proc: Fix proc_sys_prune_dcache to hold a sb reference
[cris-mirror.git] / drivers / gpu / drm / drm_mm.c
blobf794089d30ac21de22894774f13d4d2871213573
1 /**************************************************************************
3 * Copyright 2006 Tungsten Graphics, Inc., Bismarck, ND., USA.
4 * Copyright 2016 Intel Corporation
5 * All Rights Reserved.
7 * Permission is hereby granted, free of charge, to any person obtaining a
8 * copy of this software and associated documentation files (the
9 * "Software"), to deal in the Software without restriction, including
10 * without limitation the rights to use, copy, modify, merge, publish,
11 * distribute, sub license, and/or sell copies of the Software, and to
12 * permit persons to whom the Software is furnished to do so, subject to
13 * the following conditions:
15 * The above copyright notice and this permission notice (including the
16 * next paragraph) shall be included in all copies or substantial portions
17 * of the Software.
19 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
20 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
21 * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
22 * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM,
23 * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
24 * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
25 * USE OR OTHER DEALINGS IN THE SOFTWARE.
28 **************************************************************************/
31 * Generic simple memory manager implementation. Intended to be used as a base
32 * class implementation for more advanced memory managers.
34 * Note that the algorithm used is quite simple and there might be substantial
35 * performance gains if a smarter free list is implemented. Currently it is
36 * just an unordered stack of free regions. This could easily be improved if
37 * an RB-tree is used instead. At least if we expect heavy fragmentation.
39 * Aligned allocations can also see improvement.
41 * Authors:
42 * Thomas Hellström <thomas-at-tungstengraphics-dot-com>
45 #include <drm/drmP.h>
46 #include <drm/drm_mm.h>
47 #include <linux/slab.h>
48 #include <linux/seq_file.h>
49 #include <linux/export.h>
50 #include <linux/interval_tree_generic.h>
52 /**
53 * DOC: Overview
55 * drm_mm provides a simple range allocator. The drivers are free to use the
56 * resource allocator from the linux core if it suits them, the upside of drm_mm
57 * is that it's in the DRM core. Which means that it's easier to extend for
58 * some of the crazier special purpose needs of gpus.
60 * The main data struct is &drm_mm, allocations are tracked in &drm_mm_node.
61 * Drivers are free to embed either of them into their own suitable
62 * datastructures. drm_mm itself will not do any memory allocations of its own,
63 * so if drivers choose not to embed nodes they need to still allocate them
64 * themselves.
66 * The range allocator also supports reservation of preallocated blocks. This is
67 * useful for taking over initial mode setting configurations from the firmware,
68 * where an object needs to be created which exactly matches the firmware's
69 * scanout target. As long as the range is still free it can be inserted anytime
70 * after the allocator is initialized, which helps with avoiding looped
71 * dependencies in the driver load sequence.
73 * drm_mm maintains a stack of most recently freed holes, which of all
74 * simplistic datastructures seems to be a fairly decent approach to clustering
75 * allocations and avoiding too much fragmentation. This means free space
76 * searches are O(num_holes). Given that all the fancy features drm_mm supports
77 * something better would be fairly complex and since gfx thrashing is a fairly
78 * steep cliff not a real concern. Removing a node again is O(1).
80 * drm_mm supports a few features: Alignment and range restrictions can be
81 * supplied. Furthermore every &drm_mm_node has a color value (which is just an
82 * opaque unsigned long) which in conjunction with a driver callback can be used
83 * to implement sophisticated placement restrictions. The i915 DRM driver uses
84 * this to implement guard pages between incompatible caching domains in the
85 * graphics TT.
87 * Two behaviors are supported for searching and allocating: bottom-up and
88 * top-down. The default is bottom-up. Top-down allocation can be used if the
89 * memory area has different restrictions, or just to reduce fragmentation.
91 * Finally iteration helpers to walk all nodes and all holes are provided as are
92 * some basic allocator dumpers for debugging.
94 * Note that this range allocator is not thread-safe, drivers need to protect
95 * modifications with their on locking. The idea behind this is that for a full
96 * memory manager additional data needs to be protected anyway, hence internal
97 * locking would be fully redundant.
100 #ifdef CONFIG_DRM_DEBUG_MM
101 #include <linux/stackdepot.h>
103 #define STACKDEPTH 32
104 #define BUFSZ 4096
106 static noinline void save_stack(struct drm_mm_node *node)
108 unsigned long entries[STACKDEPTH];
109 struct stack_trace trace = {
110 .entries = entries,
111 .max_entries = STACKDEPTH,
112 .skip = 1
115 save_stack_trace(&trace);
116 if (trace.nr_entries != 0 &&
117 trace.entries[trace.nr_entries-1] == ULONG_MAX)
118 trace.nr_entries--;
120 /* May be called under spinlock, so avoid sleeping */
121 node->stack = depot_save_stack(&trace, GFP_NOWAIT);
124 static void show_leaks(struct drm_mm *mm)
126 struct drm_mm_node *node;
127 unsigned long entries[STACKDEPTH];
128 char *buf;
130 buf = kmalloc(BUFSZ, GFP_KERNEL);
131 if (!buf)
132 return;
134 list_for_each_entry(node, drm_mm_nodes(mm), node_list) {
135 struct stack_trace trace = {
136 .entries = entries,
137 .max_entries = STACKDEPTH
140 if (!node->stack) {
141 DRM_ERROR("node [%08llx + %08llx]: unknown owner\n",
142 node->start, node->size);
143 continue;
146 depot_fetch_stack(node->stack, &trace);
147 snprint_stack_trace(buf, BUFSZ, &trace, 0);
148 DRM_ERROR("node [%08llx + %08llx]: inserted at\n%s",
149 node->start, node->size, buf);
152 kfree(buf);
155 #undef STACKDEPTH
156 #undef BUFSZ
157 #else
158 static void save_stack(struct drm_mm_node *node) { }
159 static void show_leaks(struct drm_mm *mm) { }
160 #endif
162 #define START(node) ((node)->start)
163 #define LAST(node) ((node)->start + (node)->size - 1)
165 INTERVAL_TREE_DEFINE(struct drm_mm_node, rb,
166 u64, __subtree_last,
167 START, LAST, static inline, drm_mm_interval_tree)
169 struct drm_mm_node *
170 __drm_mm_interval_first(const struct drm_mm *mm, u64 start, u64 last)
172 return drm_mm_interval_tree_iter_first((struct rb_root *)&mm->interval_tree,
173 start, last) ?: (struct drm_mm_node *)&mm->head_node;
175 EXPORT_SYMBOL(__drm_mm_interval_first);
177 static void drm_mm_interval_tree_add_node(struct drm_mm_node *hole_node,
178 struct drm_mm_node *node)
180 struct drm_mm *mm = hole_node->mm;
181 struct rb_node **link, *rb;
182 struct drm_mm_node *parent;
184 node->__subtree_last = LAST(node);
186 if (hole_node->allocated) {
187 rb = &hole_node->rb;
188 while (rb) {
189 parent = rb_entry(rb, struct drm_mm_node, rb);
190 if (parent->__subtree_last >= node->__subtree_last)
191 break;
193 parent->__subtree_last = node->__subtree_last;
194 rb = rb_parent(rb);
197 rb = &hole_node->rb;
198 link = &hole_node->rb.rb_right;
199 } else {
200 rb = NULL;
201 link = &mm->interval_tree.rb_node;
204 while (*link) {
205 rb = *link;
206 parent = rb_entry(rb, struct drm_mm_node, rb);
207 if (parent->__subtree_last < node->__subtree_last)
208 parent->__subtree_last = node->__subtree_last;
209 if (node->start < parent->start)
210 link = &parent->rb.rb_left;
211 else
212 link = &parent->rb.rb_right;
215 rb_link_node(&node->rb, rb, link);
216 rb_insert_augmented(&node->rb,
217 &mm->interval_tree,
218 &drm_mm_interval_tree_augment);
221 #define RB_INSERT(root, member, expr) do { \
222 struct rb_node **link = &root.rb_node, *rb = NULL; \
223 u64 x = expr(node); \
224 while (*link) { \
225 rb = *link; \
226 if (x < expr(rb_entry(rb, struct drm_mm_node, member))) \
227 link = &rb->rb_left; \
228 else \
229 link = &rb->rb_right; \
231 rb_link_node(&node->member, rb, link); \
232 rb_insert_color(&node->member, &root); \
233 } while (0)
235 #define HOLE_SIZE(NODE) ((NODE)->hole_size)
236 #define HOLE_ADDR(NODE) (__drm_mm_hole_node_start(NODE))
238 static void add_hole(struct drm_mm_node *node)
240 struct drm_mm *mm = node->mm;
242 node->hole_size =
243 __drm_mm_hole_node_end(node) - __drm_mm_hole_node_start(node);
244 DRM_MM_BUG_ON(!drm_mm_hole_follows(node));
246 RB_INSERT(mm->holes_size, rb_hole_size, HOLE_SIZE);
247 RB_INSERT(mm->holes_addr, rb_hole_addr, HOLE_ADDR);
249 list_add(&node->hole_stack, &mm->hole_stack);
252 static void rm_hole(struct drm_mm_node *node)
254 DRM_MM_BUG_ON(!drm_mm_hole_follows(node));
256 list_del(&node->hole_stack);
257 rb_erase(&node->rb_hole_size, &node->mm->holes_size);
258 rb_erase(&node->rb_hole_addr, &node->mm->holes_addr);
259 node->hole_size = 0;
261 DRM_MM_BUG_ON(drm_mm_hole_follows(node));
264 static inline struct drm_mm_node *rb_hole_size_to_node(struct rb_node *rb)
266 return rb_entry_safe(rb, struct drm_mm_node, rb_hole_size);
269 static inline struct drm_mm_node *rb_hole_addr_to_node(struct rb_node *rb)
271 return rb_entry_safe(rb, struct drm_mm_node, rb_hole_addr);
274 static inline u64 rb_hole_size(struct rb_node *rb)
276 return rb_entry(rb, struct drm_mm_node, rb_hole_size)->hole_size;
279 static struct drm_mm_node *best_hole(struct drm_mm *mm, u64 size)
281 struct rb_node *best = NULL;
282 struct rb_node **link = &mm->holes_size.rb_node;
284 while (*link) {
285 struct rb_node *rb = *link;
287 if (size <= rb_hole_size(rb)) {
288 link = &rb->rb_left;
289 best = rb;
290 } else {
291 link = &rb->rb_right;
295 return rb_hole_size_to_node(best);
298 static struct drm_mm_node *find_hole(struct drm_mm *mm, u64 addr)
300 struct drm_mm_node *node = NULL;
301 struct rb_node **link = &mm->holes_addr.rb_node;
303 while (*link) {
304 u64 hole_start;
306 node = rb_hole_addr_to_node(*link);
307 hole_start = __drm_mm_hole_node_start(node);
309 if (addr < hole_start)
310 link = &node->rb_hole_addr.rb_left;
311 else if (addr > hole_start + node->hole_size)
312 link = &node->rb_hole_addr.rb_right;
313 else
314 break;
317 return node;
320 static struct drm_mm_node *
321 first_hole(struct drm_mm *mm,
322 u64 start, u64 end, u64 size,
323 enum drm_mm_insert_mode mode)
325 if (RB_EMPTY_ROOT(&mm->holes_size))
326 return NULL;
328 switch (mode) {
329 default:
330 case DRM_MM_INSERT_BEST:
331 return best_hole(mm, size);
333 case DRM_MM_INSERT_LOW:
334 return find_hole(mm, start);
336 case DRM_MM_INSERT_HIGH:
337 return find_hole(mm, end);
339 case DRM_MM_INSERT_EVICT:
340 return list_first_entry_or_null(&mm->hole_stack,
341 struct drm_mm_node,
342 hole_stack);
346 static struct drm_mm_node *
347 next_hole(struct drm_mm *mm,
348 struct drm_mm_node *node,
349 enum drm_mm_insert_mode mode)
351 switch (mode) {
352 default:
353 case DRM_MM_INSERT_BEST:
354 return rb_hole_size_to_node(rb_next(&node->rb_hole_size));
356 case DRM_MM_INSERT_LOW:
357 return rb_hole_addr_to_node(rb_next(&node->rb_hole_addr));
359 case DRM_MM_INSERT_HIGH:
360 return rb_hole_addr_to_node(rb_prev(&node->rb_hole_addr));
362 case DRM_MM_INSERT_EVICT:
363 node = list_next_entry(node, hole_stack);
364 return &node->hole_stack == &mm->hole_stack ? NULL : node;
369 * drm_mm_reserve_node - insert an pre-initialized node
370 * @mm: drm_mm allocator to insert @node into
371 * @node: drm_mm_node to insert
373 * This functions inserts an already set-up &drm_mm_node into the allocator,
374 * meaning that start, size and color must be set by the caller. All other
375 * fields must be cleared to 0. This is useful to initialize the allocator with
376 * preallocated objects which must be set-up before the range allocator can be
377 * set-up, e.g. when taking over a firmware framebuffer.
379 * Returns:
380 * 0 on success, -ENOSPC if there's no hole where @node is.
382 int drm_mm_reserve_node(struct drm_mm *mm, struct drm_mm_node *node)
384 u64 end = node->start + node->size;
385 struct drm_mm_node *hole;
386 u64 hole_start, hole_end;
387 u64 adj_start, adj_end;
389 end = node->start + node->size;
390 if (unlikely(end <= node->start))
391 return -ENOSPC;
393 /* Find the relevant hole to add our node to */
394 hole = find_hole(mm, node->start);
395 if (!hole)
396 return -ENOSPC;
398 adj_start = hole_start = __drm_mm_hole_node_start(hole);
399 adj_end = hole_end = hole_start + hole->hole_size;
401 if (mm->color_adjust)
402 mm->color_adjust(hole, node->color, &adj_start, &adj_end);
404 if (adj_start > node->start || adj_end < end)
405 return -ENOSPC;
407 node->mm = mm;
409 list_add(&node->node_list, &hole->node_list);
410 drm_mm_interval_tree_add_node(hole, node);
411 node->allocated = true;
412 node->hole_size = 0;
414 rm_hole(hole);
415 if (node->start > hole_start)
416 add_hole(hole);
417 if (end < hole_end)
418 add_hole(node);
420 save_stack(node);
421 return 0;
423 EXPORT_SYMBOL(drm_mm_reserve_node);
426 * drm_mm_insert_node_in_range - ranged search for space and insert @node
427 * @mm: drm_mm to allocate from
428 * @node: preallocate node to insert
429 * @size: size of the allocation
430 * @alignment: alignment of the allocation
431 * @color: opaque tag value to use for this node
432 * @range_start: start of the allowed range for this node
433 * @range_end: end of the allowed range for this node
434 * @mode: fine-tune the allocation search and placement
436 * The preallocated @node must be cleared to 0.
438 * Returns:
439 * 0 on success, -ENOSPC if there's no suitable hole.
441 int drm_mm_insert_node_in_range(struct drm_mm * const mm,
442 struct drm_mm_node * const node,
443 u64 size, u64 alignment,
444 unsigned long color,
445 u64 range_start, u64 range_end,
446 enum drm_mm_insert_mode mode)
448 struct drm_mm_node *hole;
449 u64 remainder_mask;
451 DRM_MM_BUG_ON(range_start >= range_end);
453 if (unlikely(size == 0 || range_end - range_start < size))
454 return -ENOSPC;
456 if (alignment <= 1)
457 alignment = 0;
459 remainder_mask = is_power_of_2(alignment) ? alignment - 1 : 0;
460 for (hole = first_hole(mm, range_start, range_end, size, mode); hole;
461 hole = next_hole(mm, hole, mode)) {
462 u64 hole_start = __drm_mm_hole_node_start(hole);
463 u64 hole_end = hole_start + hole->hole_size;
464 u64 adj_start, adj_end;
465 u64 col_start, col_end;
467 if (mode == DRM_MM_INSERT_LOW && hole_start >= range_end)
468 break;
470 if (mode == DRM_MM_INSERT_HIGH && hole_end <= range_start)
471 break;
473 col_start = hole_start;
474 col_end = hole_end;
475 if (mm->color_adjust)
476 mm->color_adjust(hole, color, &col_start, &col_end);
478 adj_start = max(col_start, range_start);
479 adj_end = min(col_end, range_end);
481 if (adj_end <= adj_start || adj_end - adj_start < size)
482 continue;
484 if (mode == DRM_MM_INSERT_HIGH)
485 adj_start = adj_end - size;
487 if (alignment) {
488 u64 rem;
490 if (likely(remainder_mask))
491 rem = adj_start & remainder_mask;
492 else
493 div64_u64_rem(adj_start, alignment, &rem);
494 if (rem) {
495 adj_start -= rem;
496 if (mode != DRM_MM_INSERT_HIGH)
497 adj_start += alignment;
499 if (adj_start < max(col_start, range_start) ||
500 min(col_end, range_end) - adj_start < size)
501 continue;
503 if (adj_end <= adj_start ||
504 adj_end - adj_start < size)
505 continue;
509 node->mm = mm;
510 node->size = size;
511 node->start = adj_start;
512 node->color = color;
513 node->hole_size = 0;
515 list_add(&node->node_list, &hole->node_list);
516 drm_mm_interval_tree_add_node(hole, node);
517 node->allocated = true;
519 rm_hole(hole);
520 if (adj_start > hole_start)
521 add_hole(hole);
522 if (adj_start + size < hole_end)
523 add_hole(node);
525 save_stack(node);
526 return 0;
529 return -ENOSPC;
531 EXPORT_SYMBOL(drm_mm_insert_node_in_range);
534 * drm_mm_remove_node - Remove a memory node from the allocator.
535 * @node: drm_mm_node to remove
537 * This just removes a node from its drm_mm allocator. The node does not need to
538 * be cleared again before it can be re-inserted into this or any other drm_mm
539 * allocator. It is a bug to call this function on a unallocated node.
541 void drm_mm_remove_node(struct drm_mm_node *node)
543 struct drm_mm *mm = node->mm;
544 struct drm_mm_node *prev_node;
546 DRM_MM_BUG_ON(!node->allocated);
547 DRM_MM_BUG_ON(node->scanned_block);
549 prev_node = list_prev_entry(node, node_list);
551 if (drm_mm_hole_follows(node))
552 rm_hole(node);
554 drm_mm_interval_tree_remove(node, &mm->interval_tree);
555 list_del(&node->node_list);
556 node->allocated = false;
558 if (drm_mm_hole_follows(prev_node))
559 rm_hole(prev_node);
560 add_hole(prev_node);
562 EXPORT_SYMBOL(drm_mm_remove_node);
565 * drm_mm_replace_node - move an allocation from @old to @new
566 * @old: drm_mm_node to remove from the allocator
567 * @new: drm_mm_node which should inherit @old's allocation
569 * This is useful for when drivers embed the drm_mm_node structure and hence
570 * can't move allocations by reassigning pointers. It's a combination of remove
571 * and insert with the guarantee that the allocation start will match.
573 void drm_mm_replace_node(struct drm_mm_node *old, struct drm_mm_node *new)
575 DRM_MM_BUG_ON(!old->allocated);
577 *new = *old;
579 list_replace(&old->node_list, &new->node_list);
580 rb_replace_node(&old->rb, &new->rb, &old->mm->interval_tree);
582 if (drm_mm_hole_follows(old)) {
583 list_replace(&old->hole_stack, &new->hole_stack);
584 rb_replace_node(&old->rb_hole_size,
585 &new->rb_hole_size,
586 &old->mm->holes_size);
587 rb_replace_node(&old->rb_hole_addr,
588 &new->rb_hole_addr,
589 &old->mm->holes_addr);
592 old->allocated = false;
593 new->allocated = true;
595 EXPORT_SYMBOL(drm_mm_replace_node);
598 * DOC: lru scan roster
600 * Very often GPUs need to have continuous allocations for a given object. When
601 * evicting objects to make space for a new one it is therefore not most
602 * efficient when we simply start to select all objects from the tail of an LRU
603 * until there's a suitable hole: Especially for big objects or nodes that
604 * otherwise have special allocation constraints there's a good chance we evict
605 * lots of (smaller) objects unnecessarily.
607 * The DRM range allocator supports this use-case through the scanning
608 * interfaces. First a scan operation needs to be initialized with
609 * drm_mm_scan_init() or drm_mm_scan_init_with_range(). The driver adds
610 * objects to the roster, probably by walking an LRU list, but this can be
611 * freely implemented. Eviction candiates are added using
612 * drm_mm_scan_add_block() until a suitable hole is found or there are no
613 * further evictable objects. Eviction roster metadata is tracked in &struct
614 * drm_mm_scan.
616 * The driver must walk through all objects again in exactly the reverse
617 * order to restore the allocator state. Note that while the allocator is used
618 * in the scan mode no other operation is allowed.
620 * Finally the driver evicts all objects selected (drm_mm_scan_remove_block()
621 * reported true) in the scan, and any overlapping nodes after color adjustment
622 * (drm_mm_scan_color_evict()). Adding and removing an object is O(1), and
623 * since freeing a node is also O(1) the overall complexity is
624 * O(scanned_objects). So like the free stack which needs to be walked before a
625 * scan operation even begins this is linear in the number of objects. It
626 * doesn't seem to hurt too badly.
630 * drm_mm_scan_init_with_range - initialize range-restricted lru scanning
631 * @scan: scan state
632 * @mm: drm_mm to scan
633 * @size: size of the allocation
634 * @alignment: alignment of the allocation
635 * @color: opaque tag value to use for the allocation
636 * @start: start of the allowed range for the allocation
637 * @end: end of the allowed range for the allocation
638 * @mode: fine-tune the allocation search and placement
640 * This simply sets up the scanning routines with the parameters for the desired
641 * hole.
643 * Warning:
644 * As long as the scan list is non-empty, no other operations than
645 * adding/removing nodes to/from the scan list are allowed.
647 void drm_mm_scan_init_with_range(struct drm_mm_scan *scan,
648 struct drm_mm *mm,
649 u64 size,
650 u64 alignment,
651 unsigned long color,
652 u64 start,
653 u64 end,
654 enum drm_mm_insert_mode mode)
656 DRM_MM_BUG_ON(start >= end);
657 DRM_MM_BUG_ON(!size || size > end - start);
658 DRM_MM_BUG_ON(mm->scan_active);
660 scan->mm = mm;
662 if (alignment <= 1)
663 alignment = 0;
665 scan->color = color;
666 scan->alignment = alignment;
667 scan->remainder_mask = is_power_of_2(alignment) ? alignment - 1 : 0;
668 scan->size = size;
669 scan->mode = mode;
671 DRM_MM_BUG_ON(end <= start);
672 scan->range_start = start;
673 scan->range_end = end;
675 scan->hit_start = U64_MAX;
676 scan->hit_end = 0;
678 EXPORT_SYMBOL(drm_mm_scan_init_with_range);
681 * drm_mm_scan_add_block - add a node to the scan list
682 * @scan: the active drm_mm scanner
683 * @node: drm_mm_node to add
685 * Add a node to the scan list that might be freed to make space for the desired
686 * hole.
688 * Returns:
689 * True if a hole has been found, false otherwise.
691 bool drm_mm_scan_add_block(struct drm_mm_scan *scan,
692 struct drm_mm_node *node)
694 struct drm_mm *mm = scan->mm;
695 struct drm_mm_node *hole;
696 u64 hole_start, hole_end;
697 u64 col_start, col_end;
698 u64 adj_start, adj_end;
700 DRM_MM_BUG_ON(node->mm != mm);
701 DRM_MM_BUG_ON(!node->allocated);
702 DRM_MM_BUG_ON(node->scanned_block);
703 node->scanned_block = true;
704 mm->scan_active++;
706 /* Remove this block from the node_list so that we enlarge the hole
707 * (distance between the end of our previous node and the start of
708 * or next), without poisoning the link so that we can restore it
709 * later in drm_mm_scan_remove_block().
711 hole = list_prev_entry(node, node_list);
712 DRM_MM_BUG_ON(list_next_entry(hole, node_list) != node);
713 __list_del_entry(&node->node_list);
715 hole_start = __drm_mm_hole_node_start(hole);
716 hole_end = __drm_mm_hole_node_end(hole);
718 col_start = hole_start;
719 col_end = hole_end;
720 if (mm->color_adjust)
721 mm->color_adjust(hole, scan->color, &col_start, &col_end);
723 adj_start = max(col_start, scan->range_start);
724 adj_end = min(col_end, scan->range_end);
725 if (adj_end <= adj_start || adj_end - adj_start < scan->size)
726 return false;
728 if (scan->mode == DRM_MM_INSERT_HIGH)
729 adj_start = adj_end - scan->size;
731 if (scan->alignment) {
732 u64 rem;
734 if (likely(scan->remainder_mask))
735 rem = adj_start & scan->remainder_mask;
736 else
737 div64_u64_rem(adj_start, scan->alignment, &rem);
738 if (rem) {
739 adj_start -= rem;
740 if (scan->mode != DRM_MM_INSERT_HIGH)
741 adj_start += scan->alignment;
742 if (adj_start < max(col_start, scan->range_start) ||
743 min(col_end, scan->range_end) - adj_start < scan->size)
744 return false;
746 if (adj_end <= adj_start ||
747 adj_end - adj_start < scan->size)
748 return false;
752 scan->hit_start = adj_start;
753 scan->hit_end = adj_start + scan->size;
755 DRM_MM_BUG_ON(scan->hit_start >= scan->hit_end);
756 DRM_MM_BUG_ON(scan->hit_start < hole_start);
757 DRM_MM_BUG_ON(scan->hit_end > hole_end);
759 return true;
761 EXPORT_SYMBOL(drm_mm_scan_add_block);
764 * drm_mm_scan_remove_block - remove a node from the scan list
765 * @scan: the active drm_mm scanner
766 * @node: drm_mm_node to remove
768 * Nodes **must** be removed in exactly the reverse order from the scan list as
769 * they have been added (e.g. using list_add() as they are added and then
770 * list_for_each() over that eviction list to remove), otherwise the internal
771 * state of the memory manager will be corrupted.
773 * When the scan list is empty, the selected memory nodes can be freed. An
774 * immediately following drm_mm_insert_node_in_range_generic() or one of the
775 * simpler versions of that function with !DRM_MM_SEARCH_BEST will then return
776 * the just freed block (because its at the top of the free_stack list).
778 * Returns:
779 * True if this block should be evicted, false otherwise. Will always
780 * return false when no hole has been found.
782 bool drm_mm_scan_remove_block(struct drm_mm_scan *scan,
783 struct drm_mm_node *node)
785 struct drm_mm_node *prev_node;
787 DRM_MM_BUG_ON(node->mm != scan->mm);
788 DRM_MM_BUG_ON(!node->scanned_block);
789 node->scanned_block = false;
791 DRM_MM_BUG_ON(!node->mm->scan_active);
792 node->mm->scan_active--;
794 /* During drm_mm_scan_add_block() we decoupled this node leaving
795 * its pointers intact. Now that the caller is walking back along
796 * the eviction list we can restore this block into its rightful
797 * place on the full node_list. To confirm that the caller is walking
798 * backwards correctly we check that prev_node->next == node->next,
799 * i.e. both believe the same node should be on the other side of the
800 * hole.
802 prev_node = list_prev_entry(node, node_list);
803 DRM_MM_BUG_ON(list_next_entry(prev_node, node_list) !=
804 list_next_entry(node, node_list));
805 list_add(&node->node_list, &prev_node->node_list);
807 return (node->start + node->size > scan->hit_start &&
808 node->start < scan->hit_end);
810 EXPORT_SYMBOL(drm_mm_scan_remove_block);
813 * drm_mm_scan_color_evict - evict overlapping nodes on either side of hole
814 * @scan: drm_mm scan with target hole
816 * After completing an eviction scan and removing the selected nodes, we may
817 * need to remove a few more nodes from either side of the target hole if
818 * mm.color_adjust is being used.
820 * Returns:
821 * A node to evict, or NULL if there are no overlapping nodes.
823 struct drm_mm_node *drm_mm_scan_color_evict(struct drm_mm_scan *scan)
825 struct drm_mm *mm = scan->mm;
826 struct drm_mm_node *hole;
827 u64 hole_start, hole_end;
829 DRM_MM_BUG_ON(list_empty(&mm->hole_stack));
831 if (!mm->color_adjust)
832 return NULL;
834 hole = list_first_entry(&mm->hole_stack, typeof(*hole), hole_stack);
835 hole_start = __drm_mm_hole_node_start(hole);
836 hole_end = hole_start + hole->hole_size;
838 DRM_MM_BUG_ON(hole_start > scan->hit_start);
839 DRM_MM_BUG_ON(hole_end < scan->hit_end);
841 mm->color_adjust(hole, scan->color, &hole_start, &hole_end);
842 if (hole_start > scan->hit_start)
843 return hole;
844 if (hole_end < scan->hit_end)
845 return list_next_entry(hole, node_list);
847 return NULL;
849 EXPORT_SYMBOL(drm_mm_scan_color_evict);
852 * drm_mm_init - initialize a drm-mm allocator
853 * @mm: the drm_mm structure to initialize
854 * @start: start of the range managed by @mm
855 * @size: end of the range managed by @mm
857 * Note that @mm must be cleared to 0 before calling this function.
859 void drm_mm_init(struct drm_mm *mm, u64 start, u64 size)
861 DRM_MM_BUG_ON(start + size <= start);
863 mm->color_adjust = NULL;
865 INIT_LIST_HEAD(&mm->hole_stack);
866 mm->interval_tree = RB_ROOT;
867 mm->holes_size = RB_ROOT;
868 mm->holes_addr = RB_ROOT;
870 /* Clever trick to avoid a special case in the free hole tracking. */
871 INIT_LIST_HEAD(&mm->head_node.node_list);
872 mm->head_node.allocated = false;
873 mm->head_node.mm = mm;
874 mm->head_node.start = start + size;
875 mm->head_node.size = -size;
876 add_hole(&mm->head_node);
878 mm->scan_active = 0;
880 EXPORT_SYMBOL(drm_mm_init);
883 * drm_mm_takedown - clean up a drm_mm allocator
884 * @mm: drm_mm allocator to clean up
886 * Note that it is a bug to call this function on an allocator which is not
887 * clean.
889 void drm_mm_takedown(struct drm_mm *mm)
891 if (WARN(!drm_mm_clean(mm),
892 "Memory manager not clean during takedown.\n"))
893 show_leaks(mm);
895 EXPORT_SYMBOL(drm_mm_takedown);
897 static u64 drm_mm_dump_hole(struct drm_printer *p, const struct drm_mm_node *entry)
899 u64 start, size;
901 size = entry->hole_size;
902 if (size) {
903 start = drm_mm_hole_node_start(entry);
904 drm_printf(p, "%#018llx-%#018llx: %llu: free\n",
905 start, start + size, size);
908 return size;
911 * drm_mm_print - print allocator state
912 * @mm: drm_mm allocator to print
913 * @p: DRM printer to use
915 void drm_mm_print(const struct drm_mm *mm, struct drm_printer *p)
917 const struct drm_mm_node *entry;
918 u64 total_used = 0, total_free = 0, total = 0;
920 total_free += drm_mm_dump_hole(p, &mm->head_node);
922 drm_mm_for_each_node(entry, mm) {
923 drm_printf(p, "%#018llx-%#018llx: %llu: used\n", entry->start,
924 entry->start + entry->size, entry->size);
925 total_used += entry->size;
926 total_free += drm_mm_dump_hole(p, entry);
928 total = total_free + total_used;
930 drm_printf(p, "total: %llu, used %llu free %llu\n", total,
931 total_used, total_free);
933 EXPORT_SYMBOL(drm_mm_print);