proc: Fix proc_sys_prune_dcache to hold a sb reference
[cris-mirror.git] / drivers / bluetooth / hci_intel.c
blobfa5099986f1b3ca50c14745990a0fe682963b737
1 /*
3 * Bluetooth HCI UART driver for Intel devices
5 * Copyright (C) 2015 Intel Corporation
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License as published by
10 * the Free Software Foundation; either version 2 of the License, or
11 * (at your option) any later version.
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details.
18 * You should have received a copy of the GNU General Public License
19 * along with this program; if not, write to the Free Software
20 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
24 #include <linux/kernel.h>
25 #include <linux/errno.h>
26 #include <linux/skbuff.h>
27 #include <linux/firmware.h>
28 #include <linux/module.h>
29 #include <linux/wait.h>
30 #include <linux/tty.h>
31 #include <linux/platform_device.h>
32 #include <linux/gpio/consumer.h>
33 #include <linux/acpi.h>
34 #include <linux/interrupt.h>
35 #include <linux/pm_runtime.h>
37 #include <net/bluetooth/bluetooth.h>
38 #include <net/bluetooth/hci_core.h>
40 #include "hci_uart.h"
41 #include "btintel.h"
43 #define STATE_BOOTLOADER 0
44 #define STATE_DOWNLOADING 1
45 #define STATE_FIRMWARE_LOADED 2
46 #define STATE_FIRMWARE_FAILED 3
47 #define STATE_BOOTING 4
48 #define STATE_LPM_ENABLED 5
49 #define STATE_TX_ACTIVE 6
50 #define STATE_SUSPENDED 7
51 #define STATE_LPM_TRANSACTION 8
53 #define HCI_LPM_WAKE_PKT 0xf0
54 #define HCI_LPM_PKT 0xf1
55 #define HCI_LPM_MAX_SIZE 10
56 #define HCI_LPM_HDR_SIZE HCI_EVENT_HDR_SIZE
58 #define LPM_OP_TX_NOTIFY 0x00
59 #define LPM_OP_SUSPEND_ACK 0x02
60 #define LPM_OP_RESUME_ACK 0x03
62 #define LPM_SUSPEND_DELAY_MS 1000
64 struct hci_lpm_pkt {
65 __u8 opcode;
66 __u8 dlen;
67 __u8 data[0];
68 } __packed;
70 struct intel_device {
71 struct list_head list;
72 struct platform_device *pdev;
73 struct gpio_desc *reset;
74 struct hci_uart *hu;
75 struct mutex hu_lock;
76 int irq;
79 static LIST_HEAD(intel_device_list);
80 static DEFINE_MUTEX(intel_device_list_lock);
82 struct intel_data {
83 struct sk_buff *rx_skb;
84 struct sk_buff_head txq;
85 struct work_struct busy_work;
86 struct hci_uart *hu;
87 unsigned long flags;
90 static u8 intel_convert_speed(unsigned int speed)
92 switch (speed) {
93 case 9600:
94 return 0x00;
95 case 19200:
96 return 0x01;
97 case 38400:
98 return 0x02;
99 case 57600:
100 return 0x03;
101 case 115200:
102 return 0x04;
103 case 230400:
104 return 0x05;
105 case 460800:
106 return 0x06;
107 case 921600:
108 return 0x07;
109 case 1843200:
110 return 0x08;
111 case 3250000:
112 return 0x09;
113 case 2000000:
114 return 0x0a;
115 case 3000000:
116 return 0x0b;
117 default:
118 return 0xff;
122 static int intel_wait_booting(struct hci_uart *hu)
124 struct intel_data *intel = hu->priv;
125 int err;
127 err = wait_on_bit_timeout(&intel->flags, STATE_BOOTING,
128 TASK_INTERRUPTIBLE,
129 msecs_to_jiffies(1000));
131 if (err == -EINTR) {
132 bt_dev_err(hu->hdev, "Device boot interrupted");
133 return -EINTR;
136 if (err) {
137 bt_dev_err(hu->hdev, "Device boot timeout");
138 return -ETIMEDOUT;
141 return err;
144 #ifdef CONFIG_PM
145 static int intel_wait_lpm_transaction(struct hci_uart *hu)
147 struct intel_data *intel = hu->priv;
148 int err;
150 err = wait_on_bit_timeout(&intel->flags, STATE_LPM_TRANSACTION,
151 TASK_INTERRUPTIBLE,
152 msecs_to_jiffies(1000));
154 if (err == -EINTR) {
155 bt_dev_err(hu->hdev, "LPM transaction interrupted");
156 return -EINTR;
159 if (err) {
160 bt_dev_err(hu->hdev, "LPM transaction timeout");
161 return -ETIMEDOUT;
164 return err;
167 static int intel_lpm_suspend(struct hci_uart *hu)
169 static const u8 suspend[] = { 0x01, 0x01, 0x01 };
170 struct intel_data *intel = hu->priv;
171 struct sk_buff *skb;
173 if (!test_bit(STATE_LPM_ENABLED, &intel->flags) ||
174 test_bit(STATE_SUSPENDED, &intel->flags))
175 return 0;
177 if (test_bit(STATE_TX_ACTIVE, &intel->flags))
178 return -EAGAIN;
180 bt_dev_dbg(hu->hdev, "Suspending");
182 skb = bt_skb_alloc(sizeof(suspend), GFP_KERNEL);
183 if (!skb) {
184 bt_dev_err(hu->hdev, "Failed to alloc memory for LPM packet");
185 return -ENOMEM;
188 memcpy(skb_put(skb, sizeof(suspend)), suspend, sizeof(suspend));
189 hci_skb_pkt_type(skb) = HCI_LPM_PKT;
191 set_bit(STATE_LPM_TRANSACTION, &intel->flags);
193 /* LPM flow is a priority, enqueue packet at list head */
194 skb_queue_head(&intel->txq, skb);
195 hci_uart_tx_wakeup(hu);
197 intel_wait_lpm_transaction(hu);
198 /* Even in case of failure, continue and test the suspended flag */
200 clear_bit(STATE_LPM_TRANSACTION, &intel->flags);
202 if (!test_bit(STATE_SUSPENDED, &intel->flags)) {
203 bt_dev_err(hu->hdev, "Device suspend error");
204 return -EINVAL;
207 bt_dev_dbg(hu->hdev, "Suspended");
209 hci_uart_set_flow_control(hu, true);
211 return 0;
214 static int intel_lpm_resume(struct hci_uart *hu)
216 struct intel_data *intel = hu->priv;
217 struct sk_buff *skb;
219 if (!test_bit(STATE_LPM_ENABLED, &intel->flags) ||
220 !test_bit(STATE_SUSPENDED, &intel->flags))
221 return 0;
223 bt_dev_dbg(hu->hdev, "Resuming");
225 hci_uart_set_flow_control(hu, false);
227 skb = bt_skb_alloc(0, GFP_KERNEL);
228 if (!skb) {
229 bt_dev_err(hu->hdev, "Failed to alloc memory for LPM packet");
230 return -ENOMEM;
233 hci_skb_pkt_type(skb) = HCI_LPM_WAKE_PKT;
235 set_bit(STATE_LPM_TRANSACTION, &intel->flags);
237 /* LPM flow is a priority, enqueue packet at list head */
238 skb_queue_head(&intel->txq, skb);
239 hci_uart_tx_wakeup(hu);
241 intel_wait_lpm_transaction(hu);
242 /* Even in case of failure, continue and test the suspended flag */
244 clear_bit(STATE_LPM_TRANSACTION, &intel->flags);
246 if (test_bit(STATE_SUSPENDED, &intel->flags)) {
247 bt_dev_err(hu->hdev, "Device resume error");
248 return -EINVAL;
251 bt_dev_dbg(hu->hdev, "Resumed");
253 return 0;
255 #endif /* CONFIG_PM */
257 static int intel_lpm_host_wake(struct hci_uart *hu)
259 static const u8 lpm_resume_ack[] = { LPM_OP_RESUME_ACK, 0x00 };
260 struct intel_data *intel = hu->priv;
261 struct sk_buff *skb;
263 hci_uart_set_flow_control(hu, false);
265 clear_bit(STATE_SUSPENDED, &intel->flags);
267 skb = bt_skb_alloc(sizeof(lpm_resume_ack), GFP_KERNEL);
268 if (!skb) {
269 bt_dev_err(hu->hdev, "Failed to alloc memory for LPM packet");
270 return -ENOMEM;
273 memcpy(skb_put(skb, sizeof(lpm_resume_ack)), lpm_resume_ack,
274 sizeof(lpm_resume_ack));
275 hci_skb_pkt_type(skb) = HCI_LPM_PKT;
277 /* LPM flow is a priority, enqueue packet at list head */
278 skb_queue_head(&intel->txq, skb);
279 hci_uart_tx_wakeup(hu);
281 bt_dev_dbg(hu->hdev, "Resumed by controller");
283 return 0;
286 static irqreturn_t intel_irq(int irq, void *dev_id)
288 struct intel_device *idev = dev_id;
290 dev_info(&idev->pdev->dev, "hci_intel irq\n");
292 mutex_lock(&idev->hu_lock);
293 if (idev->hu)
294 intel_lpm_host_wake(idev->hu);
295 mutex_unlock(&idev->hu_lock);
297 /* Host/Controller are now LPM resumed, trigger a new delayed suspend */
298 pm_runtime_get(&idev->pdev->dev);
299 pm_runtime_mark_last_busy(&idev->pdev->dev);
300 pm_runtime_put_autosuspend(&idev->pdev->dev);
302 return IRQ_HANDLED;
305 static int intel_set_power(struct hci_uart *hu, bool powered)
307 struct list_head *p;
308 int err = -ENODEV;
310 if (!hu->tty->dev)
311 return err;
313 mutex_lock(&intel_device_list_lock);
315 list_for_each(p, &intel_device_list) {
316 struct intel_device *idev = list_entry(p, struct intel_device,
317 list);
319 /* tty device and pdev device should share the same parent
320 * which is the UART port.
322 if (hu->tty->dev->parent != idev->pdev->dev.parent)
323 continue;
325 if (!idev->reset) {
326 err = -ENOTSUPP;
327 break;
330 BT_INFO("hu %p, Switching compatible pm device (%s) to %u",
331 hu, dev_name(&idev->pdev->dev), powered);
333 gpiod_set_value(idev->reset, powered);
335 /* Provide to idev a hu reference which is used to run LPM
336 * transactions (lpm suspend/resume) from PM callbacks.
337 * hu needs to be protected against concurrent removing during
338 * these PM ops.
340 mutex_lock(&idev->hu_lock);
341 idev->hu = powered ? hu : NULL;
342 mutex_unlock(&idev->hu_lock);
344 if (idev->irq < 0)
345 break;
347 if (powered && device_can_wakeup(&idev->pdev->dev)) {
348 err = devm_request_threaded_irq(&idev->pdev->dev,
349 idev->irq, NULL,
350 intel_irq,
351 IRQF_ONESHOT,
352 "bt-host-wake", idev);
353 if (err) {
354 BT_ERR("hu %p, unable to allocate irq-%d",
355 hu, idev->irq);
356 break;
359 device_wakeup_enable(&idev->pdev->dev);
361 pm_runtime_set_active(&idev->pdev->dev);
362 pm_runtime_use_autosuspend(&idev->pdev->dev);
363 pm_runtime_set_autosuspend_delay(&idev->pdev->dev,
364 LPM_SUSPEND_DELAY_MS);
365 pm_runtime_enable(&idev->pdev->dev);
366 } else if (!powered && device_may_wakeup(&idev->pdev->dev)) {
367 devm_free_irq(&idev->pdev->dev, idev->irq, idev);
368 device_wakeup_disable(&idev->pdev->dev);
370 pm_runtime_disable(&idev->pdev->dev);
374 mutex_unlock(&intel_device_list_lock);
376 return err;
379 static void intel_busy_work(struct work_struct *work)
381 struct list_head *p;
382 struct intel_data *intel = container_of(work, struct intel_data,
383 busy_work);
385 if (!intel->hu->tty->dev)
386 return;
388 /* Link is busy, delay the suspend */
389 mutex_lock(&intel_device_list_lock);
390 list_for_each(p, &intel_device_list) {
391 struct intel_device *idev = list_entry(p, struct intel_device,
392 list);
394 if (intel->hu->tty->dev->parent == idev->pdev->dev.parent) {
395 pm_runtime_get(&idev->pdev->dev);
396 pm_runtime_mark_last_busy(&idev->pdev->dev);
397 pm_runtime_put_autosuspend(&idev->pdev->dev);
398 break;
401 mutex_unlock(&intel_device_list_lock);
404 static int intel_open(struct hci_uart *hu)
406 struct intel_data *intel;
408 BT_DBG("hu %p", hu);
410 intel = kzalloc(sizeof(*intel), GFP_KERNEL);
411 if (!intel)
412 return -ENOMEM;
414 skb_queue_head_init(&intel->txq);
415 INIT_WORK(&intel->busy_work, intel_busy_work);
417 intel->hu = hu;
419 hu->priv = intel;
421 if (!intel_set_power(hu, true))
422 set_bit(STATE_BOOTING, &intel->flags);
424 return 0;
427 static int intel_close(struct hci_uart *hu)
429 struct intel_data *intel = hu->priv;
431 BT_DBG("hu %p", hu);
433 cancel_work_sync(&intel->busy_work);
435 intel_set_power(hu, false);
437 skb_queue_purge(&intel->txq);
438 kfree_skb(intel->rx_skb);
439 kfree(intel);
441 hu->priv = NULL;
442 return 0;
445 static int intel_flush(struct hci_uart *hu)
447 struct intel_data *intel = hu->priv;
449 BT_DBG("hu %p", hu);
451 skb_queue_purge(&intel->txq);
453 return 0;
456 static int inject_cmd_complete(struct hci_dev *hdev, __u16 opcode)
458 struct sk_buff *skb;
459 struct hci_event_hdr *hdr;
460 struct hci_ev_cmd_complete *evt;
462 skb = bt_skb_alloc(sizeof(*hdr) + sizeof(*evt) + 1, GFP_ATOMIC);
463 if (!skb)
464 return -ENOMEM;
466 hdr = (struct hci_event_hdr *)skb_put(skb, sizeof(*hdr));
467 hdr->evt = HCI_EV_CMD_COMPLETE;
468 hdr->plen = sizeof(*evt) + 1;
470 evt = (struct hci_ev_cmd_complete *)skb_put(skb, sizeof(*evt));
471 evt->ncmd = 0x01;
472 evt->opcode = cpu_to_le16(opcode);
474 *skb_put(skb, 1) = 0x00;
476 hci_skb_pkt_type(skb) = HCI_EVENT_PKT;
478 return hci_recv_frame(hdev, skb);
481 static int intel_set_baudrate(struct hci_uart *hu, unsigned int speed)
483 struct intel_data *intel = hu->priv;
484 struct hci_dev *hdev = hu->hdev;
485 u8 speed_cmd[] = { 0x06, 0xfc, 0x01, 0x00 };
486 struct sk_buff *skb;
487 int err;
489 /* This can be the first command sent to the chip, check
490 * that the controller is ready.
492 err = intel_wait_booting(hu);
494 clear_bit(STATE_BOOTING, &intel->flags);
496 /* In case of timeout, try to continue anyway */
497 if (err && err != -ETIMEDOUT)
498 return err;
500 bt_dev_info(hdev, "Change controller speed to %d", speed);
502 speed_cmd[3] = intel_convert_speed(speed);
503 if (speed_cmd[3] == 0xff) {
504 bt_dev_err(hdev, "Unsupported speed");
505 return -EINVAL;
508 /* Device will not accept speed change if Intel version has not been
509 * previously requested.
511 skb = __hci_cmd_sync(hdev, 0xfc05, 0, NULL, HCI_CMD_TIMEOUT);
512 if (IS_ERR(skb)) {
513 bt_dev_err(hdev, "Reading Intel version information failed (%ld)",
514 PTR_ERR(skb));
515 return PTR_ERR(skb);
517 kfree_skb(skb);
519 skb = bt_skb_alloc(sizeof(speed_cmd), GFP_KERNEL);
520 if (!skb) {
521 bt_dev_err(hdev, "Failed to alloc memory for baudrate packet");
522 return -ENOMEM;
525 memcpy(skb_put(skb, sizeof(speed_cmd)), speed_cmd, sizeof(speed_cmd));
526 hci_skb_pkt_type(skb) = HCI_COMMAND_PKT;
528 hci_uart_set_flow_control(hu, true);
530 skb_queue_tail(&intel->txq, skb);
531 hci_uart_tx_wakeup(hu);
533 /* wait 100ms to change baudrate on controller side */
534 msleep(100);
536 hci_uart_set_baudrate(hu, speed);
537 hci_uart_set_flow_control(hu, false);
539 return 0;
542 static int intel_setup(struct hci_uart *hu)
544 static const u8 reset_param[] = { 0x00, 0x01, 0x00, 0x01,
545 0x00, 0x08, 0x04, 0x00 };
546 struct intel_data *intel = hu->priv;
547 struct hci_dev *hdev = hu->hdev;
548 struct sk_buff *skb;
549 struct intel_version ver;
550 struct intel_boot_params *params;
551 struct list_head *p;
552 const struct firmware *fw;
553 const u8 *fw_ptr;
554 char fwname[64];
555 u32 frag_len;
556 ktime_t calltime, delta, rettime;
557 unsigned long long duration;
558 unsigned int init_speed, oper_speed;
559 int speed_change = 0;
560 int err;
562 bt_dev_dbg(hdev, "start intel_setup");
564 hu->hdev->set_diag = btintel_set_diag;
565 hu->hdev->set_bdaddr = btintel_set_bdaddr;
567 calltime = ktime_get();
569 if (hu->init_speed)
570 init_speed = hu->init_speed;
571 else
572 init_speed = hu->proto->init_speed;
574 if (hu->oper_speed)
575 oper_speed = hu->oper_speed;
576 else
577 oper_speed = hu->proto->oper_speed;
579 if (oper_speed && init_speed && oper_speed != init_speed)
580 speed_change = 1;
582 /* Check that the controller is ready */
583 err = intel_wait_booting(hu);
585 clear_bit(STATE_BOOTING, &intel->flags);
587 /* In case of timeout, try to continue anyway */
588 if (err && err != -ETIMEDOUT)
589 return err;
591 set_bit(STATE_BOOTLOADER, &intel->flags);
593 /* Read the Intel version information to determine if the device
594 * is in bootloader mode or if it already has operational firmware
595 * loaded.
597 err = btintel_read_version(hdev, &ver);
598 if (err)
599 return err;
601 /* The hardware platform number has a fixed value of 0x37 and
602 * for now only accept this single value.
604 if (ver.hw_platform != 0x37) {
605 bt_dev_err(hdev, "Unsupported Intel hardware platform (%u)",
606 ver.hw_platform);
607 return -EINVAL;
610 /* Check for supported iBT hardware variants of this firmware
611 * loading method.
613 * This check has been put in place to ensure correct forward
614 * compatibility options when newer hardware variants come along.
616 switch (ver.hw_variant) {
617 case 0x0b: /* LnP */
618 case 0x0c: /* WsP */
619 case 0x12: /* ThP */
620 break;
621 default:
622 bt_dev_err(hdev, "Unsupported Intel hardware variant (%u)",
623 ver.hw_variant);
624 return -EINVAL;
627 btintel_version_info(hdev, &ver);
629 /* The firmware variant determines if the device is in bootloader
630 * mode or is running operational firmware. The value 0x06 identifies
631 * the bootloader and the value 0x23 identifies the operational
632 * firmware.
634 * When the operational firmware is already present, then only
635 * the check for valid Bluetooth device address is needed. This
636 * determines if the device will be added as configured or
637 * unconfigured controller.
639 * It is not possible to use the Secure Boot Parameters in this
640 * case since that command is only available in bootloader mode.
642 if (ver.fw_variant == 0x23) {
643 clear_bit(STATE_BOOTLOADER, &intel->flags);
644 btintel_check_bdaddr(hdev);
645 return 0;
648 /* If the device is not in bootloader mode, then the only possible
649 * choice is to return an error and abort the device initialization.
651 if (ver.fw_variant != 0x06) {
652 bt_dev_err(hdev, "Unsupported Intel firmware variant (%u)",
653 ver.fw_variant);
654 return -ENODEV;
657 /* Read the secure boot parameters to identify the operating
658 * details of the bootloader.
660 skb = __hci_cmd_sync(hdev, 0xfc0d, 0, NULL, HCI_CMD_TIMEOUT);
661 if (IS_ERR(skb)) {
662 bt_dev_err(hdev, "Reading Intel boot parameters failed (%ld)",
663 PTR_ERR(skb));
664 return PTR_ERR(skb);
667 if (skb->len != sizeof(*params)) {
668 bt_dev_err(hdev, "Intel boot parameters size mismatch");
669 kfree_skb(skb);
670 return -EILSEQ;
673 params = (struct intel_boot_params *)skb->data;
674 if (params->status) {
675 bt_dev_err(hdev, "Intel boot parameters command failure (%02x)",
676 params->status);
677 err = -bt_to_errno(params->status);
678 kfree_skb(skb);
679 return err;
682 bt_dev_info(hdev, "Device revision is %u",
683 le16_to_cpu(params->dev_revid));
685 bt_dev_info(hdev, "Secure boot is %s",
686 params->secure_boot ? "enabled" : "disabled");
688 bt_dev_info(hdev, "Minimum firmware build %u week %u %u",
689 params->min_fw_build_nn, params->min_fw_build_cw,
690 2000 + params->min_fw_build_yy);
692 /* It is required that every single firmware fragment is acknowledged
693 * with a command complete event. If the boot parameters indicate
694 * that this bootloader does not send them, then abort the setup.
696 if (params->limited_cce != 0x00) {
697 bt_dev_err(hdev, "Unsupported Intel firmware loading method (%u)",
698 params->limited_cce);
699 kfree_skb(skb);
700 return -EINVAL;
703 /* If the OTP has no valid Bluetooth device address, then there will
704 * also be no valid address for the operational firmware.
706 if (!bacmp(&params->otp_bdaddr, BDADDR_ANY)) {
707 bt_dev_info(hdev, "No device address configured");
708 set_bit(HCI_QUIRK_INVALID_BDADDR, &hdev->quirks);
711 /* With this Intel bootloader only the hardware variant and device
712 * revision information are used to select the right firmware.
714 * The firmware filename is ibt-<hw_variant>-<dev_revid>.sfi.
716 * Currently the supported hardware variants are:
717 * 11 (0x0b) for iBT 3.0 (LnP/SfP)
719 snprintf(fwname, sizeof(fwname), "intel/ibt-%u-%u.sfi",
720 le16_to_cpu(ver.hw_variant),
721 le16_to_cpu(params->dev_revid));
723 err = request_firmware(&fw, fwname, &hdev->dev);
724 if (err < 0) {
725 bt_dev_err(hdev, "Failed to load Intel firmware file (%d)",
726 err);
727 kfree_skb(skb);
728 return err;
731 bt_dev_info(hdev, "Found device firmware: %s", fwname);
733 /* Save the DDC file name for later */
734 snprintf(fwname, sizeof(fwname), "intel/ibt-%u-%u.ddc",
735 le16_to_cpu(ver.hw_variant),
736 le16_to_cpu(params->dev_revid));
738 kfree_skb(skb);
740 if (fw->size < 644) {
741 bt_dev_err(hdev, "Invalid size of firmware file (%zu)",
742 fw->size);
743 err = -EBADF;
744 goto done;
747 set_bit(STATE_DOWNLOADING, &intel->flags);
749 /* Start the firmware download transaction with the Init fragment
750 * represented by the 128 bytes of CSS header.
752 err = btintel_secure_send(hdev, 0x00, 128, fw->data);
753 if (err < 0) {
754 bt_dev_err(hdev, "Failed to send firmware header (%d)", err);
755 goto done;
758 /* Send the 256 bytes of public key information from the firmware
759 * as the PKey fragment.
761 err = btintel_secure_send(hdev, 0x03, 256, fw->data + 128);
762 if (err < 0) {
763 bt_dev_err(hdev, "Failed to send firmware public key (%d)",
764 err);
765 goto done;
768 /* Send the 256 bytes of signature information from the firmware
769 * as the Sign fragment.
771 err = btintel_secure_send(hdev, 0x02, 256, fw->data + 388);
772 if (err < 0) {
773 bt_dev_err(hdev, "Failed to send firmware signature (%d)",
774 err);
775 goto done;
778 fw_ptr = fw->data + 644;
779 frag_len = 0;
781 while (fw_ptr - fw->data < fw->size) {
782 struct hci_command_hdr *cmd = (void *)(fw_ptr + frag_len);
784 frag_len += sizeof(*cmd) + cmd->plen;
786 bt_dev_dbg(hdev, "Patching %td/%zu", (fw_ptr - fw->data),
787 fw->size);
789 /* The parameter length of the secure send command requires
790 * a 4 byte alignment. It happens so that the firmware file
791 * contains proper Intel_NOP commands to align the fragments
792 * as needed.
794 * Send set of commands with 4 byte alignment from the
795 * firmware data buffer as a single Data fragement.
797 if (frag_len % 4)
798 continue;
800 /* Send each command from the firmware data buffer as
801 * a single Data fragment.
803 err = btintel_secure_send(hdev, 0x01, frag_len, fw_ptr);
804 if (err < 0) {
805 bt_dev_err(hdev, "Failed to send firmware data (%d)",
806 err);
807 goto done;
810 fw_ptr += frag_len;
811 frag_len = 0;
814 set_bit(STATE_FIRMWARE_LOADED, &intel->flags);
816 bt_dev_info(hdev, "Waiting for firmware download to complete");
818 /* Before switching the device into operational mode and with that
819 * booting the loaded firmware, wait for the bootloader notification
820 * that all fragments have been successfully received.
822 * When the event processing receives the notification, then the
823 * STATE_DOWNLOADING flag will be cleared.
825 * The firmware loading should not take longer than 5 seconds
826 * and thus just timeout if that happens and fail the setup
827 * of this device.
829 err = wait_on_bit_timeout(&intel->flags, STATE_DOWNLOADING,
830 TASK_INTERRUPTIBLE,
831 msecs_to_jiffies(5000));
832 if (err == -EINTR) {
833 bt_dev_err(hdev, "Firmware loading interrupted");
834 err = -EINTR;
835 goto done;
838 if (err) {
839 bt_dev_err(hdev, "Firmware loading timeout");
840 err = -ETIMEDOUT;
841 goto done;
844 if (test_bit(STATE_FIRMWARE_FAILED, &intel->flags)) {
845 bt_dev_err(hdev, "Firmware loading failed");
846 err = -ENOEXEC;
847 goto done;
850 rettime = ktime_get();
851 delta = ktime_sub(rettime, calltime);
852 duration = (unsigned long long) ktime_to_ns(delta) >> 10;
854 bt_dev_info(hdev, "Firmware loaded in %llu usecs", duration);
856 done:
857 release_firmware(fw);
859 if (err < 0)
860 return err;
862 /* We need to restore the default speed before Intel reset */
863 if (speed_change) {
864 err = intel_set_baudrate(hu, init_speed);
865 if (err)
866 return err;
869 calltime = ktime_get();
871 set_bit(STATE_BOOTING, &intel->flags);
873 skb = __hci_cmd_sync(hdev, 0xfc01, sizeof(reset_param), reset_param,
874 HCI_CMD_TIMEOUT);
875 if (IS_ERR(skb))
876 return PTR_ERR(skb);
878 kfree_skb(skb);
880 /* The bootloader will not indicate when the device is ready. This
881 * is done by the operational firmware sending bootup notification.
883 * Booting into operational firmware should not take longer than
884 * 1 second. However if that happens, then just fail the setup
885 * since something went wrong.
887 bt_dev_info(hdev, "Waiting for device to boot");
889 err = intel_wait_booting(hu);
890 if (err)
891 return err;
893 clear_bit(STATE_BOOTING, &intel->flags);
895 rettime = ktime_get();
896 delta = ktime_sub(rettime, calltime);
897 duration = (unsigned long long) ktime_to_ns(delta) >> 10;
899 bt_dev_info(hdev, "Device booted in %llu usecs", duration);
901 /* Enable LPM if matching pdev with wakeup enabled, set TX active
902 * until further LPM TX notification.
904 mutex_lock(&intel_device_list_lock);
905 list_for_each(p, &intel_device_list) {
906 struct intel_device *dev = list_entry(p, struct intel_device,
907 list);
908 if (!hu->tty->dev)
909 break;
910 if (hu->tty->dev->parent == dev->pdev->dev.parent) {
911 if (device_may_wakeup(&dev->pdev->dev)) {
912 set_bit(STATE_LPM_ENABLED, &intel->flags);
913 set_bit(STATE_TX_ACTIVE, &intel->flags);
915 break;
918 mutex_unlock(&intel_device_list_lock);
920 /* Ignore errors, device can work without DDC parameters */
921 btintel_load_ddc_config(hdev, fwname);
923 skb = __hci_cmd_sync(hdev, HCI_OP_RESET, 0, NULL, HCI_CMD_TIMEOUT);
924 if (IS_ERR(skb))
925 return PTR_ERR(skb);
926 kfree_skb(skb);
928 if (speed_change) {
929 err = intel_set_baudrate(hu, oper_speed);
930 if (err)
931 return err;
934 bt_dev_info(hdev, "Setup complete");
936 clear_bit(STATE_BOOTLOADER, &intel->flags);
938 return 0;
941 static int intel_recv_event(struct hci_dev *hdev, struct sk_buff *skb)
943 struct hci_uart *hu = hci_get_drvdata(hdev);
944 struct intel_data *intel = hu->priv;
945 struct hci_event_hdr *hdr;
947 if (!test_bit(STATE_BOOTLOADER, &intel->flags) &&
948 !test_bit(STATE_BOOTING, &intel->flags))
949 goto recv;
951 hdr = (void *)skb->data;
953 /* When the firmware loading completes the device sends
954 * out a vendor specific event indicating the result of
955 * the firmware loading.
957 if (skb->len == 7 && hdr->evt == 0xff && hdr->plen == 0x05 &&
958 skb->data[2] == 0x06) {
959 if (skb->data[3] != 0x00)
960 set_bit(STATE_FIRMWARE_FAILED, &intel->flags);
962 if (test_and_clear_bit(STATE_DOWNLOADING, &intel->flags) &&
963 test_bit(STATE_FIRMWARE_LOADED, &intel->flags)) {
964 smp_mb__after_atomic();
965 wake_up_bit(&intel->flags, STATE_DOWNLOADING);
968 /* When switching to the operational firmware the device
969 * sends a vendor specific event indicating that the bootup
970 * completed.
972 } else if (skb->len == 9 && hdr->evt == 0xff && hdr->plen == 0x07 &&
973 skb->data[2] == 0x02) {
974 if (test_and_clear_bit(STATE_BOOTING, &intel->flags)) {
975 smp_mb__after_atomic();
976 wake_up_bit(&intel->flags, STATE_BOOTING);
979 recv:
980 return hci_recv_frame(hdev, skb);
983 static void intel_recv_lpm_notify(struct hci_dev *hdev, int value)
985 struct hci_uart *hu = hci_get_drvdata(hdev);
986 struct intel_data *intel = hu->priv;
988 bt_dev_dbg(hdev, "TX idle notification (%d)", value);
990 if (value) {
991 set_bit(STATE_TX_ACTIVE, &intel->flags);
992 schedule_work(&intel->busy_work);
993 } else {
994 clear_bit(STATE_TX_ACTIVE, &intel->flags);
998 static int intel_recv_lpm(struct hci_dev *hdev, struct sk_buff *skb)
1000 struct hci_lpm_pkt *lpm = (void *)skb->data;
1001 struct hci_uart *hu = hci_get_drvdata(hdev);
1002 struct intel_data *intel = hu->priv;
1004 switch (lpm->opcode) {
1005 case LPM_OP_TX_NOTIFY:
1006 if (lpm->dlen < 1) {
1007 bt_dev_err(hu->hdev, "Invalid LPM notification packet");
1008 break;
1010 intel_recv_lpm_notify(hdev, lpm->data[0]);
1011 break;
1012 case LPM_OP_SUSPEND_ACK:
1013 set_bit(STATE_SUSPENDED, &intel->flags);
1014 if (test_and_clear_bit(STATE_LPM_TRANSACTION, &intel->flags)) {
1015 smp_mb__after_atomic();
1016 wake_up_bit(&intel->flags, STATE_LPM_TRANSACTION);
1018 break;
1019 case LPM_OP_RESUME_ACK:
1020 clear_bit(STATE_SUSPENDED, &intel->flags);
1021 if (test_and_clear_bit(STATE_LPM_TRANSACTION, &intel->flags)) {
1022 smp_mb__after_atomic();
1023 wake_up_bit(&intel->flags, STATE_LPM_TRANSACTION);
1025 break;
1026 default:
1027 bt_dev_err(hdev, "Unknown LPM opcode (%02x)", lpm->opcode);
1028 break;
1031 kfree_skb(skb);
1033 return 0;
1036 #define INTEL_RECV_LPM \
1037 .type = HCI_LPM_PKT, \
1038 .hlen = HCI_LPM_HDR_SIZE, \
1039 .loff = 1, \
1040 .lsize = 1, \
1041 .maxlen = HCI_LPM_MAX_SIZE
1043 static const struct h4_recv_pkt intel_recv_pkts[] = {
1044 { H4_RECV_ACL, .recv = hci_recv_frame },
1045 { H4_RECV_SCO, .recv = hci_recv_frame },
1046 { H4_RECV_EVENT, .recv = intel_recv_event },
1047 { INTEL_RECV_LPM, .recv = intel_recv_lpm },
1050 static int intel_recv(struct hci_uart *hu, const void *data, int count)
1052 struct intel_data *intel = hu->priv;
1054 if (!test_bit(HCI_UART_REGISTERED, &hu->flags))
1055 return -EUNATCH;
1057 intel->rx_skb = h4_recv_buf(hu->hdev, intel->rx_skb, data, count,
1058 intel_recv_pkts,
1059 ARRAY_SIZE(intel_recv_pkts));
1060 if (IS_ERR(intel->rx_skb)) {
1061 int err = PTR_ERR(intel->rx_skb);
1062 bt_dev_err(hu->hdev, "Frame reassembly failed (%d)", err);
1063 intel->rx_skb = NULL;
1064 return err;
1067 return count;
1070 static int intel_enqueue(struct hci_uart *hu, struct sk_buff *skb)
1072 struct intel_data *intel = hu->priv;
1073 struct list_head *p;
1075 BT_DBG("hu %p skb %p", hu, skb);
1077 if (!hu->tty->dev)
1078 goto out_enqueue;
1080 /* Be sure our controller is resumed and potential LPM transaction
1081 * completed before enqueuing any packet.
1083 mutex_lock(&intel_device_list_lock);
1084 list_for_each(p, &intel_device_list) {
1085 struct intel_device *idev = list_entry(p, struct intel_device,
1086 list);
1088 if (hu->tty->dev->parent == idev->pdev->dev.parent) {
1089 pm_runtime_get_sync(&idev->pdev->dev);
1090 pm_runtime_mark_last_busy(&idev->pdev->dev);
1091 pm_runtime_put_autosuspend(&idev->pdev->dev);
1092 break;
1095 mutex_unlock(&intel_device_list_lock);
1096 out_enqueue:
1097 skb_queue_tail(&intel->txq, skb);
1099 return 0;
1102 static struct sk_buff *intel_dequeue(struct hci_uart *hu)
1104 struct intel_data *intel = hu->priv;
1105 struct sk_buff *skb;
1107 skb = skb_dequeue(&intel->txq);
1108 if (!skb)
1109 return skb;
1111 if (test_bit(STATE_BOOTLOADER, &intel->flags) &&
1112 (hci_skb_pkt_type(skb) == HCI_COMMAND_PKT)) {
1113 struct hci_command_hdr *cmd = (void *)skb->data;
1114 __u16 opcode = le16_to_cpu(cmd->opcode);
1116 /* When the 0xfc01 command is issued to boot into
1117 * the operational firmware, it will actually not
1118 * send a command complete event. To keep the flow
1119 * control working inject that event here.
1121 if (opcode == 0xfc01)
1122 inject_cmd_complete(hu->hdev, opcode);
1125 /* Prepend skb with frame type */
1126 memcpy(skb_push(skb, 1), &hci_skb_pkt_type(skb), 1);
1128 return skb;
1131 static const struct hci_uart_proto intel_proto = {
1132 .id = HCI_UART_INTEL,
1133 .name = "Intel",
1134 .manufacturer = 2,
1135 .init_speed = 115200,
1136 .oper_speed = 3000000,
1137 .open = intel_open,
1138 .close = intel_close,
1139 .flush = intel_flush,
1140 .setup = intel_setup,
1141 .set_baudrate = intel_set_baudrate,
1142 .recv = intel_recv,
1143 .enqueue = intel_enqueue,
1144 .dequeue = intel_dequeue,
1147 #ifdef CONFIG_ACPI
1148 static const struct acpi_device_id intel_acpi_match[] = {
1149 { "INT33E1", 0 },
1150 { },
1152 MODULE_DEVICE_TABLE(acpi, intel_acpi_match);
1153 #endif
1155 #ifdef CONFIG_PM
1156 static int intel_suspend_device(struct device *dev)
1158 struct intel_device *idev = dev_get_drvdata(dev);
1160 mutex_lock(&idev->hu_lock);
1161 if (idev->hu)
1162 intel_lpm_suspend(idev->hu);
1163 mutex_unlock(&idev->hu_lock);
1165 return 0;
1168 static int intel_resume_device(struct device *dev)
1170 struct intel_device *idev = dev_get_drvdata(dev);
1172 mutex_lock(&idev->hu_lock);
1173 if (idev->hu)
1174 intel_lpm_resume(idev->hu);
1175 mutex_unlock(&idev->hu_lock);
1177 return 0;
1179 #endif
1181 #ifdef CONFIG_PM_SLEEP
1182 static int intel_suspend(struct device *dev)
1184 struct intel_device *idev = dev_get_drvdata(dev);
1186 if (device_may_wakeup(dev))
1187 enable_irq_wake(idev->irq);
1189 return intel_suspend_device(dev);
1192 static int intel_resume(struct device *dev)
1194 struct intel_device *idev = dev_get_drvdata(dev);
1196 if (device_may_wakeup(dev))
1197 disable_irq_wake(idev->irq);
1199 return intel_resume_device(dev);
1201 #endif
1203 static const struct dev_pm_ops intel_pm_ops = {
1204 SET_SYSTEM_SLEEP_PM_OPS(intel_suspend, intel_resume)
1205 SET_RUNTIME_PM_OPS(intel_suspend_device, intel_resume_device, NULL)
1208 static int intel_probe(struct platform_device *pdev)
1210 struct intel_device *idev;
1212 idev = devm_kzalloc(&pdev->dev, sizeof(*idev), GFP_KERNEL);
1213 if (!idev)
1214 return -ENOMEM;
1216 mutex_init(&idev->hu_lock);
1218 idev->pdev = pdev;
1220 idev->reset = devm_gpiod_get(&pdev->dev, "reset", GPIOD_OUT_LOW);
1221 if (IS_ERR(idev->reset)) {
1222 dev_err(&pdev->dev, "Unable to retrieve gpio\n");
1223 return PTR_ERR(idev->reset);
1226 idev->irq = platform_get_irq(pdev, 0);
1227 if (idev->irq < 0) {
1228 struct gpio_desc *host_wake;
1230 dev_err(&pdev->dev, "No IRQ, falling back to gpio-irq\n");
1232 host_wake = devm_gpiod_get(&pdev->dev, "host-wake", GPIOD_IN);
1233 if (IS_ERR(host_wake)) {
1234 dev_err(&pdev->dev, "Unable to retrieve IRQ\n");
1235 goto no_irq;
1238 idev->irq = gpiod_to_irq(host_wake);
1239 if (idev->irq < 0) {
1240 dev_err(&pdev->dev, "No corresponding irq for gpio\n");
1241 goto no_irq;
1245 /* Only enable wake-up/irq when controller is powered */
1246 device_set_wakeup_capable(&pdev->dev, true);
1247 device_wakeup_disable(&pdev->dev);
1249 no_irq:
1250 platform_set_drvdata(pdev, idev);
1252 /* Place this instance on the device list */
1253 mutex_lock(&intel_device_list_lock);
1254 list_add_tail(&idev->list, &intel_device_list);
1255 mutex_unlock(&intel_device_list_lock);
1257 dev_info(&pdev->dev, "registered, gpio(%d)/irq(%d).\n",
1258 desc_to_gpio(idev->reset), idev->irq);
1260 return 0;
1263 static int intel_remove(struct platform_device *pdev)
1265 struct intel_device *idev = platform_get_drvdata(pdev);
1267 device_wakeup_disable(&pdev->dev);
1269 mutex_lock(&intel_device_list_lock);
1270 list_del(&idev->list);
1271 mutex_unlock(&intel_device_list_lock);
1273 dev_info(&pdev->dev, "unregistered.\n");
1275 return 0;
1278 static struct platform_driver intel_driver = {
1279 .probe = intel_probe,
1280 .remove = intel_remove,
1281 .driver = {
1282 .name = "hci_intel",
1283 .acpi_match_table = ACPI_PTR(intel_acpi_match),
1284 .pm = &intel_pm_ops,
1288 int __init intel_init(void)
1290 platform_driver_register(&intel_driver);
1292 return hci_uart_register_proto(&intel_proto);
1295 int __exit intel_deinit(void)
1297 platform_driver_unregister(&intel_driver);
1299 return hci_uart_unregister_proto(&intel_proto);