4 #include <uapi/linux/sched.h>
6 #include <linux/sched/prio.h>
13 #include <asm/param.h> /* for HZ */
15 #include <linux/capability.h>
16 #include <linux/threads.h>
17 #include <linux/kernel.h>
18 #include <linux/types.h>
19 #include <linux/timex.h>
20 #include <linux/jiffies.h>
21 #include <linux/plist.h>
22 #include <linux/rbtree.h>
23 #include <linux/thread_info.h>
24 #include <linux/cpumask.h>
25 #include <linux/errno.h>
26 #include <linux/nodemask.h>
27 #include <linux/mm_types.h>
28 #include <linux/preempt.h>
31 #include <asm/ptrace.h>
32 #include <linux/cputime.h>
34 #include <linux/smp.h>
35 #include <linux/sem.h>
36 #include <linux/shm.h>
37 #include <linux/signal.h>
38 #include <linux/compiler.h>
39 #include <linux/completion.h>
40 #include <linux/pid.h>
41 #include <linux/percpu.h>
42 #include <linux/topology.h>
43 #include <linux/proportions.h>
44 #include <linux/seccomp.h>
45 #include <linux/rcupdate.h>
46 #include <linux/rculist.h>
47 #include <linux/rtmutex.h>
49 #include <linux/time.h>
50 #include <linux/param.h>
51 #include <linux/resource.h>
52 #include <linux/timer.h>
53 #include <linux/hrtimer.h>
54 #include <linux/task_io_accounting.h>
55 #include <linux/latencytop.h>
56 #include <linux/cred.h>
57 #include <linux/llist.h>
58 #include <linux/uidgid.h>
59 #include <linux/gfp.h>
60 #include <linux/magic.h>
61 #include <linux/cgroup-defs.h>
63 #include <asm/processor.h>
65 #define SCHED_ATTR_SIZE_VER0 48 /* sizeof first published struct */
68 * Extended scheduling parameters data structure.
70 * This is needed because the original struct sched_param can not be
71 * altered without introducing ABI issues with legacy applications
72 * (e.g., in sched_getparam()).
74 * However, the possibility of specifying more than just a priority for
75 * the tasks may be useful for a wide variety of application fields, e.g.,
76 * multimedia, streaming, automation and control, and many others.
78 * This variant (sched_attr) is meant at describing a so-called
79 * sporadic time-constrained task. In such model a task is specified by:
80 * - the activation period or minimum instance inter-arrival time;
81 * - the maximum (or average, depending on the actual scheduling
82 * discipline) computation time of all instances, a.k.a. runtime;
83 * - the deadline (relative to the actual activation time) of each
85 * Very briefly, a periodic (sporadic) task asks for the execution of
86 * some specific computation --which is typically called an instance--
87 * (at most) every period. Moreover, each instance typically lasts no more
88 * than the runtime and must be completed by time instant t equal to
89 * the instance activation time + the deadline.
91 * This is reflected by the actual fields of the sched_attr structure:
93 * @size size of the structure, for fwd/bwd compat.
95 * @sched_policy task's scheduling policy
96 * @sched_flags for customizing the scheduler behaviour
97 * @sched_nice task's nice value (SCHED_NORMAL/BATCH)
98 * @sched_priority task's static priority (SCHED_FIFO/RR)
99 * @sched_deadline representative of the task's deadline
100 * @sched_runtime representative of the task's runtime
101 * @sched_period representative of the task's period
103 * Given this task model, there are a multiplicity of scheduling algorithms
104 * and policies, that can be used to ensure all the tasks will make their
105 * timing constraints.
107 * As of now, the SCHED_DEADLINE policy (sched_dl scheduling class) is the
108 * only user of this new interface. More information about the algorithm
109 * available in the scheduling class file or in Documentation/.
117 /* SCHED_NORMAL, SCHED_BATCH */
120 /* SCHED_FIFO, SCHED_RR */
129 struct futex_pi_state
;
130 struct robust_list_head
;
133 struct perf_event_context
;
138 #define VMACACHE_BITS 2
139 #define VMACACHE_SIZE (1U << VMACACHE_BITS)
140 #define VMACACHE_MASK (VMACACHE_SIZE - 1)
143 * These are the constant used to fake the fixed-point load-average
144 * counting. Some notes:
145 * - 11 bit fractions expand to 22 bits by the multiplies: this gives
146 * a load-average precision of 10 bits integer + 11 bits fractional
147 * - if you want to count load-averages more often, you need more
148 * precision, or rounding will get you. With 2-second counting freq,
149 * the EXP_n values would be 1981, 2034 and 2043 if still using only
152 extern unsigned long avenrun
[]; /* Load averages */
153 extern void get_avenrun(unsigned long *loads
, unsigned long offset
, int shift
);
155 #define FSHIFT 11 /* nr of bits of precision */
156 #define FIXED_1 (1<<FSHIFT) /* 1.0 as fixed-point */
157 #define LOAD_FREQ (5*HZ+1) /* 5 sec intervals */
158 #define EXP_1 1884 /* 1/exp(5sec/1min) as fixed-point */
159 #define EXP_5 2014 /* 1/exp(5sec/5min) */
160 #define EXP_15 2037 /* 1/exp(5sec/15min) */
162 #define CALC_LOAD(load,exp,n) \
164 load += n*(FIXED_1-exp); \
167 extern unsigned long total_forks
;
168 extern int nr_threads
;
169 DECLARE_PER_CPU(unsigned long, process_counts
);
170 extern int nr_processes(void);
171 extern unsigned long nr_running(void);
172 extern bool single_task_running(void);
173 extern unsigned long nr_iowait(void);
174 extern unsigned long nr_iowait_cpu(int cpu
);
175 extern void get_iowait_load(unsigned long *nr_waiters
, unsigned long *load
);
177 extern void calc_global_load(unsigned long ticks
);
179 #if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ_COMMON)
180 extern void update_cpu_load_nohz(void);
182 static inline void update_cpu_load_nohz(void) { }
185 extern unsigned long get_parent_ip(unsigned long addr
);
187 extern void dump_cpu_task(int cpu
);
192 #ifdef CONFIG_SCHED_DEBUG
193 extern void proc_sched_show_task(struct task_struct
*p
, struct seq_file
*m
);
194 extern void proc_sched_set_task(struct task_struct
*p
);
198 * Task state bitmask. NOTE! These bits are also
199 * encoded in fs/proc/array.c: get_task_state().
201 * We have two separate sets of flags: task->state
202 * is about runnability, while task->exit_state are
203 * about the task exiting. Confusing, but this way
204 * modifying one set can't modify the other one by
207 #define TASK_RUNNING 0
208 #define TASK_INTERRUPTIBLE 1
209 #define TASK_UNINTERRUPTIBLE 2
210 #define __TASK_STOPPED 4
211 #define __TASK_TRACED 8
212 /* in tsk->exit_state */
214 #define EXIT_ZOMBIE 32
215 #define EXIT_TRACE (EXIT_ZOMBIE | EXIT_DEAD)
216 /* in tsk->state again */
218 #define TASK_WAKEKILL 128
219 #define TASK_WAKING 256
220 #define TASK_PARKED 512
221 #define TASK_NOLOAD 1024
222 #define TASK_STATE_MAX 2048
224 #define TASK_STATE_TO_CHAR_STR "RSDTtXZxKWPN"
226 extern char ___assert_task_state
[1 - 2*!!(
227 sizeof(TASK_STATE_TO_CHAR_STR
)-1 != ilog2(TASK_STATE_MAX
)+1)];
229 /* Convenience macros for the sake of set_task_state */
230 #define TASK_KILLABLE (TASK_WAKEKILL | TASK_UNINTERRUPTIBLE)
231 #define TASK_STOPPED (TASK_WAKEKILL | __TASK_STOPPED)
232 #define TASK_TRACED (TASK_WAKEKILL | __TASK_TRACED)
234 #define TASK_IDLE (TASK_UNINTERRUPTIBLE | TASK_NOLOAD)
236 /* Convenience macros for the sake of wake_up */
237 #define TASK_NORMAL (TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE)
238 #define TASK_ALL (TASK_NORMAL | __TASK_STOPPED | __TASK_TRACED)
240 /* get_task_state() */
241 #define TASK_REPORT (TASK_RUNNING | TASK_INTERRUPTIBLE | \
242 TASK_UNINTERRUPTIBLE | __TASK_STOPPED | \
243 __TASK_TRACED | EXIT_ZOMBIE | EXIT_DEAD)
245 #define task_is_traced(task) ((task->state & __TASK_TRACED) != 0)
246 #define task_is_stopped(task) ((task->state & __TASK_STOPPED) != 0)
247 #define task_is_stopped_or_traced(task) \
248 ((task->state & (__TASK_STOPPED | __TASK_TRACED)) != 0)
249 #define task_contributes_to_load(task) \
250 ((task->state & TASK_UNINTERRUPTIBLE) != 0 && \
251 (task->flags & PF_FROZEN) == 0 && \
252 (task->state & TASK_NOLOAD) == 0)
254 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
256 #define __set_task_state(tsk, state_value) \
258 (tsk)->task_state_change = _THIS_IP_; \
259 (tsk)->state = (state_value); \
261 #define set_task_state(tsk, state_value) \
263 (tsk)->task_state_change = _THIS_IP_; \
264 smp_store_mb((tsk)->state, (state_value)); \
268 * set_current_state() includes a barrier so that the write of current->state
269 * is correctly serialised wrt the caller's subsequent test of whether to
272 * set_current_state(TASK_UNINTERRUPTIBLE);
273 * if (do_i_need_to_sleep())
276 * If the caller does not need such serialisation then use __set_current_state()
278 #define __set_current_state(state_value) \
280 current->task_state_change = _THIS_IP_; \
281 current->state = (state_value); \
283 #define set_current_state(state_value) \
285 current->task_state_change = _THIS_IP_; \
286 smp_store_mb(current->state, (state_value)); \
291 #define __set_task_state(tsk, state_value) \
292 do { (tsk)->state = (state_value); } while (0)
293 #define set_task_state(tsk, state_value) \
294 smp_store_mb((tsk)->state, (state_value))
297 * set_current_state() includes a barrier so that the write of current->state
298 * is correctly serialised wrt the caller's subsequent test of whether to
301 * set_current_state(TASK_UNINTERRUPTIBLE);
302 * if (do_i_need_to_sleep())
305 * If the caller does not need such serialisation then use __set_current_state()
307 #define __set_current_state(state_value) \
308 do { current->state = (state_value); } while (0)
309 #define set_current_state(state_value) \
310 smp_store_mb(current->state, (state_value))
314 /* Task command name length */
315 #define TASK_COMM_LEN 16
317 #include <linux/spinlock.h>
320 * This serializes "schedule()" and also protects
321 * the run-queue from deletions/modifications (but
322 * _adding_ to the beginning of the run-queue has
325 extern rwlock_t tasklist_lock
;
326 extern spinlock_t mmlist_lock
;
330 #ifdef CONFIG_PROVE_RCU
331 extern int lockdep_tasklist_lock_is_held(void);
332 #endif /* #ifdef CONFIG_PROVE_RCU */
334 extern void sched_init(void);
335 extern void sched_init_smp(void);
336 extern asmlinkage
void schedule_tail(struct task_struct
*prev
);
337 extern void init_idle(struct task_struct
*idle
, int cpu
);
338 extern void init_idle_bootup_task(struct task_struct
*idle
);
340 extern cpumask_var_t cpu_isolated_map
;
342 extern int runqueue_is_locked(int cpu
);
344 #if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ_COMMON)
345 extern void nohz_balance_enter_idle(int cpu
);
346 extern void set_cpu_sd_state_idle(void);
347 extern int get_nohz_timer_target(void);
349 static inline void nohz_balance_enter_idle(int cpu
) { }
350 static inline void set_cpu_sd_state_idle(void) { }
354 * Only dump TASK_* tasks. (0 for all tasks)
356 extern void show_state_filter(unsigned long state_filter
);
358 static inline void show_state(void)
360 show_state_filter(0);
363 extern void show_regs(struct pt_regs
*);
366 * TASK is a pointer to the task whose backtrace we want to see (or NULL for current
367 * task), SP is the stack pointer of the first frame that should be shown in the back
368 * trace (or NULL if the entire call-chain of the task should be shown).
370 extern void show_stack(struct task_struct
*task
, unsigned long *sp
);
372 extern void cpu_init (void);
373 extern void trap_init(void);
374 extern void update_process_times(int user
);
375 extern void scheduler_tick(void);
377 extern void sched_show_task(struct task_struct
*p
);
379 #ifdef CONFIG_LOCKUP_DETECTOR
380 extern void touch_softlockup_watchdog(void);
381 extern void touch_softlockup_watchdog_sync(void);
382 extern void touch_all_softlockup_watchdogs(void);
383 extern int proc_dowatchdog_thresh(struct ctl_table
*table
, int write
,
385 size_t *lenp
, loff_t
*ppos
);
386 extern unsigned int softlockup_panic
;
387 extern unsigned int hardlockup_panic
;
388 void lockup_detector_init(void);
390 static inline void touch_softlockup_watchdog(void)
393 static inline void touch_softlockup_watchdog_sync(void)
396 static inline void touch_all_softlockup_watchdogs(void)
399 static inline void lockup_detector_init(void)
404 #ifdef CONFIG_DETECT_HUNG_TASK
405 void reset_hung_task_detector(void);
407 static inline void reset_hung_task_detector(void)
412 /* Attach to any functions which should be ignored in wchan output. */
413 #define __sched __attribute__((__section__(".sched.text")))
415 /* Linker adds these: start and end of __sched functions */
416 extern char __sched_text_start
[], __sched_text_end
[];
418 /* Is this address in the __sched functions? */
419 extern int in_sched_functions(unsigned long addr
);
421 #define MAX_SCHEDULE_TIMEOUT LONG_MAX
422 extern signed long schedule_timeout(signed long timeout
);
423 extern signed long schedule_timeout_interruptible(signed long timeout
);
424 extern signed long schedule_timeout_killable(signed long timeout
);
425 extern signed long schedule_timeout_uninterruptible(signed long timeout
);
426 asmlinkage
void schedule(void);
427 extern void schedule_preempt_disabled(void);
429 extern long io_schedule_timeout(long timeout
);
431 static inline void io_schedule(void)
433 io_schedule_timeout(MAX_SCHEDULE_TIMEOUT
);
437 struct user_namespace
;
440 extern void arch_pick_mmap_layout(struct mm_struct
*mm
);
442 arch_get_unmapped_area(struct file
*, unsigned long, unsigned long,
443 unsigned long, unsigned long);
445 arch_get_unmapped_area_topdown(struct file
*filp
, unsigned long addr
,
446 unsigned long len
, unsigned long pgoff
,
447 unsigned long flags
);
449 static inline void arch_pick_mmap_layout(struct mm_struct
*mm
) {}
452 #define SUID_DUMP_DISABLE 0 /* No setuid dumping */
453 #define SUID_DUMP_USER 1 /* Dump as user of process */
454 #define SUID_DUMP_ROOT 2 /* Dump as root */
458 /* for SUID_DUMP_* above */
459 #define MMF_DUMPABLE_BITS 2
460 #define MMF_DUMPABLE_MASK ((1 << MMF_DUMPABLE_BITS) - 1)
462 extern void set_dumpable(struct mm_struct
*mm
, int value
);
464 * This returns the actual value of the suid_dumpable flag. For things
465 * that are using this for checking for privilege transitions, it must
466 * test against SUID_DUMP_USER rather than treating it as a boolean
469 static inline int __get_dumpable(unsigned long mm_flags
)
471 return mm_flags
& MMF_DUMPABLE_MASK
;
474 static inline int get_dumpable(struct mm_struct
*mm
)
476 return __get_dumpable(mm
->flags
);
479 /* coredump filter bits */
480 #define MMF_DUMP_ANON_PRIVATE 2
481 #define MMF_DUMP_ANON_SHARED 3
482 #define MMF_DUMP_MAPPED_PRIVATE 4
483 #define MMF_DUMP_MAPPED_SHARED 5
484 #define MMF_DUMP_ELF_HEADERS 6
485 #define MMF_DUMP_HUGETLB_PRIVATE 7
486 #define MMF_DUMP_HUGETLB_SHARED 8
487 #define MMF_DUMP_DAX_PRIVATE 9
488 #define MMF_DUMP_DAX_SHARED 10
490 #define MMF_DUMP_FILTER_SHIFT MMF_DUMPABLE_BITS
491 #define MMF_DUMP_FILTER_BITS 9
492 #define MMF_DUMP_FILTER_MASK \
493 (((1 << MMF_DUMP_FILTER_BITS) - 1) << MMF_DUMP_FILTER_SHIFT)
494 #define MMF_DUMP_FILTER_DEFAULT \
495 ((1 << MMF_DUMP_ANON_PRIVATE) | (1 << MMF_DUMP_ANON_SHARED) |\
496 (1 << MMF_DUMP_HUGETLB_PRIVATE) | MMF_DUMP_MASK_DEFAULT_ELF)
498 #ifdef CONFIG_CORE_DUMP_DEFAULT_ELF_HEADERS
499 # define MMF_DUMP_MASK_DEFAULT_ELF (1 << MMF_DUMP_ELF_HEADERS)
501 # define MMF_DUMP_MASK_DEFAULT_ELF 0
503 /* leave room for more dump flags */
504 #define MMF_VM_MERGEABLE 16 /* KSM may merge identical pages */
505 #define MMF_VM_HUGEPAGE 17 /* set when VM_HUGEPAGE is set on vma */
506 #define MMF_EXE_FILE_CHANGED 18 /* see prctl_set_mm_exe_file() */
508 #define MMF_HAS_UPROBES 19 /* has uprobes */
509 #define MMF_RECALC_UPROBES 20 /* MMF_HAS_UPROBES can be wrong */
511 #define MMF_INIT_MASK (MMF_DUMPABLE_MASK | MMF_DUMP_FILTER_MASK)
513 struct sighand_struct
{
515 struct k_sigaction action
[_NSIG
];
517 wait_queue_head_t signalfd_wqh
;
520 struct pacct_struct
{
523 unsigned long ac_mem
;
524 cputime_t ac_utime
, ac_stime
;
525 unsigned long ac_minflt
, ac_majflt
;
536 * struct prev_cputime - snaphsot of system and user cputime
537 * @utime: time spent in user mode
538 * @stime: time spent in system mode
539 * @lock: protects the above two fields
541 * Stores previous user/system time values such that we can guarantee
544 struct prev_cputime
{
545 #ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
552 static inline void prev_cputime_init(struct prev_cputime
*prev
)
554 #ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
555 prev
->utime
= prev
->stime
= 0;
556 raw_spin_lock_init(&prev
->lock
);
561 * struct task_cputime - collected CPU time counts
562 * @utime: time spent in user mode, in &cputime_t units
563 * @stime: time spent in kernel mode, in &cputime_t units
564 * @sum_exec_runtime: total time spent on the CPU, in nanoseconds
566 * This structure groups together three kinds of CPU time that are tracked for
567 * threads and thread groups. Most things considering CPU time want to group
568 * these counts together and treat all three of them in parallel.
570 struct task_cputime
{
573 unsigned long long sum_exec_runtime
;
576 /* Alternate field names when used to cache expirations. */
577 #define virt_exp utime
578 #define prof_exp stime
579 #define sched_exp sum_exec_runtime
581 #define INIT_CPUTIME \
582 (struct task_cputime) { \
585 .sum_exec_runtime = 0, \
589 * This is the atomic variant of task_cputime, which can be used for
590 * storing and updating task_cputime statistics without locking.
592 struct task_cputime_atomic
{
595 atomic64_t sum_exec_runtime
;
598 #define INIT_CPUTIME_ATOMIC \
599 (struct task_cputime_atomic) { \
600 .utime = ATOMIC64_INIT(0), \
601 .stime = ATOMIC64_INIT(0), \
602 .sum_exec_runtime = ATOMIC64_INIT(0), \
605 #define PREEMPT_DISABLED (PREEMPT_DISABLE_OFFSET + PREEMPT_ENABLED)
608 * Disable preemption until the scheduler is running -- use an unconditional
609 * value so that it also works on !PREEMPT_COUNT kernels.
611 * Reset by start_kernel()->sched_init()->init_idle()->init_idle_preempt_count().
613 #define INIT_PREEMPT_COUNT PREEMPT_OFFSET
616 * Initial preempt_count value; reflects the preempt_count schedule invariant
617 * which states that during context switches:
619 * preempt_count() == 2*PREEMPT_DISABLE_OFFSET
621 * Note: PREEMPT_DISABLE_OFFSET is 0 for !PREEMPT_COUNT kernels.
622 * Note: See finish_task_switch().
624 #define FORK_PREEMPT_COUNT (2*PREEMPT_DISABLE_OFFSET + PREEMPT_ENABLED)
627 * struct thread_group_cputimer - thread group interval timer counts
628 * @cputime_atomic: atomic thread group interval timers.
629 * @running: true when there are timers running and
630 * @cputime_atomic receives updates.
631 * @checking_timer: true when a thread in the group is in the
632 * process of checking for thread group timers.
634 * This structure contains the version of task_cputime, above, that is
635 * used for thread group CPU timer calculations.
637 struct thread_group_cputimer
{
638 struct task_cputime_atomic cputime_atomic
;
643 #include <linux/rwsem.h>
647 * NOTE! "signal_struct" does not have its own
648 * locking, because a shared signal_struct always
649 * implies a shared sighand_struct, so locking
650 * sighand_struct is always a proper superset of
651 * the locking of signal_struct.
653 struct signal_struct
{
657 struct list_head thread_head
;
659 wait_queue_head_t wait_chldexit
; /* for wait4() */
661 /* current thread group signal load-balancing target: */
662 struct task_struct
*curr_target
;
664 /* shared signal handling: */
665 struct sigpending shared_pending
;
667 /* thread group exit support */
670 * - notify group_exit_task when ->count is equal to notify_count
671 * - everyone except group_exit_task is stopped during signal delivery
672 * of fatal signals, group_exit_task processes the signal.
675 struct task_struct
*group_exit_task
;
677 /* thread group stop support, overloads group_exit_code too */
678 int group_stop_count
;
679 unsigned int flags
; /* see SIGNAL_* flags below */
682 * PR_SET_CHILD_SUBREAPER marks a process, like a service
683 * manager, to re-parent orphan (double-forking) child processes
684 * to this process instead of 'init'. The service manager is
685 * able to receive SIGCHLD signals and is able to investigate
686 * the process until it calls wait(). All children of this
687 * process will inherit a flag if they should look for a
688 * child_subreaper process at exit.
690 unsigned int is_child_subreaper
:1;
691 unsigned int has_child_subreaper
:1;
693 /* POSIX.1b Interval Timers */
695 struct list_head posix_timers
;
697 /* ITIMER_REAL timer for the process */
698 struct hrtimer real_timer
;
699 struct pid
*leader_pid
;
700 ktime_t it_real_incr
;
703 * ITIMER_PROF and ITIMER_VIRTUAL timers for the process, we use
704 * CPUCLOCK_PROF and CPUCLOCK_VIRT for indexing array as these
705 * values are defined to 0 and 1 respectively
707 struct cpu_itimer it
[2];
710 * Thread group totals for process CPU timers.
711 * See thread_group_cputimer(), et al, for details.
713 struct thread_group_cputimer cputimer
;
715 /* Earliest-expiration cache. */
716 struct task_cputime cputime_expires
;
718 struct list_head cpu_timers
[3];
720 struct pid
*tty_old_pgrp
;
722 /* boolean value for session group leader */
725 struct tty_struct
*tty
; /* NULL if no tty */
727 #ifdef CONFIG_SCHED_AUTOGROUP
728 struct autogroup
*autogroup
;
731 * Cumulative resource counters for dead threads in the group,
732 * and for reaped dead child processes forked by this group.
733 * Live threads maintain their own counters and add to these
734 * in __exit_signal, except for the group leader.
736 seqlock_t stats_lock
;
737 cputime_t utime
, stime
, cutime
, cstime
;
740 struct prev_cputime prev_cputime
;
741 unsigned long nvcsw
, nivcsw
, cnvcsw
, cnivcsw
;
742 unsigned long min_flt
, maj_flt
, cmin_flt
, cmaj_flt
;
743 unsigned long inblock
, oublock
, cinblock
, coublock
;
744 unsigned long maxrss
, cmaxrss
;
745 struct task_io_accounting ioac
;
748 * Cumulative ns of schedule CPU time fo dead threads in the
749 * group, not including a zombie group leader, (This only differs
750 * from jiffies_to_ns(utime + stime) if sched_clock uses something
751 * other than jiffies.)
753 unsigned long long sum_sched_runtime
;
756 * We don't bother to synchronize most readers of this at all,
757 * because there is no reader checking a limit that actually needs
758 * to get both rlim_cur and rlim_max atomically, and either one
759 * alone is a single word that can safely be read normally.
760 * getrlimit/setrlimit use task_lock(current->group_leader) to
761 * protect this instead of the siglock, because they really
762 * have no need to disable irqs.
764 struct rlimit rlim
[RLIM_NLIMITS
];
766 #ifdef CONFIG_BSD_PROCESS_ACCT
767 struct pacct_struct pacct
; /* per-process accounting information */
769 #ifdef CONFIG_TASKSTATS
770 struct taskstats
*stats
;
774 unsigned audit_tty_log_passwd
;
775 struct tty_audit_buf
*tty_audit_buf
;
778 oom_flags_t oom_flags
;
779 short oom_score_adj
; /* OOM kill score adjustment */
780 short oom_score_adj_min
; /* OOM kill score adjustment min value.
781 * Only settable by CAP_SYS_RESOURCE. */
783 struct mutex cred_guard_mutex
; /* guard against foreign influences on
784 * credential calculations
785 * (notably. ptrace) */
789 * Bits in flags field of signal_struct.
791 #define SIGNAL_STOP_STOPPED 0x00000001 /* job control stop in effect */
792 #define SIGNAL_STOP_CONTINUED 0x00000002 /* SIGCONT since WCONTINUED reap */
793 #define SIGNAL_GROUP_EXIT 0x00000004 /* group exit in progress */
794 #define SIGNAL_GROUP_COREDUMP 0x00000008 /* coredump in progress */
796 * Pending notifications to parent.
798 #define SIGNAL_CLD_STOPPED 0x00000010
799 #define SIGNAL_CLD_CONTINUED 0x00000020
800 #define SIGNAL_CLD_MASK (SIGNAL_CLD_STOPPED|SIGNAL_CLD_CONTINUED)
802 #define SIGNAL_UNKILLABLE 0x00000040 /* for init: ignore fatal signals */
804 /* If true, all threads except ->group_exit_task have pending SIGKILL */
805 static inline int signal_group_exit(const struct signal_struct
*sig
)
807 return (sig
->flags
& SIGNAL_GROUP_EXIT
) ||
808 (sig
->group_exit_task
!= NULL
);
812 * Some day this will be a full-fledged user tracking system..
815 atomic_t __count
; /* reference count */
816 atomic_t processes
; /* How many processes does this user have? */
817 atomic_t sigpending
; /* How many pending signals does this user have? */
818 #ifdef CONFIG_INOTIFY_USER
819 atomic_t inotify_watches
; /* How many inotify watches does this user have? */
820 atomic_t inotify_devs
; /* How many inotify devs does this user have opened? */
822 #ifdef CONFIG_FANOTIFY
823 atomic_t fanotify_listeners
;
826 atomic_long_t epoll_watches
; /* The number of file descriptors currently watched */
828 #ifdef CONFIG_POSIX_MQUEUE
829 /* protected by mq_lock */
830 unsigned long mq_bytes
; /* How many bytes can be allocated to mqueue? */
832 unsigned long locked_shm
; /* How many pages of mlocked shm ? */
835 struct key
*uid_keyring
; /* UID specific keyring */
836 struct key
*session_keyring
; /* UID's default session keyring */
839 /* Hash table maintenance information */
840 struct hlist_node uidhash_node
;
843 #if defined(CONFIG_PERF_EVENTS) || defined(CONFIG_BPF_SYSCALL)
844 atomic_long_t locked_vm
;
848 extern int uids_sysfs_init(void);
850 extern struct user_struct
*find_user(kuid_t
);
852 extern struct user_struct root_user
;
853 #define INIT_USER (&root_user)
856 struct backing_dev_info
;
857 struct reclaim_state
;
859 #ifdef CONFIG_SCHED_INFO
861 /* cumulative counters */
862 unsigned long pcount
; /* # of times run on this cpu */
863 unsigned long long run_delay
; /* time spent waiting on a runqueue */
866 unsigned long long last_arrival
,/* when we last ran on a cpu */
867 last_queued
; /* when we were last queued to run */
869 #endif /* CONFIG_SCHED_INFO */
871 #ifdef CONFIG_TASK_DELAY_ACCT
872 struct task_delay_info
{
874 unsigned int flags
; /* Private per-task flags */
876 /* For each stat XXX, add following, aligned appropriately
878 * struct timespec XXX_start, XXX_end;
882 * Atomicity of updates to XXX_delay, XXX_count protected by
883 * single lock above (split into XXX_lock if contention is an issue).
887 * XXX_count is incremented on every XXX operation, the delay
888 * associated with the operation is added to XXX_delay.
889 * XXX_delay contains the accumulated delay time in nanoseconds.
891 u64 blkio_start
; /* Shared by blkio, swapin */
892 u64 blkio_delay
; /* wait for sync block io completion */
893 u64 swapin_delay
; /* wait for swapin block io completion */
894 u32 blkio_count
; /* total count of the number of sync block */
895 /* io operations performed */
896 u32 swapin_count
; /* total count of the number of swapin block */
897 /* io operations performed */
900 u64 freepages_delay
; /* wait for memory reclaim */
901 u32 freepages_count
; /* total count of memory reclaim */
903 #endif /* CONFIG_TASK_DELAY_ACCT */
905 static inline int sched_info_on(void)
907 #ifdef CONFIG_SCHEDSTATS
909 #elif defined(CONFIG_TASK_DELAY_ACCT)
910 extern int delayacct_on
;
925 * Increase resolution of cpu_capacity calculations
927 #define SCHED_CAPACITY_SHIFT 10
928 #define SCHED_CAPACITY_SCALE (1L << SCHED_CAPACITY_SHIFT)
931 * Wake-queues are lists of tasks with a pending wakeup, whose
932 * callers have already marked the task as woken internally,
933 * and can thus carry on. A common use case is being able to
934 * do the wakeups once the corresponding user lock as been
937 * We hold reference to each task in the list across the wakeup,
938 * thus guaranteeing that the memory is still valid by the time
939 * the actual wakeups are performed in wake_up_q().
941 * One per task suffices, because there's never a need for a task to be
942 * in two wake queues simultaneously; it is forbidden to abandon a task
943 * in a wake queue (a call to wake_up_q() _must_ follow), so if a task is
944 * already in a wake queue, the wakeup will happen soon and the second
945 * waker can just skip it.
947 * The WAKE_Q macro declares and initializes the list head.
948 * wake_up_q() does NOT reinitialize the list; it's expected to be
949 * called near the end of a function, where the fact that the queue is
950 * not used again will be easy to see by inspection.
952 * Note that this can cause spurious wakeups. schedule() callers
953 * must ensure the call is done inside a loop, confirming that the
954 * wakeup condition has in fact occurred.
957 struct wake_q_node
*next
;
961 struct wake_q_node
*first
;
962 struct wake_q_node
**lastp
;
965 #define WAKE_Q_TAIL ((struct wake_q_node *) 0x01)
967 #define WAKE_Q(name) \
968 struct wake_q_head name = { WAKE_Q_TAIL, &name.first }
970 extern void wake_q_add(struct wake_q_head
*head
,
971 struct task_struct
*task
);
972 extern void wake_up_q(struct wake_q_head
*head
);
975 * sched-domains (multiprocessor balancing) declarations:
978 #define SD_LOAD_BALANCE 0x0001 /* Do load balancing on this domain. */
979 #define SD_BALANCE_NEWIDLE 0x0002 /* Balance when about to become idle */
980 #define SD_BALANCE_EXEC 0x0004 /* Balance on exec */
981 #define SD_BALANCE_FORK 0x0008 /* Balance on fork, clone */
982 #define SD_BALANCE_WAKE 0x0010 /* Balance on wakeup */
983 #define SD_WAKE_AFFINE 0x0020 /* Wake task to waking CPU */
984 #define SD_SHARE_CPUCAPACITY 0x0080 /* Domain members share cpu power */
985 #define SD_SHARE_POWERDOMAIN 0x0100 /* Domain members share power domain */
986 #define SD_SHARE_PKG_RESOURCES 0x0200 /* Domain members share cpu pkg resources */
987 #define SD_SERIALIZE 0x0400 /* Only a single load balancing instance */
988 #define SD_ASYM_PACKING 0x0800 /* Place busy groups earlier in the domain */
989 #define SD_PREFER_SIBLING 0x1000 /* Prefer to place tasks in a sibling domain */
990 #define SD_OVERLAP 0x2000 /* sched_domains of this level overlap */
991 #define SD_NUMA 0x4000 /* cross-node balancing */
993 #ifdef CONFIG_SCHED_SMT
994 static inline int cpu_smt_flags(void)
996 return SD_SHARE_CPUCAPACITY
| SD_SHARE_PKG_RESOURCES
;
1000 #ifdef CONFIG_SCHED_MC
1001 static inline int cpu_core_flags(void)
1003 return SD_SHARE_PKG_RESOURCES
;
1008 static inline int cpu_numa_flags(void)
1014 struct sched_domain_attr
{
1015 int relax_domain_level
;
1018 #define SD_ATTR_INIT (struct sched_domain_attr) { \
1019 .relax_domain_level = -1, \
1022 extern int sched_domain_level_max
;
1026 struct sched_domain
{
1027 /* These fields must be setup */
1028 struct sched_domain
*parent
; /* top domain must be null terminated */
1029 struct sched_domain
*child
; /* bottom domain must be null terminated */
1030 struct sched_group
*groups
; /* the balancing groups of the domain */
1031 unsigned long min_interval
; /* Minimum balance interval ms */
1032 unsigned long max_interval
; /* Maximum balance interval ms */
1033 unsigned int busy_factor
; /* less balancing by factor if busy */
1034 unsigned int imbalance_pct
; /* No balance until over watermark */
1035 unsigned int cache_nice_tries
; /* Leave cache hot tasks for # tries */
1036 unsigned int busy_idx
;
1037 unsigned int idle_idx
;
1038 unsigned int newidle_idx
;
1039 unsigned int wake_idx
;
1040 unsigned int forkexec_idx
;
1041 unsigned int smt_gain
;
1043 int nohz_idle
; /* NOHZ IDLE status */
1044 int flags
; /* See SD_* */
1047 /* Runtime fields. */
1048 unsigned long last_balance
; /* init to jiffies. units in jiffies */
1049 unsigned int balance_interval
; /* initialise to 1. units in ms. */
1050 unsigned int nr_balance_failed
; /* initialise to 0 */
1052 /* idle_balance() stats */
1053 u64 max_newidle_lb_cost
;
1054 unsigned long next_decay_max_lb_cost
;
1056 #ifdef CONFIG_SCHEDSTATS
1057 /* load_balance() stats */
1058 unsigned int lb_count
[CPU_MAX_IDLE_TYPES
];
1059 unsigned int lb_failed
[CPU_MAX_IDLE_TYPES
];
1060 unsigned int lb_balanced
[CPU_MAX_IDLE_TYPES
];
1061 unsigned int lb_imbalance
[CPU_MAX_IDLE_TYPES
];
1062 unsigned int lb_gained
[CPU_MAX_IDLE_TYPES
];
1063 unsigned int lb_hot_gained
[CPU_MAX_IDLE_TYPES
];
1064 unsigned int lb_nobusyg
[CPU_MAX_IDLE_TYPES
];
1065 unsigned int lb_nobusyq
[CPU_MAX_IDLE_TYPES
];
1067 /* Active load balancing */
1068 unsigned int alb_count
;
1069 unsigned int alb_failed
;
1070 unsigned int alb_pushed
;
1072 /* SD_BALANCE_EXEC stats */
1073 unsigned int sbe_count
;
1074 unsigned int sbe_balanced
;
1075 unsigned int sbe_pushed
;
1077 /* SD_BALANCE_FORK stats */
1078 unsigned int sbf_count
;
1079 unsigned int sbf_balanced
;
1080 unsigned int sbf_pushed
;
1082 /* try_to_wake_up() stats */
1083 unsigned int ttwu_wake_remote
;
1084 unsigned int ttwu_move_affine
;
1085 unsigned int ttwu_move_balance
;
1087 #ifdef CONFIG_SCHED_DEBUG
1091 void *private; /* used during construction */
1092 struct rcu_head rcu
; /* used during destruction */
1095 unsigned int span_weight
;
1097 * Span of all CPUs in this domain.
1099 * NOTE: this field is variable length. (Allocated dynamically
1100 * by attaching extra space to the end of the structure,
1101 * depending on how many CPUs the kernel has booted up with)
1103 unsigned long span
[0];
1106 static inline struct cpumask
*sched_domain_span(struct sched_domain
*sd
)
1108 return to_cpumask(sd
->span
);
1111 extern void partition_sched_domains(int ndoms_new
, cpumask_var_t doms_new
[],
1112 struct sched_domain_attr
*dattr_new
);
1114 /* Allocate an array of sched domains, for partition_sched_domains(). */
1115 cpumask_var_t
*alloc_sched_domains(unsigned int ndoms
);
1116 void free_sched_domains(cpumask_var_t doms
[], unsigned int ndoms
);
1118 bool cpus_share_cache(int this_cpu
, int that_cpu
);
1120 typedef const struct cpumask
*(*sched_domain_mask_f
)(int cpu
);
1121 typedef int (*sched_domain_flags_f
)(void);
1123 #define SDTL_OVERLAP 0x01
1126 struct sched_domain
**__percpu sd
;
1127 struct sched_group
**__percpu sg
;
1128 struct sched_group_capacity
**__percpu sgc
;
1131 struct sched_domain_topology_level
{
1132 sched_domain_mask_f mask
;
1133 sched_domain_flags_f sd_flags
;
1136 struct sd_data data
;
1137 #ifdef CONFIG_SCHED_DEBUG
1142 extern void set_sched_topology(struct sched_domain_topology_level
*tl
);
1143 extern void wake_up_if_idle(int cpu
);
1145 #ifdef CONFIG_SCHED_DEBUG
1146 # define SD_INIT_NAME(type) .name = #type
1148 # define SD_INIT_NAME(type)
1151 #else /* CONFIG_SMP */
1153 struct sched_domain_attr
;
1156 partition_sched_domains(int ndoms_new
, cpumask_var_t doms_new
[],
1157 struct sched_domain_attr
*dattr_new
)
1161 static inline bool cpus_share_cache(int this_cpu
, int that_cpu
)
1166 #endif /* !CONFIG_SMP */
1169 struct io_context
; /* See blkdev.h */
1172 #ifdef ARCH_HAS_PREFETCH_SWITCH_STACK
1173 extern void prefetch_stack(struct task_struct
*t
);
1175 static inline void prefetch_stack(struct task_struct
*t
) { }
1178 struct audit_context
; /* See audit.c */
1180 struct pipe_inode_info
;
1181 struct uts_namespace
;
1183 struct load_weight
{
1184 unsigned long weight
;
1189 * The load_avg/util_avg accumulates an infinite geometric series.
1190 * 1) load_avg factors frequency scaling into the amount of time that a
1191 * sched_entity is runnable on a rq into its weight. For cfs_rq, it is the
1192 * aggregated such weights of all runnable and blocked sched_entities.
1193 * 2) util_avg factors frequency and cpu scaling into the amount of time
1194 * that a sched_entity is running on a CPU, in the range [0..SCHED_LOAD_SCALE].
1195 * For cfs_rq, it is the aggregated such times of all runnable and
1196 * blocked sched_entities.
1197 * The 64 bit load_sum can:
1198 * 1) for cfs_rq, afford 4353082796 (=2^64/47742/88761) entities with
1199 * the highest weight (=88761) always runnable, we should not overflow
1200 * 2) for entity, support any load.weight always runnable
1203 u64 last_update_time
, load_sum
;
1204 u32 util_sum
, period_contrib
;
1205 unsigned long load_avg
, util_avg
;
1208 #ifdef CONFIG_SCHEDSTATS
1209 struct sched_statistics
{
1219 s64 sum_sleep_runtime
;
1226 u64 nr_migrations_cold
;
1227 u64 nr_failed_migrations_affine
;
1228 u64 nr_failed_migrations_running
;
1229 u64 nr_failed_migrations_hot
;
1230 u64 nr_forced_migrations
;
1233 u64 nr_wakeups_sync
;
1234 u64 nr_wakeups_migrate
;
1235 u64 nr_wakeups_local
;
1236 u64 nr_wakeups_remote
;
1237 u64 nr_wakeups_affine
;
1238 u64 nr_wakeups_affine_attempts
;
1239 u64 nr_wakeups_passive
;
1240 u64 nr_wakeups_idle
;
1244 struct sched_entity
{
1245 struct load_weight load
; /* for load-balancing */
1246 struct rb_node run_node
;
1247 struct list_head group_node
;
1251 u64 sum_exec_runtime
;
1253 u64 prev_sum_exec_runtime
;
1257 #ifdef CONFIG_SCHEDSTATS
1258 struct sched_statistics statistics
;
1261 #ifdef CONFIG_FAIR_GROUP_SCHED
1263 struct sched_entity
*parent
;
1264 /* rq on which this entity is (to be) queued: */
1265 struct cfs_rq
*cfs_rq
;
1266 /* rq "owned" by this entity/group: */
1267 struct cfs_rq
*my_q
;
1271 /* Per entity load average tracking */
1272 struct sched_avg avg
;
1276 struct sched_rt_entity
{
1277 struct list_head run_list
;
1278 unsigned long timeout
;
1279 unsigned long watchdog_stamp
;
1280 unsigned int time_slice
;
1282 struct sched_rt_entity
*back
;
1283 #ifdef CONFIG_RT_GROUP_SCHED
1284 struct sched_rt_entity
*parent
;
1285 /* rq on which this entity is (to be) queued: */
1286 struct rt_rq
*rt_rq
;
1287 /* rq "owned" by this entity/group: */
1292 struct sched_dl_entity
{
1293 struct rb_node rb_node
;
1296 * Original scheduling parameters. Copied here from sched_attr
1297 * during sched_setattr(), they will remain the same until
1298 * the next sched_setattr().
1300 u64 dl_runtime
; /* maximum runtime for each instance */
1301 u64 dl_deadline
; /* relative deadline of each instance */
1302 u64 dl_period
; /* separation of two instances (period) */
1303 u64 dl_bw
; /* dl_runtime / dl_deadline */
1306 * Actual scheduling parameters. Initialized with the values above,
1307 * they are continously updated during task execution. Note that
1308 * the remaining runtime could be < 0 in case we are in overrun.
1310 s64 runtime
; /* remaining runtime for this instance */
1311 u64 deadline
; /* absolute deadline for this instance */
1312 unsigned int flags
; /* specifying the scheduler behaviour */
1317 * @dl_throttled tells if we exhausted the runtime. If so, the
1318 * task has to wait for a replenishment to be performed at the
1319 * next firing of dl_timer.
1321 * @dl_new tells if a new instance arrived. If so we must
1322 * start executing it with full runtime and reset its absolute
1325 * @dl_boosted tells if we are boosted due to DI. If so we are
1326 * outside bandwidth enforcement mechanism (but only until we
1327 * exit the critical section);
1329 * @dl_yielded tells if task gave up the cpu before consuming
1330 * all its available runtime during the last job.
1332 int dl_throttled
, dl_new
, dl_boosted
, dl_yielded
;
1335 * Bandwidth enforcement timer. Each -deadline task has its
1336 * own bandwidth to be enforced, thus we need one timer per task.
1338 struct hrtimer dl_timer
;
1346 u8 pad
; /* Otherwise the compiler can store garbage here. */
1348 u32 s
; /* Set of bits. */
1352 enum perf_event_task_context
{
1353 perf_invalid_context
= -1,
1354 perf_hw_context
= 0,
1356 perf_nr_task_contexts
,
1359 /* Track pages that require TLB flushes */
1360 struct tlbflush_unmap_batch
{
1362 * Each bit set is a CPU that potentially has a TLB entry for one of
1363 * the PFNs being flushed. See set_tlb_ubc_flush_pending().
1365 struct cpumask cpumask
;
1367 /* True if any bit in cpumask is set */
1368 bool flush_required
;
1371 * If true then the PTE was dirty when unmapped. The entry must be
1372 * flushed before IO is initiated or a stale TLB entry potentially
1373 * allows an update without redirtying the page.
1378 struct task_struct
{
1379 volatile long state
; /* -1 unrunnable, 0 runnable, >0 stopped */
1382 unsigned int flags
; /* per process flags, defined below */
1383 unsigned int ptrace
;
1386 struct llist_node wake_entry
;
1388 unsigned int wakee_flips
;
1389 unsigned long wakee_flip_decay_ts
;
1390 struct task_struct
*last_wakee
;
1396 int prio
, static_prio
, normal_prio
;
1397 unsigned int rt_priority
;
1398 const struct sched_class
*sched_class
;
1399 struct sched_entity se
;
1400 struct sched_rt_entity rt
;
1401 #ifdef CONFIG_CGROUP_SCHED
1402 struct task_group
*sched_task_group
;
1404 struct sched_dl_entity dl
;
1406 #ifdef CONFIG_PREEMPT_NOTIFIERS
1407 /* list of struct preempt_notifier: */
1408 struct hlist_head preempt_notifiers
;
1411 #ifdef CONFIG_BLK_DEV_IO_TRACE
1412 unsigned int btrace_seq
;
1415 unsigned int policy
;
1416 int nr_cpus_allowed
;
1417 cpumask_t cpus_allowed
;
1419 #ifdef CONFIG_PREEMPT_RCU
1420 int rcu_read_lock_nesting
;
1421 union rcu_special rcu_read_unlock_special
;
1422 struct list_head rcu_node_entry
;
1423 struct rcu_node
*rcu_blocked_node
;
1424 #endif /* #ifdef CONFIG_PREEMPT_RCU */
1425 #ifdef CONFIG_TASKS_RCU
1426 unsigned long rcu_tasks_nvcsw
;
1427 bool rcu_tasks_holdout
;
1428 struct list_head rcu_tasks_holdout_list
;
1429 int rcu_tasks_idle_cpu
;
1430 #endif /* #ifdef CONFIG_TASKS_RCU */
1432 #ifdef CONFIG_SCHED_INFO
1433 struct sched_info sched_info
;
1436 struct list_head tasks
;
1438 struct plist_node pushable_tasks
;
1439 struct rb_node pushable_dl_tasks
;
1442 struct mm_struct
*mm
, *active_mm
;
1443 /* per-thread vma caching */
1444 u32 vmacache_seqnum
;
1445 struct vm_area_struct
*vmacache
[VMACACHE_SIZE
];
1446 #if defined(SPLIT_RSS_COUNTING)
1447 struct task_rss_stat rss_stat
;
1451 int exit_code
, exit_signal
;
1452 int pdeath_signal
; /* The signal sent when the parent dies */
1453 unsigned long jobctl
; /* JOBCTL_*, siglock protected */
1455 /* Used for emulating ABI behavior of previous Linux versions */
1456 unsigned int personality
;
1458 unsigned in_execve
:1; /* Tell the LSMs that the process is doing an
1460 unsigned in_iowait
:1;
1462 /* Revert to default priority/policy when forking */
1463 unsigned sched_reset_on_fork
:1;
1464 unsigned sched_contributes_to_load
:1;
1465 unsigned sched_migrated
:1;
1467 unsigned memcg_may_oom
:1;
1469 #ifdef CONFIG_MEMCG_KMEM
1470 unsigned memcg_kmem_skip_account
:1;
1472 #ifdef CONFIG_COMPAT_BRK
1473 unsigned brk_randomized
:1;
1476 unsigned long atomic_flags
; /* Flags needing atomic access. */
1478 struct restart_block restart_block
;
1483 #ifdef CONFIG_CC_STACKPROTECTOR
1484 /* Canary value for the -fstack-protector gcc feature */
1485 unsigned long stack_canary
;
1488 * pointers to (original) parent process, youngest child, younger sibling,
1489 * older sibling, respectively. (p->father can be replaced with
1490 * p->real_parent->pid)
1492 struct task_struct __rcu
*real_parent
; /* real parent process */
1493 struct task_struct __rcu
*parent
; /* recipient of SIGCHLD, wait4() reports */
1495 * children/sibling forms the list of my natural children
1497 struct list_head children
; /* list of my children */
1498 struct list_head sibling
; /* linkage in my parent's children list */
1499 struct task_struct
*group_leader
; /* threadgroup leader */
1502 * ptraced is the list of tasks this task is using ptrace on.
1503 * This includes both natural children and PTRACE_ATTACH targets.
1504 * p->ptrace_entry is p's link on the p->parent->ptraced list.
1506 struct list_head ptraced
;
1507 struct list_head ptrace_entry
;
1509 /* PID/PID hash table linkage. */
1510 struct pid_link pids
[PIDTYPE_MAX
];
1511 struct list_head thread_group
;
1512 struct list_head thread_node
;
1514 struct completion
*vfork_done
; /* for vfork() */
1515 int __user
*set_child_tid
; /* CLONE_CHILD_SETTID */
1516 int __user
*clear_child_tid
; /* CLONE_CHILD_CLEARTID */
1518 cputime_t utime
, stime
, utimescaled
, stimescaled
;
1520 struct prev_cputime prev_cputime
;
1521 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
1522 seqlock_t vtime_seqlock
;
1523 unsigned long long vtime_snap
;
1528 } vtime_snap_whence
;
1530 unsigned long nvcsw
, nivcsw
; /* context switch counts */
1531 u64 start_time
; /* monotonic time in nsec */
1532 u64 real_start_time
; /* boot based time in nsec */
1533 /* mm fault and swap info: this can arguably be seen as either mm-specific or thread-specific */
1534 unsigned long min_flt
, maj_flt
;
1536 struct task_cputime cputime_expires
;
1537 struct list_head cpu_timers
[3];
1539 /* process credentials */
1540 const struct cred __rcu
*real_cred
; /* objective and real subjective task
1541 * credentials (COW) */
1542 const struct cred __rcu
*cred
; /* effective (overridable) subjective task
1543 * credentials (COW) */
1544 char comm
[TASK_COMM_LEN
]; /* executable name excluding path
1545 - access with [gs]et_task_comm (which lock
1546 it with task_lock())
1547 - initialized normally by setup_new_exec */
1548 /* file system info */
1549 struct nameidata
*nameidata
;
1550 #ifdef CONFIG_SYSVIPC
1552 struct sysv_sem sysvsem
;
1553 struct sysv_shm sysvshm
;
1555 #ifdef CONFIG_DETECT_HUNG_TASK
1556 /* hung task detection */
1557 unsigned long last_switch_count
;
1559 /* filesystem information */
1560 struct fs_struct
*fs
;
1561 /* open file information */
1562 struct files_struct
*files
;
1564 struct nsproxy
*nsproxy
;
1565 /* signal handlers */
1566 struct signal_struct
*signal
;
1567 struct sighand_struct
*sighand
;
1569 sigset_t blocked
, real_blocked
;
1570 sigset_t saved_sigmask
; /* restored if set_restore_sigmask() was used */
1571 struct sigpending pending
;
1573 unsigned long sas_ss_sp
;
1576 struct callback_head
*task_works
;
1578 struct audit_context
*audit_context
;
1579 #ifdef CONFIG_AUDITSYSCALL
1581 unsigned int sessionid
;
1583 struct seccomp seccomp
;
1585 /* Thread group tracking */
1588 /* Protection of (de-)allocation: mm, files, fs, tty, keyrings, mems_allowed,
1590 spinlock_t alloc_lock
;
1592 /* Protection of the PI data structures: */
1593 raw_spinlock_t pi_lock
;
1595 struct wake_q_node wake_q
;
1597 #ifdef CONFIG_RT_MUTEXES
1598 /* PI waiters blocked on a rt_mutex held by this task */
1599 struct rb_root pi_waiters
;
1600 struct rb_node
*pi_waiters_leftmost
;
1601 /* Deadlock detection and priority inheritance handling */
1602 struct rt_mutex_waiter
*pi_blocked_on
;
1605 #ifdef CONFIG_DEBUG_MUTEXES
1606 /* mutex deadlock detection */
1607 struct mutex_waiter
*blocked_on
;
1609 #ifdef CONFIG_TRACE_IRQFLAGS
1610 unsigned int irq_events
;
1611 unsigned long hardirq_enable_ip
;
1612 unsigned long hardirq_disable_ip
;
1613 unsigned int hardirq_enable_event
;
1614 unsigned int hardirq_disable_event
;
1615 int hardirqs_enabled
;
1616 int hardirq_context
;
1617 unsigned long softirq_disable_ip
;
1618 unsigned long softirq_enable_ip
;
1619 unsigned int softirq_disable_event
;
1620 unsigned int softirq_enable_event
;
1621 int softirqs_enabled
;
1622 int softirq_context
;
1624 #ifdef CONFIG_LOCKDEP
1625 # define MAX_LOCK_DEPTH 48UL
1628 unsigned int lockdep_recursion
;
1629 struct held_lock held_locks
[MAX_LOCK_DEPTH
];
1630 gfp_t lockdep_reclaim_gfp
;
1633 /* journalling filesystem info */
1636 /* stacked block device info */
1637 struct bio_list
*bio_list
;
1640 /* stack plugging */
1641 struct blk_plug
*plug
;
1645 struct reclaim_state
*reclaim_state
;
1647 struct backing_dev_info
*backing_dev_info
;
1649 struct io_context
*io_context
;
1651 unsigned long ptrace_message
;
1652 siginfo_t
*last_siginfo
; /* For ptrace use. */
1653 struct task_io_accounting ioac
;
1654 #if defined(CONFIG_TASK_XACCT)
1655 u64 acct_rss_mem1
; /* accumulated rss usage */
1656 u64 acct_vm_mem1
; /* accumulated virtual memory usage */
1657 cputime_t acct_timexpd
; /* stime + utime since last update */
1659 #ifdef CONFIG_CPUSETS
1660 nodemask_t mems_allowed
; /* Protected by alloc_lock */
1661 seqcount_t mems_allowed_seq
; /* Seqence no to catch updates */
1662 int cpuset_mem_spread_rotor
;
1663 int cpuset_slab_spread_rotor
;
1665 #ifdef CONFIG_CGROUPS
1666 /* Control Group info protected by css_set_lock */
1667 struct css_set __rcu
*cgroups
;
1668 /* cg_list protected by css_set_lock and tsk->alloc_lock */
1669 struct list_head cg_list
;
1672 struct robust_list_head __user
*robust_list
;
1673 #ifdef CONFIG_COMPAT
1674 struct compat_robust_list_head __user
*compat_robust_list
;
1676 struct list_head pi_state_list
;
1677 struct futex_pi_state
*pi_state_cache
;
1679 #ifdef CONFIG_PERF_EVENTS
1680 struct perf_event_context
*perf_event_ctxp
[perf_nr_task_contexts
];
1681 struct mutex perf_event_mutex
;
1682 struct list_head perf_event_list
;
1684 #ifdef CONFIG_DEBUG_PREEMPT
1685 unsigned long preempt_disable_ip
;
1688 struct mempolicy
*mempolicy
; /* Protected by alloc_lock */
1690 short pref_node_fork
;
1692 #ifdef CONFIG_NUMA_BALANCING
1694 unsigned int numa_scan_period
;
1695 unsigned int numa_scan_period_max
;
1696 int numa_preferred_nid
;
1697 unsigned long numa_migrate_retry
;
1698 u64 node_stamp
; /* migration stamp */
1699 u64 last_task_numa_placement
;
1700 u64 last_sum_exec_runtime
;
1701 struct callback_head numa_work
;
1703 struct list_head numa_entry
;
1704 struct numa_group
*numa_group
;
1707 * numa_faults is an array split into four regions:
1708 * faults_memory, faults_cpu, faults_memory_buffer, faults_cpu_buffer
1709 * in this precise order.
1711 * faults_memory: Exponential decaying average of faults on a per-node
1712 * basis. Scheduling placement decisions are made based on these
1713 * counts. The values remain static for the duration of a PTE scan.
1714 * faults_cpu: Track the nodes the process was running on when a NUMA
1715 * hinting fault was incurred.
1716 * faults_memory_buffer and faults_cpu_buffer: Record faults per node
1717 * during the current scan window. When the scan completes, the counts
1718 * in faults_memory and faults_cpu decay and these values are copied.
1720 unsigned long *numa_faults
;
1721 unsigned long total_numa_faults
;
1724 * numa_faults_locality tracks if faults recorded during the last
1725 * scan window were remote/local or failed to migrate. The task scan
1726 * period is adapted based on the locality of the faults with different
1727 * weights depending on whether they were shared or private faults
1729 unsigned long numa_faults_locality
[3];
1731 unsigned long numa_pages_migrated
;
1732 #endif /* CONFIG_NUMA_BALANCING */
1734 #ifdef CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH
1735 struct tlbflush_unmap_batch tlb_ubc
;
1738 struct rcu_head rcu
;
1741 * cache last used pipe for splice
1743 struct pipe_inode_info
*splice_pipe
;
1745 struct page_frag task_frag
;
1747 #ifdef CONFIG_TASK_DELAY_ACCT
1748 struct task_delay_info
*delays
;
1750 #ifdef CONFIG_FAULT_INJECTION
1754 * when (nr_dirtied >= nr_dirtied_pause), it's time to call
1755 * balance_dirty_pages() for some dirty throttling pause
1758 int nr_dirtied_pause
;
1759 unsigned long dirty_paused_when
; /* start of a write-and-pause period */
1761 #ifdef CONFIG_LATENCYTOP
1762 int latency_record_count
;
1763 struct latency_record latency_record
[LT_SAVECOUNT
];
1766 * time slack values; these are used to round up poll() and
1767 * select() etc timeout values. These are in nanoseconds.
1769 unsigned long timer_slack_ns
;
1770 unsigned long default_timer_slack_ns
;
1773 unsigned int kasan_depth
;
1775 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
1776 /* Index of current stored address in ret_stack */
1778 /* Stack of return addresses for return function tracing */
1779 struct ftrace_ret_stack
*ret_stack
;
1780 /* time stamp for last schedule */
1781 unsigned long long ftrace_timestamp
;
1783 * Number of functions that haven't been traced
1784 * because of depth overrun.
1786 atomic_t trace_overrun
;
1787 /* Pause for the tracing */
1788 atomic_t tracing_graph_pause
;
1790 #ifdef CONFIG_TRACING
1791 /* state flags for use by tracers */
1792 unsigned long trace
;
1793 /* bitmask and counter of trace recursion */
1794 unsigned long trace_recursion
;
1795 #endif /* CONFIG_TRACING */
1797 struct mem_cgroup
*memcg_in_oom
;
1798 gfp_t memcg_oom_gfp_mask
;
1799 int memcg_oom_order
;
1801 /* number of pages to reclaim on returning to userland */
1802 unsigned int memcg_nr_pages_over_high
;
1804 #ifdef CONFIG_UPROBES
1805 struct uprobe_task
*utask
;
1807 #if defined(CONFIG_BCACHE) || defined(CONFIG_BCACHE_MODULE)
1808 unsigned int sequential_io
;
1809 unsigned int sequential_io_avg
;
1811 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
1812 unsigned long task_state_change
;
1814 int pagefault_disabled
;
1815 /* CPU-specific state of this task */
1816 struct thread_struct thread
;
1818 * WARNING: on x86, 'thread_struct' contains a variable-sized
1819 * structure. It *MUST* be at the end of 'task_struct'.
1821 * Do not put anything below here!
1825 #ifdef CONFIG_ARCH_WANTS_DYNAMIC_TASK_STRUCT
1826 extern int arch_task_struct_size __read_mostly
;
1828 # define arch_task_struct_size (sizeof(struct task_struct))
1831 /* Future-safe accessor for struct task_struct's cpus_allowed. */
1832 #define tsk_cpus_allowed(tsk) (&(tsk)->cpus_allowed)
1834 #define TNF_MIGRATED 0x01
1835 #define TNF_NO_GROUP 0x02
1836 #define TNF_SHARED 0x04
1837 #define TNF_FAULT_LOCAL 0x08
1838 #define TNF_MIGRATE_FAIL 0x10
1840 #ifdef CONFIG_NUMA_BALANCING
1841 extern void task_numa_fault(int last_node
, int node
, int pages
, int flags
);
1842 extern pid_t
task_numa_group_id(struct task_struct
*p
);
1843 extern void set_numabalancing_state(bool enabled
);
1844 extern void task_numa_free(struct task_struct
*p
);
1845 extern bool should_numa_migrate_memory(struct task_struct
*p
, struct page
*page
,
1846 int src_nid
, int dst_cpu
);
1848 static inline void task_numa_fault(int last_node
, int node
, int pages
,
1852 static inline pid_t
task_numa_group_id(struct task_struct
*p
)
1856 static inline void set_numabalancing_state(bool enabled
)
1859 static inline void task_numa_free(struct task_struct
*p
)
1862 static inline bool should_numa_migrate_memory(struct task_struct
*p
,
1863 struct page
*page
, int src_nid
, int dst_cpu
)
1869 static inline struct pid
*task_pid(struct task_struct
*task
)
1871 return task
->pids
[PIDTYPE_PID
].pid
;
1874 static inline struct pid
*task_tgid(struct task_struct
*task
)
1876 return task
->group_leader
->pids
[PIDTYPE_PID
].pid
;
1880 * Without tasklist or rcu lock it is not safe to dereference
1881 * the result of task_pgrp/task_session even if task == current,
1882 * we can race with another thread doing sys_setsid/sys_setpgid.
1884 static inline struct pid
*task_pgrp(struct task_struct
*task
)
1886 return task
->group_leader
->pids
[PIDTYPE_PGID
].pid
;
1889 static inline struct pid
*task_session(struct task_struct
*task
)
1891 return task
->group_leader
->pids
[PIDTYPE_SID
].pid
;
1894 struct pid_namespace
;
1897 * the helpers to get the task's different pids as they are seen
1898 * from various namespaces
1900 * task_xid_nr() : global id, i.e. the id seen from the init namespace;
1901 * task_xid_vnr() : virtual id, i.e. the id seen from the pid namespace of
1903 * task_xid_nr_ns() : id seen from the ns specified;
1905 * set_task_vxid() : assigns a virtual id to a task;
1907 * see also pid_nr() etc in include/linux/pid.h
1909 pid_t
__task_pid_nr_ns(struct task_struct
*task
, enum pid_type type
,
1910 struct pid_namespace
*ns
);
1912 static inline pid_t
task_pid_nr(struct task_struct
*tsk
)
1917 static inline pid_t
task_pid_nr_ns(struct task_struct
*tsk
,
1918 struct pid_namespace
*ns
)
1920 return __task_pid_nr_ns(tsk
, PIDTYPE_PID
, ns
);
1923 static inline pid_t
task_pid_vnr(struct task_struct
*tsk
)
1925 return __task_pid_nr_ns(tsk
, PIDTYPE_PID
, NULL
);
1929 static inline pid_t
task_tgid_nr(struct task_struct
*tsk
)
1934 pid_t
task_tgid_nr_ns(struct task_struct
*tsk
, struct pid_namespace
*ns
);
1936 static inline pid_t
task_tgid_vnr(struct task_struct
*tsk
)
1938 return pid_vnr(task_tgid(tsk
));
1942 static inline int pid_alive(const struct task_struct
*p
);
1943 static inline pid_t
task_ppid_nr_ns(const struct task_struct
*tsk
, struct pid_namespace
*ns
)
1949 pid
= task_tgid_nr_ns(rcu_dereference(tsk
->real_parent
), ns
);
1955 static inline pid_t
task_ppid_nr(const struct task_struct
*tsk
)
1957 return task_ppid_nr_ns(tsk
, &init_pid_ns
);
1960 static inline pid_t
task_pgrp_nr_ns(struct task_struct
*tsk
,
1961 struct pid_namespace
*ns
)
1963 return __task_pid_nr_ns(tsk
, PIDTYPE_PGID
, ns
);
1966 static inline pid_t
task_pgrp_vnr(struct task_struct
*tsk
)
1968 return __task_pid_nr_ns(tsk
, PIDTYPE_PGID
, NULL
);
1972 static inline pid_t
task_session_nr_ns(struct task_struct
*tsk
,
1973 struct pid_namespace
*ns
)
1975 return __task_pid_nr_ns(tsk
, PIDTYPE_SID
, ns
);
1978 static inline pid_t
task_session_vnr(struct task_struct
*tsk
)
1980 return __task_pid_nr_ns(tsk
, PIDTYPE_SID
, NULL
);
1983 /* obsolete, do not use */
1984 static inline pid_t
task_pgrp_nr(struct task_struct
*tsk
)
1986 return task_pgrp_nr_ns(tsk
, &init_pid_ns
);
1990 * pid_alive - check that a task structure is not stale
1991 * @p: Task structure to be checked.
1993 * Test if a process is not yet dead (at most zombie state)
1994 * If pid_alive fails, then pointers within the task structure
1995 * can be stale and must not be dereferenced.
1997 * Return: 1 if the process is alive. 0 otherwise.
1999 static inline int pid_alive(const struct task_struct
*p
)
2001 return p
->pids
[PIDTYPE_PID
].pid
!= NULL
;
2005 * is_global_init - check if a task structure is init
2006 * @tsk: Task structure to be checked.
2008 * Check if a task structure is the first user space task the kernel created.
2010 * Return: 1 if the task structure is init. 0 otherwise.
2012 static inline int is_global_init(struct task_struct
*tsk
)
2014 return tsk
->pid
== 1;
2017 extern struct pid
*cad_pid
;
2019 extern void free_task(struct task_struct
*tsk
);
2020 #define get_task_struct(tsk) do { atomic_inc(&(tsk)->usage); } while(0)
2022 extern void __put_task_struct(struct task_struct
*t
);
2024 static inline void put_task_struct(struct task_struct
*t
)
2026 if (atomic_dec_and_test(&t
->usage
))
2027 __put_task_struct(t
);
2030 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
2031 extern void task_cputime(struct task_struct
*t
,
2032 cputime_t
*utime
, cputime_t
*stime
);
2033 extern void task_cputime_scaled(struct task_struct
*t
,
2034 cputime_t
*utimescaled
, cputime_t
*stimescaled
);
2035 extern cputime_t
task_gtime(struct task_struct
*t
);
2037 static inline void task_cputime(struct task_struct
*t
,
2038 cputime_t
*utime
, cputime_t
*stime
)
2046 static inline void task_cputime_scaled(struct task_struct
*t
,
2047 cputime_t
*utimescaled
,
2048 cputime_t
*stimescaled
)
2051 *utimescaled
= t
->utimescaled
;
2053 *stimescaled
= t
->stimescaled
;
2056 static inline cputime_t
task_gtime(struct task_struct
*t
)
2061 extern void task_cputime_adjusted(struct task_struct
*p
, cputime_t
*ut
, cputime_t
*st
);
2062 extern void thread_group_cputime_adjusted(struct task_struct
*p
, cputime_t
*ut
, cputime_t
*st
);
2067 #define PF_EXITING 0x00000004 /* getting shut down */
2068 #define PF_EXITPIDONE 0x00000008 /* pi exit done on shut down */
2069 #define PF_VCPU 0x00000010 /* I'm a virtual CPU */
2070 #define PF_WQ_WORKER 0x00000020 /* I'm a workqueue worker */
2071 #define PF_FORKNOEXEC 0x00000040 /* forked but didn't exec */
2072 #define PF_MCE_PROCESS 0x00000080 /* process policy on mce errors */
2073 #define PF_SUPERPRIV 0x00000100 /* used super-user privileges */
2074 #define PF_DUMPCORE 0x00000200 /* dumped core */
2075 #define PF_SIGNALED 0x00000400 /* killed by a signal */
2076 #define PF_MEMALLOC 0x00000800 /* Allocating memory */
2077 #define PF_NPROC_EXCEEDED 0x00001000 /* set_user noticed that RLIMIT_NPROC was exceeded */
2078 #define PF_USED_MATH 0x00002000 /* if unset the fpu must be initialized before use */
2079 #define PF_USED_ASYNC 0x00004000 /* used async_schedule*(), used by module init */
2080 #define PF_NOFREEZE 0x00008000 /* this thread should not be frozen */
2081 #define PF_FROZEN 0x00010000 /* frozen for system suspend */
2082 #define PF_FSTRANS 0x00020000 /* inside a filesystem transaction */
2083 #define PF_KSWAPD 0x00040000 /* I am kswapd */
2084 #define PF_MEMALLOC_NOIO 0x00080000 /* Allocating memory without IO involved */
2085 #define PF_LESS_THROTTLE 0x00100000 /* Throttle me less: I clean memory */
2086 #define PF_KTHREAD 0x00200000 /* I am a kernel thread */
2087 #define PF_RANDOMIZE 0x00400000 /* randomize virtual address space */
2088 #define PF_SWAPWRITE 0x00800000 /* Allowed to write to swap */
2089 #define PF_NO_SETAFFINITY 0x04000000 /* Userland is not allowed to meddle with cpus_allowed */
2090 #define PF_MCE_EARLY 0x08000000 /* Early kill for mce process policy */
2091 #define PF_MUTEX_TESTER 0x20000000 /* Thread belongs to the rt mutex tester */
2092 #define PF_FREEZER_SKIP 0x40000000 /* Freezer should not count it as freezable */
2093 #define PF_SUSPEND_TASK 0x80000000 /* this thread called freeze_processes and should not be frozen */
2096 * Only the _current_ task can read/write to tsk->flags, but other
2097 * tasks can access tsk->flags in readonly mode for example
2098 * with tsk_used_math (like during threaded core dumping).
2099 * There is however an exception to this rule during ptrace
2100 * or during fork: the ptracer task is allowed to write to the
2101 * child->flags of its traced child (same goes for fork, the parent
2102 * can write to the child->flags), because we're guaranteed the
2103 * child is not running and in turn not changing child->flags
2104 * at the same time the parent does it.
2106 #define clear_stopped_child_used_math(child) do { (child)->flags &= ~PF_USED_MATH; } while (0)
2107 #define set_stopped_child_used_math(child) do { (child)->flags |= PF_USED_MATH; } while (0)
2108 #define clear_used_math() clear_stopped_child_used_math(current)
2109 #define set_used_math() set_stopped_child_used_math(current)
2110 #define conditional_stopped_child_used_math(condition, child) \
2111 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= (condition) ? PF_USED_MATH : 0; } while (0)
2112 #define conditional_used_math(condition) \
2113 conditional_stopped_child_used_math(condition, current)
2114 #define copy_to_stopped_child_used_math(child) \
2115 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= current->flags & PF_USED_MATH; } while (0)
2116 /* NOTE: this will return 0 or PF_USED_MATH, it will never return 1 */
2117 #define tsk_used_math(p) ((p)->flags & PF_USED_MATH)
2118 #define used_math() tsk_used_math(current)
2120 /* __GFP_IO isn't allowed if PF_MEMALLOC_NOIO is set in current->flags
2121 * __GFP_FS is also cleared as it implies __GFP_IO.
2123 static inline gfp_t
memalloc_noio_flags(gfp_t flags
)
2125 if (unlikely(current
->flags
& PF_MEMALLOC_NOIO
))
2126 flags
&= ~(__GFP_IO
| __GFP_FS
);
2130 static inline unsigned int memalloc_noio_save(void)
2132 unsigned int flags
= current
->flags
& PF_MEMALLOC_NOIO
;
2133 current
->flags
|= PF_MEMALLOC_NOIO
;
2137 static inline void memalloc_noio_restore(unsigned int flags
)
2139 current
->flags
= (current
->flags
& ~PF_MEMALLOC_NOIO
) | flags
;
2142 /* Per-process atomic flags. */
2143 #define PFA_NO_NEW_PRIVS 0 /* May not gain new privileges. */
2144 #define PFA_SPREAD_PAGE 1 /* Spread page cache over cpuset */
2145 #define PFA_SPREAD_SLAB 2 /* Spread some slab caches over cpuset */
2148 #define TASK_PFA_TEST(name, func) \
2149 static inline bool task_##func(struct task_struct *p) \
2150 { return test_bit(PFA_##name, &p->atomic_flags); }
2151 #define TASK_PFA_SET(name, func) \
2152 static inline void task_set_##func(struct task_struct *p) \
2153 { set_bit(PFA_##name, &p->atomic_flags); }
2154 #define TASK_PFA_CLEAR(name, func) \
2155 static inline void task_clear_##func(struct task_struct *p) \
2156 { clear_bit(PFA_##name, &p->atomic_flags); }
2158 TASK_PFA_TEST(NO_NEW_PRIVS
, no_new_privs
)
2159 TASK_PFA_SET(NO_NEW_PRIVS
, no_new_privs
)
2161 TASK_PFA_TEST(SPREAD_PAGE
, spread_page
)
2162 TASK_PFA_SET(SPREAD_PAGE
, spread_page
)
2163 TASK_PFA_CLEAR(SPREAD_PAGE
, spread_page
)
2165 TASK_PFA_TEST(SPREAD_SLAB
, spread_slab
)
2166 TASK_PFA_SET(SPREAD_SLAB
, spread_slab
)
2167 TASK_PFA_CLEAR(SPREAD_SLAB
, spread_slab
)
2170 * task->jobctl flags
2172 #define JOBCTL_STOP_SIGMASK 0xffff /* signr of the last group stop */
2174 #define JOBCTL_STOP_DEQUEUED_BIT 16 /* stop signal dequeued */
2175 #define JOBCTL_STOP_PENDING_BIT 17 /* task should stop for group stop */
2176 #define JOBCTL_STOP_CONSUME_BIT 18 /* consume group stop count */
2177 #define JOBCTL_TRAP_STOP_BIT 19 /* trap for STOP */
2178 #define JOBCTL_TRAP_NOTIFY_BIT 20 /* trap for NOTIFY */
2179 #define JOBCTL_TRAPPING_BIT 21 /* switching to TRACED */
2180 #define JOBCTL_LISTENING_BIT 22 /* ptracer is listening for events */
2182 #define JOBCTL_STOP_DEQUEUED (1UL << JOBCTL_STOP_DEQUEUED_BIT)
2183 #define JOBCTL_STOP_PENDING (1UL << JOBCTL_STOP_PENDING_BIT)
2184 #define JOBCTL_STOP_CONSUME (1UL << JOBCTL_STOP_CONSUME_BIT)
2185 #define JOBCTL_TRAP_STOP (1UL << JOBCTL_TRAP_STOP_BIT)
2186 #define JOBCTL_TRAP_NOTIFY (1UL << JOBCTL_TRAP_NOTIFY_BIT)
2187 #define JOBCTL_TRAPPING (1UL << JOBCTL_TRAPPING_BIT)
2188 #define JOBCTL_LISTENING (1UL << JOBCTL_LISTENING_BIT)
2190 #define JOBCTL_TRAP_MASK (JOBCTL_TRAP_STOP | JOBCTL_TRAP_NOTIFY)
2191 #define JOBCTL_PENDING_MASK (JOBCTL_STOP_PENDING | JOBCTL_TRAP_MASK)
2193 extern bool task_set_jobctl_pending(struct task_struct
*task
,
2194 unsigned long mask
);
2195 extern void task_clear_jobctl_trapping(struct task_struct
*task
);
2196 extern void task_clear_jobctl_pending(struct task_struct
*task
,
2197 unsigned long mask
);
2199 static inline void rcu_copy_process(struct task_struct
*p
)
2201 #ifdef CONFIG_PREEMPT_RCU
2202 p
->rcu_read_lock_nesting
= 0;
2203 p
->rcu_read_unlock_special
.s
= 0;
2204 p
->rcu_blocked_node
= NULL
;
2205 INIT_LIST_HEAD(&p
->rcu_node_entry
);
2206 #endif /* #ifdef CONFIG_PREEMPT_RCU */
2207 #ifdef CONFIG_TASKS_RCU
2208 p
->rcu_tasks_holdout
= false;
2209 INIT_LIST_HEAD(&p
->rcu_tasks_holdout_list
);
2210 p
->rcu_tasks_idle_cpu
= -1;
2211 #endif /* #ifdef CONFIG_TASKS_RCU */
2214 static inline void tsk_restore_flags(struct task_struct
*task
,
2215 unsigned long orig_flags
, unsigned long flags
)
2217 task
->flags
&= ~flags
;
2218 task
->flags
|= orig_flags
& flags
;
2221 extern int cpuset_cpumask_can_shrink(const struct cpumask
*cur
,
2222 const struct cpumask
*trial
);
2223 extern int task_can_attach(struct task_struct
*p
,
2224 const struct cpumask
*cs_cpus_allowed
);
2226 extern void do_set_cpus_allowed(struct task_struct
*p
,
2227 const struct cpumask
*new_mask
);
2229 extern int set_cpus_allowed_ptr(struct task_struct
*p
,
2230 const struct cpumask
*new_mask
);
2232 static inline void do_set_cpus_allowed(struct task_struct
*p
,
2233 const struct cpumask
*new_mask
)
2236 static inline int set_cpus_allowed_ptr(struct task_struct
*p
,
2237 const struct cpumask
*new_mask
)
2239 if (!cpumask_test_cpu(0, new_mask
))
2245 #ifdef CONFIG_NO_HZ_COMMON
2246 void calc_load_enter_idle(void);
2247 void calc_load_exit_idle(void);
2249 static inline void calc_load_enter_idle(void) { }
2250 static inline void calc_load_exit_idle(void) { }
2251 #endif /* CONFIG_NO_HZ_COMMON */
2254 * Do not use outside of architecture code which knows its limitations.
2256 * sched_clock() has no promise of monotonicity or bounded drift between
2257 * CPUs, use (which you should not) requires disabling IRQs.
2259 * Please use one of the three interfaces below.
2261 extern unsigned long long notrace
sched_clock(void);
2263 * See the comment in kernel/sched/clock.c
2265 extern u64
cpu_clock(int cpu
);
2266 extern u64
local_clock(void);
2267 extern u64
running_clock(void);
2268 extern u64
sched_clock_cpu(int cpu
);
2271 extern void sched_clock_init(void);
2273 #ifndef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
2274 static inline void sched_clock_tick(void)
2278 static inline void sched_clock_idle_sleep_event(void)
2282 static inline void sched_clock_idle_wakeup_event(u64 delta_ns
)
2287 * Architectures can set this to 1 if they have specified
2288 * CONFIG_HAVE_UNSTABLE_SCHED_CLOCK in their arch Kconfig,
2289 * but then during bootup it turns out that sched_clock()
2290 * is reliable after all:
2292 extern int sched_clock_stable(void);
2293 extern void set_sched_clock_stable(void);
2294 extern void clear_sched_clock_stable(void);
2296 extern void sched_clock_tick(void);
2297 extern void sched_clock_idle_sleep_event(void);
2298 extern void sched_clock_idle_wakeup_event(u64 delta_ns
);
2301 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
2303 * An i/f to runtime opt-in for irq time accounting based off of sched_clock.
2304 * The reason for this explicit opt-in is not to have perf penalty with
2305 * slow sched_clocks.
2307 extern void enable_sched_clock_irqtime(void);
2308 extern void disable_sched_clock_irqtime(void);
2310 static inline void enable_sched_clock_irqtime(void) {}
2311 static inline void disable_sched_clock_irqtime(void) {}
2314 extern unsigned long long
2315 task_sched_runtime(struct task_struct
*task
);
2317 /* sched_exec is called by processes performing an exec */
2319 extern void sched_exec(void);
2321 #define sched_exec() {}
2324 extern void sched_clock_idle_sleep_event(void);
2325 extern void sched_clock_idle_wakeup_event(u64 delta_ns
);
2327 #ifdef CONFIG_HOTPLUG_CPU
2328 extern void idle_task_exit(void);
2330 static inline void idle_task_exit(void) {}
2333 #if defined(CONFIG_NO_HZ_COMMON) && defined(CONFIG_SMP)
2334 extern void wake_up_nohz_cpu(int cpu
);
2336 static inline void wake_up_nohz_cpu(int cpu
) { }
2339 #ifdef CONFIG_NO_HZ_FULL
2340 extern bool sched_can_stop_tick(void);
2341 extern u64
scheduler_tick_max_deferment(void);
2343 static inline bool sched_can_stop_tick(void) { return false; }
2346 #ifdef CONFIG_SCHED_AUTOGROUP
2347 extern void sched_autogroup_create_attach(struct task_struct
*p
);
2348 extern void sched_autogroup_detach(struct task_struct
*p
);
2349 extern void sched_autogroup_fork(struct signal_struct
*sig
);
2350 extern void sched_autogroup_exit(struct signal_struct
*sig
);
2351 #ifdef CONFIG_PROC_FS
2352 extern void proc_sched_autogroup_show_task(struct task_struct
*p
, struct seq_file
*m
);
2353 extern int proc_sched_autogroup_set_nice(struct task_struct
*p
, int nice
);
2356 static inline void sched_autogroup_create_attach(struct task_struct
*p
) { }
2357 static inline void sched_autogroup_detach(struct task_struct
*p
) { }
2358 static inline void sched_autogroup_fork(struct signal_struct
*sig
) { }
2359 static inline void sched_autogroup_exit(struct signal_struct
*sig
) { }
2362 extern int yield_to(struct task_struct
*p
, bool preempt
);
2363 extern void set_user_nice(struct task_struct
*p
, long nice
);
2364 extern int task_prio(const struct task_struct
*p
);
2366 * task_nice - return the nice value of a given task.
2367 * @p: the task in question.
2369 * Return: The nice value [ -20 ... 0 ... 19 ].
2371 static inline int task_nice(const struct task_struct
*p
)
2373 return PRIO_TO_NICE((p
)->static_prio
);
2375 extern int can_nice(const struct task_struct
*p
, const int nice
);
2376 extern int task_curr(const struct task_struct
*p
);
2377 extern int idle_cpu(int cpu
);
2378 extern int sched_setscheduler(struct task_struct
*, int,
2379 const struct sched_param
*);
2380 extern int sched_setscheduler_nocheck(struct task_struct
*, int,
2381 const struct sched_param
*);
2382 extern int sched_setattr(struct task_struct
*,
2383 const struct sched_attr
*);
2384 extern struct task_struct
*idle_task(int cpu
);
2386 * is_idle_task - is the specified task an idle task?
2387 * @p: the task in question.
2389 * Return: 1 if @p is an idle task. 0 otherwise.
2391 static inline bool is_idle_task(const struct task_struct
*p
)
2395 extern struct task_struct
*curr_task(int cpu
);
2396 extern void set_curr_task(int cpu
, struct task_struct
*p
);
2400 union thread_union
{
2401 struct thread_info thread_info
;
2402 unsigned long stack
[THREAD_SIZE
/sizeof(long)];
2405 #ifndef __HAVE_ARCH_KSTACK_END
2406 static inline int kstack_end(void *addr
)
2408 /* Reliable end of stack detection:
2409 * Some APM bios versions misalign the stack
2411 return !(((unsigned long)addr
+sizeof(void*)-1) & (THREAD_SIZE
-sizeof(void*)));
2415 extern union thread_union init_thread_union
;
2416 extern struct task_struct init_task
;
2418 extern struct mm_struct init_mm
;
2420 extern struct pid_namespace init_pid_ns
;
2423 * find a task by one of its numerical ids
2425 * find_task_by_pid_ns():
2426 * finds a task by its pid in the specified namespace
2427 * find_task_by_vpid():
2428 * finds a task by its virtual pid
2430 * see also find_vpid() etc in include/linux/pid.h
2433 extern struct task_struct
*find_task_by_vpid(pid_t nr
);
2434 extern struct task_struct
*find_task_by_pid_ns(pid_t nr
,
2435 struct pid_namespace
*ns
);
2437 /* per-UID process charging. */
2438 extern struct user_struct
* alloc_uid(kuid_t
);
2439 static inline struct user_struct
*get_uid(struct user_struct
*u
)
2441 atomic_inc(&u
->__count
);
2444 extern void free_uid(struct user_struct
*);
2446 #include <asm/current.h>
2448 extern void xtime_update(unsigned long ticks
);
2450 extern int wake_up_state(struct task_struct
*tsk
, unsigned int state
);
2451 extern int wake_up_process(struct task_struct
*tsk
);
2452 extern void wake_up_new_task(struct task_struct
*tsk
);
2454 extern void kick_process(struct task_struct
*tsk
);
2456 static inline void kick_process(struct task_struct
*tsk
) { }
2458 extern int sched_fork(unsigned long clone_flags
, struct task_struct
*p
);
2459 extern void sched_dead(struct task_struct
*p
);
2461 extern void proc_caches_init(void);
2462 extern void flush_signals(struct task_struct
*);
2463 extern void ignore_signals(struct task_struct
*);
2464 extern void flush_signal_handlers(struct task_struct
*, int force_default
);
2465 extern int dequeue_signal(struct task_struct
*tsk
, sigset_t
*mask
, siginfo_t
*info
);
2467 static inline int kernel_dequeue_signal(siginfo_t
*info
)
2469 struct task_struct
*tsk
= current
;
2473 spin_lock_irq(&tsk
->sighand
->siglock
);
2474 ret
= dequeue_signal(tsk
, &tsk
->blocked
, info
?: &__info
);
2475 spin_unlock_irq(&tsk
->sighand
->siglock
);
2480 static inline void kernel_signal_stop(void)
2482 spin_lock_irq(¤t
->sighand
->siglock
);
2483 if (current
->jobctl
& JOBCTL_STOP_DEQUEUED
)
2484 __set_current_state(TASK_STOPPED
);
2485 spin_unlock_irq(¤t
->sighand
->siglock
);
2490 extern void release_task(struct task_struct
* p
);
2491 extern int send_sig_info(int, struct siginfo
*, struct task_struct
*);
2492 extern int force_sigsegv(int, struct task_struct
*);
2493 extern int force_sig_info(int, struct siginfo
*, struct task_struct
*);
2494 extern int __kill_pgrp_info(int sig
, struct siginfo
*info
, struct pid
*pgrp
);
2495 extern int kill_pid_info(int sig
, struct siginfo
*info
, struct pid
*pid
);
2496 extern int kill_pid_info_as_cred(int, struct siginfo
*, struct pid
*,
2497 const struct cred
*, u32
);
2498 extern int kill_pgrp(struct pid
*pid
, int sig
, int priv
);
2499 extern int kill_pid(struct pid
*pid
, int sig
, int priv
);
2500 extern int kill_proc_info(int, struct siginfo
*, pid_t
);
2501 extern __must_check
bool do_notify_parent(struct task_struct
*, int);
2502 extern void __wake_up_parent(struct task_struct
*p
, struct task_struct
*parent
);
2503 extern void force_sig(int, struct task_struct
*);
2504 extern int send_sig(int, struct task_struct
*, int);
2505 extern int zap_other_threads(struct task_struct
*p
);
2506 extern struct sigqueue
*sigqueue_alloc(void);
2507 extern void sigqueue_free(struct sigqueue
*);
2508 extern int send_sigqueue(struct sigqueue
*, struct task_struct
*, int group
);
2509 extern int do_sigaction(int, struct k_sigaction
*, struct k_sigaction
*);
2511 static inline void restore_saved_sigmask(void)
2513 if (test_and_clear_restore_sigmask())
2514 __set_current_blocked(¤t
->saved_sigmask
);
2517 static inline sigset_t
*sigmask_to_save(void)
2519 sigset_t
*res
= ¤t
->blocked
;
2520 if (unlikely(test_restore_sigmask()))
2521 res
= ¤t
->saved_sigmask
;
2525 static inline int kill_cad_pid(int sig
, int priv
)
2527 return kill_pid(cad_pid
, sig
, priv
);
2530 /* These can be the second arg to send_sig_info/send_group_sig_info. */
2531 #define SEND_SIG_NOINFO ((struct siginfo *) 0)
2532 #define SEND_SIG_PRIV ((struct siginfo *) 1)
2533 #define SEND_SIG_FORCED ((struct siginfo *) 2)
2536 * True if we are on the alternate signal stack.
2538 static inline int on_sig_stack(unsigned long sp
)
2540 #ifdef CONFIG_STACK_GROWSUP
2541 return sp
>= current
->sas_ss_sp
&&
2542 sp
- current
->sas_ss_sp
< current
->sas_ss_size
;
2544 return sp
> current
->sas_ss_sp
&&
2545 sp
- current
->sas_ss_sp
<= current
->sas_ss_size
;
2549 static inline int sas_ss_flags(unsigned long sp
)
2551 if (!current
->sas_ss_size
)
2554 return on_sig_stack(sp
) ? SS_ONSTACK
: 0;
2557 static inline unsigned long sigsp(unsigned long sp
, struct ksignal
*ksig
)
2559 if (unlikely((ksig
->ka
.sa
.sa_flags
& SA_ONSTACK
)) && ! sas_ss_flags(sp
))
2560 #ifdef CONFIG_STACK_GROWSUP
2561 return current
->sas_ss_sp
;
2563 return current
->sas_ss_sp
+ current
->sas_ss_size
;
2569 * Routines for handling mm_structs
2571 extern struct mm_struct
* mm_alloc(void);
2573 /* mmdrop drops the mm and the page tables */
2574 extern void __mmdrop(struct mm_struct
*);
2575 static inline void mmdrop(struct mm_struct
* mm
)
2577 if (unlikely(atomic_dec_and_test(&mm
->mm_count
)))
2581 /* mmput gets rid of the mappings and all user-space */
2582 extern void mmput(struct mm_struct
*);
2583 /* Grab a reference to a task's mm, if it is not already going away */
2584 extern struct mm_struct
*get_task_mm(struct task_struct
*task
);
2586 * Grab a reference to a task's mm, if it is not already going away
2587 * and ptrace_may_access with the mode parameter passed to it
2590 extern struct mm_struct
*mm_access(struct task_struct
*task
, unsigned int mode
);
2591 /* Remove the current tasks stale references to the old mm_struct */
2592 extern void mm_release(struct task_struct
*, struct mm_struct
*);
2594 #ifdef CONFIG_HAVE_COPY_THREAD_TLS
2595 extern int copy_thread_tls(unsigned long, unsigned long, unsigned long,
2596 struct task_struct
*, unsigned long);
2598 extern int copy_thread(unsigned long, unsigned long, unsigned long,
2599 struct task_struct
*);
2601 /* Architectures that haven't opted into copy_thread_tls get the tls argument
2602 * via pt_regs, so ignore the tls argument passed via C. */
2603 static inline int copy_thread_tls(
2604 unsigned long clone_flags
, unsigned long sp
, unsigned long arg
,
2605 struct task_struct
*p
, unsigned long tls
)
2607 return copy_thread(clone_flags
, sp
, arg
, p
);
2610 extern void flush_thread(void);
2611 extern void exit_thread(void);
2613 extern void exit_files(struct task_struct
*);
2614 extern void __cleanup_sighand(struct sighand_struct
*);
2616 extern void exit_itimers(struct signal_struct
*);
2617 extern void flush_itimer_signals(void);
2619 extern void do_group_exit(int);
2621 extern int do_execve(struct filename
*,
2622 const char __user
* const __user
*,
2623 const char __user
* const __user
*);
2624 extern int do_execveat(int, struct filename
*,
2625 const char __user
* const __user
*,
2626 const char __user
* const __user
*,
2628 extern long _do_fork(unsigned long, unsigned long, unsigned long, int __user
*, int __user
*, unsigned long);
2629 extern long do_fork(unsigned long, unsigned long, unsigned long, int __user
*, int __user
*);
2630 struct task_struct
*fork_idle(int);
2631 extern pid_t
kernel_thread(int (*fn
)(void *), void *arg
, unsigned long flags
);
2633 extern void __set_task_comm(struct task_struct
*tsk
, const char *from
, bool exec
);
2634 static inline void set_task_comm(struct task_struct
*tsk
, const char *from
)
2636 __set_task_comm(tsk
, from
, false);
2638 extern char *get_task_comm(char *to
, struct task_struct
*tsk
);
2641 void scheduler_ipi(void);
2642 extern unsigned long wait_task_inactive(struct task_struct
*, long match_state
);
2644 static inline void scheduler_ipi(void) { }
2645 static inline unsigned long wait_task_inactive(struct task_struct
*p
,
2652 #define tasklist_empty() \
2653 list_empty(&init_task.tasks)
2655 #define next_task(p) \
2656 list_entry_rcu((p)->tasks.next, struct task_struct, tasks)
2658 #define for_each_process(p) \
2659 for (p = &init_task ; (p = next_task(p)) != &init_task ; )
2661 extern bool current_is_single_threaded(void);
2664 * Careful: do_each_thread/while_each_thread is a double loop so
2665 * 'break' will not work as expected - use goto instead.
2667 #define do_each_thread(g, t) \
2668 for (g = t = &init_task ; (g = t = next_task(g)) != &init_task ; ) do
2670 #define while_each_thread(g, t) \
2671 while ((t = next_thread(t)) != g)
2673 #define __for_each_thread(signal, t) \
2674 list_for_each_entry_rcu(t, &(signal)->thread_head, thread_node)
2676 #define for_each_thread(p, t) \
2677 __for_each_thread((p)->signal, t)
2679 /* Careful: this is a double loop, 'break' won't work as expected. */
2680 #define for_each_process_thread(p, t) \
2681 for_each_process(p) for_each_thread(p, t)
2683 static inline int get_nr_threads(struct task_struct
*tsk
)
2685 return tsk
->signal
->nr_threads
;
2688 static inline bool thread_group_leader(struct task_struct
*p
)
2690 return p
->exit_signal
>= 0;
2693 /* Do to the insanities of de_thread it is possible for a process
2694 * to have the pid of the thread group leader without actually being
2695 * the thread group leader. For iteration through the pids in proc
2696 * all we care about is that we have a task with the appropriate
2697 * pid, we don't actually care if we have the right task.
2699 static inline bool has_group_leader_pid(struct task_struct
*p
)
2701 return task_pid(p
) == p
->signal
->leader_pid
;
2705 bool same_thread_group(struct task_struct
*p1
, struct task_struct
*p2
)
2707 return p1
->signal
== p2
->signal
;
2710 static inline struct task_struct
*next_thread(const struct task_struct
*p
)
2712 return list_entry_rcu(p
->thread_group
.next
,
2713 struct task_struct
, thread_group
);
2716 static inline int thread_group_empty(struct task_struct
*p
)
2718 return list_empty(&p
->thread_group
);
2721 #define delay_group_leader(p) \
2722 (thread_group_leader(p) && !thread_group_empty(p))
2725 * Protects ->fs, ->files, ->mm, ->group_info, ->comm, keyring
2726 * subscriptions and synchronises with wait4(). Also used in procfs. Also
2727 * pins the final release of task.io_context. Also protects ->cpuset and
2728 * ->cgroup.subsys[]. And ->vfork_done.
2730 * Nests both inside and outside of read_lock(&tasklist_lock).
2731 * It must not be nested with write_lock_irq(&tasklist_lock),
2732 * neither inside nor outside.
2734 static inline void task_lock(struct task_struct
*p
)
2736 spin_lock(&p
->alloc_lock
);
2739 static inline void task_unlock(struct task_struct
*p
)
2741 spin_unlock(&p
->alloc_lock
);
2744 extern struct sighand_struct
*__lock_task_sighand(struct task_struct
*tsk
,
2745 unsigned long *flags
);
2747 static inline struct sighand_struct
*lock_task_sighand(struct task_struct
*tsk
,
2748 unsigned long *flags
)
2750 struct sighand_struct
*ret
;
2752 ret
= __lock_task_sighand(tsk
, flags
);
2753 (void)__cond_lock(&tsk
->sighand
->siglock
, ret
);
2757 static inline void unlock_task_sighand(struct task_struct
*tsk
,
2758 unsigned long *flags
)
2760 spin_unlock_irqrestore(&tsk
->sighand
->siglock
, *flags
);
2764 * threadgroup_change_begin - mark the beginning of changes to a threadgroup
2765 * @tsk: task causing the changes
2767 * All operations which modify a threadgroup - a new thread joining the
2768 * group, death of a member thread (the assertion of PF_EXITING) and
2769 * exec(2) dethreading the process and replacing the leader - are wrapped
2770 * by threadgroup_change_{begin|end}(). This is to provide a place which
2771 * subsystems needing threadgroup stability can hook into for
2774 static inline void threadgroup_change_begin(struct task_struct
*tsk
)
2777 cgroup_threadgroup_change_begin(tsk
);
2781 * threadgroup_change_end - mark the end of changes to a threadgroup
2782 * @tsk: task causing the changes
2784 * See threadgroup_change_begin().
2786 static inline void threadgroup_change_end(struct task_struct
*tsk
)
2788 cgroup_threadgroup_change_end(tsk
);
2791 #ifndef __HAVE_THREAD_FUNCTIONS
2793 #define task_thread_info(task) ((struct thread_info *)(task)->stack)
2794 #define task_stack_page(task) ((task)->stack)
2796 static inline void setup_thread_stack(struct task_struct
*p
, struct task_struct
*org
)
2798 *task_thread_info(p
) = *task_thread_info(org
);
2799 task_thread_info(p
)->task
= p
;
2803 * Return the address of the last usable long on the stack.
2805 * When the stack grows down, this is just above the thread
2806 * info struct. Going any lower will corrupt the threadinfo.
2808 * When the stack grows up, this is the highest address.
2809 * Beyond that position, we corrupt data on the next page.
2811 static inline unsigned long *end_of_stack(struct task_struct
*p
)
2813 #ifdef CONFIG_STACK_GROWSUP
2814 return (unsigned long *)((unsigned long)task_thread_info(p
) + THREAD_SIZE
) - 1;
2816 return (unsigned long *)(task_thread_info(p
) + 1);
2821 #define task_stack_end_corrupted(task) \
2822 (*(end_of_stack(task)) != STACK_END_MAGIC)
2824 static inline int object_is_on_stack(void *obj
)
2826 void *stack
= task_stack_page(current
);
2828 return (obj
>= stack
) && (obj
< (stack
+ THREAD_SIZE
));
2831 extern void thread_info_cache_init(void);
2833 #ifdef CONFIG_DEBUG_STACK_USAGE
2834 static inline unsigned long stack_not_used(struct task_struct
*p
)
2836 unsigned long *n
= end_of_stack(p
);
2838 do { /* Skip over canary */
2842 return (unsigned long)n
- (unsigned long)end_of_stack(p
);
2845 extern void set_task_stack_end_magic(struct task_struct
*tsk
);
2847 /* set thread flags in other task's structures
2848 * - see asm/thread_info.h for TIF_xxxx flags available
2850 static inline void set_tsk_thread_flag(struct task_struct
*tsk
, int flag
)
2852 set_ti_thread_flag(task_thread_info(tsk
), flag
);
2855 static inline void clear_tsk_thread_flag(struct task_struct
*tsk
, int flag
)
2857 clear_ti_thread_flag(task_thread_info(tsk
), flag
);
2860 static inline int test_and_set_tsk_thread_flag(struct task_struct
*tsk
, int flag
)
2862 return test_and_set_ti_thread_flag(task_thread_info(tsk
), flag
);
2865 static inline int test_and_clear_tsk_thread_flag(struct task_struct
*tsk
, int flag
)
2867 return test_and_clear_ti_thread_flag(task_thread_info(tsk
), flag
);
2870 static inline int test_tsk_thread_flag(struct task_struct
*tsk
, int flag
)
2872 return test_ti_thread_flag(task_thread_info(tsk
), flag
);
2875 static inline void set_tsk_need_resched(struct task_struct
*tsk
)
2877 set_tsk_thread_flag(tsk
,TIF_NEED_RESCHED
);
2880 static inline void clear_tsk_need_resched(struct task_struct
*tsk
)
2882 clear_tsk_thread_flag(tsk
,TIF_NEED_RESCHED
);
2885 static inline int test_tsk_need_resched(struct task_struct
*tsk
)
2887 return unlikely(test_tsk_thread_flag(tsk
,TIF_NEED_RESCHED
));
2890 static inline int restart_syscall(void)
2892 set_tsk_thread_flag(current
, TIF_SIGPENDING
);
2893 return -ERESTARTNOINTR
;
2896 static inline int signal_pending(struct task_struct
*p
)
2898 return unlikely(test_tsk_thread_flag(p
,TIF_SIGPENDING
));
2901 static inline int __fatal_signal_pending(struct task_struct
*p
)
2903 return unlikely(sigismember(&p
->pending
.signal
, SIGKILL
));
2906 static inline int fatal_signal_pending(struct task_struct
*p
)
2908 return signal_pending(p
) && __fatal_signal_pending(p
);
2911 static inline int signal_pending_state(long state
, struct task_struct
*p
)
2913 if (!(state
& (TASK_INTERRUPTIBLE
| TASK_WAKEKILL
)))
2915 if (!signal_pending(p
))
2918 return (state
& TASK_INTERRUPTIBLE
) || __fatal_signal_pending(p
);
2922 * cond_resched() and cond_resched_lock(): latency reduction via
2923 * explicit rescheduling in places that are safe. The return
2924 * value indicates whether a reschedule was done in fact.
2925 * cond_resched_lock() will drop the spinlock before scheduling,
2926 * cond_resched_softirq() will enable bhs before scheduling.
2928 extern int _cond_resched(void);
2930 #define cond_resched() ({ \
2931 ___might_sleep(__FILE__, __LINE__, 0); \
2935 extern int __cond_resched_lock(spinlock_t
*lock
);
2937 #define cond_resched_lock(lock) ({ \
2938 ___might_sleep(__FILE__, __LINE__, PREEMPT_LOCK_OFFSET);\
2939 __cond_resched_lock(lock); \
2942 extern int __cond_resched_softirq(void);
2944 #define cond_resched_softirq() ({ \
2945 ___might_sleep(__FILE__, __LINE__, SOFTIRQ_DISABLE_OFFSET); \
2946 __cond_resched_softirq(); \
2949 static inline void cond_resched_rcu(void)
2951 #if defined(CONFIG_DEBUG_ATOMIC_SLEEP) || !defined(CONFIG_PREEMPT_RCU)
2959 * Does a critical section need to be broken due to another
2960 * task waiting?: (technically does not depend on CONFIG_PREEMPT,
2961 * but a general need for low latency)
2963 static inline int spin_needbreak(spinlock_t
*lock
)
2965 #ifdef CONFIG_PREEMPT
2966 return spin_is_contended(lock
);
2973 * Idle thread specific functions to determine the need_resched
2976 #ifdef TIF_POLLING_NRFLAG
2977 static inline int tsk_is_polling(struct task_struct
*p
)
2979 return test_tsk_thread_flag(p
, TIF_POLLING_NRFLAG
);
2982 static inline void __current_set_polling(void)
2984 set_thread_flag(TIF_POLLING_NRFLAG
);
2987 static inline bool __must_check
current_set_polling_and_test(void)
2989 __current_set_polling();
2992 * Polling state must be visible before we test NEED_RESCHED,
2993 * paired by resched_curr()
2995 smp_mb__after_atomic();
2997 return unlikely(tif_need_resched());
3000 static inline void __current_clr_polling(void)
3002 clear_thread_flag(TIF_POLLING_NRFLAG
);
3005 static inline bool __must_check
current_clr_polling_and_test(void)
3007 __current_clr_polling();
3010 * Polling state must be visible before we test NEED_RESCHED,
3011 * paired by resched_curr()
3013 smp_mb__after_atomic();
3015 return unlikely(tif_need_resched());
3019 static inline int tsk_is_polling(struct task_struct
*p
) { return 0; }
3020 static inline void __current_set_polling(void) { }
3021 static inline void __current_clr_polling(void) { }
3023 static inline bool __must_check
current_set_polling_and_test(void)
3025 return unlikely(tif_need_resched());
3027 static inline bool __must_check
current_clr_polling_and_test(void)
3029 return unlikely(tif_need_resched());
3033 static inline void current_clr_polling(void)
3035 __current_clr_polling();
3038 * Ensure we check TIF_NEED_RESCHED after we clear the polling bit.
3039 * Once the bit is cleared, we'll get IPIs with every new
3040 * TIF_NEED_RESCHED and the IPI handler, scheduler_ipi(), will also
3043 smp_mb(); /* paired with resched_curr() */
3045 preempt_fold_need_resched();
3048 static __always_inline
bool need_resched(void)
3050 return unlikely(tif_need_resched());
3054 * Thread group CPU time accounting.
3056 void thread_group_cputime(struct task_struct
*tsk
, struct task_cputime
*times
);
3057 void thread_group_cputimer(struct task_struct
*tsk
, struct task_cputime
*times
);
3060 * Reevaluate whether the task has signals pending delivery.
3061 * Wake the task if so.
3062 * This is required every time the blocked sigset_t changes.
3063 * callers must hold sighand->siglock.
3065 extern void recalc_sigpending_and_wake(struct task_struct
*t
);
3066 extern void recalc_sigpending(void);
3068 extern void signal_wake_up_state(struct task_struct
*t
, unsigned int state
);
3070 static inline void signal_wake_up(struct task_struct
*t
, bool resume
)
3072 signal_wake_up_state(t
, resume
? TASK_WAKEKILL
: 0);
3074 static inline void ptrace_signal_wake_up(struct task_struct
*t
, bool resume
)
3076 signal_wake_up_state(t
, resume
? __TASK_TRACED
: 0);
3080 * Wrappers for p->thread_info->cpu access. No-op on UP.
3084 static inline unsigned int task_cpu(const struct task_struct
*p
)
3086 return task_thread_info(p
)->cpu
;
3089 static inline int task_node(const struct task_struct
*p
)
3091 return cpu_to_node(task_cpu(p
));
3094 extern void set_task_cpu(struct task_struct
*p
, unsigned int cpu
);
3098 static inline unsigned int task_cpu(const struct task_struct
*p
)
3103 static inline void set_task_cpu(struct task_struct
*p
, unsigned int cpu
)
3107 #endif /* CONFIG_SMP */
3109 extern long sched_setaffinity(pid_t pid
, const struct cpumask
*new_mask
);
3110 extern long sched_getaffinity(pid_t pid
, struct cpumask
*mask
);
3112 #ifdef CONFIG_CGROUP_SCHED
3113 extern struct task_group root_task_group
;
3114 #endif /* CONFIG_CGROUP_SCHED */
3116 extern int task_can_switch_user(struct user_struct
*up
,
3117 struct task_struct
*tsk
);
3119 #ifdef CONFIG_TASK_XACCT
3120 static inline void add_rchar(struct task_struct
*tsk
, ssize_t amt
)
3122 tsk
->ioac
.rchar
+= amt
;
3125 static inline void add_wchar(struct task_struct
*tsk
, ssize_t amt
)
3127 tsk
->ioac
.wchar
+= amt
;
3130 static inline void inc_syscr(struct task_struct
*tsk
)
3135 static inline void inc_syscw(struct task_struct
*tsk
)
3140 static inline void add_rchar(struct task_struct
*tsk
, ssize_t amt
)
3144 static inline void add_wchar(struct task_struct
*tsk
, ssize_t amt
)
3148 static inline void inc_syscr(struct task_struct
*tsk
)
3152 static inline void inc_syscw(struct task_struct
*tsk
)
3157 #ifndef TASK_SIZE_OF
3158 #define TASK_SIZE_OF(tsk) TASK_SIZE
3162 extern void mm_update_next_owner(struct mm_struct
*mm
);
3164 static inline void mm_update_next_owner(struct mm_struct
*mm
)
3167 #endif /* CONFIG_MEMCG */
3169 static inline unsigned long task_rlimit(const struct task_struct
*tsk
,
3172 return READ_ONCE(tsk
->signal
->rlim
[limit
].rlim_cur
);
3175 static inline unsigned long task_rlimit_max(const struct task_struct
*tsk
,
3178 return READ_ONCE(tsk
->signal
->rlim
[limit
].rlim_max
);
3181 static inline unsigned long rlimit(unsigned int limit
)
3183 return task_rlimit(current
, limit
);
3186 static inline unsigned long rlimit_max(unsigned int limit
)
3188 return task_rlimit_max(current
, limit
);