destination.
123 * @icg: Number of bytes to jump after last src/dst address of this
124 * chunk and before first src/dst address for next chunk.
125 * Ignored for dst(assumed 0), if dst_inc is true and dst_sgl is false.
126 * Ignored for src(assumed 0), if src_inc is true and src_sgl is false.
127 * @dst_icg: Number of bytes to jump after last dst address of this
128 * chunk and before the first dst address for next chunk.
129 * Ignored if dst_inc is true and dst_sgl is false.
130 * @src_icg: Number of bytes to jump after last src address of this
131 * chunk and before the first src address for next chunk.
132 * Ignored if src_inc is true and src_sgl is false.
142 * struct dma_interleaved_template - Template to convey DMAC the transfer pattern
144 * @src_start: Bus address of source for the first chunk.
145 * @dst_start: Bus address of destination for the first chunk.
146 * @dir: Specifies the type of Source and Destination.
147 * @src_inc: If the source address increments after reading from it.
148 * @dst_inc: If the destination address increments after writing to it.
149 * @src_sgl: If the 'icg' of sgl[] applies to Source (scattered read).
150 * Otherwise, source is read contiguously (icg ignored).
151 * Ignored if src_inc is false.
152 * @dst_sgl: If the 'icg' of sgl[] applies to Destination (scattered write).
153 * Otherwise, destination is filled contiguously (icg ignored).
154 * Ignored if dst_inc is false.
155 * @numf: Number of frames in this template.
156 * @frame_size: Number of chunks in a frame i.e, size of sgl[].
157 * @sgl: Array of {chunk,icg} pairs that make up a frame.
159 struct dma_interleaved_template
{
160 dma_addr_t src_start
;
161 dma_addr_t dst_start
;
162 enum dma_transfer_direction dir
;
169 struct data_chunk sgl
[0];
173 * enum dma_ctrl_flags - DMA flags to augment operation preparation,
174 * control completion, and communicate status.
175 * @DMA_PREP_INTERRUPT - trigger an interrupt (callback) upon completion of
177 * @DMA_CTRL_ACK - if clear, the descriptor cannot be reused until the client
178 * acknowledges receipt, i.e. has has a chance to establish any dependency
180 * @DMA_PREP_PQ_DISABLE_P - prevent generation of P while generating Q
181 * @DMA_PREP_PQ_DISABLE_Q - prevent generation of Q while generating P
182 * @DMA_PREP_CONTINUE - indicate to a driver that it is reusing buffers as
183 * sources that were the result of a previous operation, in the case of a PQ
184 * operation it continues the calculation with new sources
185 * @DMA_PREP_FENCE - tell the driver that subsequent operations depend
186 * on the result of this operation
187 * @DMA_CTRL_REUSE: client can reuse the descriptor and submit again till
190 enum dma_ctrl_flags
{
191 DMA_PREP_INTERRUPT
= (1 << 0),
192 DMA_CTRL_ACK
= (1 << 1),
193 DMA_PREP_PQ_DISABLE_P
= (1 << 2),
194 DMA_PREP_PQ_DISABLE_Q
= (1 << 3),
195 DMA_PREP_CONTINUE
= (1 << 4),
196 DMA_PREP_FENCE
= (1 << 5),
197 DMA_CTRL_REUSE
= (1 << 6),
201 * enum sum_check_bits - bit position of pq_check_flags
203 enum sum_check_bits
{
209 * enum pq_check_flags - result of async_{xor,pq}_zero_sum operations
210 * @SUM_CHECK_P_RESULT - 1 if xor zero sum error, 0 otherwise
211 * @SUM_CHECK_Q_RESULT - 1 if reed-solomon zero sum error, 0 otherwise
213 enum sum_check_flags
{
214 SUM_CHECK_P_RESULT
= (1 << SUM_CHECK_P
),
215 SUM_CHECK_Q_RESULT
= (1 << SUM_CHECK_Q
),
220 * dma_cap_mask_t - capabilities bitmap modeled after cpumask_t.
221 * See linux/cpumask.h
223 typedef struct { DECLARE_BITMAP(bits
, DMA_TX_TYPE_END
); } dma_cap_mask_t
;
226 * struct dma_chan_percpu - the per-CPU part of struct dma_chan
227 * @memcpy_count: transaction counter
228 * @bytes_transferred: byte counter
231 struct dma_chan_percpu
{
233 unsigned long memcpy_count
;
234 unsigned long bytes_transferred
;
238 * struct dma_router - DMA router structure
239 * @dev: pointer to the DMA router device
240 * @route_free: function to be called when the route can be disconnected
244 void (*route_free
)(struct device
*dev
, void *route_data
);
248 * struct dma_chan - devices supply DMA channels, clients use them
249 * @device: ptr to the dma device who supplies this channel, always !%NULL
250 * @cookie: last cookie value returned to client
251 * @completed_cookie: last completed cookie for this channel
252 * @chan_id: channel ID for sysfs
253 * @dev: class device for sysfs
254 * @device_node: used to add this to the device chan list
255 * @local: per-cpu pointer to a struct dma_chan_percpu
256 * @client_count: how many clients are using this channel
257 * @table_count: number of appearances in the mem-to-mem allocation table
258 * @router: pointer to the DMA router structure
259 * @route_data: channel specific data for the router
260 * @private: private data for certain client-channel associations
263 struct dma_device
*device
;
265 dma_cookie_t completed_cookie
;
269 struct dma_chan_dev
*dev
;
271 struct list_head device_node
;
272 struct dma_chan_percpu __percpu
*local
;
277 struct dma_router
*router
;
284 * struct dma_chan_dev - relate sysfs device node to backing channel device
285 * @chan: driver channel device
286 * @device: sysfs device
287 * @dev_id: parent dma_device dev_id
288 * @idr_ref: reference count to gate release of dma_device dev_id
290 struct dma_chan_dev
{
291 struct dma_chan
*chan
;
292 struct device device
;
298 * enum dma_slave_buswidth - defines bus width of the DMA slave
299 * device, source or target buses
301 enum dma_slave_buswidth
{
302 DMA_SLAVE_BUSWIDTH_UNDEFINED
= 0,
303 DMA_SLAVE_BUSWIDTH_1_BYTE
= 1,
304 DMA_SLAVE_BUSWIDTH_2_BYTES
= 2,
305 DMA_SLAVE_BUSWIDTH_3_BYTES
= 3,
306 DMA_SLAVE_BUSWIDTH_4_BYTES
= 4,
307 DMA_SLAVE_BUSWIDTH_8_BYTES
= 8,
308 DMA_SLAVE_BUSWIDTH_16_BYTES
= 16,
309 DMA_SLAVE_BUSWIDTH_32_BYTES
= 32,
310 DMA_SLAVE_BUSWIDTH_64_BYTES
= 64,
314 * struct dma_slave_config - dma slave channel runtime config
315 * @direction: whether the data shall go in or out on this slave
316 * channel, right now. DMA_MEM_TO_DEV and DMA_DEV_TO_MEM are
317 * legal values. DEPRECATED, drivers should use the direction argument
318 * to the device_prep_slave_sg and device_prep_dma_cyclic functions or
319 * the dir field in the dma_interleaved_template structure.
320 * @src_addr: this is the physical address where DMA slave data
321 * should be read (RX), if the source is memory this argument is
323 * @dst_addr: this is the physical address where DMA slave data
324 * should be written (TX), if the source is memory this argument
326 * @src_addr_width: this is the width in bytes of the source (RX)
327 * register where DMA data shall be read. If the source
328 * is memory this may be ignored depending on architecture.
329 * Legal values: 1, 2, 4, 8.
330 * @dst_addr_width: same as src_addr_width but for destination
331 * target (TX) mutatis mutandis.
332 * @src_maxburst: the maximum number of words (note: words, as in
333 * units of the src_addr_width member, not bytes) that can be sent
334 * in one burst to the device. Typically something like half the
335 * FIFO depth on I/O peripherals so you don't overflow it. This
336 * may or may not be applicable on memory sources.
337 * @dst_maxburst: same as src_maxburst but for destination target
339 * @device_fc: Flow Controller Settings. Only valid for slave channels. Fill
340 * with 'true' if peripheral should be flow controller. Direction will be
341 * selected at Runtime.
342 * @slave_id: Slave requester id. Only valid for slave channels. The dma
343 * slave peripheral will have unique id as dma requester which need to be
344 * pass as slave config.
346 * This struct is passed in as configuration data to a DMA engine
347 * in order to set up a certain channel for DMA transport at runtime.
348 * The DMA device/engine has to provide support for an additional
349 * callback in the dma_device structure, device_config and this struct
350 * will then be passed in as an argument to the function.
352 * The rationale for adding configuration information to this struct is as
353 * follows: if it is likely that more than one DMA slave controllers in
354 * the world will support the configuration option, then make it generic.
355 * If not: if it is fixed so that it be sent in static from the platform
356 * data, then prefer to do that.
358 struct dma_slave_config
{
359 enum dma_transfer_direction direction
;
362 enum dma_slave_buswidth src_addr_width
;
363 enum dma_slave_buswidth dst_addr_width
;
367 unsigned int slave_id
;
371 * enum dma_residue_granularity - Granularity of the reported transfer residue
372 * @DMA_RESIDUE_GRANULARITY_DESCRIPTOR: Residue reporting is not support. The
373 * DMA channel is only able to tell whether a descriptor has been completed or
374 * not, which means residue reporting is not supported by this channel. The
375 * residue field of the dma_tx_state field will always be 0.
376 * @DMA_RESIDUE_GRANULARITY_SEGMENT: Residue is updated after each successfully
377 * completed segment of the transfer (For cyclic transfers this is after each
378 * period). This is typically implemented by having the hardware generate an
379 * interrupt after each transferred segment and then the drivers updates the
380 * outstanding residue by the size of the segment. Another possibility is if
381 * the hardware supports scatter-gather and the segment descriptor has a field
382 * which gets set after the segment has been completed. The driver then counts
383 * the number of segments without the flag set to compute the residue.
384 * @DMA_RESIDUE_GRANULARITY_BURST: Residue is updated after each transferred
385 * burst. This is typically only supported if the hardware has a progress
386 * register of some sort (E.g. a register with the current read/write address
387 * or a register with the amount of bursts/beats/bytes that have been
388 * transferred or still need to be transferred).
390 enum dma_residue_granularity
{
391 DMA_RESIDUE_GRANULARITY_DESCRIPTOR
= 0,
392 DMA_RESIDUE_GRANULARITY_SEGMENT
= 1,
393 DMA_RESIDUE_GRANULARITY_BURST
= 2,
396 /* struct dma_slave_caps - expose capabilities of a slave channel only
398 * @src_addr_widths: bit mask of src addr widths the channel supports
399 * @dst_addr_widths: bit mask of dstn addr widths the channel supports
400 * @directions: bit mask of slave direction the channel supported
401 * since the enum dma_transfer_direction is not defined as bits for each
402 * type of direction, the dma controller should fill (1 << <TYPE>) and same
403 * should be checked by controller as well
404 * @cmd_pause: true, if pause and thereby resume is supported
405 * @cmd_terminate: true, if terminate cmd is supported
406 * @residue_granularity: granularity of the reported transfer residue
407 * @descriptor_reuse: if a descriptor can be reused by client and
408 * resubmitted multiple times
410 struct dma_slave_caps
{
416 enum dma_residue_granularity residue_granularity
;
417 bool descriptor_reuse
;
420 static inline const char *dma_chan_name(struct dma_chan
*chan
)
422 return dev_name(&chan
->dev
->device
);
425 void dma_chan_cleanup(struct kref
*kref
);
428 * typedef dma_filter_fn - callback filter for dma_request_channel
429 * @chan: channel to be reviewed
430 * @filter_param: opaque parameter passed through dma_request_channel
432 * When this optional parameter is specified in a call to dma_request_channel a
433 * suitable channel is passed to this routine for further dispositioning before
434 * being returned. Where 'suitable' indicates a non-busy channel that
435 * satisfies the given capability mask. It returns 'true' to indicate that the
436 * channel is suitable.
438 typedef bool (*dma_filter_fn
)(struct dma_chan
*chan
, void *filter_param
);
440 typedef void (*dma_async_tx_callback
)(void *dma_async_param
);
442 struct dmaengine_unmap_data
{
454 * struct dma_async_tx_descriptor - async transaction descriptor
455 * ---dma generic offload fields---
456 * @cookie: tracking cookie for this transaction, set to -EBUSY if
457 * this tx is sitting on a dependency list
458 * @flags: flags to augment operation preparation, control completion, and
460 * @phys: physical address of the descriptor
461 * @chan: target channel for this operation
462 * @tx_submit: accept the descriptor, assign ordered cookie and mark the
463 * descriptor pending. To be pushed on .issue_pending() call
464 * @callback: routine to call after this operation is complete
465 * @callback_param: general parameter to pass to the callback routine
466 * ---async_tx api specific fields---
467 * @next: at completion submit this descriptor
468 * @parent: pointer to the next level up in the dependency chain
469 * @lock: protect the parent and next pointers
471 struct dma_async_tx_descriptor
{
473 enum dma_ctrl_flags flags
; /* not a 'long' to pack with cookie */
475 struct dma_chan
*chan
;
476 dma_cookie_t (*tx_submit
)(struct dma_async_tx_descriptor
*tx
);
477 int (*desc_free
)(struct dma_async_tx_descriptor
*tx
);
478 dma_async_tx_callback callback
;
479 void *callback_param
;
480 struct dmaengine_unmap_data
*unmap
;
481 #ifdef CONFIG_ASYNC_TX_ENABLE_CHANNEL_SWITCH
482 struct dma_async_tx_descriptor
*next
;
483 struct dma_async_tx_descriptor
*parent
;
488 #ifdef CONFIG_DMA_ENGINE
489 static inline void dma_set_unmap(struct dma_async_tx_descriptor
*tx
,
490 struct dmaengine_unmap_data
*unmap
)
492 kref_get(&unmap
->kref
);
496 struct dmaengine_unmap_data
*
497 dmaengine_get_unmap_data(struct device
*dev
, int nr
, gfp_t flags
);
498 void dmaengine_unmap_put(struct dmaengine_unmap_data
*unmap
);
500 static inline void dma_set_unmap(struct dma_async_tx_descriptor
*tx
,
501 struct dmaengine_unmap_data
*unmap
)
504 static inline struct dmaengine_unmap_data
*
505 dmaengine_get_unmap_data(struct device
*dev
, int nr
, gfp_t flags
)
509 static inline void dmaengine_unmap_put(struct dmaengine_unmap_data
*unmap
)
514 static inline void dma_descriptor_unmap(struct dma_async_tx_descriptor
*tx
)
517 dmaengine_unmap_put(tx
->unmap
);
522 #ifndef CONFIG_ASYNC_TX_ENABLE_CHANNEL_SWITCH
523 static inline void txd_lock(struct dma_async_tx_descriptor
*txd
)
526 static inline void txd_unlock(struct dma_async_tx_descriptor
*txd
)
529 static inline void txd_chain(struct dma_async_tx_descriptor
*txd
, struct dma_async_tx_descriptor
*next
)
533 static inline void txd_clear_parent(struct dma_async_tx_descriptor
*txd
)
536 static inline void txd_clear_next(struct dma_async_tx_descriptor
*txd
)
539 static inline struct dma_async_tx_descriptor
*txd_next(struct dma_async_tx_descriptor
*txd
)
543 static inline struct dma_async_tx_descriptor
*txd_parent(struct dma_async_tx_descriptor
*txd
)
549 static inline void txd_lock(struct dma_async_tx_descriptor
*txd
)
551 spin_lock_bh(&txd
->lock
);
553 static inline void txd_unlock(struct dma_async_tx_descriptor
*txd
)
555 spin_unlock_bh(&txd
->lock
);
557 static inline void txd_chain(struct dma_async_tx_descriptor
*txd
, struct dma_async_tx_descriptor
*next
)
562 static inline void txd_clear_parent(struct dma_async_tx_descriptor
*txd
)
566 static inline void txd_clear_next(struct dma_async_tx_descriptor
*txd
)
570 static inline struct dma_async_tx_descriptor
*txd_parent(struct dma_async_tx_descriptor
*txd
)
574 static inline struct dma_async_tx_descriptor
*txd_next(struct dma_async_tx_descriptor
*txd
)
581 * struct dma_tx_state - filled in to report the status of
583 * @last: last completed DMA cookie
584 * @used: last issued DMA cookie (i.e. the one in progress)
585 * @residue: the remaining number of bytes left to transmit
586 * on the selected transfer for states DMA_IN_PROGRESS and
587 * DMA_PAUSED if this is implemented in the driver, else 0
589 struct dma_tx_state
{
596 * enum dmaengine_alignment - defines alignment of the DMA async tx
599 enum dmaengine_alignment
{
600 DMAENGINE_ALIGN_1_BYTE
= 0,
601 DMAENGINE_ALIGN_2_BYTES
= 1,
602 DMAENGINE_ALIGN_4_BYTES
= 2,
603 DMAENGINE_ALIGN_8_BYTES
= 3,
604 DMAENGINE_ALIGN_16_BYTES
= 4,
605 DMAENGINE_ALIGN_32_BYTES
= 5,
606 DMAENGINE_ALIGN_64_BYTES
= 6,
610 * struct dma_device - info on the entity supplying DMA services
611 * @chancnt: how many DMA channels are supported
612 * @privatecnt: how many DMA channels are requested by dma_request_channel
613 * @channels: the list of struct dma_chan
614 * @global_node: list_head for global dma_device_list
615 * @cap_mask: one or more dma_capability flags
616 * @max_xor: maximum number of xor sources, 0 if no capability
617 * @max_pq: maximum number of PQ sources and PQ-continue capability
618 * @copy_align: alignment shift for memcpy operations
619 * @xor_align: alignment shift for xor operations
620 * @pq_align: alignment shift for pq operations
621 * @fill_align: alignment shift for memset operations
622 * @dev_id: unique device ID
623 * @dev: struct device reference for dma mapping api
624 * @src_addr_widths: bit mask of src addr widths the device supports
625 * @dst_addr_widths: bit mask of dst addr widths the device supports
626 * @directions: bit mask of slave direction the device supports since
627 * the enum dma_transfer_direction is not defined as bits for
628 * each type of direction, the dma controller should fill (1 <<
629 * <TYPE>) and same should be checked by controller as well
630 * @residue_granularity: granularity of the transfer residue reported
632 * @device_alloc_chan_resources: allocate resources and return the
633 * number of allocated descriptors
634 * @device_free_chan_resources: release DMA channel's resources
635 * @device_prep_dma_memcpy: prepares a memcpy operation
636 * @device_prep_dma_xor: prepares a xor operation
637 * @device_prep_dma_xor_val: prepares a xor validation operation
638 * @device_prep_dma_pq: prepares a pq operation
639 * @device_prep_dma_pq_val: prepares a pqzero_sum operation
640 * @device_prep_dma_memset: prepares a memset operation
641 * @device_prep_dma_memset_sg: prepares a memset operation over a scatter list
642 * @device_prep_dma_interrupt: prepares an end of chain interrupt operation
643 * @device_prep_slave_sg: prepares a slave dma operation
644 * @device_prep_dma_cyclic: prepare a cyclic dma operation suitable for audio.
645 * The function takes a buffer of size buf_len. The callback function will
646 * be called after period_len bytes have been transferred.
647 * @device_prep_interleaved_dma: Transfer expression in a generic way.
648 * @device_prep_dma_imm_data: DMA's 8 byte immediate data to the dst address
649 * @device_config: Pushes a new configuration to a channel, return 0 or an error
651 * @device_pause: Pauses any transfer happening on a channel. Returns
653 * @device_resume: Resumes any transfer on a channel previously
654 * paused. Returns 0 or an error code
655 * @device_terminate_all: Aborts all transfers on a channel. Returns 0
657 * @device_tx_status: poll for transaction completion, the optional
658 * txstate parameter can be supplied with a pointer to get a
659 * struct with auxiliary transfer status information, otherwise the call
660 * will just return a simple status code
661 * @device_issue_pending: push pending transactions to hardware
665 unsigned int chancnt
;
666 unsigned int privatecnt
;
667 struct list_head channels
;
668 struct list_head global_node
;
669 dma_cap_mask_t cap_mask
;
670 unsigned short max_xor
;
671 unsigned short max_pq
;
672 enum dmaengine_alignment copy_align
;
673 enum dmaengine_alignment xor_align
;
674 enum dmaengine_alignment pq_align
;
675 enum dmaengine_alignment fill_align
;
676 #define DMA_HAS_PQ_CONTINUE (1 << 15)
684 enum dma_residue_granularity residue_granularity
;
686 int (*device_alloc_chan_resources
)(struct dma_chan
*chan
);
687 void (*device_free_chan_resources
)(struct dma_chan
*chan
);
689 struct dma_async_tx_descriptor
*(*device_prep_dma_memcpy
)(
690 struct dma_chan
*chan
, dma_addr_t dst
, dma_addr_t src
,
691 size_t len
, unsigned long flags
);
692 struct dma_async_tx_descriptor
*(*device_prep_dma_xor
)(
693 struct dma_chan
*chan
, dma_addr_t dst
, dma_addr_t
*src
,
694 unsigned int src_cnt
, size_t len
, unsigned long flags
);
695 struct dma_async_tx_descriptor
*(*device_prep_dma_xor_val
)(
696 struct dma_chan
*chan
, dma_addr_t
*src
, unsigned int src_cnt
,
697 size_t len
, enum sum_check_flags
*result
, unsigned long flags
);
698 struct dma_async_tx_descriptor
*(*device_prep_dma_pq
)(
699 struct dma_chan
*chan
, dma_addr_t
*dst
, dma_addr_t
*src
,
700 unsigned int src_cnt
, const unsigned char *scf
,
701 size_t len
, unsigned long flags
);
702 struct dma_async_tx_descriptor
*(*device_prep_dma_pq_val
)(
703 struct dma_chan
*chan
, dma_addr_t
*pq
, dma_addr_t
*src
,
704 unsigned int src_cnt
, const unsigned char *scf
, size_t len
,
705 enum sum_check_flags
*pqres
, unsigned long flags
);
706 struct dma_async_tx_descriptor
*(*device_prep_dma_memset
)(
707 struct dma_chan
*chan
, dma_addr_t dest
, int value
, size_t len
,
708 unsigned long flags
);
709 struct dma_async_tx_descriptor
*(*device_prep_dma_memset_sg
)(
710 struct dma_chan
*chan
, struct scatterlist
*sg
,
711 unsigned int nents
, int value
, unsigned long flags
);
712 struct dma_async_tx_descriptor
*(*device_prep_dma_interrupt
)(
713 struct dma_chan
*chan
, unsigned long flags
);
714 struct dma_async_tx_descriptor
*(*device_prep_dma_sg
)(
715 struct dma_chan
*chan
,
716 struct scatterlist
*dst_sg
, unsigned int dst_nents
,
717 struct scatterlist
*src_sg
, unsigned int src_nents
,
718 unsigned long flags
);
720 struct dma_async_tx_descriptor
*(*device_prep_slave_sg
)(
721 struct dma_chan
*chan
, struct scatterlist
*sgl
,
722 unsigned int sg_len
, enum dma_transfer_direction direction
,
723 unsigned long flags
, void *context
);
724 struct dma_async_tx_descriptor
*(*device_prep_dma_cyclic
)(
725 struct dma_chan
*chan
, dma_addr_t buf_addr
, size_t buf_len
,
726 size_t period_len
, enum dma_transfer_direction direction
,
727 unsigned long flags
);
728 struct dma_async_tx_descriptor
*(*device_prep_interleaved_dma
)(
729 struct dma_chan
*chan
, struct dma_interleaved_template
*xt
,
730 unsigned long flags
);
731 struct dma_async_tx_descriptor
*(*device_prep_dma_imm_data
)(
732 struct dma_chan
*chan
, dma_addr_t dst
, u64 data
,
733 unsigned long flags
);
735 int (*device_config
)(struct dma_chan
*chan
,
736 struct dma_slave_config
*config
);
737 int (*device_pause
)(struct dma_chan
*chan
);
738 int (*device_resume
)(struct dma_chan
*chan
);
739 int (*device_terminate_all
)(struct dma_chan
*chan
);
741 enum dma_status (*device_tx_status
)(struct dma_chan
*chan
,
743 struct dma_tx_state
*txstate
);
744 void (*device_issue_pending
)(struct dma_chan
*chan
);
747 static inline int dmaengine_slave_config(struct dma_chan
*chan
,
748 struct dma_slave_config
*config
)
750 if (chan
->device
->device_config
)
751 return chan
->device
->device_config(chan
, config
);
756 static inline bool is_slave_direction(enum dma_transfer_direction direction
)
758 return (direction
== DMA_MEM_TO_DEV
) || (direction
== DMA_DEV_TO_MEM
);
761 static inline struct dma_async_tx_descriptor
*dmaengine_prep_slave_single(
762 struct dma_chan
*chan
, dma_addr_t buf
, size_t len
,
763 enum dma_transfer_direction dir
, unsigned long flags
)
765 struct scatterlist sg
;
766 sg_init_table(&sg
, 1);
767 sg_dma_address(&sg
) = buf
;
768 sg_dma_len(&sg
) = len
;
770 return chan
->device
->device_prep_slave_sg(chan
, &sg
, 1,
774 static inline struct dma_async_tx_descriptor
*dmaengine_prep_slave_sg(
775 struct dma_chan
*chan
, struct scatterlist
*sgl
, unsigned int sg_len
,
776 enum dma_transfer_direction dir
, unsigned long flags
)
778 return chan
->device
->device_prep_slave_sg(chan
, sgl
, sg_len
,
782 #ifdef CONFIG_RAPIDIO_DMA_ENGINE
784 static inline struct dma_async_tx_descriptor
*dmaengine_prep_rio_sg(
785 struct dma_chan
*chan
, struct scatterlist
*sgl
, unsigned int sg_len
,
786 enum dma_transfer_direction dir
, unsigned long flags
,
787 struct rio_dma_ext
*rio_ext
)
789 return chan
->device
->device_prep_slave_sg(chan
, sgl
, sg_len
,
790 dir
, flags
, rio_ext
);
794 static inline struct dma_async_tx_descriptor
*dmaengine_prep_dma_cyclic(
795 struct dma_chan
*chan
, dma_addr_t buf_addr
, size_t buf_len
,
796 size_t period_len
, enum dma_transfer_direction dir
,
799 return chan
->device
->device_prep_dma_cyclic(chan
, buf_addr
, buf_len
,
800 period_len
, dir
, flags
);
803 static inline struct dma_async_tx_descriptor
*dmaengine_prep_interleaved_dma(
804 struct dma_chan
*chan
, struct dma_interleaved_template
*xt
,
807 return chan
->device
->device_prep_interleaved_dma(chan
, xt
, flags
);
810 static inline struct dma_async_tx_descriptor
*dmaengine_prep_dma_memset(
811 struct dma_chan
*chan
, dma_addr_t dest
, int value
, size_t len
,
814 if (!chan
|| !chan
->device
)
817 return chan
->device
->device_prep_dma_memset(chan
, dest
, value
,
821 static inline struct dma_async_tx_descriptor
*dmaengine_prep_dma_sg(
822 struct dma_chan
*chan
,
823 struct scatterlist
*dst_sg
, unsigned int dst_nents
,
824 struct scatterlist
*src_sg
, unsigned int src_nents
,
827 return chan
->device
->device_prep_dma_sg(chan
, dst_sg
, dst_nents
,
828 src_sg
, src_nents
, flags
);
831 static inline int dmaengine_terminate_all(struct dma_chan
*chan
)
833 if (chan
->device
->device_terminate_all
)
834 return chan
->device
->device_terminate_all(chan
);
839 static inline int dmaengine_pause(struct dma_chan
*chan
)
841 if (chan
->device
->device_pause
)
842 return chan
->device
->device_pause(chan
);
847 static inline int dmaengine_resume(struct dma_chan
*chan
)
849 if (chan
->device
->device_resume
)
850 return chan
->device
->device_resume(chan
);
855 static inline enum dma_status
dmaengine_tx_status(struct dma_chan
*chan
,
856 dma_cookie_t cookie
, struct dma_tx_state
*state
)
858 return chan
->device
->device_tx_status(chan
, cookie
, state
);
861 static inline dma_cookie_t
dmaengine_submit(struct dma_async_tx_descriptor
*desc
)
863 return desc
->tx_submit(desc
);
866 static inline bool dmaengine_check_align(enum dmaengine_alignment align
,
867 size_t off1
, size_t off2
, size_t len
)
873 mask
= (1 << align
) - 1;
874 if (mask
& (off1
| off2
| len
))
879 static inline bool is_dma_copy_aligned(struct dma_device
*dev
, size_t off1
,
880 size_t off2
, size_t len
)
882 return dmaengine_check_align(dev
->copy_align
, off1
, off2
, len
);
885 static inline bool is_dma_xor_aligned(struct dma_device
*dev
, size_t off1
,
886 size_t off2
, size_t len
)
888 return dmaengine_check_align(dev
->xor_align
, off1
, off2
, len
);
891 static inline bool is_dma_pq_aligned(struct dma_device
*dev
, size_t off1
,
892 size_t off2
, size_t len
)
894 return dmaengine_check_align(dev
->pq_align
, off1
, off2
, len
);
897 static inline bool is_dma_fill_aligned(struct dma_device
*dev
, size_t off1
,
898 size_t off2
, size_t len
)
900 return dmaengine_check_align(dev
->fill_align
, off1
, off2
, len
);
904 dma_set_maxpq(struct dma_device
*dma
, int maxpq
, int has_pq_continue
)
908 dma
->max_pq
|= DMA_HAS_PQ_CONTINUE
;
911 static inline bool dmaf_continue(enum dma_ctrl_flags flags
)
913 return (flags
& DMA_PREP_CONTINUE
) == DMA_PREP_CONTINUE
;
916 static inline bool dmaf_p_disabled_continue(enum dma_ctrl_flags flags
)
918 enum dma_ctrl_flags mask
= DMA_PREP_CONTINUE
| DMA_PREP_PQ_DISABLE_P
;
920 return (flags
& mask
) == mask
;
923 static inline bool dma_dev_has_pq_continue(struct dma_device
*dma
)
925 return (dma
->max_pq
& DMA_HAS_PQ_CONTINUE
) == DMA_HAS_PQ_CONTINUE
;
928 static inline unsigned short dma_dev_to_maxpq(struct dma_device
*dma
)
930 return dma
->max_pq
& ~DMA_HAS_PQ_CONTINUE
;
933 /* dma_maxpq - reduce maxpq in the face of continued operations
934 * @dma - dma device with PQ capability
935 * @flags - to check if DMA_PREP_CONTINUE and DMA_PREP_PQ_DISABLE_P are set
937 * When an engine does not support native continuation we need 3 extra
938 * source slots to reuse P and Q with the following coefficients:
939 * 1/ {00} * P : remove P from Q', but use it as a source for P'
940 * 2/ {01} * Q : use Q to continue Q' calculation
941 * 3/ {00} * Q : subtract Q from P' to cancel (2)
943 * In the case where P is disabled we only need 1 extra source:
944 * 1/ {01} * Q : use Q to continue Q' calculation
946 static inline int dma_maxpq(struct dma_device
*dma
, enum dma_ctrl_flags flags
)
948 if (dma_dev_has_pq_continue(dma
) || !dmaf_continue(flags
))
949 return dma_dev_to_maxpq(dma
);
950 else if (dmaf_p_disabled_continue(flags
))
951 return dma_dev_to_maxpq(dma
) - 1;
952 else if (dmaf_continue(flags
))
953 return dma_dev_to_maxpq(dma
) - 3;
957 static inline size_t dmaengine_get_icg(bool inc
, bool sgl
, size_t icg
,
970 static inline size_t dmaengine_get_dst_icg(struct dma_interleaved_template
*xt
,
971 struct data_chunk
*chunk
)
973 return dmaengine_get_icg(xt
->dst_inc
, xt
->dst_sgl
,
974 chunk
->icg
, chunk
->dst_icg
);
977 static inline size_t dmaengine_get_src_icg(struct dma_interleaved_template
*xt
,
978 struct data_chunk
*chunk
)
980 return dmaengine_get_icg(xt
->src_inc
, xt
->src_sgl
,
981 chunk
->icg
, chunk
->src_icg
);
984 /* --- public DMA engine API --- */
986 #ifdef CONFIG_DMA_ENGINE
987 void dmaengine_get(void);
988 void dmaengine_put(void);
990 static inline void dmaengine_get(void)
993 static inline void dmaengine_put(void)
998 #ifdef CONFIG_ASYNC_TX_DMA
999 #define async_dmaengine_get() dmaengine_get()
1000 #define async_dmaengine_put() dmaengine_put()
1001 #ifndef CONFIG_ASYNC_TX_ENABLE_CHANNEL_SWITCH
1002 #define async_dma_find_channel(type) dma_find_channel(DMA_ASYNC_TX)
1004 #define async_dma_find_channel(type) dma_find_channel(type)
1005 #endif /* CONFIG_ASYNC_TX_ENABLE_CHANNEL_SWITCH */
1007 static inline void async_dmaengine_get(void)
1010 static inline void async_dmaengine_put(void)
1013 static inline struct dma_chan
*
1014 async_dma_find_channel(enum dma_transaction_type type
)
1018 #endif /* CONFIG_ASYNC_TX_DMA */
1019 void dma_async_tx_descriptor_init(struct dma_async_tx_descriptor
*tx
,
1020 struct dma_chan
*chan
);
1022 static inline void async_tx_ack(struct dma_async_tx_descriptor
*tx
)
1024 tx
->flags
|= DMA_CTRL_ACK
;
1027 static inline void async_tx_clear_ack(struct dma_async_tx_descriptor
*tx
)
1029 tx
->flags
&= ~DMA_CTRL_ACK
;
1032 static inline bool async_tx_test_ack(struct dma_async_tx_descriptor
*tx
)
1034 return (tx
->flags
& DMA_CTRL_ACK
) == DMA_CTRL_ACK
;
1037 #define dma_cap_set(tx, mask) __dma_cap_set((tx), &(mask))
1039 __dma_cap_set(enum dma_transaction_type tx_type
, dma_cap_mask_t
*dstp
)
1041 set_bit(tx_type
, dstp
->bits
);
1044 #define dma_cap_clear(tx, mask) __dma_cap_clear((tx), &(mask))
1046 __dma_cap_clear(enum dma_transaction_type tx_type
, dma_cap_mask_t
*dstp
)
1048 clear_bit(tx_type
, dstp
->bits
);
1051 #define dma_cap_zero(mask) __dma_cap_zero(&(mask))
1052 static inline void __dma_cap_zero(dma_cap_mask_t
*dstp
)
1054 bitmap_zero(dstp
->bits
, DMA_TX_TYPE_END
);
1057 #define dma_has_cap(tx, mask) __dma_has_cap((tx), &(mask))
1059 __dma_has_cap(enum dma_transaction_type tx_type
, dma_cap_mask_t
*srcp
)
1061 return test_bit(tx_type
, srcp
->bits
);
1064 #define for_each_dma_cap_mask(cap, mask) \
1065 for_each_set_bit(cap, mask.bits, DMA_TX_TYPE_END)
1068 * dma_async_issue_pending - flush pending transactions to HW
1069 * @chan: target DMA channel
1071 * This allows drivers to push copies to HW in batches,
1072 * reducing MMIO writes where possible.
1074 static inline void dma_async_issue_pending(struct dma_chan
*chan
)
1076 chan
->device
->device_issue_pending(chan
);
1080 * dma_async_is_tx_complete - poll for transaction completion
1081 * @chan: DMA channel
1082 * @cookie: transaction identifier to check status of
1083 * @last: returns last completed cookie, can be NULL
1084 * @used: returns last issued cookie, can be NULL
1086 * If @last and @used are passed in, upon return they reflect the driver
1087 * internal state and can be used with dma_async_is_complete() to check
1088 * the status of multiple cookies without re-checking hardware state.
1090 static inline enum dma_status
dma_async_is_tx_complete(struct dma_chan
*chan
,
1091 dma_cookie_t cookie
, dma_cookie_t
*last
, dma_cookie_t
*used
)
1093 struct dma_tx_state state
;
1094 enum dma_status status
;
1096 status
= chan
->device
->device_tx_status(chan
, cookie
, &state
);
1105 * dma_async_is_complete - test a cookie against chan state
1106 * @cookie: transaction identifier to test status of
1107 * @last_complete: last know completed transaction
1108 * @last_used: last cookie value handed out
1110 * dma_async_is_complete() is used in dma_async_is_tx_complete()
1111 * the test logic is separated for lightweight testing of multiple cookies
1113 static inline enum dma_status
dma_async_is_complete(dma_cookie_t cookie
,
1114 dma_cookie_t last_complete
, dma_cookie_t last_used
)
1116 if (last_complete
<= last_used
) {
1117 if ((cookie
<= last_complete
) || (cookie
> last_used
))
1118 return DMA_COMPLETE
;
1120 if ((cookie
<= last_complete
) && (cookie
> last_used
))
1121 return DMA_COMPLETE
;
1123 return DMA_IN_PROGRESS
;
1127 dma_set_tx_state(struct dma_tx_state
*st
, dma_cookie_t last
, dma_cookie_t used
, u32 residue
)
1132 st
->residue
= residue
;
1136 #ifdef CONFIG_DMA_ENGINE
1137 struct dma_chan
*dma_find_channel(enum dma_transaction_type tx_type
);
1138 enum dma_status
dma_sync_wait(struct dma_chan
*chan
, dma_cookie_t cookie
);
1139 enum dma_status
dma_wait_for_async_tx(struct dma_async_tx_descriptor
*tx
);
1140 void dma_issue_pending_all(void);
1141 struct dma_chan
*__dma_request_channel(const dma_cap_mask_t
*mask
,
1142 dma_filter_fn fn
, void *fn_param
);
1143 struct dma_chan
*dma_request_slave_channel_reason(struct device
*dev
,
1145 struct dma_chan
*dma_request_slave_channel(struct device
*dev
, const char *name
);
1146 void dma_release_channel(struct dma_chan
*chan
);
1147 int dma_get_slave_caps(struct dma_chan
*chan
, struct dma_slave_caps
*caps
);
1149 static inline struct dma_chan
*dma_find_channel(enum dma_transaction_type tx_type
)
1153 static inline enum dma_status
dma_sync_wait(struct dma_chan
*chan
, dma_cookie_t cookie
)
1155 return DMA_COMPLETE
;
1157 static inline enum dma_status
dma_wait_for_async_tx(struct dma_async_tx_descriptor
*tx
)
1159 return DMA_COMPLETE
;
1161 static inline void dma_issue_pending_all(void)
1164 static inline struct dma_chan
*__dma_request_channel(const dma_cap_mask_t
*mask
,
1165 dma_filter_fn fn
, void *fn_param
)
1169 static inline struct dma_chan
*dma_request_slave_channel_reason(
1170 struct device
*dev
, const char *name
)
1172 return ERR_PTR(-ENODEV
);
1174 static inline struct dma_chan
*dma_request_slave_channel(struct device
*dev
,
1179 static inline void dma_release_channel(struct dma_chan
*chan
)
1182 static inline int dma_get_slave_caps(struct dma_chan
*chan
,
1183 struct dma_slave_caps
*caps
)
1189 static inline int dmaengine_desc_set_reuse(struct dma_async_tx_descriptor
*tx
)
1191 struct dma_slave_caps caps
;
1193 dma_get_slave_caps(tx
->chan
, &caps
);
1195 if (caps
.descriptor_reuse
) {
1196 tx
->flags
|= DMA_CTRL_REUSE
;
1203 static inline void dmaengine_desc_clear_reuse(struct dma_async_tx_descriptor
*tx
)
1205 tx
->flags
&= ~DMA_CTRL_REUSE
;
1208 static inline bool dmaengine_desc_test_reuse(struct dma_async_tx_descriptor
*tx
)
1210 return (tx
->flags
& DMA_CTRL_REUSE
) == DMA_CTRL_REUSE
;
1213 static inline int dmaengine_desc_free(struct dma_async_tx_descriptor
*desc
)
1215 /* this is supported for reusable desc, so check that */
1216 if (dmaengine_desc_test_reuse(desc
))
1217 return desc
->desc_free(desc
);
1222 /* --- DMA device --- */
1224 int dma_async_device_register(struct dma_device
*device
);
1225 void dma_async_device_unregister(struct dma_device
*device
);
1226 void dma_run_dependencies(struct dma_async_tx_descriptor
*tx
);
1227 struct dma_chan
*dma_get_slave_channel(struct dma_chan
*chan
);
1228 struct dma_chan
*dma_get_any_slave_channel(struct dma_device
*device
);
1229 #define dma_request_channel(mask, x, y) __dma_request_channel(&(mask), x, y)
1230 #define dma_request_slave_channel_compat(mask, x, y, dev, name) \
1231 __dma_request_slave_channel_compat(&(mask), x, y, dev, name)
1233 static inline struct dma_chan
1234 *__dma_request_slave_channel_compat(const dma_cap_mask_t
*mask
,
1235 dma_filter_fn fn
, void *fn_param
,
1236 struct device
*dev
, const char *name
)
1238 struct dma_chan
*chan
;
1240 chan
= dma_request_slave_channel(dev
, name
);
1244 if (!fn
|| !fn_param
)
1247 return __dma_request_channel(mask
, fn
, fn_param
);
1249 #endif /* DMAENGINE_H */